WO2019097688A1 - 剛性可変装置と剛性可変システムと内視鏡 - Google Patents

剛性可変装置と剛性可変システムと内視鏡 Download PDF

Info

Publication number
WO2019097688A1
WO2019097688A1 PCT/JP2017/041533 JP2017041533W WO2019097688A1 WO 2019097688 A1 WO2019097688 A1 WO 2019097688A1 JP 2017041533 W JP2017041533 W JP 2017041533W WO 2019097688 A1 WO2019097688 A1 WO 2019097688A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
rigidity
memory unit
variable
heating
Prior art date
Application number
PCT/JP2017/041533
Other languages
English (en)
French (fr)
Inventor
龍彦 沖田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2019554151A priority Critical patent/JP6866499B2/ja
Priority to PCT/JP2017/041533 priority patent/WO2019097688A1/ja
Publication of WO2019097688A1 publication Critical patent/WO2019097688A1/ja
Priority to US16/869,632 priority patent/US11471030B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0058Flexible endoscopes using shape-memory elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0055Constructional details of insertion parts, e.g. vertebral elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/128Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for regulating temperature

Definitions

  • the present invention relates to a variable stiffness device that provides different stiffnesses to flexible members, a variable stiffness system having a variable stiffness device, and an endoscope having a variable stiffness device.
  • WO 2017/094085 discloses a variable hardness actuator mounted on a flexible member to provide the flexible member with different hardness.
  • the variable hardness actuator includes a shape memory member capable of phase transition between the first phase and the second phase, and a heating member causing the shape memory member to cause phase transition between the first phase and the second phase.
  • a cooling mechanism for cooling the shape memory member.
  • the shape memory member assumes a soft state that can be easily deformed according to an external force, providing the flexible member with low hardness.
  • the shape memory member assumes a rigid state that tends to assume a memory shape against external forces and provides the flexible member with high hardness.
  • the cooling mechanism includes a heat transfer medium that facilitates heat dissipation of at least a portion of the shape memory member.
  • a shape memory member composed of a shape memory alloy has a hollow shape and is disposed inside an elongated flexible member.
  • shape memory alloys are known as difficult-to-process materials, and it is particularly difficult to process shape memory alloys into hollow shapes. If a variable hardness actuator comprising a single shape memory alloy is disposed inside the elongated flexible member, it is necessary to prepare an elongated hollow shape memory alloy. However, the degree of difficulty in processing a long shape memory alloy into a hollow shape increases as the shape memory alloy becomes longer.
  • An object of the present invention is to provide a variable stiffness device that is easy to manufacture, a variable stiffness system that includes the variable stiffness device, and an endoscope that includes the variable stiffness device.
  • variable stiffness device of the present invention is a variable stiffness device that is mounted on a flexible member and provides the flexible member with different stiffness, and is in a low stiffness state. At least two hollow shape memory members capable of phase transition between a first phase to be taken and a second phase to be in a high rigidity state are connected and formed, and hollow portions of the respective shape memory members are connected.
  • a shape memory unit formed to have a hole-like internal space configured to flow a fluid for cooling the shape memory member; a heating member configured to heat the shape memory member; Equipped with
  • one aspect of the rigidity variable system of the present invention comprises the above-described rigidity variable device, a control device for controlling heating of the heating member, and cooling for supplying the fluid to the shape memory unit And a mechanism.
  • variable stiffness device of the present invention is a variable stiffness device that is mounted on a flexible member and provides the flexible member with different stiffness, and has a first length. Member and a second longitudinal member movable along the first longitudinal member, the first longitudinal member including a high flexural rigidity including at least one rigid member, and at least one rigid member.
  • a low flexural rigidity portion comprising a heating member arranged adjacent to the rigid member and configured to heat at least one of the second longitudinal members, the second longitudinal member being in a low stiffness state
  • a hollow portion of each of the shape memory members, formed by at least two hollow shape memory members capable of phase transition between the first phase to be taken and the second phase to be brought into a highly rigid state by heating of the heating member Are connected, At least one shape memory unit formed to have a hole-like internal space configured to allow fluid flow for cooling the member, and the low bending rigidity portion adjacent to the at least one shape memory unit And a hollow-shaped flexible member through which the fluid flows in an internal space connected to the internal space of the shape memory member.
  • one aspect of the rigidity variable system of the present invention comprises the above-described rigidity variable device, a control device for controlling heating of the heating member, and cooling for supplying the fluid to the shape memory unit And a mechanism.
  • one aspect of the endoscope of the present invention comprises the above-mentioned variable stiffness device and the above-mentioned flexible member on which the variable stiffness device is mounted.
  • variable stiffness device that is easy to manufacture, a variable stiffness system including the variable stiffness device, and an endoscope including the variable stiffness device.
  • FIG. 1 is a perspective view of an endoscope incorporating the variable stiffness device of the variable stiffness system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic view of the stiffness variable system shown in FIG.
  • FIG. 3 is a schematic view of a stiffness variable system according to a second embodiment of the present invention.
  • FIG. 4 is a schematic view of a rigidity variable system of a first modified example of the second embodiment.
  • FIG. 5 is a schematic view of a rigidity variable system of a second modified example of the second embodiment.
  • FIG. 6 is a schematic view of a stiffness variable system according to a third embodiment of the present invention.
  • FIG. 7 is a schematic view of a rigidity variable system of a modification of the third embodiment.
  • FIG. 1 is a perspective view of an endoscope incorporating the variable stiffness device of the variable stiffness system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic view of the stiffness variable system shown in FIG.
  • FIG. 8 is a schematic view of a stiffness variable system according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic view of a stiffness variable system according to a fifth embodiment of the present invention.
  • FIG. 10A is a schematic view of a stiffness variable system according to a sixth embodiment of the present invention, showing that the stiffness variable device of the stiffness variable system is in the lowest stiffness state.
  • FIG. 10B is a diagram showing that the stiffness variable device shown in FIG. 10A is switched from the lowest stiffness state to the low stiffness state.
  • FIG. 10C is a diagram showing that the variable stiffness device shown in FIG. 10B is switched from the low stiffness state to the high stiffness state.
  • FIG. 10D is a view showing that the variable stiffness device shown in FIG.
  • FIG. 10C is switched to the first state of the return state showing the process of returning from the high rigidity state to the lowest rigidity state.
  • FIG. 10E is a view showing that the rigidity variable device shown in FIG. 10D is switched from the first state to the second state in the return state.
  • FIG. 1 is a perspective view of an endoscope 100 in which the variable stiffness device 20 of the variable stiffness system 10 according to the first embodiment is incorporated.
  • FIG. 2 is a schematic view of the variable stiffness system 10 shown in FIG.
  • the endoscope 100 may be medical or industrial.
  • the endoscope 100 includes a flexible member 101, an operation unit 103 connected to the flexible member 101 at its proximal end, and a rigidity variable device 20 mounted on the flexible member 101.
  • the flexible member 101 is an elongated tube.
  • a camera is provided at the tip of the flexible member 101.
  • the flexible member 101 is inserted into the subject.
  • the camera can image the inside of the subject.
  • the flexible member 101 can be flexed by an external force applied to the flexible member 101. With external force, we also consider gravity as part of external force.
  • the operation unit 103 includes switches 103a and 103b for performing various operations of the endoscope 100, and an operation dial 103c.
  • the endoscope 100 of the present embodiment is provided with a rigidity variable device 20 for changing the rigidity of the flexible member 101 inside the flexible member 101.
  • the variable stiffness device 20 may be disposed along a portion of the entire length of the flexible member 101 or may be disposed along the entire length of the flexible member 101.
  • variable stiffness system 10 includes the variable stiffness device 20 which provides different stiffnesses to the flexible members 101, the control device 30 which controls the stiffness of the variable stiffness device 20, and the shapes of the variable stiffness device 20. And a cooling mechanism 40 for cooling the storage unit 22.
  • the variable stiffness device 20 has at least two hollow shape memory members 21 and a coiled heating member 23 wound around the outer periphery of the shape memory members 21.
  • the plurality of shape memory members 21 are connected in the longitudinal axis direction of the shape memory member 21 to form an elongated tube-like shape memory unit 22 as a whole.
  • the ends of adjacent shape memory members 21 may be directly connected to each other by adhesion, welding or the like. For example, bonding or welding is performed all around the outer peripheral surface of the end of the shape memory member 21.
  • the three shape memory members 21 each functioning as a short pipe function as a single long tube shape memory unit 22 by connection.
  • the shape memory unit 22 has a hole-like internal space to which the hollow portions of the shape memory members 21 are connected. The internal space is configured to allow a fluid to cool the shape memory member 21 to flow.
  • FIG. 2 shows an example in which three shape memory members 21 are arranged for simplification of illustration, the number of shape memory members 21 may be plural.
  • the shape memory member 21 is, for example, cylindrical.
  • the outer diameter of the shape memory member 21 is smaller than the inner diameter of the flexible member 101.
  • the shape memory unit 22 is shorter than the flexible member 101.
  • the shape memory member 21 may be a member in which the phase of the shape memory member 21 is transformed by temperature and the change in rigidity due to transformation is large.
  • Such shape memory member 21 may be made of, for example, a shape memory alloy.
  • the shape memory alloy may be, for example, an alloy containing NiTi or NiTiCu.
  • the shape memory member 21 may be made of other materials such as a shape memory polymer, a shape memory gel, and a shape memory ceramic.
  • the shape memory alloy constituting the shape memory member 21 may be, for example, one in which a phase changes between a martensite phase and an austenite phase.
  • the shape memory alloy plastically deforms relatively easily to an external force in the martensitic phase. That is, the shape memory alloy exhibits a low elastic modulus in the martensitic phase.
  • shape memory alloys resist external force and are not easily deformed.
  • it is assumed that the shape memory alloy is deformed by a further large external force.
  • the shape memory alloy exhibits superelasticity and returns to the memorized shape. That is, the shape memory alloy exhibits a high elastic modulus in the austenite phase.
  • a phase in which the shape memory member 21 exhibits a low elastic coefficient is referred to as a first phase
  • a phase in which the shape memory member 21 exhibits a high elastic coefficient is referred to as a second phase.
  • the phase of the shape memory member 21 can be changed between the first phase and the second phase by heating or cooling.
  • the shape memory member 21 assumes a low rigidity state that can be easily deformed according to an external force, that is, exhibits a low elastic modulus.
  • the variable stiffness device 20 provides the flexible member 101 with a relatively low rigidity by means of the shape memory member 21.
  • the low rigidity is, for example, a rigidity that allows the flexible member 101 to be easily bent.
  • the rigidity variable device 20 and the flexible member 101 can be easily bent by an external force.
  • the shape memory member 21 when the phase of the shape memory member 21 is in the second phase, the shape memory member 21 takes a high rigidity state having a rigidity higher than that of the low rigidity state, and exhibits a high elastic modulus. In the high rigidity state, the shape memory member 21 tends to take a memory shape stored in advance against an external force.
  • the memory shape may be, for example, substantially linear.
  • the variable stiffness device 20 when the phase of the shape memory member 21 is in the second phase, provides the flexible member 101 with relatively high rigidity by means of the shape memory member 21.
  • the high rigidity is, for example, a rigidity such that the flexible member 101 does not easily bend, or a rigidity in which the flexible member 101 maintains a substantially linear state against an external force.
  • the rigidity variable device 20 and the flexible member 101 can maintain a substantially linear state, or bend gently as compared with the state in the first phase even when an external force is applied. It becomes possible.
  • a heating member 23 and a cooling mechanism 40 are provided to change the phase of the shape memory member 21 between the first phase and the second phase.
  • the shape memory member 21 has the property that the phase of the shape memory member 21 changes from the first phase to the second phase by the heat generation of the heating member 23. Further, the shape memory member 21 has a property that the phase of the shape memory member 21 changes from the second phase to the first phase by the cooling of the cooling mechanism 40. In other words, the heating member 23 and the cooling mechanism 40 cause the phase transition of the shape memory member 21 between the first phase and the second phase to change the rigidity state of the shape memory member 21.
  • the heating member 23 has, for example, a helical coil member such as a closely wound coil.
  • the coil member of the heating member 23 may be a loosely wound coil.
  • the coil member is a wire-like member.
  • the heating member 23 is disposed over the entire length of the shape memory unit 22.
  • the heating member 23 is made of a conductive material, and may be made of, for example, a heating wire, that is, a conductive member having a large electric resistance.
  • the heating member 23 has a function of receiving a current from the control device 30 and emitting heat.
  • the control device 30 has a drive unit 31 that drives the heating member 23.
  • the drive unit 31 has one power supply and one switch.
  • the drive unit 31 is electrically connected to the heating member 23 through the wiring unit 33.
  • the wiring portion 33 is, for example, a metal wire-like member.
  • the wiring portion 33 may be electrically connected to the heating member 23 and may be integral with or separate from the heating member 23.
  • the drive unit 31 supplies a current to the heating member 23 through the wiring unit 33 according to the ON operation of the switch.
  • the heating member 23 generates heat.
  • the calorific value of the heating member 23 corresponds to the amount of supplied current.
  • the heating member 23 transfers heat to the shape memory unit 22 disposed around the heating member 23.
  • the heating member 23 causes the phase transition of the shape memory unit 22 from the first phase to the second phase by heat.
  • Such heating member 23 functions as a heater.
  • the temperature of heat is, for example, 70 degrees to 80 degrees.
  • the driving unit 31 stops the supply of current to the heating member 23 in response to the OFF operation of the switch. Thus, the heating member 23 stops the heat generation.
  • the heating member 23 may be disposed at a position that can cause phase transition of the shape memory unit 22.
  • the heating member 23 is disposed around the outside of the shape memory unit 22.
  • the heating member 23 extends along the longitudinal axis of the shape memory unit 22.
  • the heating member 23 spirally extends around the shape memory unit 22 along the longitudinal axis of the shape memory unit 22.
  • the shape memory unit 22 is disposed inside the winding of the heating member 23.
  • the heating member 23 is in close contact with the outer peripheral surface of the shape memory unit 22, but may be spaced apart from the outer peripheral surface of the shape memory unit 22 by an appropriate gap. Due to such a configuration, the heat generated by the heating member 23 is efficiently transmitted to the shape memory unit 22 and the variable stiffness device 20 is thinned.
  • heating member 23 is disposed with respect to the entire shape memory unit 22, and one heating member 23 causes the phase transition of each of the three shape memory members 21 substantially simultaneously. Such an arrangement simplifies the configuration of the rigidity variable device 20.
  • the heating members 23 may be separately disposed and disposed in each of the shape memory members 21.
  • a first insulating film (not shown) is disposed around the shape memory member 21.
  • the first insulating film prevents a short circuit between the shape memory member 21 and the heating member 23.
  • the first insulating film covers at least a portion facing the heating member 23. Therefore, the first insulating film may be disposed so as to partially cover the outer peripheral surface of the shape memory member 21 or may be disposed on the entire outer peripheral surface of the shape memory member 21.
  • a second insulating film (not shown) is provided around the heating member 23.
  • the second insulating film functions to prevent a short circuit between the shape memory member 21 and the heating member 23.
  • the cooling mechanism 40 cools the shape memory unit 22 by supplying a fluid for cooling to the internal space of the shape memory unit 22 formed by connecting the hollow portions of the shape memory members 21.
  • cooling means promoting at least heat radiation of the shape memory unit 22 which is the object, in other words, enhancing the heat radiation effect of the object.
  • the cooling mechanism 40 has a supply source 41 for supplying a fluid for cooling to the shape memory unit 22, and a path member 43 for leading the fluid flowing out of the supply source 41 to the shape memory unit 22.
  • the fluid is a gas or a liquid.
  • the fluid is, for example, a cooling medium whose temperature is adjusted to a temperature lower than the temperature of the shape memory unit 22 in the second phase.
  • the temperature of the fluid is, for example, 38 degrees.
  • the temperature of the fluid may be normal temperature or substantially the same temperature as the room temperature of the operating room or examination room where the endoscope 100 is used.
  • the supply source 41 is connected to the shape memory unit 22 by the path member 43.
  • the supply source 41 has, for example, a compressor or a pump.
  • the supply source 41 may have a function to control the temperature of the fluid, the supply amount of the fluid, and the supply time of the fluid as desired.
  • the passage member 43 is, for example, a tube of a resin material or a metal material.
  • the path member 43 is connected to the shape memory unit 22.
  • the path member 43 is inserted at the end of the shape memory unit 22.
  • the end of the shape memory unit 22 may be inserted into the path member 43.
  • the path member 43 guides the fluid to the internal space of the hollow shape memory unit 22. Since no member is arranged in the internal space of shape memory unit 22, the fluid led to the internal space of shape memory unit 22 is in direct contact with the inner peripheral surface of shape memory unit 22. It flows in the inner space.
  • the inner peripheral surface of the shape memory unit 22 may be covered with a protective film or the like.
  • the control device 30 and the cooling mechanism 40 may be mounted on the endoscope 100 or may be mounted on a control device (not shown) of the endoscope 100 connected to the endoscope 100. Therefore, the rigidity variable system 10 is mounted on the endoscope 100 or mounted on the endoscope system having the endoscope 100 and the control device of the endoscope 100.
  • the switch 103 a of the endoscope 100 functions as a switch of the drive unit 31 of the control device 30.
  • the switch 103 b of the endoscope 100 functions as a switch of the supply source 41 of the cooling mechanism 40.
  • the control device 30 controls the driving of the supply source 41 according to the ON or OFF of the switch 103 b.
  • Control device 30 is configured by a hardware circuit including, for example, an ASIC or the like. Control device 30 may be configured by a CPU. When the control device 30 is configured by a processor, program code for causing the processor to function as the control device 30 by being executed by the processor in an internal memory of the processor or an external memory (not shown) arranged accessible Remember.
  • variable stiffness device 20 provides the flexible member 101 with a relatively low stiffness by means of the shape memory unit 22.
  • the flexible member 101 can be easily bent, for example, by an external force applied to the flexible member 101.
  • the drive unit 31 supplies a current to the heating member 23, and the heating member 23 generates heat. Then, heat is transferred from the heating member 23 to the shape memory unit 22, the shape memory unit 22 is heated by heat, and the phase of the shape memory unit 22 is quickly switched from the first phase to the second phase by heat. Thereby, the shape memory unit 22 changes from the low rigidity state to the high rigidity state.
  • the variable stiffness device 20 provides the flexible member 101 with relatively high stiffness by means of the shape memory unit 22.
  • the flexible member 101 can maintain, for example, a substantially linear state, or can bend more gently than the state in the first phase even when an external force is applied.
  • the switch of the drive unit 31 is turned off, the drive unit 31 stops the supply of current to the heating member 23, and the heating member 23 stops the generation of heat.
  • the supply source 41 then supplies the fluid to the shape memory unit 22.
  • the fluid that has flowed out of the supply source 41 passes through the path member 43, flows into the internal space of the shape memory unit 22, and passes through the internal space of the shape memory unit 22 as shown by the arrows in FIG.
  • the fluid flows in the inner space in contact with the inner peripheral surface of the shape memory unit 22.
  • the heat of the shape memory unit 22 is transferred to the fluid and passes through the internal space of the shape memory unit 22 together with the fluid.
  • the fluid that has passed through the internal space of the shape memory unit 22 may be stored, discarded, or circulated and reused for cooling.
  • the cooling mechanism 40 cools the shape memory unit 22 to a desired temperature by supplying a fluid to the internal space of the shape memory unit 22.
  • the desired temperature is, for example, a temperature at which the phase of the shape memory unit 22 becomes a first phase.
  • the temperature of the shape memory unit 22 decreases in a short time as compared with the state where the fluid is not supplied to the internal space of the shape memory unit 22. That is, the shape memory unit 22 is cooled more quickly than natural cooling.
  • the rigidity of the area with the flexible member 101 in which the rigidity variable device 20 is disposed is rapidly switched.
  • the shape memory unit 22 is not formed by one hollow shape elongated shape memory member 21 but a plurality of hollow shape thin and short shape memory members 21 are formed to be connected to each other. .
  • the degree of difficulty in processing the short shape memory member 21 is lower than when processing one elongated shape memory member 21 into a hollow shape. Further, it is relatively easy to connect the shape memory members 21 to each other by adhesion or welding. Therefore, the manufacture of the shape memory unit 22 according to the present embodiment is relatively easy.
  • the shape memory unit 22 can be cooled more quickly than natural cooling by the cooling mechanism 40, and high responsiveness to switching can be obtained when the flexible member 101 switches from the high rigidity state to the low rigidity state. Can.
  • the three hollow shape memory members 21 are connected to form the internal space of the shape memory unit 22 through which the cooling fluid flows, so that the fluid is allowed to flow in the internal space of the shape memory unit 22. There is no other member placed. Therefore, the shape memory unit 22 can be made thinner. Further, since the fluid is in direct contact with the inner peripheral surface of the shape memory unit 22, a very high cooling effect can be obtained.
  • variable stiffness device 20 may be disposed, for example, on an elongated member such as a manipulator or a catheter.
  • FIG. 3 is a schematic view of the rigidity variable system of the second embodiment.
  • the difference from the first embodiment is mainly described.
  • the shape memory unit 22 has a cylindrical connecting member 25 that connects the shape memory members 21 adjacent to each other in the longitudinal axis direction of the variable stiffness device 20.
  • connection member 25 is, for example, cylindrical.
  • the connecting member 25 is a pipe shorter than the shape memory member 21.
  • the outer diameter of the connecting member 25 may be substantially the same as the outer diameter of the winding of the heating member 23.
  • connecting member 25 After the connecting member 25 is bent by the external force, when the external force is eliminated, the connecting member 25 has the characteristic that the bending is eliminated and the original state, for example, the linear state is restored.
  • a connecting member 25 may be, for example, a metal material such as NiTi.
  • the connection member 25 may be configured by a member that is not easily bent by an external force.
  • a member may be, for example, a metal material such as stainless steel.
  • the connecting member 25 may have desired elasticity. The elasticity includes, for example, bounce, springiness, waist strength, and the like, and has the property of returning the bent connecting member 25 to a substantially straight line.
  • the connecting member 25 is disposed at an end of each of the adjacent shape memory members 21 which is a connecting portion of the shape memory member 21.
  • the shape memory members 21 adjacent to each other in the longitudinal axis direction of the variable stiffness device 20 are disposed inside the connection member 25 and disposed so as to be in contact with each other. Specifically, the ends of the shape memory members 21 adjacent to each other are inserted into the inside of the connecting member 25 from both ends of the connecting member 25 and directly connected by the connecting member 25.
  • the connecting member 25 is disposed on the outer periphery of the shape memory member 21 and functions as an outer connecting member that connects the shape memory member 21 from the outside.
  • the heating member 23 and the drive unit 31 may be disposed in each of the three shape memory members 21.
  • the heating members 23 are each electrically isolated from one another, and each drive 31 drives the heating members 23 individually.
  • the phases of the three shape memory members 21 can be individually shifted from the first phase to the second phase, and the rigidity of the rigidity variable device 20 is partially changed.
  • the three heating members 23 may be the same structure. However, without being limited thereto, each of the three heating members 23 may include different structures. Different structures may have, for example, different lengths, different thicknesses, different pitches, and may be made of different materials. That is, all or some of the plurality of heating members 23 may have the same characteristic or may have different characteristics. Further, as in the first embodiment, the heating member 23 and the drive unit 31 may be one in the entire rigidity variable device 20.
  • the strength of the connection portion of the shape memory member 21 can be improved by the connection member 25, and the assemblability of the rigidity variable device 20 can also be improved. Since the outer diameters of the connecting member 25 and the heating member 23 may be substantially the same as each other, the connection strength of the connecting portion can be improved while keeping the rigidity variable device 20 as thin as in the first embodiment. In the present embodiment, the heating member 23 can be positioned by the connecting member 25.
  • FIG. 4 is a schematic view of a rigidity variable system of a first modified example of the second embodiment.
  • the present modification mainly describes that it is different from the second embodiment shown in FIG.
  • the ends of the shape memory members 21 adjacent to each other are arranged apart from each other in the inside of the connecting member 25. Therefore, a space is disposed between the ends of the shape memory members 21 in the longitudinal direction of the variable stiffness device 20. The length of the space is adjusted accordingly. Thus, each adjacent shape memory member 21 will be indirectly connected by the connection member 25.
  • the path member 43 is inserted into the end of the connecting member 25.
  • the end of the connecting member 25 may be inserted into the path member 43.
  • the path member 43 guides the fluid to the inside of the shape memory member 21 through the internal space of the connecting member 25.
  • the number of shape memory members 21 can be reduced with respect to the entire length of the shape memory unit 22, or the length of the shape memory members 21 can be shortened, and the shape memory member 21 can be easily processed.
  • FIG. 5 is a schematic view of a rigidity variable system of a second modified example of the second embodiment.
  • the present modification mainly describes that it is different from the second embodiment shown in FIG.
  • connection member 25 may be, for example, a resin material.
  • the connecting member 25 functions as a single tube having the same length as the entire length of the shape memory unit 22.
  • the shape memory members 21 adjacent to each other in the longitudinal axis direction of the variable stiffness device 20 are disposed inside the connection member 25 over the entire length.
  • the ends of the shape memory members 21 adjacent to each other are arranged in contact with each other in the inside of the connecting member 25.
  • One heating member 23 is disposed over the entire length of the connecting member 25.
  • One drive unit 31 is disposed in accordance with the number of heating members 23.
  • the heating member 23 is disposed around the outside of the connecting member 25.
  • the heating member 23 helically extends along the longitudinal axis of the connecting member 25 around the outer periphery of the connecting member 25.
  • the heating member 23 is in close contact with the outer peripheral surface of the connecting member 25, but may be disposed apart from the outer peripheral surface of the connecting member 25 by an appropriate gap.
  • the heat generated from the heating member 23 is transmitted to the shape memory member 21 through the connecting member 25. Further, as in the second embodiment, the heating member 23 and the drive unit 31 may be disposed in each of the three shape memory members 21.
  • connection member 25 can prevent leakage of the cooling fluid flowing inside the shape memory member 21 from the connection portion of the shape memory member 21.
  • FIG. 6 is a schematic view of a stiffness variable system according to a third embodiment.
  • the difference from the second embodiment shown in FIG. 3 will be mainly described.
  • the shape memory unit 22 has a cylindrical member 27 connected to the path member 43.
  • the cylindrical member 27 is disposed in the internal space of the shape memory unit 22.
  • the cylindrical member 27 is disposed over the entire length of the shape memory unit 22 in the longitudinal axis direction of the variable stiffness device 20.
  • the cylindrical member 27 may be longer than the entire length of the shape memory unit 22. Therefore, the end of the cylindrical member 27 on the side opposite to the supply source 41 may project to the left in FIG. 6 more than the shape memory member 21 disposed at the leftmost in FIG. 6.
  • the outer peripheral surface of the cylindrical member 27 may be in contact with the inner peripheral surface of the shape memory member 21.
  • the cylindrical member 27 is, for example, a tube of a resin material.
  • the fluid flows from the supply source 41 via the passage member 43 to the inside of the tubular member 27.
  • the cylindrical member 27 can prevent the fluid from leaking from the connection portion.
  • the outer peripheral surface of the cylindrical member 27 may be joined to the inner peripheral surface of the shape memory member 21, and the cylindrical member 27 is disposed in the internal space of the shape memory unit 22 and the shape memory member from the inside of the shape memory member 21. It may function as an inner connecting member connecting the 21. Thereby, the connection strength of the connection portion of the shape memory member 21 can be improved by the cylindrical member 27.
  • the tubular member 27 may be integral with the path member 43.
  • FIG. 7 is a schematic view of a rigidity variable system of a modification of the third embodiment.
  • the cylindrical member 27 of the third embodiment shown in FIG. 6 is combined with the configuration shown in the first modification of the second embodiment shown in FIG.
  • tubular members 27 are disposed inside the shape memory member 21 and inside the connection member 25 in a state where the end portions of the adjacent shape memory members 21 are separated from each other in the inside of the connection member 25. .
  • the fluid can be smoothly supplied to the inside of the shape memory member 21 by the cylindrical member 27 without being blocked by the step between the inner circumferential surface of the connecting member 25 and the end of the shape memory member 21. .
  • FIG. 8 is a schematic view of the rigidity variable system of the fourth embodiment.
  • the difference from the third embodiment shown in FIG. 6 will be mainly described.
  • the connecting member 25 is omitted from the configuration of the third embodiment shown in FIG. 6, and the outer peripheral surface of the cylindrical member 27 is joined to the inner peripheral surface of the shape memory member 21.
  • the cylindrical member 27 is disposed in the internal space of the shape memory unit 22 and functions as an inner connecting member that connects the shape memory member 21 from the inside of the shape memory member 21.
  • One heating member 23 is disposed over the entire length of the shape memory unit 22.
  • One drive unit 31 is disposed in accordance with the number of heating members 23.
  • the connecting member 25 can be omitted, and the number of parts of the rigidity variable device 20 can be reduced.
  • FIG. 9 is a schematic view of the rigidity variable system of the fifth embodiment.
  • the difference from the fourth embodiment shown in FIG. 8 will be mainly described.
  • FIG. 9 shows an example in which two shape memory units 22a and 22b are arranged for simplification of illustration, the number of shape memory units may be plural.
  • each of the shape memory units 22 a and 22 b the plurality of shape memory members 21 are connected by a cylindrical member 27 disposed inside the shape memory member 21. Further, the end portions of the shape memory units 22a and 22b adjacent to each other in the longitudinal axis direction of the rigidity variable device 20 are disposed apart from each other. Therefore, a space 29 is disposed between the shape memory units 22 a and 22 b in the longitudinal axis direction of the variable stiffness device 20. The length of the space 29 is adjusted as appropriate.
  • One cylindrical member 27 extends from the internal space of the shape memory unit 22b to the internal space of the shape memory unit 22a, and indirectly connects the shape memory unit 22a and the shape memory unit 22b.
  • the rigidity of the two parts apart from each other can be switched quickly. Further, the rigidity of the portion of the flexible member 101 where the space 29 is disposed can be maintained at all times as the rigidity of the cylindrical member 27.
  • FIG. 10A is a schematic view of a stiffness variable system according to a sixth embodiment.
  • the members designated by the same reference numerals as the members illustrated in FIG. 1 are the same members, and the detailed description thereof is omitted.
  • differences from the above-described embodiments will be mainly described.
  • the variable stiffness device 20 includes a first longitudinal member 50, a second longitudinal member 70 movable along the first longitudinal member 50, and a second longitudinal member 70 relative to the first longitudinal member 50. And a moving mechanism 80 for moving.
  • the first longitudinal member 50 is an outer cylinder
  • the second longitudinal member 70 is a core disposed inside the first longitudinal member 50.
  • the cross-sectional shape of the outer cylinder perpendicular to the longitudinal axis of the outer cylinder is annular
  • the outer periphery of the cross section of the core perpendicular to the longitudinal axis of the core is annular.
  • the variable stiffness device 20 provides stable stiffness against bending in any direction.
  • the cross-sectional shape of each of the outer cylinder and the core portion does not have to be an annular shape, and may be another shape, for example, a C-shape.
  • the first longitudinal member 50 is positioned and fixed relative to the flexible member 101.
  • the first longitudinal member 50 has at least one cylindrical hard member 51, at least one heating member 23, at least one ring-shaped heat insulating member 57, and a hollow outer support member 55.
  • FIG. 10A shows an example in which three hard members 51, two heating members 23, and four heat insulating members 57 are disposed for simplification of the drawing, the number of these may be any number.
  • the outer support member 55 is disposed inside the hard member 51, the heating member 23 and the heat insulating member 57.
  • the outer support member 55 functions as a core member for the hard member 51, the heating member 23 and the heat insulating member 57.
  • the outer support member 55 is a cylindrical outer support member that supports the hard member 51, the heating member 23, and the heat insulating member 57.
  • the outer support member 55 covers the second longitudinal member 70 over the entire length of the second longitudinal member 70.
  • the length of the outer support member 55 is substantially the same as the length of the second longitudinal member 70.
  • the length of the outer support member 55 may be longer than the length of the second longitudinal member 70.
  • the outer support member 55 moves the second longitudinal member 70 moving along the longitudinal axis direction of the first longitudinal member 50 with respect to the first longitudinal member 50 along the longitudinal axis direction of the first longitudinal member 50. Guide.
  • the outer support member 55 is bendable.
  • the outer support member 55 has, for example, a coil member such as a closely wound coil.
  • the coil member of the outer support member 55 may be a loosely wound coil.
  • the outer support member 55 may be a soft tube or a cylindrical member in which a plurality of metal wires are twisted relative to each other.
  • the outer support member 55 may have, for example, a wire-like and spiral-like member made of metal.
  • the hard member 51 is, for example, cylindrical.
  • the hard member 51 has, for example, a pipe made of a metal material.
  • the hard member 51 is a separate body from the heating member 23 and the outer support member 55.
  • the length of the hard member 51 is shorter than the length of the outer support member 55 and longer than the length of the heating member 23.
  • the length of the hard member 51 may be substantially the same as or shorter than the length of the heating member 23.
  • the inner peripheral surface of the hard member 51 is fixed to the outer peripheral surface of the outer support member 55 by, for example, bonding or welding.
  • the hard member 51 is then positioned on the outer support member 55.
  • Each of the plurality of rigid members 51 is not in direct contact with each other in the longitudinal direction of the first longitudinal member 50, and is disposed at a desired distance from each other. In other words, the hard member 51 partially encloses the outer support member 55 over the entire length of the outer support member 55. Therefore, in the longitudinal direction of the first longitudinal member 50, a first space is disposed between each of the rigid members 51.
  • the heating members 23 are disposed in the first space, and the hard members 51 and the heating members 23 are alternately disposed on the outer peripheral surface of the outer support member 55 in the longitudinal axis direction of the first longitudinal member 50.
  • one heating member 23 does not wind the outer support member 55 over the entire length of the outer support member 55, but the one heating member 23 does not wind around the entire length of the outer support member 55. Wind one part. Thus, the heating member 23 partially winds the outer support member 55.
  • the heating member 23 is positioned on the outer support member 55 by the hard member 51 in the longitudinal direction of the first longitudinal member 50.
  • the outer diameter of the winding of the heating member 23 is substantially the same as the outer diameter of the hard member 51.
  • the winding of the heating member 23 preferably does not protrude with respect to the hard member 51 in the direction orthogonal to the longitudinal axis of the first longitudinal member 50.
  • the inner peripheral surface of the heating member 23 is in contact with the outer peripheral surface of the outer support member 55, and may be fixed to the outer peripheral surface of the outer support member 55.
  • the inner circumferential surface of the heating member 23 may be separated from the outer circumferential surface of the outer support member 55.
  • the first longitudinal member 50 and the plurality of high bending rigidity parts 61 having relatively high bending rigidity have relatively low bending rigidity.
  • a plurality of low bending rigidity parts 63 that is, the high bending rigidity portion 61 is formed by the cylindrical hard member 51 and one portion of the outer support member 55 disposed inside the hard member 51.
  • the low flexural rigidity portion 63 is formed by the heating member 23 and one portion of the outer support member 55 disposed inside the heating member 23.
  • the outer supporting member 55 is shared by the high bending stiffness portion 61 and the low bending stiffness portion 63.
  • the hard member 51 is harder than the heating member 23, the hard member 51 is a cylindrical hard portion having high bending rigidity, and the outer supporting member 55 and the heating member 23 are cylindrical soft having low bending rigidity. It is a department.
  • the bending rigidity of the high bending rigidity portion 61 is high, and the bending rigidity of the low bending rigidity portion 63 is lower than the bending rigidity of the high bending rigidity portion 61.
  • the first longitudinal member 50 is relatively difficult to bend in the high bending rigidity portion 61 and is relatively easy to bend in the low bending rigidity portion 63.
  • FIG. 10A shows an example in which three high bending stiffness portions 61 and two low bending stiffness portions 63 are disposed for simplification of the drawing.
  • the hard members 51 and the heating members 23 are alternately arranged.
  • the plurality of high bending rigidity portions 61 and the plurality of low bending rigidity portions 63 are alternately arranged in the longitudinal axis direction of the outer support member 55.
  • the length of the high bending rigidity portion 61 is longer than the length of the low bending rigidity portion 63 depending on the length of the hard member 51 and the length of the heating member 23.
  • the length of the high bending rigid portion 61 may be substantially the same as or shorter than the length of the low bending rigid portion 63.
  • the hard support member 51 is positioned by the outer support member 55, the distance between the hard support members 51 (the length of the first space) is defined, and the heating member 23 is positioned. Ru. That is, the outer supporting member 55 has an effect of easily performing the positioning of the high bending rigidity portion 61 and the low bending rigidity portion 63 and the definition of the length of each of the high bending rigidity portion 61 and the low bending rigidity portion 63. In addition, the outer support member 55 has an effect of improving the mechanical strength of the first longitudinal member 50.
  • the high bending rigidity part 61 is arrange
  • the low bending rigidity portion 63 may be disposed at each of the both ends, or the high bending rigidity portion 61 may be disposed at one end, and the low bending rigidity portion 63 may be disposed at the other end.
  • the low bending rigidity portion 63 is positioned and fixed relative to the desired area of the flexible member 101. It becomes.
  • the heat insulating member 57 is, for example, a resin material.
  • the heat insulating member 57 is disposed between the hard member 51 and the heating member 23 in the longitudinal axis direction of the first longitudinal member 50.
  • the heat insulating member 57 is fixed to the end of the hard member 51 by, for example, bonding or welding.
  • the heat insulating member 57 is preferably in contact with the heating member 23.
  • the heat insulating member 57 prevents the heat generated from the heating member 23 from being transmitted to the hard member 51.
  • the second longitudinal member 70 is disposed inside the outer support member 55 and is adjacent to the first longitudinal member 50.
  • the second longitudinal member 70 has a hollow inner support member 75, at least one shape memory unit 22, at least one soft member 73 softer than the shape memory member 21 of the shape memory unit 22, and a cylindrical member And 27.
  • FIG. 10A shows an example in which two shape memory units 22 and three soft members 73 are disposed for simplification of the drawing, the number may be any number.
  • the shape memory unit 22 and the soft member 73 are disposed inside the inner support member 75.
  • the inner support member 75 functions as a protective member that protects the outer peripheral surface of the shape memory unit 22 and the outer peripheral surface of the soft member 73 with respect to the inner peripheral surface of the outer support member 55.
  • the inner support member 75 is an intervening member which is interposed between the outer support member 55 and the shape memory unit 22 and the soft member 73 and prevents the shape memory unit 22 and the soft member 73 from coming into direct contact with the outer support member 55. is there.
  • the inner support member 75 supports the shape memory unit 22 and the soft member 73.
  • the inner support member 75 is bendable.
  • the outer peripheral surface of the inner support member 75 is in contact with the inner peripheral surface of the outer support member 55, and the inner support member 75 slides the outer support member 55 by the moving mechanism 80. If the inner support member 75 can move relative to the outer support member 55, the outer peripheral surface of the inner support member 75 does not contact the inner peripheral surface of the outer support member 55, and the space not shown is the outer peripheral surface of the inner support member 75. And the inner peripheral surface of the outer support member 55 may be formed.
  • the inner support member 75 is, for example, cylindrical.
  • the inner support member 75 has a coil member such as, for example, a closely wound coil.
  • the coil member of the inner support member 75 may be a loosely wound coil.
  • the inner support member 75 may be a soft tube or a cylindrical member in which a plurality of metal wires are twisted relative to each other.
  • the inner support member 75 may have, for example, a wire-like and spiral-like member made of metal.
  • the length of the inner support member 75 is substantially the same as the length of the low bending rigid portion 63.
  • the shape memory unit 22 is shorter than the inner support member 75.
  • the length of the shape memory unit 22 is substantially the same as the length of the high bending rigidity portion 61, and is preferably longer than the length of the low bending rigidity portion 63.
  • the shape memory units 22 are not in direct contact with each other in the longitudinal direction of the second longitudinal member 70, but are disposed at desired intervals with respect to each other. Therefore, a second space is disposed between the shape memory units 22 in the longitudinal direction of the second longitudinal member 70.
  • the soft member 73 is disposed in the second space.
  • the soft members 73 are also disposed at both ends of the second longitudinal member 70 in the longitudinal axis direction of the second longitudinal member 70. Therefore, the plurality of shape memory units 22 and the plurality of flexible members 73 are alternately arranged in the longitudinal axis direction of the second longitudinal member 70 and arranged along the longitudinal axis direction of the second longitudinal member 70.
  • Ru The shape memory unit 22 and the soft member 73 are partially disposed inside the inner support member 75 over the entire length of the inner support member 75.
  • the end of the soft member 73 contacts the end of the shape memory unit 22 adjacent to the end.
  • the end of the soft member 73 may be fixed to the end of the shape memory unit 22 adjacent to the end by, for example, bonding or welding.
  • the soft member 73 is disposed for positioning of the shape memory unit 22.
  • soft members 73 are disposed at both ends of the second longitudinal member 70.
  • the outer peripheral surfaces of the soft members 73 disposed at the both ends are fixed to the inner peripheral surface of the inner support member 75 by, for example, bonding or welding.
  • the soft members 73 and the shape memory unit 22 other than those disposed at both ends are positioned on the inner support member 75 without being fixed to the inner support member 75.
  • the outer peripheral surfaces of the shape memory unit 22 and the soft member 73 may be fixed to the inner peripheral surface of the inner support member 75 by, for example, bonding or welding, and the shape memory unit 22 and the soft member 73 may be positioned.
  • the soft member 73 may be omitted as long as the shape memory unit 22 is fixed to the inner support member 75 by, for example, bonding or welding.
  • a soft member 73 is disposed at each end of the second longitudinal member 70, but the disposition need not be limited to this.
  • the shape memory unit 22 may be disposed at each end, or the soft member 73 may be disposed at one end and the shape memory unit 22 may be disposed at the other end. Also, if the members disposed at each end are fixed to the inner support member 75 by, for example, bonding or welding, the members disposed between the ends are not fixed to the inner support member 75. Good.
  • the soft member 73 has, for example, a spring member.
  • the spring member has, for example, a loosely wound spring.
  • the spring member may, for example, have a closely wound spring.
  • the soft member 73 may have, for example, a linear member such as a thin wire or an elastic member such as rubber.
  • the outer diameter of the winding of the soft member 73 is substantially the same as the outer diameter of the shape memory unit 22.
  • the soft member 73 can be bent, for example.
  • the soft member 73 is softer and easier to bend than the shape memory unit 22.
  • the length of the soft member 73 is shorter than the length of the shape memory unit 22.
  • the length of the soft member 73 is preferably substantially the same as that of the low bending rigidity portion 63.
  • the shape memory unit 22 is a hard portion having high bending rigidity, and the soft member 73 and the inner support member 75 are soft portions having low bending rigidity.
  • the second longitudinal member 70 is relatively inflexible in the shape memory unit 22 and relatively flexible in the soft member 73.
  • the shape memory unit 22 and the soft member 73 are positioned by the inner support member 75, and the distance between the shape memory units 22 is defined.
  • the inner support member 75 also has the effect of improving the mechanical strength of the second longitudinal member 70.
  • the bending rigidity of the shape memory unit 22 when the phase of the shape memory unit 22 is the first phase, the bending rigidity of the shape memory unit 22 is lower than the bending rigidity of the high bending rigidity portion 61 and substantially the same as or lower than the bending rigidity of the low bending rigidity portion 63. .
  • the phase of the shape memory unit 22 is the second phase, the bending rigidity of the shape memory unit 22 is substantially the same as or lower than the bending rigidity of the high bending rigidity portion 61 and higher than the bending rigidity of the low bending rigidity portion 63.
  • the phase of the shape memory unit 22 is the second phase, the bending rigidity of the shape memory unit 22 may be higher than the bending rigidity of the high bending rigidity portion 61.
  • the bending rigidity of the shape memory unit 22 is higher than the bending rigidity of each of the soft member 73 and the inner support member 75 whether the phase of the shape memory unit 22 is the first phase or the second phase. It may be good or low.
  • the soft member 73 is softer than the low bending rigidity portion 63.
  • the cylindrical member 27 is disposed in the internal space of the shape memory unit 22 and the inside of the winding of the soft member 73.
  • the outer peripheral surface of the cylindrical member 27 is in contact with the inner peripheral surface of the shape memory unit 22 and the inner peripheral surface of the soft member 73.
  • Such a configuration makes the variable stiffness device 20 thinner.
  • the inner peripheral surface of the shape memory unit 22 and the inner peripheral surface of the soft member 73 may be disposed apart from the outer peripheral surface of the cylindrical member 27 by an appropriate gap, or in close contact with the outer peripheral surface of the cylindrical member 27 You may
  • the second longitudinal member 70 changes the position of the second longitudinal member 70 relative to the first longitudinal member 50 by moving inside the outer support member 55 along the longitudinal axis direction of the outer support member 55.
  • the relative position between the first longitudinal member 50 and the second longitudinal member 70 and the phase of the shape memory unit 22 change, one portion of the rigidity variable device 20 in the longitudinal axis direction of the rigidity variable device 20 The stiffness changes.
  • the variable stiffness device 20 provides the flexible member 101 with different stiffness.
  • the outer circumferential surface of the inner support member 75 slides on the inner circumferential surface of the outer support member 55 when the second longitudinal member 70 moves due to the change in relative position.
  • the moving mechanism 80 moves the second longitudinal member 70 by pulling or pressing the second longitudinal member 70.
  • the movement mechanism 80 is electrically connected to the control device 30, and the control device 30 controls the drive of the movement mechanism 80, that is, the movement of the second longitudinal member 70 by the movement mechanism 80.
  • the moving mechanism 80 has, for example, a motor (not shown) and a moving member (not shown) connected to one end of the second longitudinal member 70 to move the second longitudinal member 70 by the rotational force of the motor.
  • the motor may be driven by an operation such as turning on or off the switch 103 a (see FIG. 1) in the operation unit 103.
  • the moving member is, for example, directly connected to one end of the inner support member 75, and pulls or presses the second longitudinal member 70 by the rotational force of the motor. At this time, the inner support member 75 moves together with the shape memory unit 22 fixed to the inner support member 75 and the soft member 73.
  • the moving shape memory unit 22 and the soft member 73 slide on the cylindrical member 27.
  • the moving member is disposed from the disposition position of the motor to one end of the inner support member 75.
  • the moving member is disposed inside the operation unit 103 and the flexible member 101.
  • the moving member is, for example, a wire-like member.
  • the moving mechanism 80 is electrically driven.
  • the control device 30 controls the movement of the second longitudinal member 70 by the motor of the movement mechanism 80.
  • the control device 30 controls the pulling, pressing and stopping of the moving mechanism 80 in conjunction with the operation of the switch 103a.
  • a motor may be omitted as the movement mechanism 80, and the second longitudinal member 70 may be moved by a manual operation.
  • the moving mechanism 80 may have an operation dial 103c (see FIG. 1) instead of the motor.
  • the operation dial 103c is connected to the moving member.
  • the operation dial 103 c is operated by the finger of the hand holding the operation unit 103, and rotates around the central axis of the operation dial 103 c by the operation.
  • the operation dial 103c is switched to the ON position or the OFF position by rotation. In response to this switching, the moving member is pulled or pressed. Thereby, the second longitudinal member 70 is moved.
  • a lever not shown may be used instead of the operation dial 103c.
  • the moving mechanism 80 is manually operated. In this case, the control device 30 is omitted.
  • the movement mechanism 80 and the control device 30 may be omitted, and the second longitudinal member 70 may be moved by the manual operation of the operator operating the rigidity variable device 20.
  • the end of the second longitudinal member 70 is held by the hand of the operator, and the second longitudinal member 70 is moved by the pushing and pulling of the operator.
  • the second longitudinal member 70 is longer than the first longitudinal member 50, and the end of the second longitudinal member 70 is longer than the first longitudinal member 50 in the longitudinal direction of the second longitudinal member 70. It is also preferable that it protrudes outside.
  • the end of the second longitudinal member 70 is an operating portion It is preferable to extend to 103 and to project from the inside of the operation unit 103 through the casing of the operation unit 103 to the outside of the operation unit 103 for holding.
  • the end of the second longitudinal member 70 may project outward at the proximal end of the flexible member 101. Not only the end of the second longitudinal member 70, but also the held portion may protrude to the outside.
  • FIG. 10A is also a view showing that the rigidity variable device 20 is in the lowest rigidity state (super soft state).
  • the rigidity variable system 10 In the lowest rigidity state, the rigidity variable system 10 is in the initial state, the drive unit 31 does not supply the current to the heating member 23, the heating member 23 does not generate heat, and the phase of the shape memory unit 22 In the first phase, the shape memory unit 22 is in a low rigidity state. Also, in the least rigid state, the supply source 41 is not supplying fluid.
  • the shape memory unit 22 in the low rigidity state is disposed inside the high bending rigidity portion 61 which is a hard portion, and the soft member 73 is arranged inside the low bending rigidity portion 63 which is a soft portion.
  • the low bending rigidity portion 63 is in the most flexible state, and the variable stiffness device 20 provides the flexible member 101 with the lowest rigidity such that the flexible member 101 is flexible.
  • the first longitudinal member 50, the second longitudinal member 70, and the flexible member 101 can be most easily bent, for example, by an external force.
  • the variable stiffness device 20 switches from the lowest stiffness state to the low stiffness state (soft state)
  • the second longitudinal member 70 is only moved by the moving mechanism 80 with respect to the lowest stiffness state shown in FIG. 10A. It is. Therefore, in the low rigidity state, the drive unit 31 does not supply an electric current to the heating member 23, the heating member 23 does not generate heat, and the phase of the shape memory unit 22 is the first phase.
  • the source 41 is not supplying fluid.
  • variable stiffness device 20 provides the flexible member 101 with a relatively low stiffness such that the flexible member 101 is flexible.
  • the first longitudinal member 50, the second longitudinal member 70, and the flexible member 101, for example, are less likely to bend than in the lowest rigidity state.
  • variable stiffness device 20 switches from the low stiffness state to the high stiffness state (hard state) as shown in FIG. 10C
  • the second longitudinal member 70 has not moved relative to the low stiffness state shown in FIG. 10B.
  • the drive unit 31 supplies an electric current to the heating member 23, and the heating member 23 generates heat.
  • the supply source 41 does not supply fluid.
  • the shape memory unit 22 In the high rigidity state, the shape memory unit 22 is heated by the heat generated from the heating member 23, and the phase of the shape memory unit 22 is thermally switched from the first phase to the second phase. As a result, the shape memory unit 22 changes from the low rigidity state to the high rigidity state.
  • the shape memory unit 22 in the high stiffness state is shown in black in FIG. 10C.
  • the shape memory unit 22 in the high rigidity state is disposed inside the low bending rigidity portion 63 which is a soft portion, and the low bending rigidity portion 63 is in a state in which it is more difficult to bend than in the low rigidity state.
  • the variable stiffness device 20 provides the flexible member 101 with a relatively high stiffness such that the flexible member 101 is less likely to flex.
  • the non-flexible shape may be, for example, linear.
  • the first longitudinal member 50, the second longitudinal member 70, and the flexible member 101 can maintain, for example, a substantially linear state, or can be made more difficult to bend by an external force than in a low rigidity state. .
  • the two shape memory units 22 are in the high rigidity state, it is not necessary to be limited to this.
  • the selected shape memory unit 22 of the two shape memory units 22 may be in a high rigidity state.
  • the thermal conductivity of the soft member 73 is lower than the thermal conductivity of the shape memory unit 22. Therefore, the transfer of heat from the heated shape memory unit 22 to the other unheated shape memory unit 22 through the soft member 73 is suppressed.
  • variable stiffness device 20 When the variable stiffness device 20 returns from the high stiffness state shown in FIG. 10C to the lowest stiffness state shown in FIG. 10A, it operates as shown in FIGS. 10D and 10E.
  • FIG. 10D and FIG. 10E show that it is a return state which shows the process in which the rigidity variable apparatus 20 returns to a lowest rigidity state from a high rigidity state.
  • the return state has a first return state shown in FIG. 10D and a second return state shown in FIG. 10E.
  • the second return state is a state after the first return state.
  • the second longitudinal member 70 is moved by the moving mechanism 80 with respect to the high rigidity state shown in, for example, FIG. 10C.
  • the drive unit 31 stops the supply of current to the heating member 23, and the heating member 23 stops the generation of heat.
  • the source 41 may supply fluid.
  • the shape memory unit 22 in the high stiffness state is disposed inside the high bending stiffness portion 61, and the soft member 73 is disposed inside the low bending stiffness portion 63 which is a soft portion. Therefore, the low bending rigidity portion 63 is in the most flexible state, and the rigidity variable device 20 provides the flexible member 101 with the lowest rigidity.
  • the shape memory unit 22 in the high rigidity state is moved from the low bending stiffness portion 63 to the high bending stiffness portion 61 by the moving mechanism 80. Therefore, in the first state, the rigidity variable device 20 can be switched from the high rigidity state to the minimum rigidity state in a short time without waiting for the temperature of the shape memory unit 22 in the high rigidity state to decrease.
  • the second longitudinal member 70 is not moved by the moving mechanism 80 with respect to the first return state shown, for example, in FIG. 10D.
  • the drive unit 31 does not supply current to the heating member 23, and the heating member 23 does not generate heat.
  • the supply source 41 supplies fluid.
  • the fluid that has flowed out of the supply source 41 passes through the internal space of the path member 43 and the internal space of the cylindrical member 27 as shown by the arrows in FIG. 10E.
  • the heat of the shape memory unit 22 is transferred to the fluid through the tubular member 27 and passes through the internal space of the tubular member 27 with the fluid.
  • the cooling mechanism 40 cools the shape memory unit 22 to a desired temperature by supplying a fluid to the internal space of the cylindrical member 27.
  • the desired temperature is, for example, a temperature at which the phase of the shape memory unit 22 becomes a first phase.
  • the shape memory unit 22 in the high rigidity state is cooled by the fluid and changes to the low rigidity state. Then, the second return state is switched to the lowest rigidity state shown in FIG. 10A. In this second return state, the shape memory unit 22 can be cooled faster and return to the low rigidity state more quickly than it is naturally cooled. In the second state, it is possible to accelerate the change from the lowest rigidity state, which is the initial state, to the low rigidity state, that is, redrive of the rigidity variable device 20.
  • the responsiveness to the switching of the rigidity of the desired area in the flexible member 101 can be improved, and the change of the rigidity can be precisely controlled.
  • the present invention is not limited to the above embodiment, and can be variously modified in the implementation stage without departing from the scope of the invention.
  • the embodiments may be implemented in combination as appropriate as possible, in which case the combined effect is obtained.
  • the above embodiments include inventions of various stages, and various inventions can be extracted by an appropriate combination of a plurality of disclosed configuration requirements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

剛性可変装置(20)は、低剛性状態を取る第1の相と高剛性状態を取る第2の相との間で相が移り変わり得る少なくとも2つの中空形状の形状記憶部材(21)が連結されて形成される形状記憶ユニット(22)と、形状記憶部材(21)を加熱するように構成された加熱部材(23)とを有する。形状記憶ユニット(22)は、形状記憶部材(21)それぞれの中空部が連結された孔状の内部空間を有する。内部空間は、形状記憶部材(21)を冷却するための流体が流れるように構成される。

Description

剛性可変装置と剛性可変システムと内視鏡
 本発明は、可撓性部材に異なる剛性を提供する剛性可変装置と、剛性可変装置を有する剛性可変システムと、剛性可変装置を有する内視鏡とに関する。
 例えば、国際公開第2017/094085号は、可撓性部材に装着されて可撓性部材に異なる硬度を提供する硬度可変アクチュエータを開示している。硬度可変アクチュエータは、第1の相と第2の相の間で相が移り変わり得る形状記憶部材と、形状記憶部材に第1の相と第2の相の間の相の移り変わりを引き起こさせる加熱部材と、形状記憶部材を冷却する冷却機構とを備えている。形状記憶部材の相が第1の相にあるときは、形状記憶部材は、外力に従って容易に変形し得る軟質状態を取り、可撓性部材に低い硬度を提供する。形状記憶部材の相が第2の相にあるときは、形状記憶部材は、外力に抗して記憶形状を取る傾向を示す硬質状態を取り、可撓性部材に高い硬度を提供する。冷却機構は、形状記憶部材の少なくとも一部分の放熱を促進する熱伝達媒体を含んでいる。
 形状記憶合金から構成される形状記憶部材は、中空形状を有しており、細長い可撓性部材の内部に配置されている。
 一般的に、形状記憶合金は加工が難しい材料として知られており、形状記憶合金を中空形状に加工することは特に困難である。1本の形状記憶合金を備える硬度可変アクチュエータが細長い可撓性部材の内部に配置される場合、細長い中空形状の形状記憶合金を用意する必要がある。しかしながら、長い形状記憶合金を中空形状に加工する加工の難易度は、形状記憶合金が長くなるほど上がってしまう。
 本発明の目的は、製造が容易な剛性可変装置と、この剛性可変装置を有する剛性可変システムと、この剛性可変装置を有する内視鏡とを提供することである。
 前記の目的を達成するために、本発明の剛性可変装置の一態様は、可撓性部材に装着され、前記可撓性部材に異なる剛性を提供する剛性可変装置であって、低剛性状態を取る第1の相と高剛性状態を取る第2の相との間で相が移り変わり得る少なくとも2つの中空形状の形状記憶部材が連結されて形成され、前記形状記憶部材それぞれの中空部が連結され、前記形状記憶部材を冷却するための流体が流れるように構成された孔状の内部空間を有するように形成された形状記憶ユニットと、前記形状記憶部材を加熱するように構成された加熱部材とを具備する。
 前記の目的を達成するために、本発明の剛性可変システムの一態様は、上記の剛性可変装置と、前記加熱部材の加熱を制御する制御装置と、前記流体を前記形状記憶ユニットに供給する冷却機構とを具備する。
 前記の目的を達成するために、本発明の剛性可変装置の一態様は、可撓性部材に装着され、前記可撓性部材に異なる剛性を提供する剛性可変装置であって、第1の長手部材と、前記第1の長手部材に沿って移動可能な第2の長手部材と、を具備し、前記第1の長手部材は、少なくとも1つの硬質部材を含む高曲げ剛性部と、少なくとも1つの前記硬質部材に隣り合い、少なくとも1つの前記第2の長手部材を加熱するように構成された加熱部材を含む低曲げ剛性部と、を有し、前記第2の長手部材は、低剛性状態を取る第1の相と前記加熱部材の加熱によって高剛性状態を取る第2の相との間で相が移り変わり得る少なくとも2つの中空形状の形状記憶部材によって形成され、前記形状記憶部材それぞれの中空部が連結されて、前記形状記憶部材を冷却するための流体が流れるように構成された孔状の内部空間を有するように形成された少なくとも1つの形状記憶ユニットと、前記少なくとも1つの形状記憶ユニットに隣り合い、前記低曲げ剛性部よりも柔らかく、前記形状記憶部材の前記内部空間に連結された内部空間に前記流体が流れる中空形状の軟質部材とを有する。
 前記の目的を達成するために、本発明の剛性可変システムの一態様は、上記の剛性可変装置と、前記加熱部材の加熱を制御する制御装置と、前記流体を前記形状記憶ユニットに供給する冷却機構とを具備する。
 前記の目的を達成するために、本発明の内視鏡の一態様は、上記の剛性可変装置と、前記剛性可変装置が装着された前記可撓性部材とを具備する。
 本発明によれば、製造が容易な剛性可変装置と、この剛性可変装置を有する剛性可変システムと、この剛性可変装置を有する内視鏡とを提供できる。
図1は、本発明の第1の実施形態の剛性可変システムの剛性可変装置が組み込まれた内視鏡の斜視図である。 図2は、図1に示す剛性可変システムの概略図である。 図3は、本発明の第2の実施形態の剛性可変システムの概略図である。 図4は、第2の実施形態の第1の変形例の剛性可変システムの概略図である。 図5は、第2の実施形態の第2の変形例の剛性可変システムの概略図である。 図6は、本発明の第3の実施形態の剛性可変システムの概略図である。 図7は、第3の実施形態の変形例の剛性可変システムの概略図である。 図8は、本発明の第4の実施形態の剛性可変システムの概略図である。 図9は、本発明の第5の実施形態の剛性可変システムの概略図である。 図10Aは、本発明の第6の実施形態の剛性可変システムの概略図であり、剛性可変システムの剛性可変装置が最低剛性状態であることを示す図である。 図10Bは、図10Aに示す剛性可変装置が最低剛性状態から低剛性状態に切り替わったことを示す図である。 図10Cは、図10Bに示す剛性可変装置が低剛性状態から高剛性状態に切り替わったことを示す図である。 図10Dは、図10Cに示す剛性可変装置が高剛性状態から最低剛性状態に戻る過程を示す戻り状態の第1状態に切り替わったことを示す図である。 図10Eは、図10Dに示す剛性可変装置が第1状態から戻り状態の第2状態に切り替わったことを示す図である。
 以下、図面を参照して本発明の各実施形態について説明する。なお、一部の図面では図示の明瞭化のために部材の一部の図示を省略する。
 [第1の実施形態]
 以下に、図1と図2とを参照して本発明の第1の実施形態について説明する。図1は、第1の実施形態の剛性可変システム10の剛性可変装置20が組み込まれた内視鏡100の斜視図である。図2は、図1に示す剛性可変システム10の概略図である。
 内視鏡100は、医療用でもよいし、工業用でもよい。内視鏡100は、可撓性部材101と、可撓性部材101に基端部に連結される操作部103と、可撓性部材101に装着される剛性可変装置20とを有する。
 可撓性部材101は、細長いチューブである。可撓性部材101の先端には、カメラが設けられている。可撓性部材101は、被検体の内部に挿入される。カメラは被検体の内部を撮影できる。可撓性部材101は、可撓性部材101に付加される外力によって撓むことが可能である。外力とは、重力も外力の一部と考える。
 操作部103は、内視鏡100の各種の操作を実施するスイッチ103a,103bと、操作ダイヤル103cとを有する。
 本実施形態の内視鏡100は、可撓性部材101の内部に、可撓性部材101の剛性を変更するための剛性可変装置20を備えている。剛性可変装置20は、可撓性部材101の全長の一部分に配置されてもよいし、可撓性部材101の全長に渡って配置されてもよい。
 図2に示すように、剛性可変システム10は、可撓性部材101に異なる剛性を提供する剛性可変装置20と、剛性可変装置20の剛性を制御する制御装置30と、剛性可変装置20の形状記憶ユニット22を冷却する冷却機構40とを有する。
 剛性可変装置20は、少なくとも2つの中空形状の形状記憶部材21と、形状記憶部材21の外周を巻回するコイル状の加熱部材23とを有する。
 複数の形状記憶部材21は、形状記憶部材21の長手軸方向において連結されており、全体として細長いチューブ状の形状記憶ユニット22を形成する。詳細には、隣り合う形状記憶部材21それぞれの端部は、互いに対して接着または溶接などによって直接連結されてよい。例えば、接着または溶接は、形状記憶部材21の端部の外周面全周において実施される。それぞれが短いパイプとして機能する3つの形状記憶部材21は、連結によって、1本の長いチューブ状の形状記憶ユニット22として機能する。形状記憶ユニット22は、形状記憶部材21それぞれの中空部が連結された孔状の内部空間を有する。内部空間は、形状記憶部材21を冷却するための流体が流れるように構成される。図2では、図示の簡略のため3つの形状記憶部材21が配置されている例を示しているが、形状記憶部材21の数は複数であればよい。
 形状記憶部材21は、例えば円筒状である。例えば、形状記憶部材21の外径は、可撓性部材101の内径よりも小さい。形状記憶ユニット22は、可撓性部材101に比べて短い。
 形状記憶部材21は、温度によって形状記憶部材21の相が変態し、変態による剛性変化が大きい部材であればよい。このような形状記憶部材21は、例えば形状記憶合金から構成されていてよい。形状記憶合金は、例えばNiTiまたはNiTiCuを含む合金であってよい。また、形状記憶部材21は、形状記憶ポリマー、形状記憶ゲル、形状記憶セラミックなど、他の材料から構成されていてもよい。
 形状記憶部材21を構成する形状記憶合金は、例えば、マルテンサイト相とオーステナイト相との間で相が移り変わるものであってよい。その形状記憶合金は、マルテンサイト相時には、外力に対して比較的容易に塑性変形する。つまり、その形状記憶合金は、マルテンサイト相時には低い弾性係数を示す。一方、形状記憶合金は、オーステナイト相時には、外力に抵抗して容易には変形しない。ここで、形状記憶合金がさらに大きな外力によって変形したとする。変形した形状記憶合金に対して大きな外力が打ち消された際、形状記憶合金は、超弾性を示して、記憶している形状に戻る。つまり、形状記憶合金は、オーステナイト相時には高い弾性係数を示す。
 形状記憶部材21が低い弾性係数を示す相を第1の相と称することとし、形状記憶部材21が高い弾性係数を示す相を第2の相と称することとする。形状記憶部材21の相は、加熱または冷却によって第1の相と第2の相との間で変わり得る。
 形状記憶部材21の相が第1の相にあるときは、形状記憶部材21は、外力に従って容易に変形し得る低剛性状態を取り、すなわち低い弾性係数を示す。したがって、形状記憶部材21の相が第1の相にあるときは、剛性可変装置20は形状記憶部材21によって可撓性部材101に比較的低い剛性を提供する。低い剛性とは、例えば、可撓性部材101が撓みやすいような剛性である。第1の相において、剛性可変装置20と可撓性部材101とは、例えば、外力によって容易に撓むことが可能となる。
 また、形状記憶部材21の相が第2の相にあるときは、形状記憶部材21は、低剛性状態よりも高い剛性を有する高剛性状態を取り、高い弾性係数を示す。高剛性状態では、形状記憶部材21は、外力に抗してあらかじめ記憶している記憶形状を取る傾向を示す。記憶形状は、例えば略直線状であってよい。したがって、形状記憶部材21の相が第2の相にあるときは、剛性可変装置20は形状記憶部材21によって可撓性部材101に比較的高い剛性を提供する。高い剛性とは、例えば、可撓性部材101が撓みにくいような剛性、または外力に対抗して可撓性部材101が略直線状態を維持する剛性である。第2の相において、剛性可変装置20と可撓性部材101とは、例えば、略直線状態を維持可能となる、または外力が印加されても第1の相における状態に比べて緩やかに撓むことが可能となる。
 形状記憶部材21の相を第1の相と第2の相との間で変更させるため、加熱部材23及び冷却機構40が備えられる。形状記憶部材21は加熱部材23の発熱によって第1の相から第2の相に形状記憶部材21の相が移り変わる性質を有する。また形状記憶部材21は、冷却機構40の冷却によって、第2の相から第1の相に形状記憶部材21の相が移り変わる性質を有している。言い換えると、加熱部材23と冷却機構40とは、第1の相と第2の相との間で形状記憶部材21の相の移り変わりを引き起こさせて形状記憶部材21の剛性状態を変更する。
 加熱部材23は、例えば、密着巻きコイルといった螺旋状のコイル部材を有する。加熱部材23のコイル部材は、疎巻きコイルでもよい。コイル部材は、ワイヤ状の部材である。加熱部材23は、形状記憶ユニット22の全長に渡って配置される。
 加熱部材23は、導電性材料から構成されており、例えば電熱線、つまり電気抵抗の大きい導電性部材で構成されてよい。加熱部材23は、制御装置30から電流の供給を受けて熱を発する性能を有する。制御装置30は、加熱部材23を駆動する駆動部31を有する。駆動部31は、1つの電源と1つのスイッチとを有する。駆動部31は、配線部33を介して加熱部材23に電気的に接続される。配線部33は、例えば、金属のワイヤ状の部材である。配線部33は、加熱部材23に電気的に接続されていればよく、加熱部材23と一体であってもよいし別体であってもよい。駆動部31は、スイッチのON動作に応じて、配線部33を介して加熱部材23に電流を供給する。これにより加熱部材23は、発熱する。加熱部材23の発熱量は、電流の供給量に応じる。加熱部材23は、熱を、加熱部材23の周辺に配置される形状記憶ユニット22に伝える。そして、加熱部材23は、熱によって、第1の相から第2の相への形状記憶ユニット22の相の移り変わりを引き起こさせる。このような加熱部材23は、ヒータとして機能する。熱の温度は、例えば、70度~80度である。駆動部31は、スイッチのOFF動作に応じて、加熱部材23に対する電流の供給を停止する。これにより加熱部材23は、発熱を停止する。
 加熱部材23は、形状記憶ユニット22の相の移り変わりを引き起こすことが可能な位置に配置されればよい。したがって、例えば、加熱部材23は、形状記憶ユニット22の外側周囲に配置される。加熱部材23は、形状記憶ユニット22の長手軸に沿って延在している。加熱部材23は、形状記憶ユニット22の長手軸に沿って、形状記憶ユニット22の周囲を螺旋状に延びている。このため、形状記憶ユニット22は、加熱部材23の巻きの内側に配置される。加熱部材23は、形状記憶ユニット22の外周面に密着しているが、形状記憶ユニット22の外周面から適度なすき間だけ離れて配置されてもよい。このような構成のおかげで、加熱部材23によって発せられる熱は形状記憶ユニット22に効率良く伝達され、剛性可変装置20は細くなる。
 また加熱部材23は形状記憶ユニット22の全体に対して1つのみ配置されており、1つの加熱部材23が3つの形状記憶部材21それぞれの相の移り変わりを略同時に引き起こさせる。このような配置によって、剛性可変装置20の構成はシンプルになる。なお加熱部材23は、分割配置されて、形状記憶部材21それぞれに配置されてもよい。
 例えば、形状記憶部材21の周囲には、図示しない第1絶縁膜が配置される。第1絶縁膜は、形状記憶部材21と加熱部材23の間の短絡を防止する。第1絶縁膜は、少なくとも加熱部材23に面する部分を覆う。したがって、第1絶縁膜は、形状記憶部材21の外周面を部分的に覆って配置されてもよいし、形状記憶部材21の外周面の全体に配置されていてもよい。
 例えば、加熱部材23の周囲には、図示しない第2絶縁膜が設けられている。第2絶縁膜は、形状記憶部材21と加熱部材23の間の短絡を防止する働きをする。
 冷却機構40は、形状記憶部材21それぞれの中空部が連結されて形成された形状記憶ユニット22の内部空間に冷却のための流体を供給することで形状記憶ユニット22を冷却する。ここで、冷却とは、少なくとも、対象物である形状記憶ユニット22の放熱を促進すること、言い換えれば、対象物の放熱作用を高めることを意味している。
 冷却機構40は、冷却のための流体を形状記憶ユニット22に供給する供給源41と、供給源41から流出した流体を形状記憶ユニット22に導く経路部材43とを有する。
 流体は、気体または液体である。流体は、例えば、第2の相となっている形状記憶ユニット22の温度よりも低い温度に流体の温度を調整される冷却媒体である。流体の温度は、例えば、38度である。流体の温度は、常温でもよいし、内視鏡100が用いられる手術室または検査室といった部屋の室温と略同一の温度でもよい。
 供給源41は、経路部材43によって形状記憶ユニット22に接続される。供給源41は、例えば、コンプレッサまたはポンプを有する。供給源41は、流体の温度と流体の供給量と流体の供給時間とを所望に制御する機能を有してもよい。
 経路部材43は、例えば、樹脂材または金属材のチューブである。経路部材43は、形状記憶ユニット22に接続される。例えば、経路部材43は、形状記憶ユニット22の端部に挿入されている。なお形状記憶ユニット22の端部が経路部材43に挿入されもよい。経路部材43は、中空形状の形状記憶ユニット22の内部空間に流体を導く。形状記憶ユニット22の内部空間には部材がなんら配置されていないため、形状記憶ユニット22の内部空間に導かれた流体は形状記憶ユニット22の内周面に直接接した状態で形状記憶ユニット22の内部空間を流れる。なお形状記憶ユニット22の内周面は、保護膜などで覆われてもよい。
 制御装置30及び冷却機構40は、内視鏡100に搭載されてもよいし、内視鏡100に接続される内視鏡100の制御装置(図示せず)に搭載されてもよい。したがって、剛性可変システム10は、内視鏡100に搭載される、または内視鏡100と内視鏡100の制御装置とを有する内視鏡システムに搭載される。例えば、内視鏡100のスイッチ103aは、制御装置30の駆動部31のスイッチとして機能する。また内視鏡100のスイッチ103bは、冷却機構40の供給源41のスイッチとして機能する。制御装置30は、スイッチ103bのONまたはOFFに応じて、供給源41の駆動を制御する。制御装置30は、例えば、ASICなどを含むハードウエア回路によって構成される。制御装置30は、CPUによって構成されても良い。制御装置30がプロセッサで構成される場合、プロセッサの内部メモリまたはプロセッサがアクセス可能に配置された図示しない外部メモリに、プロセッサが実行することで当該プロセッサを制御装置30として機能させるためのプログラムコードを記憶しておく。
 次に、相の切り替えに伴う、可撓性部材101の剛性の変更について説明する。
 剛性可変システム10の初期状態では、駆動部31のスイッチがOFFとなり、駆動部31は加熱部材23に電流を供給しておらず、加熱部材23は熱を発生していない。形状記憶ユニット22の相が第1の相であり、形状記憶ユニット22は低剛性状態である。このため、剛性可変装置20は、形状記憶ユニット22によって可撓性部材101に比較的低い剛性を提供する。これにより可撓性部材101は、例えば、可撓性部材101に加わる外力によって容易に撓むことが可能となる。
 駆動部31のスイッチがONとなったとき、駆動部31が加熱部材23に電流を供給し、加熱部材23は熱を発生する。すると、熱は加熱部材23から形状記憶ユニット22に伝わり、形状記憶ユニット22は熱によって熱せられて、形状記憶ユニット22の相は熱によって第1の相から第2の相に素早く切り替わる。これにより形状記憶ユニット22は、低剛性状態から高剛性状態に変化する。剛性可変装置20は、形状記憶ユニット22によって可撓性部材101に比較的高い剛性を提供する。そして可撓性部材101は、例えば、略直線状態を維持可能となる、または外力が印加されても第1の相における状態に比べて緩やかに撓むことが可能となる。
 形状記憶ユニット22の相を第2の相から第1の相に戻すときは、次のように動作する。まず、駆動部31のスイッチがOFFとなり、駆動部31は加熱部材23への電流の供給を停止し、加熱部材23は熱の発生を停止する。そして供給源41は、流体を形状記憶ユニット22に供給する。
 供給源41から流出した流体は、経路部材43を通り、形状記憶ユニット22の内部空間に流れ込み、図2に矢印で示すように形状記憶ユニット22の内部空間を通り抜ける。流体は、形状記憶ユニット22の内周面に接した状態で内部空間を流れる。形状記憶ユニット22の熱は、流体に伝わり、流体と共に形状記憶ユニット22の内部空間を通り抜ける。形状記憶ユニット22の内部空間を通り抜けた流体は、貯留されてもよいし、廃棄されてもよいし、循環されて冷却のために再利用されてもよい。冷却機構40は、形状記憶ユニット22の内部空間に流体を供給することによって、形状記憶ユニット22を所望する温度に冷却する。所望する温度とは、例えば形状記憶ユニット22の相が第1の相となる温度である。
 形状記憶ユニット22の内部空間に流体が供給されている状態では、形状記憶ユニット22の温度は、形状記憶ユニット22の内部空間に流体が供給されていない状態よりも短時間のうちに低下する。つまり形状記憶ユニット22は、自然冷却よりも素早く冷却される。
 このように形状記憶ユニット22の相が第1の相と第2の相の間で素早く切り替えられることによって、剛性可変装置20が配置されている可撓性部材101のあるエリアの剛性が素早く切り替えられる。
 本実施形態では、形状記憶ユニット22は1つの中空形状の細長い形状記憶部材21で形成されるのではなく、複数の中空形状の細くて短い形状記憶部材21が互いに対して連結されて形成される。1つの細長い形状記憶部材21を中空形状に加工する場合に比べて、短い形状記憶部材21の加工の難易度は低い。また、形状記憶部材21を接着または溶接などによって互いに連結することは比較的容易である。したがって、本実施形態に係る形状記憶ユニット22の製造は比較的容易である。
 本実施形態では、熱を形状記憶ユニット22に伝達することで、可撓性部材101が低剛性状態から高剛性状態へ切り替える際に、切り替えに対する高い応答性を得ることができる。また本実施形態では、冷却機構40によって、形状記憶ユニット22を自然冷却よりも素早く冷却でき、可撓性部材101が高剛性状態から低剛性状態へ切り替わる際に、切り替えに対する高い応答性を得ることができる。
 中空形状の3つの形状記憶部材21が連結されることで、冷却用の流体が流れる形状記憶ユニット22の内部空間が形成されているため、形状記憶ユニット22の内部空間には流体を流すための他の部材がなんら配置されていない。このため、形状記憶ユニット22を細くできる。また流体が形状記憶ユニット22の内周面に直接接するため、非常に高い冷却効果を得ることができる。
 ここでは、可撓性部材101に剛性可変装置20が配置された例を説明したが、これに限らない。剛性可変装置20は、例えば、マニピュレータ、カテーテルなどの細長い部材に配置されてもよい。
 [第2の実施形態]
 以下に、図3を参照して、本発明の第2の実施形態について説明する。図3は、第2の実施形態の剛性可変システムの概略図である。本実施形態では、第1の実施形態とは異なることを主に記載する。
 本実施形態では、連結のために、形状記憶ユニット22は、剛性可変装置20の長手軸方向において隣り合う形状記憶部材21それぞれを連結する筒状の連結部材25を有する。
 連結部材25は、例えば円筒状である。連結部材25は、形状記憶部材21よりも短いパイプである。連結部材25の外径は、加熱部材23の巻きの外径と略同一でもよい。
 連結部材25が外力によって曲がった後に、外力が解消された際に、連結部材25は、曲がりが解消されて元の状態である例えば略直線状態に戻る特性を有する。このような連結部材25は、例えば、NiTiといった金属材でよい。連結部材25は、外力によって撓み難い部材によって構成されてもよい。このような部材は、例えば、ステンレスといった金属材でよい。連結部材25は、所望の弾発性を有してもよい。この弾発性は、例えば、跳ね返り性、バネ性、腰の強さ等を含み、曲がった連結部材25を略直線に戻す性質を有する。
 連結部材25は、形状記憶部材21の連結部分である隣り合う形状記憶部材21それぞれの端部に配置される。剛性可変装置20の長手軸方向において隣り合う形状記憶部材21それぞれは、連結部材25の内部に配置され、互いに接するように配置される。詳細には、隣り合う形状記憶部材21それぞれの端部は、連結部材25の両端それぞれから連結部材25の内部に挿入されて、連結部材25によって直接連結される。連結部材25は、形状記憶部材21の外周に配置され、形状記憶部材21を外側から連結する外側連結部材として機能する。
 加熱部材23と駆動部31とは、3つの形状記憶部材21それぞれに配置されてもよい。加熱部材23それぞれは互いに対して電気的に絶縁されており、各々の駆動部31は加熱部材23を個別に駆動する。これにより、3つの形状記憶部材21それぞれの相が個別に第1の相から第2の相に移り変わることが可能となり、剛性可変装置20の剛性は部分的に可変する。
 3つの加熱部材23は、同一構造体であってよい。しかし、これに限定されることなく、3つの加熱部材23それぞれは、互いに異なる構造体を含んでいてもよい。異なる構造体は、例えば、異なる長さや異なる太さや異なるピッチを有していてもよく、また、異なる材料で作られていてもよい。つまり、複数の加熱部材23は、すべてまたはいくつかが、同じ特性を有していてもよいし、異なる特性を有していてもよい。また第1の実施形態と同様に、加熱部材23と駆動部31とは、剛性可変装置20の全体において1つでもよい。
 本実施形態では、連結部材25によって、形状記憶部材21の連結部分の強度を向上でき、剛性可変装置20の組立性も向上できる。連結部材25と加熱部材23とのそれぞれの外径は互いに対して略同一でもよいため、剛性可変装置20を第1の実施形態のように細いままで、連結部分の連結強度を向上できる。本実施形態では、連結部材25によって、加熱部材23を位置決めできる。
 [第1の変形例]
 以下に、図4を参照して、第2の実施形態の第1の変形例について説明する。図4は、第2の実施形態の第1の変形例の剛性可変システムの概略図である。本変形例では、図3に示す第2の実施形態とは異なることを主に記載する。
 隣り合う形状記憶部材21それぞれの端部は、連結部材25の内部において、互いに対して離れて配置される。したがって、剛性可変装置20の長手軸方向において形状記憶部材21それぞれの端部の間には、スペースが配置される。スペースの長さは、適宜調整される。このように隣り合う形状記憶部材21それぞれは、連結部材25によって間接的に連結されることとなる。
 経路部材43は、連結部材25の端部に挿入される。なお連結部材25の端部が経路部材43に挿入されもよい。経路部材43は、連結部材25の内部空間を通じて形状記憶部材21の内部に流体を導く。
 本変形例では、形状記憶ユニット22の全長に対して形状記憶部材21の数を減らしたり、形状記憶部材21の長さを短くでき、形状記憶部材21を容易に加工できる。
 [第2の変形例]
 以下に、図5を参照して、第2の実施形態の第2の変形例について説明する。図5は、第2の実施形態の第2の変形例の剛性可変システムの概略図である。本変形例では、図3に示す第2の実施形態とは異なることを主に記載する。
 連結部材25は、例えば、樹脂材でよい。連結部材25は、形状記憶ユニット22の全長と同じ長さを有する1本のチューブとして機能する。剛性可変装置20の長手軸方向において隣り合う形状記憶部材21それぞれは、全長に渡って連結部材25の内部に配置される。隣り合う形状記憶部材21それぞれの端部は、連結部材25の内部において、互いに接するように配置される。
 1つの加熱部材23は、連結部材25の全長に渡って配置される。加熱部材23の数にあわせて、1つの駆動部31が配置される。加熱部材23は、連結部材25の外側周囲に配置される。加熱部材23は、連結部材25の長手軸に沿って、連結部材25の外周囲を螺旋状に延びている。加熱部材23は、連結部材25の外周面に密着しているが、連結部材25の外周面から適度なすき間だけ離れて配置されてもよい。加熱部材23から発生した熱は、連結部材25を介して形状記憶部材21に伝わる。また第2の実施形態と同様に、加熱部材23と駆動部31とは、3つの形状記憶部材21それぞれに配置されてもよい。
 本変形例では、形状記憶部材21の内部を流れる冷却用の流体の形状記憶部材21の連結部分からの漏れを連結部材25によって防止できる。
 [第3の実施形態]
 以下に、図6を参照して、本発明の第3の実施形態について説明する。図6は、第3の実施形態の剛性可変システムの概略図である。本実施形態では、図3に示す第2の実施形態とは異なることを主に記載する。
 形状記憶ユニット22は、経路部材43に接続される筒状部材27を有する。筒状部材27は、形状記憶ユニット22の内部空間に配置される。筒状部材27は、剛性可変装置20の長手軸方向において形状記憶ユニット22の全長に渡って配置される。筒状部材27は、形状記憶ユニット22の全長よりも長くてもよい。したがって、供給源41とは逆側の筒状部材27の端部は、図6の一番左に配置される形状記憶部材21よりも図6の左側に突出してもよい。筒状部材27の外周面は、形状記憶部材21の内周面に接触してもよい。筒状部材27は、例えば、樹脂材のチューブである。
 流体は、供給源41から経路部材43を経由して筒状部材27の内部を流れる。本実施形態では、連結部分からの流体の漏れを筒状部材27によって防止できる。
 なお筒状部材27の外周面は形状記憶部材21の内周面に接合されてもよく、筒状部材27は形状記憶ユニット22の内部空間に配置されて形状記憶部材21の内側から形状記憶部材21を連結する内側連結部材として機能してもよい。これにより形状記憶部材21の連結部分の連結強度を筒状部材27によって向上できる。筒状部材27は、経路部材43と一体となっていてもよい。
 [変形例]
 以下に、図7を参照して、第3の実施形態の変形例について説明する。図7は、第3の実施形態の変形例の剛性可変システムの概略図である。本変形例は、図4に示す第2の実施形態の第1の変形例に示す構成に、図6に示す第3の実施形態の筒状部材27が組み合わされたものである。
 つまり、隣り合う形状記憶部材21それぞれの端部が連結部材25の内部において互いに対して離れた状態で、筒状部材27は、形状記憶部材21の内部と連結部材25の内部とに配置される。
 本変形例では、流体が連結部材25の内周面と形状記憶部材21の端部との段差によって阻害されることなく、流体を筒状部材27によって形状記憶部材21の内部にスムーズに供給できる。
 [第4の実施形態]
 以下に、図8を参照して、本発明の第4の実施形態について説明する。図8は、第4の実施形態の剛性可変システムの概略図である。本実施形態では、図6に示す第3の実施形態とは異なることを主に記載する。
 本実施形態では、連結部材25が図6に示す第3の実施形態の構成から省略され、筒状部材27の外周面は形状記憶部材21の内周面に接合されている。筒状部材27は、形状記憶ユニット22の内部空間に配置されて形状記憶部材21の内側から形状記憶部材21を連結する内側連結部材として機能する。
 1つの加熱部材23は、形状記憶ユニット22の全長に渡って配置される。加熱部材23の数にあわせて、1つの駆動部31が配置される。
 本実施形態では、連結部材25を省略でき、剛性可変装置20の部品点数を削減できる。
 [第5の実施形態]
 以下に、図9を参照して、本発明の第5の実施形態について説明する。図9は、第5の実施形態の剛性可変システムの概略図である。本実施形態では、図8に示す第4の実施形態とは異なることを主に記載する。
 図9では、図示の簡略のため2つの形状記憶ユニット22a,22bが配置されている例を示しているが、形状記憶ユニットの数は複数であればよい。
 形状記憶ユニット22a,22bそれぞれにおいて、複数の形状記憶部材21は形状記憶部材21の内部に配置される筒状部材27によって連結されている。また剛性可変装置20の長手軸方向において隣り合う形状記憶ユニット22a,22bの端部は、互いに対して離れて配置されている。したがって、剛性可変装置20の長手軸方向において形状記憶ユニット22a,22bそれぞれの間には、スペース29が配置される。スペース29の長さは、適宜調整される。
 1本の筒状部材27は、形状記憶ユニット22bの内部空間から形状記憶ユニット22aの内部空間に延びて配置されており、形状記憶ユニット22aと形状記憶ユニット22bとを間接的に連結する。
 本実施形態では、可撓性部材101の互いに対して離れた2つの部分に形状記憶ユニット22a,22bを配置することで、互いに対して離れた2つの部分の剛性を素早く切り替えることができる。また可撓性部材101においてスペース29が配置される部分の剛性を、筒状部材27の剛性に常に維持できる。
 [第6の実施形態]
 以下に、図10Aを参照して、本発明の第6の実施形態について説明する。図10Aは、第6の実施形態の剛性可変システムの概略図である。図10Aにおいて、図1に図示されている部材と同一の参照符号で指示されている部材は同様の部材であり、その詳しい説明は省略する。以下、上記した各実施形態とは異なることを主に記載する。
 剛性可変装置20は、第1の長手部材50と、第1の長手部材50に沿って移動可能な第2の長手部材70と、第1の長手部材50に対して第2の長手部材70を移動させる移動機構80とをさらに有する。第1の長手部材50は外筒であり、第2の長手部材70は第1の長手部材50の内部に配置される芯部である。例えば、外筒の長手軸に垂直な外筒の断面形状は環形状であり、芯部の長手軸に垂直な芯部の断面の外周は環形状である。この場合、剛性可変装置20は、どの方向の曲がりに対しても安定した剛性を提供する。外筒及び芯部それぞれの断面形状は、必ずしも環形状である必要はなく、他の形状、例えばC字形状であってもよい。
 本実施形態では、例えば、第1の長手部材50は、可撓性部材101に対して相対的に位置決め固定される。
 第1の長手部材50は、少なくとも1つの筒状の硬質部材51と、少なくとも1つの加熱部材23と、少なくとも1つのリング状の断熱部材57と、中空形状の外側支持部材55とを有する。図10Aでは、図示の簡略のため3つの硬質部材51と2つの加熱部材23と4つの断熱部材57とが配置されている例を示しているが、これらの数はいくつでもよい。
 外側支持部材55は、硬質部材51と加熱部材23と断熱部材57との内部に配置される。外側支持部材55は、硬質部材51と加熱部材23と断熱部材57とに対する芯部材として機能する。外側支持部材55は、硬質部材51と加熱部材23と断熱部材57とを支持する円筒状の外側支持部材である。
 外側支持部材55は、第2の長手部材70の全長に渡って、第2の長手部材70を覆う。例えば、外側支持部材55の長さは、第2の長手部材70の長さと略同一である。外側支持部材55の長さは、第2の長手部材70の長さよりも長くてもよい。外側支持部材55は、第1の長手部材50に対して第1の長手部材50の長手軸方向に沿って移動する第2の長手部材70を、第1の長手部材50の長手軸方向に沿ってガイドする。外側支持部材55は、湾曲可能となっている。
 外側支持部材55は、例えば、密着巻きコイルといったコイル部材を有する。外側支持部材55のコイル部材は、疎巻きコイルでもよい。外側支持部材55は、柔らかいチューブや、複数の金属素線が互いに対して撚り合わされた筒部材でもよい。外側支持部材55は、例えば、金属製のワイヤ状且つ螺旋状の部材を有してもよい。
 硬質部材51は、例えば円筒状である。硬質部材51は、例えば、金属材のパイプを有する。硬質部材51は、加熱部材23と外側支持部材55とは別体である。硬質部材51の長さは、外側支持部材55の長さよりも短く、加熱部材23の長さよりも長い。なお硬質部材51の長さは、加熱部材23の長さと略同一でも短くてもよい。
 硬質部材51の内周面は、外側支持部材55の外周面に、例えば接着または溶接などによって固定される。そして硬質部材51は、外側支持部材55に位置決めされる。複数の硬質部材51のそれぞれは、第1の長手部材50の長手軸方向において、互いに対して直接接触しておらず、互いに対して所望する間隔離れて配置されている。言い換えると、硬質部材51は、外側支持部材55の全長において、外側支持部材55を部分的に囲う。したがって、第1の長手部材50の長手軸方向において、硬質部材51それぞれの間には、第1のスペースが配置される。この第1のスペースには加熱部材23が配置されており、硬質部材51と加熱部材23とは第1の長手部材50の長手軸方向において外側支持部材55の外周面において交互に配置される。
 本実施形態では、1つの加熱部材23が外側支持部材55を外側支持部材55の全長に渡って巻回するのではなく、1つの加熱部材23が外側支持部材55の全長における外側支持部材55の一部位を巻回する。このように加熱部材23は、外側支持部材55を部分的に巻回する。
 加熱部材23は、第1の長手部材50の長手軸方向において、硬質部材51によって外側支持部材55に位置決めされる。加熱部材23の巻きの外径は、硬質部材51の外径と略同一である。加熱部材23の巻きは、第1の長手部材50の長手軸に直交する方向において、硬質部材51に対して突出していないことが好ましい。加熱部材23の内周面は、外側支持部材55の外周面に接触しており、外側支持部材55の外周面に固定されてもよい。なお加熱部材23の内周面は、外側支持部材55の外周面から離れてもよい。
 以上のような硬質部材51と加熱部材23と外側支持部材55とによって、第1の長手部材50は、相対的に曲げ剛性が高い複数の高曲げ剛性部61と、相対的に曲げ剛性が低い複数の低曲げ剛性部63とを有する。すなわち、高曲げ剛性部61は、筒状の硬質部材51と、硬質部材51の内部に配置される外側支持部材55の一部位とによって形成される。また低曲げ剛性部63は、加熱部材23と、加熱部材23の内部に配置される外側支持部材55の一部位とによって形成される。外側支持部材55は、高曲げ剛性部61と低曲げ剛性部63とに共有されている。
 硬質部材51は加熱部材23よりも硬くなっており、硬質部材51は高い曲げ剛性を有する筒状の硬質部であり、外側支持部材55と加熱部材23とは低い曲げ剛性を有する筒状の軟質部である。
 このように高曲げ剛性部61の曲げ剛性は高く、低曲げ剛性部63の曲げ剛性は高曲げ剛性部61の曲げ剛性よりも低くなっている。そして、第1の長手部材50は、高曲げ剛性部61では比較的曲がりにくく、低曲げ剛性部63では比較的曲がりやすくなる。
 図10Aでは、図示の簡略のため、3つの高曲げ剛性部61と2つの低曲げ剛性部63とが配置されている例を示している。
 硬質部材51と加熱部材23とは、交互に配置される。この配置によって、複数の高曲げ剛性部61と複数の低曲げ剛性部63とは、外側支持部材55の長手軸方向において交互に配置される。硬質部材51の長さと加熱部材23の長さとによって、高曲げ剛性部61の長さは、低曲げ剛性部63の長さよりも長い。なお、高曲げ剛性部61の長さは、低曲げ剛性部63の長さと略同一、または短くてもよい。
 第1の長手部材50が製造される際、外側支持部材55によって、硬質部材51が位置決めされ、硬質部材51それぞれの間隔(第1のスペースの長さ)が規定され、加熱部材23が位置決めされる。つまり外側支持部材55は、高曲げ剛性部61と低曲げ剛性部63との位置決めと、高曲げ剛性部61及び低曲げ剛性部63それぞれの長さの規定とを容易に実施する効果を有する。また、外側支持部材55は、第1の長手部材50の機械的な強度を向上させる効果を有する。
 図10Aでは、第1の長手部材50の両端部それぞれには、高曲げ剛性部61が配置されるが、配置はこれに限定される必要はない。両端部それぞれに低曲げ剛性部63が配置されてもよいし、一端部に高曲げ剛性部61が配置され、他端部に低曲げ剛性部63が配置されてもよい。
 第1の長手部材50は可撓性部材101に対して相対的に位置決め固定されるため、低曲げ剛性部63は可撓性部材101の所望するエリアに対して相対的に位置決め固定されることとなる。
 断熱部材57は、例えば、樹脂材である。断熱部材57は、第1の長手部材50の長手軸方向において、硬質部材51と加熱部材23との間に配置される。断熱部材57は、例えば接着または溶接などによって、硬質部材51の端部に固定される。断熱部材57は、加熱部材23に接触していることが好ましい。断熱部材57は、加熱部材23から発生した熱が硬質部材51に伝達されることを防止する。
 第2の長手部材70は、外側支持部材55の内部に配置されており、第1の長手部材50に隣接している。
 第2の長手部材70は、中空形状の内側支持部材75と、少なくとも1つの形状記憶ユニット22と、形状記憶ユニット22の形状記憶部材21よりも軟質な少なくとも1つの軟質部材73と、筒状部材27とを有する。図10Aでは、図示の簡略のために、2つの形状記憶ユニット22と3つの軟質部材73とが配置されている例を示しているが、これらの数はいくつでもよい。形状記憶ユニット22と軟質部材73とは、内側支持部材75の内部に配置される。
 内側支持部材75は、形状記憶ユニット22の外周面と軟質部材73の外周面とを外側支持部材55の内周面に対して保護する保護部材として機能する。内側支持部材75は、外側支持部材55と形状記憶ユニット22及び軟質部材73との間に介在し、形状記憶ユニット22及び軟質部材73が外側支持部材55と直接接触することを防止する介在部材である。内側支持部材75は、形状記憶ユニット22及び軟質部材73を支持する。内側支持部材75は、湾曲可能である。
 内側支持部材75の外周面は外側支持部材55の内周面に接触しており、内側支持部材75は移動機構80によって外側支持部材55を摺動する。内側支持部材75が外側支持部材55に対して移動できれば、内側支持部材75の外周面は外側支持部材55の内周面とは接触しておらず、図示しないスペースが内側支持部材75の外周面と外側支持部材55の内周面との間に形成されてもよい。
 内側支持部材75は、例えば円筒状である。内側支持部材75は、例えば、密着巻きコイルといったコイル部材を有する。内側支持部材75のコイル部材は、疎巻きコイルでもよい。内側支持部材75は、柔らかいチューブや、複数の金属素線が互いに対して撚り合わされた筒部材でもよい。内側支持部材75は、例えば、金属製のワイヤ状且つ螺旋状の部材を有してもよい。内側支持部材75の長さは、低曲げ剛性部63の長さと略同一である。
 形状記憶ユニット22の長さは、内側支持部材75よりも短い。形状記憶ユニット22の長さは、高曲げ剛性部61の長さと略同一であり、低曲げ剛性部63の長さよりも長いことが好ましい。
 形状記憶ユニット22それぞれは、第2の長手部材70の長手軸方向において、互いに対して直接接触しておらず、互いに対して所望する間隔離れて配置される。したがって、第2の長手部材70の長手軸方向において、形状記憶ユニット22それぞれの間には、第2のスペースが配置される。この第2のスペースには、軟質部材73が配置される。また軟質部材73は、第2の長手部材70の長手軸方向における第2の長手部材70の両端部にも配置されている。したがって、複数の形状記憶ユニット22と複数の軟質部材73とは、第2の長手部材70の長手軸方向において、交互に配置されて、第2の長手部材70の長手軸方向に沿って配置される。形状記憶ユニット22と軟質部材73とは、内側支持部材75の全長において、内側支持部材75の内部に部分的に配置される。
 軟質部材73の端部は、この端部に隣り合う形状記憶ユニット22の端部に、接触する。軟質部材73の端部は、この端部に隣り合う形状記憶ユニット22の端部に、例えば接着または溶接などによって固定されてもよい。軟質部材73は、形状記憶ユニット22の位置決めのために配置される。図10Aでは、例えば、第2の長手部材70の両端部には、軟質部材73が配置されている。この両端部に配置される軟質部材73の外周面は、内側支持部材75の内周面に、例えば接着または溶接などによって固定される。これにより、両端部に配置される以外の軟質部材73と形状記憶ユニット22とは、内側支持部材75に固定されずに、内側支持部材75に位置決めされることとなる。もちろん、形状記憶ユニット22及び軟質部材73それぞれの外周面が内側支持部材75の内周面に例えば接着または溶接などによって固定され、形状記憶ユニット22及び軟質部材73それぞれが位置決めされてもよい。なお形状記憶ユニット22が例えば接着または溶接などによって内側支持部材75に固定されるのであれば、軟質部材73は省略されてもよい。
 第2の長手部材70の両端部それぞれには、軟質部材73が配置されるが、配置はこれに限定される必要はない。両端部それぞれに形状記憶ユニット22が配置されてもよいし、一端部に軟質部材73が配置され、他端部に形状記憶ユニット22が配置されてもよい。また、両端部それぞれに配置される部材が例えば接着または溶接などによって内側支持部材75に固定されるのであれば、両端部の間に配置される部材は内側支持部材75に固定されていなくてもよい。
 軟質部材73は、例えば、ばね部材を有する。ばね部材は、例えば、疎巻きばねを有する。ばね部材は、例えば、密着巻きばねを有してもよい。軟質部材73は、例えば、細いワイヤといった線状部材、またはゴムといった弾性部材を有してもよい。軟質部材73の巻きの外径は、形状記憶ユニット22の外径と略同一である。軟質部材73は、例えば、湾曲可能となっている。例えば、軟質部材73は、形状記憶ユニット22よりも柔らかく撓みやすい。軟質部材73の長さは、形状記憶ユニット22の長さよりも短い。軟質部材73の長さは、低曲げ剛性部63と略同一であることが好ましい。
 形状記憶ユニット22は高い曲げ剛性を有する硬質部であり、軟質部材73と内側支持部材75とは低い曲げ剛性を有する軟質部である。そして、第2の長手部材70は、形状記憶ユニット22では比較的曲がりにくく、軟質部材73では比較的曲がりやすくなる。
 第2の長手部材70が製造される際、内側支持部材75によって、例えば、形状記憶ユニット22及び軟質部材73が位置決めされ、形状記憶ユニット22それぞれの間隔が規定される。また内側支持部材75は、第2の長手部材70の機械的な強度を向上させる効果を有する。
 例えば、形状記憶ユニット22の曲げ剛性は、形状記憶ユニット22の相が第1の相のとき、高曲げ剛性部61の曲げ剛性よりも低く、低曲げ剛性部63の曲げ剛性と略同一または低い。形状記憶ユニット22の曲げ剛性は、形状記憶ユニット22の相が第2の相のとき、高曲げ剛性部61の曲げ剛性と略同一または低く、低曲げ剛性部63の曲げ剛性よりも高い。形状記憶ユニット22の相が第2の相のとき、形状記憶ユニット22の曲げ剛性は、高曲げ剛性部61の曲げ剛性よりも高くてもよい。形状記憶ユニット22の曲げ剛性は、形状記憶ユニット22の相が第1の相であっても第2の相であっても、軟質部材73及び内側支持部材75それぞれの曲げ剛性よりも高くてもよいし低くてもよい。軟質部材73は、低曲げ剛性部63よりも柔らかい。
 本実施形態では、筒状部材27は、形状記憶ユニット22の内部空間と軟質部材73の巻きの内側とに配置されている。筒状部材27の外周面は、形状記憶ユニット22の内周面と軟質部材73の内周面とに接している。このような構成のおかげで、剛性可変装置20は細くなる。なお形状記憶ユニット22の内周面と軟質部材73の内周面とは、筒状部材27の外周面から適度なすき間だけ離れて配置されてもよいし、筒状部材27の外周面に密着してもよい。
 第2の長手部材70は、外側支持部材55の長手軸方向に沿って外側支持部材55の内部を移動することで第1の長手部材50に対する第2の長手部材70の位置を変える。そして第1の長手部材50と第2の長手部材70との相対位置と、形状記憶ユニット22の相とが変化することで、剛性可変装置20の長手軸方向における剛性可変装置20の一部位の剛性が変化する。これにより、剛性可変装置20は、可撓性部材101に異なる剛性を提供する。
 相対位置の変化のために、第2の長手部材70が移動する際、内側支持部材75の外周面は外側支持部材55の内周面を摺動する。移動機構80は、第2の長手部材70の牽引または押圧によって、第2の長手部材70を移動させる。例えば、内側支持部材75が牽引または押圧される。移動機構80は制御装置30に電気的に接続されており、制御装置30によって移動機構80の駆動、つまり移動機構80による第2の長手部材70の移動が制御される。
 移動機構80は、例えば、図示しないモータと、第2の長手部材70の一端部に接続され、モータの回転力によって第2の長手部材70を移動させる図示しない移動部材とを有する。モータは、操作部103におけるスイッチ103a(図1参照)のONまたはOFFといった操作によって、駆動してもよい。移動部材は、例えば、内側支持部材75の一端部に直接接続され、モータの回転力によって第2の長手部材70を牽引または押圧する。このとき、内側支持部材75は、内側支持部材75に固定されている形状記憶ユニット22と軟質部材73と共に移動する。また移動時において、筒状部材27は移動せず可撓性部材101の内部にて固定されているため、移動する形状記憶ユニット22と軟質部材73とは筒状部材27を摺動する。移動部材は、モータの配置位置から内側支持部材75の一端部にまで配置される。例えば、移動部材は、操作部103と可撓性部材101との内部に配置される。移動部材は、例えば、ワイヤ状の部材である。このように移動機構80は、電動式となる。
 制御装置30は、移動機構80のモータによる第2の長手部材70の移動を制御する。制御装置30は、スイッチ103aの操作に連動して、移動機構80の牽引と押圧と停止とを制御する。
 なお、移動機構80として、モータが省略され、第2の長手部材70は手動操作によって移動してもよい。例えば、移動機構80は、モータの代わりに、操作ダイヤル103c(図1参照)を有してもよい。操作ダイヤル103cは、移動部材に接続される。例えば、操作ダイヤル103cは、操作部103を把持する手の指によって操作され、操作によって操作ダイヤル103cの中心軸周りに回転する。操作ダイヤル103cは、回転によって、ONの位置またはOFFの位置に切り替わる。この切り替わりに応じて、移動部材は牽引または押圧される。これにより、第2の長手部材70が移動する。操作ダイヤル103cの代わりに、図示しないレバーが用いられてもよい。このように移動機構80は、手動式となる。この場合、制御装置30は省略される。
 また移動機構80と制御装置30とは省略されて、第2の長手部材70は剛性可変装置20を操作する操作者の手動操作によって移動してもよい。例えば、第2の長手部材70の端部が操作者の手によって保持され、第2の長手部材70は操作者の押し引きによって移動する。保持のために、第2の長手部材70は第1の長手部材50よりも長く、第2の長手部材70の長手軸方向において第2の長手部材70の端部が第1の長手部材50よりも外部に突出していることが好ましい。後述するように第1の長手部材50と第2の長手部材70とが筒状の可撓性部材101の内部に配置される場合、例えば、第2の長手部材70の端部は、操作部103まで延び、保持のために操作部103の内部から操作部103の筐体部を貫通して操作部103の外部に突出しているとよい。第2の長手部材70の端部は、可撓性部材101の基端部において外部に突出してもよい。また第2の長手部材70の端部に限らず、保持される部分が外部に突出してもよい。
 図10Aは、剛性可変装置20が最低剛性状態(超軟質状態)であることを示す図でもある。最低剛性状態では、剛性可変システム10は初期状態であり、駆動部31は加熱部材23に電流を供給しておらず、加熱部材23は熱を発生しておらず、形状記憶ユニット22の相が第1の相であり、形状記憶ユニット22は低剛性状態である。また最低剛性状態では、供給源41は、流体を供給していない。
 最低剛性状態において、低剛性状態である形状記憶ユニット22は硬質部である高曲げ剛性部61の内部に配置され、軟質部材73は軟質部である低曲げ剛性部63の内部に配置される。低曲げ剛性部63は最も曲がりやすい状態となり、剛性可変装置20は可撓性部材101が撓みやすいような最も低い剛性を可撓性部材101に提供する。そして第1の長手部材50と第2の長手部材70と可撓性部材101とは、例えば、外力によって最も容易に撓むことが可能となる。
 図10Bに示すように剛性可変装置20が最低剛性状態から低剛性状態(軟質状態)に切り替わるとき、第2の長手部材70が図10Aに示す最低剛性状態に対して移動機構80によって移動するのみである。したがって、低剛性状態では、駆動部31は加熱部材23に電流を供給しておらず、加熱部材23は熱を発生しておらず、形状記憶ユニット22の相が第1の相であり、供給源41は流体を供給していない。
 低剛性状態において、軟質部材73よりも硬い低剛性状態である形状記憶ユニット22は低曲げ剛性部63の内部に配置され、低曲げ剛性部63は最低剛性状態に比べて曲がり難くなる。したがって、剛性可変装置20は、可撓性部材101が撓みやすいような比較的低い剛性を可撓性部材101に提供する。第1の長手部材50と第2の長手部材70と可撓性部材101とは、例えば、最低剛性状態に比べて曲がり難くなる。
 図10Cに示すように剛性可変装置20が低剛性状態から高剛性状態(硬質状態)に切り替わるとき、第2の長手部材70は図10Bに示す低剛性状態に対して移動していない。高剛性状態では、駆動部31は加熱部材23に電流を供給し、加熱部材23は熱を発生する。供給源41は、流体を供給していない。
 高剛性状態において、形状記憶ユニット22は加熱部材23から発生した熱によって熱せられて、形状記憶ユニット22の相は熱によって第1の相から第2の相に切り替わる。これにより形状記憶ユニット22は低剛性状態から高剛性状態に変化する。高剛性状態の形状記憶ユニット22を、図10Cでは黒塗りで示す。
 高剛性状態である形状記憶ユニット22は軟質部である低曲げ剛性部63の内部に配置され、低曲げ剛性部63は低剛性状態に比べて曲がり難い状態となる。したがって、剛性可変装置20は、可撓性部材101が撓みにくいような比較的高い剛性を可撓性部材101に提供する。撓みにくい形状は、例えば直線状であってよい。第1の長手部材50と第2の長手部材70と可撓性部材101とは、例えば、略直線状態を維持可能となる、または外力によって低剛性状態に比べて曲がり難くなることが可能となる。
 図10Cでは、2つの形状記憶ユニット22が高剛性状態となっているが、これに限定される必要はない。2つの形状記憶ユニット22のうちの選択された形状記憶ユニット22が高剛性状態となってもよい。軟質部材73の熱伝導率は、形状記憶ユニット22の熱伝導率よりも低い。したがって、熱せられた形状記憶ユニット22から軟質部材73を通じて他の熱せられていない形状記憶ユニット22への、熱の伝達は抑制される。
 剛性可変装置20が図10Cに示す高剛性状態から図10Aに示す最低剛性状態に戻るときは、図10Dと図10Eとに示すように動作する。図10Dと図10Eとは、剛性可変装置20が高剛性状態から最低剛性状態に戻る過程を示す戻り状態であることを示す。戻り状態は、図10Dに示す第1戻り状態と、図10Eに示す第2戻り状態とを有する。第2戻り状態は、第1戻り状態の後の状態である。
 第1戻り状態では、第2の長手部材70は、例えば図10Cに示す高剛性状態に対して移動機構80によって移動する。駆動部31は加熱部材23への電流の供給を停止し、加熱部材23は熱の発生を停止する。供給源41は、流体を供給してもよい。
 第1戻り状態において、高剛性状態である形状記憶ユニット22は高曲げ剛性部61の内部に配置され、軟質部材73は軟質部である低曲げ剛性部63の内部に配置される。したがって、低曲げ剛性部63は最も曲がりやすい状態となり、剛性可変装置20は可撓性部材101に最も低い剛性を提供する。このとき、高剛性状態である形状記憶ユニット22は、移動機構80によって低曲げ剛性部63から高曲げ剛性部61に移動している。したがって第1状態では、高剛性状態である形状記憶ユニット22の温度が下がるのを待たずに、剛性可変装置20を高剛性状態から最低剛性状態に短時間に切り替えることができる。
 第2戻り状態では、第2の長手部材70は、例えば図10Dに示す第1戻り状態に対して移動機構80によって移動しない。駆動部31は加熱部材23に電流を供給しておらず、加熱部材23は熱を発生していない。供給源41は、流体を供給する。
 供給源41から流出した流体は、図10Eに矢印で示すように経路部材43の内部空間と筒状部材27の内部空間を通り抜ける。形状記憶ユニット22の熱は、筒状部材27を通じて流体に伝わり、流体と共に筒状部材27の内部空間を通り抜ける。このように冷却機構40は、筒状部材27の内部空間に流体を供給することによって、形状記憶ユニット22を所望する温度に冷却する。所望する温度とは、例えば形状記憶ユニット22の相が第1の相となる温度である。
 したがって、第2戻り状態において、高剛性状態である形状記憶ユニット22は、流体によって冷却され、低剛性状態に変化する。そして、第2戻り状態は、図10Aに示す最低剛性状態に切り替わる。この第2戻り状態では、形状記憶ユニット22は、自然冷却されるよりも早く冷却されて素早く低剛性状態に戻ることができる。第2状態では、初期状態である最低剛性状態から低剛性状態への変化、つまり剛性可変装置20の再駆動を早めることができる。
 このように、本実施形態では、可撓性部材101における所望するエリアの剛性の切り替えに対する応答性を向上でき、剛性の可変を精密に制御できる。
 なお、本願発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。

Claims (17)

  1.  可撓性部材に装着され、前記可撓性部材に異なる剛性を提供する剛性可変装置であって、
     低剛性状態を取る第1の相と高剛性状態を取る第2の相との間で相が移り変わり得る少なくとも2つの中空形状の形状記憶部材が連結されて形成され、前記形状記憶部材それぞれの中空部が連結され、前記形状記憶部材を冷却するための流体が流れるように構成された孔状の内部空間を有するように形成された形状記憶ユニットと、
     前記形状記憶部材を加熱するように構成された加熱部材と、
     を具備する剛性可変装置。
  2.  前記形状記憶ユニットは、筒状の連結部材を有し、
     前記連結部材は、前記形状記憶部材それぞれの外部に配置され、前記形状記憶部材それぞれを連結する請求項1に記載の剛性可変装置。
  3.  前記流体は、前記形状記憶部材の内周面に接した状態で前記内部空間を流れる請求項2に記載の剛性可変装置。
  4.  隣り合う前記形状記憶部材のそれぞれは、互いに接するように配置された請求項2に記載の剛性可変装置。
  5.  隣り合う前記形状記憶部材のそれぞれは、互いに離れて配置された請求項2に記載の剛性可変装置。
  6.  前記形状記憶ユニットは、筒状部材を有し、
     前記筒状部材は、前記内部空間に配置され、前記流体が内部を流れるように構成された請求項2に記載の剛性可変装置。
  7.  前記筒状部材は、前記形状記憶部材の内側から前記形状記憶部材を連結する請求項6に記載の剛性可変装置。
  8.  前記形状記憶ユニットは、筒状部材を有し、
     前記筒状部材は、前記内部空間に配置され、前記流体が内部を流れるように構成され、前記形状記憶部材の内側から前記形状記憶部材を連結する請求項1に記載の剛性可変装置。
  9.  隣り合う前記形状記憶部材のそれぞれは、互いに接するように配置された請求項8に記載の剛性可変装置。
  10.  隣り合う前記形状記憶部材のそれぞれは、互いに離れて配置された請求項8に記載の剛性可変装置。
  11.  前記加熱部材は、前記形状記憶部材の外側周囲に配置された請求項1に記載の剛性可変装置。
  12.  前記形状記憶部材は、形状記憶合金を有する請求項1に記載の剛性可変装置。
  13.  請求項1に記載の剛性可変装置と、
     前記加熱部材の加熱を制御する制御装置と、
     前記流体を前記形状記憶ユニットに供給する冷却機構と、
     を具備する剛性可変システム。
  14.  請求項1に記載の剛性可変装置と、
     前記剛性可変装置が装着された前記可撓性部材と、
     を具備する内視鏡。
  15.  可撓性部材に装着され、前記可撓性部材に異なる剛性を提供する剛性可変装置であって、
     第1の長手部材と、
     前記第1の長手部材に沿って移動可能な第2の長手部材と、
     を具備し、
     前記第1の長手部材は、
      少なくとも1つの硬質部材を含む高曲げ剛性部と、
      少なくとも1つの前記硬質部材に隣り合い、少なくとも1つの前記第2の長手部材を加熱するように構成された加熱部材を含む低曲げ剛性部と、
     を有し、
     前記第2の長手部材は、
      低剛性状態を取る第1の相と前記加熱部材の加熱によって高剛性状態を取る第2の相との間で相が移り変わり得る少なくとも2つの中空形状の形状記憶部材によって形成され、前記形状記憶部材それぞれの中空部が連結されて、前記形状記憶部材を冷却するための流体が流れるように構成された孔状の内部空間を有するように形成された少なくとも1つの形状記憶ユニットと、
      前記少なくとも1つの形状記憶ユニットに隣り合い、前記低曲げ剛性部よりも柔らかく、前記形状記憶部材の前記内部空間に連結された内部空間に前記流体が流れる中空形状の軟質部材と、
     を有する剛性可変装置。
  16.  請求項15に記載の剛性可変装置と、
     前記加熱部材の加熱を制御する制御装置と、
     前記流体を前記形状記憶ユニットに供給する冷却機構と、
     を具備する剛性可変システム。
  17.  請求項15に記載の剛性可変装置と、
     前記剛性可変装置が装着された前記可撓性部材と、
     を具備する内視鏡。
PCT/JP2017/041533 2017-11-17 2017-11-17 剛性可変装置と剛性可変システムと内視鏡 WO2019097688A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019554151A JP6866499B2 (ja) 2017-11-17 2017-11-17 剛性可変装置と剛性可変システムと内視鏡
PCT/JP2017/041533 WO2019097688A1 (ja) 2017-11-17 2017-11-17 剛性可変装置と剛性可変システムと内視鏡
US16/869,632 US11471030B2 (en) 2017-11-17 2020-05-08 Variable stiffness device, variable stiffness system, endoscope, and stiffness varying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041533 WO2019097688A1 (ja) 2017-11-17 2017-11-17 剛性可変装置と剛性可変システムと内視鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/869,632 Continuation US11471030B2 (en) 2017-11-17 2020-05-08 Variable stiffness device, variable stiffness system, endoscope, and stiffness varying method

Publications (1)

Publication Number Publication Date
WO2019097688A1 true WO2019097688A1 (ja) 2019-05-23

Family

ID=66540178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041533 WO2019097688A1 (ja) 2017-11-17 2017-11-17 剛性可変装置と剛性可変システムと内視鏡

Country Status (3)

Country Link
US (1) US11471030B2 (ja)
JP (1) JP6866499B2 (ja)
WO (1) WO2019097688A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110962147A (zh) * 2019-12-24 2020-04-07 吉林大学 多级变刚度气动软体执行器
EP3845947A1 (en) * 2019-12-30 2021-07-07 General Electric Company Insertion apparatus including rigidizable body
US11613003B2 (en) 2020-01-24 2023-03-28 General Electric Company Line assembly for an extension tool having a plurality of links
US11654547B2 (en) 2021-03-31 2023-05-23 General Electric Company Extension tool
US11692650B2 (en) 2020-01-23 2023-07-04 General Electric Company Selectively flexible extension tool
US11702955B2 (en) 2019-01-14 2023-07-18 General Electric Company Component repair system and method
US11707819B2 (en) 2018-10-15 2023-07-25 General Electric Company Selectively flexible extension tool
US11752622B2 (en) 2020-01-23 2023-09-12 General Electric Company Extension tool having a plurality of links
US11834990B2 (en) 2020-03-10 2023-12-05 Oliver Crispin Robotics Limited Insertion tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083763A1 (ja) * 2016-11-02 2018-05-11 オリンパス株式会社 剛性可変アクチュエータ
WO2020174633A1 (ja) * 2019-02-27 2020-09-03 オリンパス株式会社 剛性可変装置
CN116009684A (zh) * 2021-10-22 2023-04-25 华为技术有限公司 柔性变刚度驱动器以及虚拟现实交互设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020013550A1 (en) * 2000-01-05 2002-01-31 Unsworth John D. Variable shape guide apparatus
WO2017094085A1 (ja) * 2015-11-30 2017-06-08 オリンパス株式会社 硬度可変アクチュエータ
WO2017183078A1 (ja) * 2016-04-18 2017-10-26 オリンパス株式会社 剛性可変アクチュエータシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019040A (en) * 1989-08-31 1991-05-28 Koshin Sangyo Kabushiki Kaisha Catheter
US5645520A (en) * 1994-10-12 1997-07-08 Computer Motion, Inc. Shape memory alloy actuated rod for endoscopic instruments
WO2012043034A1 (ja) * 2010-09-30 2012-04-05 オリンパスメディカルシステムズ株式会社 医療機器及び内視鏡装置
CN108135437A (zh) * 2015-11-20 2018-06-08 奥林巴斯株式会社 硬度可变致动器
DE112016006729T5 (de) * 2016-04-12 2018-12-20 Olympus Corporation Einführsystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020013550A1 (en) * 2000-01-05 2002-01-31 Unsworth John D. Variable shape guide apparatus
WO2017094085A1 (ja) * 2015-11-30 2017-06-08 オリンパス株式会社 硬度可変アクチュエータ
WO2017183078A1 (ja) * 2016-04-18 2017-10-26 オリンパス株式会社 剛性可変アクチュエータシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSE, SHIGEO ET AL.: "Development of Shape Memory Alloy Actuator (Characteristics Measurements of the Alloy and Development of an Active Endoscope", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 5, no. 2, April 1987 (1987-04-01), pages 3 - 17, XP055610553 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11707819B2 (en) 2018-10-15 2023-07-25 General Electric Company Selectively flexible extension tool
US11702955B2 (en) 2019-01-14 2023-07-18 General Electric Company Component repair system and method
CN110962147A (zh) * 2019-12-24 2020-04-07 吉林大学 多级变刚度气动软体执行器
CN110962147B (zh) * 2019-12-24 2022-05-31 吉林大学 多级变刚度气动软体执行器
EP3845947A1 (en) * 2019-12-30 2021-07-07 General Electric Company Insertion apparatus including rigidizable body
US11692650B2 (en) 2020-01-23 2023-07-04 General Electric Company Selectively flexible extension tool
US11752622B2 (en) 2020-01-23 2023-09-12 General Electric Company Extension tool having a plurality of links
US11613003B2 (en) 2020-01-24 2023-03-28 General Electric Company Line assembly for an extension tool having a plurality of links
US11834990B2 (en) 2020-03-10 2023-12-05 Oliver Crispin Robotics Limited Insertion tool
US11654547B2 (en) 2021-03-31 2023-05-23 General Electric Company Extension tool

Also Published As

Publication number Publication date
US20200260934A1 (en) 2020-08-20
JPWO2019097688A1 (ja) 2020-11-19
US11471030B2 (en) 2022-10-18
JP6866499B2 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019097688A1 (ja) 剛性可変装置と剛性可変システムと内視鏡
US11399704B2 (en) Variable stiffness device, endoscope, and method of varying stiffness of variable stiffness device
US11098701B2 (en) Variable-stiffness actuator
US11259690B2 (en) Variable stiffness apparatus
JP6568951B2 (ja) 硬度可変アクチュエータ
US11596294B2 (en) Variable stiffness device and method of varying stiffness
US11389052B2 (en) Endoscope and stiffness varying method
US20080194914A1 (en) Actuator apparatus, image pickup apparatus and endoscopic apparatus
JP6655733B2 (ja) 剛性可変アクチュエータ
JP6608045B2 (ja) 剛性可変アクチュエータシステム
JPH08110480A (ja) 可撓管
US11839358B2 (en) Rigidity variable device and endoscope
JP7150892B2 (ja) 剛性可変装置および剛性可変装置の製造方法
WO2016185561A1 (ja) 硬度可変アクチュエータ
JPH0819618A (ja) 可撓管
WO2016185562A1 (ja) 硬度可変アクチュエータ
WO2020152855A1 (ja) 挿入装置
JPH03139326A (ja) 湾曲操作装置
JPH07308884A (ja) 管状マニピュレータ
JPH05285089A (ja) 可撓管の湾曲機構
JPH05309067A (ja) 可撓管の湾曲装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931863

Country of ref document: EP

Kind code of ref document: A1