WO2019097982A1 - 被験体の固さ分布測定方法及び被験体の固さ分布測定装置 - Google Patents

被験体の固さ分布測定方法及び被験体の固さ分布測定装置 Download PDF

Info

Publication number
WO2019097982A1
WO2019097982A1 PCT/JP2018/039785 JP2018039785W WO2019097982A1 WO 2019097982 A1 WO2019097982 A1 WO 2019097982A1 JP 2018039785 W JP2018039785 W JP 2018039785W WO 2019097982 A1 WO2019097982 A1 WO 2019097982A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
information
reaction force
subject
measuring
Prior art date
Application number
PCT/JP2018/039785
Other languages
English (en)
French (fr)
Inventor
宇佐美 由久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019097982A1 publication Critical patent/WO2019097982A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness

Definitions

  • the present disclosure relates to a method for measuring the hardness distribution of a subject and an apparatus for measuring the hardness distribution of a subject.
  • the abdominal force measuring device disclosed in JP 2005-261546 A performs an abdominal operation by arithmetically processing a pressing portion that presses the abdominal surface, a sensor that detects the abdominal force and outputs it as a measurement voltage, and a measurement voltage obtained from the sensor. It has an operation unit for obtaining a force value, a storage unit for storing an abdominal force value, and a display unit for displaying the abdominal force value.
  • the abdominal examination device of JP 2010-274011 A comprises a bed apparatus and a palpation apparatus, the palpation apparatus is provided at the lower part of the bed apparatus, and the palpation unit can be moved three-dimensionally in the space of the bed apparatus There is.
  • a method is known in which the reaction force measurement means is pressed into the subject to measure the reaction force, and the hardness of the subject at the position where the reaction force measurement means is pressed is known.
  • the indentation is performed only in one direction perpendicular to the surface of the subject.
  • the reaction force measurement means when the reaction force measurement means is pushed in one direction perpendicular to the surface of the subject, the hardness of the soft part existing between the reaction force measurement means and the hard part is not constant.
  • the reaction force is measured in different subjects, even if the obtained reaction force is the same value, the amount of indentation may be different, and it is difficult to accurately measure the position of the portion where the hardness changes.
  • the present disclosure can accurately measure the distribution state of a portion where the rigidity changes in the measurement reference direction of the subject, as compared to the method of measuring the reaction force only in the measurement reference direction. It is an object of the present invention to provide a method for measuring the hardness distribution of a body and an apparatus for measuring the hardness distribution of a subject.
  • a reaction force measurement unit for measuring a reaction force against a pressing force is used to measure angles relative to the measurement reference direction at a plurality of measurement positions of the measurement target portion of the subject And pressing information onto the measurement target part, information on the amount of depression of the reaction force measuring means as a mutation point at which the rate of change of reaction force changes obtained at a plurality of measurement positions, and measurement for which the amount of depression is obtained Using the process of storing the information of the position and the information of the angle at which the amount of indentation is obtained, the information of the amount of indentation, the information of the measuring position, and the information of the angle, the measurement reference direction of the subject Obtaining the hardness information of the
  • step in the present specification is included in the term if the intended purpose of the step is achieved even if it can not be clearly distinguished from other steps, not only an independent step. .
  • the measurement position of the method of measuring the hardness distribution of a subject according to the second aspect of the present disclosure may be detected by detection means for detecting the position of the reaction force measurement means using radio waves or electromagnetic induction.
  • position information of the subject output from the subject position detection means for detecting the position of the subject is stored in the storage means, and the position of the subject
  • the positional shift information as the difference between the position information of the subject stored in the storage means and the position information of the subject output from the subject position detection means is stored in the storage means, and the measurement position May be corrected using positional deviation information.
  • the reaction force measurement means of the method of measuring the hardness distribution of a subject according to the fourth aspect of the present disclosure may be attached to a finger of a human body.
  • the reaction force measurement means of the method of measuring the hardness distribution of a subject according to the fifth aspect of the present disclosure is attached to the movement means moved so as to change the measurement position and the angle of the reaction force measurement means with respect to the measurement reference direction. It may be
  • the angle of the reaction force measurement means with respect to the measurement reference direction is ⁇
  • a variation point obtained in the measurement reference direction at the first measurement position of the subject The first indentation amount of d is d1
  • the second indentation amount as a mutation point obtained in the direction of angle ⁇ at the second measurement position of the subject is d2
  • the depth in the measurement reference direction from the surface of the measurement target portion to the solid portion inside the measurement target portion is D
  • the depth D L / tan ⁇ May be stored as position information of a rigid portion of the measurement target portion.
  • the apparatus for measuring the hardness distribution of a subject is a reaction force measurement unit that measures a reaction force by being pressed against a measurement target portion of the subject, and a measurement position as a position of the reaction force measurement unit
  • the detecting means for detecting the angle of the reaction force measuring means with respect to the measurement reference direction, the information of the reaction force, the information of the measurement position, and the information of the angle, as a mutation point at which the rate of change of the reaction force changes
  • acquisition means for acquiring hardness information of the measurement reference direction of the subject.
  • the detection means of the hardness distribution measuring apparatus for a subject according to the eighth aspect of the present disclosure may detect the position of the reaction force measurement means using radio waves or electromagnetic induction.
  • the apparatus for measuring the hardness distribution of a subject is provided with subject position detection means for detecting the position of the subject, and stores the position information of the subject output from the subject position detection means Positional shift information as a difference between the position information of the subject stored in the storage means and stored in the storage means and the position information of the subject output from the subject position detection means when stored in the means and when the position of the subject shifts May be stored in the storage unit, and the correction unit may be provided to correct the information on the measurement position using the positional deviation information.
  • the apparatus for measuring the hardness distribution of a subject according to the tenth aspect of the present disclosure may be provided with attachment means for attaching a reaction force measurement means to a finger of a human body.
  • the apparatus for measuring the hardness distribution of a subject is a moving means to which a reaction force measurement means is attached and which is moved so as to change the measurement position and the angle of the reaction force measurement means with respect to the measurement reference direction. May be provided.
  • the hardness distribution of the subject that can accurately measure the distribution state of the portion where the stiffness changes in the measurement reference direction of the subject compared to the method of measuring the reaction force only in the measurement reference direction. It is possible to provide a measurement method and an apparatus for measuring the hardness distribution of a subject.
  • FIG. 1 shows a measuring device 10 in which the hardness distribution of a human body P as an example of a subject is measured as a first embodiment of the present disclosure.
  • Measuring device 10 is an example of a hardness distribution measuring device of a subject.
  • the measuring apparatus 10 is comprised including the bed 12 in which the human body P sleeps, and the measurement part 20 in which hardness distribution of the human body P is measured.
  • part measured by the measuring apparatus 10 among the human bodies P is called measurement object part PA.
  • the measurement target portion PA is, for example, an abdomen.
  • the bed 12 shown in FIGS. 3A and 3B has a support surface 14 that supports the entire human body P in a lying state.
  • the support surface 14 is, for example, a surface along the horizontal direction. Further, the support surface 14 is formed in a rectangular shape as viewed from the normal direction of the support surface 14 as an example.
  • the lateral direction of the support surface 14 is referred to as the X direction
  • the longitudinal direction of the support surface 14 is referred to as the Y direction
  • a direction normal to the support surface 14 and perpendicular to the X direction and the Y direction (vertical direction) is referred to as the Z direction.
  • the Z direction is set to the measurement reference direction.
  • the measurement reference direction is set in the Z direction which is the vertical direction in the first embodiment, but may be set in the horizontal direction or in the normal direction of the surface at the measurement start position of the measurement target portion PA.
  • the measurement unit 20 illustrated in FIG. 2 includes an input / output interface (I / O) unit 22, a monitor 24, a control unit 30, a probe 40, a moving unit 50, a detection unit 60, and a subject detection. And a unit 70.
  • I / O input / output interface
  • the monitor 24, the control unit 30, the probe 40, the moving unit 50, the detection unit 60, and the subject detection unit 70 are electrically connected. It is connected.
  • the monitor 24 is an example of an output means for outputting a measurement result of the hardness distribution described later of the human body P (see FIG. 1) as character information and image information.
  • the monitor 24 is configured to include a touch panel (not shown) as an example, and by operating the touch panel, input and setting of various setting parameters of the measurement unit 20 are enabled.
  • the control unit 30 is an example of an acquisition unit and a correction unit. Further, the control unit 30 is configured to include a central processing unit (CPU) 32, a read only memory (ROM) 34, and a random access memory (RAM) 36. Furthermore, the control unit 30 is configured to correct the information of the measurement position of the probe 40 using positional deviation information described later.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the CPU 32 supervises and controls the entire measuring device 10.
  • the ROM 34 stores in advance a control program of the measuring device 10 and other processing programs.
  • the RAM 36 is used as a work area when executing a control program or another processing program.
  • the RAM 36 is an example of a storage unit, and stores information on the amount of indentation of the probe 40 described later.
  • the probe 40 illustrated in FIG. 1 is an example of a reaction force measurement unit that measures a reaction force to a pressing force. Further, as one example, the probe 40 is formed in a cylindrical shape and extends in the axial direction, and a contact portion 44 formed at one end in the axial direction of the shaft 42 and in contact with the measurement object portion PA of the human body P. And a reaction force measuring unit 46 provided on the shaft unit 42.
  • the axial direction of the shaft portion 42 is referred to as a V direction.
  • the outer diameter of the contact portion 44 is smaller than the outer diameter of the shaft portion 42.
  • the contact portion 44 is formed in a hemispherical shape, and can be pressed against the measurement target portion PA within a range from -90 ° to + 90 ° with respect to the normal to the surface Pm of the measurement target portion PA. ing.
  • the contact part 44 contacts the measurement target part PA and exerts pressure on a part of the measurement target part PA, so that the contact part 44 of the measurement target part PA It means a state in which it is pushed inward and a part of the measurement object part PA is not broken.
  • the reaction force measurement unit 46 is configured by a strain gauge type load cell as an example.
  • the reaction force measurement unit 46 applies a reaction force applied to the contact portion 44 in the V direction when the contact portion 44 is pressed by the measurement target portion PA and pushed inward to the measurement target portion PA. It is configured to be converted into an electrical signal and output to the outside. Specifically, when the contact portion 44 is pressed into the measurement target portion PA, strain corresponding to the pressing force (pushing load) is generated inside the reaction force measuring unit 46, and electricity according to the generated strain is generated. A signal is output as reaction force information.
  • the probe 40 measures the reaction force by being pressed against the measurement target portion PA of the human body P. Further, information on the reaction force obtained by the probe 40 is output to the control unit 30 (see FIG. 2).
  • the hardness information of the human body P in the V direction in the present embodiment means, as an example, positional information of an interface between a soft part and a hard part.
  • the hardness of the measurement target portion PA can be evaluated by comparing the reaction force measured by the probe 40 with the reaction force of a preset reference substance.
  • the moving unit 50 illustrated in FIG. 2 is an example of a moving unit.
  • the probe 40 is attached to the moving unit 50.
  • the moving unit 50 is configured to be moved so as to change the measurement position of the probe 40 and the angle of the probe 40 with respect to the V direction (see FIG. 1).
  • the moving unit 50 includes a slider unit 52 and an angle changing unit 53 as an example.
  • the slider unit 52 shown in FIG. 1 is configured to be movable in the Z direction, an X axis slider 54 configured to be movable in the X direction, and a Y axis slider 56 configured to be movable in the Y direction. And a Z-axis slider 58.
  • the Y-axis slider 56 is provided with Y-axis rails 56A disposed on both sides in the X direction with respect to the bed 12 and extending in the Y direction, a movable body 56B provided movable in the Y direction on each Y axis rail 56A, and a movable body 56B.
  • an actuator (not shown) for moving in the Y direction.
  • the X-axis slider 54 is constructed on the ⁇ Z side of the two moving bodies 56B and extends in the X direction, an X-axis rail 54A, a moving body 54B provided movably in the X direction on the X-axis rail 54A, and a moving body 54B. And an actuator (not shown) for moving in the X direction.
  • the Z-axis slider 58 is fixed to the -Z side of the movable body 54B and extends to the -Z side along the Z direction, and a movable body 58B provided movably in the Z direction on the Z axis rail 58A. And an actuator (not shown) for moving the moving body 58B in the Z direction.
  • the actuator of the X-axis slider 54, the actuator of the Y-axis slider 56, and the actuator of the Z-axis slider 58 have the same configuration, and as one example, is configured to convert rotational motion of a motor (not shown) into linear motion. ing.
  • the angle changing unit 53 shown in FIG. 1 is configured by a biaxial gonio stage.
  • the angle changing unit 53 includes a probe attachment portion 53A, a first gonio stage 53B capable of changing an angle of the probe attachment portion 53A in the XZ plane, and a Y- of the first gonio stage 53B. And a second gonio stage 53C capable of changing the angle in the Z plane.
  • the end of the probe 40 opposite to the contact portion 44 side is fixed to the probe attachment portion 53A.
  • probe 40 is arranged in the state where V direction followed Z direction in the state before angle change.
  • the first gonio stage 53B and the second gonio stage 53C are rotated independently of each other by a motor (not shown).
  • the first gonio stage 53B and the second gonio stage 53C are respectively rotated by a motor to change the angle ⁇ and the angle ⁇ (see FIG. 4) that the V direction of the probe 40 forms with respect to the XY plane It is done.
  • the coordinates (X1, Y1, Z1) of the tip position A of the probe 40 with respect to the coordinates (0, 0, 0) of the origin O, and the angle ⁇ and the angle ⁇ of the probe 40 are shown in FIG.
  • the detection unit 60 illustrated in FIG. 2 is an example of a detection unit. Further, the detection unit 60 is electrically connected to the slider unit 52 and the angle changing unit 53, and the measurement position as the tip position of the contact unit 44 (see FIG. 1) of the probe 40 and the probe 40 in the Z direction. The angle is detected.
  • the detection unit 60 has a plurality of rotary encoders (not shown).
  • the plurality of rotary encoders move the motor for rotating the first gonio stage 53B and the second gonio stage 53C (see FIG. 1), and move the X-axis slider 54, the Y-axis slider 56 and the Z-axis slider 58 (see FIG. 1) It is provided to the motor to be driven.
  • the detection unit 60 detects the rotation amount of the motor with a rotary encoder and converts it into a movement amount in the linear direction or an angle in the rotation direction, thereby the tip position of the probe 40 (XYZ coordinate system) and the probe in the Z direction It is configured to detect 40 angles (a spherical coordinate system).
  • the subject detection unit 70 illustrated in FIG. 2 is an example of a subject position detection unit. Further, the subject detection unit 70 detects the position of the human body P on the bed 12 (see FIG. 1). Specifically, the subject detection unit 70 includes, for example, a tag 72 and a reception unit 74 that detects the position of the tag 72 using a radio wave.
  • the tag 72 is an RFID (Radio Frequency Identification) tag as an example, and is configured to be capable of transmitting radio waves. Also, the tag 72 is attached to a part of the human body P (for example, a chest).
  • RFID Radio Frequency Identification
  • the receiving unit 74 is configured to include an antenna capable of receiving the radio wave emitted by the tag 72. Moreover, the receiving part 74 is provided in the bed 12 (refer FIG. 1). Then, in the receiving unit 74, the coordinates of the tag 72 are calculated based on the radio wave received from the tag 72, using an XYZ coordinate system whose origin is the position where the receiving unit 74 is provided. The coordinate information of the tag 72 obtained by the receiving unit 74 is stored in the RAM 36 of the control unit 30.
  • FIG. 9A shows a state before the measurement of the reaction force by the probe 40 in which the V direction, which is the axial direction, is along the Z direction.
  • the measurement position of the reaction force by the probe 40 means the point A set in the surface Pm of measurement object part PA as an example.
  • the measurement position is a position on the surface Pm to which the probe 40 is to be pressed, and means a position in a state before the probe 40 is pushed.
  • the tip end position of the probe 40 in a state in which the probe 40 receives a reaction force is referred to as a pressing position to be distinguished from the measurement position.
  • the measurement position where the hard portion Ph exists in the soft portion Ps is found by measuring the reaction force by changing the measurement position in the X direction in advance.
  • the measurement position shown in FIG. 9B when the probe 40 is pushed into the measurement target portion PA with a small force F1, only the outer soft portion Ps is deformed.
  • a change amount of the reaction force N1 according to the increase of the pressing amount of the probe 40 is obtained.
  • the back hard portion Ph also starts deformation.
  • the amount of change of the reaction force N2 according to the increase in the amount of pressing becomes larger than when only the soft portion Ps is deformed.
  • FIG. 10A shows a graph GA representing the relationship between the amount of indentation and the reaction force.
  • the graph GA is a curve in which the change rate of the reaction force in the section where the pressing amount is large is larger than the change rate of the reaction force in the section where the pressing amount is small.
  • A be a straight line obtained by first approximation of the rate of change of the reaction force in a section where the amount of indentation of the graph GA is small.
  • B be a straight line obtained by first approximation of the rate of change of the reaction force.
  • the intersection of the straight line A and the straight line B is referred to as a mutation point CA.
  • the amount of indentation at the mutation point CA is Sa
  • the imaginary reaction force corresponding to the amount of indentation Sa is Na [N].
  • the pressing amount of the probe 40 (see FIG. 9C) as a mutation point CA at which the rate of change of the reaction force changes is information on the reaction force and information on the pressing amount obtained from the information on the measurement position of the probe 40 and the information on the angle. From this, it means the indentation amount Sa obtained by obtaining the graph GA and the mutation point CA.
  • the obtained pressing amount Sa is stored in the RAM 36 (see FIG. 2).
  • the depth D from the surface Pm to the interface M between the soft portion Ps and the hard portion Ph may be determined using the value of the indentation amount Sa (see FIG. 10A)
  • the exact depth D can not be determined.
  • the mutation point CB is pressed compared to the mutation point CA as shown by the graph GB shown in FIG. 10B. Shift to the less side.
  • the indentation amount at the mutation point CB is Sb, and the reaction force is Nb [N].
  • the reaction force Nb is larger than the reaction force Na, but the pressing amount Sb is smaller than the pressing amount Sa. That is, in the method (hereinafter referred to as a comparative example) in which the probe 40 shown in FIGS. 9A to 9C is pushed in only one direction (the comparative example), the hardness of the soft portion Ps changes and thus the mutation point CA changes. It is difficult to find D accurately.
  • the indentation amount of the mutation point in the measurement of the first measurement position A is taken as a first indentation amount S1 [mm].
  • the probe 40 is pushed in the direction in which the angle of the axial direction of the probe 40 with respect to the Z direction is ⁇ (°) at the second measurement position B shifted in the X direction from the first measurement position A, Suppose that the displacement point of is obtained.
  • the pressing amount of the mutation point in the measurement of the second measurement position B is set as a second pressing amount S2 [mm].
  • the distance between the first measurement position A and the second measurement position B in the X direction is L [mm].
  • the point Aa and the point Ba correspond to the pressing position.
  • the measurement position C is set between the measurement position A and the measurement position B.
  • the equation for obtaining the depth D in one direction at the measurement target portion PA is simply referred to as “relational equation”.
  • the characteristics of the soft part Ps of the measurement target part PA are considered to be the same even if the measurement position is changed within a limited range. That is, since the viscoelastic coefficient at the second measurement position B can be considered equal to the viscoelastic coefficient k1 at the first measurement position A, the depth D2 in the direction (cross direction) forming an angle ⁇ (°) with the Z direction
  • the depth D1 is determined by setting the correct depth in the Z direction from the surface Pm to the internal hard portion Ph in the measurement target portion PA as D1 [mm].
  • D1 L / tan ⁇ .
  • the obtained information of the depth D1 is stored in the RAM 36 (see FIG. 2) as the positional information of the hard portion Ph of the measurement target portion PA.
  • the positional information on the hard part Ph of the measurement target part PA means positional information on the interface M between the soft part Ps and the hard part Ph as described above.
  • the hardness information of the human body P in the Z direction in the present embodiment means position information of the interface M, as described above. Further, as shown in FIGS. 5A and 5B, the hardness information of the human body P in the Z direction is indentations obtained at a plurality of measurement positions (for example, point A1, point A2 and point A3, or point A4, point A5) The information of the amount, the information of the measurement position at which the information of the amount of indentation is obtained, and the information of the angle of the probe 40 can be obtained by the method described above. The obtained hardness information (hardness information of the human body P in the Z direction) is acquired by the control unit 30 (see FIG. 2). In FIGS. 5A and 5B, the point Aa, the point Ab, the point Ac, the point Ad, and the point Ae correspond to the pressing position.
  • correction of the measurement position by the probe 40 is performed based on the coordinate information of the tag 72 obtained by the subject detection unit 70.
  • the information on the measurement position (start time position) of the human body P output from the subject detection unit 70 is stored in the RAM 36 before the start of the measurement of the reaction force. Subsequently, at the measurement time of the reaction force, the information of the measurement position (the position at the time of measurement) of the human body P is output from the subject detection unit 70.
  • the control unit 30 operates the moving unit 50 to automatically move the probe 40 until the positional deviation amount falls within the measurement error range.
  • step S10 shown in FIG. 11 the probe 40 is disposed at the reference position. Then, the process proceeds to step S12.
  • the reference position is a preset initial position before the start of measurement.
  • step S12 the coordinate information of the tag 72 obtained by the subject detection unit 70 is stored in the RAM 36 of the control unit 30.
  • the coordinate information of the tag 72 stored in the RAM 36 is acquired by the CPU 32 as position information of the human body P. Then, the process proceeds to step S14.
  • step S14 the moving unit 50 is operated to move the probe 40 to the measurement position. Then, the process proceeds to step S16.
  • step S16 the coordinate information of the tag 72 obtained by the subject detection unit 70 is acquired by the CPU 32 as position information of the human body P. Then, the process proceeds to step S18.
  • step S18 the CPU 32 compares the obtained position information of the human body P with the position information stored in the RAM 36, and determines the necessity or necessity of correction of the measurement position based on the measurement error range. Ru. If it is not necessary, the process proceeds to step S22. If it is necessary, the process proceeds to step S20.
  • step S20 information on the measurement position of the probe 40 is corrected using positional deviation information. Then, the probe 40 is moved by the moving unit 50 to the correct measurement position according to the positional deviation amount. Then, the process proceeds to step S22.
  • step S22 the probe 40 is pressed (pushed) against the measurement target portion PA at the measurement position, whereby the reaction force is measured. Then, the process proceeds to step S24.
  • step S24 the coordinate information of the measurement position and the information of the angle of the probe 40 with respect to the Z direction are stored in the RAM 36. Further, the amount of depression is gradually increased, and information on the reaction force corresponding to the amount of depression is stored in the RAM 36. Then, the process proceeds to step S26.
  • step S26 the indentation amount as a mutation point is determined by the method described above.
  • measurement of the reaction force along the Z direction yields the graph G1 shown in FIG. 6A.
  • the mutation point C1 is obtained by two straight lines which are linearly approximated, and the indentation amount S1 [mm] and the reaction force N1 [N] at the mutation point C1 are obtained.
  • the graph G2 shown in FIG. 6B is obtained by measuring the reaction force along the direction intersecting with the Z direction at the angle ⁇ (°).
  • a mutation point C2 is obtained by two straight lines obtained by linear approximation, and a pressing amount S2 [mm] and a reaction force N2 [N] at the mutation point C2 are obtained.
  • step S28 it is determined whether or not the measurement position has been changed.
  • the determination of the presence or absence of the measurement position change is performed, for example, by selecting the measurement position change button displayed on the touch panel of the monitor 24. If not, the process proceeds to step S32. If there is, the process proceeds to step S30.
  • step S30 the probe 40 is moved, for example, in the X direction toward the next measurement position (see FIG. 5A). Then, the process proceeds to step S16.
  • step S32 it is determined whether there is no change in the angle of the probe 40 or not.
  • the determination of the presence or absence of the angle change is performed, for example, by selecting an angle change button displayed on the touch panel of the monitor 24. If not, the process proceeds to step S36. If yes, the process proceeds to step S34.
  • step S34 the angle of the probe 40 is changed.
  • the arrangement of the probes 40 shown in FIG. 5A along the Z direction is changed to the arrangement of the probes 40 shown in FIG. 5B intersecting the Z direction at an angle ⁇ . Then, the process proceeds to step S10.
  • step S36 it is determined whether acquisition of hardness information of the human body P (measurement target portion PA) is to be performed.
  • the determination as to the presence / absence of hardness information acquisition is performed, for example, by selecting the information acquisition presence / absence button displayed on the touch panel of the monitor 24. If the hardness information is not obtained, the program is terminated. When acquiring hardness information, it transfers to step S38.
  • step S40 it is determined whether or not there is a change in the scanning direction (moving direction) of the probe 40.
  • Changing the scanning direction means, for example, changing the X direction into the Y direction.
  • the determination of the presence or absence of the change in the scanning direction is performed, for example, by selecting the button indicating the presence or absence of the change in the direction displayed on the touch panel of the monitor 24. If there is no change in the scanning direction, the process proceeds to step S44. If there is a change in the scanning direction, the process proceeds to step S42.
  • step S42 the scanning direction of the probe 40 is changed.
  • the scanning direction is changed from the X direction to the Y direction. Then, the process proceeds to step S10.
  • step S44 the hardness distribution information of the human body P (measurement target portion PA) is acquired based on the hardness information in a plurality of scanning directions. Specifically, information representing the interface M of the human body P is acquired for the X direction and the Y direction. That is, information that allows the interface M to be viewed as a surface is acquired (see FIG. 8B). The program is then terminated.
  • acquisition of hardness distribution information of the human body P is performed by a program, but a step of displaying information on the interface M on the monitor 24 (see FIG. 2) may be included.
  • the probe 40 is pressed against the measurement target portion PA by changing the angle of the probe 40. Subsequently, information on the pressing amount of the probe 40 as a mutation point, information on the measuring position at which the pressing amount is obtained, and information on the angle at which the pressing amount is obtained, which are obtained at a plurality of measurement positions Is stored in Subsequently, the information on the interface M is obtained using the information on the amount of indentation, the information on the measurement position, and the information on the angle. In other words, hardness information of the human body P in the Z direction is acquired.
  • the depth D1 from the surface Pm of the measurement target portion PA to the hard portion Ph can be determined with high accuracy. That is, compared with the comparative example described above, it is possible to measure the distribution state of the portion where the hardness of the human body P changes in the Z direction with high accuracy.
  • the measurement position by the probe 40 is corrected based on the positional deviation information obtained from the subject detection unit 70. That is, even if the human body P moves during measurement of the hardness distribution of the human body P, the probe 40 is disposed at the correct measurement position, and therefore, the distribution state of the portion where the rigidity of the human body P changes in the Z direction is accurately measured. Can.
  • the probe 40 is pressed against the human body P as an example of the subject, the discomfort caused by the measurer touching the human body P can be eliminated. .
  • the depth D1 is determined by performing the reaction force measurement in the Z direction and the reaction force measurement in the direction intersecting at an angle ⁇ with the Z direction. That is, by measuring the reaction force in the Z direction at one of the two measurement positions, the triangle connecting the two measurement positions and one point of the interface M is formed into a right triangle. Since the triangle connecting two points of the measurement position and one point of the interface M is in the shape of a right triangle, the calculation using the trigonometric function becomes easy to perform, so the distribution state of the portion where the hardness of the human body P changes in the Z direction. Can be measured accurately.
  • the configuration of a measurement apparatus 80 according to a second embodiment of the present disclosure is shown as a block diagram in FIG.
  • the measuring device 80 includes a reaction force measurement unit 82 as an example of a reaction force measurement unit, a detection unit 90 as an example of a detection unit, a control unit 30, a monitor 24, and a mounting unit 84 as an example of a mounting unit. Have.
  • the measurement device 80 does not include the bed 12 (see FIG. 1).
  • the reaction force measurement unit 82 illustrated in FIG. 13A includes five reaction force sensors 83 as an example.
  • the five reaction force sensors 83 include, as an example, piezoelectric elements.
  • the reaction force measurement unit 82 outputs information (signal) corresponding to the reaction force received from the human body P (see FIG. 13B) to the control unit 30 (see FIG. 12).
  • a strain gauge type reaction force sensor may be used.
  • the detection unit 90 illustrated in FIG. 12 includes, for example, a detection unit 92, a magnetic field generation unit 94, and a sensor unit 96.
  • the magnetic field generator 94 generates a magnetic field in the space where the measurement of the reaction force is performed.
  • the sensor unit 96 functions as a receiver that detects the magnetic field generated by the magnetic field generation unit 94.
  • the sensor unit 96 includes, for example, five coil sensors 97 (see FIG. 13A). Each of the five coil sensors 97 is configured to include three orthogonal coils.
  • the detection unit 92 controls the operation of the magnetic field generation unit 94 and measures the electromotive force due to the electromagnetic induction generated by the five coil sensors 97, respectively, to obtain information on relative positions and angles of the five coil sensors 97. And output to the control unit 30.
  • the mounting unit 84 shown in FIG. 13A mounts the reaction force measurement unit 82 on the finger FG of the right hand of the measurer PD (see FIG. 13B) as a human body.
  • the mounting unit 84 includes, for example, a finger cap 85A, a finger cap 85B, a finger cap 85C, a finger cap 85D, and a finger cap 85E.
  • the finger cap 85A is attached to the thumb, the finger cap 85B to the index finger, the finger cap 85C to the middle finger, the finger cap 85D to the ring finger, and the finger cap 85E to the little finger.
  • the finger cap 85A, the finger cap 85B, the finger cap 85C, the finger cap 85D, and the finger cap 85E may be collectively configured as one glove.
  • the finger cap 85A, the finger cap 85B, the finger cap 85C, the finger cap 85D, and the finger cap 85E are provided with one reaction force sensor 83 and one coil sensor 97, respectively.
  • the reaction force sensor 83 is provided at the tip of the finger.
  • the coil sensor 97 is provided at a position separated from the reaction force sensor 83 by a predetermined distance. That is, the information of the measurement position at which the reaction force sensor 83 measures the reaction force is obtained by the output from the coil sensor 97.
  • the coil sensor 97 is a wired sensor to which wiring was connected, wiring is abbreviate
  • the hardness distribution measurement of the measurement target portion PA of the human body P in the state of sitting on the chair 99A is provided on the right hand of the measurer PD (doctor) in the state of sitting on the chair 99B. This is performed by the reaction force measurement unit 82 and the detection unit 90 (see FIG. 12).
  • the direction (one horizontal direction) in which the human body P and the measurer PD face each other is set as the measurement reference direction and as the Z direction.
  • the vertical direction is set to the Y direction
  • the width direction of the human body P orthogonal to the Y direction and the Z direction is set to the X direction.
  • FIG. 14 shows, as an example, a state in which the measurer PD pinches the measurement target portion PA with the thumb and forefinger.
  • the measuring device 80 information on the reaction force on the human body P is obtained from the reaction force measurement unit 82 (see FIG. 12), and information on the measurement position and information on the angle are obtained from the detection unit 90 (see FIG. 12).
  • Information on the measurement position of the reaction force sensor 83 and information on the angle at the time before pressing the reaction force sensor 83 (see FIG. 13A) against the human body P and the time after pressing (depression) on the human body P Thus, the amount of depression of the reaction force sensor 83 on the human body P can be obtained.
  • the measurement position of the reaction force by the reaction force sensor 83 means, as an example, the point A and the point B set on the surface Pm of the measurement target portion PA.
  • the measurement position is a position on the surface Pm to which the reaction force sensor 83 is to be pressed, and means a position on the surface Pm in a state before the reaction force sensor 83 is pushed.
  • the tip end position of the reaction force sensor 83 in a state in which the reaction force sensor 83 receives a reaction force is referred to as a pressing position to distinguish it from the measurement position.
  • the point A is referred to as a first measurement position A
  • the point B is referred to as a second measurement position B.
  • the point Aa and the point Ba correspond to the pressing position.
  • the pressing amount of the reaction force sensor 83 as a mutation point at which the rate of change of the reaction force changes is from the information on the reaction force and the information on the measurement position of the reaction force sensor 83 and the information on the pressing amount obtained from the information on the angle. It means the amount of indentation obtained by finding the mutation point.
  • the obtained pressing amount is stored in the RAM 36 (see FIG. 12).
  • a variation point (first pressing amount S1 [mm]) of the reaction force is in a direction at an angle ⁇ [°] to the Z direction which is a measurement reference direction at the first measurement position A
  • the reaction force mutation point is in the direction of the angle ⁇ (°) with respect to the Z direction.
  • the distance between the first measurement position A and the second measurement position B in the Y direction is L [mm].
  • the depth to the hard portion Ph in the direction of the angle ⁇ is D1 [mm]. Further, at the second measurement position B, the depth to the hard portion Ph in the direction of the angle ⁇ is D2 [mm].
  • the positional information on the hard part Ph of the measurement target part PA means positional information on the interface M between the soft part Ps and the hard part Ph as described above.
  • a point C indicates an intersection point of the surface H with the perpendicular H, which is lowered from the point Q to the surface Pm.
  • the distance L between the first measurement position A and the second measurement position B is known, and the angle ⁇ at the first measurement position A and the angle ⁇ at the second measurement position B are known.
  • the triangle QAB is determined by the two sides if the upper relational expression is satisfied. And, that the triangle QAB is determined means that the depth Dv corresponding to the height with respect to the base AB of the triangle QAB is also determined.
  • step S100 shown in FIG. 15 the reaction force sensor 83 is disposed at the measurement position. Then, the process proceeds to step S102.
  • step S102 the reaction force sensor 83 is pressed (pushed) against the measurement target portion PA at the measurement position to measure the reaction force. Then, the process proceeds to step S104.
  • step S104 coordinate information of the measurement position and information of the angle of the reaction force sensor 83 with respect to the Z direction are stored in the RAM.
  • the information on the angle can be obtained from the coordinate information at the time before the information on the reaction force is output from the reaction force sensor 83 and the coordinate information on the time when the information on the reaction force is output.
  • the information on the reaction force corresponding to the amount of pressing is stored in the RAM 36 by the amount of pressing being increased.
  • the measurement may be performed simultaneously at a plurality of points of the measurement target part PA. Then, the process proceeds to step S106.
  • step S106 the amount of indentation as a mutation point at each measurement position is determined by the method described above.
  • the information of the obtained pressing amount is stored in the RAM 36.
  • step S108 the process proceeds to step S108. If no mutation point is found, the information that only the soft site Ps is present in the measurement target portion PA is stored in the RAM 36.
  • step S108 it is determined whether the measurement position has been changed or not.
  • the determination of the presence or absence of the measurement position change is performed, for example, by selecting the measurement position change button displayed on the touch panel of the monitor 24. If not, the process proceeds to step S112. If there is, the process proceeds to step S110.
  • step S110 the reaction force sensor 83 is moved toward the next measurement position. Then, the process proceeds to step S102.
  • step S112 it is determined whether the angle of the reaction force sensor 83 has not been changed or not.
  • the determination of the presence or absence of the angle change is performed, for example, by selecting an angle change button displayed on the touch panel of the monitor 24. If not, the process proceeds to step S116. If yes, the process proceeds to step S114.
  • step S114 the measurer PD changes the angle of the finger to change the angle of the reaction force sensor 83. Then, the process proceeds to step S102.
  • step S116 it is determined whether acquisition of hardness information of the human body P (measurement target portion PA) is to be performed.
  • the determination as to the presence / absence of hardness information acquisition is performed, for example, by selecting the information acquisition presence / absence button displayed on the touch panel of the monitor 24. If the hardness information is not obtained, the program is terminated. When acquiring hardness information, it transfers to step S118.
  • step S120 it is determined whether or not there is a change in the scanning direction (moving direction) of the reaction force sensor 83.
  • the determination of the presence or absence of the change in the scanning direction is performed, for example, by selecting the button indicating the presence or absence of the change in the direction displayed on the touch panel of the monitor 24. If there is no change in the scanning direction, the process proceeds to step S124. If there is a change in the scanning direction, the process proceeds to step S122.
  • step S122 the scan direction of the reaction force sensor 83 is changed by the measurer PD.
  • the scanning direction is changed from the Y direction to the X direction. Then, the process proceeds to step S100.
  • step S124 the hardness distribution information of the human body P (the measurement target portion PA) is acquired based on the hardness information in a plurality of scanning directions. Specifically, information representing the interface M of the human body P is acquired for the X direction and the Y direction. That is, information that allows the interface M to be viewed as a surface is acquired (see FIG. 8B). The program is then terminated.
  • acquisition of hardness distribution information of the human body P is performed by a program, but a step of displaying information of the interface M on the monitor 24 may be included.
  • the reaction force sensor 83 is pressed against the measurement target portion PA at different angles at a plurality of measurement positions of the measurement target portion PA of the human body P.
  • the information of the pressing amount as a mutation point, the information of the measuring position at which the pressing amount is obtained, and the information of the angle at which the pressing amount is obtained, which are obtained at a plurality of measurement positions, are stored in the RAM 36 Ru.
  • the information on the interface M is obtained using the information on the amount of indentation, the information on the measurement position, and the information on the angle. In other words, hardness information of the human body P in the Z direction is acquired.
  • the measurement position is detected by the detection unit 90 that detects the position of the reaction force sensor 83 using electromagnetic induction. That is, when the measurement position by the reaction force sensor 83 is detected, the measurement position can be detected even in a state where the light is blocked by the human body P.
  • the reaction force sensor 83 is attached to the finger FG of the human body P. Since the reaction force sensor 83 is attached to the finger FG, the reaction force sensor 83 is moved by human power, so that a means for changing the measurement position and angle of the reaction force sensor 83 is not necessary.
  • FIG. 16 A block diagram of the measuring apparatus 100 is shown in FIG. 16 as a first modification.
  • the measuring apparatus 100 has a configuration in which a subject detection unit 70 is provided instead of the detection unit 90 (see FIG. 12) in the measurement apparatus 80 (see FIG. 12) of the second embodiment.
  • the tag 72 is attached to the finger FG (see FIG. 13A) of the measurer PD. That is, in the measuring device 100, the position of the reaction force sensor 83 is detected using a radio wave.
  • the direction (angle) of pressing can be obtained from the information of the position which changes when pressing the reaction force sensor 83.
  • the reaction force sensor 83 is pressed against the measurement target portion PA at different angles. Subsequently, the information of the pressing amount as a mutation point, the information of the measuring position at which the pressing amount is obtained, and the information of the angle at which the pressing amount is obtained, which are obtained at a plurality of measurement positions, are stored in the RAM 36 Ru. Subsequently, the information on the interface M is obtained using the information on the amount of indentation, the information on the measurement position, and the information on the angle. In other words, hardness information of the human body P in the Z direction is acquired.
  • FIG. 17 A block diagram of the measuring device 110 is shown in FIG. 17 as a second modification.
  • the measuring device 110 has a configuration in which a subject detection unit 70 is added to the measuring device 80 (see FIG. 12) of the second embodiment.
  • the tag 72 is attached to the measurement target portion PA (see FIG. 14) of the human body P. That is, the measuring device 110 is configured to use the subject detection unit 70 to correct the measurement position when the human body P moves during measurement by the method described above.
  • the reaction force sensor 83 is pressed against the measurement target portion PA at different angles.
  • the information on the measurement position is corrected based on the positional deviation information obtained from the subject detection unit 70.
  • the information of the pressing amount as a mutation point, the information of the measuring position at which the pressing amount is obtained, and the information of the angle at which the pressing amount is obtained, which are obtained at a plurality of measurement positions are stored in the RAM 36 Ru.
  • the information on the interface M is obtained using the information on the amount of indentation, the information on the measurement position, and the information on the angle. In other words, hardness information of the human body P in the Z direction is acquired.
  • the measuring apparatus 120 has a configuration in which a detecting unit 130 as an example of detecting means is provided in place of the detecting unit 60 (see FIG. 2) in the measuring apparatus 10 (see FIG. 2) of the first embodiment. .
  • the detection unit 130 has a tag 132 and a reception unit 134.
  • the tag 132 is configured the same as the tag 72 (see FIG. 2).
  • the receiving unit 134 has the same configuration as the receiving unit 74 (see FIG. 2).
  • the detection unit 130 is configured to detect the measurement position by the probe 40 and the angle of the probe 40 with respect to the Z direction.
  • the probe 40 is pressed against the measurement target portion PA at different angles.
  • the information on the measurement position is corrected based on the positional deviation information obtained from the subject detection unit 70.
  • the information of the pressing amount as a mutation point, the information of the measuring position at which the pressing amount is obtained, and the information of the angle at which the pressing amount is obtained, which are obtained at a plurality of measurement positions are stored in the RAM 36 Ru.
  • the information on the interface M is obtained using the information on the amount of indentation, the information on the measurement position, and the information on the angle. In other words, hardness information of the human body P in the Z direction is acquired.
  • Position detection may be calculated from an acceleration sensor.
  • the reaction force sensor is not limited to a piezoelectric sensor, and may be an electrostatic sensor.
  • the correction value for the angle of measurement and the reaction force may be stored in advance as a table in the ROM, and the depth D obtained by the measurement may be corrected.
  • the depth D may be corrected by detecting the movement of the pressed surface Pm in the measurement target portion PA.
  • the probe 40 or the reaction force sensor 83 may be scanned at the next measurement position after the probe 40 or the reaction force sensor 83 is moved and measured in a lump shape around one measurement position.
  • the probe 40 or the reaction force sensor 83 may be scanned in a pendulum shape.
  • the scanning order is measured while changing the angle ⁇ and the angle ⁇ , and then the X direction and the Y direction.
  • the order of changing the position of is preferred.
  • Another medium may be interposed between the probe 40 and the human body P as long as the thickness can be substantially ignored. For example, by applying gel on the surface Pm of the measurement target portion PA and pressing the probe 40, the scannability of the probe 40 is increased.
  • the measuring device 80, the measuring device 100, the measuring device 110, and the measuring device 120 changes in the obtained positional information and information on the reaction force are provided to human hands at different places. It may be regenerated by an actuator. It is possible to experience the state of measurement by reproducing with the actuator and a person in another place receiving acceleration. Furthermore, based on the internal structure of the three-dimensional object obtained by the measurement, it is also possible to calculate the feel when the hand is pressed, and perform tactile simulation. It also becomes possible to obtain objective palpation data from the information obtained by measurement.
  • the actuator used at a place other than the measurement place preferably has the same mechanism as that used for the measurement. It is possible to reproduce the same operation as that detected in the measurement. It is also possible to enlarge or reduce the reproduction (reproduction) operation, for example, 10 times or 1/10 times. By operating the actuator that detects and reproduces the movement at high speed, it is possible to reproduce the feel close to the measurement state.
  • the velocity of the actuator is 1 ns or more and 100 ms or less, preferably 0.1 ⁇ s or more and 50 ms or less, and most preferably 10 ⁇ s or more and 10 ms or less.
  • the measurement may be performed using a robot hand instead of the hand of the measurer PD.
  • a robot hand By using a robot hand, it is possible to perform measurement even when it is not preferable to touch, such as a female affected area.
  • an actuator of an electric system or a pressure gauge can be used as a mechanism for applying a force to the measurement target portion PA to obtain a reaction force.
  • an actuator of an electric system or a pressure gauge can be used as the electrical system.
  • a solenoid, a voice coil, a motor, a linear motor, and a rubber actuator can be used as the electrical system.
  • a pressure system for example, a hydraulic cylinder or a pneumatic cylinder can be used.
  • an optical mutation sensor As a sensor for measuring a position, an optical mutation sensor, a linear proximity sensor, an ultrasonic sensor, an electromagnetic sensor can be used, for example.
  • reaction force (stress) sensor a piezoelectric type, a strain gauge type, or an electromagnetic type can be used.
  • the acceleration may be obtained from the time change of displacement, and the reaction force may be calculated from the obtained acceleration.
  • the actuator as a mechanism for changing the angle changes the angle directly or through gears if it is rotary.
  • a worm gear that converts linear motion into rotational motion is used.
  • the measuring apparatus 80 When performing hardness distribution measurement of the human body P using any of the measuring apparatus 10, the measuring apparatus 80, the measuring apparatus 100, the measuring apparatus 110, and the measuring apparatus 120, detection that detects the hard part Ph using ultrasonic waves You may use an apparatus together.
  • the subject is not limited to the human body, and may have a configuration in which a hard site exists in a soft site.
  • the metal core material may be an object covered with resin.
  • SYMBOLS 10 measuring apparatus an example of hardness distribution measuring apparatus of a subject
  • 12 beds, 14 support surfaces 20 measuring parts, 22 input / output interface parts, 24 monitors, 30 control parts (an example of acquisition means and correction means), 36 RAM (an example of storage means), 40 probes (an example of reaction force measurement means), 42 shaft parts, 44 contact parts, 46 reaction force measurement parts, 50 movement parts (an example of movement means), 52 slider parts, 53 angle change , 53A probe mounting part, 53B gonio stage, 53C gonio stage, 54 X axis slider, 54A X axis rail, 54B moving body, 56 Y axis slider, 56A Y axis rail, 56B moving body, 58 Z axis slider, 58A Z Axis rail, 58B moving body, 60 detection unit (an example of detection means), 70 subject detection unit (subject position detection Examples of means), 72 tags, 74 receivers, 80 measuring devices (an example of an apparatus for measuring the hardness distribution of a

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

被験体の固さ分布測定方法は、押込力に対する反力を測定する反力測定手段を、被験体の測定対象部の複数の測定位置において、測定基準方向に対する角度を変えて測定対象部に押付ける工程と、複数の測定位置において得られた、反力の変化率が変わる変異点としての反力測定手段の押込量の情報と、押込量が得られた測定位置の情報と、押込量が得られた角度の情報とを記憶手段に記憶する工程と、押込量の情報と、測定位置の情報と、角度の情報とを用いて、被験体の測定基準方向の固さ情報を取得する工程と、を有する。

Description

被験体の固さ分布測定方法及び被験体の固さ分布測定装置
 本開示は、被験体の固さ分布測定方法及び被験体の固さ分布測定装置に関する。
 特開2014-105998号公報の押込試験方法は、第1のアクチュエータにより圧子と試料とを接近させる可動ステップと、第2のアクチュエータにより圧子を試料に押込みながら、押込量及び押込荷重を計測する押込ステップとを備えている。
 特開2005-261546号公報の腹力測定装置は、腹部表面を押圧する押圧部と、腹力を検知し測定電圧として出力するセンサ部と、センサ部から得られる測定電圧を演算処理して腹力値を得る演算部と、腹力値を格納する記憶部と、腹力値を表示するための表示部とを有する。
 特開2010-274011号公報の腹診装置は、寝台装置と触診装置とを備え、触診装置は寝台装置の下部に設けられ、触診部が寝台装置の空間において三次元的に移動可能とされている。
 被験体に反力測定手段を押込んで反力を測定することで、反力測定手段を押込んだ位置での被験体の固さを知る方法が行われている。ここで、特開2014-105998号公報から特開2010-274011号公報までの方法及び装置では、被験体の表面に対して垂直な一方向のみに押込みが行われている。
 しかし、被験体の表面に対して垂直な一方向に反力測定手段を押込んだ場合に、反力測定手段と固い部位との間に存在する柔らかい部位の固さは一定ではない。異なる被験体において反力を測定した場合に、得られた反力が同じ値であっても押込量が異なる場合があり、固さが変わる部位の位置を精度良く測定することが難しい。換言すると、測定基準方向のみに反力を測定する方法に比べて、被験体の測定基準方向における固さが変わる部分の分布状態を精度良く測定するには、改善の余地がある。
 本開示は、上記事実を考慮して、測定基準方向のみに反力を測定する方法に比べて、被験体の測定基準方向における固さが変わる部分の分布状態を精度良く測定することができる被験体の固さ分布測定方法及び被験体の固さ分布測定装置を提供することを目的とする。
 本開示の第1態様に係る被験体の固さ分布測定方法は、押込力に対する反力を測定する反力測定手段を、被験体の測定対象部の複数の測定位置において、測定基準方向に対する角度を変えて測定対象部に押付ける工程と、複数の測定位置において得られた、反力の変化率が変わる変異点としての反力測定手段の押込量の情報と、押込量が得られた測定位置の情報と、押込量が得られた角度の情報とを記憶手段に記憶する工程と、押込量の情報と、測定位置の情報と、角度の情報とを用いて、被験体の測定基準方向の固さ情報を取得する工程と、を有する。
 なお、本明細書における「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示の第2態様に係る被験体の固さ分布測定方法の測定位置は、電波又は電磁誘導を用いて反力測定手段の位置を検出する検出手段によって検出されてもよい。
 本開示の第3態様に係る被験体の固さ分布測定方法は、被験体の位置を検出する被験***置検出手段から出力された被験体の位置情報が記憶手段に記憶され、被験体の位置がずれた場合に、記憶手段に記憶された被験体の位置情報と、被験***置検出手段から出力された被験体の位置情報との差分としての位置ずれ情報が記憶手段に記憶され、測定位置の情報が位置ずれ情報を用いて補正されてもよい。
 本開示の第4態様に係る被験体の固さ分布測定方法の反力測定手段は、人体の指に装着されていてもよい。
 本開示の第5態様に係る被験体の固さ分布測定方法の反力測定手段は、測定位置と、測定基準方向に対する反力測定手段の角度とを変更可能に移動される移動手段に取付けられていてもよい。
 本開示の第6態様に係る被験体の固さ分布測定方法は、測定基準方向に対する反力測定手段の角度をθとし、被験体の第1測定位置で測定基準方向に得られた変異点としての第1押込量をd1とし、被験体の第2測定位置で角度θの方向に得られた変異点としての第2押込量をd2とし、第1測定位置と第2測定位置との距離をLとし、d2×cosθ=d1となる関係が成立する場合に、測定対象部の表面から測定対象部の内部の固い部位までの測定基準方向の深さをDとして、深さD=L/tanθを測定対象部の固い部位の位置情報として記憶してもよい。
 本開示の第7態様に係る被験体の固さ分布測定装置は、被験体の測定対象部に押付けられることで反力を測定する反力測定手段と、反力測定手段の位置としての測定位置と、測定基準方向に対する反力測定手段の角度とを検出する検出手段と、反力の情報と、測定位置の情報と、角度の情報とに基づいて、反力の変化率が変わる変異点としての反力測定手段の押込量の情報を記憶する記憶手段と、複数の測定位置において得られた押込量の情報と、押込量の情報が得られた測定位置の情報及び角度の情報とを用いて、被験体の測定基準方向の固さ情報を取得する取得手段と、を有する。
 本開示の第8態様に係る被験体の固さ分布測定装置の検出手段は、電波又は電磁誘導を用いて反力測定手段の位置を検出してもよい。
 本開示の第9態様に係る被験体の固さ分布測定装置は、被験体の位置を検出する被験***置検出手段が設けられ、被験***置検出手段から出力された被験体の位置情報が記憶手段に記憶され、被験体の位置がずれた場合に、記憶手段に記憶された被験体の位置情報と、被験***置検出手段から出力された被験体の位置情報との差分としての位置ずれ情報が記憶手段に記憶され、測定位置の情報を位置ずれ情報を用いて補正する補正手段が設けられていてもよい。
 本開示の第10態様に係る被験体の固さ分布測定装置は、反力測定手段を人体の指に装着させる装着手段が設けられていてもよい。
 本開示の第11態様に係る被験体の固さ分布測定装置は、反力測定手段が取付けられ、測定位置と、測定基準方向に対する反力測定手段の角度とを変更可能に移動される移動手段が設けられていてもよい。
 本開示によれば、測定基準方向のみに反力を測定する方法に比べて、被験体の測定基準方向における固さが変わる部分の分布状態を精度良く測定することができる被験体の固さ分布測定方法及び被験体の固さ分布測定装置を提供することができる。
第1実施形態に係る測定装置の構成図である。 第1実施形態に係る測定装置のブロック図である。 第1実施形態に係る測定装置の平面図である。 第1実施形態に係る測定装置の側面図である。 第1実施形態に係るプローブの先端位置を示す説明図である。 第1実施形態に係るプローブを測定位置を変えながら測定基準方向に押込む状態を示す説明図である。 第1実施形態に係るプローブを測定位置を変えながら測定基準方向と交差する交差方向に押込む状態を示す説明図である。 第1実施形態に係るプローブによって得られる測定基準方向における押込量と反力との関係を示すグラフである。 第1実地形態に係るプローブによって得られる交差方向における押込量と反力との関係を示すグラフである。 第1実施形態に係る測定装置によって人体中の固い部位の位置が検出される原理を示す説明図である。 第1実施形態に係る測定装置によって人体中の固い部位の分布が測定される状態を示す説明図である。 第1実施形態に係る測定装置によって得られた人体中の固い部位の一部を示す説明図である。 第1実施形態に係るプローブを人体に押込む前の状態を示す説明図である。 第1実施形態に係るプローブが人体の柔らかい部位からの反力を受ける状態を示す説明図である。 第1実施形態に係るプローブが人体の固い部位からの反力を受ける状態を示す説明図である。 第1実施形態に係るプローブが他の人体に押込まれた状態を示す説明図である。 第1実施形態に係るプローブによって得られる測定基準方向における押込量と反力との関係を示すグラフである。 第1実施形態に係るプローブによって得られる測定基準方向における押込量と反力との関係が被験体によって異なることを示すグラフである。 第1実施形態に係る測定装置において行われる固さ分布測定の処理の流れを示すフローチャートである。 第2実施形態に係る測定装置のブロック図である。 第2実施形態に係る反力センサ及びコイルセンサが右手の指に装着された状態を示す説明図である。 第2実施形態に係る測定装置において測定者が人体の腹部に触れる状態を示す説明図である。 第2実施形態に係る測定装置によって人体の異なる2箇所で反力が測定される状態を示す説明図である。 第2実施形態に係る測定装置において行われる固さ分布測定の処理の流れを示すフローチャートである。 第1変形例に係る測定装置のブロック図である。 第2変形例に係る測定装置のブロック図である。 第3変形例に係る測定装置のブロック図である。
 以下、本開示に係る被験体の固さ分布測定方法及び被験体の固さ分布測定装置の一例について説明する。
[第1実施形態]
 図1には、本開示の第1実施形態として、被験体の一例としての人体Pの固さ分布が測定される測定装置10が示されている。測定装置10は、被験体の固さ分布測定装置の一例である。また、測定装置10は、人体Pが寝る寝台12と、人体Pの固さ分布が測定される測定部20とを含んで構成されている。なお、人体Pのうち、測定装置10によって測定される部位を測定対象部PAと称する。本実施形態において、測定対象部PAは、一例として、腹部とされている。
〔寝台〕
 図3A及び図3Bに示す寝台12は、人体Pの全体を寝た状態で支持する支持面14を有する。支持面14は、一例として、水平方向に沿った面とされている。また、支持面14は、一例として、支持面14の法線方向から見た場合に、矩形状に形成されている。以後の説明では、支持面14の短手方向をX方向と称し、支持面14の長手方向をY方向と称する。さらに、支持面14の法線方向であり、X方向及びY方向と直交する方向(鉛直方向)をZ方向と称する。
 測定装置10において、X方向、Y方向、Z方向のそれぞれ中央に対する一方側と他方側を区別する必要がある場合は、一方側をX側、Y側、Z側と称し、他方側を-X側、-Y側、-Z側と称する。本実施形態では、Z側が上側、-Z側が下側とされている。また、第1実施形態では、一例として、Z方向が測定基準方向に設定されている。なお、測定基準方向は、第1実施形態では鉛直方向であるZ方向に設定されているが、水平方向又は測定対象部PAの測定開始位置における表面の法線方向で設定されていてもよい。
〔測定部〕
 図2に示す測定部20は、一例として、入出力インターフェース(I/O)部22と、モニタ24と、制御部30と、プローブ40と、移動部50と、検出部60と、被験体検出部70とを有する。入出力インターフェース部22には、モニタ24と、制御部30と、プローブ40と、移動部50と、検出部60と、被験体検出部70(後述する受信部74を含む)とが電気的に接続されている。
 モニタ24は、人体P(図1参照)の後述する固さ分布の測定結果が文字情報及び画像情報として出力される出力手段の一例である。また、モニタ24は、一例として、図示しないタッチパネルを含んで構成されており、タッチパネルが操作されることで、測定部20の各種設定パラメータの入力及び設定が可能とされている。
<制御部>
 制御部30は、取得手段及び補正手段の一例である。また、制御部30は、CPU(Central Processing Unit)32と、ROM(Read Only Memory)34と、RAM(Random Access Memory)36とを含んで構成されている。さらに、制御部30は、プローブ40の測定位置の情報を、後述する位置ずれ情報を用いて補正する構成とされている。
 CPU32は、測定装置10の全体を統括、制御する。ROM34には、測定装置10の制御プログラム及び他の処理プログラムが予め記憶されている。RAM36は、制御プログラム又は他の処理プログラムの実行時のワークエリアとして用いられる。また、RAM36は、記憶手段の一例であり、プローブ40の後述する押込量の情報を記憶する。
<プローブ>
 図1に示すプローブ40は、押込力に対する反力を測定する反力測定手段の一例である。また、プローブ40は、一例として、円柱状に形成され軸方向に延びる軸部42と、軸部42の軸方向の一端に形成され人体Pの測定対象部PAに接触される接触部44と、軸部42に設けられた反力測定部46とを有する。以後は、軸部42の軸方向をV方向と称する。接触部44の外径は、軸部42の外径よりも小さい。また、接触部44は、半球状に形成されており、測定対象部PAの表面Pmの法線に対して-90°から+90°までの範囲内で測定対象部PAへの押付けが可能とされている。
 測定対象部PAへのプローブ40の押付け状態とは、接触部44が測定対象部PAと接触して測定対象部PAの一部に圧力を作用させることで、接触部44が測定対象部PAの内側へ押込まれる状態であり、且つ測定対象部PAの一部が破断されない状態を意味する。
 反力測定部46は、一例として、歪みゲージ式のロードセルで構成されている。また、反力測定部46は、接触部44が、測定対象部PAに押付けられ且つ測定対象部PAの内側に向けて押込まれた場合に、接触部44に対してV方向に加わる反力を電気信号に変換して、外部へ出力する構成とされている。具体的には、接触部44が測定対象部PAに押込まれた場合に、反力測定部46の内部において、押込力(押込み加重)に応じた歪が発生し、発生した歪に応じた電気信号が反力の情報として出力される。
 プローブ40は、人体Pの測定対象部PAに押付けられることで反力を測定する。また、プローブ40において得られた反力の情報は、制御部30(図2参照)に出力される。本実施形態における人体PのV方向の固さ情報とは、一例として、柔らかい部位と固い部位との界面の位置情報を意味している。なお、プローブ40で測定された反力と、予め設定された基準となる物質の反力とを比較することで、測定対象部PAの固さを評価することができる。
<移動部>
 図2に示す移動部50は、移動手段の一例である。移動部50には、プローブ40が取付けられている。そして、移動部50は、プローブ40の測定位置と、V方向(図1参照)に対するプローブ40の角度とを変更可能に移動される構成とされている。具体的には、移動部50は、一例として、スライダ部52と、角度変更部53とを有する。
(スライダ部)
 図1に示すスライダ部52は、一例として、X方向に移動可能に構成されたX軸スライダ54と、Y方向に移動可能に構成されたY軸スライダ56と、Z方向に移動可能に構成されたZ軸スライダ58とを有する。Y軸スライダ56は、寝台12に対するX方向の両側に配置されY方向に延びるY軸レール56Aと、各Y軸レール56AにY方向に移動可能に設けられた移動体56Bと、移動体56BをY方向に移動させる図示しないアクチュエータとを有する。
 X軸スライダ54は、2つの移動体56Bの-Z側に架設されX方向に延びるX軸レール54Aと、X軸レール54AにX方向に移動可能に設けられた移動体54Bと、移動体54BをX方向に移動させる図示しないアクチュエータとを有する。Z軸スライダ58は、移動体54Bの-Z側に固定されZ方向に沿って-Z側に延びるZ軸レール58Aと、Z軸レール58AにZ方向に移動可能に設けられた移動体58Bと、移動体58BをZ方向に移動させる図示しないアクチュエータとを有する。
 X軸スライダ54のアクチュエータと、Y軸スライダ56のアクチュエータと、Z軸スライダ58のアクチュエータとは、同じ構成とされており、一例として、図示しないモータの回転運動を直線運動に変換する構成とされている。
(角度変更部)
 図1に示す角度変更部53は、二軸ゴニオステージで構成されている。具体的には、角度変更部53は、プローブ取付部53Aと、プローブ取付部53AのX-Z面内での角度を変更可能とする第1ゴニオステージ53Bと、第1ゴニオステージ53BのY-Z面内での角度を変更可能とする第2ゴニオステージ53Cとを有する。プローブ取付部53Aには、プローブ40の接触部44側とは反対側の端部が固定されている。そして、プローブ40は、角度変更前の状態において、V方向がZ方向に沿った状態で配置されている。
 第1ゴニオステージ53B及び第2ゴニオステージ53Cは、図示しないモータにより互いに独立して回動される。第1ゴニオステージ53B及び第2ゴニオステージ53Cがそれぞれモータにより回動されることで、プローブ40のV方向がX-Y面に対して成す角度θ及び角度φ(図4参照)が変更可能とされている。図4には、原点Oの座標(0、0、0)に対するプローブ40の先端位置Aの座標(X1、Y1、Z1)と、プローブ40の角度θ及び角度φとが示されている。
<検出部>
 図2に示す検出部60は、検出手段の一例である。また、検出部60は、スライダ部52及び角度変更部53に電気的に接続されており、プローブ40の接触部44(図1参照)の先端位置としての測定位置と、Z方向に対するプローブ40の角度とを検出する構成とされている。
 具体的には、検出部60は、図示しない複数のロータリーエンコーダを有する。複数のロータリーエンコーダは、第1ゴニオステージ53B及び第2ゴニオステージ53C(図1参照)を回動させるモータと、X軸スライダ54、Y軸スライダ56及びZ軸スライダ58(図1参照)を移動させるモータとに設けられている。そして、検出部60は、モータの回転量をロータリーエンコーダで検出して直線方向の移動量又は回転方向の角度に換算することで、プローブ40の先端位置(XYZ座標系)と、Z方向に対するプローブ40の角度(球面座標系)とを検出する構成とされている。
<被験体検出部>
 図2に示す被験体検出部70は、被験***置検出手段の一例である。また、被験体検出部70は、寝台12(図1参照)における人体Pの位置を検出する。具体的には、被験体検出部70は、一例として、タグ72と、電波を用いてタグ72の位置を検出する受信部74とを有する。
 タグ72は、一例として、RFID(Radio Frequency Identification)タグであり、電波を発信可能に構成されている。また、タグ72は、人体Pの一部(一例として胸部)に貼付けられている。
 受信部74は、タグ72が発する電波を受信可能なアンテナを含んで構成されている。また、受信部74は、寝台12(図1参照)に設けられている。そして、受信部74では、受信部74が設けられている位置を原点とするXYZ座標系を用いて、タグ72から受信された電波に基づき、タグ72の座標が計算される。受信部74において得られたタグ72の座標情報は、制御部30のRAM36に記憶される。
<押込量の情報の記憶>
 図2に示す測定装置10では、人体P(図1参照)に対する反力の情報がプローブ40から得られ、プローブ40の測定位置の情報及び角度の情報が検出部60から得られる。なお、プローブ40を人体Pに押付ける前の時点と、人体Pに押付けた(押込んだ)後の時点とにおけるプローブ40の測定位置の情報及び角度の情報から、人体Pへのプローブ40の後述する押込量が得られる。
 図9Aには、軸方向であるV方向がZ方向に沿ったプローブ40による反力の測定が行われる前の状態が示されている。なお、プローブ40による反力の測定位置とは、一例として、測定対象部PAの表面Pmにおいて設定された点Aを意味している。換言すると、測定位置とは、表面Pmにおけるプローブ40を押付ける対象となる位置であり、プローブ40が押込まれる前の状態での位置を意味する。本実施形態では、プローブ40が反力を受けている状態におけるプローブ40の先端位置を押込位置と称して、測定位置とは区別する。
 図9Aに示す測定対象部PAにおいて、予めX方向に測定位置を変えて反力を測定することで、柔らかい部位Psの中に固い部位Phが存在する測定位置が判明したとする。図9Bに示す測定位置において、プローブ40を小さな力F1で測定対象部PAに押込むと、外側の柔らかい部位Psのみが変形する。柔らかい部位Psのみが変形する場合には、プローブ40の押込量の増加に応じた反力N1の変化量が得られる。
 続いて、図9Cに示すプローブ40を大きな力F2で測定対象部PAに押込むと、奥の固い部位Phも変形を開始する。固い部位Phが変形を開始する場合には、柔らかい部位Psのみが変形する場合に比べて、押込量の増加に応じた反力N2の変化量が大きくなる。
 図10Aには、押込量と反力との関係を表すグラフGAが示されている。グラフGAは、押込量が少ない区間における反力の変化率に比べて、押込量が多い区間における反力の変化率が大きくなる曲線となっている。グラフGAの押込量が少ない区間において、反力の変化率を一次近似した直線をAとする。また、グラフGAの押込量が多い区間において、反力の変化率を一次近似した直線をBとする。直線Aと直線Bとの交点を変異点CAと称する。変異点CAにおける押込量をSaとし、押込量Saに対応する仮想の反力をNa〔N〕とする。
 反力の変化率が変わる変異点CAとしてのプローブ40(図9C参照)の押込量とは、反力の情報と、プローブ40の測定位置の情報及び角度の情報により得られる押込量の情報とから、グラフGA及び変異点CAを求めることで得られた押込量Saを意味する。得られた押込量Saは、RAM36(図2参照)に記憶される。
 なお、図9Aに示す測定対象部PAにおいて、押込量Sa(図10A参照)の値を用いて、表面Pmから、柔らかい部位Psと固い部位Phとの界面Mまでの深さDが求められそうではあるが、実際には、正確な深さDを求められない。例えば、柔らかい部位Psの固さが比較的固い状態の測定対象部PH(図9D参照)の場合には、図10Bに示すグラフGBの通りに、変異点CBが変異点CAに比べて押込量の少ない側にシフトする。
 変異点CBにおける押込量をSbとし、反力をNb〔N〕とする。反力Nbは反力Naよりも大きいが、押込量Sbは押込量Saよりも少ない。つまり、図9Aから図9Cまでに示すプローブ40を一方向のみに押込む方法(以後、比較例と称する)では、柔らかい部位Psの固さが変わることで変異点CAが変わるために、深さDを正確に求めることが難しい。
 一方、本実施形態では、深さDを正確に求めるための方法として、プローブ40の押込む方向を複数方向に変更して押込量及び反力を測定する方法を見出した。以後、具体的に説明する。
 図7に示す測定対象部PAにおいて、一例として、第1測定位置AでZ方向にプローブ40を押込んだ場合に、反力の変異点が得られたとする。また、第1測定位置Aの測定における変異点の押込量を第1押込量S1〔mm〕とする。一方、第1測定位置AからX方向にずれた第2測定位置Bで、Z方向に対するプローブ40の軸方向の角度がθ〔°〕となる方向にプローブ40を押込んだ場合に、反力の変位点が得られたとする。また、第2測定位置Bの測定における変異点の押込量を第2押込量S2〔mm〕とする。なお、第1測定位置Aと第2測定位置BとのX方向の距離をL〔mm〕とする。また、点Aa及び点Baは押込位置に相当する。測定位置Cは、測定位置Aと測定位置Bとの間に設定されている。
 測定対象部PAにおける表面Pmから内部の固い部位Phまでの一方向の深さをD〔mm〕(図示省略)とすると、Dは、測定対象部PAの内部の粘弾性係数kによる関数f(k)と、変異点における押込量S〔mm〕とによって表すことができると考えられる。つまり、D=S×f(k)となる。以後、測定対象部PAにおける一方向の深さDを求める式を、単に「関係式」と称する。
 第1測定位置Aにおける粘弾性係数を仮にk1とすると、Z方向の深さD1〔mm〕における関係式は、D1=S1×f(k1)となる。一方、測定対象部PAの軟らかい部位Psの特性は、限られた範囲内で測定位置が変更されても同様と考えられる。つまり、第2測定位置Bにおける粘弾性係数は、第1測定位置Aにおける粘弾性係数k1と等しいとみなせるので、Z方向に対して角度θ〔°〕を成す方向(交差方向)の深さD2〔mm〕における関係式は、D2=S2×f(k1)となる。深さD1の関係式と深さD2の関係式とからf(k1)を消去すると、S1/S2=D1/D2が得られる。
 ここで、cosθ=D1/D2=S1/S2となる関係が成立する場合には、第1測定位置AにおけるZ方向の直線Eと、第2測定位置Bにおける角度θ方向の直線Fとの交点Qに、柔らかい部位Psと固い部位Phとの界面Mが存在することを意味する。換言すると、S2×cosθ=S1となる関係が成立する場合には、測定対象部PAにおける表面Pmから内部の固い部位PhまでのZ方向の正しい深さをD1〔mm〕として、深さD1が、D1=L/tanθによって得られる。得られた深さD1の情報は、測定対象部PAの固い部位Phの位置情報としてRAM36(図2参照)に記憶される。測定対象部PAの固い部位Phの位置情報は、既述の通り、柔らかい部位Psと固い部位Phとの界面Mの位置情報を意味する。
<固さ情報の取得>
 本実施形態における人体PのZ方向の固さ情報とは、既述の通り、界面Mの位置情報を意味している。また、人体PのZ方向の固さ情報は、図5A及び図5Bに示す通り、複数の測定位置(例えば、点A1、点A2及び点A3、又は点A4、点A5)において得られた押込量の情報と、押込量の情報が得られた測定位置の情報及びプローブ40の角度の情報とを用いて、既述の方法で得られる。得られた固さ情報(人体PのZ方向における固さ情報)は、制御部30(図2参照)によって取得される。なお、図5A及び図5Bにおいて、点Aa、点Ab、点Ac、点Ad、点Aeは、押込位置に相当する。
<測定位置の補正>
 図2に示す測定装置10では、被験体検出部70において得られたタグ72の座標情報に基づいて、プローブ40による測定位置の補正が行われる。具体的には、反力の測定開始前の時点において、被験体検出部70から出力された人体Pの測定位置(開始時位置)の情報がRAM36に記憶される。続いて、反力の測定時点において、被験体検出部70から人体Pの測定位置(測定時位置)の情報が出力される。
 RAM36に記憶された開始時位置と、被験体検出部70から出力された測定時位置との差が、測定誤差の範囲内である場合には、補正は行われない。一方、開始時位置と測定時位置との差が、測定誤差の範囲を超える場合(人体Pの位置がずれた場合)には、開始時位置と測定時位置との差分としての位置ずれ情報がRAM36に記憶される。そして、CPU32において、プローブ40の測定位置が、位置ずれ情報を用いて補正される。なお、測定装置10は、制御部30が移動部50を動作させて、位置ずれ量が測定誤差範囲に入るまでプローブ40を自動で移動させる構成とされている。
〔作用〕
 次に、第1実施形態の人体Pの固さ分布測定方法及び測定装置10の作用について、図11のフローチャートに従い説明する。なお、測定装置10の各部及び各部材については、図1及び図2を参照する。
 図11に示すステップS10において、プローブ40が基準位置に配置される。そして、ステップS12に移行する。なお、基準位置は、予め設定された測定開始前の初期位置である。
 ステップS12において、被験体検出部70において得られたタグ72の座標情報が、制御部30のRAM36に記憶される。RAM36に記憶されたタグ72の座標情報は、人体Pの位置情報として、CPU32に取得される。そして、ステップS14に移行する。
 ステップS14において、移動部50が動作され、プローブ40が測定位置に移動される。そして、ステップS16に移行する。
 ステップS16において、被験体検出部70において得られたタグ72の座標情報が、人体Pの位置情報として、CPU32に取得される。そして、ステップS18に移行する。
 ステップS18において、CPU32によって、人体Pの得られた位置情報とRAM36に記憶されていた位置情報とが比較され、測定位置の補正について、測定誤差範囲に基づいて、必要無し又は必要有りが判定される。必要無しの場合には、ステップS22に移行する。必要有りの場合には、ステップS20に移行する。
 ステップS20において、プローブ40の測定位置の情報が、位置ずれ情報を用いて補正される。そして、プローブ40が、移動部50によって、位置ずれ量に応じて、正しい測定位置に移動される。そして、ステップS22に移行する。
 ステップS22において、プローブ40が測定位置で測定対象部PAに押付けられる(押込まれる)ことで、反力が測定される。そして、ステップS24に移行する。
 ステップS24において、測定位置の座標情報とプローブ40のZ方向に対する角度の情報とがRAM36に記憶される。さらに、押込量が徐々に増加され、押込量に応じた反力の情報がRAM36に記憶される。そして、ステップS26に移行する。
 ステップS26において、既述の方法により、変異点としての押込量が求められる。例えば、Z方向に沿った反力の測定によって、図6Aに示すグラフG1を得る。グラフG1では、一次近似した2つの直線により変異点C1が得られ、且つ変異点C1における押込量S1〔mm〕及び反力N1〔N〕が得られる。また、Z方向と角度θ〔°〕で交差する方向に沿った反力の測定によって、図6Bに示すグラフG2を得る。グラフG2では、一次近似した2つの直線により変異点C2が得られ、且つ変異点C2における押込量S2〔mm〕及び反力N2〔N〕が得られる。
 求められた押込量S1又は押込量S2の情報は、RAM36に記憶される。そして、図11に示すステップS28に移行する。なお、変異点が見つからない場合には、測定対象部PA内に軟らかい部位Psのみが存在するという情報がRAM36に記憶される。
 ステップS28において、測定位置の変更が無しか、有りかが判定される。測定位置変更の有無の判定は、例えば、モニタ24のタッチパネルに表示された測定位置変更のボタンが選択されることで行われる。無しの場合は、ステップS32に移行する。有りの場合は、ステップS30に移行する。
 ステップS30において、プローブ40が次の測定位置に向けて、例えば、X方向に移動される(図5A参照)。そして、ステップS16に移行する。
 ステップS32において、プローブ40の角度の変更が無しか、有りかが判定される。角度変更の有無の判定は、例えば、モニタ24のタッチパネルに表示された角度変更のボタンが選択されることで行われる。無しの場合は、ステップS36に移行する。有の場合は、ステップS34に移行する。
 ステップS34において、プローブ40の角度が変更される。例えば、図5Aに示すプローブ40がZ方向に沿った配置状態から、図5Bに示すプローブ40がZ方向と角度θで交差する配置状態に変更される。そして、ステップS10に移行する。
 ステップS36において、人体P(測定対象部PA)の固さ情報の取得を行うか否かが判定される。固さ情報取得の有無の判定は、例えば、モニタ24のタッチパネルに表示された情報取得有無のボタンが選択されることで行われる。固さ情報の取得を行わない場合は、プログラムが終了される。固さ情報の取得を行う場合には、ステップS38に移行する。
 ステップS38において、既述の方法によって、人体P(測定対象部PA)の固さ情報が取得される。具体的には、人体Pの軟らかい部位Psと固い部位Phとの界面Mを表す情報(図8A参照)が、一方向(例えばX方向)について取得される。そして、ステップS40に移行する。なお、図示は省略するが、既述の関係式S2×cosθ=S1を満たす情報が見つからなかった場合には、固さ情報の取得ができなかったと判定して、プログラムを終了させてもよい。
 ステップS40において、プローブ40の走査方向(移動方向)の変更が有るか否かが判定される。走査方向の変更とは、例えば、X方向をY方向に変えることを意味する。走査方向変更の有無の判定は、例えば、モニタ24のタッチパネルに表示された方向変更有無のボタンが選択されることで行われる。走査方向の変更が無い場合は、ステップS44に移行する。走査方向の変更が有る場合は、ステップS42に移行する。
 ステップS42において、プローブ40の走査方向が変更される。本実施形態では、一例として、走査方向がX方向からY方向に変更される。そして、ステップS10に移行する。
 ステップS44において、複数の走査方向における固さ情報に基づいて、人体P(測定対象部PA)の固さ分布情報が取得される。具体的には、人体Pの界面Mを表す情報が、X方向及びY方向について取得される。つまり、界面Mを面として見ることができる情報が取得される(図8B参照)。そして、プログラムが終了される。
 なお、本実施形態では、一例として、人体Pの固さ分布情報の取得までをプログラムで行っているが、モニタ24(図2参照)に界面Mの情報を表示させるステップを含めてもよい。
 以上、説明した通り、人体Pの固さ分布測定方法及び測定装置10では、人体Pの測定対象部PAの複数の測定位置において、Z方向の反力の測定が行われた後に、Z方向に対するプローブ40の角度を変えて、プローブ40が測定対象部PAに押付けられる。続いて、複数の測定位置において得られた、変異点としてのプローブ40の押込量の情報と、押込量が得られた測定位置の情報と、押込量が得られた角度の情報とが、RAM36に記憶される。続いて、押込量の情報と、測定位置の情報と、角度の情報とを用いて、界面Mの情報が得られる。換言すると、人体PのZ方向の固さ情報が取得される。
 具体的には、Z方向の反力測定に加えて、Z方向と角度θで交差する方向の反力測定を行い、既述のS2×cosθ=S1の関係式を満たす組合せを見つけることで、測定対象部PAの表面Pmから固い部位Phまでの深さD1を精度良く求めることができる。つまり、既述の比較例に比べて、人体PのZ方向における固さが変わる部分の分布状態を精度良く測定することができる。
 また、人体Pの固さ分布測定方法及び測定装置10では、被験体検出部70から得られた位置ずれ情報に基づいて、プローブ40による測定位置が補正される。つまり、人体Pの固さ分布測定中に人体Pが動いても、正しい測定位置にプローブ40が配置されるので、人体PのZ方向における固さが変わる部分の分布状態を精度良く測定することができる。
 さらに、人体Pの固さ分布測定方法及び測定装置10では、被験体の一例としての人体Pに対してプローブ40が押付けられるので、測定者が人体Pを触ることによる不快感を無くすことができる。
 加えて、人体Pの固さ分布測定方法では、Z方向の反力測定と、Z方向に対して角度θで交差する方向の反力測定とを行うことで、深さD1を求めている。つまり、測定位置の2点のうち一方の点でZ方向に反力を測定することで、測定位置の2点と界面Mの1点とを結ぶ三角形を直角三角形状としている。測定位置の2点と界面Mの1点とを結ぶ三角形が直角三角形状となることで、三角関数を用いた演算を行い易くなるので、人体PのZ方向における固さが変わる部分の分布状態を精度良く測定することができる。
[第2実施形態]
 次に、第2実施形態に係る被験体の固さ分布測定方法及び被験体の固さ分布測定装置の一例について説明する。なお、第1実施形態と同一の構成については、第1実施形態と同一の符号を付して説明を省略する。また、第1実施形態と同一の方法については、説明を省略する。
 図12には、本開示の第2実施形態としての測定装置80の構成がブロック図として示されている。測定装置80は、反力測定手段の一例としての反力測定部82と、検出手段の一例としての検出部90と、制御部30と、モニタ24と、装着手段の一例としての装着部84とを有する。なお、測定装置80には、寝台12(図1参照)は含まれていない。
<反力測定部>
 図13Aに示す反力測定部82は、一例として、5つの反力センサ83を有する。5つの反力センサ83は、一例として、圧電素子を含んで構成されている。また、反力測定部82は、人体P(図13B参照)から受ける反力に応じた情報(信号)を制御部30(図12参照)に出力する。なお、歪ゲージ式の反力センサを用いてもよい。
<検出部>
 図12に示す検出部90は、一例として、検知ユニット92と、磁界発生部94と、センサ部96とを有する。磁界発生部94は、反力の測定が行われる空間部内において磁界を発生させる。センサ部96は、磁界発生部94によって発生した磁界を検出するレシーバとして機能する。具体的には、センサ部96は、一例として、5つのコイルセンサ97(図13A参照)を有する。5つのコイルセンサ97は、それぞれ、直交する3方向のコイルを含んで構成されている。検知ユニット92は、磁界発生部94の動作の制御を行い且つ5つのコイルセンサ97で発生した電磁誘導による起電力をそれぞれ計測して、5つのコイルセンサ97の相対的な位置及び角度の情報を得て、制御部30に向けて出力する。
<装着部>
 図13Aに示す装着部84は、反力測定部82を人体としての測定者PD(図13B参照)の右手の指FGに装着させている。具体的には、装着部84は、一例として、指キャップ85Aと、指キャップ85Bと、指キャップ85Cと、指キャップ85Dと、指キャップ85Eとを有している。指キャップ85Aは親指に、指キャップ85Bは人差し指に、指キャップ85Cは中指に、指キャップ85Dは薬指に、指キャップ85Eは小指に装着されている。なお、指キャップ85A、指キャップ85B、指キャップ85C、指キャップ85D及び指キャップ85Eをまとめて1つのグローブとして構成してもよい。
 指キャップ85A、指キャップ85B、指キャップ85C、指キャップ85D及び指キャップ85Eには、それぞれ1つずつ反力センサ83及びコイルセンサ97が設けられている。反力センサ83は、指の先端部に設けられている。コイルセンサ97は、反力センサ83から予め設定された距離だけ離れた位置に設けられている。つまり、反力センサ83が反力を測定している測定位置の情報が、コイルセンサ97からの出力によって得られる構成とされている。なお、コイルセンサ97は、配線が接続された有線のセンサであるが、図13Aでは、配線を省略している。
 図13Bに示す通り、第2実施形態では、椅子99Aに座った状態の人体Pの測定対象部PAの固さ分布測定が、椅子99Bに座った状態の測定者PD(医師)の右手に設けられた反力測定部82及び検出部90(図12参照)によって行われる。なお、第2実施形態では、人体Pと測定者PDとが対向する方向(水平方向の1つ)が、測定基準方向であり且つZ方向として設定されている。また、鉛直方向がY方向に設定され、Y方向及びZ方向と直交する人体Pの幅方向がX方向に設定されている。
<測定原理>
 図14には、一例として、測定対象部PAを測定者PDが親指と人差し指とで摘んだ状態が示されている。測定装置80では、人体Pに対する反力の情報が、反力測定部82(図12参照)から得られ、測定位置の情報及び角度の情報が、検出部90(図12参照)から得られる。なお、反力センサ83(図13A参照)を人体Pに押付ける前の時点と、人体Pに押付けた(押込んだ)後の時点とにおける反力センサ83の測定位置の情報及び角度の情報から、人体Pへの反力センサ83の押込量が得られる。
 反力センサ83(図13A参照)による反力の測定位置とは、一例として、測定対象部PAの表面Pmにおいて設定された点A及び点Bを意味している。換言すると、測定位置とは、表面Pmにおける反力センサ83を押付ける対象となる位置であり、反力センサ83が押込まれる前の状態の表面Pmでの位置を意味する。本実施形態では、反力センサ83が反力を受けている状態における反力センサ83の先端位置を押込位置と称して、測定位置とは区別する。点Aを第1測定位置Aと称し、点Bを第2測定位置Bと称する。また、点Aa及び点Baは押込位置に相当する。
 反力の変化率が変わる変異点としての反力センサ83の押込量とは、反力の情報と、反力センサ83の測定位置の情報及び角度の情報により得られる押込量の情報とから、変異点を求めることで得られた押込量を意味する。得られた押込量は、RAM36(図12参照)に記憶される。
 測定対象部PAにおいて、一例として、第1測定位置Aで測定基準方向であるZ方向に対して角度α〔°〕となる方向に反力の変異点(第1押込量S1〔mm〕)が得られたとする。また、第1測定位置AからY方向にずれた第2測定位置Bで、Z方向に対して角度β〔°〕となる方向に反力の変異点(第2押込量S2〔mm〕)が得られたとする。さらに、第1測定位置Aと第2測定位置BとのY方向の距離をL〔mm〕とする。
 第1測定位置Aにおいて、角度α方向の固い部位Phまでの深さをD1〔mm〕とする。また、第2測定位置Bにおいて、角度β方向の固い部位Phまでの深さをD2〔mm〕とする。第1実施形態と同様に、粘弾性係数に基づく関係式を考えると、D1/D2=S1/S2=cosβ/cosαが得られる。
 ここで、S1×cosα=S2×cosβとなる関係が成立する場合には、第1測定位置Aにおける角度α方向の直線Eと、第2測定位置Bにおける角度β方向の直線Fとの交点Qに、柔らかい部位Psと固い部位Phとの界面Mが存在することを意味する。そして、表面Pmから点QまでのZ方向の深さをDv〔mm〕とすると、深さDvは、Dv=L/(tanα+tanβ)によって得られる。得られた深さDvの情報は、測定対象部PAの固い部位Phの位置情報としてRAM36(図2参照)に記憶される。測定対象部PAの固い部位Phの位置情報は、既述の通り、柔らかい部位Psと固い部位Phとの界面Mの位置情報を意味する。なお、図14では、点Qから表面Pmに下した垂線Hと表面Pmとの交点が、点Cで示されている。
 第1測定位置Aと第2測定位置Bとの距離Lが既知であり、第1測定位置Aにおける角度αと、第2測定位置Bにおける角度βとが既知であるから、点Qが界面M上に位置する関係式を満たせば、二角挟辺により三角形QABが決まる。そして、三角形QABが決まるということは、三角形QABの底辺ABに対する高さに相当する深さDvも決まることを意味する。
〔作用〕
 次に、第2実施形態の人体Pの固さ分布測定方法及び測定装置80の作用について、図15のフローチャートに従い説明する。なお、測定装置80の各部及び各部材については、図12及び図13Aを参照する。
 図15に示すステップS100において、反力センサ83が測定位置に配置される。そして、ステップS102に移行する。
 ステップS102において、反力センサ83が測定位置で測定対象部PAに押付けられる(押込まれる)ことで反力が測定される。そして、ステップS104に移行する。
 ステップS104において、測定位置の座標情報と、反力センサ83のZ方向に対する角度の情報とがRAM36に記憶される。なお、角度の情報は、反力センサ83から反力の情報が出力される前の時点での座標情報と、反力の情報が出力された時点での座標情報とから求めることができる。さらに、押込量が増加されることで、押込量に応じた反力の情報がRAM36に記憶される。測定は、測定対象部PAの複数箇所で同時に行われてもよい。そして、ステップS106に移行する。
 ステップS106において、既述の方法により、各測定位置における変異点としての押込量が求められる。求められた押込量の情報は、RAM36に記憶される。そして、ステップS108に移行する。なお、変異点が見つからない場合には、測定対象部PA内に軟らかい部位Psのみが存在するという情報がRAM36に記憶される。
 ステップS108において、測定位置の変更が無しか、有りかが判定される。測定位置変更の有無の判定は、例えば、モニタ24のタッチパネルに表示された測定位置変更のボタンが選択されることで行われる。無しの場合は、ステップS112に移行する。有りの場合は、ステップS110に移行する。
 ステップS110において、反力センサ83が次の測定位置に向けて移動される。そして、ステップS102に移行する。
 ステップS112において、反力センサ83の角度の変更が無しか、有りかが判定される。角度変更の有無の判定は、例えば、モニタ24のタッチパネルに表示された角度変更のボタンが選択されることで行われる。無しの場合は、ステップS116に移行する。有の場合は、ステップS114に移行する。
 ステップS114において、測定者PDが指の角度を変更することで、反力センサ83の角度が変更される。そして、ステップS102に移行する。
 ステップS116において、人体P(測定対象部PA)の固さ情報の取得を行うか否かが判定される。固さ情報取得の有無の判定は、例えば、モニタ24のタッチパネルに表示された情報取得有無のボタンが選択されることで行われる。固さ情報の取得を行わない場合は、プログラムが終了される。固さ情報の取得を行う場合には、ステップS118に移行する。
 ステップS118において、既述の方法によって、人体P(測定対象部PA)の固さ情報が取得される。そして、ステップS120に移行する。なお、図示は省略するが、既述の関係式S1×cosα=S2×cosβを満たす情報が見つからなかった場合には、固さ情報の取得ができなかったと判定して、プログラムを終了させてもよい。
 ステップS120において、反力センサ83の走査方向(移動方向)の変更が有るか否かが判定される。走査方向変更の有無の判定は、例えば、モニタ24のタッチパネルに表示された方向変更有無のボタンが選択されることで行われる。走査方向の変更が無い場合は、ステップS124に移行する。走査方向の変更が有る場合は、ステップS122に移行する。
 ステップS122において、測定者PDによって、反力センサ83の走査方向が変更される。例えば、走査方向がY方向からX方向に変更される。そして、ステップS100に移行する。
 ステップS124において、複数の走査方向における固さ情報に基づいて、人体P(測定対象部PA)の固さ分布情報が取得される。具体的には、人体Pの界面Mを表す情報が、X方向及びY方向について取得される。つまり、界面Mを面として見ることができる情報が取得される(図8B参照)。そして、プログラムが終了される。
 なお、本実施形態では、一例として、人体Pの固さ分布情報の取得までをプログラムで行っているが、モニタ24に界面Mの情報を表示させるステップを含めてもよい。
 以上、説明した通り、人体Pの固さ分布測定方法及び測定装置80では、人体Pの測定対象部PAの複数の測定位置において、反力センサ83が異なる角度で測定対象部PAに押付けられる。続いて、複数の測定位置において得られた、変異点としての押込量の情報と、押込量が得られた測定位置の情報と、押込量が得られた角度の情報とが、RAM36に記憶される。続いて、押込量の情報と、測定位置の情報と、角度の情報とを用いて、界面Mの情報が得られる。換言すると、人体PのZ方向の固さ情報が取得される。
 具体的には、一例として、Z方向と角度α又は角度βで交差する方向の反力測定を行い、変異点における押込量S1及び押込量S2を得る。そして、既述のS1×cosα=S2×cosβの関係式を満たす組合せを見つけることで、測定対象部PAの表面Pmから界面Mまでの深さDvを精度良く求めることができる。つまり、既述の比較例に比べて、人体PのZ方向における固さが変わる部分の分布状態を精度良く測定することができる。
 また、人体Pの固さ分布測定方法及び測定装置80では、測定位置が、電磁誘導を用いて反力センサ83の位置を検出する検出部90によって検出される。つまり、反力センサ83による測定位置を検出する場合に、人体Pによって光が遮られる状態であっても測定位置を検出することができる。
 さらに、人体Pの固さ分布測定方法及び測定装置80では、反力センサ83が人体Pの指FGに装着されている。反力センサ83が指FGに装着されていることで、人力によって反力センサ83が移動されるので、反力センサ83の測定位置及び角度を変更する手段が不要となる。
 なお、本開示は上記の実施形態に限定されない。
<第1変形例>
 図16には、第1変形例として、測定装置100のブロック図が示されている。測定装置100は、第2実施形態の測定装置80(図12参照)において、検出部90(図12参照)に換えて被験体検出部70が設けられた構成とされている。タグ72は、測定者PDの指FG(図13A参照)に取付けられている。つまり、測定装置100では、反力センサ83の位置を、電波を用いて検出する構成とされている。なお、反力センサ83を押付ける場合に変わる位置の情報から、押付ける方向(角度)が得られる。
 測定装置100では、人体Pの測定対象部PA(図14参照)の複数の測定位置において、反力センサ83が異なる角度で測定対象部PAに押付けられる。続いて、複数の測定位置において得られた、変異点としての押込量の情報と、押込量が得られた測定位置の情報と、押込量が得られた角度の情報とが、RAM36に記憶される。続いて、押込量の情報と、測定位置の情報と、角度の情報とを用いて、界面Mの情報が得られる。換言すると、人体PのZ方向の固さ情報が取得される。
<第2変形例>
 図17には、第2変形例として、測定装置110のブロック図が示されている。測定装置110は、第2実施形態の測定装置80(図12参照)において、被験体検出部70が追加された構成とされている。タグ72は、人体Pの測定対象部PA(図14参照)に取付けられている。つまり、測定装置110では、被験体検出部70を用いて、既述の方法により、人体Pが測定中に動いた場合の測定位置の補正を行う構成とされている。
 測定装置110では、人体Pの測定対象部PAの複数の測定位置において、反力センサ83が異なる角度で測定対象部PAに押付けられる。測定位置の情報は、被験体検出部70から得られる位置ずれ情報に基づいて補正される。続いて、複数の測定位置において得られた、変異点としての押込量の情報と、押込量が得られた測定位置の情報と、押込量が得られた角度の情報とが、RAM36に記憶される。続いて、押込量の情報と、測定位置の情報と、角度の情報とを用いて、界面Mの情報が得られる。換言すると、人体PのZ方向の固さ情報が取得される。
<第3変形例>
 図18には、第3変形例として、測定装置120のブロック図が示されている。測定装置120は、第1実施形態の測定装置10(図2参照)において、検出部60(図2参照)に換えて、検出手段の一例としての検出部130が設けられた構成とされている。検出部130は、タグ132と受信部134とを有する。タグ132は、タグ72(図2参照)と同様の構成とされている。受信部134は、受信部74(図2参照)と同様の構成とされている。そして、検出部130は、プローブ40による測定位置と、Z方向に対するプローブ40の角度とを検出する構成とされている。
 測定装置120では、人体Pの測定対象部PAの複数の測定位置において、プローブ40が異なる角度で測定対象部PAに押付けられる。測定位置の情報は、被験体検出部70から得られる位置ずれ情報に基づいて補正される。続いて、複数の測定位置において得られた、変異点としての押込量の情報と、押込量が得られた測定位置の情報と、押込量が得られた角度の情報とが、RAM36に記憶される。続いて、押込量の情報と、測定位置の情報と、角度の情報とを用いて、界面Mの情報が得られる。換言すると、人体PのZ方向の固さ情報が取得される。
<他の変形例>
 位置検出は、加速度センサから演算で求めてもよい。反力センサは、圧電式に限らず、静電式であってもよい。
 予め、測定の角度及び反力に対する補正値をテーブルとしてROMに記憶しておき、測定によって得られた深さDを補正してもよい。また、測定対象部PAにおける押された表面Pmの動きを検出することで深さDを補正してもよい。
 第1実施形態及び第2実施形態では、一平面内で測定の角度θを変えた場合について説明したが、1つの測定位置において、角度θだけでなく角度φも変えながら複数方向の情報(データ)を取得してもよい。例えば、1つの測定位置を中心として、ごますり状にプローブ40又は反力センサ83を移動させて測定した後で、次の測定位置にプローブ40又は反力センサ83を走査してもよい。あるいは、プローブ40又は反力センサ83を振子状に走査してもよい。なお、測定対象部PAに対してプローブ40又は反力センサ83を接触させる機会をなるべく減らすという観点では、走査の順番は、角度θ及び角度φを変更ながら測定した後で、X方向及びY方向の位置を変更する順番が好ましい。
 プローブ40と人体Pとの間には、厚さがほぼ無視できる状態であれば、他の媒質が介在していてもよい。例えば、測定対象部PAの表面Pmにジェルを塗ってからプローブ40を押付けることで、プローブ40の走査性が上がる。
 測定装置10、測定装置80、測定装置100、測定装置110、及び測定装置120のいずれかについて、得られた位置情報及び反力の情報の変化を、別の場所に居る人間の手に設けたアクチュエータで再生させてもよい。アクチュエータで再生して、別の場所に居る人間が加速度を受けることで、測定状態を体感することができる。さらに、測定によって得られた立体物の内部構造を元に、手を押しつけた場合の感触を計算して、触覚シミュレーションを行うこともできる。また、測定によって得られた情報から、客観的な触診データを得ることも可能となる。
 測定場所とは別の場所で用いるアクチュエータは、測定に用いられている機構と同じ機構を有することが好ましい。測定において検出された動作と同じ動作を再現させることが可能となる。なお、再生(再現)させる動作を、例えば10倍又は1/10倍として、拡大又は縮小することも可能である。動作を検出して再生するアクチュエータを高速に動作させることで、測定状態に近い感触を再現することが可能となる。アクチュエータの速度としては、1ns以上100ms以下の速度、好ましくは0.1μs以上50ms以下の速度であり、最も好ましくは10μs以上10ms以下の速度である。
 測定者PDの手に換えて、ロボットハンドを用いて測定を行ってもよい。ロボットハンドを用いることで、女性患部など、触れられることを好まない場合であっても測定を行うことができる。
 反力を得るために測定対象部PAに力を加える機構は、電気系又は圧力計のアクチュエータを用いることができる。電気系としては、例えば、ソレノイド、ボイスコイル、モータ、リニアモータ及びラバーアクチュエータのいずれかを用いることができる。圧力系としては、例えば、油圧シリンダ又は空圧シリンダを用いることができる。
 位置を測定するためのセンサは、例えば、光学式変異センサ、リニア近接センサ、超音波センサ、電磁式センサを用いることができる。
 反力(応力)センサは、圧電式、歪みゲージ式、電磁式を用いることができる。また、変位の時間変化から加速度を求め、得られた加速度から反力を計算する方式でもよい。
 角度を変える機構としてのアクチュエータは、回転式であれば、ダイレクトに又はギアを介して角度を変化させる。直動式の場合は、例えば、直線運動を回転運動に変換するウォームギアを用いる。
 人体P(測定対象部PA)の温度を熱電対又は抵抗体を用いて測定してもよい。さらに、温度に応じた反力及び深さDの補正値を予めテーブルにしてROM34に記憶させておき、測定された温度に応じて、得られた反力及び深さDの測定値を補正してもよい。
 測定装置10、測定装置80、測定装置100、測定装置110、及び測定装置120のいずれかを用いて人体Pの固さ分布測定を行う場合に、超音波を用いて固い部位Phを検出する検出装置を併用してもよい。
 被験体は、人体に限らず、柔らかい部位の中に固い部位が存在する構成であればよい。例えば、金属の芯材が樹脂で覆われた物体であってもよい。本実施形態の方法及び装置を用いることで、樹脂と芯材との界面がどの程度の深さ位置にあるかを知ることができる。
 2017年11月15日に出願された日本国特許出願2017-220320の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 測定装置(被験体の固さ分布測定装置の一例)、12 寝台、14 支持面、20 測定部、22 入出力インターフェース部、24 モニタ、30 制御部(取得手段及び補正手段の一例)、36 RAM(記憶手段の一例)、40 プローブ(反力測定手段の一例)、42 軸部、44 接触部、46 反力測定部、50 移動部(移動手段の一例)、52 スライダ部、53 角度変更部、53A プローブ取付部、53B ゴニオステージ、53C ゴニオステージ、54 X軸スライダ、54A X軸レール、54B 移動体、56 Y軸スライダ、56A Y軸レール、56B 移動体、58 Z軸スライダ、58A Z軸レール、58B 移動体、60 検出部(検出手段の一例)、70 被験体検出部(被験***置検出手段の一例)、72 タグ、74 受信部、80 測定装置(被験体の固さ分布測定装置の一例)、82 反力測定部(反力測定手段の一例)、83 反力センサ、84 装着部(装着手段の一例)、85A 指キャップ、85B 指キャップ、85C 指キャップ、85D 指キャップ、85E 指キャップ、90 検出部(検出手段の一例)、92 検知ユニット、94 磁界発生部、96 センサ部、97 コイルセンサ、99A 椅子、99B 椅子、100 測定装置(被験体の固さ分布測定装置の一例)、110 測定装置(被験体の固さ分布測定装置の一例)、120 測定装置(被験体の固さ分布測定装置の一例)、130 検出部(検出手段の一例)、132 タグ、134 受信部、FG 指、M 界面、P 人体(被験体の一例)、PA 測定対象部、PD 測定者、PH 測定対象部、Ph 固い部位、Pm 表面、Ps 柔らかい部位

Claims (11)

  1.  押込力に対する反力を測定する反力測定手段を、被験体の測定対象部の複数の測定位置において、測定基準方向に対する角度を変えて該測定対象部に押付ける工程と、
     複数の前記測定位置において得られた、前記反力の変化率が変わる変異点としての前記反力測定手段の押込量の情報と、該押込量が得られた前記測定位置の情報と、該押込量が得られた前記角度の情報とを記憶手段に記憶する工程と、
     前記押込量の情報と、前記測定位置の情報と、前記角度の情報とを用いて、前記被験体の前記測定基準方向の固さ情報を取得する工程と、
     を有する被験体の固さ分布測定方法。
  2.  前記測定位置は、電波又は電磁誘導を用いて前記反力測定手段の位置を検出する検出手段によって検出される請求項1に記載の被験体の固さ分布測定方法。
  3.  前記被験体の位置を検出する被験***置検出手段から出力された前記被験体の位置情報が前記記憶手段に記憶され、
     前記被験体の位置がずれた場合に、前記記憶手段に記憶された前記被験体の位置情報と、前記被験***置検出手段から出力された前記被験体の位置情報との差分としての位置ずれ情報が前記記憶手段に記憶され、
     前記測定位置の情報が前記位置ずれ情報を用いて補正される請求項1又は請求項2に記載の被験体の固さ分布測定方法。
  4.  前記反力測定手段は、人体の指に装着されている請求項1から請求項3のいずれか1項に記載の被験体の固さ分布測定方法。
  5.  前記反力測定手段は、前記測定位置と、前記測定基準方向に対する前記反力測定手段の角度とを変更可能に移動される移動手段に取付けられている請求項1から請求項3のいずれか1項に記載の被験体の固さ分布測定方法。
  6.  前記測定基準方向に対する前記反力測定手段の角度をθとし、
     前記被験体の第1測定位置で前記測定基準方向に得られた前記変異点としての第1押込量をd1とし、
     前記被験体の第2測定位置で前記角度θの方向に得られた前記変異点としての第2押込量をd2とし、
     前記第1測定位置と前記第2測定位置との距離をLとし、
     d2×cosθ=d1となる関係が成立する場合に、前記測定対象部の表面から該測定対象部の内部の固い部位までの前記測定基準方向の深さをDとして、
     深さD=L/tanθを前記測定対象部の固い部位の位置情報として記憶する請求項1から請求項5のいずれか1項に記載の被験体の固さ分布測定方法。
  7.  被験体の測定対象部に押付けられることで反力を測定する反力測定手段と、
     前記反力測定手段の位置としての測定位置と、測定基準方向に対する前記反力測定手段の角度とを検出する検出手段と、
     前記反力の情報と、前記測定位置の情報と、前記角度の情報とに基づいて、前記反力の変化率が変わる変異点としての前記反力測定手段の押込量の情報を記憶する記憶手段と、
     複数の前記測定位置において得られた前記押込量の情報と、該押込量の情報が得られた前記測定位置の情報及び前記角度の情報とを用いて、前記被験体の前記測定基準方向の固さ情報を取得する取得手段と、
     を有する被験体の固さ分布測定装置。
  8.  前記検出手段は、電波又は電磁誘導を用いて前記反力測定手段の位置を検出する請求項7に記載の被験体の固さ分布測定装置。
  9.  前記被験体の位置を検出する被験***置検出手段が設けられ、
     前記被験***置検出手段から出力された前記被験体の位置情報が前記記憶手段に記憶され、
     前記被験体の位置がずれた場合に、前記記憶手段に記憶された前記被験体の位置情報と、前記被験***置検出手段から出力された前記被験体の位置情報との差分としての位置ずれ情報が前記記憶手段に記憶され、
     前記測定位置の情報を前記位置ずれ情報を用いて補正する補正手段が設けられた請求項7又は請求項8に記載の被験体の固さ分布測定装置。
  10.  前記反力測定手段を人体の指に装着させる装着手段が設けられた請求項7から請求項9のいずれか1項に記載の被験体の固さ分布測定装置。
  11.  前記反力測定手段が取付けられ、前記測定位置と、前記測定基準方向に対する前記反力測定手段の角度とを変更可能に移動される移動手段が設けられた請求項7から請求項9のいずれか1項に記載の被験体の固さ分布測定装置。
PCT/JP2018/039785 2017-11-15 2018-10-25 被験体の固さ分布測定方法及び被験体の固さ分布測定装置 WO2019097982A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-220320 2017-11-15
JP2017220320 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019097982A1 true WO2019097982A1 (ja) 2019-05-23

Family

ID=66539489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039785 WO2019097982A1 (ja) 2017-11-15 2018-10-25 被験体の固さ分布測定方法及び被験体の固さ分布測定装置

Country Status (1)

Country Link
WO (1) WO2019097982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187100A (ja) * 2019-05-17 2020-11-19 国立研究開発法人農業・食品産業技術総合研究機構 装着型計測装置
CN115639091A (zh) * 2022-12-21 2023-01-24 南通嘉鹏新材料科技有限公司 一种聚酯热熔胶的硬度检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488336A (en) * 1987-09-30 1989-04-03 Shimadzu Corp Indentation hardness testing method
US5957867A (en) * 1997-10-28 1999-09-28 Alere Incorporated Method and device for detecting edema
JP2013088212A (ja) * 2011-10-16 2013-05-13 Tokyo Univ Of Agriculture & Technology 押込試験方法および押込試験装置
DE102012220284A1 (de) * 2012-11-07 2014-05-08 Carl Zeiss Ag Drei Vorrichtungen und zwei Verfahren zur Bildgebung für biologisches Gewebe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488336A (en) * 1987-09-30 1989-04-03 Shimadzu Corp Indentation hardness testing method
US5957867A (en) * 1997-10-28 1999-09-28 Alere Incorporated Method and device for detecting edema
JP2013088212A (ja) * 2011-10-16 2013-05-13 Tokyo Univ Of Agriculture & Technology 押込試験方法および押込試験装置
DE102012220284A1 (de) * 2012-11-07 2014-05-08 Carl Zeiss Ag Drei Vorrichtungen und zwei Verfahren zur Bildgebung für biologisches Gewebe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SORNKARN, NANTACHAI ET AL.: "Can a Soft Robotic Probe Use Stiffness Control Like a Human Finger to Improve Efficacy of Haptic Perception?", IEEE TRANSACTIONS ON HAPTICS, vol. 10, no. 2, June 2017 (2017-06-01), pages 183 - 195, XP011653670, DOI: doi:10.1109/TOH.2016.2615924 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187100A (ja) * 2019-05-17 2020-11-19 国立研究開発法人農業・食品産業技術総合研究機構 装着型計測装置
JP7202003B2 (ja) 2019-05-17 2023-01-11 国立研究開発法人農業・食品産業技術総合研究機構 装着型計測装置
CN115639091A (zh) * 2022-12-21 2023-01-24 南通嘉鹏新材料科技有限公司 一种聚酯热熔胶的硬度检测设备

Similar Documents

Publication Publication Date Title
McKinley et al. A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery
Su et al. Use of tactile feedback to control exploratory movements to characterize object compliance
JP6254456B2 (ja) 三次元測定機及び三次元測定機による補正行列算出方法
US10837752B2 (en) Method for capturing dynamic vibrations of a roughness sensor, method for measuring a roughness of a workpiece surface, computer program product and measuring device configured to carry out the methods
JP5187856B2 (ja) 触覚センサ
US9983696B2 (en) Force-sensing stylus for use with electronic devices
WO2019097982A1 (ja) 被験体の固さ分布測定方法及び被験体の固さ分布測定装置
JP2007157120A (ja) 超小型絶対位置センサを用いたハンドインターフェースグローブ及びこれを用いたハンドインターフェースシステム
US8596111B2 (en) System for sensing and displaying softness and force
JP2008281403A (ja) 剪断力検出装置及び物体把持システム
Konstantinova et al. Force and proximity fingertip sensor to enhance grasping perception
Sieber et al. A novel haptic platform for real time bilateral biomanipulation with a MEMS sensor for triaxial force feedback
US11268867B2 (en) Strain gauge structure for a sensor
JP5297787B2 (ja) 三次元測定機
JP4517149B2 (ja) 硬さ測定器および硬さ測定装置、ならびに硬さ評価方法
JP5371532B2 (ja) 三次元測定機
Weng et al. Design of magnetostrictive tactile sensor for depth detection
JP2010112864A (ja) 力センサー
JP6719756B2 (ja) 身体部位接触力センサ
JP4845734B2 (ja) 座標測定装置、方法、コンピュータプログラム並びにデータ担体
JP5962454B2 (ja) 触覚感測定器
CN220778328U (zh) 一种消除外压力干扰的皮肤检测操作机器人***
Tanaka et al. Lump detection with tactile sensing system including haptic bidirectionality
JP6480169B2 (ja) 三次元座標測定機用プローブヘッド
CN220713885U (zh) 一种具有距离检测功能的皮肤检测操作机器人***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP