WO2019095524A1 - 一种非旋转套的防转装置以及旋转导向装置 - Google Patents

一种非旋转套的防转装置以及旋转导向装置 Download PDF

Info

Publication number
WO2019095524A1
WO2019095524A1 PCT/CN2018/000083 CN2018000083W WO2019095524A1 WO 2019095524 A1 WO2019095524 A1 WO 2019095524A1 CN 2018000083 W CN2018000083 W CN 2018000083W WO 2019095524 A1 WO2019095524 A1 WO 2019095524A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
rotating sleeve
rotation device
rotation member
mounting pin
Prior art date
Application number
PCT/CN2018/000083
Other languages
English (en)
French (fr)
Inventor
刘庆波
底青云
王自力
陈文轩
杜建生
杨永友
何新振
刘洋
洪林峰
谢棋军
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to US16/348,022 priority Critical patent/US10815730B2/en
Priority to JP2019518997A priority patent/JP6676218B2/ja
Priority to EP18880010.6A priority patent/EP3611330B1/en
Publication of WO2019095524A1 publication Critical patent/WO2019095524A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/062Deflecting the direction of boreholes the tool shaft rotating inside a non-rotating guide travelling with the shaft
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
    • E21B17/1021Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well with articulated arms or arcuate springs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1078Stabilisers or centralisers for casing, tubing or drill pipes

Definitions

  • the present application relates to the field of drilling, and more particularly to the field of rotary guidance for controlling drilling guidance.
  • drilling exploration is required.
  • the wellbore and the derrick are not aligned, but need to form a certain offset or bend. This formation is horizontal or vertical offset or other type.
  • the process of complex wells is called directional drilling.
  • the process of directional control of the bit direction during directional drilling is called guiding.
  • Modern directional drilling has two types: sliding guide and rotary guide. When sliding and guiding drilling, the drill string does not rotate; the bottom hole power drill (turbine drill, screw drilling tool) drives the drill bit to rotate.
  • the screw drilling tool and part of the drill string and the centralizer can only slide up and down the well wall against the well wall.
  • the rotary steerable drilling system is a rotary drive to drive the drill string, the drill string and the rotary guide tool are rolled on the well wall, and the rolling friction resistance is small.
  • the rotary steerable drilling system can control and adjust the slanting and orienting function during the drilling, and can be drilled while drilling.
  • the real-time completion of the slanting, slanting, stabilizing, and sloping, and the friction is small, the torque is small, the drilling speed is high, the drill bit is large, the aging is high, the cost is low, and the well shaft is easy to control.
  • US Patent Application No. US20140209389A1 discloses a rotary guiding tool comprising a non-rotating sleeve, a rotating shaft comprising a deflectable unit, the deflection of the deflectable unit by controlling the circumferential position of the eccentric bushing, thereby adjusting the drill of the drill bit Hole direction.
  • the control system needs to continuously measure the attitude of the non-rotating sleeve (the attitude measuring system and the control unit are generally installed in the non-rotating sleeve), and output control commands according to the attitude parameters.
  • the non-rotating sleeve will rotate with the drilling system due to inertia and non-negligible friction.
  • the prior art requires a technique that effectively blocks the rotation of the non-rotating sleeve with the combination of the drill, thereby providing a basis for accurate attitude measurement and steering control.
  • the present application proposes a non-rotating sleeve anti-rotation device: the anti-rotation device is connected to the non-rotating sleeve in such a manner that the anti-rotation device can transmit the week to the non-rotating sleeve a force acting to hinder the rotation of the non-rotating sleeve, the anti-rotation device comprising an anti-rotation member and an elastic member, the anti-rotation member being movable substantially in a radial direction of the non-rotating sleeve, the elastic member Acting on the anti-rotation member and providing a substantially radially outward force to the anti-rotation body.
  • the anti-rotation device further comprises:
  • a body the body being coupled to the non-rotating sleeve
  • An anti-rotation member body wherein the anti-rotation member body is mounted on the body;
  • the anti-rotation member is mounted on the anti-rotation member body, the elastic member is mounted on the body, and the elastic member acts on the anti-rotation member body and is provided by the anti-rotation member body The radially outward force.
  • the anti-rotation member body is hinged to the body by a first mounting pin
  • the anti-rotation member is rotatably mounted on the anti-rotation member body by a second mounting pin.
  • the anti-rotation member body includes a sloped surface that acts on the anti-rotation member to provide the radially outward force.
  • the body is provided with a finite protrusion, and the limiting protrusion is adapted to limit the radial displacement of the anti-rotation member.
  • the anti-rotation device further includes a third mounting pin, and the body is connected to the non-rotating sleeve through the third mounting pin;
  • the anti-rotation device further includes a radial driving device and an extension disposed on the body, the radial driving device being adapted to drive the body to rotate about the third mounting pin, such that the extension portion The second non-rotating sleeve acts.
  • the present application also discloses a rotary guiding device, including a first non-rotating sleeve, a second non-rotating sleeve, and an anti-rotation device as described above, the first non-rotating sleeve and the anti-rotation The rotating device is connected, and the anti-rotation device is connected to the second non-rotating sleeve.
  • connection between the anti-rotation device and the second non-rotating sleeve is specifically:
  • the anti-rotation device has an extension portion having an overlapping portion with the second non-rotating sleeve in the axial direction.
  • the non-rotating sleeve anti-rotation device and the rotation guiding device proposed by the present application on the one hand, the non-rotating sleeve can be prevented from rotating too fast without increasing the overall size of the drilling tool assembly, so that the non-rotating sleeve is as low as possible.
  • the speed is rotated or not rotated, thereby providing a basis for accurate attitude measurement and steering control.
  • the two non-rotating sleeve-based guiding devices proposed by the present application can realize two using only one anti-rotation device.
  • the non-rotating sleeve is rotated too fast, and at the same time, the anti-rotation device can also provide a guiding driving force based on a very small structural size.
  • FIG. 1 is a schematic view showing the structure of a drill assembly including the anti-rotation device of the present application
  • FIG. 2 is a schematic view showing a partial explosion of the anti-rotation device of the present application
  • FIG. 3 is a schematic structural view of an anti-rotation device of the present application.
  • Figure 5 is a schematic cross-sectional view of the anti-rotation device of the present application at an extension
  • Figure 6a is a schematic view of the anti-rotation device of the present application in a neutral mode
  • Figure 6b is a schematic view of the anti-rotation device of the present application in a guiding mode.
  • the figure includes: upper drive shaft 1, first non-rotating bearing 2, third mounting pin 3, anti-rotation device 4, top-loading spring 5, anti-rotation member body 6, anti-rotation member 7, limiting protrusion P, Radial drive member 8, second non-rotating sleeve 9, universal joint 10, lower drive shaft 11, second non-rotating bearing 12, extension portion 13, first mounting pin 14, second mounting pin 15, spring seat 16, The first non-rotating sleeve 17, the circuit compartment 18.
  • the apparatus disclosed herein relates to application scenarios for oilfield drilling or other exploration drilling.
  • Other system components associated with rotary steering, such as derrick systems, powertrains, and signaling systems, are not described extensively herein.
  • a drill assembly for use in drilling operations has two non-rotating sleeves in the drill assembly, and the guided drive of the tool head can be achieved by the force transmission between the two non-rotating sleeves.
  • the drill assembly includes an upper drive shaft 1 , and the front end of the upper drive shaft 1 is connected to the drive system.
  • the upper drive shaft 1 is usually provided with a circuit compartment 18 for storing some circuit components, and the rear end of the upper drive shaft 1 is installed.
  • the first non-rotating sleeve 17 is mounted on the upper drive shaft 1 via a first non-rotating bearing 2, and the upper drive shaft 1 is drivingly coupled to the lower drive shaft 11 via a universal joint 10 through the universal joint In the connection of 10, the upper drive shaft 1 transmits the axial pressure and the circumferential torque for drilling to the lower drive shaft 11.
  • the drill assembly further includes a second non-rotating sleeve 9 mounted on the lower drive shaft 11 by a second non-rotating bearing 12, the upper drive shaft 1 driving the tool head
  • the first non-rotating sleeve 17 and the second non-rotating sleeve 9 are inevitably rotated at a lower speed than the upper driving shaft 1, and one object of the embodiment is to not increase the drilling.
  • the rotation of the first non-rotating sleeve 17 and the second non-rotating sleeve 9 is hindered under the premise of combining the overall structural dimensions, thereby reducing the measurement system, in particular the attitude measuring system for the first non-rotating sleeve 17 and the second non-rotating sleeve 9
  • the measurement difficulty is to improve the measurement accuracy to ensure the accurate control of the control system.
  • Figure 2 shows a partial exploded view of the anti-rotation device, which can visually see the overall structure and working principle of the anti-rotation device.
  • the anti-rotation device comprises a substantially circular anti-rotation member and a substantially strip-shaped body portion, the anti-rotation member is movably mounted on the body, and the anti-rotation member can maintain the radial direction under the action of the spring a tendency to extend outwardly, when the anti-rotation member protrudes from the body, the anti-rotation member can be in contact with the well wall, and under the action of the spring, the anti-rotation member can maintain the contact state with a certain force, of course, the well
  • the reaction of the wall also causes the anti-rotation element to have a tendency to retract the body, maintaining the balance between the two trends through the action of the spring.
  • the anti-rotation member may be in the form of a sheet as a whole, and the well wall can block the rotation of the anti-rotation member when the anti-rotation member abuts against the well wall.
  • FIG. 3 exemplarily shows an implementation manner of the present application, and those skilled in the art should understand that the implementation manner should not be specifically limited as the scope of the claims.
  • the anti-rotation device 4 shown in Fig. 3 comprises a body (not labeled) which is generally strip-shaped, the left end of the body is provided with a pin hole, and the anti-rotation device 4 as a whole passes through the mounting pin 3 and the first non-mounted in the pin hole.
  • the rotary sleeve 17 is connected, and a fixing screw (not shown) for fixing the body to the mounting pin 3 is further provided on the body.
  • Corresponding pin holes are provided in the first non-rotating sleeve 17 to accommodate the mounting pins 3, and the mounting pins 3 are rotatable within the pin holes of the first non-rotating sleeve 17.
  • the anti-rotation device 4 comprises a topping spring 5 which is mounted on the body substantially along the axial direction of the drive shaft by means of the spring seat 16, in such a way that the anti-rotation device 4 does not increase the radial direction of the structure size.
  • the anti-rotation device 4 further includes an anti-rotation member 7 which is substantially disk-shaped, and the anti-rotation member 7 is mounted on the seat body 6 through the mounting pin 14.
  • the seat body 6 is provided with a pin hole, and the seat body 6 is installed in the pin hole.
  • the mounting pin 15 is rotatably mounted on the body, the left side of the top spring 5 abuts against the side wall of the body, and the right side acts on the side wall of the seat body 6, and is installed with the action of the top spring 5
  • the seat body 6 of the rotor member 7 tends to rotate about the mounting pin 15 such that the anti-rotation member 7 projects outwardly from the body and contacts the well wall.
  • the substantially disk-shaped anti-rotation member 7 is mounted on the seat body 6 by the mounting pin 14, so that the axial force acting on the anti-rotation member 7 during the drilling process is not excessively transmitted to the anti-rotation device and On the drive shaft, the radial force acting on the anti-rotation member 7 causes a tendency for the anti-rotation member 7 and the seat body 6 to compress the tightening spring 5 inwardly.
  • the greater the elastic force of the top-loading spring 5, the anti-rotation member 7 The greater the force acting on the well wall, the smaller the spring force and the smaller the force acting on the well wall.
  • the anti-rotation member 7 may be selected according to the type of the formation. Of course, the embodiment is used in the embodiment.
  • the spring acts as an elastic member, and it will be understood by those skilled in the art that the use of other types of elastic members, such as disc springs, leaf springs, etc., can also achieve the corresponding technical effects. It will also be appreciated by those skilled in the art that, in the concept of the present invention, there are many alternatives to the mounting of the anti-rotation member 7 within the anti-rotation device 4.
  • Figure 4 discloses a further anti-rotation device structure which is generally similar to the structure shown in Figure 3, except that the drive of the anti-rotation member 7 is supported by the spring 5 through the wedge-shaped seat body 6 with the anti-rotation member
  • the bevel of 7 effects a radial drive, and correspondingly, the effect of the well wall on the anti-rotation element 7 also compresses the spring 5 via the wedge-shaped seat body 6.
  • the drill assembly may have two non-rotating sleeves, by applying a guiding force from the first non-rotating sleeve to the second non-rotating sleeve, so that the direction of the second non-rotating sleeve The change occurs, which in turn drives the direction of the lower drive shaft and the tool head to change, and the rotary guide of the drill is realized.
  • Another technical problem to be solved by the present embodiment is how to prevent the rotation of the two non-rotating sleeves in a compact structure, and it is desirable to solve the driving problem of the rotary guide at the same time.
  • the anti-rotation device is mounted on the first non-rotating sleeve 17 at one end by the mounting pin 3, and the other end of the anti-rotation device
  • the swinging structure with the mounting pin 3 as a fulcrum is formed, and the anti-rotation device of the present embodiment further includes a diameter.
  • the radial drive member 8 can be, for example, a hydraulic cylinder or a motor-driven plunger that is mounted between the body of the anti-rotation device and the upper drive shaft, as shown,
  • the body of the anti-rotation device is provided with a recess for accommodating the radial driving member 8, and the radial driving member 8 is capable of driving the anti-rotation device to swing around the mounting pin 3.
  • An extension 13 is provided at an end of the body of the anti-rotation device adjacent to the second non-rotating sleeve 9, the extension being at least partially coincident with the second non-rotating sleeve 9 in a radial direction, such that when the radial drive member 8 pushes the anti-rotation The extension can abut against the inner wall of the second non-rotating sleeve 9 when the device is swung outwardly as a whole.
  • the anti-rotation device of the present embodiment may have three or four, and the three or four anti-rotation devices are evenly distributed in the circumferential direction, in FIG.
  • the application has three uniform anti-rotation devices.
  • the anti-rotation device of the present embodiment has at least two optional working modes, as shown in FIG. 6a. In the neutral mode, the radial driving members 8 of the three anti-rotation devices respectively apply the same outwardly.
  • each of the extending portions 13 abuts against the inner wall of the second non-rotating sleeve 9 with the same force, and the force of each radial driving member 8 is the same, thereby uniformly distributing the plurality of anti-rotation devices through the extension
  • the resultant force of the force acting on the second non-rotating sleeve 9 is zero, the direction of the second non-rotating sleeve 9 is not changed, and the extension 3 is abutted against the second non-rotating sleeve 9 with a certain force.
  • the second non-rotating sleeve 17 which is abutted together can also be prevented from rotating. As shown in Fig.
  • the respective radial driving members 8 of the three or four anti-rotation devices uniformly distributed can output different forces, and the resultant forces of the outputs of all the radial driving members 8
  • the direction will also be changed, eventually achieving a change in the direction of the tool head.
  • the present application also discloses a non-rotating sleeve-based rotary guiding device, comprising a first non-rotating sleeve 17, a second non-rotating sleeve 9, and an anti-rotation device 4 as described above, the first The non-rotating sleeve 17 is connected to the anti-rotation device 4, and the anti-rotation device 4 is connected to the second non-rotating sleeve 9.
  • connection between the anti-rotation device 4 and the second non-rotating sleeve 9 is specifically as follows:
  • the anti-rotation device and the second non-rotating sleeve have overlapping portions in the axial direction.
  • the overlapping portion may be an axial extension 13 on the anti-rotation device, the axial extension 13 extending into the interior of the second non-rotating sleeve 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)
  • Earth Drilling (AREA)

Abstract

公开了一种非旋转套的防转装置,其与非旋转套连接,能够向非旋转套传递周向作用力从而阻碍非旋转套的旋转,防转装置包括防转件(7)和弹性件,防转件(7)能够大体上沿非旋转套的径向方向移动,弹性件作用于防转件(7)并为防转件(7)提供大体径向向外的作用力。还公开了具有该防转装置的旋转导向装置。通过该非旋转套的防转装置以及旋转导向装置,一方面能够为准确的姿态测量和导向控制提供基础,另一方面可以仅使用一个防转装置即可实现两个非旋转套的过快转动,与此同时,防转装置还能够提供基于极小结构尺寸的导向驱动力。

Description

一种非旋转套的防转装置以及旋转导向装置 技术领域
本申请涉及钻探领域,尤其涉及控制钻进导向的旋转导向领域。
背景技术
为了获取地下贮藏的自然资源需要进行钻井勘探,在很多情况下,井孔与井架都不是对齐的,而是需要形成一定的偏移或者弯曲,这种形成水平或者竖直偏移或者其他类型的复杂井孔的过程叫做定向钻井。而在定向钻井过程中对钻头方向进行方向控制的过程叫做导向。现代导向钻井有滑动导向与旋转导向两种类型。滑动导向钻井时,钻柱不旋转;用井底动力钻具(涡轮钻具、螺杆钻具)带动钻头旋转。螺杆钻具及部分钻柱与扶正器贴靠井壁只能在井壁上下滑动。它的缺点是摩阻大、有效钻压、扭矩与功率小,钻速低、井眼呈螺旋状不光滑不干净、井身质量差、易事故,往往被迫启动钻盘采用“复合钻进”,而“复合钻进”往往只能有限使用。滑动导向的极限井深小于4000m左右。要较大改变井斜方位时,需起钻改变钻柱结构。旋转导向钻井***是转盘驱动钻柱旋转,钻柱及旋转导向工具等在井壁上滚动,滚动摩擦阻力小,旋转导向钻井***能在钻进中控制调整其造斜与定向功能,能随钻实时完成造斜、增斜、稳斜、降斜,且摩阻小、扭矩小、钻速高、钻头进尺多、时效高、成本低、井身平滑井轨易控。极限井身可达15km,是钻复杂结构井和海油陆系及超大位移井(10km)的新式武器。
美国专利申请文件US20140209389A1公开了一种旋转导向工具,其包括非旋转套,一个包括可偏转单元的旋转轴,通过控制偏芯轴套的周向位置使得可偏转单元进行偏转,进而调整钻头的钻孔方向。在整个导向过程中,控制***需要不断测量非旋转套的姿态(姿态测量***和控制单元一般会安装在非旋 转套内),并根据姿态参数输出控制指令。然而在钻具***工作过程中,非旋转套会因为惯性和不可忽略的摩擦作用,会随着钻具***一起转动,虽然非旋转套的转速低于驱动轴,但是转动的非旋转套仍然会为姿态测量带来麻烦,使得测量精度难以保证,进而会影响控制***的控制精度,影响整个导向操作。
因此,现有技术需要一种有效地阻碍非旋转套随着钻具组合转动的技术,从而为准确的姿态测量和导向控制提供基础。
发明内容
为了解决上述问题,本申请提出了一种非旋转套的防转装置:所述防转装置如此地与所述非旋转套连接,以使得所述防转装置能够向所述非旋转套传递周向作用力从而阻碍所述非旋转套的旋转,所述防转装置包括防转件和弹性件,所述防转件能够大体上沿所述非旋转套的径向方向移动,所述弹性件的作用于所述防转件并为所述防转体提供大体径向向外的作用力。
优选地,所述防转装置还包括:
本体,所述本体连接至所述非旋转套;
防转件座体,所述防转件座体安装于所述本体;
所述防转件安装于所述防转件座体上,所述弹性件安装于所述本体上,所述弹性件作用于所述防转件座体并通过所述防转件座体提供所述径向向外的作用力。
优选地,所述防转件座体通过第一安装销铰接于所述本体;
所述防转件通过第二安装销可转动地安装在所述防转件座体上。
优选地,所述防转件座体包括斜面,所述斜面作用于所述防转件以提供所述径向向外的作用力。
优选地,所述本体上设置有限位凸起,所述限位凸起适于限制所述防转件的径向位移。
优选地,所述防转装置还包括第三安装销,所述本体通过所述第三安装销 与非旋转套连接;
所述防转装置还包括径向驱动装置以及设置在所述本体上的延伸部,所述径向驱动装置适于驱动所述本体绕所述第三安装销转动,从而使得所述延伸部与所述第二非旋转套作用。
另一方面,本申请还公开了一种旋转导向装置,包括第一非旋转套、第二非旋转套、以及如前所述的防转装置,所述第一非旋转套与所述的防转装置连接,所述的防转装置与所述第二非旋转套连接。
优选地,所述的防转装置与所述第二非旋转套连接具体为:
所述的防转装置具有延伸部,所述延伸部与所述第二非旋转套在轴向上具有重叠部分。
通过本申请提出的非旋转套的防转装置以及旋转导向装置,一方面,能够在不增加钻具组合的整体尺寸的前提下防止非旋转套过快的转动,使得非旋转套尽可能低的速度转动或者不转动,从而为准确的姿态测量和导向控制提供基础,另一方面,通过本申请提出的基于两个非旋转套的导向装置,可以在仅使用一个防转装置即可实现两个非旋转套的过快转动,与此同时,防转装置还能够提供基于极小结构尺寸的导向驱动力。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为包含本申请的防转装置的钻具组合结构示意图;
图2为本申请防转装置的局部***示意图;
图3为本申请防转装置的一种结构示意图;
图4为本申请防转装置的另一种结构示意图;
图5为本申请防转装置在延伸部处的横截面示意图;
图6a为本申请防转装置在中立模式下的示意图;
图6b为本申请防转装置在导向模式下的示意图。
图中包括:上驱动轴1,第一非旋转轴承2,第三安装销3,防转装置4,顶紧弹簧5,防转件座体6,防转件7,限位凸起P,径向驱动件8,第二非旋转套9,万向节10,下驱动轴11,第二非旋转轴承12,延伸部13,第一安装销14,第二安装销15,弹簧座16,第一非旋转套17,电路仓18。
具体实施方式
为了更清楚的阐释本申请的整体构思,下面结合说明书附图以示例的方式进行详细说明。需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或者操作区分开来,而不一定要求或者暗示这些实体或者操作之间存在这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其他任何类似的描述意在涵盖非排他行的包含,从而使得包括一系列的过程、方法、物品或者设备不仅仅包括这些要素,而且包括没有明确列出的其他要素,或者还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”等限定的要素,并不排除在包括所述要素外,还包括另外的相同要素。
本申请公开的装置涉及到油田钻井或者其他勘探钻井的应用场景,与旋转导向装置相关的其它***部件,例如井架***,动力***以及信号***作为公知常识在此不做过多描述。
如图1所示,用于钻井工作中的钻具组合,在该钻具组合中具有两个非旋转套,通过两个非旋转套之间的作用力传递能够实现工具头的导向驱动。具体地,钻具组合包括上驱动轴1,上驱动轴1前端与驱动***连接,上驱动轴1内通常设置有电路仓18,用于存储一些电路器件,上驱动轴1后端安装有第一非旋转套17,第一非旋转套17通过第一非旋转轴承2安装在上驱动轴1上,上驱动轴1通过万向节10与下驱动轴11传动连接,通过所述万向节10的连 接,上驱动轴1向下驱动轴11传递用于钻进的轴向压力和周向扭矩。在该实施例中,钻具组合还包括一个第二非旋转套9,所述第二非旋转套9通过第二非旋转轴承12安装在下驱动轴11上,在上驱动轴1驱动工具头的过程中,在没有防转作用的情况下,第一非旋转套17和第二非旋转套9不可避免地以低于上驱动轴1的速度转动,本实施例的一个目的在于以不增加钻具组合整体结构尺寸的前提下阻碍第一非旋转套17和第二非旋转套9的转动,从而降低测量***,尤其是针对第一非旋转套17和第二非旋转套9的姿态测量***的测量难度,以提高测量精度从而为控制***的准确控制提供保障。
下面参考图2和图3以举例的方式详细介绍本实施方式中涉及的防转装置。图2展示了防转装置的局部***图,能够直观的看出防转装置的总体结构和工作原理。在该实施方式中,防转装置包括大体呈圆形的防转件和大体呈条状的本体部分,防转件可活动地安装在本体上,防转件能够在弹簧的作用下保持径向向外伸出的趋势,当防转件伸出本体时,该防转件能够与井壁接触,并且在弹簧作用下,防转件能够以一定的作用力保持这种接触状态,当然,井壁的反作用也会使得防转件产生缩回本体的趋势,通过弹簧的作用保持两种趋势之间的平衡。防转件整体上可以是呈片状的外形,当防转件抵靠在井壁上时,井壁能够阻挡所述防转件发生转动。
为了更详细的了解本实施方式的工作原理,下面参考图3。图3以示例性的展示了本申请的一种实现方式,本领域技术人员应当理解,该实现方式不应当作为本申请权利要求保护范围的具体限定。
图3中展示的防转装置4包括整体上呈条状的本体(未标记),本体的左端设有销孔,防转装置4整体上通过安装在销孔内的安装销3与第一非旋转套17连接,本体上还设置有用于将本体与安装销3相对固定的固定螺钉(未示出)。在第一非旋转套17上设置有相应的销孔以容纳所述安装销3,安装销3能够在第一非旋转套17的销孔内转动。防转装置4包括顶紧弹簧5,顶紧弹簧5通过弹簧座16大体上沿着驱动轴的轴向方向安装在本体上,如此地安装方式得以 保证防转装置4不会增加结构的径向尺寸。防转装置4还包括大体上呈圆盘状的防转件7,防转件7通过安装销14安装在座体6上,座体6上设置有销孔,座体6通过安装在销孔内的安装销15可转动地安装在本体上,顶紧弹簧5左侧抵靠在本体的侧壁上,右侧作用于座体6的侧壁上,由于顶紧弹簧5的作用,安装有防转件7的座体6绕着安装销15产生转动的趋势,从而使得防转件7向外伸出本体并接触井壁。大体上呈圆盘状的防转件7通过安装销14安装在座体6上,从而在钻进过程中井壁作用于防转件7上的轴向力不会过多地传递到防转装置和驱动轴上,而作用在防转件7上的径向力会产生使得防转件7和座体6向内压缩顶紧弹簧5的趋势,顶紧弹簧5的弹力越大,防转件7作用于井壁的作用力越大,弹力越小,作用于井壁的作用力越小。相应地,防转件7与井壁接触的作用力越大,井壁对于防转件7周向转动的阻力越大,防转装置对于非旋转套的防转效果越好,但是防转件7与井壁的作用力过大也会导致防转装置的刚度过大,容易在井壁的长期作用下受到损坏,可以根据地层类型选择适当的弹性件,当然,在本实施方式中使用的弹簧作为弹性件,本领域技术人员可以理解的是,使用其他方式的弹性件,例如碟簧,片簧等方式的代替弹簧是同样能够实现相应的技术效果的。同样对于本领域技术人员可以理解的是,在本发明的构思下,防转件7在防转装置4内的安装可以有多种替代方式。
图4公开了一种另一种防转装置结构,该结构总体上与图3中展示的结构类似,不同之处在于防转件7的驱动由弹簧5通过楔形的座体6配合防转件7的斜面实现径向驱动,相应地,井壁对于防转件7的作用也通过楔形的座体6压缩弹簧5。
下面结合图1和图3,在一些情况下,钻具组合可以具有两个非旋转套,通过从第一非旋转套向第二非旋转套施加导向作用力,使得第二非旋转套的方向发生改变,进而带动下驱动轴和工具头的方向发生改变,实现钻具的旋转导向。本实施方式要解决的另外的技术问题是如何能够以紧凑的结构实现两个非旋转套的防转,并期望在同时解决旋转导向的驱动问题。
为此,发明人对防转装置和钻具组合做了进一步的改进,具体来说,将防转装置在一端通过安装销3安装在第一非旋转套17上,而防转装置的另一端相对于第一非旋转套17是可自由活动的,从而形成了以安装销3为支点的摆动结构,对于进一步要解决的技术问题尤为重要的是,本实施方式中的防转装置还包括径向驱动件8,径向驱动件8举例来说可以是液压缸或者电机驱动的柱塞,该径向驱动件8安装于防转装置的本体与上驱动轴之间,如图所示,在防转装置的本体上设有容纳该径向驱动件8的凹槽,径向驱动件8能够驱动防转装置绕着安装销3摆动。在防转装置的本体靠近第二非旋转套9的一端设置有延伸部13,该延伸部至少部分地与第二非旋转套9在径向上重合,从而使得当径向驱动件8推动防转装置整体向外侧摆动时,所述延伸部能够抵靠在第二非旋转套9的内壁上。
下面结合图5、6a和6b进一步详细说明,一般来说,本实施方式的防转装置可以有三个或者四个,这三个或者四个防转装置沿周向均匀地分布,在图5中展示的实施方式中,本申请具有三个均布的防转装置。根据不同的需要,本实施方式的防转装置至少有两种可选的工作模式,如图6a所示,在中立模式下,这三个防转装置的径向驱动件8分别向外施加相同的作用力,使得各个延伸部13以相同的作用力抵靠在所述第二非旋转套9的内壁上,各个径向驱动件8的作用力相同,因而均匀分布多个防转装置通过延伸部13作用于第二非旋转套9上作用力的合力为零,不会改变第二非旋转套9的方向,并且由于延伸部3以一定的作用力抵靠在第二非旋转套9的内壁上,在防转装置实现第一非旋转套17的防转过程中,被抵靠在一起的第二非旋转套17同样也能被阻止转动。如图6b所示,在导向驱动模式下,均匀分布在的三个或者四个防转装置的各个径向驱动件8可以输出不同的作用力,所有径向驱动件8输出的作用力的合力成为改变第二非旋转套17方向的作用力,即导向驱动力,当第二非旋转套17的方向被改变后,相应的通过万向节10与上驱动轴1连接的下驱动轴11的方向也会被改变,最终实现工具头方向的改变。
另一方面,本申请还公开了一种基于非旋转套的旋转导向装置,包括第一非旋转套17、第二非旋转套9、以及如前所述的防转装置4,所述第一非旋转套17与所述的防转装置4连接,所述的防转装置4与所述第二非旋转套9连接。
所述的防转装置4与所述第二非旋转套9连接具体为:
所述的防转装置与所述第二非旋转套在轴向上具有重叠部分。该重叠部分在防转装置上可以是轴向的延伸部13,该轴向的延伸部13延伸进入第二非旋转套9内部。
说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (8)

  1. 一种非旋转套的防转装置,所述防转装置如此地与所述非旋转套连接,以使得所述防转装置能够向所述非旋转套传递周向作用力从而阻碍所述非旋转套的旋转,其特征在于:
    所述防转装置包括防转件和弹性件,所述防转件能够大体上沿所述非旋转套的径向方向移动,所述弹性件的作用于所述防转件并为所述防转体提供大体径向向外的作用力。
  2. 根据权利要求1所述的防转装置,其特征在于,还包括:
    本体,所述本体连接至所述非旋转套;
    防转件座体,所述防转件座体安装于所述本体;
    所述防转件安装于所述防转件座体上,所述弹性件安装于所述本体上,所述弹性件作用于所述防转件座体并通过所述防转件座体提供所述径向向外的作用力。
  3. 根据权利要求2所述的防转装置,其特征在于,
    所述防转件座体通过第一安装销铰接于所述本体;
    所述防转件通过第二安装销可转动地安装在所述防转件座体上。
  4. 根据权利要求2所述的防转装置,其特征在于,
    所述防转件座体包括斜面,所述斜面作用于所述防转件以提供所述径向向外的作用力。
  5. 根据权利要求2所述的防转装置,其特征在于,
    所述本体上设置有限位凸起,所述限位凸起适于限制所述防转件的径向位移。
  6. 根据权利要求1所述的防转装置,其特征在于,
    还包括第三安装销,所述本体通过所述第三安装销与非旋转套连接;
    所述防转装置还包括径向驱动装置以及设置在所述本体上的延伸部,所述径向驱动装置适于驱动所述本体绕所述第三安装销转动,从而使得所述延伸部 与所述第二非旋转套作用。
  7. 一种旋转导向装置,其特征在于,
    包括第一非旋转套、第二非旋转套、以及如权利要求1-6中任意一项所述的防转装置,所述第一非旋转套与所述的防转装置连接,所述的防转装置与所述第二非旋转套连接。
  8. 根据权利要求7所述的旋转导向装置,其特征在于,所述的防转装置与所述第二非旋转套连接具体为:
    所述的防转装置具有延伸部,所述延伸部与所述第二非旋转套在轴向上具有重叠部分。
PCT/CN2018/000083 2017-11-14 2018-03-02 一种非旋转套的防转装置以及旋转导向装置 WO2019095524A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/348,022 US10815730B2 (en) 2017-11-14 2018-03-02 Anti-rotating device of non-rotating sleeve and a rotary guiding device
JP2019518997A JP6676218B2 (ja) 2017-11-14 2018-03-02 非回転スリーブの回転防止装置及び回転誘導装置
EP18880010.6A EP3611330B1 (en) 2017-11-14 2018-03-02 Anti-rotation device of non-rotating sleeve and rotation guide device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711119997.2A CN107939288B (zh) 2017-11-14 2017-11-14 一种非旋转套的防转装置以及旋转导向装置
CN201711119997.2 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019095524A1 true WO2019095524A1 (zh) 2019-05-23

Family

ID=61935017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000083 WO2019095524A1 (zh) 2017-11-14 2018-03-02 一种非旋转套的防转装置以及旋转导向装置

Country Status (5)

Country Link
US (1) US10815730B2 (zh)
EP (1) EP3611330B1 (zh)
JP (1) JP6676218B2 (zh)
CN (1) CN107939288B (zh)
WO (1) WO2019095524A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014281027A1 (en) 2013-06-17 2016-01-28 Massachusetts Institute Of Technology Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
CN105899658B (zh) 2013-12-12 2020-02-18 布罗德研究所有限公司 针对hbv和病毒性疾病以及障碍的crispr-cas***和组合物的递送、用途和治疗应用
EP3080259B1 (en) 2013-12-12 2023-02-01 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
EP3985115A1 (en) 2014-12-12 2022-04-20 The Broad Institute, Inc. Protected guide rnas (pgrnas)
EP4159856A1 (en) 2015-06-18 2023-04-05 The Broad Institute, Inc. Novel crispr enzymes and systems
BR112018015871B1 (pt) 2016-12-09 2021-12-07 The Broad Institute, Inc. Sistema, método e dispositivo para detectar a presença de uma sequência alvo de ácido nucleico em uma amostra
BR112019019087A2 (pt) 2017-03-15 2020-05-12 The Broad Institute, Inc. Diagnóstico baseado em sistema efetor de crispr para detecção de vírus
EP3645054A4 (en) 2017-06-26 2021-03-31 The Broad Institute, Inc. COMPOSITIONS BASED ON CRISPR / CAS-ADENIN-DEAMINASE, SYSTEMS AND METHODS FOR TARGETED NUCLEIC ACID EDITING
CN109403995B (zh) * 2018-11-20 2024-02-13 中国铁建重工集团股份有限公司 一种顶管机的纠偏装置
CN112012662B (zh) * 2020-10-20 2021-01-05 胜利油田固邦石油装备有限责任公司 一种带扶正器的加长pdc钻头
CA3203046A1 (en) 2020-12-22 2022-06-30 Helmholtz Zentrum Muenchen - Deutsches Forschungszentrum Fur Gesundheit Und Umwelt (Gmbh) Application of crispr/cas13 for therapy of rna virus and/or bacterium induced diseases
CN112647847B (zh) * 2020-12-30 2021-10-29 中国科学院地质与地球物理研究所 旋转导向钻井***及其控制方法
AU2022375820A1 (en) 2021-11-01 2024-06-13 Tome Biosciences, Inc. Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
WO2023122764A1 (en) 2021-12-22 2023-06-29 Tome Biosciences, Inc. Co-delivery of a gene editor construct and a donor template

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074596A (zh) * 2007-06-19 2007-11-21 西安石油大学 变径方位稳定器
CN101435314A (zh) * 2008-12-19 2009-05-20 中国海洋石油总公司 一种旋转导向钻井工具不旋转外套稳定装置
CN103527083A (zh) * 2013-10-29 2014-01-22 中国石油化工集团公司 旋转导向钻井工具
US20140209389A1 (en) 2013-01-29 2014-07-31 Schlumberger Technology Corporation High Dogleg Steerable Tool
CN106639913A (zh) * 2015-11-03 2017-05-10 内伯斯勒克斯金融2有限公司 用于在钻孔时抵抗旋转力的装置
CN107060643A (zh) * 2016-12-16 2017-08-18 中国科学院地质与地球物理研究所 一种高造斜率混合式旋转导向***及其控制方法
WO2017188935A1 (en) * 2016-04-26 2017-11-02 Halliburton Energy Services, Inc. Anti-rotation blades

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126065A (en) * 1964-03-24 Chadderdon
US4811785A (en) * 1987-07-31 1989-03-14 Halbrite Well Services Co. Ltd. No-turn tool
US5941323A (en) * 1996-09-26 1999-08-24 Bp Amoco Corporation Steerable directional drilling tool
WO2008004999A1 (en) * 2006-06-30 2008-01-10 Baker Hughes Incorporated Closed loop drilling assembly with electronics outside a non-rotating sleeve
CN201347725Y (zh) * 2008-12-19 2009-11-18 中国海洋石油总公司 一种旋转导向钻井工具不旋转外套稳定装置
CN102733755B (zh) * 2012-07-11 2016-01-13 上海克芙莱金属加工有限公司 一种旋转钻井导向器
US9404331B2 (en) * 2012-07-31 2016-08-02 Smith International, Inc. Extended duration section mill and methods of use
CN103939017B (zh) * 2014-04-29 2015-10-07 重庆前卫科技集团有限公司 静态偏置推靠式旋转导向钻井工具
CN105525873B (zh) * 2014-09-29 2018-01-09 中国石油化工集团公司 推靠式旋转导向装置及其使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074596A (zh) * 2007-06-19 2007-11-21 西安石油大学 变径方位稳定器
CN101435314A (zh) * 2008-12-19 2009-05-20 中国海洋石油总公司 一种旋转导向钻井工具不旋转外套稳定装置
US20140209389A1 (en) 2013-01-29 2014-07-31 Schlumberger Technology Corporation High Dogleg Steerable Tool
CN103527083A (zh) * 2013-10-29 2014-01-22 中国石油化工集团公司 旋转导向钻井工具
CN106639913A (zh) * 2015-11-03 2017-05-10 内伯斯勒克斯金融2有限公司 用于在钻孔时抵抗旋转力的装置
WO2017188935A1 (en) * 2016-04-26 2017-11-02 Halliburton Energy Services, Inc. Anti-rotation blades
CN107060643A (zh) * 2016-12-16 2017-08-18 中国科学院地质与地球物理研究所 一种高造斜率混合式旋转导向***及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611330A4 *

Also Published As

Publication number Publication date
EP3611330B1 (en) 2021-06-30
EP3611330A1 (en) 2020-02-19
CN107939288A (zh) 2018-04-20
CN107939288B (zh) 2019-04-02
EP3611330A4 (en) 2020-07-22
US10815730B2 (en) 2020-10-27
JP6676218B2 (ja) 2020-04-08
US20200263500A1 (en) 2020-08-20
JP2019536921A (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019095524A1 (zh) 一种非旋转套的防转装置以及旋转导向装置
EP3613940B1 (en) Rotary guide device
US10837235B2 (en) Hybrid rotary guiding device
NO329580B1 (no) Innretning for a hindre relativ dreining i et boreverktoy
NO326527B1 (no) Styrbar roterende boreanordning og fremgangsmate for retningsboring
US10316595B2 (en) Method and apparatus for reaming and/or stabilizing boreholes in drilling operations
EP3611331B1 (en) Rotary steering device based on radial driving force
US20200217138A1 (en) Compound angle bearing assembly
CN216771041U (zh) 一种旋转导向钻具扭转疲劳试验台
US4080010A (en) Tandem roller stabilizer for earth boring apparatus
NO332902B1 (no) Styresammenstilling og styrekomponent.
US11193331B2 (en) Self initiating bend motor for coil tubing drilling
CN107165935B (zh) 一种动态指向式旋转导向钻井工具的传力关节轴承
CN107724960A (zh) 一种电动钻具可控导向短节
CN211598517U (zh) 一种可用于取芯的机械式准静态推靠垂直钻井工具
CN112482999A (zh) 一种用于自动垂直钻井工具的机械式增力稳定平台
CN117211756B (zh) 定向井旋转控制平衡工具
GB2363811A (en) Steerable drilling tool
EP2994597B1 (en) Steering-joint device for a rock drilling machine
US4071285A (en) Stabilizer
CN208137851U (zh) 一种炮孔钻杆定位装置
CN117211756A (zh) 定向井旋转控制平衡工具
CN118148497A (zh) 适于水平及水平分支钻进的纯机械旋导钻井工具及方法
CN202832259U (zh) 旋转式防磨接头
CA2984025A1 (en) Compound angle bearing assembly

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518997

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018880010

Country of ref document: EP

Effective date: 20191112

NENP Non-entry into the national phase

Ref country code: DE