WO2019096105A1 - 一种3d打印装置和打印方法 - Google Patents

一种3d打印装置和打印方法 Download PDF

Info

Publication number
WO2019096105A1
WO2019096105A1 PCT/CN2018/115135 CN2018115135W WO2019096105A1 WO 2019096105 A1 WO2019096105 A1 WO 2019096105A1 CN 2018115135 W CN2018115135 W CN 2018115135W WO 2019096105 A1 WO2019096105 A1 WO 2019096105A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
slice
heat source
platform
supporting
Prior art date
Application number
PCT/CN2018/115135
Other languages
English (en)
French (fr)
Inventor
赵仁洁
刘剑
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2019096105A1 publication Critical patent/WO2019096105A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention belongs to the technical field of 3D printing, and relates to a 3D printing device and a printing method.
  • Additive manufacturing is a technology based on digital model files to form objects by layer-by-layer printing of metal, plastic, ceramic, sand and other adhesive materials, breaking through the processing limitations of traditional processes. It can quickly form parts with complex structures.
  • 3D printing devices use different types of technologies depending on the type of consumables and the feeding method, including: Stereo Lithography (SL), Fused Deposition Modeling, and Selective Laser Melting (SLM). Technology, Electron Beam Melting (EBM) technology, Wire and Arc Additive Manufacturing (WAAM) technology, Laser Engineered Net Shaping (LENS), etc.
  • SL Stereo Lithography
  • SLM Selective Laser Melting
  • EBM Electron Beam Melting
  • WAAM Wire and Arc Additive Manufacturing
  • LENS Laser Engineered Net Shaping
  • the present invention provides a 3D printing apparatus including a numerical control system, a motion system, a heat source, a feeding system, a printing platform, and a rotating system, the rotating system for driving the motion system, the heat source,
  • the feed system and the printing platform are rotated to allow a certain angle between the printing platform and the horizontal plane to achieve self-supporting of each slice layer of the part to be printed.
  • the invention is further provided that the rotation system drives the motion system, the heat source, the feeding system and the printing platform to rotate synchronously.
  • the rotating system comprises a rotating body and a plurality of liftable control heads that are not collinearly distributed on the rotating body.
  • the invention is further provided that the heat source is fixedly coupled to the feed system, the heat source moving in synchronism with the feed system.
  • the invention also provides a 3D printing method comprising the following steps:
  • the present invention is further configured such that the printing process in the S1-S5 provides a supply of heat to the heat source through the feeding system, and the feeding system passes the one or more of cladding, bonding, welding or spraying to the The heat source supplies consumables.
  • the invention is further provided that the rotation of the printing platform is performed prior to or in synchronization with the printing process.
  • the invention is further provided that, in the S4, after the i-th layer is formed, the printing platform is rotated to allow a certain angle between the printing platform and the horizontal plane.
  • the present invention is further provided that the support structure for printing each slice of the part for supporting the desired printing is not included in the S1-S5.
  • the present invention provides a 3D printing device and a printing method capable of analyzing the self-supporting property of a slice layer, and if the structural strength of the slice layer consumable material to be printed can support its own weight,
  • the rotation of the driving printing platform is caused to have a certain angle between the printing platform and the horizontal plane, due to the slice to be printed.
  • the layer reduces the projection of the length of the slice from the previous layer in the direction of gravity in the horizontal direction, so that the slice layer consumable to be printed can support its own weight by its structural strength, so that it is not needed during the printing process. Print a new support structure.
  • the 3D printing device and the printing method provided by the invention can not only ensure the high quality of the surface of the part, but also reduce the loss of printing consumables, save the process time required for removing the support, and thereby improve the printing efficiency.
  • FIG. 1 is a schematic view of a part having a structure of a suspended structure, a negative angled wall, and an empty groove structure;
  • FIG. 2 is a schematic view showing the structure of printing the parts of FIG. 1 in the prior art
  • FIG. 3 is a flowchart of a 3D printing method according to an embodiment of the present invention.
  • FIG. 4 is a flow chart showing the operation of a rotating system in a 3D printing apparatus according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the operation of a 3D printing apparatus according to an embodiment of the invention.
  • FIG. 6 is a structural connection diagram of a 3D printing apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a rotation system in a 3D printing apparatus according to an embodiment of the present invention.
  • 1-CNC system 2-motion system; 3-heat source; 4-feed system; 5-print platform; 6-rotation system; 7-part; 8-rotor; 9-control head; a-suspension structure; B-negative dip wall; c-cavity structure; d-slice; e-support.
  • the present embodiment provides a 3D printing apparatus and a printing method. Referring to FIG. 3 to FIG. 7, wherein the 3D printing method is as shown in FIG. 3, wherein n in FIG. 3 indicates that the part 7 shown in FIG. 6 needs to be printed.
  • the total number of layers, the 3D printing method of the present invention comprises the following steps:
  • the first layer of the slice is fixed to the printing platform 5;
  • the printing platform 5 rotates and rotates to the i+1th slice to perform self-supporting angle on the i-th slice, as shown in FIG. 4, wherein the dotted line direction is a slice.
  • the deposition direction, the arc-shaped arrow is the rotation direction of the part, wherein the rotation function can be changed by changing one of three-dimensional coordinates, polar coordinates or spherical coordinates, and performing S5;
  • the judgment analysis step in S2 can be performed before the slice formation.
  • the support structure for printing each slice of the part for supporting the desired printing is not included in the above S1-S5.
  • a 3D printing apparatus provided in this embodiment includes a numerical control system 1, a motion system 2, a heat source 3, a feeding system 4, a printing platform 5, and a rotating system 6, and the numerical control system 1 can move toward the movement.
  • the system 2 and the rotating system 6 output the work instructions and process parameters required for the printing project, and the motion system 2 can move the heat source 3, the feeding system 4 or the printing platform 5 according to the command output from the numerical control system 1, and realize the supply of the consumables from the feeding system 4
  • the layer of the printing platform 5 is deposited.
  • the rotation system 6 is used to adjust the movement system 2, the heat source 3, the feeding system 4, and the printing platform 5 to rotate.
  • the motion system 2, the heat source 3, the feeding system 4, and the printing platform 5 are of a unitary structure, and the rotating system 6 adjusts the motion system 2, the heat source 3, and the feeding system 4 and the printing platform 5 rotates synchronously, so that the angle between the deposition direction of the slice and the direction of gravity can be adjusted until the part 7 is formed.
  • the heat source 3 is fixedly connected to the feed system 4, and the heat source 3 moves synchronously with the feed system 4.
  • the printing process of S1-S5 in the 3D printing method supplies the consumables to a heat source 3 through the feeding system 4, and the feeding system 4 passes one or several ways of cladding, bonding, welding or spraying.
  • a supply of the consumable is provided to the heat source 3, and a preferred mode of the embodiment is spray coating.
  • the rotation process of the printing platform 5 can be performed before or in synchronization with the printing process.
  • the numerical control system 1 can be integrated with the rotating system 6 as a CNC control system.
  • the motion path is normally input to the motion system 2; if support is required, the rotation space angle required for each dangling dimension and the motion path at this time are output as a data matrix according to the coordinate position, and then the next step is continued.
  • the layer judges until the final rotation parameters and motion paths of each slice are generated.
  • the rotation system 6 can be executed before the motion system 2 without real-time coordination, thereby reducing the control difficulty.
  • the part 7 is sliced and the number of specific slices to be supported at this placement is calculated.
  • the rotation system 6 is operated by the rotation control system to rotate the heat source 3, the feeding system 4 and the motion system 2 in the 3D printing device until the slice layer to be printed can be smoothly
  • the angle of support ensures that the consumables can be deposited on the current print plane.
  • the support plane with more suspended dimensions it can be rotated by multiple dimensions, and rotated for each floating position of the plane to ensure complete printing of the consumables of the layer.
  • This layer has a certain strength after printing, which can support the printing of the next layer and ensure that it does not break during the rotation.
  • layer deposition of the print can be achieved until final shaping.
  • the part 7 model slice is completed by the numerical control system 1, and the motion path (the heat source 3 scan path or the print platform 5 moving path) is output to the motion system 2, and the process parameters are output to the heat source 3, which is integrated in the numerical control system 1
  • the rotation control system analyzes the self-supporting of the slice, judges the slice layer and the support surface that the conventional 3D printing process needs to support, and calculates the rotation angle and the rotation angle maintenance time in the printing process.
  • the motion system 2 moves the heat source 3, the feeding system 4 or the printing platform 5 according to the path outputted by the numerical control system 1, and ensures that the consumables sent by the feeding system 4 are processed by the heat source 3, and can be laminated on the printing platform 5 layer by layer.
  • the rotating system 6 starts to operate according to the rotation parameters outputted by the numerical control system 1, and the slice of the 3D printed part is realized by the synchronous rotary motion system 2, the heat source 3, the feeding system 4 and the printing platform 5. Self-supporting.
  • the rotating system 6 includes a rotating body 8 and a plurality of elevating control heads 9 that are not collinearly distributed on the rotating body 8.
  • the rotating body 8 is rectangular.
  • the control head 9 is distributed over the four corners of the rotating body 8.
  • the present invention provides a 3D printing apparatus and a printing method.
  • printing if the structural strength of the newly printed slice on the already printed slice is sufficient to support its own weight, it can be directly Printing is performed, and after the slice is formed, the slice to be printed next is judged.
  • the rotation system 6 controls the motion system 2, the heat source 3, the feeding system 4, and the printing platform 5 to rotate and rotate.
  • perform S5 To the point where the consumable material to be printed can be self-supported, perform S5, and then print again, and stay for a sufficient time to shape the printed layer of consumables, and then cycle the step after forming, so that the entire printing process is not required.
  • the rotating system 6 can also be rotated more easily and conveniently when rotated, and has high practicability.
  • the rotation process of the printing platform 5 is performed before or during the printing process, so that the rotation process takes up the time for printing to be minimized, further improving the printing efficiency.
  • the control head 9 on the rotating body 8 is telescoped, so that the angles of the planes at which the tops of the four control heads 9 are located can be adjusted, so that the printing platform 5 connected to the four control heads 9 can be connected.
  • the angle of the structure is adjusted, which is simple and convenient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明提供了一种3D打印装置和打印方法,包括数控***、运动***、热源、送料***、打印平台以及旋转***,所述旋转***用于带动所述运动***、所述热源、所述送料***以及所述打印平台旋转以允许所述打印平台与水平面之间形成一定的夹角,从而实现待打印零件的每个切片层的自支撑。本发明提供的3D打印装置和打印方法的打印质量高。

Description

一种3D打印装置和打印方法 技术领域
本发明属于3D打印技术领域,涉及一种3D打印装置和打印方法。
背景技术
增材制造,即3D打印技术,是一种以数字模型文件为基础,通过逐层打印金属、塑料、陶瓷、砂等可粘合材料的方式来成型物体的技术,突破了传统工艺的加工限制,能够快速成型具备复杂结构的零件。根据耗材种类及送料方式的不同,3D打印装置采用的技术类型也不同,包括:光固化成型(Stereo Lithography,SL)、熔融沉积(Fused Deposition Modeling)技术、选区激光熔化(Selective Laser Melting,SLM)技术、电子束熔化(Electron Beam Melting,EBM)技术、电弧送丝增材制造(Wire and Arc Additive Manufacturing,WAAM)技术,激光近净成型(Laser Engineered Net Shaping,LENS)等等。
由于3D打印“分层切片,逐层叠加”的成型方式,如果每层耗材没有被刚性地固定在一个实体平台上,那么这个零件表面很有可能会在冷却过程中发生弯曲,这也就意味着需要打印的下一层粉末无法均匀地铺盖或喷洒在零件表面。因此即使是用铺粉的方式来成型,支撑或者基板仍然是必须的。多数塑料或砂型打印装置可以直接在金属平台上挤出沉积,通常大多数金属3D打印装置都会使用一个基准平台或者基板来成型零件,并且会在成型完成后将零件用机加工或线切割或是相似的方法从基板上切割下来。
现有的3D打印技术在打印零件的时候,一些结构强度不足以进行自支撑的耗材无法直接在空气或真空中沉积。因此对于因重力作用无法自支撑的零件区域,必须在零件下侧打印一定的支撑结构,例如当遇到如附图1中的悬空结构a、负倾角壁b或者空槽结构c等结构的时候,就需要在打印零件切片d的同时打印出如图2中所示的支撑e,从而使得悬空结构a、负倾角壁b或 空槽结构c等能够正常的打印,但是零件打印完成之后还需要单独的将这些打印出来的支撑e与零件分离,容易对零件表面的切片d造成损伤,不仅如此,打印这些支撑结构还会增大耗材的损耗,去支撑工艺也会耗费大量的时间,此外,在较为复杂的内部孔槽和悬空结构里添加的支撑难以去除,甚至无法去除,影响打印质量。
发明内容
本发明的目的在于提供一种3D打印装置和打印方法,旨在解决现有技术中对复杂零件3D打印时设置支撑结构增大耗材的损耗、去除支撑花费大量时间甚至引起零件表面损伤的问题。
为解决上述技术问题,本发明提供了一种3D打印装置,包括数控***、运动***、热源、送料***、打印平台以及旋转***,所述旋转***用于带动所述运动***、所述热源、所述送料***以及所述打印平台旋转以允许所述打印平台与水平面之间形成一定的夹角,从而实现待打印零件的每个切片层的自支撑。
本发明进一步设置为,所述旋转***带动所述运动***、所述热源、所述送料***以及所述打印平台同步旋转。
本发明进一步设置为,所述旋转***包括旋转体以及多个不共线分布于所述旋转体上的可升降的控制顶头。
本发明进一步设置为,所述热源与所述送料***固定连接,所述热源与所述送料***同步运动。
本发明还提供一种3D打印方法,包括以下步骤:
S1,确定所需打印的零件的切片的总层数n,将第一层切片固定于打印平台;
S2,根据第i层切片以及第i+1层切片计算第i+1层切片的悬空尺寸,并判断所述第i+1层切片可否自支撑,可自支撑,则进行S3,不可自支撑,则 进行S4,其中i为大于或者等于1的整数;
S3,第i层切片成形后,将第i+1层切片打印于第i层切片上,打印生成第i+1层切片,判断i+1是否等于n,若是,则终止,若否,则i的数值加1后返回S2;
S4,第i层切片成形后,将打印平台旋转,旋转到第i+1层切片可在第i层切片上进行自支撑的角度,进行S5;
S5,将第i+1层切片打印于旋转后的第i层切片上,打印生成第i+1层切片,判断i+1是否等于n,若是,则终止,若否,则i的数值加1后返回S2。
本发明进一步设置为,所述S1-S5中的打印过程均通过送料***提供耗材给一热源,所述送料***通过熔覆、粘接、焊接或喷涂中的一种或几种方式向所述热源提供耗材。
本发明进一步设置为,所述打印平台的旋转过程在打印过程之前或者与打印过程同步进行。
本发明进一步设置为,所述S4中,第i层切片成形后,将打印平台旋转以允许所述打印平台与水平面之间具有一定的夹角。
本发明进一步设置为,所述S1-S5中不包括打印用于支撑所需打印的零件的各切片的支撑结构。
与现有技术相比,本发明提供的一种3D打印装置和打印方法能够分析切片层的自支撑性,若待打印的切片层耗材的结构强度能够对其自身的重量进行支撑,即可自支撑的时候,直接进行打印,而当待打印的切片层耗材的结构强度不足以进行自支撑的时候,则驱动打印平台转动使得打印平台与水平面之间具有一定的夹角,由于待打印的切片层减少了水平方向伸出于前一层切片的长度在重力方向上的投影,就使得待打印的切片层耗材能够通过自身的结构强度对自身的重量进行支撑,如此在打印过程中就不需要打印新的支撑结构,待新打印的切片成形之后通过计算可知下一片层切片是否需要旋转,需要旋转则旋转之后进行下一层片切片的打印,不需要旋转则直接打印,如 此循环,就能够实现零件的零支撑打印。本发明提供的3D打印装置和打印方法不仅能够保证零件表面具有较高的质量,还能够减少打印耗材的损耗,节约去除支撑所需的工艺时间,进而提高打印效率。
附图说明
图1是一种具有悬空结构、负倾角壁和空槽结构等结构的零件示意图;
图2是现有技术一种对图1中零件进行打印的结构示意图;
图3是本发明一实施例提供的一种3D打印方法的流程图;
图4是本发明一实施例提供的一种3D打印装置中旋转***的工作流程图;
图5是本发明一实施例提供的一种3D打印装置的工作原理图;
图6是本发明一实施例提供的一种3D打印装置的结构连接图;
图7是本发明一实施例提供的一种3D打印装置中旋转***的结构示意图。
其中,1-数控***;2-运动***;3-热源;4-送料***;5-打印平台;6-旋转***;7-零件;8-旋转体;9-控制顶头;a-悬空结构;b-负倾角壁;c-空槽结构;d-切片;e-支撑。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种3D打印装置和打印方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。附图中相同或相似的附图标记代表相同或相似的部件。
本实施例提供了一种3D打印装置和打印方法,参照附图3至附图7,其中3D打印方法如图3所示,其中图3中的n表示图6所示零件7所需要打印的总层数,本发明3D打印方法包括以下步骤:
S1,第一层切片固定于打印平台5;
S2,根据第i层切片以及第i+1层切片计算第i+1层切片的悬空尺寸,并判断所述第i+1层切片可否自支撑,可自支撑,则进行S3,不可自支撑,则进行S4,其中i为大于或者等于1的整数;
S3,第i层切片成形后,将第i+1层切片打印于第i层切片上,打印生成第i+1层切片,判断i+1是否等于n,若是,则终止,若否,则i的数值加1后返回S2;
S4,待第i层切片成形后,打印平台5旋转,旋转到第i+1层切片可在第i层切片上进行自支撑的角度,如图4所示,其中图中的虚线方向为切片的沉积方向,圆弧形的箭头为零件的旋转方向,其中实现旋转功能的方式可以是改变三维坐标、极坐标或者球坐标中的一种,进行S5;
S5,将第i+1层切片打印于旋转后的第i层切片上,打印生成第i+1层切片,判断i+1是否等于n,若是,则终止,若否,则i的数值加1后返回S2。
其中为节省工艺时间,S2中的判断分析步骤可在切片成形前进行。
在本申请中,所述S1-S5中不包括打印用于支撑所需打印的零件的各切片的支撑结构。
本实施例提供的一种3D打印装置,如图5至图7所示,包括数控***1、运动***2、热源3、送料***4、打印平台5以及旋转***6,数控***1能够向运动***2和旋转***6输出打印工程所需的工作指令和工艺参数,运动***2能够按照数控***1输出的指令移动热源3、送料***4或者打印平台5,实现从送料***4送出的耗材在打印平台5的层沉积。所述旋转***6用于调节所述运动***2、所述热源3、所述送料***4以及所述打印平台5旋转。优选的,所述运动***2、所述热源3、所述送料***4以及所述打印平台5为整体结构,所述旋转***6调节所述运动***2、所述热源3、所述送料***4以及所述打印平台5同步转动,从而能够对切片的沉积方向和重力方向的夹角进行调整,直至零件7成型完毕。所述热源3与所述送料***4固定连接,所述热源3与所述送料***4同步运动。
其中,所述3D打印方法中的S1-S5的打印过程均通过送料***4提供耗材给一热源3,所述送料***4通过熔覆、粘接、焊接或喷涂中的一种或几种方式向所述热源3提供耗材,本实施例优选的方式为喷涂。
所述打印平台5的旋转过程可在打印过程之前或者与打印过程同步进行。
请参见图3及图5,该数控***1可与旋转***6集成为CNC控制***。输入打印的切片层高和相应耗材的自支撑角,根据层高对模型进行切片后,从第二层切片开始,计算第二层切片相对于第一层切片的悬空距离和悬空维度,根据悬空距离和切片层高,就可以判断出悬空角与自支撑角的关系,进而判断出零件7是否需要支撑。如果不需要支撑,则正常输入运动路径给运动***2;如果需要支撑,那么根据坐标位置将每个悬空维度所需要的旋转空间角度和此时的运动路径作为数据矩阵输出,再继续进行下一层判断,直至最终每层切片的旋转参数和运动路径全部生成。旋转***6可以在运动***2之前执行,无需实时配合,从而降低了控制难度。
请参见图4,在确定零件7摆放位置后,对零件7进行切片,并计算出在此摆放位置需要支撑的具体切片层数。当沉积层数达到该层的前一层时,通过旋转控制***操控旋转***6,对3D打印装置内的热源3、送料***4和运动***2进行旋转,直到待打印的切片层能够顺利自支撑的角度,保证耗材能够在当前的打印平面上沉积成型。对于悬空维度较多的需支撑平面,可以通过多维度旋转,针对该平面的各个悬空位置多次旋转,保证该层耗材的完整打印。该层打印完后具备一定的强度,能够支撑下一层的打印并保证在旋转过程中不断裂。通过借助旋转***6调整打印平台5和重力方向的角度,可以实现打印件的层层沉积,直至最终成型。
请参见图5,由数控***1完成零件7模型切片,将运动路径(热源3扫描路径或打印平台5移动路径)输出给运动***2,将工艺参数输出给热源3,由集成在数控***1的旋转控制***分析切片的自支撑性,判断传统3D打印工艺需要支撑的切片层和支撑面,计算出打印过程中的旋转角度和转角维持 时间。运动***2根据数控***1输出的路径对热源3、送料***4或者打印平台5进行移动,保证送料***4送出的耗材经过热源3处理后,能够层层贴合在打印平台5上。当零件7达到需要支撑的层数时,旋转***6开始按照数控***1输出的旋转参数运作,通过同步旋转运动***2、热源3、送料***4和打印平台5,实现3D打印零件的切片的自支撑。
如图7所示,所述旋转***6包括旋转体8以及多个不共线分布于所述旋转体8上的可升降的控制顶头9,优选的本实施例中所述旋转体8为矩形结构,所述控制顶头9分布于所述旋转体8的四个角上。
综上所述,本发明提供的一种3D打印装置和打印方法,在打印的时候,如果在已经打印的切片上需要新打印的切片的结构强度足够对自身的重量进行支撑,如此就可以直接进行打印,待该切片成形之后,对再接下来打印的切片进行判断,如果是需要进行支撑的,此时旋转***6控制运动***2、热源3、送料***4以及打印平台5转动,并转动到待打印切片层耗材能够进行自支撑的角度,进行S5,此时再进行打印,并停留充足的时间使得该打印的切片层耗材成形,成形之后循环该步骤,这样整个打印过程中都不需要进行支撑,所以打印完成之后也没有需要移出的支撑,不仅保证了零件7表面的质量,同时由于不需要打印支撑,所以打印的耗材更少,成本更低,同时由于减少了需要打印的总量,所以也能够提高打印的速度。
其中由于运动***2、热源3、送料***4和打印平台5为整体结构,如此旋转***6在进行旋转的时候,也能够更为简单方便的进行旋转,实用性强。打印平台5的旋转过程在打印过程之前或者与打印过程同步进行,这样就能够使得旋转过程占用打印进行的时间减少到最少,进一步的提高了打印的效率。旋转***6运行时,旋转体8上的控制顶头9伸缩,如此就能够对四个控制顶头9顶部所在的平面的角度进行调节,从而能够对连接于四个控制顶头9上的打印平台5等结构的角度进行调节,简单方便。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施 例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (9)

  1. 一种3D打印装置,其特征在于,包括数控***、运动***、热源、送料***、打印平台以及旋转***,所述旋转***用于带动所述运动***、所述热源、所述送料***以及所述打印平台旋转以允许所述打印平台与水平面之间形成一定的夹角,从而实现待打印零件的每个切片层的自支撑。
  2. 根据权利要求1所述的3D打印装置,其特征在于,所述旋转***带动所述运动***、所述热源、所述送料***以及所述打印平台同步旋转。
  3. 根据权利要求1或2所述的3D打印装置,其特征在于,所述旋转***包括旋转体以及多个不共线分布于所述旋转体上的可升降的控制顶头。
  4. 根据权利要求3所述的3D打印装置,其特征在于,所述热源与所述送料***固定连接,所述热源与所述送料***同步运动。
  5. 一种3D打印的方法,其特征在于,包括以下步骤:
    S1,确定所需打印的零件的切片的总层数n,将第一层切片固定于打印平台;
    S2,根据第i层切片以及第i+1层切片计算第i+1层切片的悬空尺寸,并判断所述第i+1层切片可否自支撑,可自支撑,则进行S3,不可自支撑,则进行S4,其中i为大于或者等于1的整数;
    S3,第i层切片成形后,将第i+1层切片打印于第i层切片上,打印生成第i+1层切片,判断i+1是否等于n,若是,则终止,若否,则i的数值加1后返回S2;
    S4,第i层切片成形后,将打印平台旋转,旋转到第i+1层切片可在第i层切片上进行自支撑的角度,进行S5;
    S5,将第i+1层切片打印于旋转后的第i层切片上,打印生成第i+1层切片,判断i+1是否等于n,若是,则终止,若否,则i的数值加1后返回S2。
  6. 根据权利要求5所述的方法,其特征在于,所述S1-S5中的打印过程均 通过送料***提供耗材给一热源,所述送料***通过熔覆、粘接、焊接或喷涂中的一种或几种方式向所述热源提供耗材。
  7. 根据权利要求5所述的方法,其特征在于,所述打印平台的旋转过程在打印过程之前或者与打印过程同步进行。
  8. 根据权利要求5所述的方法,其特征在于,所述S4中,第i层切片成形后,将打印平台旋转以允许所述打印平台与水平面之间具有一定的夹角。
  9. 根据权利要求5所述的方法,其特征在于,所述S1-S5中不包括打印用于支撑所需打印的零件的各切片的支撑结构。
PCT/CN2018/115135 2017-11-14 2018-11-13 一种3d打印装置和打印方法 WO2019096105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711125167.0 2017-11-14
CN201711125167.0A CN109774116A (zh) 2017-11-14 2017-11-14 一种3d打印装置和打印方法

Publications (1)

Publication Number Publication Date
WO2019096105A1 true WO2019096105A1 (zh) 2019-05-23

Family

ID=66494131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115135 WO2019096105A1 (zh) 2017-11-14 2018-11-13 一种3d打印装置和打印方法

Country Status (2)

Country Link
CN (1) CN109774116A (zh)
WO (1) WO2019096105A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113580577B (zh) * 2021-07-29 2024-03-15 深圳市创想三维科技股份有限公司 3d打印文件生成方法、装置、计算机设备和存储介质
CN113752561B (zh) * 2021-08-27 2024-03-15 深圳市创想三维科技股份有限公司 3d打印文件的生成方法、装置、计算机设备和存储介质
CN114029507B (zh) * 2021-11-08 2023-04-07 福州大学 一种微束等离子选区熔化成形方法及设备
CN114147971A (zh) * 2021-11-30 2022-03-08 深圳市创想三维科技股份有限公司 一种3d打印文件的生成方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003180A1 (en) * 2000-08-08 2003-01-02 Farnworth Warren M. Surface smoothing of stereolithographically formed 3-D objects
CN103786342A (zh) * 2014-01-10 2014-05-14 康子纯 机体可倾斜的3d打印机
CN104908323A (zh) * 2015-05-27 2015-09-16 常州大学 一种六自由度三维打印设备
US20160016361A1 (en) * 2014-07-17 2016-01-21 Formlabs, Inc. Systems and methods for an improved peel operation during additive fabrication
US20160089838A1 (en) * 2014-09-29 2016-03-31 Xerox Corporation System for adjusting platform height during three-dimensional printing of an object
CN206154726U (zh) * 2016-09-26 2017-05-10 湖北工业大学 一种双转轴3d打印平台
CN106738919A (zh) * 2017-01-12 2017-05-31 武汉古工道科技有限公司 一种基于Delta结构双转轴复合3D打印机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717599A (en) * 1994-10-19 1998-02-10 Bpm Technology, Inc. Apparatus and method for dispensing build material to make a three-dimensional article
CN105904729B (zh) * 2016-04-22 2018-04-06 浙江大学 一种基于倾斜分层的无支撑三维打印方法
CN106239918B (zh) * 2016-09-26 2019-06-07 湖北工业大学 一种双转轴3d打印平台
CN107116787B (zh) * 2017-06-16 2019-04-02 浙江大学 一种三维打印平台的调平***及其测距装置与调平方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003180A1 (en) * 2000-08-08 2003-01-02 Farnworth Warren M. Surface smoothing of stereolithographically formed 3-D objects
CN103786342A (zh) * 2014-01-10 2014-05-14 康子纯 机体可倾斜的3d打印机
US20160016361A1 (en) * 2014-07-17 2016-01-21 Formlabs, Inc. Systems and methods for an improved peel operation during additive fabrication
US20160089838A1 (en) * 2014-09-29 2016-03-31 Xerox Corporation System for adjusting platform height during three-dimensional printing of an object
CN104908323A (zh) * 2015-05-27 2015-09-16 常州大学 一种六自由度三维打印设备
CN206154726U (zh) * 2016-09-26 2017-05-10 湖北工业大学 一种双转轴3d打印平台
CN106738919A (zh) * 2017-01-12 2017-05-31 武汉古工道科技有限公司 一种基于Delta结构双转轴复合3D打印机

Also Published As

Publication number Publication date
CN109774116A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2019096105A1 (zh) 一种3d打印装置和打印方法
US11090728B2 (en) Apparatus for additive manufacturing and method of additive manufacturing
WO2016023255A1 (zh) 一种同步送粉空间激光加工与三维成形方法及装置
US20180141272A1 (en) Device for constructing models in layers and methods thereof
CN109434109B (zh) 一种基于动态粉缸的激光选区熔化成形方法
JP6030597B2 (ja) 三次元造形装置及び三次元形状造形物の製造方法
CN109590470B (zh) 一种多能场增材制造成形***
EP2926980B1 (en) Laminate molding equipment
CN104001915B (zh) 一种高能束增材制造大尺寸金属零部件的设备及其控制方法
WO2019000523A1 (zh) 一种电弧熔积与激光冲击锻打复合快速成形零件的方法及其装置
CN103726049A (zh) 一种金属零件的激光增材制造方法和装备
RU2674588C2 (ru) Способ аддитивного сварочно-плавильного изготовления трёхмерных изделий и установка для его осуществления
JP2019094515A (ja) 積層造形装置
EP4195085A1 (en) Method for generating wire arc additive manufacturing path
US11529681B2 (en) 3D printing method of forming a bulk solid structure element by cold spray
CN203843168U (zh) 一种高能束增材制造大尺寸金属零部件的设备
US20180369961A1 (en) Treatment of solidified layer
CN107073584A (zh) 制造部件的方法以及该部件
CN111417486A (zh) 层叠造型物的设计方法、制造方法、制造装置、以及程序
JP2015193184A (ja) 三次元積層造形装置、三次元積層造形方法および三次元積層造形プログラム
CN109648079B (zh) 一种应用于增材制造的气氛保护装置
JP7327995B2 (ja) 積層造形物の製造方法及び積層造形物
CN116113512A (zh) 加工***
Kapil et al. Hybrid layered manufacturing of turbine blades
JP7150121B1 (ja) 造形プログラムの作成方法、積層造形方法および積層造形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877805

Country of ref document: EP

Kind code of ref document: A1