WO2019095710A1 - 光学成像*** - Google Patents

光学成像*** Download PDF

Info

Publication number
WO2019095710A1
WO2019095710A1 PCT/CN2018/095979 CN2018095979W WO2019095710A1 WO 2019095710 A1 WO2019095710 A1 WO 2019095710A1 CN 2018095979 W CN2018095979 W CN 2018095979W WO 2019095710 A1 WO2019095710 A1 WO 2019095710A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
image side
Prior art date
Application number
PCT/CN2018/095979
Other languages
English (en)
French (fr)
Inventor
吕赛锋
吕枫烨
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721513474.1U external-priority patent/CN207336909U/zh
Priority claimed from CN201711122644.8A external-priority patent/CN107741628B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019095710A1 publication Critical patent/WO2019095710A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical imaging system and, more particularly, to an optical imaging system comprising four lenses.
  • the present application provides an optical imaging system that is adaptable to at least one of the above-discussed shortcomings of the prior art, such as a large aperture lens based on infrared band imaging, that is applicable to portable electronic products.
  • the present application provides an optical imaging system that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the third lens has a positive power or a negative power
  • the fourth lens may With negative power
  • the total effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system can satisfy f/EPD ⁇ 1.70.
  • the object side of the second lens may be a concave surface, and the image side may be a convex surface.
  • the third lens can have a negative power.
  • the optical imaging system may further include an infrared band pass filter disposed between the fourth lens and the image side, and the band pass band of the infrared band pass filter may be 750 nm to 950 nm.
  • the band pass wavelength band of the infrared band pass filter may be 850 nm to 940 nm.
  • the total effective focal length f of the optical imaging system, the effective focal length f1 of the first lens, and the effective focal length f2 of the second lens may satisfy 1.0 ⁇
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R4 of the side surface of the second lens image may satisfy 1.0 ⁇
  • the total effective focal length f of the optical imaging system and the effective focal length f4 of the fourth lens may satisfy -1.0 ⁇ f / f4 ⁇ 0.
  • the distance from the center of the side of the first lens to the distance TTL of the imaging surface of the optical imaging system on the optical axis and the distance between the adjacent lenses of the first lens to the fourth lens on the optical axis ⁇ AT can satisfy 3.5 ⁇ TTL / ⁇ AT ⁇ 5.0.
  • the dispersion coefficient V2 of the second lens and the dispersion coefficient V3 of the third lens may satisfy
  • the radius of curvature R1 of the side surface of the first lens object and the radius of curvature R2 of the side surface of the second lens image may satisfy 1.0 ⁇
  • the present application also provides an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the third lens has a positive power or a negative power
  • the fourth lens may Having a negative power
  • the total effective focal length f of the optical imaging system, the effective focal length f1 of the first lens, and the effective focal length f2 of the second lens may satisfy 1.0 ⁇
  • the present application also provides an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the third lens may be There is a negative power
  • the fourth lens can have a negative power.
  • the optical imaging system may further include an infrared band pass filter disposed between the fourth lens and the image side, the band pass band of the infrared band pass filter may be 750 nm to 950 nm, and more specifically, the band pass band may be It is from 850 nm to 940 nm.
  • the present application also provides an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface, and the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the third lens may be There is a negative power
  • the fourth lens can have a negative power.
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R4 of the side surface of the second lens image may satisfy 1.0 ⁇
  • the present application also provides an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the third lens may be There is a negative power
  • the fourth lens can have a negative power.
  • the total effective focal length f of the optical imaging system and the effective focal length f4 of the fourth lens may satisfy -1.0 ⁇ f / f4 ⁇ 0.
  • the present application also provides an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the third lens may be There is a negative power
  • the fourth lens can have a negative power.
  • the distance TTL from the center of the side of the first lens to the imaging plane of the optical imaging system on the optical axis and the distance between the adjacent lenses of the first lens to the fourth lens on the optical axis ⁇ AT can satisfy 3.5 ⁇ TTL / ⁇ AT ⁇ 5.0.
  • the present application also provides an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the third lens may be There is a negative power
  • the fourth lens can have a negative power.
  • the dispersion coefficient V2 of the second lens and the dispersion coefficient V3 of the third lens may satisfy
  • the present application also provides an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface, and the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the third lens may be There is a negative power
  • the fourth lens can have a negative power.
  • the radius of curvature R1 of the side surface of the first lens object and the radius of curvature R2 of the side surface of the second lens image may satisfy 1.0 ⁇
  • the present application employs a plurality of (for example, four) lenses, and the optical imaging system has a small size by appropriately distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. At least one beneficial effect, such as large aperture, low sensitivity, high image quality, and imaging based on infrared wavelength.
  • FIG. 1 is a schematic structural view of an optical imaging system according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging system according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 2;
  • FIG. 5 is a schematic structural view of an optical imaging system according to Embodiment 3 of the present application.
  • 6A to 6D respectively show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging system according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 4;
  • FIG. 9 is a schematic structural view of an optical imaging system according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 5;
  • Figure 11 is a block diagram showing the structure of an optical imaging system according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 6;
  • Figure 13 is a block diagram showing the structure of an optical imaging system according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 7;
  • Figure 15 is a block diagram showing the structure of an optical imaging system according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 8;
  • Figure 17 is a block diagram showing the structure of an optical imaging system according to Embodiment 9 of the present application.
  • 18A to 18D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 9;
  • FIG. 19 is a schematic structural view of an optical imaging system according to Embodiment 10 of the present application.
  • 20A to 20D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 10.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • An optical imaging system may include, for example, four lenses having powers, that is, a first lens, a second lens, a third lens, and a fourth lens.
  • the four lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the third lens has a positive power or a negative power
  • the fourth lens may have a negative power.
  • the object side of the second lens may be a concave surface, and the image side may be a convex surface.
  • the third lens may have a negative power
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the object side of the fourth lens may be a convex surface, and the image side may be a concave surface.
  • the optical imaging system of the present application may satisfy the conditional expression f/EPD ⁇ 1.70, where f is the total effective focal length of the optical imaging system and EPD is the entrance pupil diameter of the optical imaging system. More specifically, f and EPD can further satisfy 1.20 ⁇ f / EPD ⁇ 1.66.
  • the smaller the aperture number Fno of the optical imaging system ie, the total effective focal length of the system f/the diameter of the system's entrance pupil EPD
  • the larger the aperture of the system and the greater the amount of light entering the same unit time. Reducing the number of apertures Fno can effectively increase the amount of light passing through the system per unit time, so that the system can better meet the shooting requirements in low light environments, and has a large aperture advantage.
  • the optical imaging system of the present application may satisfy the conditional expression 1.0 ⁇
  • Reasonable control of the power of the first lens and the second lens is beneficial to increase the aperture, improve the imaging quality of the central region of the system, and reduce the sensitivity of the system.
  • the optical imaging system of the present application may satisfy the conditional expression 1.0 ⁇
  • Reasonably arranging the radius of curvature of the side surface and the image side of the second lens object is advantageous for balancing the high spherical aberration of the system and reducing the sensitivity of the field of view in the central region of the system.
  • the optical imaging system of the present application may satisfy the conditional expression -1.0 ⁇ f / f4 ⁇ 0, where f is the total effective focal length of the optical imaging system and f4 is the effective focal length of the fourth lens. More specifically, f and f4 may further satisfy -0.60 ⁇ f / f4 ⁇ 0, for example, -0.57 ⁇ f / f4 ⁇ -0.08.
  • Reasonable configuration of the effective focal length of the fourth lens can effectively correct the astigmatism of the system and at the same time help ensure the matching of the chief ray angle CRA.
  • the optical imaging system of the present application may satisfy the conditional expression 3.5 ⁇ TTL/ ⁇ AT ⁇ 5.0, where TTL is the distance from the center of the side of the first lens to the imaging plane of the optical imaging system on the optical axis, ⁇ AT is the sum of the separation distances of any two adjacent lenses in the first lens to the fourth lens on the optical axis (in an optical imaging system having four lenses, ⁇ AT is the first lens and the second lens is on the optical axis
  • the TTL and ⁇ AT can further satisfy 3.80 ⁇ TTL / ⁇ AT ⁇ 4.80, for example, 3.84 ⁇ TTL / ⁇ AT ⁇ 4.79.
  • Reasonable control of TTL and ⁇ AT is beneficial to ensure high imaging quality while ensuring the miniaturization characteristics of the imaging system; in addition, satisfying the conditional formula 3.5 ⁇ TTL / ⁇ AT ⁇ 5 is also beneficial to ensure the processing characteristics of the imaging system.
  • the optical imaging system of the present application may satisfy the conditional expression
  • 35.80.
  • Reasonable control of the dispersion coefficients of the second lens and the third lens is beneficial to correct system chromatic aberration and balance aberration, thereby improving the imaging quality of the imaging system.
  • the optical imaging system of the present application may satisfy the conditional formula 1.00 ⁇
  • the optical imaging system of the present application may include an infrared band pass filter disposed between the fourth lens and the imaging surface, the band pass band of the infrared band pass filter may be from about 750 nm to about Further, the band pass band may be from about 850 nm to about 940 nm.
  • Providing an infrared band pass filter between the fourth lens and the imaging surface enables infrared light to pass through and filter stray light to eliminate signal interference caused by non-infrared light, for example, imaging due to chromatic aberration introduced by non-infrared light. blurry.
  • the optical imaging system described above may further include at least one aperture to enhance the imaging quality of the imaging system.
  • the diaphragm may be disposed at any position as needed, for example, the diaphragm may be disposed between the object side and the first lens.
  • the optical imaging system described above may further comprise a protective glass for protecting the photosensitive elements on the imaging surface.
  • An optical imaging system in accordance with the above-described embodiments of the present application may employ multiple lenses, such as the four described above.
  • the volume of the imaging system can be effectively reduced, the sensitivity of the imaging system can be reduced, and the imaging system can be improved.
  • the processability makes the optical imaging system more advantageous for production processing and can be applied to portable electronic products.
  • the optical imaging system configured as described above also has advantageous effects such as large aperture, high imaging quality, imaging based on infrared band, and the like.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging system is not limited to including four lenses.
  • the optical imaging system can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging system according to Embodiment 1 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 of the first lens E1 is aspherical
  • the image side surface S2 is a spherical surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 of the second lens E2 is an aspherical surface
  • the image side surface S4 is a spherical surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 of the third lens E3 is an aspherical surface
  • the image side surface S6 is a spherical surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 1, in which the unit of curvature radius and thickness are both millimeters (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for each of the aspherical mirrors S1, S3, S5, S7 and S8 in the embodiment 1. .
  • Table 3 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging surface.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • f/EPD 1.66, where f is the total effective focal length of the optical imaging system and EPD is the entrance pupil diameter of the optical imaging system;
  • f/f4 -0.38, where f is the total effective focal length of the optical imaging system and f4 is the effective focal length of the fourth lens E4;
  • TTL/ ⁇ AT 4.49, where TTL is the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and ⁇ AT is any adjacent two lenses of the first lens E1 to the fourth lens E4. The sum of the separation distances on the optical axis;
  • 35.80, where V2 is the dispersion coefficient of the second lens E2, and V3 is the dispersion coefficient of the third lens E3;
  • FIG. 2A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the system.
  • 2B shows an astigmatism curve of the optical imaging system of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging system of Embodiment 1, which represents distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 1, which indicates the deviation of different image heights on the imaging plane after the light passes through the system.
  • the optical imaging system given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging system according to Embodiment 2 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 2, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • 4A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 2, which indicates that light of different wavelengths is deviated from a focus point after the system.
  • 4B shows an astigmatism curve of the optical imaging system of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging system of Embodiment 2, which represents the distortion magnitude value in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 2, which shows the deviation of different image heights on the imaging plane after the light passes through the system.
  • the optical imaging system given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging system according to Embodiment 3 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 3, which shows that light of different wavelengths is deviated from the focus point after the system.
  • Fig. 6B shows an astigmatism curve of the optical imaging system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging system of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 3, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 6A to 6D, the optical imaging system given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging system according to Embodiment 4 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging surface.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Figure 8A shows an axial chromatic aberration curve for the optical imaging system of Example 4, which shows that light of different wavelengths deviates from the focus point after the system.
  • Fig. 8B shows an astigmatism curve of the optical imaging system of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging system of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 4, which shows the deviation of different image heights on the imaging plane after the light passes through the system. 8A to 8D, the optical imaging system given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging system according to Embodiment 5 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 5, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 5, which shows that light of different wavelengths is deviated from the focus point after the system.
  • Fig. 10B shows an astigmatism curve of the optical imaging system of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging system of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 5, which shows the deviation of different image heights on the imaging plane after the light passes through the system. 10A to 10D, the optical imaging system given in Embodiment 5 can achieve good imaging quality.
  • FIGS. 11 through 12D An optical imaging system according to Embodiment 6 of the present application is described below with reference to FIGS. 11 through 12D.
  • Figure 11 is a block diagram showing the structure of an optical imaging system according to Embodiment 6 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are aspherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 6, wherein the unit of curvature radius and thickness are both millimeters (mm).
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 6, which indicates that light of different wavelengths is deviated from the focus point after the system.
  • Fig. 12B shows an astigmatism curve of the optical imaging system of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging system of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light passes through the system. 12A to 12D, the optical imaging system given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a block diagram showing the structure of an optical imaging system according to Embodiment 7 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 7, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 7, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging surface.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • FIG. 14A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after the system.
  • Fig. 14B shows an astigmatism curve of the optical imaging system of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging system of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 14A to 14D, the optical imaging system given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an optical imaging system according to Embodiment 8 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 8, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 23 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 8, the total effective focal length f of the optical imaging system, the distance from the center of the object side S1 of the first lens E1 to the imaging plane S11 on the optical axis, and optical imaging.
  • the imaging image plane S11 has a half of the diagonal length of the effective pixel area ImgH.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 8, which indicates that light of different wavelengths is deviated from the focus point after the system.
  • Fig. 16B shows an astigmatism curve of the optical imaging system of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the optical imaging system of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical imaging system of Example 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 16A to 16D, the optical imaging system given in Embodiment 8 can achieve good imaging quality.
  • FIGS. 17 to 18D An optical imaging system according to Embodiment 9 of the present application is described below with reference to FIGS. 17 to 18D.
  • Figure 17 is a block diagram showing the structure of an optical imaging system according to Embodiment 9 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 9, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 26 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 9, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 27 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 9, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 18A shows an axial chromatic aberration curve of the optical imaging system of Example 9, which shows that light of different wavelengths is deviated from the focus point after the system.
  • Fig. 18B shows an astigmatism curve of the optical imaging system of Embodiment 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18C shows a distortion curve of the optical imaging system of Embodiment 9, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 18D shows a magnification chromatic aberration curve of the optical imaging system of Example 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 18A to 18D, the optical imaging system given in Embodiment 9 can achieve good imaging quality.
  • FIG. 19 is a block diagram showing the structure of an optical imaging system according to Embodiment 10 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 of the first lens E1 is aspherical
  • the image side surface S2 is a spherical surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface
  • the object side surface S3 of the second lens E2 is an aspherical surface
  • the image side surface S4 is a spherical surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 of the third lens E3 is an aspherical surface
  • the image side surface S6 is a spherical surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface
  • the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the optical imaging system may further include a filter E5 having an object side S9 and an image side S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 950 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 28 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 10, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 29 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 10, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 30 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 10, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Figure 20A shows an axial chromatic aberration curve for the optical imaging system of Example 10, which shows that light of different wavelengths deviate from the focus point after the system.
  • Fig. 20B shows an astigmatism curve of the optical imaging system of Embodiment 10, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 20C shows a distortion curve of the optical imaging system of Embodiment 10, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 20D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 10, which shows the deviation of different image heights on the imaging plane after the light passes through the system.
  • the optical imaging system given in Embodiment 10 can achieve good imaging quality.
  • Embodiments 1 to 10 satisfy the relationship shown in Table 31, respectively.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging system described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种光学成像***,沿光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)和第四透镜(E4)。其中,第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有负光焦度;光学成像***的总有效焦距f与光学成像***的入瞳直径EPD满足f/EPD≤1.70。

Description

光学成像***
相关申请的交叉引用
本申请要求于2017年11月14日提交于中国国家知识产权局(SIPO)的、专利申请号为201711122644.8的中国专利申请以及于2017年11月14日提交至SIPO的、专利申请号为201721513474.1的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像***,更具体地,本申请涉及一种包括四片透镜的光学成像***。
背景技术
近年来,随着手机、平板电脑等便携式电子产品的快速更新换代,市场对便携式电子产品端的成像镜头的要求愈加多样化。例如在虹膜识别等领域,在要求产品端成像镜头能够基于红外波段成像的同时,还需要镜头具有例如大孔径、高成像质量等特性,以满足成像需要并提高镜头对各种成像环境的适应能力。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像***,例如,基于红外波段成像的大孔径镜头。
一方面,本申请提供了这样一种光学成像***,该光学成像***沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜可具有负光焦度;光学成像***的总有效焦距f与光学成像***的入瞳直径EPD可满足f/EPD≤1.70。
在一个实施方式中,第二透镜的物侧面可为凹面,像侧面可为凸面。
在一个实施方式中,第三透镜可具有负光焦度。
在一个实施方式中,光学成像***还可包括设置于第四透镜与像侧之间的红外带通滤光片,红外带通滤光片的带通波段可为750nm至950nm。
在一个实施方式中,上述红外带通滤光片的带通波段可为850nm至940nm。
在一个实施方式中,光学成像***的总有效焦距f、第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足1.0≤|f/f1|+|f/f2|≤2.0。
在一个实施方式中,第二透镜物侧面的曲率半径R3与第二透镜像侧面的曲率半径R4可满足1.0≤|R3+R4|/|R3-R4|≤5.0。
在一个实施方式中,光学成像***的总有效焦距f与第四透镜的有效焦距f4可满足-1.0≤f/f4≤0。
在一个实施方式中,第一透镜物侧面的中心至光学成像***成像面在光轴上的距离TTL与第一透镜至第四透镜中任意相邻两透镜在光轴上的间隔距离之和∑AT可满足3.5≤TTL/∑AT≤5.0。
在一个实施方式中,第二透镜的色散系数V2与第三透镜的色散系数V3可满足|V2-V3|<45。
在一个实施方式中,第一透镜物侧面的曲率半径R1与第二透镜像侧面的曲率半径R2可满足1.0≤|R1+R2|/|R1-R2|≤2.5。
另一方面,本申请还提供了这样一种光学成像***,该光学成像***沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜可具有负光焦度;光学成像***的总有效焦距f、第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足1.0≤|f/f1|+|f/f2|≤2.0。
又一方面,本申请还提供了这样一种光学成像***,该光学成像 ***沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凹面,像侧面可为凸面;第三透镜可具有负光焦度;第四透镜可具有负光焦度。该光学成像***还可包括设置于第四透镜与像侧之间的红外带通滤光片,该红外带通滤光片的带通波段可为750nm至950nm,更具体地,带通波段可为850nm至940nm。
又一方面,本申请还提供了这样一种光学成像***,该光学成像***沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凹面,像侧面可为凸面;第三透镜可具有负光焦度;第四透镜可具有负光焦度。第二透镜物侧面的曲率半径R3与第二透镜像侧面的曲率半径R4可满足1.0≤|R3+R4|/|R3-R4|≤5.0。
又一方面,本申请还提供了这样一种光学成像***,该光学成像***沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凹面,像侧面可为凸面;第三透镜可具有负光焦度;第四透镜可具有负光焦度。光学成像***的总有效焦距f与第四透镜的有效焦距f4可满足-1.0≤f/f4≤0。
又一方面,本申请还提供了这样一种光学成像***,该光学成像***沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凹面,像侧面可为凸面;第三透镜可具有负光焦度;第四透镜可具有负光焦度。第一透镜物侧面的中心至光学成像***成像面在光轴上的距离TTL与第一透镜至第四透镜中任意相邻两透镜在光轴上的间隔距离之和∑AT可满足3.5≤TTL/∑AT≤5.0。
又一方面,本申请还提供了这样一种光学成像***,该光学成像 ***沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凹面,像侧面可为凸面;第三透镜可具有负光焦度;第四透镜可具有负光焦度。第二透镜的色散系数V2与第三透镜的色散系数V3可满足|V2-V3|<45。
又一方面,本申请还提供了这样一种光学成像***,该光学成像***沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凹面,像侧面可为凸面;第三透镜可具有负光焦度;第四透镜可具有负光焦度。第一透镜物侧面的曲率半径R1与第二透镜像侧面的曲率半径R2可满足1.0≤|R1+R2|/|R1-R2|≤2.5。
本申请采用了多片(例如,四片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像***具有小型化、大孔径、低敏感性、高成像品质、可基于红外波段成像等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像***的结构示意图;
图2A至图2D分别示出了实施例1的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像***的结构示意图;
图4A至图4D分别示出了实施例2的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像***的结构示意图;
图6A至图6D分别示出了实施例3的光学成像***的轴上色差曲 线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像***的结构示意图;
图8A至图8D分别示出了实施例4的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像***的结构示意图;
图10A至图10D分别示出了实施例5的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像***的结构示意图;
图12A至图12D分别示出了实施例6的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像***的结构示意图;
图14A至图14D分别示出了实施例7的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像***的结构示意图;
图16A至图16D分别示出了实施例8的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像***的结构示意图;
图18A至图18D分别示出了实施例9的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像***的结构示意图;
图20A至图20D分别示出了实施例10的光学成像***的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一 个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像***可包括例如四片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜和第四透镜。这 四片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜可具有负光焦度。通过将靠近物侧的两片透镜(即,第一透镜和第二透镜)均布置为具有正光焦度的正透镜,有利于加大***光圈,增大单位时间内的通光量。
在示例性实施方式中,第二透镜的物侧面可为凹面,像侧面可为凸面。
在示例性实施方式中,第三透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凸面。
在示例性实施方式中,第四透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的光学成像***可满足条件式f/EPD≤1.70,其中,f为光学成像***的总有效焦距,EPD为光学成像***的入瞳直径。更具体地,f和EPD进一步可满足1.20≤f/EPD≤1.66。光学成像***的光圈数Fno(即,***的总有效焦距f/***的入瞳直径EPD)越小,***的通光孔径越大,在同一单位时间内的进光量便越多。减小光圈数Fno,可有效地增大***单位时间内的通光量,使得***能够更好地满足光线不足环境下的拍摄需求,具有大孔径优势。
在示例性实施方式中,本申请的光学成像***可满足条件式1.0≤|f/f1|+|f/f2|≤2.0,其中,f为光学成像***的总有效焦距,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f、f1和f2进一步可满足1.10≤|f/f1|+|f/f2|≤1.60,例如,1.20≤|f/f1|+|f/f2|≤1.56。合理控制第一透镜和第二透镜的光焦度,有利于增大光圈,提升***中心区域的成像品质,降低***的敏感性。
在示例性实施方式中,本申请的光学成像***可满足条件式1.0≤|R3+R4|/|R3-R4|≤5.0,其中,R3为第二透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R3和R4进一步可满足1.20≤|R3+R4|/|R3-R4|≤4.80,例如,1.29≤|R3+R4|/|R3-R4|≤4.79。 合理布置第二透镜物侧面和像侧面的曲率半径,有利于平衡***的高级球差,降低***中心区域视场的敏感性。
在示例性实施方式中,本申请的光学成像***可满足条件式-1.0≤f/f4≤0,其中,f为光学成像***的总有效焦距,f4为第四透镜的有效焦距。更具体地,f和f4进一步可满足-0.60≤f/f4≤0,例如,-0.57≤f/f4≤-0.08。合理配置第四透镜的有效焦距,可有效矫正***的象散,同时有利于保证主光线角CRA的匹配性。
在示例性实施方式中,本申请的光学成像***可满足条件式3.5≤TTL/∑AT≤5.0,其中,TTL为第一透镜物侧面的中心至光学成像***成像面在光轴上的距离,∑AT为第一透镜至第四透镜中任意相邻两透镜在光轴上的间隔距离之和(在具有四片透镜的光学成像***中,∑AT为第一透镜与第二透镜在光轴上的间隔距离T12、第二透镜与第三透镜在光轴上的间隔距离T23、第三透镜与第四透镜在光轴上的间隔距离T34之和,即∑AT=T12+T23+T34)。更具体地,TTL和∑AT进一步可满足3.80≤TTL/∑AT≤4.80,例如,3.84≤TTL/∑AT≤4.79。合理控制TTL和∑AT,有利于在实现高成像品质的同时,确保成像***的小型化特性;此外,满足条件式3.5≤TTL/∑AT≤5还有利于保证成像***的加工特性。
在示例性实施方式中,本申请的光学成像***可满足条件式|V2-V3|<45,其中,V2为第二透镜的色散系数,V3为第三透镜的色散系数。更具体地,V2和V3进一步可满足20≤|V2-V3|≤40,例如,|V2-V3|=35.80。合理控制第二透镜和第三透镜的色散系数,有利于修正***色差、平衡象差,从而提升成像***的成像品质。
在示例性实施方式中,本申请的光学成像***可满足条件式1.00≤|R1+R2|/|R1-R2|≤2.50,其中,R1为第一透镜的物侧面的曲率半径,R2为第二透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足1.00≤|R1+R2|/|R1-R2|≤2.15,例如,1.00≤|R1+R2|/|R1-R2|≤2.09。合理控制第一透镜物侧面和像侧面的曲率半径,有利于平衡***的高级球差;同时,满足条件式1.00≤|R1+R2|/|R1-R2|≤2.50有利于确保第一透镜的加工特性。
在示例性实施方式中,本申请的光学成像***可包括设置在第四透镜与成像面之间的红外带通滤光片,该红外带通滤光片的带通波段可为约750nm至约950nm,更进一步地,带通波段可为约850nm至约940nm。在第四透镜与成像面之间设置红外带通滤光片可使得红外光通过并过滤杂光,以消除非红外光带来的信号干扰,例如,由于非红外光引入的色差而造成的成像模糊。
可选地,上述光学成像***还可包括至少一个光阑,以提升成像***的成像质量。光阑可根据需要设置在任意位置处,例如,光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像***还可包括用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像***可采用多片镜片,例如上文所述的四片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像***的体积、降低成像***的敏感度并提高成像***的可加工性,使得光学成像***更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的光学成像***还具有例如大孔径、高成像品质、基于红外波段成像等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像***的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以四个透镜为例进行了描述,但是该光学成像***不限于包括四个透镜。如果需要,该光学成像***还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像*** 的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像***。图1示出了根据本申请实施例1的光学成像***的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1为非球面,像侧面S2为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,且第二透镜E2的物侧面S3为非球面,像侧面S4为球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5为非球面,像侧面S6为球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表1示出了实施例1的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018095979-appb-000001
Figure PCTCN2018095979-appb-000002
表1
在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018095979-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1、S3、S5、S7和S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -9.9714E-03 2.5451E-02 -3.8312E-02 3.2087E-02 0.0000E+00 0.0000E+00 0.0000E+00
S3 -8.9649E-02 2.2862E-02 -5.0252E-02 6.5788E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 2.4510E-01 -1.9517E-01 1.2918E-01 -3.4465E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -4.4841E-01 1.6549E-01 -2.3784E-02 -2.2369E-02 2.2751E-02 -5.9650E-03 0.0000E+00
S8 -2.5119E-01 1.4785E-01 -5.9349E-02 1.2624E-02 -8.7691E-04 -7.5706E-05 0.0000E+00
表2
表3给出实施例1中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) 4.01 f(mm) 2.86
f2(mm) 4.15 TTL(mm) 3.98
f3(mm) -38.81 ImgH(mm) 2.00
f4(mm) -7.58
表3
实施例1中的光学成像***满足:
f/EPD=1.66,其中,f为光学成像***的总有效焦距,EPD为光学成像***的入瞳直径;
|f/f1|+|f/f2|=1.40,其中,f为光学成像***的总有效焦距,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距;
|R3+R4|/|R3-R4|=2.78,其中,R3为第二透镜E2的物侧面S3的曲率半径,R4为第二透镜E2的像侧面S4的曲率半径;
f/f4=-0.38,其中,f为光学成像***的总有效焦距,f4为第四透镜E4的有效焦距;
TTL/∑AT=4.49,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离,∑AT为第一透镜E1至第四透镜E4中任意相邻两透镜在光轴上的间隔距离之和;
|V2-V3|=35.80,其中,V2为第二透镜E2的色散系数,V3为第三透镜E3的色散系数;
|R1+R2|/|R1-R2|=1.91,其中,R1为第一透镜E1的物侧面S1的曲率半径,R2为第一透镜E1的像侧面S2的曲率半径。
另外,图2A示出了实施例1的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图2B示出了实施例1的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像***能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像***。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像***的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表4示出了实施例2的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出实施例2中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000004
Figure PCTCN2018095979-appb-000005
表4
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.9884E-03 2.6244E-02 -2.4798E-02 1.6800E-02 0.0000E+00 0.0000E+00 0.0000E+00
S2 1.4033E-02 -2.6481E-02 6.2709E-02 -6.3953E-02 0.0000E+00 0.0000E+00 0.0000E+00
S3 -5.6581E-02 2.7688E-02 -5.6208E-02 3.4185E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -6.4003E-03 3.5780E-02 -5.2954E-02 2.0270E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 2.7918E-01 -3.0019E-01 2.2806E-01 -6.4483E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 7.6831E-02 -9.1411E-02 1.0635E-01 -2.4613E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.6540E-01 1.9405E-01 1.6406E-01 -2.0298E-01 9.0768E-02 -1.4928E-02 0.0000E+00
S8 -3.8494E-01 3.3137E-01 -1.8826E-01 6.6650E-02 -1.3588E-02 1.1891E-03 0.0000E+00
表5
f1(mm) 3.51 f(mm) 2.84
f2(mm) 4.32 TTL(mm) 3.98
f3(mm) -222.92 ImgH(mm) 2.03
f4(mm) -5.01
表6
图4A示出了实施例2的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图4B示出了实施例2的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像***能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像***。图5示出了根据本申请实施例3的光学成像***的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像***沿光轴 由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表7示出了实施例3的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出实施例3中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000006
Figure PCTCN2018095979-appb-000007
表7
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.1071E-02 2.4085E-02 -3.7637E-02 3.3897E-02 0.0000E+00 0.0000E+00 0.0000E+00
S2 6.8800E-03 -1.6701E-02 3.4889E-02 1.9751E-02 0.0000E+00 0.0000E+00 0.0000E+00
S3 -7.6908E-02 2.9368E-02 -3.8545E-02 3.5298E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 -3.4258E-03 1.4299E-02 -1.7501E-02 7.2246E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 2.5025E-01 -2.2857E-01 1.4509E-01 -3.8017E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.8589E-02 -1.1851E-02 -1.0924E-02 1.2124E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.4197E-01 2.2028E-01 -2.4539E-02 -2.9010E-02 2.8169E-02 -7.5338E-03 0.0000E+00
S8 -2.6877E-01 1.7018E-01 -6.6492E-02 1.3629E-02 -9.0648E-04 -1.0684E-04 0.0000E+00
表8
f1(mm) 4.49 f(mm) 2.78
f2(mm) 2.95 TTL(mm) 3.90
f3(mm) -11.57 ImgH(mm) 1.95
f4(mm) -5.62
表9
图6A示出了实施例3的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图6B示出了实施例3的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像***能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像***。图7示出了根据本申请实施例4的光学成像***的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第 三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表10示出了实施例4的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出实施例4中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000008
Figure PCTCN2018095979-appb-000009
表10
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.0160E-02 2.6657E-02 -3.5926E-02 2.6453E-02 0.0000E+00 0.0000E+00 0.0000E+00
S2 4.7386E-03 -1.7700E-02 2.0829E-02 1.3180E-02 0.0000E+00 0.0000E+00 0.0000E+00
S3 -7.9563E-02 2.9263E-02 -3.3653E-02 3.3470E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 4.6453E-04 1.5378E-02 -2.0268E-02 6.1712E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 2.6168E-01 -2.3024E-01 1.4383E-01 -3.7590E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 2.7549E-02 -1.0891E-02 -9.3132E-03 1.4393E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.2721E-01 2.2593E-01 -2.3775E-02 -2.8931E-02 2.8318E-02 -7.2030E-03 0.0000E+00
S8 -2.6910E-01 1.7227E-01 -6.7530E-02 1.3870E-02 -8.4522E-04 -1.1170E-04 0.0000E+00
表11
f1(mm) 4.52 f(mm) 2.78
f2(mm) 3.25 TTL(mm) 3.97
f3(mm) -19.82 ImgH(mm) 2.00
f4(mm) -6.34
表12
图8A示出了实施例4的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图8B示出了实施例4的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像***能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像***。图9示出了根据本申请实施例5的光学成像***的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表13示出了实施例5的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出实施例5中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000010
表13
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.7098E-02 2.0172E-02 -3.6756E-02 2.1283E-02 0.0000E+00 0.0000E+00 0.0000E+00
S2 4.7340E-03 -1.7431E-02 7.4215E-03 2.4012E-02 0.0000E+00 0.0000E+00 0.0000E+00
S3 -8.4732E-02 3.6290E-02 -3.0111E-02 2.7013E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.8245E-02 1.4204E-02 -2.3245E-02 7.0684E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 2.4676E-01 -2.3019E-01 1.3679E-01 -4.3561E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 4.7327E-02 -1.7606E-02 -1.0120E-02 1.6059E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.0433E-01 2.2199E-01 -2.4803E-02 -2.8808E-02 2.8303E-02 -7.3604E-03 0.0000E+00
S8 -2.7412E-01 1.7835E-01 -7.0958E-02 1.4561E-02 -7.4260E-04 -1.6043E-04 0.0000E+00
表14
f1(mm) 3.81 f(mm) 2.74
f2(mm) 3.49 TTL(mm) 3.98
f3(mm) -29.19 ImgH(mm) 1.95
f4(mm) -5.48
表15
图10A示出了实施例5的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图10B示出了实施例5的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像***能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像***。图11示出了根据本申请实施例6的光学成像***的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为 凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表16示出了实施例6的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出实施例6中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000011
表16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.3296E-02 3.0402E-02 -3.2113E-02 1.0541E-02 0.0000E+00 0.0000E+00 0.0000E+00
S2 1.0378E-03 -3.5111E-03 2.0559E-03 -9.2039E-03 0.0000E+00 0.0000E+00 0.0000E+00
S3 -9.5469E-02 2.5907E-02 -4.0006E-02 5.0531E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.4283E-02 8.7627E-03 -2.5468E-02 8.5038E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 2.6320E-01 -2.3752E-01 1.4282E-01 -4.1073E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 5.5867E-02 -8.4874E-03 -1.2622E-02 1.5333E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.1171E-01 2.2963E-01 -2.4740E-02 -2.9768E-02 2.7843E-02 -7.0100E-03 0.0000E+00
S8 -2.7862E-01 1.8003E-01 -7.1589E-02 1.4495E-02 -7.2810E-04 -1.4606E-04 0.0000E+00
表17
f1(mm) 3.74 f(mm) 2.77
f2(mm) 3.99 TTL(mm) 3.98
f3(mm) -31671.22 ImgH(mm) 1.95
f4(mm) -5.56
表18
图12A示出了实施例6的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图12B示出了实施例6的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像***能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像***。图13示出了根据本申请实施例7的光学成像***的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表19示出了实施例7的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出实施例7中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000012
表19
面号 A4 A6 A8 A11 A12 A14 A16
S1 -1.2836E-02 2.4848E-02 -1.5943E-02 4.1646E-04 0.0000E+00 0.0000E+00 0.0000E+00
S2 -1.5070E-03 -3.5425E-03 1.2947E-02 -2.0452E-02 0.0000E+00 0.0000E+00 0.0000E+00
S3 -9.6849E-02 3.7047E-02 -3.1174E-02 -5.9912E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 2.6347E-02 2.4342E-03 -2.4158E-02 7.1233E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 2.8781E-01 -2.4391E-01 1.4958E-01 -4.0447E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.5901E-02 2.6452E-02 -1.4027E-02 1.2091E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.2961E-01 2.3037E-01 -2.5161E-02 -3.0811E-02 2.7692E-02 -6.6267E-03 0.0000E+00
S8 -2.9477E-01 1.8447E-01 -7.1511E-02 1.4126E-02 -7.3095E-04 -1.2212E-04 0.0000E+00
表20
f1(mm) 3.79 f(mm) 2.72
f2(mm) 4.32 TTL(mm) 3.98
f3(mm) -63.42 ImgH(mm) 1.95
f4(mm) -8.78
表21
图14A示出了实施例7的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图14B示出了实施例7的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像***能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像***。图15示出了根据本申请实施例8的光学成像***的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为 凸面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表22示出了实施例8的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出实施例8中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及光学成像***成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000013
表22
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.3131E-02 -1.1311E-02 7.2892E-03 -4.2240E-02 0.0000E+00 0.0000E+00 0.0000E+00
S2 -5.4913E-02 -6.4214E-02 1.3068E-02 -8.1674E-03 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.1392E-01 9.0940E-02 2.6915E-03 -2.2219E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 5.8144E-02 1.8435E-02 -1.4033E-02 -9.8879E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 3.5327E-01 -2.5896E-01 1.6992E-01 -4.5009E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 -4.1261E-03 8.4079E-02 -2.0573E-02 1.5122E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.0268E-01 2.2921E-01 -3.0583E-02 -3.4870E-02 2.7014E-02 -5.5272E-03 0.0000E+00
S8 -3.3662E-01 2.0591E-01 -7.4841E-02 1.3514E-02 -5.7119E-04 -1.1052E-04 0.0000E+00
表23
f1(mm) 3.52 f(mm) 2.37
f2(mm) 4.52 TTL(mm) 3.63
f3(mm) -361.27 ImgH(mm) 1.95
f4(mm) -28.79
表24
图16A示出了实施例8的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图16B示出了实施例8的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像***能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像***。图17示出了根据本申请实施例9的光学成像***的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为 凸面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表25示出了实施例9的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27给出实施例9中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000014
表25
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.2221E-02 -5.1782E-02 6.0697E-02 -7.3917E-02 0.0000E+00 0.0000E+00 0.0000E+00
S2 -8.2697E-02 -6.1885E-02 1.1784E-02 -5.2779E-03 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.5859E-01 1.5249E-01 1.5423E-02 -3.0886E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 5.0611E-02 3.6287E-02 1.8259E-04 -1.7915E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 4.1083E-01 -2.8284E-01 1.4559E-01 -3.1292E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 4.3675E-02 6.2899E-02 -4.6464E-02 2.4774E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -4.8905E-01 2.1725E-01 -3.2842E-02 -3.4073E-02 2.6630E-02 -5.3582E-03 0.0000E+00
S8 -3.7479E-01 2.3211E-01 -8.3709E-02 1.3609E-02 2.7294E-04 -2.6942E-04 0.0000E+00
表26
f1(mm) 3.63 f(mm) 2.43
f2(mm) 4.27 TTL(mm) 3.71
f3(mm) -63.48 ImgH(mm) 2.00
f4(mm) -25.42
表27
图18A示出了实施例9的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图18B示出了实施例9的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像***能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的光学成像***。图19示出了根据本申请实施例10的光学成像***的结构示意图。
如图19所示,根据本申请示例性实施方式的光学成像***沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1为非球面,像侧面S2为球面。
第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为 凸面,且第二透镜E2的物侧面S3为非球面,像侧面S4为球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5为非球面,像侧面S6为球面。
第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。
可选地,光学成像***还可包括具有物侧面S9和像侧面S10的滤光片E5。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约950nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表28示出了实施例10的光学成像***的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表30给出实施例10中各透镜的有效焦距f1至f4、光学成像***的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018095979-appb-000015
表28
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.4467E-02 1.9190E-02 -3.4642E-02 2.5832E-02 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.0067E-01 3.0442E-02 -5.2897E-02 5.5773E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 2.0618E-01 -1.3642E-01 8.2309E-02 -2.0502E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -3.4483E-01 9.0594E-02 -3.0599E-02 1.1817E-02 -1.8751E-04 0.0000E+00 0.0000E+00
S8 -2.6299E-01 1.5066E-01 -6.1127E-02 1.3694E-02 -1.3322E-03 0.0000E+00 0.0000E+00
表29
f1(mm) 3.79 f(mm) 2.85
f2(mm) 3.85 TTL(mm) 4.00
f3(mm) -12.42 ImgH(mm) 2.00
f4(mm) -8.60
表30
图20A示出了实施例10的光学成像***的轴上色差曲线,其表示不同波长的光线经由***后的会聚焦点偏离。图20B示出了实施例10的光学成像***的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像***的畸变曲线,其表示不同视角情况下的畸变大小值。图20D示出了实施例10的光学成像***的倍率色差曲线,其表示光线经由***后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像***能够实现良好的成像品质。
综上,实施例1至实施例10分别满足表31中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9 10
f/EPD 1.66 1.66 1.66 1.50 1.50 1.40 1.30 1.20 1.20 1.66
|f/f1|+|f/f2| 1.40 1.46 1.56 1.47 1.50 1.43 1.35 1.20 1.24 1.49
|R3+R4|/|R3-R4| 2.78 2.86 1.29 1.44 2.16 2.53 2.72 4.42 4.79 2.31
f/f4 -0.38 -0.57 -0.49 -0.44 -0.50 -0.50 -0.31 -0.08 -0.10 -0.33
TTL/∑AT 4.49 4.52 3.84 4.03 4.36 4.32 4.46 4.79 4.70 4.59
|V2-V3| 35.80 35.80 35.80 35.80 35.80 35.80 35.80 35.80 35.80 35.80
|R1+R2|/|R1-R2| 1.91 1.52 2.01 2.09 1.28 1.50 1.49 1.06 1.00 1.76
表31
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子 设备上的成像模块。该成像装置装配有以上描述的光学成像***。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (21)

  1. 光学成像***,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有负光焦度;
    其中,所述光学成像***的总有效焦距f与所述光学成像***的入瞳直径EPD满足f/EPD≤1.70。
  2. 根据权利要求1所述光学成像***,其特征在于,所述第二透镜的物侧面为凹面,像侧面为凸面。
  3. 根据权利要求1所述光学成像***,其特征在于,所述第三透镜具有负光焦度。
  4. 根据权利要求1所述光学成像***,其特征在于,所述光学成像***还包括设置于所述第四透镜与所述像侧之间的红外带通滤光片,所述红外带通滤光片的带通波段为750nm至950nm。
  5. 根据权利要求4所述光学成像***,其特征在于,所述红外带通滤光片的带通波段为850nm至940nm。
  6. 根据权利要求1至5中任一项所述光学成像***,其特征在于,所述光学成像***的总有效焦距f、所述第一透镜的有效焦距f1和所述第二透镜的有效焦距f2满足1.0≤|f/f1|+|f/f2|≤2.0。
  7. 根据权利要求1至5中任一项所述光学成像***,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第二透镜像侧面的曲率半 径R4满足1.0≤|R3+R4|/|R3-R4|≤5.0。
  8. 根据权利要求1至5中任一项所述光学成像***,其特征在于,所述光学成像***的总有效焦距f与所述第四透镜的有效焦距f4满足-1.0≤f/f4≤0。
  9. 根据权利要求1至5中任一项所述光学成像***,其特征在于,所述第一透镜物侧面的中心至所述光学成像***成像面在所述光轴上的距离TTL与所述第一透镜至所述第四透镜中任意相邻两透镜在所述光轴上的间隔距离之和∑AT满足3.5≤TTL/∑AT≤5.0。
  10. 根据权利要求1至5中任一项所述光学成像***,其特征在于,所述第二透镜的色散系数V2与所述第三透镜的色散系数V3满足|V2-V3|<45。
  11. 根据权利要求1至5中任一项所述光学成像***,其特征在于,所述第一透镜物侧面的曲率半径R1与所述第二透镜像侧面的曲率半径R2满足1.0≤|R1+R2|/|R1-R2|≤2.5。
  12. 光学成像***,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有负光焦度;
    其中,所述光学成像***的总有效焦距f、所述第一透镜的有效焦距f1和所述第二透镜的有效焦距f2满足1.0≤|f/f1|+|f/f2|≤2.0。
  13. 根据权利要求12所述光学成像***,其特征在于,所述第一透镜物侧面的曲率半径R1与所述第二透镜像侧面的曲率半径R2满足 1.0≤|R1+R2|/|R1-R2|≤2.5。
  14. 根据权利要求12所述光学成像***,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第二透镜像侧面的曲率半径R4满足1.0≤|R3+R4|/|R3-R4|≤5.0。
  15. 根据权利要求14所述光学成像***,其特征在于,所述第二透镜的物侧面为凹面,像侧面为凸面。
  16. 根据权利要求12所述光学成像***,其特征在于,所述光学成像***的总有效焦距f与所述第四透镜的有效焦距f4满足-1.0≤f/f4≤0。
  17. 根据权利要求12所述光学成像***,其特征在于,所述第二透镜的色散系数V2与所述第三透镜的色散系数V3满足|V2-V3|<45。
  18. 根据权利要求12所述光学成像***,其特征在于,所述第一透镜物侧面的中心至所述光学成像***成像面在所述光轴上的距离TTL与所述第一透镜至所述第四透镜中任意相邻两透镜在所述光轴上的间隔距离之和∑AT满足3.5≤TTL/∑AT≤5.0。
  19. 根据权利要求12至17中任一项所述光学成像***,其特征在于,所述光学成像***还包括设置于所述第四透镜与所述像侧之间的红外带通滤光片,所述红外带通滤光片的带通波段为750nm至950nm。
  20. 根据权利要求19所述光学成像***,其特征在于,所述红外带通滤光片的带通波段为850nm至940nm。
  21. 根据权利要求13至17中任一项所述光学成像***,其特征 在于,所述光学成像***的总有效焦距f与所述光学成像***的入瞳直径EPD满足f/EPD≤1.70。
PCT/CN2018/095979 2017-11-14 2018-07-17 光学成像*** WO2019095710A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721513474.1U CN207336909U (zh) 2017-11-14 2017-11-14 光学成像***
CN201711122644.8A CN107741628B (zh) 2017-11-14 2017-11-14 光学成像***
CN201711122644.8 2017-11-14
CN201721513474.1 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019095710A1 true WO2019095710A1 (zh) 2019-05-23

Family

ID=66539315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095979 WO2019095710A1 (zh) 2017-11-14 2018-07-17 光学成像***

Country Status (1)

Country Link
WO (1) WO2019095710A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744570B1 (en) * 2003-01-30 2004-06-01 Minolta Co., Ltd. Taking lens system
US20080043343A1 (en) * 2006-08-17 2008-02-21 Chen Chun Shan Image Pickup Lens Assembly
CN206178233U (zh) * 2016-07-18 2017-05-17 先进光电科技股份有限公司 可见光与红外光两用的低焦平面偏移量光学成像***
CN107315236A (zh) * 2017-08-24 2017-11-03 浙江舜宇光学有限公司 摄像透镜组
CN107741628A (zh) * 2017-11-14 2018-02-27 浙江舜宇光学有限公司 光学成像***
CN207336909U (zh) * 2017-11-14 2018-05-08 浙江舜宇光学有限公司 光学成像***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744570B1 (en) * 2003-01-30 2004-06-01 Minolta Co., Ltd. Taking lens system
US20080043343A1 (en) * 2006-08-17 2008-02-21 Chen Chun Shan Image Pickup Lens Assembly
CN206178233U (zh) * 2016-07-18 2017-05-17 先进光电科技股份有限公司 可见光与红外光两用的低焦平面偏移量光学成像***
CN107315236A (zh) * 2017-08-24 2017-11-03 浙江舜宇光学有限公司 摄像透镜组
CN107741628A (zh) * 2017-11-14 2018-02-27 浙江舜宇光学有限公司 光学成像***
CN207336909U (zh) * 2017-11-14 2018-05-08 浙江舜宇光学有限公司 光学成像***

Similar Documents

Publication Publication Date Title
WO2019105139A1 (zh) 光学成像镜头
WO2019101052A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019169853A1 (zh) 光学成像镜头
WO2019134602A1 (zh) 光学成像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2019210672A1 (zh) 光学成像***
WO2020119146A1 (zh) 光学成像镜头
WO2020010878A1 (zh) 光学成像***
WO2019114366A1 (zh) 光学成像镜头
WO2018090609A1 (zh) 光学成像***及摄像装置
WO2020088022A1 (zh) 光学成像镜片组
WO2019196572A1 (zh) 光学成像***
WO2020007069A1 (zh) 光学成像镜片组
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2020119171A1 (zh) 光学成像镜头
WO2018153012A1 (zh) 摄像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2019095865A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2019056776A1 (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019056758A1 (zh) 摄像透镜组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879685

Country of ref document: EP

Kind code of ref document: A1