WO2019096058A1 - 传输控制信息的方法、终端设备和网络设备 - Google Patents

传输控制信息的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019096058A1
WO2019096058A1 PCT/CN2018/114546 CN2018114546W WO2019096058A1 WO 2019096058 A1 WO2019096058 A1 WO 2019096058A1 CN 2018114546 W CN2018114546 W CN 2018114546W WO 2019096058 A1 WO2019096058 A1 WO 2019096058A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
uci
resource region
shared channel
information
Prior art date
Application number
PCT/CN2018/114546
Other languages
English (en)
French (fr)
Inventor
胡丹
邵家枫
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019096058A1 publication Critical patent/WO2019096058A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • the present application relates to the field of communications, and more particularly to a method, terminal device and network device for transmitting control information.
  • the international telecommunication union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), high reliable low latency communication (ultra reliable and low latency). Communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC high reliable low latency communication
  • mMTC massive machine type communications
  • the URLLC service requires extremely high latency.
  • the transmission delay is required to be within 0.5 milliseconds (millisecond, ms). Under the premise of 99.999% reliability, the transmission delay is required to be within 1 ms.
  • the smallest time scheduling unit is a transmission time interval (TTI) of 1 ms duration.
  • TTI transmission time interval
  • the data transmission of the wireless air interface can use a shorter time scheduling unit, for example, using a mini-slot or a larger sub-carrier time slot as the minimum time scheduling. unit.
  • a mini-slot includes one or more time domain symbols, where the time domain symbols may be orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the corresponding time length is 0.5 ms; for a time slot with a subcarrier spacing of 60 kHz, the corresponding time The length is shortened to 0.125ms. Since the data of the URLLC service is bursty and random, in order to improve system resource utilization, the base station usually does not reserve resources for downlink data transmission of the URLLC service.
  • the base station When the URLLC service data arrives at the base station, if there is no idle time-frequency resource at this time, the base station cannot wait for the scheduled transmission of the eMBB service data to complete the URLLC service data, in order to meet the ultra-short delay requirement of the URLLC service. .
  • the base station uses preemption to allocate resources for URLLC service data.
  • the terminal device After receiving the eMBB service or the URLLC service sent by the base station, the terminal device feeds back control information to the base station to notify whether the service is successfully transmitted.
  • the terminal device After receiving the eMBB service or the URLLC service sent by the base station, the terminal device feeds back control information to the base station to notify whether the service is successfully transmitted.
  • the terminal device After receiving the eMBB service or the URLLC service sent by the base station, the terminal device feeds back control information to the base station to notify whether the service is successfully transmitted.
  • the present invention provides a method for transmitting control information, a terminal device, and a network device, which can map uplink control information of non-emergency services and uplink control information of emergency services on an uplink shared channel, and help the user to have a burst service or an emergency service. Communication needs.
  • a method of transmitting control information comprising:
  • the first resource region includes a resource region that is mapped by the first uplink control information UCI in a first mapping manner
  • the second resource region includes a second UCI a resource region mapped in a second mapping manner, where the first resource region is different from the second resource region in a time domain and/or a frequency domain;
  • the terminal device can send the first UCI and the second on the same uplink shared channel by determining the first resource region and/or the second resource region on the uplink shared channel and transmitting the uplink shared channel.
  • UCI helps to meet the communication needs of users when there is a sudden or emergency service.
  • the first resource area and the second resource area may be the same in the time domain, different in the frequency domain, or different in the time domain, at least partially in the frequency domain, or in the time domain. Different from the frequency domain, the embodiment of the present application does not limit this.
  • the uplink shared channel may be a physical uplink shared channel PUSCH.
  • the uplink control information UCI may include channel state information and/or feedback information, such as A-CSI, HARQ ACK/NACK, channel quality indicator (CQI), precoding.
  • Information such as a prediction matrix indicator (PMI), a precoding type indicator (PTI), and a rank indication (RI).
  • the number of bits of the first UCI is greater than or equal to a first bit upper limit, or the number of bits of the first UCI is less than the first bit upper limit and the first UCI
  • the sum of the number of bits and the number of bits of the second UCI is greater than or equal to the first bit upper limit value, and the first resource region and the second resource region are determined in the uplink shared channel; or
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than or equal to a second bit upper limit value, and the first resource region is determined on an uplink shared channel.
  • the first bit upper limit value and the second bit upper limit value may be the same or different.
  • the terminal device may determine the first resource region and/or the second resource region according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the method further includes:
  • the first downlink control information is used to indicate sending the second UCI and/or resource information for sending the second UCI.
  • the determining, by the uplink shared channel, the second resource region includes:
  • the resource information of the second UCI includes: information of an uplink control channel resource, where the uplink control channel resource is used for carrying The second UCI; and/or,
  • the terminal device may determine the second resource region based on the content indicated in the first downlink control information, or determine the first resource region and/or the first resource region based on the receiving time of the first downlink control information. Two resource areas.
  • the resource information of the second UCI includes: resource information of an uplink control channel, where the uplink control channel resource is used to carry the second UCI, where, according to the resource of the second UCI And determining, by the uplink shared channel, the second resource area, including:
  • the resource information of the uplink control channel includes a time domain start position of the resource of the uplink control channel, and determining a time domain start of the second resource region according to a time domain start position of a resource of the uplink control channel. Location; and/or,
  • the resource information of the uplink control channel includes a duration of the resource of the uplink control channel, and the number of symbols of the second resource region is determined according to a duration of the resource of the uplink control channel; and/or,
  • the resource information of the uplink control channel includes a time domain end position of the resource of the uplink control channel, and the time domain end position of the second resource area is determined according to a time domain end position of the resource of the uplink control channel.
  • the time domain start position or the time domain length of the second resource region may be a symbol that avoids a demodulation reference signal (DMRS) or other reference signal.
  • the second resource area may be continuous or non-contiguous in the time domain, which is not limited.
  • the number of symbols of the second resource region may be less than or equal to the duration of the resources of the uplink control channel, or may have a fixed correspondence with the duration of the resources of the uplink control channel.
  • N Determining the first resource region or the first resource region and the N times, where the receiving time of the first downlink control information is N symbols before the start time of the uplink shared channel, N is greater than or equal to 0 a second resource area, where the first resource area is further used to map the second control information;
  • the M times of the first downlink control information received before or after the start time of the uplink shared channel, M is greater than or equal to 0, and the second resource region is determined.
  • the determining, according to the first resource region, the second resource region on the uplink shared channel includes:
  • the terminal device can determine the time domain of the second resource region, and/or the frequency domain, and/or the number of symbols according to the first resource region.
  • the second resource region is different from the first resource region in a time domain, and a frequency domain of the first resource region is at least partially identical to a frequency domain of the second resource region.
  • the frequency domain of the first resource region and the second resource region may be partially the same or may be all the same.
  • the method further includes:
  • determining the second mapping manner includes:
  • the number of bits of the first UCI is greater than the third bit upper limit, and determining that the second mapping manner is different from the first mapping manner;
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than the fourth bit upper limit, and the second mapping mode is determined to be the same as the first mapping mode;
  • the number of bits of the first UCI is less than a fifth bit upper limit value, and a sum of a bit number of the first UCI and a bit number of the second UCI is greater than or equal to the fifth bit upper limit value, determining the first
  • the partial information of the second UCI is mapped in the first resource region in the first mapping manner, and the information of the second UCI except the partial information is mapped in the second mapping manner in the second mapping manner. In the resource area.
  • the third bit upper limit value, the fourth bit upper limit value, and the fifth bit upper limit value are the same or different.
  • the terminal device may determine the first mapping mode and/or the second mapping mode according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the first UCI mapping is aligned with a start symbol position of the uplink shared channel and a start symbol position of an uplink control channel for carrying the first UCI, where the first UCI is mapped. Avoid or circumvent demodulation reference signals; or,
  • the second UCI mapping is aligned with a start symbol position of the uplink shared channel and a start symbol position of an uplink control channel for carrying the second UCI, and the second UCI avoids or avoids a solution when mapping Adjust the reference signal.
  • the starting symbol of the UCI mapping on the PUSCH is not earlier than the starting symbol originally allocated to the PUCCH used to carry the UCI.
  • a method of transmitting control information including:
  • the first resource region includes a resource region that is mapped by the first uplink control information UCI in a first mapping manner
  • the second resource region includes a second UCI a resource region mapped in a second mapping manner, where the first resource region is different from the second resource region in a time domain and/or a frequency domain;
  • the uplink shared channel carries the first UCI and the second UCI.
  • the network device helps the network device to grasp the receiving quality of the downlink data by detecting the first resource region and/or the second resource region on the uplink shared channel and receiving the uplink shared channel. To meet the communication needs of users when there are sudden or urgent services.
  • the first resource area and the second resource area may be the same in the time domain, different in the frequency domain, or different in the time domain, at least partially in the frequency domain, or in the time domain. Different from the frequency domain, the embodiment of the present application does not limit this.
  • the uplink shared channel may be a physical uplink shared channel PUSCH.
  • the uplink control information UCI may include channel state information and/or feedback information, such as A-CSI, HARQ ACK/NACK, channel quality indicator (CQI), precoding.
  • Information such as a prediction matrix indicator (PMI), a precoding type indicator (PTI), and a rank indication (RI).
  • the number of bits of the first UCI is greater than or equal to a first bit upper limit, or the number of bits of the first UCI is less than the first bit upper limit and the first UCI
  • the sum of the number of bits and the number of bits of the second UCI is greater than or equal to the first bit upper limit value, and the first resource region and the second resource region are detected on the uplink shared channel; or
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than or equal to a second bit upper limit value, and the first resource region is detected on an uplink shared channel.
  • the first bit upper limit value and the second bit upper limit value may be the same or different.
  • the network device can detect the first resource region and/or the second resource region according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the method further includes:
  • Sending the first downlink control information where the first downlink control information is used to indicate sending the second UCI and/or resource information for sending the second UCI.
  • the network device may send the first downlink control information to the terminal device, so that the terminal device may determine the first resource region and/or according to the content indicated in the first downlink control information or the receiving time of the first downlink control information. Or the second resource area.
  • detecting, by the uplink shared channel, the second resource region including:
  • the resource information of the second UCI includes: information of an uplink control channel resource, where the uplink control channel resource is used for carrying The second UCI; and/or,
  • the resource information of the second UCI includes: resource information of an uplink control channel, where the uplink control channel resource is used to carry the second UCI, where, according to the resource of the second UCI And detecting the second resource area on the uplink shared channel, including:
  • the resource information of the uplink control channel includes a time domain start position of the resource of the uplink control channel, and detects a time domain start of the second resource region according to a time domain start position of a resource of the uplink control channel. Location; and/or,
  • the resource information of the uplink control channel includes a duration of the resource of the uplink control channel, and the number of symbols of the second resource region is detected according to a duration of the resource of the uplink control channel; and/or,
  • the resource information of the uplink control channel includes a time domain end position of the resource of the uplink control channel, and detects a time domain end position of the second resource region according to a time domain end position of a resource of the uplink control channel.
  • the time domain start position or the time domain length of the second resource region may be a symbol that avoids a demodulation reference signal (DMRS) or other reference signal.
  • the second resource area may be continuous or non-contiguous in the time domain, which is not limited.
  • the number of symbols of the second resource region may be less than or equal to the duration of the resources of the uplink control channel, or may have a fixed correspondence with the duration of the resources of the uplink control channel.
  • the first downlink control information is received by the N times before the start time of the uplink shared channel, and N is greater than or equal to 0, and the first resource region or the first resource region and the a second resource area, where the first resource area is further used to map the second control information; or
  • the M times of the first downlink control information received before or after the start time of the uplink shared channel, M is greater than or equal to 0, and the second resource region is determined.
  • the network device sends the first downlink control information to the terminal device, so that the terminal device may determine the second resource region based on the content indicated in the first downlink control information, or may be based on the first downlink control.
  • the receiving time of the information determines the first resource area and/or the second resource area.
  • detecting, by the uplink shared channel, the first resource area and/or the second resource area detecting, by the uplink shared channel, the first resource area and/or the second resource area
  • the network device may continue to detect the second resource region on the uplink shared channel based on the first resource region.
  • detecting the second resource area on the uplink shared channel according to the first resource area including:
  • the second resource region is different from the first resource region in a time domain, and a frequency domain of the first resource region is at least partially identical to a frequency domain of the second resource region.
  • the frequency domain of the first resource region and the second resource region may be partially the same or may be all the same.
  • the method further includes:
  • determining the second mapping manner includes:
  • the number of bits of the first UCI is greater than the third bit upper limit, and determining that the second mapping manner is different from the first mapping manner;
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than the fourth bit upper limit, and the second mapping mode is determined to be the same as the first mapping mode;
  • the number of bits of the first UCI is less than a fifth bit upper limit value, and a sum of a bit number of the first UCI and a bit number of the second UCI is greater than or equal to the fifth bit upper limit value, determining the first
  • the partial information of the second UCI is mapped in the first resource region in the first mapping manner, and the information of the second UCI except the partial information is mapped in the second mapping manner in the second mapping manner. In the resource area.
  • the third bit upper limit value, the fourth bit upper limit value, and the fifth bit upper limit value are the same or different.
  • the network device may determine the first mapping mode and/or the second mapping mode according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the first UCI mapping is aligned with a start symbol position of the uplink shared channel and a start symbol position of an uplink control channel for carrying the first UCI, where the first UCI is mapped. Avoid or circumvent demodulation reference signals; or,
  • the second UCI mapping is aligned with a start symbol position of the uplink shared channel and a start symbol position of an uplink control channel for carrying the second UCI, and the second UCI avoids or avoids a solution when mapping Adjust the reference signal.
  • the starting symbol of the UCI mapping on the PUSCH is not earlier than the starting symbol originally allocated to the PUCCH used to carry the UCI.
  • a terminal device for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the terminal device comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect described above.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a terminal device comprising a processor, a memory, and a transceiver.
  • the processor is coupled to the memory and the transceiver.
  • the memory is for storing instructions for the processor to execute, and the transceiver is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a network device comprising a processor, a memory, and a transceiver.
  • the processor is coupled to the memory and the transceiver.
  • the memory is for storing instructions for the processor to execute, and the transceiver is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a computer readable storage medium storing a program causing a terminal device to perform the above-described first aspect, and any one of its various implementations, transmitting control information method.
  • a computer readable storage medium storing a program causing a network device to perform the second aspect described above, and any one of its various implementations for transmitting control information method.
  • a communication chip in which instructions are stored which, when run on a terminal device, cause the communication chip to perform the method of any of the first aspect or the first aspect of the first aspect.
  • a communication chip in which instructions are stored which, when run on a network device, cause the communication chip to perform the method of any of the second aspect or the second aspect of the second aspect.
  • a communication system comprising the terminal device in any one of the possible implementations of the third aspect or the third aspect, and the possible implementation manner of any one of the fourth aspect or the fourth aspect
  • the network device in the possible implementation manner of any of the fifth aspect or the fifth aspect, and the network device in any one of the sixth aspect or the sixth aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first aspect described above or any of its possible implementations.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the second aspect described above or any of its possible implementations.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic diagram of a scenario in which an embodiment of the present application is applied.
  • FIG. 3 is a schematic interaction diagram of a method of transmitting control information according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an example in accordance with an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another example in accordance with an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another example in accordance with an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another example in accordance with an embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another example in accordance with an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another example in accordance with an embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another example in accordance with an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another example in accordance with an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 14 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a structural block diagram of a network device according to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time division duplex
  • NR 5G new radio
  • OFDM orthogonal frequency division multiplexing
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110, a radio access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the radio access network device by means of a wireless connection, and the radio access network device is connected to the core network device by wireless or wired.
  • the core network device and the wireless access network device may be independent physical devices, or may integrate the functions of the core network device with the logical functions of the wireless access network device on the same physical device, or may be a physical device.
  • the functions of some core network devices and the functions of some wireless access network devices are integrated.
  • the terminal device can be fixed or mobile.
  • FIG. 1 is only a schematic diagram, and other communication devices may be included in the communication system, and may also include a wireless relay device and a wireless backhaul device (not shown in FIG. 1).
  • the embodiment of the present application does not limit the number of core network devices, radio access network devices, and terminal devices included in the mobile communication system.
  • the radio access network device is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station eNodeB, a base station gNB in a 5G mobile communication system, or a base station in a future mobile communication system.
  • the specific technology and the specific device configuration adopted by the radio access network device are not limited in the embodiment of the present application.
  • a radio access network device may also be referred to as a network device.
  • the terminal device may also be referred to as a terminal terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • Radio access network equipment and terminal equipment can be deployed on land, indoors or outdoors, hand-held or on-board; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons and satellites.
  • the application scenarios of the radio access network device and the terminal device are not limited.
  • the embodiments of the present application can be applied to downlink signal transmission, and can also be applied to uplink signal transmission, and can also be applied to device to device (D2D) signal transmission.
  • the transmitting device is a radio access network device, and the corresponding receiving device is a terminal device.
  • the transmitting device is a terminal device, and the corresponding receiving device is a wireless access network device.
  • the transmitting device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the transmission direction of the signal.
  • the radio access network device and the terminal device and the terminal device and the terminal device and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously pass the licensed spectrum and Authorize the spectrum for communication.
  • the radio access network device and the terminal device and the terminal device and the terminal device can communicate through a spectrum of 6G megahertz (GHz) or less, or can communicate through a spectrum of 6 GHz or higher, and can also use a frequency below 6 GHz.
  • the spectrum communicates with the spectrum above 6 GHz.
  • the embodiment of the present application does not limit the spectrum resources used between the radio access network device and the terminal device.
  • the wireless access network device is a network device as an example for description.
  • the network device scheduling resource (such as a downlink grant grant) transmits downlink data information to a terminal device having a non-emergency service (for example, an enhanced mobile broadband (eMBB) service).
  • a non-emergency service for example, an enhanced mobile broadband (eMBB) service.
  • eMBB enhanced mobile broadband
  • the terminal device After receiving the downlink shared channel (for example, the physical downlink shared channel (PDSCH)), the terminal device needs to feed back the channel quality to the network device, and send the uplink control channel to the network device (for example, the physical uplink control channel (physical) Uplink control channel (PUCCH)), the uplink control channel carries feedback information, such as a hybrid automatic repeat request (HARQ) acknowledgement ACK/non-acknowledgement NACK, and confirms downlink data sent on the downlink shared channel. .
  • HARQ hybrid automatic repeat request
  • ACK/non-acknowledgement NACK confirms downlink data sent on the downlink shared channel.
  • HARQ hybrid automatic repeat request
  • HARQ ACK/NACK channel state information
  • collides with feedback information of the eMBB service for example, the emergency service is an ultra reliable and low latency communications (URLLC) service.
  • URLLC ultra reliable and low latency communications
  • FIG. 2 is a schematic diagram of a scenario to which an embodiment of the present application is applied.
  • the network device in FIG. 2 may be the radio access network device 120 in FIG. 1, and the terminal device in FIG. 2 may be the terminal device 130 or the terminal device 140 in FIG. as shown in picture 2:
  • the network device sends data of the non-emergency service to the terminal device.
  • the network device sends data of the emergency service to the terminal device.
  • the network device schedules uplink transmission.
  • the network device may send an uplink grant resource to the terminal device.
  • step S203 may occur between S201 and S202.
  • the terminal device sends uplink control information of the non-emergency service and the emergency service through the uplink shared channel.
  • FIG. 3 shows a schematic interaction diagram of a method 300 of transmitting control information in accordance with an embodiment of the present application.
  • the network device in FIG. 3 may be the radio access network device 120 in FIG. 1
  • the terminal device in FIG. 3 may be the terminal device 130 or the terminal device 140 in FIG.
  • the method 300 includes:
  • the terminal device determines, in an uplink shared channel, a first resource area and/or a second resource area, where the first resource area includes a resource area that is mapped by the first uplink control information UCI in a first mapping manner, and the second resource area And including a resource region that is mapped by the second UCI in a second mapping manner, where the first resource region is different from the second resource region in a time domain and/or a frequency domain.
  • the network device detects the first resource area and/or the second resource area on the uplink shared channel.
  • the uplink shared channel may be a physical uplink shared channel PUSCH.
  • the first resource area and/or the second resource area may be predefined or determined by means of RRC configuration, which is not limited by the embodiment of the present application.
  • the first resource area and the second resource area may be the same in the time domain, different in the frequency domain, or different in the time domain, at least partially in the frequency domain, or in the time domain. Different from the frequency domain, the embodiment of the present application does not limit this.
  • the uplink control information UCI may include channel state information and/or feedback information, such as A-CSI, HARQ ACK/NACK, channel quality indicator (CQI), precoding.
  • Information such as a prediction matrix indicator (PMI), a precoding type indicator (PTI), and a rank indication (RI).
  • the A-CSI is mainly used by the terminal device to tell the network device the quality of the downlink channel, so that the network device performs downlink scheduling based on the downlink channel quality.
  • CQI is used to select a modulation and coding scheme.
  • the PMI is used to select a multiple-input multiple-output (MIMO) codebook.
  • PTI is used to indicate the precoding type.
  • the RI is used to indicate the rank of the antenna matrix in multi-antenna MIMO.
  • the first mapping manner and the second mapping manner may be the same or different.
  • the mapping mode may be a rate-matching method or a puncture mode, which is not limited.
  • the second UCI may be mapped irregularly or may be mapped by a certain rule.
  • the terminal device sends the uplink shared channel, where the uplink shared channel carries the first UCI and the second UCI.
  • the network device receives the shared channel.
  • the terminal device can send the first UCI and the second on the same uplink shared channel by determining the first resource region and/or the second resource region on the uplink shared channel and transmitting the uplink shared channel.
  • UCI helps to meet the communication needs of users when there is a sudden or emergency service.
  • the first resource area and the second resource area may be agreed by the network device and the terminal device, which is not limited thereto.
  • the number of bits of the first UCI is greater than or equal to a first bit upper limit, or the number of bits of the first UCI is less than the first bit upper limit and the number of bits of the first UCI is The sum of the number of bits of the second UCI is greater than or equal to the first bit upper limit value, and the terminal device determines the first resource region and the second resource region on the uplink shared channel.
  • the network device detects the first resource area and the second resource area on the uplink shared channel.
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than or equal to a second bit upper limit, and the terminal device determines the first resource region on an uplink shared channel.
  • the network device detects the first resource area on the uplink shared channel.
  • the first bit upper limit value is an upper limit value of a number of bits that the first resource region can carry.
  • the first bit upper limit value may be predefined or pre-configured.
  • the second bit upper limit value is an upper limit value of a number of bits that the first resource region can carry.
  • the second bit upper limit value may be predefined or pre-configured.
  • the first bit upper limit value and the second bit upper limit value may be the same or different, which is not limited thereto.
  • the first bit upper limit value and the second bit upper limit value may be configured by using high layer signaling or physical layer signaling, which is not specifically limited.
  • the number of bits of the first UCI is greater than or equal to the first bit upper limit, and all resource regions of the first resource region are used to transmit the first UCI, and the terminal device further needs to determine the uplink shared channel.
  • the number of bits of the first UCI is less than the first bit upper limit value, and the sum of the number of bits of the first UCI and the number of bits of the second UCI is greater than or equal to the first bit upper limit value, the first resource region
  • the first UCI may be transmitted, and the resource area other than the resource for transmitting the first UCI in the first resource area may be used to transmit the second UCI.
  • the terminal device further needs to determine the second resource area in the uplink shared channel. Transmit the second UCI. Therefore, the terminal device can determine the first resource region and the second resource region on the uplink shared channel.
  • the first resource region may satisfy the transmission of the first UCI and the second UCI, and the terminal device only needs to be in the The uplink shared channel may determine the first resource region without determining the second resource region.
  • the terminal device may determine the first resource region and/or the second resource region according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the method 300 further includes:
  • the network device sends first downlink control information (DCI), where the first downlink control information is used to indicate sending the second UCI and/or resource information for sending the second UCI.
  • DCI downlink control information
  • the terminal device receives the first downlink control information.
  • the terminal device may determine the second resource region based on the content indicated in the first downlink control information, or determine the first resource region and/or the first resource region based on the receiving time of the first downlink control information. Two resource areas. These conditions are described in detail below.
  • the terminal device may determine, according to the resource information of the second UCI, the second resource region in the uplink shared channel, where The resource information of the second UCI may include: information about an uplink control channel resource, where the uplink control channel resource is used to carry the second UCI.
  • the terminal device determines the second resource region on the uplink shared channel according to the resource information of the second UCI, including:
  • the resource information of the uplink control channel (such as the PUCCH) includes a time domain start position of the resource of the uplink control channel, and the terminal device determines the second resource area according to the time domain start position of the resource of the uplink control channel. Time domain start position; and/or,
  • the resource information of the uplink control channel includes a duration of the resource of the uplink control channel, and the number of symbols of the second resource region is determined according to a duration of the resource of the uplink control channel; and/or,
  • the resource information of the uplink control channel includes a time domain end position of the resource of the uplink control channel, and the time domain end position of the second resource area is determined according to a time domain end position of the resource of the uplink control channel.
  • the number of symbols of the second resource region may be less than or equal to the duration of the resources of the uplink control channel, or may have a fixed correspondence with the duration of the resources of the uplink control channel.
  • the number of symbols in the second resource region may be equal to the duration of the resources of the uplink control channel minus X, where X may be a predefined number of symbols.
  • the time domain start position or the time domain length of the second resource region may be a symbol that avoids a demodulation reference signal (DMRS) or other reference signal.
  • the second resource area may be continuous or non-contiguous in the time domain, which is not limited.
  • the terminal device may determine the second resource region according to content specifically included in the resource information of the uplink control channel.
  • the terminal device may determine a time domain location of the second resource region according to the receiving time of the first downlink control information.
  • the time domain location of the second resource region may be a time domain start location and/or a time domain end location of the second resource region.
  • the receiving time of the first downlink control information may be a receiving time of a downlink control channel where the first downlink control information is located.
  • A is taken as an example.
  • A may be the first downlink control information or the downlink control channel where the first downlink control information is located.
  • the receiving time of A may be the starting time of receiving A, or may be the ending time of receiving A, or may be the starting symbol of A or the ending symbol of A, which is not limited.
  • the time domain start location of the second resource region may be the same as the time domain start location of the resource of the uplink control channel.
  • the time domain location of the second resource region may also be after the time domain start location of the resource of the uplink control channel, where the first available data symbol carrying the uplink shared channel may serve as the second resource.
  • the time domain start position of the zone may be the same as the time domain start location of the resource of the uplink control channel.
  • the terminal device may determine the time domain location of the second resource region according to the receiving time of the first downlink control information.
  • the terminal device determines the specific location of the second resource region according to the content indicated by the first downlink control information or the receiving time of the first downlink control information.
  • the specific situation in which the terminal device determines the first resource region and/or the second resource region according to the receiving time of the first downlink control information will be described below.
  • determining, by the uplink shared channel, the first resource area and/or the second resource area includes:
  • the receiving time of the first downlink control information is N symbols before the start time of the uplink shared channel, N is greater than or equal to 0, the terminal device determines the first resource region, or determines the first resource region and the second resource region.
  • the first resource region is further configured to map the second control information.
  • the receiving time of the first downlink control information is N symbols before the start time of the uplink shared channel, and N is greater than or equal to 0, and the second uplink control information is available on the first resource region.
  • the first terminal control information and the second uplink control information are transmitted by the terminal device on the first resource area.
  • the first resource region can only transmit part of the information of the second uplink control information.
  • the terminal device also needs to determine the second resource region, so as to facilitate Transmitting remaining information of the second uplink control information.
  • the first resource area determined by the terminal device is used not only to transmit the first uplink control information, but also to transmit the second uplink control information.
  • the partial area of the first resource area is used to transmit the first uplink control information, and the first resource area is removed from the first uplink control information.
  • the resource area and the second resource area are used to transmit the second uplink control information.
  • the terminal device determines the second resource region.
  • the receiving time of the first downlink control information is M symbols before or after the start time of the uplink shared channel, and the second uplink control information is not available for transmission on the first resource region. Then, the terminal device needs to determine that the second resource region is used to transmit the second uplink control information.
  • the second resource area determined by the terminal device is used to transmit the second uplink control information.
  • all areas of the first resource area are used to transmit the first uplink control information.
  • the terminal device may determine the second resource region based on the specific content indicated in the first downlink control information, or determine the first resource region and/or the second resource region based on the receiving time of the first downlink control information.
  • the terminal device determines the second resource region based on the first resource region.
  • determining, by the uplink shared channel, the first resource area and/or the second resource area including:
  • determining, according to the first resource region, the second resource region on the uplink shared channel including:
  • the time domain location of the second resource region is all or part of the time domain location of the first resource region.
  • the frequency domain location of the second resource region may be all or part of the frequency domain location of the first resource region.
  • the method 300 may further include:
  • determining the second mapping manner includes:
  • the number of bits of the first UCI is greater than the third bit upper limit, and determining that the second mapping manner is different from the first mapping manner;
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than the fourth bit upper limit, and the second mapping mode is determined to be the same as the first mapping mode;
  • the number of bits of the first UCI is less than a fifth bit upper limit value, and a sum of a bit number of the first UCI and a bit number of the second UCI is greater than or equal to the fifth bit upper limit value, determining the first
  • the partial information of the second UCI is mapped in the first resource region in the first mapping manner, and the information of the second UCI except the partial information is mapped in the second mapping manner in the second mapping manner. In the resource area.
  • the third bit upper limit value is an upper limit value of a number of bits that can be carried by the first resource region.
  • the third bit upper limit value can be predefined or pre-configured.
  • the fourth bit upper limit value is an upper limit value of a number of bits that the first resource region can bear.
  • the fourth bit upper limit value may be predefined or pre-configured.
  • the fifth bit upper limit value is an upper limit value of the number of bits that the first resource region can carry.
  • the fifth bit upper limit value may be predefined or pre-configured.
  • the third bit upper limit value, the fourth bit upper limit value, and the fifth bit upper limit value are the same or different, which is not limited thereto.
  • the number of bits of the first UCI is greater than or equal to the third bit upper limit
  • the terminal device maps the first UCI in the first resource region by using a first mapping manner, and adopts a second mapping manner.
  • the second UCI is mapped in the second resource region, where the first mapping manner is different from the second mapping manner.
  • the terminal device maps the first UCI and the second UCI to the first resource by using the same mapping manner.
  • the area, that is, the first mapping mode and the second mapping mode are the same.
  • the number of bits of the first UCI is less than the fifth bit upper limit, and the sum of the number of bits of the first UCI and the number of bits of the second UCI is greater than or equal to the fifth bit upper limit, and the terminal device adopts the first mapping manner.
  • the partial information of the first UCI and the second UCI is mapped in the first resource region, and the information except the partial information of the second UCI is mapped to the second resource region by using the second mapping manner.
  • the terminal device may determine the first mapping mode and/or the second mapping mode according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the network device may determine the second mapping mode in a manner used by the foregoing terminal device.
  • the network device may determine the second mapping mode in a manner used by the foregoing terminal device.
  • the timing of determining the second mapping manner is not limited, and may be after determining the second resource region, before determining the second resource region.
  • FIG. 4 shows a schematic diagram of an example in accordance with an embodiment of the present application.
  • the terminal device generates HARQ-ACK1 after receiving PDSCH_1 demodulation, so as to be fed back to the network device.
  • the terminal device generates HARQ-ACK2 after receiving the PDSCH_2 demodulation, so as to be fed back to the network device.
  • the HARQ-ACK2 is carried in a short physical uplink control channel (s-PUCCH). If the time domain starting location of the HARQ-ACK2 generated by the terminal device is after the first resource region carrying the HARQ ACK1, the terminal device determines that the HARQ-ACK2 is mapped in the second resource region in a puncturing manner.
  • s-PUCCH short physical uplink control channel
  • the HARQ-ACK1 is mapped in the first resource region in a rate matching manner.
  • the second resource region begins with the first available symbol after HARQ-ACK2 is generated.
  • the first resource region and the second resource region are in the same PUSCH.
  • the time domain of the first resource area and the second resource area are different, and the frequency domain parts are the same.
  • HARQ-ACK1 is indicated by a white frame
  • HARQ-ACK2 is represented by a black frame.
  • FIG. 5 shows a schematic diagram of another example in accordance with an embodiment of the present application.
  • the terminal device generates HARQ-ACK1 after receiving PDSCH_1 demodulation, so as to be fed back to the network device.
  • the terminal device generates HARQ-ACK2 after receiving the PDSCH_2 demodulation, so as to be fed back to the network device. If the time domain starting position of the HARQ-ACK2 generated by the terminal device is in the first resource region carrying the HARQ-ACK1, overlapping with the starting location of the first resource region, and the first resource region has been occupied by the HARQ-ACK1, then The terminal device determines that the HARQ-ACK2 is mapped in the second resource region in a puncturing manner.
  • the HARQ-ACK1 is mapped in the first resource region in a rate matching manner.
  • the first resource region and the second resource region are in the same PUSCH.
  • the time domain of the first resource area and the second resource area are different, and the frequency domain parts are the same.
  • HARQ-ACK1 is indicated by a white frame
  • HARQ-ACK2 is represented by a black frame.
  • FIG. 6 shows a schematic diagram of still another example in accordance with an embodiment of the present application. As shown in FIG. 6, the difference from FIG. 5 is that partial information of HARQ-ACK1 and HARQ-ACK2 is mapped in the first resource region in a rate matching manner. Other information of HARQ-ACK2 is mapped in the second resource area in a punctured manner.
  • the uplink HARQ information of the terminal device can be fully fed back, so that the network device completely grasps the receiving quality of the downlink data.
  • the white box indicates HARQ-ACK1
  • the black box indicates HARQ-ACK2.
  • FIG. 7 shows a schematic diagram of another example in accordance with an embodiment of the present application.
  • the time domain starting position of the HARQ-ACK2 generated by the terminal device is in the first resource region carrying the HARQ-ACK1, overlapping with the starting location of the first resource region, and the first resource region is not HARQ.
  • - ACK1 is full, and the sum of the number of bits satisfying HARQ-ACK1 and the number of bits of HARQ-ACK2 is less than or equal to the number of bits that can be carried by the first resource region, and the terminal device determines that both HARQ-ACK1 and HARQ-ACK2 are rate matched.
  • the mode is mapped in the first resource area.
  • the HARQ-ACK1 and HARQ-ACK2 mappings have the same time domain in the first resource region, and the frequency domain is different.
  • the white box indicates HARQ-ACK1
  • the black box indicates HARQ-ACK2.
  • the HARQ-ACK2 may be mapped to a resource region to which the HARQ-ACK1 is not mapped in the first resource region.
  • the HARQ-ACK1 and HARQ-ACK2 mappings have the same time domain portion in the first resource region, and the frequency domain portions are the same.
  • the terminal device helps to meet the communication requirements when the user has a burst service or an emergency service, and increases the cell coverage, so that the network device completely grasps the downlink data.
  • the quality of reception
  • the first UCI mapping is aligned with a start symbol position of the uplink shared channel and a start symbol position of an uplink control channel for carrying the first UCI, where the first UCI is mapped. Avoid or circumvent demodulation reference signals; or,
  • the second UCI mapping is aligned with a start symbol position of the uplink shared channel and a start symbol position of an uplink control channel for carrying the second UCI, and the second UCI avoids or avoids a solution when mapping Adjust the reference signal.
  • the starting symbol of the UCI mapping on the PUSCH is not earlier than the starting symbol originally allocated to the PUCCH used to carry the UCI.
  • mapping of the first UCI and the second UCI in the above shared channel is applicable to the first resource region and the second resource region described above.
  • alignment of the starting symbol position also applies.
  • the demodulation reference signal includes a DMRS signal and a Phase-tracking reference (PT-RS).
  • PT-RS Phase-tracking reference
  • the UCI includes HARQ-ACK and CSI
  • the mapping of the UCI in the uplink shared channel may include the following manners:
  • One way is to perform HARQ-ACK first mapping and CSI post mapping (it should be understood that the mapping order of HARQ-ACK and CSI is not limited herein). Among them, the HARQ-ACK needs to be avoided when mapping CSI. Moreover, both the HARQ-ACK mapping and the CSI mapping need to circumvent the above demodulation reference signal. This will be described with reference to the examples in FIGS. 8 and 9. For example, in FIG. 8, the PUCCH carrying the HARQ-ACK arrives first, and the start symbol of the PUCCH carrying the HARQ-ACK corresponds to the location where the DMRS is carried on the PUSCH, and the starting position of the HARQ-ACK mapped to the PUSCH is DMRS. The first symbol after the end.
  • the start symbol mapped by the CSI on the PUSCH is aligned with the start symbol of the PUCCH carrying the CSI.
  • the PUCCH carrying the CSI arrives first, and the start symbol of the CSI mapping on the PUSCH is aligned with the start symbol of the PUCCH carrying the CSI, and the HARQ-ACK maps the start symbol on the PUSCH and carries the HARQ-
  • the start symbol of the PUCCH of the ACK is aligned.
  • Another way is to perform HARQ-ACK first mapping and CSI post mapping, where the CSI mapped symbol is immediately after the HARQ-ACK, and both the HARQ-ACK mapping and the CSI mapping need to circumvent the above demodulation reference signal.
  • the unmapped bits may be directly discarded, or the unmapped bits may be rotated to the beginning of the mappable area for mapping. limited.
  • the examples in Figures 10 and 11 are described here.
  • the PUCCH carrying the CSI arrives first, followed by the PUCCH carrying the HARQ-ACK, the CSI is not mapped first, the HARQ-ACK priority mapping, and the HARQ-ACK maps the start symbol and the bearer HARQ on the PUSCH.
  • the start symbol of the PUCCH of the ACK is aligned.
  • the CSI starts mapping. Until the resource area allocated for the uplink control information on the PUSCH is used up.
  • the PUCCH carrying the CSI arrives first, followed by the PUCCH carrying the HARQ-ACK, the CSI is not mapped first, the HARQ-ACK priority mapping, and the HARQ-ACK maps the start symbol and the bearer HARQ on the PUSCH.
  • the CSI starts mapping.
  • the resource area for carrying the uplink control information is configured to be used on the PUSCH, the CSI has no mapped bits, and the bits are rotated to the start position mapping on the PUSCH for carrying the uplink control information resource region.
  • FIG. 8 to FIG. 11 are only for facilitating the understanding of the embodiments of the present application, and the embodiments of the present application are not limited to the specific scenarios illustrated. It is apparent that those skilled in the art can make various modifications and changes in the embodiments according to the examples of FIG. 8 to FIG. 11. Such modifications or variations are also within the scope of the embodiments of the present application.
  • FIG. 12 shows a schematic block diagram of a terminal device 1200 according to an embodiment of the present application.
  • the terminal device 1200 is configured to perform a method or a step corresponding to the foregoing terminal device.
  • each module in the terminal device 1200 may be implemented by software.
  • the terminal device 1200 includes:
  • the processing module 1210 is configured to determine, in the uplink shared channel, the first resource area and/or the second resource area, where the first resource area includes a resource area that is mapped by the first uplink control information UCI in a first mapping manner, and the second The resource area includes a resource area that is mapped by the second UCI in a second mapping manner, where the first resource area is different from the second resource area in a time domain and/or a frequency domain;
  • the transceiver module 1220 is configured to send the uplink shared channel, where the uplink shared channel carries the first UCI and the second UCI.
  • the terminal device 1200 can send the first UCI and the first uplink shared channel by determining the first resource region and/or the second resource region on the uplink shared channel and transmitting the uplink shared channel.
  • UCI helps to meet the communication needs of users when there is a sudden business or emergency business.
  • the first resource area and the second resource area may be the same in the time domain, different in the frequency domain, or different in the time domain, at least partially in the frequency domain, or in the time domain. Different from the frequency domain, the embodiment of the present application does not limit this.
  • the number of bits of the first UCI is greater than or equal to a first bit upper limit, or the number of bits of the first UCI is less than the first bit upper limit and the number of bits of the first UCI is
  • the processing module 1210 is specifically configured to determine the first resource area and the second resource area on the uplink shared channel, where the sum of the number of bits of the second UCI is greater than or equal to the first bit upper limit. or,
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than or equal to the second bit upper limit, and the processing module 1210 is specifically configured to determine the first resource region on the uplink shared channel.
  • the terminal device may determine the first resource region and/or the second resource region according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the transceiver module 1220 is further configured to:
  • first downlink control information where the first downlink control information is used to indicate sending the second UCI and/or resource information for sending the second UCI.
  • processing module 1210 is specifically configured to:
  • the resource information of the second UCI includes: information of an uplink control channel resource, where the uplink control channel resource is used for carrying The second UCI; and/or,
  • the terminal device may determine the second resource region based on the content indicated in the first downlink control information, or determine the first resource region and/or the first resource region based on the receiving time of the first downlink control information. Two resource areas.
  • the resource information of the second UCI includes: resource information of an uplink control channel, where the uplink control channel resource is used to carry the second UCI, and the processing module 1210 is specifically configured to:
  • the resource information of the uplink control channel includes a time domain start position of the resource of the uplink control channel, and determining a time domain start of the second resource region according to a time domain start position of a resource of the uplink control channel. Location; and/or,
  • the resource information of the uplink control channel includes a duration of the resource of the uplink control channel, and the number of symbols of the second resource region is determined according to a duration of the resource of the uplink control channel; and/or,
  • the resource information of the uplink control channel includes a time domain end position of the resource of the uplink control channel, and the time domain end position of the second resource area is determined according to a time domain end position of the resource of the uplink control channel.
  • processing module 1210 is specifically configured to:
  • N Determining the first resource region or the first resource region and the N times, where the receiving time of the first downlink control information is N symbols before the start time of the uplink shared channel, N is greater than or equal to 0 a second resource area, where the first resource area is further used to map the second control information;
  • the M times of the first downlink control information received before or after the start time of the uplink shared channel, M is greater than or equal to 0, and the second resource region is determined.
  • processing module 1210 is specifically configured to:
  • the determining, according to the first resource region, the second resource region on the uplink shared channel includes:
  • the terminal device can determine the time domain of the second resource region, and/or the frequency domain, and/or the number of symbols according to the first resource region.
  • the second resource region is different from the first resource region in a time domain, and a frequency domain of the first resource region is at least partially identical to a frequency domain of the second resource region.
  • processing module 1210 is further configured to:
  • processing module 1210 is specifically configured to:
  • the number of bits of the first UCI is greater than the third bit upper limit, and determining that the second mapping manner is different from the first mapping manner;
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than the fourth bit upper limit, and the second mapping mode is determined to be the same as the first mapping mode;
  • the number of bits of the first UCI is less than a fifth bit upper limit value, and a sum of a bit number of the first UCI and a bit number of the second UCI is greater than or equal to the fifth bit upper limit value, determining the first
  • the partial information of the second UCI is mapped in the first resource region in the first mapping manner, and the information of the second UCI except the partial information is mapped in the second mapping manner in the second mapping manner. In the resource area.
  • the terminal device may determine the first mapping mode and/or the second mapping mode according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the terminal device 1200 may correspond to the terminal device that transmits the control information of the foregoing method embodiment, and the foregoing and other management operations and/or functions of the respective modules in the terminal device 1200 respectively implement the foregoing
  • processing module in the embodiment of the present application may be implemented by a processor, and the transceiver module may be implemented by a transceiver.
  • FIG. 13 shows a schematic block diagram of a network device 1300 in accordance with an embodiment of the present application.
  • the network device 1300 is configured to perform a method or a step corresponding to the foregoing network device.
  • each module in the network device 1300 may be implemented by software.
  • the network device 1300 includes:
  • the processing module 1310 is configured to detect, in the uplink shared channel, the first resource area and/or the second resource area, where the first resource area includes a resource area that is mapped by the first uplink control information UCI in a first mapping manner, and the second The resource area includes a resource area that is mapped by the second UCI in a second mapping manner, where the first resource area is different from the second resource area in a time domain and/or a frequency domain;
  • the transceiver module 1320 is configured to receive the uplink shared channel, where the uplink shared channel carries the first UCI and the second UCI.
  • the network device 1300 by detecting the first resource region and/or the second resource region on the uplink shared channel, and receiving the uplink shared channel, helps the network device to grasp the receiving quality of the downlink data. Helps meet the communication needs of users when there is a sudden business or emergency business.
  • the number of bits of the first UCI is greater than or equal to a first bit upper limit, or the number of bits of the first UCI is less than the first bit upper limit and the number of bits of the first UCI is
  • the processing module 1310 is specifically configured to detect the first resource area and the second resource area on the uplink shared channel, where the sum of the number of bits of the second UCI is greater than or equal to the first bit upper limit. or,
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than or equal to the second bit upper limit, and the processing module 1310 is specifically configured to detect the first resource area on the uplink shared channel.
  • the network device can detect the first resource region and/or the second resource region according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the transceiver module 1320 is further configured to:
  • Sending the first downlink control information where the first downlink control information is used to indicate sending the second UCI and/or resource information for sending the second UCI.
  • processing module 1310 is specifically configured to:
  • the resource information of the second UCI includes: information of an uplink control channel resource, where the uplink control channel resource is used for carrying The second UCI; and/or,
  • the resource information of the second UCI includes: resource information of an uplink control channel, where the uplink control channel resource is used to carry the second UCI, and the processing module 1310 is specifically configured to:
  • the resource information of the uplink control channel includes a time domain start position of the resource of the uplink control channel, and detects a time domain start of the second resource region according to a time domain start position of a resource of the uplink control channel. Location; and/or,
  • the resource information of the uplink control channel includes a duration of the resource of the uplink control channel, and the number of symbols of the second resource region is detected according to a duration of the resource of the uplink control channel; and/or,
  • the resource information of the uplink control channel includes a time domain end position of the resource of the uplink control channel, and detects a time domain end position of the second resource region according to a time domain end position of a resource of the uplink control channel.
  • processing module 1310 is specifically configured to:
  • the first downlink control information is received by the N times before the start time of the uplink shared channel, and N is greater than or equal to 0, and the first resource region or the first resource region and the a second resource area, where the first resource area is further used to map the second control information; or
  • the M times of the first downlink control information received before or after the start time of the uplink shared channel, M is greater than or equal to 0, and the second resource region is determined.
  • the network device sends the first downlink control information to the terminal device, so that the terminal device may determine the second resource region based on the content indicated in the first downlink control information, or may be based on the first downlink control.
  • the receiving time of the information determines the first resource area and/or the second resource area.
  • processing module 1310 is further configured to:
  • processing module 1310 is specifically configured to:
  • the second resource region is different from the first resource region in a time domain, and a frequency domain of the first resource region is at least partially identical to a frequency domain of the second resource region.
  • processing module 1310 is further configured to:
  • processing module 1310 is specifically configured to:
  • the number of bits of the first UCI is greater than the third bit upper limit, and determining that the second mapping manner is different from the first mapping manner;
  • the sum of the number of bits of the first UCI and the number of bits of the second UCI is less than the fourth bit upper limit, and the second mapping mode is determined to be the same as the first mapping mode;
  • the number of bits of the first UCI is less than a fifth bit upper limit value, and a sum of a bit number of the first UCI and a bit number of the second UCI is greater than or equal to the fifth bit upper limit value, determining the first
  • the partial information of the second UCI is mapped in the first resource region in the first mapping manner, and the information of the second UCI except the partial information is mapped in the second mapping manner in the second mapping manner. In the resource area.
  • the network device may determine the first mapping mode and/or the second mapping mode according to the number of bits of the first UCI and the number of bits of the second UCI.
  • the network device 1300 may correspond to the first network device that transmits the control information of the foregoing method embodiment, and the foregoing and other management operations and/or functions of the respective modules in the network device 1300 respectively implement the foregoing
  • processing module in the embodiment of the present application may be implemented by a processor, and the transceiver module may be implemented by a transceiver.
  • FIG. 14 is a structural block diagram of a terminal device 1400 according to an embodiment of the present application.
  • the terminal device 1400 shown in FIG. 14 includes a processor 1401, a memory 1402, and a transceiver 1403.
  • the processor 1401, the memory 1402, and the transceiver 1403 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the processor 1401, the memory 1402, and the transceiver 1403 can be implemented by a chip.
  • the memory 1402 can store program code, and the processor 1401 calls the program code stored in the memory 1402 to implement the corresponding functions of the terminal device.
  • the processor 1401 is configured to:
  • the first resource region includes a resource region that is mapped by the first uplink control information UCI in a first mapping manner
  • the second resource region includes a second UCI a resource region mapped in a second mapping manner, where the first resource region is different from the second resource region in a time domain and/or a frequency domain;
  • the transceiver 1403 And transmitting, by the transceiver 1403, the uplink shared channel, where the uplink shared channel carries the first UCI and the second UCI.
  • the terminal device 1400 may also include other devices such as input devices, output devices, batteries, and the like.
  • the memory 1402 may store some or all of the instructions for performing the method performed by the terminal device in the aforementioned method.
  • the processor 1401 can execute the instructions stored in the memory 1402 to complete the steps performed by the terminal device in the foregoing method in combination with other hardware (for example, the transceiver 1403).
  • other hardware for example, the transceiver 1403
  • FIG. 15 is a structural block diagram of a network device 1500 according to an embodiment of the present application.
  • the network device 1500 shown in FIG. 15 includes a processor 1501, a memory 1502, and a transceiver 1503.
  • the processor 1501, the memory 1502, and the transceiver 1503 communicate with each other through an internal connection path to transfer control and/or data signals.
  • the processor 1501, the memory 1502, and the transceiver 1503 can be implemented by a chip.
  • the memory 1502 can store program code, and the processor 1501 calls the program code stored in the memory 1502 to implement the corresponding functions of the network device.
  • the processor 1501 is configured to:
  • the first resource region includes a resource region that is mapped by the first uplink control information UCI in a first mapping manner
  • the second resource region includes a second UCI a resource region mapped in a second mapping manner, where the first resource region is different from the second resource region in a time domain and/or a frequency domain;
  • the transceiver 1503 Receiving, by the transceiver 1503, the uplink shared channel, where the uplink shared channel carries the first UCI and the second UCI.
  • network device 1500 may also include other devices, such as input devices, output devices, batteries, and the like.
  • the memory 1502 can store some or all of the instructions for performing the method performed by the network device in the aforementioned method.
  • the processor 1501 can execute the instructions stored in the memory 1502 in combination with other hardware (for example, the transceiver 1503) to perform the steps performed by the network device in the foregoing method.
  • other hardware for example, the transceiver 1503
  • the method disclosed in the foregoing embodiment of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like.
  • Programming logic device discrete gate or transistor logic device, discrete hardware component, system chip (SoC), central processor unit (CPU), or network processor (network) Processor, NP
  • SoC system chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • PLD programmable logic device
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc.
  • RAM random access memory
  • ROM read-only memory
  • programmable read only memory or an electrically erasable programmable memory
  • register etc.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and combines the hardware to complete the steps of the above method.
  • the network device chip implements the functions of the network device in the foregoing method embodiment.
  • the network device chip receives the uplink shared channel and uplink data to other modules in the network device, such as a radio frequency module or an antenna.
  • the uplink shared channel and the downlink data are sent by the terminal device to the network device.
  • the terminal device chip When the embodiment of the present application is applied to a terminal device chip, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip sends the uplink shared channel and downlink data from other modules in the terminal device, such as a radio frequency module or an antenna.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed herein may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory ROM, a random access memory RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输控制信息的方法、终端设备和网络设备,该方法包括:在上行共享信道确定第一资源区域和/或第二资源区域,该第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,该第二资源区域包括第二UCI以第二映射方式映射的资源区域,该第一资源区域与该第二资源区域的在时域和/或频域上不同;发送该上行共享信道,该上行共享信道承载该第一UCI和该第二UCI。本申请实施例的传输控制信息的方法,有助于满足用户存在突发业务或紧急业务时的通信需求。

Description

传输控制信息的方法、终端设备和网络设备
本申请要求于2017年11月15日提交中国专利局、申请号为201711132220.X、申请名称为“传输控制信息的方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输控制信息的方法、终端设备和网络设备。
背景技术
为了应对未来***性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信***应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信***定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。URLLC业务对时延要求极高,不考虑可靠性的情况下,传输时延要求在0.5毫秒(millisecond,ms)以内;在达到99.999%的可靠性的前提下,传输时延要求在1ms以内。
在长期演进(long term evolution,LTE)***中,最小的时间调度单元为一个1ms时间长度的传输时间间隔(transmission time interval,TTI)。为了满足URLLC业务的传输时延需求,无线空口的数据传输可以使用更短的时间调度单元,例如,使用迷你时隙(mini-slot)或更大的子载波间隔的时隙作为最小的时间调度单元。其中,一个mini-slot包括一个或多个时域符号,这里的时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。对于子载波间隔为15千赫兹(kilohertz,kHz)的一个时隙,包括6个或7个时域符号,对应的时间长度为0.5ms;对于子载波间隔为60kHz的一个时隙,对应的时间长度则缩短为0.125ms。由于URLLC业务的数据具有突发性和随机性,为了提高***资源利用率,基站通常不会为URLLC业务的下行数据传输预留资源。当URLLC业务数据到达基站时,如果此时没有空闲的时频资源,基站为了满足URLLC业务的超短时延需求,无法等待将本次调度的eMBB业务数据传输完成之后再对URLLC业务数据进行调度。基站采用抢占(preemption)的方式,为URLLC业务数据分配资源。
终端设备在收到基站发送的eMBB业务或URLLC业务会向基站反馈控制信息,以告知业务是否传输成功。目前,尚没有方案能够解决eMBB业务和URLLC业务共存时,如何反馈控制信息的方案,因此亟需提出一种技术方案来解决。
发明内容
本申请提供一种传输控制信息的方法、终端设备和网络设备,能够在上行共享信道映射非紧急业务的上行控制信息和紧急业务的上行控制信息,有助于满足用户存在突发业务或紧急业务时的通信需求。
第一方面,提供了一种传输控制信息的方法,包括:
在上行共享信道确定第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
发送所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
在本申请实施例中,终端设备通过在上行共享信道上确定第一资源区域和/或第二资源区域,并发送所述上行共享信道,能够在同一上行共享信道上发送第一UCI和第二UCI,有助于满足用户存在突发业务或紧急业务时的通信需求。
可选地,所述第一资源区域与所述第二资源区域可以是时域上相同,频域上不同,也可以是时域上不同,频域上至少部分相同,也可以是时域上不同,频域上不同,本申请实施例对此不作限定。
可选地,所述上行共享信道可以是物理上行共享信道PUSCH。
可选地,在本申请实施例中,上行控制信息UCI可以包括信道状态信息和/或反馈信息,比如,A-CSI,HARQ ACK/NACK,信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)、分集指示(rank indication,RI)等信息。
在一些可能的实现方式中,所述第一UCI的比特数目大于或等于第一比特上限值,或者,所述第一UCI的比特数目小于所述第一比特上限值且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第一比特上限值,在所述上行共享信道确定所述第一资源区域和所述第二资源区域;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和小于或等于第二比特上限值,在上行共享信道确定所述第一资源区域。
可选地,所述第一比特上限值与所述第二比特上限值可以相同或不同。
因此,终端设备可以根据第一UCI的比特数目和第二UCI的比特数目确定第一资源区域和/或第二资源区域。
在一些可能的实现方式中,所述方法还包括:
接收第一下行控制信息(downlink control information,DCI),所述第一下行控制信息用于指示发送所述第二UCI和/或用于发送第二UCI的资源信息。
在一些可能的实现方式中,所述在所述上行共享信道确定所述第二资源区域,包括:
根据所述第二UCI的资源信息,在所述上行共享信道确定所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道资源的信息,所述上行控制信道资源用于承载所述第二UCI;和/或,
根据所述第一下行控制信息的接收时间,确定所述第二资源区域的时域位置。
在本申请实施例中,终端设备可以基于第一下行控制信息中指示的内容,确定第二资源区域,也可以基于第一下行控制信息的接收时间,确定第一资源区域和/或第二资源区 域。
在一些可能的实现方式中,所述第二UCI的资源信息包括:上行控制信道的资源信息,所述上行控制信道资源用于承载所述第二UCI,其中,根据所述第二UCI的资源信息,在所述上行共享信道确定所述第二资源区域,包括:
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域起始位置,根据所述上行控制信道的资源的时域起始位置,确定所述第二资源区域的时域起始位置;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的持续时间,根据所述上行控制信道的资源的持续时间,确定所述第二资源区域的符号数目;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域结束位置,根据所述上行控制信道的资源的时域结束位置,确定所述第二资源区域的时域结束位置。
可选地,第二资源区域的时域起始位置或时域长度,可以是避开解调参考信号(demodulation reference signal,DMRS)或者其他参考信号所在的符号。可选地,第二资源区域在时域上可以是连续的,也可以是非连续的,对此不作限定。
可选地,第二资源区域的符号数目可以小于或等于上行控制信道的资源的持续时间,也可以与上行控制信道的资源的持续时间具有固定的对应关系。
在一些可能的实现方式中,在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,包括:
所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,确定所述第一资源区域或者所述第一资源区域和所述第二资源区域,所述第一资源区域还用于映射所述第二控制信息;或者,
所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的M个符号,M大于或等于0,确定所述第二资源区域。
在一些可能的实现方式中,在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,包括:
在所述上行共享信道确定所述第一资源区域;
根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域。
在一些可能的实现方式中,所述根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域,包括:
根据所述第一资源区域的时域位置,确定所述第二资源区域的时域位置;和/或,
根据所述第一资源区域的频域位置,确定所述第二资源区域的频域位置;和/或,
根据所述第一资源区域的符号数目,确定所述第二资源区域的时域起始位置和/或符号数目。
因此,终端设备可以根据第一资源区域确定第二资源区域的时域,和/或频域,和/或符号数目。
在一些可能的实现方式中,所述第二资源区域与所述第一资源区域在时域上不同,且所述第一资源区域的频域与所述第二资源区域的频域至少部分相同。
这里,第一资源区域与第二资源区域的频域可以部分相同,也可以全部相同。
在一些可能的实现方式中,所述方法还包括:
确定所述第二映射方式。
在一些可能的实现方式中,确定所述第二映射方式,包括:
所述第一UCI的比特数目大于第三比特上限值,确定所述第二映射方式与所述第一映射方式不同;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和,小于第四比特上限值,确定所述第二映射方式与所述第一映射方式相同;或者,
所述第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第五比特上限值,确定所述第二UCI的部分信息以所述第一映射方式映射在所述第一资源区域中,且所述第二UCI的除所述部分信息外的信息以所述第二映射方式映射在所述第二资源区域中。
可选地,上述第三比特上限值、第四比特上限值和第五比特上限值之间相同或不同。
因此,终端设备可以根据第一UCI的比特数目和第二UCI的比特数目确定第一映射方式和/或第二映射方式。
可选地,所述第一UCI映射在所述上行共享信道的起始符号位置与用于承载所述第一UCI的上行控制信道的起始符号位置对齐,其中,所述第一UCI在映射时避开或规避解调参考信号;或者,
所述第二UCI映射在所述上行共享信道的起始符号位置与用于承载所述第二UCI的上行控制信道的起始符号位置对齐,所述第二UCI在映射时避开或规避解调参考信号。
因此,UCI映射在PUSCH上的起始符号不早于原分配给用于承载该UCI的PUCCH的起始符号。
第二方面,提供了一种传输控制信息的方法,包括:
在上行共享信道检测第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
接收所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
在本申请实施例中,网络设备通过在上行共享信道上检测第一资源区域和/或第二资源区域,并接收所述上行共享信道,有助于网络设备掌握下行数据的接收质量,有助于满足用户存在突发业务或紧急业务时的通信需求。
可选地,所述第一资源区域与所述第二资源区域可以是时域上相同,频域上不同,也可以是时域上不同,频域上至少部分相同,也可以是时域上不同,频域上不同,本申请实施例对此不作限定。
可选地,所述上行共享信道可以是物理上行共享信道PUSCH。
可选地,在本申请实施例中,上行控制信息UCI可以包括信道状态信息和/或反馈信息,比如,A-CSI,HARQ ACK/NACK,信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)、分集指示(rank indication,RI)等信息。
在一些可能的实现方式中,所述第一UCI的比特数目大于或等于第一比特上限值,或者,所述第一UCI的比特数目小于所述第一比特上限值且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第一比特上限值,在所述上行共享信道检测所述第 一资源区域和所述第二资源区域;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和小于或等于第二比特上限值,在上行共享信道检测所述第一资源区域。
可选地,所述第一比特上限值与所述第二比特上限值可以相同或不同。
因此,网络设备可以根据第一UCI的比特数目和第二UCI的比特数目检测第一资源区域和/或第二资源区域。
在一些可能的实现方式中,所述方法还包括:
发送第一下行控制信息,所述第一下行控制信息用于指示发送所述第二UCI和/或用于发送第二UCI的资源信息。
这里,网络设备可以向终端设备发送第一下行控制信息,以便于终端设备可以根据第一下行控制信息中指示的内容或第一下行控制信息的接收时间,确定第一资源区域和/或第二资源区域。
在一些可能的实现方式中,在所述上行共享信道检测所述第二资源区域,包括:
根据所述第二UCI的资源信息,在所述上行共享信道检测所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道资源的信息,所述上行控制信道资源用于承载所述第二UCI;和/或,
根据所述第一下行控制信息的接收时间,检测所述第二资源区域的时域位置。
在一些可能的实现方式中,所述第二UCI的资源信息包括:上行控制信道的资源信息,所述上行控制信道资源用于承载所述第二UCI,其中,根据所述第二UCI的资源信息,在所述上行共享信道检测所述第二资源区域,包括:
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域起始位置,根据所述上行控制信道的资源的时域起始位置,检测所述第二资源区域的时域起始位置;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的持续时间,根据所述上行控制信道的资源的持续时间,检测所述第二资源区域的符号数目;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域结束位置,根据所述上行控制信道的资源的时域结束位置,检测所述第二资源区域的时域结束位置。
可选地,第二资源区域的时域起始位置或时域长度,可以是避开解调参考信号(demodulation reference signal,DMRS)或者其他参考信号所在的符号。可选地,第二资源区域在时域上可以是连续的,也可以是非连续的,对此不作限定。
可选地,第二资源区域的符号数目可以小于或等于上行控制信道的资源的持续时间,也可以与上行控制信道的资源的持续时间具有固定的对应关系。
在一些可能的实现方式中,在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,包括:
所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,检测所述第一资源区域或者所述第一资源区域和所述第二资源区域,所述第一资源区域还用于映射所述第二控制信息;或者,
所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的M个符号,M大于或等于0,确定所述第二资源区域。
在本申请实施例中,网络设备向终端设备发送第一下行控制信息,使得终端设备可以 基于第一下行控制信息中指示的内容,确定第二资源区域,也可以基于第一下行控制信息的接收时间,确定第一资源区域和/或第二资源区域。
在一些可能的实现方式中,在所述上行共享信道检测所述第一资源区域和/或所述第二资源区域,包括:
在所述上行共享信道检测所述第一资源区域;
根据所述第一资源区域,在所述上行共享信道检测所述第二资源区域。
因此,网络设备在检测完第一资源区域后,可以基于第一资源区域,在上行共享信道继续检测第二资源区域。
在一些可能的实现方式中,根据所述第一资源区域,在所述上行共享信道检测所述第二资源区域,包括:
根据所述第一资源区域的时域位置,检测所述第二资源区域的时域位置;和/或,
根据所述第一资源区域的频域位置,检测所述第二资源区域的频域位置;和/或,
根据所述第一资源区域的符号数目,检测所述第二资源区域的时域起始位置和/或符号数目。
在一些可能的实现方式中,所述第二资源区域与所述第一资源区域在时域上不同,且所述第一资源区域的频域与所述第二资源区域的频域至少部分相同。
这里,第一资源区域与第二资源区域的频域可以部分相同,也可以全部相同。
在一些可能的实现方式中,所述方法还包括:
确定所述第二映射方式。
在一些可能的实现方式中,确定所述第二映射方式,包括:
所述第一UCI的比特数目大于第三比特上限值,确定所述第二映射方式与所述第一映射方式不同;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和,小于第四比特上限值,确定所述第二映射方式与所述第一映射方式相同;或者,
所述第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第五比特上限值,确定所述第二UCI的部分信息以所述第一映射方式映射在所述第一资源区域中,且所述第二UCI的除所述部分信息外的信息以所述第二映射方式映射在所述第二资源区域中。
可选地,上述第三比特上限值、第四比特上限值和第五比特上限值之间相同或不同。
因此,网络设备可以根据第一UCI的比特数目和第二UCI的比特数目确定第一映射方式和/或第二映射方式。
可选地,所述第一UCI映射在所述上行共享信道的起始符号位置与用于承载所述第一UCI的上行控制信道的起始符号位置对齐,其中,所述第一UCI在映射时避开或规避解调参考信号;或者,
所述第二UCI映射在所述上行共享信道的起始符号位置与用于承载所述第二UCI的上行控制信道的起始符号位置对齐,所述第二UCI在映射时避开或规避解调参考信号。
因此,UCI映射在PUSCH上的起始符号不早于原分配给用于承载该UCI的PUCCH的起始符号。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实 现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块。
第五方面,提供了一种终端设备,该终端设备包括处理器、存储器和收发器。处理器与存储器和收发器连接。存储器用于存储指令,处理器用于执行该指令,收发器用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括处理器、存储器和收发器。处理器与存储器和收发器连接。存储器用于存储指令,处理器用于执行该指令,收发器用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种传输控制信息的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得网络设备执行上述第二方面,及其各种实现方式中的任一种传输控制信息的方法。
第九方面,提供了一种通信芯片,其中存储有指令,当其在终端设备上运行时,使得所述通信芯片执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种通信芯片,其中存储有指令,当其在网络设备上运行时,使得所述通信芯片执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种通信***,该***包括第三方面或第三方面中的任一种可能实现方式中的终端设备以及第四方面或第四方面中的任一种可能实现方式中的网络设备;或者,该***包括第五方面或第五方面中的任一种可能实现方式中的终端设备以及第六方面或第六方面中的任一种可能实现方式中的网络设备。
第十二方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或其任意可能的实现方式中的方法。
第十三方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面或其任意可能的实现方式中的方法。
附图说明
图1是本申请的实施例应用的移动通信***的架构示意图。
图2是应用本申请实施例的一个场景示意图。
图3是根据本申请实施例的传输控制信息的方法的示意***互图。
图4是根据本申请实施例的一个例子的示意图。
图5是根据本申请实施例的另一个例子的示意图。
图6是根据本申请实施例的再一个例子的示意图。
图7是根据本申请实施例的另一个例子的示意图。
图8是根据本申请实施例的再一个例子的示意图。
图9是根据本申请实施例的另一个例子的示意图。
图10是根据本申请实施例的再一个例子的示意图。
图11是根据本申请实施例的另一个例子的示意图。
图12是根据本申请实施例的终端设备的示意性框图。
图13是根据本申请实施例的网络设备的示意性框图。
图14是根据本申请实施例的终端设备的结构框图。
图15是根据本申请实施例的网络设备的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)等目前的通信***,以及,尤其应用于未来的5G新无线(new radio,NR)***或5G***或基于正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的通信***。
图1是本申请的实施例应用的移动通信***的架构示意图。如图1所示,该移动通信***包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。应理解,图1只是示意图,该通信***中还可以包括其它网络设备,比如还可以包括无线中继设备和无线回传设备(图1中未示出)。本申请的实施例对该移动通信***中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信***中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信***中的基站gNB、未来移动通信***中的基站或WiFi***中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。无线接入网设备也可以称作网络设备。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可 以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例对信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
为了描述方便,以无线接入网设备是网络设备为例进行描述。网络设备调度资源(比如下行授权grant)给具有非紧急业务(比如,增强型移动宽带(enhanced mobile broadband,eMBB)业务)的终端设备传输下行数据信息。终端设备在接收到下行共享信道(比如,物理下行共享信道(physical downlink shared channel,PDSCH))后,需要向网络设备反馈信道质量,向网络设备发送上行控制信道(比如,物理上行控制信道(physical uplink control channel,PUCCH)),该上行控制信道承载反馈信息,比如,混合自动重传请求(hybrid automatic repeat request,HARQ)确认ACK/不确认NACK,对在下行共享信道上发送的下行数据进行确认。在此传输过程中,可能会存在紧急业务(或突发业务)的信道状态信息(非周期性信道状态信息(aperiodic channel state information,A-CSI)或者信道状态信息(channel state information,CSI))和/或反馈信息(比如,HARQ ACK/NACK)与eMBB业务的反馈信息发生碰撞的情况,比如,紧急业务是高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务。
由于终端设备没有在一个载波中同时传输两个上行信道的能力,为了及时上传突发业务的信道状态信息和/或反馈信息,本申请提出了一种新的解决方案,拟通过同一上行共享信道传输将上述非紧急业务以及紧急业务的上行控制信息(Uplink Control Information,UCI)。图2示出了应用本申请实施例的一个场景示意图。例如,图2中的网络设备可以是图1中的无线接入网设备120,图2中的终端设备可以是图1中的终端设备130或终端设备140。如图2所示:
S201,网络设备向终端设备发送非紧急业务的数据。
S202,网络设备向终端设备发送紧急业务的数据。
S203,网络设备调度上行传输。
具体地,网络设备可以向终端设备发送上行授权(grant)资源。
可选地,该步骤S203可以发生在S201与S202之间。
S204,终端设备通过上行共享信道发送非紧急业务和紧急业务的上行控制信息。
下文将具体描述本申请实施例的传输控制信息的方法。
图3示出了根据本申请实施例的传输控制信息的方法300的示意***互图。例如,图3中的网络设备可以是图1中的无线接入网设备120,图3中的终端设备可以是图1中的终端设备130或终端设备140。如图3所示,所述方法300包括:
S301,终端设备在上行共享信道确定第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同。
对应地,网络设备在上述上行共享信道检测所述第一资源区域和/或所述第二资源区域。
可选地,所述上行共享信道可以是物理上行共享信道PUSCH。
可选地,所述第一资源区域和/或所述第二资源区域可以是预定义或者通过RRC配置的方式确定的,本申请实施例对此不作限定。
可选地,所述第一资源区域与所述第二资源区域可以是时域上相同,频域上不同,也可以是时域上不同,频域上至少部分相同,也可以是时域上不同,频域上不同,本申请实施例对此不作限定。
可选地,在本申请实施例中,上行控制信息UCI可以包括信道状态信息和/或反馈信息,比如,A-CSI,HARQ ACK/NACK,信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)、分集指示(rank indication,RI)等信息。
其中,A-CSI主要用于终端设备告诉网络设备下行信道的质量,使得网络设备基于下行信道质量进行下行调度。其中,CQI用于选择调制编码方案。PMI用于选择多天线多入多出(multiple-input multiple-output,MIMO)的码本。PTI用于指示预编码类型。RI用于指示多天线MIMO中天线矩阵的秩。
可选地,所述第一映射方式与所述第二映射方式可以相同,也可以不同。
可选地,在本申请实施例中,映射方式可以是速率匹配(rate-match)方式,也可以是打孔(puncture)方式,对此不作限定。
可选地,第二UCI可以无规律地映射,也可以某种规则映射,本申请实施例对此不作限定。
S302,终端设备发送所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
对应地,网络设备接收上述共享信道。
在本申请实施例中,终端设备通过在上行共享信道上确定第一资源区域和/或第二资源区域,并发送所述上行共享信道,能够在同一上行共享信道上发送第一UCI和第二UCI,有助于满足用户存在突发业务或紧急业务时的通信需求。
可选地,在本申请实施例中,第一资源区域和第二资源区域可以是网络设备与终端设备约定好的,对此不作限定。
可选地,所述第一UCI的比特数目大于或等于第一比特上限值,或者,所述第一UCI的比特数目小于所述第一比特上限值且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第一比特上限值,终端设备在所述上行共享信道确定所述第一资源区 域和所述第二资源区域。对应地,网络设备在所述上行共享信道检测所述第一资源区域和所述第二资源区域。
或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和小于或等于第二比特上限值,终端设备在上行共享信道确定所述第一资源区域。
对应地,网络设备在所述上行共享信道检测所述第一资源区域。
可选地,所述第一比特上限值是所述第一资源区域能够承载的比特数目的上限值。所述第一比特上限值可以是预定义或预配置的。
可选地,所述第二比特上限值是所述第一资源区域能够承载的比特数目的上限值。所述第二比特上限值可以是预定义或预配置的。
可选地,所述第一比特上限值与所述第二比特上限值可以相同或不同,对此不作限定。
具体地,所述第一比特上限值与所述第二比特上限值可以是通过高层信令或物理层信令配置的,对此不作具体限定。
具体而言,第一UCI的比特数目大于或等于第一比特上限值,所述第一资源区域的全部资源区域用于传输所述第一UCI,那么终端设备还需要在上行共享信道确定第二资源区域,以使得第二UCI在所述第二资源区域进行传输。第一UCI的比特数目小于所述第一比特上限值,且第一UCI的比特数目与第二UCI的比特数目之和大于或等于所述第一比特上限值,所述第一资源区域不仅可以传输第一UCI,且第一资源区域中除去用于传输第一UCI的资源外的资源区域可以传输第二UCI,此时,终端设备还需要在上行共享信道确定第二资源区域用于传输第二UCI。因此,终端设备可以在上行共享信道确定第一资源区域和第二资源区域。
或者,第一UCI的比特数目与第二UCI的比特数目之和小于或等于第二比特上限值,则第一资源区域可以满足第一UCI和第二UCI的传输,那么终端设备只需要在上行共享信道确定所述第一资源区域即可,而不需要再确定第二资源区域。
综上所述,终端设备可以根据第一UCI的比特数目和第二UCI的比特数目确定第一资源区域和/或第二资源区域。
可选地,所述方法300还包括:
网络设备发送第一下行控制信息(downlink control information,DCI),所述第一下行控制信息用于指示发送所述第二UCI和/或用于发送第二UCI的资源信息。
对应地,终端设备接收所述第一下行控制信息。
在本申请实施例中,终端设备可以基于第一下行控制信息中指示的内容,确定第二资源区域;也可以基于第一下行控制信息的接收时间,确定第一资源区域和/或第二资源区域。下面对这些情况进行详细描述。
可选地,作为一个实施例,如果第一下行控制信息用于指示第二UCI的资源信息,终端设备可以根据第二UCI的资源信息,在所述上行共享信道确定第二资源区域,其中,所述第二UCI的资源信息可以包括:上行控制信道资源的信息,所述上行控制信道资源用于承载所述第二UCI。
具体地,终端设备根据所述第二UCI的资源信息,在所述上行共享信道确定所述第二资源区域,包括:
上行控制信道(比如PUCCH)的资源信息包括所述上行控制信道的资源的时域起始位置,终端设备根据所述上行控制信道的资源的时域起始位置,确定所述第二资源区域的时域起始位置;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的持续时间,根据所述上行控制信道的资源的持续时间,确定所述第二资源区域的符号数目;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域结束位置,根据所述上行控制信道的资源的时域结束位置,确定所述第二资源区域的时域结束位置。
可选地,第二资源区域的符号数目可以小于或等于上行控制信道的资源的持续时间,也可以与上行控制信道的资源的持续时间具有固定的对应关系。比如,第二资源区域的符号数目可以等于上行控制信道的资源的持续时间减去X,其中,X可以是预定义的符号数目。
可选地,第二资源区域的时域起始位置或时域长度,可以是避开解调参考信号(demodulation reference signal,DMRS)或者其他参考信号所在的符号。可选地,第二资源区域在时域上可以是连续的,也可以是非连续的,对此不作限定。
因此,终端设备可以根据上行控制信道的资源信息中具体包括的内容,确定第二资源区域。
可选地,作为一个实施例,终端设备可以根据第一下行控制信息的接收时间,确定第二资源区域的时域位置。
具体地,第二资源区域的时域位置可以是第二资源区域的时域起始位置和/或时域结束位置。可选地,所述第一下行控制信息的接收时间可以是第一下行控制信息所在下行控制信道的接收时间。这里以A为例进行说明,A可以是第一下行控制信息,或者第一下行控制信息所在下行控制信道。A的接收时间可以是接收A的起始时刻,也可以是接收A的结束时刻,也可以是A的起始符号,也可以是A的结束符号,对此不作限定。
可选地,第二资源区域的时域起始位置可以与上行控制信道的资源的时域起始位置相同。可选地,第二资源区域的时域位置也可以是上行控制信道的资源的时域起始位置之后,其中,首个可用的承载所述上行共享信道的数据符号可以作为所述第二资源区域的时域起始位置。
因此,终端设备可以根据第一下行控制信息的接收时间,确定第二资源区域的时域位置。
上面描述了终端设备根据第一下行控制信息指示的内容或第一下行控制信息的接收时间,详细描述了确定第二资源区域的具***置。下面将描述终端设备根据第一下行控制信息的接收时间确定第一资源区域和/或第二资源区域的具体情形。
应理解,本领域的技术人员对于上文描述的第二资源区域的具***置的确定方式,可以与下文中确定的第二资源区域的情形进行合理的组合使用,本申请实施例对此不作限定。
可选地,作为一个实施例,在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,包括:
第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,终端设备确定第一资源区域,或者确定第一资源区域和第二资源区域,所述 第一资源区域还用于映射第二控制信息。
举例来说,第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,此时第二上行控制信息来得及在第一资源区域上进行传输,则终端设备在第一资源区域上传输第一上行控制信息和第二上行控制信息。或者,虽然第二上行控制信息来得及在第一资源区域上进行传输,但是第一资源区域只能够传输第二上行控制信息的部分信息,此时,终端设备还需要确定第二资源区域,以便于传输第二上行控制信息的剩余信息。
具体地,终端设备确定的第一资源区域不仅用于传输第一上行控制信息,还用于传输第二上行控制信息。或者,终端设备确定的第一资源区域和第二资源区域中,第一资源区域的部分区域用于传输第一上行控制信息,第一资源区域中除去用于传输所述第一上行控制信息以外的资源区域和第二资源区域用于传输第二上行控制信息。
或者,所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的M个符号,M大于或等于0,终端设备确定所述第二资源区域。
举例来说,所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的M个符号,此时第二上行控制信息来不及在第一资源区域上进行传输,则终端设备需要确定第二资源区域用于传输第二上行控制信息。
具体地,终端设备确定的第二资源区域用于传输第二上行控制信息,此时,第一资源区域的全部区域用于传输第一上行控制信息。
综上,终端设备可以基于第一下行控制信息中指示的具体内容,确定第二资源区域,也可以基于第一下行控制信息的接收时间,确定第一资源区域和/或第二资源区域。
下面将描述终端设备基于第一资源区域确定第二资源区域的实施例。
可选地,在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,包括:
在所述上行共享信道确定所述第一资源区域;
根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域。
可选地,根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域,包括:
根据所述第一资源区域的时域位置,确定所述第二资源区域的时域位置;和/或,
根据所述第一资源区域的频域位置,确定所述第二资源区域的频域位置;和/或,
根据所述第一资源区域的符号数目,确定所述第二资源区域的时域起始位置和/或符号数目。
例如,可以通过预定义或高层信令配置:从第一资源区域的结束符号到第二资源区域的时间间隔。或者,第二资源区域的时域位置为第一资源区域的全部或部分时域位置。
又例如,第二资源区域的频域位置可以是第一资源区域的全部或部分频域位置。
可选地,所述方法300还可以包括:
确定第二映射方式。
具体地,确定第二映射方式,包括:
所述第一UCI的比特数目大于第三比特上限值,确定所述第二映射方式与所述第一映射方式不同;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和,小于第四比特上限值,确定所述第二映射方式与所述第一映射方式相同;或者,
所述第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第五比特上限值,确定所述第二UCI的部分信息以所述第一映射方式映射在所述第一资源区域中,且所述第二UCI的除所述部分信息外的信息以所述第二映射方式映射在所述第二资源区域中。
可选地,所述第三比特上限值是所述第一资源区域能够承载的比特数目的上限值。所述第三比特上限值可以是预定义或预配置的。
可选地,所述第四比特上限值是所述第一资源区域能够承载的比特数目的上限值。所述第四比特上限值可以是预定义或预配置的。
可选地,所述第五比特上限值是所述第一资源区域能够承载的比特数目的上限值。所述第五比特上限值可以是预定义或预配置的。
可选地,上述第三比特上限值、第四比特上限值和第五比特上限值之间相同或不同,对此不作限定。
具体而言,第一UCI的比特数目大于或等于第三比特上限值,则终端设备采用第一映射方式将所述第一UCI映射在第一资源区域中,并采用第二映射方式将第二UCI映射在第二资源区域中,其中,第一映射方式与第二映射方式不同。
或者,第一UCI的比特数目与第二UCI的比特数目之和小于所述第四比特上限值,则终端设备采用相同的映射方式将所述第一UCI和第二UCI映射在第一资源区域,即第一映射方式和第二映射方式相同。
或者,第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与第二UCI的比特数目之和大于或等于第五比特上限值,则终端设备采用第一映射方式将第一UCI和第二UCI的部分信息映射在第一资源区域中,并采用第二映射方式将除第二UCI的除去所述部分信息外的信息映射在第二资源区域。
综上所述,终端设备可以根据第一UCI的比特数目和第二UCI的比特数目确定第一映射方式和/或第二映射方式。
对应地,网络设备也可以采用上述终端设备所使用的方式确定所述第二映射方式,为了简洁,这里不作赘述。
应理解,本申请实施例中,对确定第二映射方式的时机不作限定,可以是在确定第二资源区域之前,可以是在确定第二资源区域之后。
为了便于本领域技术人员理解本申请实施例,下面将结合具体的例子进行描述。应理解,图4至图7中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图4至图7的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。为了便于描述,下面以第一UCI为HARQ-ACK1,以第二UCI为HARQ-ACK2(或者A-CSI),以上行共享信道为PUSCH为例进行描述。
图4示出了根据本申请实施例的一个例子的示意图。如图4所示,终端设备在接收到PDSCH_1解调后生成HARQ-ACK1,以便于反馈给网络设备。终端设备在接收到PDSCH_2解调后生成HARQ-ACK2,以便于反馈给网络设备。在现有技术中,HARQ-ACK2携带在短物理上行控制信道(short physical uplink control channel,s-PUCCH)中。如果终端设备生成HARQ-ACK2的时域起始位置在承载HARQ ACK1的第一资源区域后,则终端设备 确定HARQ-ACK2以打孔方式映射在第二资源区域中。其中,HARQ-ACK1以速率匹配的方式映射在第一资源区域。第二资源区域开始于产生HARQ-ACK2后的首个可用符号。第一资源区域和第二资源区域在同一PUSCH中。可选地,第一资源区域和第二资源区域的时域不同,频域部分相同。在图4的下部分图中,用白框表示HARQ-ACK1,用黑框表示HARQ-ACK2。
图5示出了根据本申请实施例的另一个例子的示意图。如图5所示,终端设备在接收到PDSCH_1解调后生成HARQ-ACK1,以便于反馈给网络设备。终端设备在接收到PDSCH_2解调后生成HARQ-ACK2,以便于反馈给网络设备。如果终端设备生成HARQ-ACK2的时域起始位置在承载HARQ-ACK1的第一资源区域中,与第一资源区域的起始位置重叠,且第一资源区域已被HARQ-ACK1占满,则终端设备确定HARQ-ACK2以打孔方式映射在第二资源区域中。其中,HARQ-ACK1以速率匹配的方式映射在第一资源区域。第一资源区域和第二资源区域在同一PUSCH中。可选地,第一资源区域和第二资源区域的时域不同,频域部分相同。在图5的下部分图中,用白框表示HARQ-ACK1,用黑框表示HARQ-ACK2。
可选地,如果第一资源区域能够承载的比特数目大于HARQ-ACK1的比特数目,则第一资源区域的部分区域还可以用于传输HARQ-ACK2。图6示出了根据本申请实施例的再一个例子的示意图。如图6所示,与图5的区别在于,HARQ-ACK1和HARQ-ACK2的部分信息以速率匹配的方式映射在第一资源区域。HARQ-ACK2的其他信息以打孔方式映射在第二资源区域。
这样,可以全面反馈终端设备的上行HARQ信息,使得网络设备完全掌握下行数据的接收质量。在图6的下部分图中,用白框表示HARQ-ACK1,用黑框表示HARQ-ACK2。
图7示出了根据本申请实施例的另一个例子的示意图。如图7所示,如果终端设备生成HARQ-ACK2的时域起始位置在承载HARQ-ACK1的第一资源区域中,与第一资源区域的起始位置重叠,且第一资源区域未被HARQ-ACK1占满,满足HARQ-ACK1的比特数目和HARQ-ACK2的比特数目之和小于或等于第一资源区域能够承载的比特数目,则终端设备确定HARQ-ACK1和HARQ-ACK2均以速率匹配的方式映射在第一资源区域中。此时,HARQ-ACK1和HARQ-ACK2映射在第一资源区域中的时域相同,频域不同。在图7的下部分图中,用白框表示HARQ-ACK1,用黑框表示HARQ-ACK2。
可选地,HARQ-ACK2可以在映射在第一资源区域中HARQ-ACK1没有映射到的资源区域。HARQ-ACK1和HARQ-ACK2映射在第一资源区域中的时域部分相同,频域部分相同。
综上所述,终端设备通过将HARQ-ACK1和HARQ-ACK2映射在同一PUSCH,有助于满足用户存在突发业务或紧急业务时的通信需求,增加了小区覆盖,使得网络设备完全掌握下行数据的接收质量。
可选地,所述第一UCI映射在所述上行共享信道的起始符号位置与用于承载所述第一UCI的上行控制信道的起始符号位置对齐,其中,所述第一UCI在映射时避开或规避解调参考信号;或者,
所述第二UCI映射在所述上行共享信道的起始符号位置与用于承载所述第二UCI的上行控制信道的起始符号位置对齐,所述第二UCI在映射时避开或规避解调参考信号。
也就是说,UCI映射在PUSCH上的起始符号不早于原分配给用于承载该UCI的PUCCH的起始符号。
这里,第一UCI和第二UCI在上述共享信道中的具体映射适用于前文描述的第一资源区域和第二资源区域。相应地,“起始符号位置的对齐”方式也同样适用。
可选地,上述解调参考信号包括DMRS信号和相位跟踪参考信号(Phase-tracking reference,PT-RS)。
举例来说,UCI包括HARQ-ACK和CSI,UCI在上行共享信道中的映射可以包括以下方式:
一种方式是HARQ-ACK先映射,CSI后映射(应理解,这里对HARQ-ACK和CSI的映射先后顺序不作限定)。其中,CSI映射时需要规避HARQ-ACK。并且,HARQ-ACK的映射和CSI的映射均需要规避上述解调参考信号。这里将结合图8和图9中的例子进行描述。例如,在图8中,承载HARQ-ACK的PUCCH先到达,且承载HARQ-ACK的PUCCH的起始符号,对应PUSCH上承载DMRS的位置,该HARQ-ACK映射到PUSCH上的起始位置为DMRS结束后的第一个符号。CSI在PUSCH上映射的起始符号与承载该CSI的PUCCH的起始符号对齐。又例如,在图9中,承载CSI的PUCCH先到达,CSI映射在PUSCH上的起始符号与承载CSI的PUCCH的起始符号对齐,HARQ-ACK映射在PUSCH上的起始符号与承载HARQ-ACK的PUCCH的起始符号对齐。CSI映射未结束时,HARQ-ACK开始映射,CSI停止映射,剩余的比特在HARQ-ACK映射结束后的第一个可用符号可以开始继续映射。
另一种方式是HARQ-ACK先映射,CSI后映射,其中,CSI映射的符号紧挨在HARQ-ACK后面,并且,HARQ-ACK的映射和CSI的映射均需要规避上述解调参考信号。
可选地,如果CSI在进行映射完成时,如果存在多余比特未映射,可以将未映射的比特直接丢弃,也可以将未映射的比特回转到可映射区域的起始位置进行映射,对此不作限定。这里将图10和图11中的例子进行描述。例如,在图10中,承载CSI的PUCCH先到来,其后有承载HARQ-ACK的PUCCH,CSI先不映射,HARQ-ACK优先映射,HARQ-ACK映射在PUSCH上的起始符号与承载HARQ-ACK的PUCCH的起始符号对齐。HARQ-ACK映射结束后,CSI才开始映射。直到在PUSCH上配置给上行控制信息的资源区域用完。如果PUSCH还存在没有映射的比特,这些比特可以直接丢弃,不作传输。又例如,在图11中,承载CSI的PUCCH先到来,其后有承载HARQ-ACK的PUCCH,CSI先不映射,HARQ-ACK优先映射,HARQ-ACK映射在PUSCH上的起始符号与承载HARQ-ACK的PUCCH的起始符号对齐。HARQ-ACK映射结束后,CSI开始映射。直到在PUSCH上配置用于承载上行控制信息的资源区域用完,CSI还有没有映射的比特,这些比特回转到在PUSCH上配置用于承载上行控制信息资源区域的起始位置继续映射。
应理解,图8至图11中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图8至图11的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
上文描述了根据本申请实施例的传输控制信息的方法,下面将描述根据本申请实施例的终端设备和网络设备。
图12示出了根据本申请实施例的终端设备1200的示意性框图。所述终端设备1200 用于执行前述终端设备对应的方法或步骤。可选地,所述终端设备1200中各个模块可以是通过软件来实现的。如图12所示,所述终端设备1200包括:
处理模块1210,用于在上行共享信道确定第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
收发模块1220,用于发送所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
在本申请实施例中,终端设备1200通过在上行共享信道上确定第一资源区域和/或第二资源区域,并发送所述上行共享信道,能够在同一上行共享信道上发送第一UCI和第二UCI,有助于满足用户存在突发业务或紧急业务时的通信需求。
可选地,所述第一资源区域与所述第二资源区域可以是时域上相同,频域上不同,也可以是时域上不同,频域上至少部分相同,也可以是时域上不同,频域上不同,本申请实施例对此不作限定。
可选地,所述第一UCI的比特数目大于或等于第一比特上限值,或者,所述第一UCI的比特数目小于所述第一比特上限值且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第一比特上限值,所述处理模块1210具体用于在所述上行共享信道确定所述第一资源区域和所述第二资源区域;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和小于或等于第二比特上限值,所述处理模块1210具体用于在上行共享信道确定所述第一资源区域。
因此,终端设备可以根据第一UCI的比特数目和第二UCI的比特数目确定第一资源区域和/或第二资源区域。
可选地,所述收发模块1220还用于:
接收第一下行控制信息,所述第一下行控制信息用于指示发送所述第二UCI和/或用于发送第二UCI的资源信息。
可选地,所述处理模块1210具体用于:
根据所述第二UCI的资源信息,在所述上行共享信道确定所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道资源的信息,所述上行控制信道资源用于承载所述第二UCI;和/或,
根据所述第一下行控制信息的接收时间,确定所述第二资源区域的时域位置。
在本申请实施例中,终端设备可以基于第一下行控制信息中指示的内容,确定第二资源区域,也可以基于第一下行控制信息的接收时间,确定第一资源区域和/或第二资源区域。
可选地,所述第二UCI的资源信息包括:上行控制信道的资源信息,所述上行控制信道资源用于承载所述第二UCI,所述处理模块1210具体用于:
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域起始位置,根据所述上行控制信道的资源的时域起始位置,确定所述第二资源区域的时域起始位置;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的持续时间,根据所述上行控制信道的资源的持续时间,确定所述第二资源区域的符号数目;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域结束位置,根据所述上行控制信道的资源的时域结束位置,确定所述第二资源区域的时域结束位置。
可选地,所述处理模块1210具体用于:
所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,确定所述第一资源区域或者所述第一资源区域和所述第二资源区域,所述第一资源区域还用于映射所述第二控制信息;或者,
所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的M个符号,M大于或等于0,确定所述第二资源区域。
可选地,所述处理模块1210具体用于:
在所述上行共享信道确定所述第一资源区域;
根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域。
可选地,所述根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域,包括:
根据所述第一资源区域的时域位置,确定所述第二资源区域的时域位置;和/或,
根据所述第一资源区域的频域位置,确定所述第二资源区域的频域位置;和/或,
根据所述第一资源区域的符号数目,确定所述第二资源区域的时域起始位置和/或符号数目。
因此,终端设备可以根据第一资源区域确定第二资源区域的时域,和/或频域,和/或符号数目。
可选地,所述第二资源区域与所述第一资源区域在时域上不同,且所述第一资源区域的频域与所述第二资源区域的频域至少部分相同。
可选地,所述处理模块1210还用于:
确定所述第二映射方式。
可选地,所述处理模块1210具体用于:
所述第一UCI的比特数目大于第三比特上限值,确定所述第二映射方式与所述第一映射方式不同;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和,小于第四比特上限值,确定所述第二映射方式与所述第一映射方式相同;或者,
所述第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第五比特上限值,确定所述第二UCI的部分信息以所述第一映射方式映射在所述第一资源区域中,且所述第二UCI的除所述部分信息外的信息以所述第二映射方式映射在所述第二资源区域中。
因此,终端设备可以根据第一UCI的比特数目和第二UCI的比特数目确定第一映射方式和/或第二映射方式。
应理解,根据本申请实施例的终端设备1200可对应于前述方法实施例的传输控制信息的第终端设备,并且终端设备1200中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,因此也可以实现前述方法实施例中的有益效果。
还应理解,本申请实施例中的处理模块可以由处理器实现,收发模块可以由收发器实现。
图13示出了根据本申请实施例的网络设备1300的示意性框图。所述网络设备1300用于执行前述网络设备对应的方法或步骤。可选地,所述网络设备1300中各个模块可以是通过软件来实现的。如图13所示,所述网络设备1300包括:
处理模块1310,用于在上行共享信道检测第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
收发模块1320,用于接收所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
在本申请实施例中,网络设备1300通过在上行共享信道上检测第一资源区域和/或第二资源区域,并接收所述上行共享信道,有助于网络设备掌握下行数据的接收质量,有助于满足用户存在突发业务或紧急业务时的通信需求。
可选地,所述第一UCI的比特数目大于或等于第一比特上限值,或者,所述第一UCI的比特数目小于所述第一比特上限值且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第一比特上限值,所述处理模块1310具体用于在所述上行共享信道检测所述第一资源区域和所述第二资源区域;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和小于或等于第二比特上限值,所述处理模块1310具体用于在上行共享信道检测所述第一资源区域。
因此,网络设备可以根据第一UCI的比特数目和第二UCI的比特数目检测第一资源区域和/或第二资源区域。
可选地,所述收发模块1320还用于:
发送第一下行控制信息,所述第一下行控制信息用于指示发送所述第二UCI和/或用于发送第二UCI的资源信息。
可选地,所述处理模块1310具体用于:
根据所述第二UCI的资源信息,在所述上行共享信道检测所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道资源的信息,所述上行控制信道资源用于承载所述第二UCI;和/或,
根据所述第一下行控制信息的接收时间,检测所述第二资源区域的时域位置。
可选地,所述第二UCI的资源信息包括:上行控制信道的资源信息,所述上行控制信道资源用于承载所述第二UCI,所述处理模块1310具体用于:
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域起始位置,根据所述上行控制信道的资源的时域起始位置,检测所述第二资源区域的时域起始位置;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的持续时间,根据所述上行控制信道的资源的持续时间,检测所述第二资源区域的符号数目;和/或,
所述上行控制信道的资源信息包括所述上行控制信道的资源的时域结束位置,根据所述上行控制信道的资源的时域结束位置,检测所述第二资源区域的时域结束位置。
可选地,所述处理模块1310具体用于:
所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,检测所述第一资源区域或者所述第一资源区域和所述第二资源区域,所 述第一资源区域还用于映射所述第二控制信息;或者,
所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的M个符号,M大于或等于0,确定所述第二资源区域。
在本申请实施例中,网络设备向终端设备发送第一下行控制信息,使得终端设备可以基于第一下行控制信息中指示的内容,确定第二资源区域,也可以基于第一下行控制信息的接收时间,确定第一资源区域和/或第二资源区域。
可选地,所述处理模块1310还用于:
在所述上行共享信道检测所述第一资源区域;
根据所述第一资源区域,在所述上行共享信道检测所述第二资源区域。
可选地,所述处理模块1310具体用于:
根据所述第一资源区域的时域位置,检测所述第二资源区域的时域位置;和/或,
根据所述第一资源区域的频域位置,检测所述第二资源区域的频域位置;和/或,
根据所述第一资源区域的符号数目,检测所述第二资源区域的时域起始位置和/或符号数目。
可选地,所述第二资源区域与所述第一资源区域在时域上不同,且所述第一资源区域的频域与所述第二资源区域的频域至少部分相同。
可选地,所述处理模块1310还用于:
确定所述第二映射方式。
可选地,所述处理模块1310具体用于:
所述第一UCI的比特数目大于第三比特上限值,确定所述第二映射方式与所述第一映射方式不同;或者,
所述第一UCI的比特数目与所述第二UCI的比特数目之和,小于第四比特上限值,确定所述第二映射方式与所述第一映射方式相同;或者,
所述第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第五比特上限值,确定所述第二UCI的部分信息以所述第一映射方式映射在所述第一资源区域中,且所述第二UCI的除所述部分信息外的信息以所述第二映射方式映射在所述第二资源区域中。
因此,网络设备可以根据第一UCI的比特数目和第二UCI的比特数目确定第一映射方式和/或第二映射方式。
应理解,根据本申请实施例的网络设备1300可对应于前述方法实施例的传输控制信息的第网络设备,并且网络设备1300中的各个模块的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,因此也可以实现前述方法实施例中的有益效果。
还应理解,本申请实施例中的处理模块可以由处理器实现,收发模块可以由收发器实现。
图14是根据本申请实施例提供的终端设备1400的结构框图。图14所示的终端设备1400包括:处理器1401、存储器1402和收发器1403。
处理器1401、存储器1402和收发器1403之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1401、存储器1402和收发器1403可以通过芯片实现。该存储器1402可以存储程序代码,处理器1401调用存储器1402存储的 程序代码,以实现该终端设备的相应功能。
所述处理器1401用于:
在上行共享信道确定第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
通过所述收发器1403发送所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
可以理解的是,尽管并未示出,终端设备1400还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器1402可以存储用于执行前述方法中终端设备执行的方法的部分或全部指令。处理器1401可以执行存储器1402中存储的指令结合其他硬件(例如收发器1403)完成前述方法中终端设备执行的步骤,具体工作过程和有益效果可以参见前述方法实施例中的描述。
图15是根据本申请实施例提供的网络设备1500的结构框图。图15所示的网络设备1500包括:处理器1501、存储器1502和收发器1503。
处理器1501、存储器1502和收发器1503之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1501、存储器1502和收发器1503可以通过芯片实现。该存储器1502可以存储程序代码,处理器1501调用存储器1502存储的程序代码,以实现该网络设备的相应功能。
所述处理器1501用于:
在上行共享信道检测第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
通过所述收发器1503接收所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
可以理解的是,尽管并未示出,网络设备1500还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器1502可以存储用于执行前述方法中网络设备执行的方法的部分或全部指令。处理器1501可以执行存储器1502中存储的指令结合其他硬件(例如收发器1503)完成前述方法中网络设备执行的步骤,具体工作过程和有益效果可以参见前述方法实施例中的描述。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件,分立门或者晶体管逻辑器件,分立硬件组件,还可以是***芯片 (system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解的是,当本申请的实施例应用于网络设备芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片向网络设备中的其它模块(如射频模块或天线)接收上述上行共享信道和上行数据。该上行共享信道和下行数据是终端设备发送给网络设备的。
当本申请的实施例应用于终端设备芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)发送上述上行共享信道和下行数据。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”和“第二”只是为了区分不同的对象,比如,区分不同的“UCI”,或者,区分不同的“映射方式”,或者,区分不同的“资源区域”,并不对本申请实施例构成限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种传输控制信息的方法,其特征在于,包括:
    在上行共享信道确定第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
    发送所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
  2. 根据权利要求1所述的方法,其特征在于,所述第一UCI的比特数目大于或等于第一比特上限值,或者,所述第一UCI的比特数目小于所述第一比特上限值且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第一比特上限值,在所述上行共享信道确定所述第一资源区域和所述第二资源区域;或者,
    所述第一UCI的比特数目与所述第二UCI的比特数目之和小于或等于第二比特上限值,在上行共享信道确定所述第一资源区域。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收第一下行控制信息,所述第一下行控制信息用于指示发送所述第二UCI和/或用于发送第二UCI的资源信息。
  4. 根据权利要求3所述的方法,其特征在于,所述在所述上行共享信道确定所述第二资源区域,包括:
    根据所述第二UCI的资源信息,在所述上行共享信道确定所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道资源的信息,所述上行控制信道资源用于承载所述第二UCI;和/或,
    根据所述第一下行控制信息的接收时间,确定所述第二资源区域的时域位置。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第二UCI的资源信息,在所述上行共享信道确定所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道的资源信息,所述上行控制信道资源用于承载所述第二UCI,包括:
    所述上行控制信道的资源信息包括所述上行控制信道的资源的时域起始位置,根据所述上行控制信道的资源的时域起始位置,确定所述第二资源区域的时域起始位置;和/或,
    所述上行控制信道的资源信息包括所述上行控制信道的资源的持续时间,根据所述上行控制信道的资源的持续时间,确定所述第二资源区域的符号数目;和/或,
    所述上行控制信道的资源信息包括所述上行控制信道的资源的时域结束位置,根据所述上行控制信道的资源的时域结束位置,确定所述第二资源区域的时域结束位置。
  6. 根据权利要求3所述的方法,其特征在于,所述在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,包括:
    所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,确定所述第一资源区域或者所述第一资源区域和所述第二资源区域,所述第一资源区域还用于映射所述第二控制信息;或者,
    所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的 M个符号,M大于或等于0,确定所述第二资源区域。
  7. 根据权利要求1或2所述的方法,其特征在于,所述在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,包括:
    在所述上行共享信道确定所述第一资源区域;
    根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域。
  8. 根据权利要求7所述方法,其特征在于,所述根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域,包括:
    根据所述第一资源区域的时域位置,确定所述第二资源区域的时域位置;和/或,
    根据所述第一资源区域的频域位置,确定所述第二资源区域的频域位置;和/或,
    根据所述第一资源区域的符号数目,确定所述第二资源区域的时域起始位置和/或符号数目。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第二资源区域与所述第一资源区域在时域上不同,且所述第一资源区域的频域与所述第二资源区域的频域至少部分相同。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述第二映射方式。
  11. 根据权利要求10所述的方法,其特征在于,所述确定所述第二映射方式,包括:
    所述第一UCI的比特数目大于第三比特上限值,确定所述第二映射方式与所述第一映射方式不同;或者,
    所述第一UCI的比特数目与所述第二UCI的比特数目之和,小于第四比特上限值,确定所述第二映射方式与所述第一映射方式相同;或者,
    所述第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第五比特上限值,确定所述第二UCI的部分信息以所述第一映射方式映射在所述第一资源区域中,且所述第二UCI的除所述部分信息外的信息以所述第二映射方式映射在所述第二资源区域中。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一UCI映射在所述上行共享信道的起始符号位置与用于承载所述第一UCI的上行控制信道的起始符号位置对齐,其中,所述第一UCI在映射时避开解调参考信号;或者,
    所述第二UCI映射在所述上行共享信道的起始符号位置与用于承载所述第二UCI的上行控制信道的起始符号位置对齐,所述第二UCI在映射时避开解调参考信号。
  13. 一种传输控制信息的方法,其特征在于,包括:
    在上行共享信道检测第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
    接收所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
  14. 根据权利要求13所述的方法,其特征在于,所述第一UCI的比特数目大于或等于第一比特上限值,或者,所述第一UCI的比特数目小于所述第一比特上限值且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第一比特上限值,在所述上行 共享信道检测所述第一资源区域和所述第二资源区域;或者,
    所述第一UCI的比特数目与所述第二UCI的比特数目之和小于或等于第二比特上限值,在上行共享信道检测所述第一资源区域。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    发送第一下行控制信息,所述第一下行控制信息用于指示发送所述第二UCI和/或用于发送第二UCI的资源信息。
  16. 根据权利要求15所述的方法,其特征在于,所述在所述上行共享信道检测所述第二资源区域,包括:
    根据所述第二UCI的资源信息,在所述上行共享信道检测所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道资源的信息,所述上行控制信道资源用于承载所述第二UCI;和/或,
    根据所述第一下行控制信息的接收时间,检测所述第二资源区域的时域位置。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述第二UCI的资源信息,在所述上行共享信道检测所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道的资源信息,所述上行控制信道资源用于承载所述第二UCI,包括:
    所述上行控制信道的资源信息包括所述上行控制信道的资源的时域起始位置,根据所述上行控制信道的资源的时域起始位置,检测所述第二资源区域的时域起始位置;和/或,
    所述上行控制信道的资源信息包括所述上行控制信道的资源的持续时间,根据所述上行控制信道的资源的持续时间,检测所述第二资源区域的符号数目;和/或,
    所述上行控制信道的资源信息包括所述上行控制信道的资源的时域结束位置,根据所述上行控制信道的资源的时域结束位置,检测所述第二资源区域的时域结束位置。
  18. 根据权利要求15所述的方法,其特征在于,所述在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,包括:
    所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,检测所述第一资源区域或者所述第一资源区域和所述第二资源区域,所述第一资源区域还用于映射所述第二控制信息;或者,
    所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的M个符号,M大于或等于0,确定所述第二资源区域。
  19. 根据权利要求13或14所述的方法,其特征在于,所述在所述上行共享信道检测所述第一资源区域和/或所述第二资源区域,包括:
    在所述上行共享信道检测所述第一资源区域;
    根据所述第一资源区域,在所述上行共享信道检测所述第二资源区域。
  20. 根据权利要求19所述方法,其特征在于,根据所述第一资源区域,在所述上行共享信道检测所述第二资源区域,包括:
    根据所述第一资源区域的时域位置,检测所述第二资源区域的时域位置;和/或,
    根据所述第一资源区域的频域位置,检测所述第二资源区域的频域位置;和/或,
    根据所述第一资源区域的符号数目,检测所述第二资源区域的时域起始位置和/或符号数目。
  21. 根据权利要求13至20中任一项所述的方法,其特征在于,所述第二资源区域与 所述第一资源区域在时域上不同,且所述第一资源区域的频域与所述第二资源区域的频域至少部分相同。
  22. 根据权利要求13至21中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述第二映射方式。
  23. 根据权利要求22所述的方法,其特征在于,确定所述第二映射方式,包括:
    所述第一UCI的比特数目大于第三比特上限值,确定所述第二映射方式与所述第一映射方式不同;或者,
    所述第一UCI的比特数目与所述第二UCI的比特数目之和,小于第四比特上限值,确定所述第二映射方式与所述第一映射方式相同;或者,
    所述第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第五比特上限值,确定所述第二UCI的部分信息以所述第一映射方式映射在所述第一资源区域中,且所述第二UCI的除所述部分信息外的信息以所述第二映射方式映射在所述第二资源区域中。
  24. 根据权利要求13至23中任一项所述的方法,其特征在于,所述第一UCI映射在所述上行共享信道的起始符号位置与用于承载所述第一UCI的上行控制信道的起始符号位置对齐,其中,所述第一UCI在映射时避开解调参考信号;或者,
    所述第二UCI映射在所述上行共享信道的起始符号位置与用于承载所述第二UCI的上行控制信道的起始符号位置对齐,所述第二UCI在映射时避开解调参考信号。
  25. 一种终端设备,其特征在于,包括:
    处理模块,用于在上行共享信道确定第一资源区域和/或第二资源区域,所述第一资源区域包括第一上行控制信息UCI以第一映射方式映射的资源区域,所述第二资源区域包括第二UCI以第二映射方式映射的资源区域,所述第一资源区域与所述第二资源区域的在时域和/或频域上不同;
    收发模块,用于发送所述上行共享信道,所述上行共享信道承载所述第一UCI和所述第二UCI。
  26. 根据权利要求25所述的终端设备,其特征在于,所述第一UCI的比特数目大于或等于第一比特上限值,或者,所述第一UCI的比特数目小于所述第一比特上限值且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第一比特上限值,所述处理模块具体用于在所述上行共享信道确定所述第一资源区域和所述第二资源区域;或者,
    所述第一UCI的比特数目与所述第二UCI的比特数目之和小于或等于第二比特上限值,所述处理模块具体用于在上行共享信道确定所述第一资源区域。
  27. 根据权利要求25或26所述的终端设备,其特征在于,所述收发模块还用于:
    接收第一下行控制信息,所述第一下行控制信息用于指示发送所述第二UCI和/或用于发送第二UCI的资源信息。
  28. 根据权利要求27所述的终端设备,其特征在于,所述处理模块用于在所述上行共享信道确定所述第二资源区域,具体包括:
    根据所述第二UCI的资源信息,在所述上行共享信道确定所述第二资源区域,所述第二UCI的资源信息包括:上行控制信道资源的信息,所述上行控制信道资源用于承载所述第二UCI;和/或,
    根据所述第一下行控制信息的接收时间,确定所述第二资源区域的时域位置。
  29. 根据权利要求28所述的终端设备,其特征在于,所述第二UCI的资源信息包括:上行控制信道的资源信息,所述上行控制信道资源用于承载所述第二UCI,所述处理模块用于根据所述第二UCI的资源信息,在所述上行共享信道确定所述第二资源区域具体包括:
    所述上行控制信道的资源信息包括所述上行控制信道的资源的时域起始位置,根据所述上行控制信道的资源的时域起始位置,确定所述第二资源区域的时域起始位置;和/或,
    所述上行控制信道的资源信息包括所述上行控制信道的资源的持续时间,根据所述上行控制信道的资源的持续时间,确定所述第二资源区域的符号数目;和/或,
    所述上行控制信道的资源信息包括所述上行控制信道的资源的时域结束位置,根据所述上行控制信道的资源的时域结束位置,确定所述第二资源区域的时域结束位置。
  30. 根据权利要求27所述的终端设备,其特征在于,所述处理模块用于在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,具体包括:
    所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前的N个符号,N大于或等于0,确定所述第一资源区域或者所述第一资源区域和所述第二资源区域,所述第一资源区域还用于映射所述第二控制信息;或者,
    所述第一下行控制信息的接收时间在所述上行共享信道的起始时刻之前或者之后的M个符号,M大于或等于0,确定所述第二资源区域。
  31. 根据权利要求25或26所述的终端设备,其特征在于,所述处理模块用于在所述上行共享信道确定所述第一资源区域和/或所述第二资源区域,具体包括:
    在所述上行共享信道确定所述第一资源区域;
    根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域。
  32. 根据权利要求31所述终端设备,其特征在于,所述处理模块用于根据所述第一资源区域,在所述上行共享信道确定所述第二资源区域,具体包括:
    根据所述第一资源区域的时域位置,确定所述第二资源区域的时域位置;和/或,
    根据所述第一资源区域的频域位置,确定所述第二资源区域的频域位置;和/或,
    根据所述第一资源区域的符号数目,确定所述第二资源区域的时域起始位置和/或符号数目。
  33. 根据权利要求25至32中任一项所述的终端设备,其特征在于,所述第二资源区域与所述第一资源区域在时域上不同,且所述第一资源区域的频域与所述第二资源区域的频域至少部分相同。
  34. 根据权利要求25至33中任一项所述的终端设备,其特征在于,所述处理模块还用于:
    确定所述第二映射方式。
  35. 根据权利要求34所述的终端设备,其特征在于,所述处理模块用于确定所述第二映射方式,具体包括:
    所述第一UCI的比特数目大于第三比特上限值,确定所述第二映射方式与所述第一映射方式不同;或者,
    所述第一UCI的比特数目与所述第二UCI的比特数目之和,小于第四比特上限值, 确定所述第二映射方式与所述第一映射方式相同;或者,
    所述第一UCI的比特数目小于第五比特上限值,且第一UCI的比特数目与所述第二UCI的比特数目之和大于或等于所述第五比特上限值,确定所述第二UCI的部分信息以所述第一映射方式映射在所述第一资源区域中,且所述第二UCI的除所述部分信息外的信息以所述第二映射方式映射在所述第二资源区域中。
  36. 根据权利要求25至35中任一项所述的终端设备,其特征在于,所述第一UCI映射在所述上行共享信道的起始符号位置与用于承载所述第一UCI的上行控制信道的起始符号位置对齐,其中,所述第一UCI在映射时避开解调参考信号;或者,
    所述第二UCI映射在所述上行共享信道的起始符号位置与用于承载所述第二UCI的上行控制信道的起始符号位置对齐,所述第二UCI在映射时避开解调参考信号。
  37. 一种通信装置,其特征在于,用于执行如权利要求1至24中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至24中任一项所述的方法。
  39. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至24中任意一项所述的方法。
  40. 一种计算机程序产品,所述计算机程序产品包括:计算机程序,当所述计算机程序被计算机运行时,使得所述计算机执行如权利要求1至24中任意一项所述的方法。
  41. 一种通信***,其特征在于,所述通信***中包括终端设备和网络设备,其中,所述终端设备用于执行上述权利要求1至12中任意一项所述的方法,所述网络设备用于执行上述权利要求13至24中任意一项所述的方法。
  42. 一种通信装置,其特征在于,所述通信装置中存储有指令,当所述指令在终端设备上运行时,使得所述终端设备执行上述如权利要求1至12中任意一项所述的方法。
  43. 一种通信装置,其特征在于,所述通信装置中存储有指令,当所述指令在网络设备上运行时,使得所述网络设备执行上述如权利要求13至24中任意一项所述的方法。
PCT/CN2018/114546 2017-11-15 2018-11-08 传输控制信息的方法、终端设备和网络设备 WO2019096058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711132220.XA CN109788561B (zh) 2017-11-15 2017-11-15 传输控制信息的方法、终端设备和网络设备
CN201711132220.X 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019096058A1 true WO2019096058A1 (zh) 2019-05-23

Family

ID=66495329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114546 WO2019096058A1 (zh) 2017-11-15 2018-11-08 传输控制信息的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN109788561B (zh)
WO (1) WO2019096058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062800A1 (en) * 2019-09-30 2021-04-08 Nokia Shanghai Bell Co., Ltd. Uplink control information for uplink configured grant transmission

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022551552A (ja) * 2019-09-30 2022-12-12 オッポ広東移動通信有限公司 上りリンク制御情報の伝送方法及び装置
CN113647167B (zh) * 2019-09-30 2023-09-26 Oppo广东移动通信有限公司 一种上行信息传输方法及其装置
CN112584514B (zh) * 2019-09-30 2022-11-29 展讯半导体(南京)有限公司 通信方法、装置及***
EP4054257A4 (en) * 2019-11-20 2022-12-14 Huawei Technologies Co., Ltd. CONTROL CHANNEL TRANSMISSION PROCEDURE AT TWO LEVELS, TERMINAL EQUIPMENT AND COMMUNICATION DEVICE
CN113543330B (zh) * 2020-04-22 2022-12-09 北京紫光展锐通信技术有限公司 信道资源的传输方法及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231677A (zh) * 2016-07-29 2016-12-14 宇龙计算机通信科技(深圳)有限公司 一种通信的方法及基站
US20170317794A1 (en) * 2016-04-29 2017-11-02 Lg Electronics Inc. Method and user equipment for transmitting uplink signal, and method and base station for receiving uplink signal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216058B2 (ja) * 2010-02-15 2013-06-19 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置および上り制御情報信号の送信方法
CN103095398B (zh) * 2011-11-04 2017-04-12 华为技术有限公司 传输控制信息的方法、用户设备和基站
CN104348589B (zh) * 2013-07-23 2018-12-11 电信科学技术研究院 一种传输反馈信息的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317794A1 (en) * 2016-04-29 2017-11-02 Lg Electronics Inc. Method and user equipment for transmitting uplink signal, and method and base station for receiving uplink signal
CN106231677A (zh) * 2016-07-29 2016-12-14 宇龙计算机通信科技(深圳)有限公司 一种通信的方法及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on UCI Feedback for URLLC", 3GPP TSG RAN WG1 MEETING #90BIS RL-1717094, vol. RAN WG1, 2 October 2017 (2017-10-02) - 13 October 2017 (2017-10-13), XP051352200 *
INSTITUTE FOR INFORMATION INDUSTRY (III): "Considerations for UCI for URLLC", 3GPP TSG RAN WG1 MEETING 90BIS RL-1718626, vol. RAN WG1, 3 October 2017 (2017-10-03) - 13 October 2017 (2017-10-13), pages 1 - 4, XP051353158 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062800A1 (en) * 2019-09-30 2021-04-08 Nokia Shanghai Bell Co., Ltd. Uplink control information for uplink configured grant transmission

Also Published As

Publication number Publication date
CN109788561A (zh) 2019-05-21
CN109788561B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US11528099B2 (en) Communication method and apparatus
CN111181693B (zh) 发送数据的方法、发送数据的装置、以及终端设备
CN110034905B (zh) 上行信息传输方法及装置
WO2019096058A1 (zh) 传输控制信息的方法、终端设备和网络设备
US11743868B2 (en) Short physical uplink shared channel arrangement
US10623150B2 (en) Control information transmission method, user equipment, and base station
CN110621075B (zh) 一种传输数据的方法和装置
EP3550911B1 (en) Communication method, network side device and terminal device
CN109644431B (zh) 上行信息传输方法、装置及***
US20210352658A1 (en) UCI Resource Determination
US11330595B2 (en) Method for sending control information, method for receiving control information, and apparatus
CN108347309B (zh) 反馈信息接收方法、发送方法、装置及***
CN110830213B (zh) 上行控制信道资源确定方法和装置
US20220174669A1 (en) Channel determining method and apparatus
WO2019192500A1 (zh) 通信方法和通信装置
WO2022077465A1 (zh) 用于传输控制信息的方法和装置
WO2023134619A1 (zh) Harq-ack信息反馈方法和装置
WO2023201675A1 (en) Transport block generation for wireless communications
WO2023165610A1 (zh) 一种上行信道的冲突处理方法、装置、芯片及模组设备
WO2018192383A1 (zh) 反馈信息接收方法、发送方法、装置及***
WO2020061881A1 (zh) 动态确定载波的方法和装置
CN118018166A (zh) 控制信息的传输、接收方法、装置及存储介质
CN116097589A (zh) 一种上行信息传输方法及装置
CN115190600A (zh) 通信方法、装置及计算机存储介质
CN115190621A (zh) 上行控制信息传输方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879065

Country of ref document: EP

Kind code of ref document: A1