WO2019093778A1 - Led 제조시스템 및 led 제조방법 - Google Patents

Led 제조시스템 및 led 제조방법 Download PDF

Info

Publication number
WO2019093778A1
WO2019093778A1 PCT/KR2018/013513 KR2018013513W WO2019093778A1 WO 2019093778 A1 WO2019093778 A1 WO 2019093778A1 KR 2018013513 W KR2018013513 W KR 2018013513W WO 2019093778 A1 WO2019093778 A1 WO 2019093778A1
Authority
WO
WIPO (PCT)
Prior art keywords
base member
led
light source
curing
beam spot
Prior art date
Application number
PCT/KR2018/013513
Other languages
English (en)
French (fr)
Inventor
이왕기
이규남
김기완
이원호
박제현
송후근
김영환
Original Assignee
주식회사 대성엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180062375A external-priority patent/KR20190052600A/ko
Application filed by 주식회사 대성엔지니어링 filed Critical 주식회사 대성엔지니어링
Priority to CN201880052375.9A priority Critical patent/CN111108611B/zh
Publication of WO2019093778A1 publication Critical patent/WO2019093778A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to an LED manufacturing system and an LED manufacturing method for manufacturing an LED.
  • a light emitting diode is a device that emits a predetermined light by making a small number of injected carriers (electrons or holes) using a pn junction structure of a semiconductor and recombining them.
  • the LED has low power consumption, long life, It can be installed in a space, and has a characteristic against vibration.
  • a typical LED package includes a lead frame mounted on a substrate, an LED element mounted on the lead frame to emit light, a bonding wire electrically connecting the LED element and the lead frame, a reflector for reflecting the light emitted from the LED element, And a molding material (encapsulant) which is filled inside the reflector and sealed by sealing the LED element and the bonding wire.
  • an LED package assembling process includes a wafer sawing process for separating a wafer on which integrated circuits are formed into LED devices, a die attaching process for mounting each LED device on a lead frame using a predetermined bonding means, a die attach process, a wire bonding process for connecting the leads of the lead frame to the electrode pads of the LED device by a metal wire, and a step for sealing the LED device with the molding resin A molding process, and a test process for verifying the reliability of the LED package having completed the molding process.
  • various additional processes are additionally performed.
  • a curing process is performed after the molding process.
  • heat is applied to the LED package after the molding process for a predetermined time to stabilize the molding resin characteristics. This is a process for protecting the LED element and the metal thin wire inside.
  • the lead frame strip is loaded into a storage container such as a magazine or a carrier. Then, the storage container is put into the LED package curing device to form a lead frame strip Curing the semi-finished LED package.
  • the curing operation of the molded LED package is carried out for a long time (about 2 hours) manually in a curing apparatus (oven or chamber) while a plurality of lead frames are stacked on the magazine.
  • the conventional package curing system has a problem that the process efficiency is lowered because the process is performed in accordance with the step-by-step manual.
  • sealing material is sequentially applied to the plurality of lead frames before being brought into the curing apparatus, a waiting time occurs until curing in the curing apparatus after the sealing material is applied.
  • the curing process of the molding agent using the conventional oven requires a curing time of 2 hours or more, which causes the encapsulation material to precipitate and aggregate due to heat flow.
  • the LED package product made of the same material causes color coordinate deviation and luminance deviation between products because the fluorescent material content between the internal positions of the LED package is unevenly arranged due to the heat flow of the sealing material.
  • the present invention has been achieved in order to achieve the above-mentioned object of the present invention.
  • the present invention is characterized in that a plurality of LED elements 10 are mounted in an NxM matrix (where N and M are natural numbers)
  • N and M are natural numbers
  • a beam spot formed on the base member 20 is irradiated onto the plurality of reflectors 30 by a predetermined number of times for the base member 20 by irradiating a beam generated from the light source unit 100, And performs a curing process for curing the beam-irradiated molding material (40) by relative reciprocating motion.
  • the diameter of the beam spot formed on the base member 20 is preferably larger than the plane size of the reflector 30.
  • the present invention is also characterized in that a plurality of LED elements 52 are arranged on an upper surface in the form of an NxM matrix where N and M are natural numbers and each of the LED elements 52 has an adhesive layer 53 formed on the upper surface thereof And an adhesive layer 53 formed on an upper surface of each LED element 52 with respect to a base member 20 to which a fluorescent substance 54 of a sheet structure is attached,
  • the beam spot formed on the base member 20 is irradiated by a predetermined reciprocating movement relative to the base member 20 over a plurality of the reflectors 30, And a curing step of curing the molding agent (40) is performed.
  • the diameter of the beam spot formed on the base member 20 is preferably larger than the plane size of the phosphor 54.
  • the LED manufacturing system includes a linear movement device 600 for linearly moving the base member 20, and the light source unit 100 includes a linear movement device 600,
  • the beam spot can be reciprocated on the member 20 in the direction perpendicular to the linear movement direction of the base member 20.
  • the light source unit 100 can reciprocate the beam spot formed on the base member 20 in a direction perpendicular to the linear movement direction of the base member 20 using the scanner 110.
  • the light source unit 100 has an intensity in a range of 100 W to 1 KW and the light source unit 100 can be configured to irradiate a laser beam having a wavelength of 800 nm to 2 ⁇ m.
  • the LED manufacturing system includes a base unit 20 and a stage unit 20 which is relatively moved with respect to the light source unit 100 for relative reciprocal movement between the light source unit 100 and the base member 20. [ 60).
  • the stage unit 60 may include a process stage unit 650 in which the base member 20 to be subjected to the curing process is inserted and the curing process is performed by irradiation of a laser beam.
  • the stage unit 60 is disposed in front of the process stage unit 650 and transfers the base member 20 to the process stage unit 650 after the base member 20 to be subjected to the curing process is inserted from the outside A loading stage 640; And an unloading stage unit 660 installed at the rear of the process stage unit 650 to transfer the base member 20 from the process stage unit 650 to the outside after the curing process is completed.
  • the light source unit 100 includes a light source for generating a laser beam; A scanner 110 for forming a beam spot by irradiating a laser beam generated from the light source on a base member 20 placed on the process stage portion 650 positioned in the beam irradiation region; And an optical system 120 for guiding the laser beam generated from the light source to the scanner 110.
  • the light source unit 100 can be reciprocated in a direction perpendicular to the linear movement direction of the base member 20 by using the scanner 110 on the beam spot formed on the base member 20.
  • the light source unit 100 has an intensity in a range of 100 W to 1 KW and the light source unit 100 can be configured to irradiate a laser beam having a wavelength of 800 nm to 2 ⁇ m.
  • the present invention is also characterized in that a plurality of LED elements 10 are mounted in the form of N ⁇ M matrices (where N and M are natural numbers) and a molding agent 40 is filled in the interior corresponding to each LED element 10
  • the diameter of the beam spot formed on the base member 20 is preferably larger than the plane size of the reflector 30.
  • the present invention is also characterized in that a plurality of LED elements 52 are arranged in the form of an NxM matrix (where N and M are natural numbers) on the upper surface and an adhesive layer 53 is formed on the upper surface of each LED element 52
  • a beam spot formed on the base member (20) is irradiated by a beam, and the beam spot is irradiated by a predetermined reciprocating movement relative to the base member (20) over a plurality of the reflectors (30)
  • a curing step of curing the molding agent (40) is carried out.
  • the diameter of the beam spot formed on the base member 20 is preferably larger than the plane size of the phosphor 54.
  • the light source unit 100 can reciprocate the beam spot formed on the base member 20 in a direction perpendicular to the linear movement direction of the base member 20 using the scanner 110.
  • the light source unit 100 has an intensity in a range of 100 W to 1 KW and the light source unit 100 can be configured to irradiate a laser beam having a wavelength of 800 nm to 2 ⁇ m.
  • the LED manufacturing system and the manufacturing method according to the present invention greatly reduce the time required for curing an LED package by irradiating infrared light directly or indirectly to a molding agent or an adhesive layer for forming an LED element to cure the molding agent or the adhesive layer It is possible to improve the performance (luminous efficiency, optical characteristic deviation, life span) of the manufactured LED and to minimize the performance deviation between LED packages.
  • the LED manufacturing system and the manufacturing method according to the present invention are characterized in that a plurality of LED elements are mounted in a matrix of N ⁇ M, and a plurality of reflectors corresponding to the LED elements are filled in the molding material,
  • a beam spot formed on the base member by irradiation of the beam is irradiated to the base member by a predetermined reciprocating movement over a plurality of reflectors,
  • the gas barrier property of the molding agent can be improved and the time required for curing can be shortened to prevent the phosphor deposition of the molding agent and improve the production yield.
  • the LED manufacturing system and the LED manufacturing method according to the present invention can improve the reliability of the LED package by reducing the stress generated in the shrinking process of the molding agent by rapidly curing the molding agent.
  • the infrared rays are directly irradiated to the molding agent, infrared rays transmitted through the molding agent are reflected on the reflector plated surface (for example, Ag coated surface) So that the effect of irradiating the infrared rays in multiple can be obtained.
  • the reflector plated surface for example, Ag coated surface
  • the LED manufacturing system and the LED manufacturing method according to the present invention can improve the LED package mass production efficiency by automating the LED package curing process.
  • a main feature of the present invention is that a conventional manufacturing method for intensively irradiating light to a molding agent in each LED package is carried out to move a beam spot formed by a laser beam across a plurality of LED packages,
  • the present invention provides a method for thermally curing an adhesive for bonding a fluorescent substance to a fluorescent substance, thereby significantly shortening the time for performing the curing process, thereby greatly improving productivity.
  • the LED manufacturing system and the LED manufacturing method according to the present invention can be applied to an LED package in which an adhesive layer is disposed on the upper surface of an LED element of a thin plate shape to form a ceramic, a film, a sheet of glass such as PIG (Phosphor in Glass)
  • an adhesive layer is disposed on the upper surface of an LED element of a thin plate shape to form a ceramic, a film, a sheet of glass such as PIG (Phosphor in Glass)
  • PIG Phosphor in Glass
  • FIG. 1 is a perspective view showing an LED manufacturing system according to an embodiment of the present invention.
  • Fig. 2 is a schematic view showing the configuration of the LED manufacturing system of Fig. 1; Fig.
  • Fig. 3 is a sectional view showing a part of the light irradiation part and the base member in the LED manufacturing system of Fig. 1; Fig.
  • FIG. 4 is a plan view showing a process of fabricating an LED package according to an embodiment of the present invention. Referring to FIG. 4
  • FIG. 5 is a partially enlarged view showing the light irradiation process by the light irradiation unit in FIG.
  • FIG. 6A is a photograph showing a phosphor part in a conventional LED device in which a phosphor is cured by using an oven
  • FIG. 6B is a photograph showing a phosphor part in the LED device manufactured by the manufacturing method and LED device according to the present invention It is a photograph showing.
  • FIG. 7 is a side view showing a second embodiment of the LED package manufactured by the LED manufacturing system according to the present invention.
  • FIG. 8 is a front view showing an LED manufacturing system according to another aspect of the present invention.
  • Fig. 9 is a plan view showing the light source portion of the LED manufacturing system of Fig. 8; Fig.
  • FIGS. 10A and 10B are plan views showing an example of a stage portion in the LED manufacturing system of Fig.
  • FIG. 11 is a sectional view of the stage portion shown in Figs. 10A and 10B.
  • FIG. 12 is a cross-sectional view showing the loading stage portion among the stage portions shown in Figs. 10A and 10B.
  • FIG. 13 is a cross-sectional view showing the unloading stage portion of the stage portion shown in Figs. 10A and 10B.
  • a plurality of LED elements 10 are mounted in an NxM matrix (where N and M are natural numbers), and each LED element 10
  • the beam spot formed on the base member 20 by the irradiation of the beam generated from the light source unit 100 is irradiated onto the reflector 30 by a predetermined reciprocating movement relative to the base member 20 a predetermined number of times, And a curing step of curing the irradiated molding agent (40) is performed.
  • the predetermined number of reciprocating movements of the beam spot is determined according to the physical properties of the molding material 40 to be cured.
  • the base member 20 may be a lead frame in which a plurality of LED elements 10 are mounted in an N ⁇ M matrix (where N and M are natural numbers) inside a reflector 30 provided on an upper surface.
  • the LED package is an LED package according to the first embodiment, and includes an LED element 10 connected to the lead of the base member 20 (wire-bonded) through a metal thin wire and mounted on the base member 20, And a reflector 30 provided in correspondence with the element 10.
  • the LED manufacturing system according to the present invention is characterized in that a plurality of LED elements 10 are mounted in the form of an NxM matrix where N and M are natural numbers and corresponding to each LED element 10,
  • the present invention is a system for curing a molding agent 40 of an LED element 10 with respect to a base member 20 provided with a plurality of reflectors 30 to be filled in a molding material.
  • the present invention is described as an example in which the molding agent is cured as the first embodiment, but it can be applied to any structure that requires curing through heating by irradiation of a beam of an adhesive or the like.
  • the LED system includes a linear moving device 600 for linearly moving the base member 20, wherein the light source 100 includes a base member 20 linearly moved by the linear moving device 600,
  • the beam spot can be reciprocated in a direction perpendicular to the linear movement direction of the base member 20.
  • the linear movement apparatus 600 has a structure in which the base member 20 filled with the molding material 40 inside the reflector 30 is linearly moved (for example, linearly moved in the X-axis direction)
  • the base member 20 filled with the molding material 40 inside the reflector 30 is linearly moved (for example, linearly moved in the X-axis direction)
  • Various configurations are possible.
  • the linear movement device 600 may be configured to have a variety of configurations with a configuration for forming a conveyance path for conveying the base member 20 in a state of being supported.
  • the linear movement device 600 may be configured in various ways, such as a guide portion, a roller, a conveyor belt, etc., installed along the movement path of the base member 20.
  • the linear moving device 600 may be a conveyor belt installed below the LED manufacturing system between the base member loading unit 300 and the base member unloading unit 400.
  • a plurality of base members 20 may be sequentially transferred from the base member loading portion 300 toward the base member unloading portion 400, and the molding agent 40 may be cured.
  • the present invention has an advantage that the base member loading, the molding material hardening, and the base member unloading can be performed in an in-line manner.
  • the linear moving device 600 is preferably made of a material having high thermal conductivity, such as aluminum or an aluminum alloy, for precise linear movement.
  • the linear motion device 600 In the heating process by beam irradiation of the light source unit 100, the linear motion device 600 directly supports the base member 20 or indirectly supports the base member 20 by the same structure as the stage unit 60, There may be a problem that heat leakage occurs through the device 600 and the heating process is not smooth.
  • a member having a low thermal conductivity such as Teflon is interposed or coated on a portion directly or indirectly in contact with the base member 20 in order to reduce thermal conductivity .
  • the light source unit 100 is configured to irradiate a beam spot formed on the base member 20 with a molding material irradiated with a beam by a reciprocating movement of a predetermined number of times relative to the base member 20 over a plurality of reflectors 30, Various configurations are possible as a configuration for generating a beam to be irradiated to the base member 20 for curing the base member 40.
  • the light source may include a light source for generating a laser beam, as shown in Fig. 9; And an optical system 120 for forming an optical path for irradiating the molding material 40 with the laser beam emitted from the light source.
  • the light source may be a light source that generates a laser beam having a predetermined wavelength range or a short wavelength, and may have various configurations.
  • the light source may generate a laser beam having a wavelength range of from 800 nm in the near infrared region to 2 um in the infrared region.
  • the laser beam is in a wavelength range of 1,060 to 1,080 nm Infrared rays of a wavelength can be generated.
  • the light source may be an IR CW laser (Continuous wave laser) outputting an infrared laser beam, but is not limited thereto.
  • IR CW laser Continuous wave laser
  • the light source may be a light source that outputs ultraviolet light, visible light, or near-infrared light, which is not an infrared light but a certain light intensity or more.
  • the optical system 120 is configured to form an optical path for irradiating the molding material 40 with infrared rays emitted from the light source.
  • the optical system 120 may include a reflective member, a lens member, a diaphragm member, or the like.
  • the optical system 120 may include an adapter unit 130 for connection with an optical cable 140 connected to a light source for generating a laser beam.
  • the adapter unit 130 is connected to an optical cable 140 that transmits a laser beam generated from a light source when the light source is installed apart from the optical system 120, and may have various configurations.
  • the laser beam generated from the light source is irradiated to a beam spot formed on the base member 20 using a galvanometer scanner 110 or the like, Thereby generating a beam reciprocally moved reciprocally in a direction perpendicular to the linear movement direction of the member 20.
  • the diameter of the beam spot formed on the base member 20 is preferably larger than that of the reflector 30 provided on the base member 20.
  • the diameter of the beam spot is formed to be large enough to include at least one reflector 30 installed in the base member 20.
  • the light source unit 100 reciprocates the beam spot formed on the base member 20 in the direction perpendicular to the linear movement direction of the base member 20 using the galvanometer scanner 110 or the like,
  • the curing of the molding agent 40 can be achieved more quickly by applying sufficient heat to the curing of the molding agent 40 filled in the reflector 30 of the base member 20.
  • the light source unit 100 has an intensity in the range of 100 W to 1 KW, and irradiates an infrared laser beam having a wavelength of 800 nm to 2 ⁇ m, for example, a wavelength of 1060 to 1080 nm, .
  • the molding material 40 is a polymer compound 42 obtained by mixing a heat source portion 41 that generates heat by infrared rays.
  • heat generation can be induced by infrared rays of a certain wavelength.
  • the heat source unit 41 is made of at least one of a filler and a fluorescent material, and absorbs infrared rays irradiated through the non-light emitting transition to generate heat.
  • the polymer compound (42) is composed of any one of carbon fiber compound, graphite, graphite, carbon nanotube, silicone compound, nitrogen compound, boron compound, zircon compound, titanium compound, aluminum compound and zinc compound.
  • the heat source part 41 is made of a phosphor
  • the phosphor is made of at least one of YAG, TAG, Silicate, Nitride, Halide and Quantum dot
  • the mixing ratio of the heat source part 41 is And may be mixed with the polymer compound 42 at a ratio of 1 wt% to 50 wt%, depending on the viscosity of the polymer compound 42 and the color temperature target of the LED light source, and is usually 5 wt% 100 Wt% is preferable, and if a certain viscosity can be secured, it can be mixed without being limited by the mixing ratio.
  • the size of the mixed heat source 41 may range from a few nanometers (nm) to several tens of micrometers ( ⁇ ⁇ ), but it is usually between 1 and 50 micrometers ( ⁇ ⁇ ) .
  • the heat source unit 41 is provided with a wavelength of 100 W to 1 KW and a wavelength of 800 nm to 2 ⁇ m, for example, 1060 to 1080 nm, It is preferable that the laser beam is irradiated.
  • the heat source unit 41 is heated by absorbing infrared rays and the heat source unit 41 heated by the infrared rays transmits heat generated around the heat source unit 41 through heat generation,
  • the polymer compound (42) can be shrunken by heat conduction.
  • the polymer compound 42 can be rapidly cured to reduce the stress generated in the shrinking process of the polymer compound 42 and to cause the stress to flow toward the heat source 41, So that uniform curing can be performed between the portions 41.
  • the method of rapidly curing the molding agent 40 by infrared rays has advantages over the conventional curing method using the convection oven, .
  • the infrared curing system according to the present invention performs quick curing before the phosphor is precipitated The characteristics of the LED light source can be improved.
  • infrared curing system In the infrared curing system according to the present invention, heat generated in the heat source unit 41 heated by infrared rays is transmitted to the heat source unit 41, The surrounding molding agent 40 is contracted so that the interface between the molding material 40 and the heat source unit 41 is more tightly adhered to thereby further improve the reliability in driving.
  • the conventional curing method using a convection oven has a problem that discoloration is seriously generated due to infiltrated sulfur gas because of low gas barrier property.
  • the curing method according to the present invention as shown in FIG. 6B, The heat generated in the heat source unit 41 by the heat source unit 41 shrinks the molding agent 40 around the heat source unit 41 so that the interface between the molding agent 40 and the heat source unit 41 is more firmly adhered, The discoloration and the gas barrier property can be remarkably improved.
  • the LED manufacturing system includes a base member loading unit 300 on which a plurality of base members 20 to be sequentially loaded by the dispenser unit 200 are loaded; And a base member unloading unit 400 for receiving the base member 20 from the LED manufacturing system and unloading the base member 20 to the unloading member 320.
  • the base member loading unit 300 is configured to load the base member 20 from the loading mount 30 on which the base member 20 having a plurality of LED elements 10 are mounted to the LED manufacturing system Configuration is possible.
  • the loading unit 310 may be a storage unit such as a magazine or a carrier for loading and storing the base member 20 in which the LED element 10 is mounted and the molding agent 40 is not applied, Container.
  • the base member loading unit 300 may be configured such that the loading unit 310 is horizontally moved or vertically moved such that the base member 20 loaded on the loading unit 310 is sequentially discharged from the loading position, And an elevator unit for the elevator.
  • the base member unloading unit 400 may be configured to receive the base member 20, which has been subjected to the hardening process, from the LED manufacturing system and unload the unloading member 320.
  • the unloading member 320 may include a storage container such as a magazine or a carrier on which the base member 20 on which the LED package curing is completed is loaded in the LED manufacturing system.
  • the base member unloading unit 400 may be configured to move the unloading member 320 horizontally or vertically so that the base member 20 is sequentially unloaded to the unloading member 320 at the unloading position,
  • the elevator unit may further include an elevator unit for elevating the elevator unit in the direction of the elevator.
  • the LED manufacturing system receives the base member 20 from the base member loading unit 300 or transfers the base member 20 to the base member loading unit 400, And a linear moving device 600 for horizontally moving the member 20.
  • the LED manufacturing system is provided between the base member loading unit 300 and the LED manufacturing system and includes a molding member 40 (see FIG. 1) mounted inside the reflector 30 of the base member 20, which is loaded from the base member loading unit 300,
  • the dispenser unit 200 may further include a dispenser unit 200 for filling the dispenser 200.
  • the dispenser unit 200 may be configured to fill the molding material 40 inside the reflector 30 installed in the base member 20 on which the plurality of LED elements 10 are mounted.
  • the dispenser unit 200 may include a nozzle unit that is provided on the upper side of the movement path of the base member 20 and supplies the molding material 40 to the inside of the reflector 30 of the base member 20 .
  • the nozzle unit may be applied to various feeding systems and may be connected to an external molding material supplying apparatus.
  • the LED manufacturing system includes a first image acquiring unit 610 installed between the dispenser unit 200 and the LED manufacturing system to acquire a top surface image of the base member 20 .
  • the first image obtaining unit 610 may be configured to obtain a top surface image of the base member 20 after the molding step of the dispenser unit 200 and inspect the molding state of the LED package.
  • the first image obtaining unit 610 may be configured with an optical package such as a camera.
  • the LED manufacturing system includes a second image acquiring unit 620 installed between the LED manufacturing system and the base member unloading unit 400 to acquire a top surface image of the base member 20, As shown in FIG.
  • the second image obtaining unit 610 may be configured to obtain a top surface image of the base member 20 after the curing step in the LED manufacturing system to check the curing state of the LED package.
  • the second image acquiring unit 620 may be configured with an optical package such as a camera.
  • the LED manufacturing system and the LED manufacturing method according to the present invention may have a structure as shown in FIG. 7, in addition to the structure shown in FIG. 3, in which the LED package to be subjected to the curing process is performed.
  • the LED package manufactured in the LED manufacturing system and the LED manufacturing method according to the present invention includes a plurality of LEDs in an N ⁇ M matrix (where N and M are natural numbers)
  • the LED elements 52 may be manufactured from a base member 20 on which an adhesive layer 53 is formed on the upper surface and a phosphor 54 of a sheet structure is attached on the adhesive layer 53.
  • the base member may have another configuration, but the same reference numerals are given for convenience of description.
  • the base member 20 may be a lead frame, a substrate or the like on which a plurality of LED elements 52 are arranged in the form of an N ⁇ M matrix (where N and M are natural numbers) on the upper surface as shown in FIG. 1 .
  • the LED package may be composed of the LED element 10 mounted on the base member 20 by being connected (wire-bonded) to the lead of the base member 20 through the fine metal wire.
  • the LED element 10 is an LED element manufactured through a semiconductor process or the like, which is a thin plate-like element mounted on the base member 20 and emitting light by electric application.
  • the phosphor 54 is a sheet member attached to the upper surface of the LED element 52 and may have various configurations such as a phosphor having a ceramic, glass, or film structure depending on the material thereof.
  • the phosphor 54 has a sheet structure to be attached to the upper surface of the LED element 52.
  • the adhesive layer 53 is formed on the upper surface of the LED element 52 and adheres to the fluorescent material 54 of the sheet structure.
  • the adhesive layer 53 may have various physical properties depending on the kind of the fluorescent material.
  • the sheet-shaped fluorescent material 54 is attached to the upper surface of the LED element 52 with the adhesive layer 53 interposed therebetween. Then, the LED package shown in FIGS. 1, 2, Can be manufactured by an LED element manufacturing system and an LED element manufacturing method as shown in Figs. 8 to 13.
  • the base member 20 to which the fluorescent substance 54 having the sheet structure is attached on the upper surface of the LED element 52 with the adhesive layer 53 interposed therebetween is mounted on the linear moving device 600 or the stage unit 60, Through a beam irradiation region irradiated with a laser beam by the light source unit 100 described later.
  • the generated light is irradiated to a beam spot formed on the base member 20 in a linear form of the base member 20 using a galvanometer scanner 110 or the like, And a laser beam reciprocating in a direction perpendicular to the moving direction is generated.
  • the diameter of the beam spot formed on the base member 20 is preferably larger than that of the reflector 30 provided on the base member 20.
  • the diameter of the beam spot is formed to be large enough to include at least one reflector 30 installed in the base member 20.
  • the light source unit 100 reciprocates the beam spot formed on the base member 20 in the direction perpendicular to the linear movement direction of the base member 20 using the galvanometer scanner 110 or the like,
  • the curing of the adhesive layer 53 can be achieved more quickly by applying sufficient heat to the curing of the adhesive layer 53 of the base member 20.
  • the light source unit 100 is preferably configured to emit an infrared laser beam having a wavelength of 100 W to 1 KW and a wavelength of 800 nm to 2 ⁇ m, for example, a wavelength of 1,060 to 1,080 nm.
  • a key technical point of the present invention is to eliminate the conventional manufacturing method of intensively irradiating light to a molding material / fluorescent material in each LED package, and move a beam spot formed by the laser beam across a plurality of LED packages, And the adhesive for adhesive bonding of the molding material and the fluorescent material is thermally cured, thereby significantly shortening the execution time of the curing process, thereby greatly improving the productivity.
  • the present invention provides a method of manufacturing an LED, wherein a plurality of LED elements 10 are mounted in the form of an NxM matrix (where N and M are natural numbers), corresponding to each LED element 10,
  • a beam spot formed on the base member (20) is irradiated by a beam, and the beam spot is irradiated by a predetermined reciprocating movement relative to the base member (20) over a plurality of the reflectors (30)
  • the curing process for curing the molding agent 40 can be performed.
  • the present invention also provides a method of manufacturing an LED, in which a plurality of LED elements 52 are arranged on an upper surface in the form of an N x M matrix (where N and M are natural numbers)
  • the beam spot formed on the base member 20 is irradiated onto the plurality of reflectors 30 through a predetermined reciprocating movement relative to the base member 20 by a predetermined number of times
  • a curing process may be performed to cure the molding material 40 irradiated with the beam.
  • the LED manufacturing system includes a base member 20 for relative reciprocal movement between the light source 100 and the base member 20, as shown in Figs. 8 to 13 And a stage unit 60 that is positioned relative to the light source unit 100 and moves relative to the light source unit 100.
  • the stage unit 60 can be configured in various ways as a structure in which the base member 20 is seated and moved relative to the light source unit 100 for relative reciprocal movement between the light source unit 100 and the base member 20.
  • the stage unit 60 may include a process stage unit 650 in which a base member 20 to be subjected to a curing process is inserted and a curing process is performed by irradiation of a laser beam.
  • the process stage unit 650 may have a variety of configurations in which a base member 20 to be subjected to a curing process is inserted and a curing process is performed by irradiation of a laser beam.
  • the process stage unit 650 includes a lower plate 653 on which the base member 20 is mounted, and an opening 654 formed by a through hole, a slot, or the like to enable beam irradiation in the beam irradiation region And may include an upper plate 652.
  • the upper plate 652 may be vertically movable with respect to the lower plate 653 for easy seating of the base member 20 with respect to the lower plate 653.
  • the upper plate 652 can be moved up and down with respect to the lower plate 653 by the lift member 655.
  • the stage unit 60 is installed in front of the process stage unit 650 for easy seating of the base member 20 with respect to the lower plate 653, A loading stage unit 640 inserted from the loading stage unit 650 and transferred to the process stage unit 650; And an unloading stage unit 660 installed at the rear of the process stage unit 650 for transferring the base member 20 from the process stage unit 650 and discharging the base member 20 to the outside.
  • the loading stage unit 640 is installed in front of the process stage unit 650 for easy seating of the base member 20 with respect to the lower plate 653 so that the base member 20, And then transferred to the process stage unit 650. [0154] FIG.
  • the loading stage unit 640 includes a lower plate 643 that supports the bottom surface of the base member 20, and a lower plate 643 that is spaced apart from the lower plate 643 to guide movement of the base member 20 And an upper plate 644.
  • the upper plate 644 guides the movement of the push member 690 pushing the base member 20 seated on the lower plate 643 so as to transmit the base member 20 to the process stage unit 650
  • the cutout portion 641 may be formed.
  • the cutout portion 641 is formed to cut the upper plate 644 in the moving direction of the base member 20 for transferring the base member 20 from the loading stage portion 640 to the process stage portion 650 .
  • the push member 690 pushes the base member 20 seated on the lower plate 643 so as to be able to transmit the base member 20 to the process stage portion 650, And the base member 20 is pressed against the process stage portion 650 by means of the process stage portion 650.
  • the push member 690 is installed so as to be movable up and down so as not to interfere with its movement when the base member 20 is moved from the outside to the loading stage portion 640.
  • the push member 690 preferably has an L shape so that the portion of the base member 20 that is in contact with the base member 20 is more protruded so that the base member 20 can be sufficiently moved to the loading stage portion 640 Do.
  • the unloading stage unit 660 has a structure in which the base member 20 installed at the rear of the process stage unit 650 and completed the hardening process is received from the process stage unit 650 and discharged to the outside, Do.
  • the unloading stage unit 660 includes a lower plate 663 for supporting the bottom of the base member 20 and a lower plate 663 for guiding the movement of the base member 20
  • the upper plate 664 may be formed of a metal plate.
  • the lower plate 663 includes a push member 680 for pushing the base member 20 seated on the lower plate 663 for transferring the base member 20 from the unloading stage portion 660 to the outside A cutout 661 for guiding the movement can be formed.
  • the cutout portion 661 may be formed to cut the lower plate 663 in the moving direction of the base member 20 for transferring the base member 20 from the unloading stage portion 660 to the outside.
  • the push member 680 is configured to push the base member 20 seated on the lower plate 663 so that the base member 20 can be transmitted from the process stage portion 650 to the outside, (Not shown) to press the base member 20 from the process stage portion 650 toward the outside.
  • the push member 680 is installed so as to be movable up and down so as not to interfere with its movement when the base member 20 is moved from the outside to the unloading stage portion 660.
  • the push member 680 includes an inverted L-shaped member 630 which is inwardly protruded so that the base member 20 is further protruded so that the base member 20 can be sufficiently moved to the outside from the unloading stage unit 640 It is desirable to form the shape.
  • the push member 680 has a push member 640 for transferring the base member 20 from the process stage portion 650 to the unloading stage portion 640 in addition to external outflow from the unloading stage portion 640. [ Can be used together.
  • the lower plate 653 of the process stage unit 650 includes a base plate 653 mounted on the lower plate 653 to transmit the base member 20 from the process stage unit 650 to the unloading stage unit 640, A cutout portion 651 for guiding the movement of the push member 680 pushing the push member 20 may be formed.
  • the cutout portion 651 is formed to cut the lower plate 653 in the moving direction of the base member 20 for transferring the base member 20 from the process stage portion 650 to the unloading stage portion 640 .
  • the light source unit 100 includes a light source for generating a laser beam corresponding to the configuration of the stage unit 60 described above; A scanner 110 for irradiating a laser beam generated from a light source on a base member 20 mounted on a process stage portion 650 positioned in a beam irradiation region to form a beam spot; And an optical system 120 for guiding the laser beam generated from the light source to the scanner 110.
  • the beam irradiation area is a region where a ray spot beam irradiated by the scanner 110 of the light source unit 100 is formed on the base member 20 by a linear movement of the stage unit 60 as a region where a beam spot sufficient for heating is formed
  • the base member 20 can be moved.
  • a beam spot formed on the base member 20 is moved to the plurality of reflectors 30 by the relative movement of the stage unit 60 with respect to the scanner 110.
  • the molding material 40 irradiated with the beam is cured by a reciprocating movement relative to the base member 20 a predetermined number of times over the base member 20.
  • the stage unit 60 including the process stage unit 650 is moved in a direction in which the base member 20 for performing the hardening process is loaded, as shown in FIG. 10A, , And can be moved over the beam irradiation area to perform a curing process.
  • the movement pattern of the beam spot on the base member 20 during the above-described curing process is not limited to the pattern that linearly reciprocates in the direction perpendicular to the moving direction of the base member 20 , A zigzag pattern is formed as shown in FIG. 10C, and various movement patterns can be obtained on the assumption of smooth curing conditions.
  • the predetermined number of reciprocating movements of the beam spot is determined according to the physical properties of the molding material 40 or the adhesive layer 53 to be cured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은, LED를 제조하기 위한 LED 제조시스템 및 LED 제조방법에 관한 것이다. 본 발명은, 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되며 상기 각 LED소자(10)에 대응되어 몰딩제(40)가 내측에 충진되는 다수의 리플렉터(30)들이 설치되는 베이스부재(20)에 대하여 LED소자(10)의 몰딩제(40)를 경화시키기 위한 LED 제조시스템으로서, 광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조시스템을 개시한다.

Description

LED 제조시스템 및 LED 제조방법
본 발명은, LED를 제조하기 위한 LED 제조시스템 및 LED 제조방법에 관한 것이다.
LED(light emission diode)는 반도체의 p-n 접합 구조를 이용하여 주입된 소수 캐리어(전자 또는 정공)를 만들고 이들의 재결합에 의하여 소정의 빛을 발산하는 소자로서, 소비 전력이 적고 수명이 길며, 협소한 공간에 설치 가능하고, 또한 진동에 강한 특성을 갖고 있다.
통상의 LED 패키지는 기판상에 설치된 리드프레임과, 리드프레임에 설치되어 빛을 발광하는 LED 소자와, LED 소자와 리드프레임을 전기적으로 연결하는 본딩와이어와, LED 소자로부터 발광된 빛을 반사시키는 리플렉터와, 리플렉터의 내측에 충전되어 LED 소자와 본딩와이어를 밀봉함으로써 보호되도록 하는 몰딩제(봉지재)를 포함하여 구성된다.
일반적으로 LED 패키지 조립 공정은 집적회로가 형성되어 있는 웨이퍼를 각각의 LED 소자로 분리하는 웨이퍼 소잉(wafer sawing) 공정과, 각 LED 소자를 리드프레임에 소정의 접착수단을 사용하여 실장하는 다이 어태치(die attach) 공정과, LED 소자의 전극 패드와 리드프레임의 리드를 금속 세선으로 연결하는 와이어 본딩(wire bonding) 공정과, LED 소자가 실장된 부분을 외부환경으로부터 보호하기 위하여 성형수지로 봉합하는 몰딩(molding) 공정 및 몰딩 공정이 완료된 LED 패키지의 신뢰성을 검증하기 위한 테스트(test) 공정을 포함하며, 이 밖에도 부수적으로 여러가지 공정이 추가적으로 진행된다.
특히, LED 패키지 제조 공정 중 몰딩 공정후에는 경화(cure) 공정이 진행되는데, 경화 공정은 몰딩 공정이 완료된 LED 패키지에 일정 시간 동안 열을 가하여 성형수지 특성을 안정되게 함으로써, 외부의 화학적기계적 스트레스로부터 내부의 LED 소자 및 금속 세선을 보호하기 위한 공정이다.
통상적으로 몰딩 공정이 완료된 리드프레임 스트립(lead frame strip)이 매거진(magazine) 또는 캐리어(carrier)와 같은 보관용기에 적재된 이후에, 이 보관용기를 LED 패키지 경화장치에 입고시켜 리드프레임 스트립에 형성된 반제품 상태의 LED 패키지를 경화시킨다.
즉, 종래의 패키지 경화시스템에서는 몰딩이 이루어진 LED 패키지의 경화작업이 다수의 리드프레임이 매거진에 적층된 상태에서 경화장치(오븐 또는 챔버 등)에 수동으로 반입되어 장시간(대략 2시간)동안 이루어진다.
그에 따라 종래의 패키지 경화시스템은 공정이 단계별 매뉴얼을 따라 수행되므로 공정효율이 떨어지는 문제점이 있다.
또한, 경화장치에 반입되기 전 복수의 리드프레임들에 봉지재의 도포가 순차적으로 이루어지므로 봉지재 도포후 경화장치에서 경화되기까지 대기시간이 발생한다.
즉, 종래의 오븐을 이용한 몰딩제의 경화 과정은 2시간 이상의 경화시간이 필요하여 봉지재가 열 유동에 의해 형광체의 침전 및 뭉침 현상이 발생하는 문제점이 있다.
또한, 봉지재의 열 유동으로 인해 LED 패키지의 내부 위치 간 형광체 함량이 불균일하게 배치되어 동일한 재료로 제작된 LED 패키지 제품이라도 제품 간 색 좌표 편차와 휘도 편차를 유발하는 문제점이 있다.
또한, 종래의 경화방법은 경과과정에서 몰딩제의 스트레스 감소를 위해 오랜 시간 경화해야 하므로 공정시간이 길어지는 문제점이 있다.
본 발명의 목적은, 상기와 같은 문제점을 인식하여, LED 소자의 형성을 위한 몰딩제 또는 접착층에 직접 또는 간접으로 적외선을 조사하여 몰딩제 또는 접착층을 경화시킴으로써, LED 패키지 경화에 소요되는 시간을 크게 감소시키고 제조된 LED의 성능을 개선할 수 있으며 LED 패키지 사이의 성능편차를 최소화 할 수 있는 LED 제조시스템 및 LED 제조방법을 제공하는 데 있다.
본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로서, 본 발명은, 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되며 상기 각 LED소자(10)에 대응되어 몰딩제(40)가 내측에 충진되는 다수의 리플렉터(30)들이 설치되는 베이스부재(20)에 대하여 LED소자(10)의 몰딩제(40)를 경화시키기 위한 LED 제조시스템으로서, 광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조시스템을 개시한다.
상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 상기 리플렉터(30)의 평면크기보다 큰 것이 바람직하다.
본 발명은 또한, 상면에 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 다수의 LED 소자(52)들이 배치되고, 상기 각 LED 소자(52)는, 상면에 접착층(53)이 형성되어 그 위에 시트구조의 형광체(54)가 부착되는 베이스부재(20)에 대하여 상기 각 LED소자(52)의 상면에 형성된 접착층(53)를 경화시키기 위한 LED 제조시스템으로서, 광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조시스템을 개시한다.
상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 상기 형광체(54)의 평면크기보다 큰 것이 바람직하다.
본 발명에 따른 LED 제조시스템은, 상기 베이스부재(20)을 선형이동시키는 선형이동장치(600)를 포함하며, 상기 광원부(100)는, 상기 선형이동장치(600)에 의하여 선형이동되는 상기 베이스부재(20) 상에서 빔스폿을 상기 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동시킬 수 있다.
상기 광원부(100)는, 상기 베이스부재(20) 상에 형성되는 상기 빔스폿을 스캐너(110)을 이용하여 상기 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동시킬 수 있다.
상기 광원부(100)는, 100W ~ 1KW 범위의 세기를 가지며, 상기 광원부(100)는, 파장, 800nm~2㎛의 파장의 레이저빔을 조사하도록 구성될 수 있다.
본 발명에 따른 LED 제조시스템은, 상기 광원부(100) 및 상기 베이스부재(20) 사이의 상대왕복이동을 위하여 상기 베이스부재(20)가 안착되며 상기 광원부(100)에 대하여 상대이동되는 스테이지부(60)를 포함할 수 있다.
상기 스테이지부(60)는, 상기 경화공정이 수행될 베이스부재(20)가 삽입되어 레이저빔의 조사에 의하여 상기 경화공정이 수행되는 공정스테이지부(650)를 포함할 수 있다.
상기 스테이지부(60)는, 상기 공정스테이지부(650)의 전방에 설치되어 상기 경화공정 상기 경화공정이 수행될 베이스부재(20)가 외부로부터 삽입된 후 상기 공정스테이지부(650)으로 전달하는 로딩스테이지부(640)와; 상기 공정스테이지부(650)의 후방에 설치되어 상기 경화공정이 완료된 베이스부재(20)를 상기 공정스테이지부(650)으로부터 전달받아 외부로 배출하는 언로딩스테이지부(660)을 포함할 수 있다.
상기 광원부(100)는, 레이저빔을 발생시키는 광원과; 상기 빔조사영역에 위치된 상기 공정스테이지부(650)에 안착된 베이스부재(20) 상에 상기 광원에서 발생된 레이저빔을 조사하여 빔스폿을 형성하는 스캐너(110)와; 상기 광원에서 발생된 레이저빔을 상기 스캐너(110)로 유도하는 광학계(120)를 포함할 수 있다.
상기 광원부(100)는, 상기 베이스부재(20) 상에 형성되는 상기 빔스폿을 스캐너(110)을 이용하여 상기 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동될 수 있다.
상기 광원부(100)는, 100W ~ 1KW 범위의 세기를 가지며, 상기 광원부(100)는, 파장, 800nm~2㎛의 파장의 레이저빔을 조사하도록 구성될 수 있다.
본 발명은 또한 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되며 상기 각 LED소자(10)에 대응되어 몰딩제(40)가 내측에 충진되는 다수의 리플렉터(30)들이 설치되는 베이스부재(20)에 대하여 LED소자(10)의 몰딩제(40)를 경화시키기 위한 LED 제조방법으로서, 광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조방법을 개시한다.
상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 상기 리플렉터(30)의 평면크기보다 큰 것이 바람직하다.
본 발명은 또한 상면에 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 다수의 LED 소자(52)들이 배치되고, 상기 각 LED 소자(52)는, 상면에 접착층(53)이 형성되어 그 위에 시트구조의 형광체(54)가 부착되는 베이스부재(20)에 대하여 상기 각 LED소자(52)의 상면에 형성된 접착층(53)를 경화시키기 위한 LED 제조방법으로서, 광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조방법을 개시한다.
상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 상기 형광체(54)의 평면크기보다 큰 것이 바람직하다.
상기 광원부(100)는, 상기 베이스부재(20) 상에 형성되는 상기 빔스폿을 스캐너(110)을 이용하여 상기 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동시킬 수 있다.
상기 광원부(100)는, 100W ~ 1KW 범위의 세기를 가지며, 상기 광원부(100)는, 파장, 800nm~2㎛의 파장의 레이저빔을 조사하도록 구성될 수 있다.
본 발명에 따른 LED 제조시스템 및 제조방법은, LED 소자의 형성을 위한 몰딩제 또는 접착층에 직접 또는 간접으로 적외선을 조사하여 몰딩제 또는 접착층을 경화시킴으로써, LED 패키지 경화에 소요되는 시간을 크게 감소시키고 제조된 LED의 성능(발광효율, 광특성편차, 수명)을 개선할 수 있으며 LED 패키지 사이의 성능편차를 최소화할 수 있는 이점이 있다.
구체적으로, 본 발명에 따른 LED 제조시스템 및 제조방법은, 다수의 LED소자들이 N × M 매트릭스 형태로 실장되며 각 LED소자에 대응되어 몰딩제가 내측에 충진되는 다수의 리플렉터들이 설치되는 베이스부재에 대하여 LED소자의 몰딩제를 경화시킴에 있어서, 빔의 조사에 의하여 베이스부재 상에 형성되는 빔스폿을 복수의 리플렉터들에 걸쳐 미리 설정된 횟수의 베이스부재에 대한 상대왕복이동에 의하여 빔이 조사된 몰딩제를 경화시키는 경화공정을 수행함으로써, 몰딩제의 가스 배리어성을 개선하고, 경화에 필요한 시간을 현저히 단축하여 몰딩제의 형광체 침전을 방지하며 생산수율을 향상시킬 수 있다.
또한, 본 발명에 따른 LED 제조시스템 및 LED 제조방법은, 몰딩제를 신속하게 경화시킴으로써, 몰딩제의 수축과정에서 발생하는 스트레스를 감소시켜 LED 패키지의 신뢰성을 향상시킬 수 있다.
또한, 본 발명에 따른 LED 제조시스템 및 LED 제조방법은, 적외선을 직접 몰딩제에 조사하기 때문에 몰딩제를 투과한 적외선이 리드프레임과 같은 베이스부재의 리플렉터 도금면(예를 들어, Ag 도금면)에 의해 다시 몰딩제로 반사됨으로써 다중으로 적외선을 조사하는 효과를 얻을 수 있다.
그리고, 본 발명에 따른 LED 제조시스템 및 LED 제조방법은, LED 패키지 경화공정을 자동화 하여 LED 패키지 양산효율을 향상시킬 수 있다.
한편 본 발명의 주요특징은, 각 LED 패키지에 몰딩제에 광을 집중 조사하는 종래의 제조방법을 탈피하여 레이저빔에 의하여 형성되는 빔스폿을 복수의 LED 패키지들에 걸쳐 이동시킴으로써 각 LED 패키지에 몰딩제 내지 형광체의 접착을 위한 접착제를 가열경화시켜 경화공정의 수행시간을 현저히 단축시켜 생산성을 크게 향상시키는데 있다.
이에 본 발명에 따른 LED 제조시스템 및 LED 제조방법은, LED 패키지의 다른 실시예로서, 박판 형상의 LED 소자의 상면에 접착층이 개재되어 세라믹, 필름, PIG(Phosphor in Glass)와 같은 글래스 등의 시트구조의 형광층을 구비하는 LED의 제조에 있어서, 박판 형상의 LED 소자의 상면에 접착층이 개재되어 부착되는 형광체를 부착함에 있어서, 접착층을 직접 또는 간접으로 적외선을 조사하여 몰딩제 또는 접착층을 경화시킴으로써, LED 패키지 경화에 소요되는 시간을 크게 감소시키고 제조된 LED의 성능(발광효율, 광특성편차, 수명)을 개선할 수 있다.
특히 몰딩제 경화의 균일한 경화가 가능하여 LED 패키지 사이의 성능편차를 최소화 할 수 있는 이점이 있다.
또한 필름 경화의 경우 시트구조의 형광층의 틀어짐을 방지로 얀상 수율을 크게 향상시킴과 아울러 빠른 경화로 생산성을 크게 향상시킬 수 있는 이점이 있다.
도 1은, 본 발명의 일 실시예에 따른 LED 제조시스템을 보여주는 사시도이다.
도 2는, 도 1의 LED 제조시스템의 구성을 보여주는 개략도이다.
도 3은, 도 1의 LED 제조시스템 중 광조사부 및 베이스부재의 일부를 보여주는 단면도이다.
도 4는, 본 발명에 따른 LED 제조방법에 의하여 LED 패키지를 제조하는 과정을 보여주는 일부 평면도이다.
도 5는, 도 4에서 광조사부에 의한 광조사 과정을 보여주는 일부 확대도이다.
도 6a는, 오븐을 이용하여 형광체를 경화시킨 종래기술에 의한 LED 소자에서 형광체 부분을 보여주는 사진을, 도 6b는, 본 발명에 따른 LED 제조시스템 및 제조방법에 의하여 제조된 LED 소자에서 형광체 부분을 보여주는 사진이다.
도 7은, 본 발명에 따른 LED 제조시스템에 의하여 제조되는 LED 패키기의 제2실시예를 보여주는 보여주는 측면도이다.
도 8은, 본 발명에 다른 측면에 따른 LED 제조시스템을 보여주는 정면도이다.
도 9은, 도 8의 LED 제조시스템의 광원부를 보여주는 평면도이다.
도 10a 및 도 10b는, 도 8의 LED 제조시스템에서 스테이지부의 예를 보여주는 평면도이다.
도 11은, 도 10a 및 도 10b에 도시된 스테이지부의 단면도이다.
도 12는, 도 10a 및 도 10b에 도시된 스테이지부 중 로딩스테이지부를 보여주는 단면도이다.
도 13은, 도 10a 및 도 10b에 도시된 스테이지부 중 언로딩스테이지부를 보여주는 단면도이다.
이하 본 발명에 따른 LED 제조시스템 및 LED 제조방법에 관하여 첨부된 도면을 참조하여 설명하면 다음과 같다.
본 발명에 따른 LED 제조시스템은, 도 1 내지 도 5에 도시된 바와 같이, 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되며 각 LED소자(10)에 대응되어 몰딩제(40)가 내측에 충진되는 다수의 리플렉터(30)들이 설치되는 베이스부재(20)에 대하여 LED소자(10)의 몰딩제(40)를 경화시키기 위한 LED 제조시스템으로서, 광원부(100)에서 발생되는 빔의 조사에 의하여 베이스부재(20) 상에 형성되는 빔스폿을 복수의 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 베이스부재(20)에 대한 상대왕복이동에 의하여 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 한다.
여기서 상기 빔스폿의 상대왕복이동의 미리 설정된 횟수는, 경화대상인 몰딩제(40)의 물성에 따라서 결정된다.
상기 베이스부재(20)는, 상면에 구비된 리플렉터(30) 내측에 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되는 리드프레임일 수 있다.
여기서, 상기 LED 패키지는, 제1실시예에 따른 LED 패키지로서, 금속세선을 통해 베이스부재(20)의 리드에 연결(와이어 본딩)되어 베이스부재(20)에 실장된 LED소자(10), LED소자(10)에 대응되어 설치된 리플렉터(30)로 구성될 수 있다.
본 발명에 따른 LED 제조시스템은, 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되며 각 LED소자(10)에 대응되어 몰딩제(40)가 내측에 충진되는 다수의 리플렉터(30)들이 설치되는 베이스부재(20)에 대하여 LED소자(10)의 몰딩제(40)를 경화시키기 위한 시스템으로서, 본 발명은 몰딩제 경화에 있어 특징적 구성을 가진다. 여기서 본 발명은, 제1실시예로서 몰딩제의 경화를 예를 들어 설명하였지만 접착제 등 빔의 조사에 의한 가열을 통하여 경화를 요하는 구성이면 모두 적용이 가능하다.
한편 상기 빔스폿의 베이스부재(20)에 대한 상대왕복이동을 구현함에 있어서, 베이스부재(20) 및 광원부(100)의 상대왕복이동에 따라서 다양한 구성이 가능하다.
예로서, 상기 LED 시스템은, 베이스부재(20)을 선형이동시키는 선형이동장치(600)를 포함하며, 이때 광원부(100)는, 선형이동장치(600)에 의하여 선형이동되는 베이스부재(20) 상에서 빔스폿을 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동시킬 수 있다.
보다 구체적인 예로서, 상기 선형이동장치(600)는, 리플렉터(30) 내측에 몰딩제(40)가 충진된 베이스부재(20)을 선형이동(예를 들면 X축방향으로 선형이동)시키는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 선형이동장치(600)는, 베이스부재(20)을 지지한 상태로 이송하기 위한 이송경로를 형성하는 구성으로 다양한 구성이 가능하다.
보다 구체적으로 상기 선형이동장치(600)는, 베이스부재(20)의 이동경로를 따라 설치되는 가이드부, 롤러, 컨베이어벨트 등으로 다양하게 구성될 수 있다.
또한 상기 선형이동장치(600)는, 베이스부재로딩부(300)와 베이스부재언로딩부(400) 사이에서 LED 제조시스템 하측에 설치되는 컨베이어벨트일 수 있다. 이러한 경우, 다수의 베이스부재(20)이 베이스부재로딩부(300)에서 베이스부재언로딩부(400)를 향해 순차적으로 이송되며 몰딩제(40) 경화가 이루어질 수 있다.
즉, 본 발명은, 베이스부재로딩, 몰딩제경화 및 베이스부재언로딩이 In-Line 방식으로 수행될 수 있는 이점이 있다.
한편 상기 선형이동장치(600)는, 정밀한 선형이동 구현을 위하여 알루미늄, 알루미늄합금 등 열전도성이 높은 재질의 사용이 바람직하다.
그런데 상기 광원부(100)의 빔 조사에 의한 가열공정에 있어서 선형이동장치(600)가 베이스부재(20)를 직접 지지하거나 스테이지부(60)와 같은 구성에 의하여 간접지지하는데, 열전도성에 의하여 선형이동장치(600)를 통하여 열누출이 되어 가열공정이 원활하지 못한 문제점이 있을 수 있다.
이에 상기 선형이동장치(600)를 구성함에 있어서, 베이스부재(20)와 직접 또는 간접으로 접촉하는 부위에 열전도성을 줄이기 위하여 테프론과 같은 열전도성이 낮은 재질의 부재가 개재되거나 코팅되는 것이 바람직하다.
또한 후술하는 스테이지부(60)의 재질 또한 열전도성이 낮은 재질의 사용이 바람직하다.
상기 광원부(100)는, 베이스부재(20) 상에 형성되는 빔스폿을 복수의 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 베이스부재(20)에 대한 상대왕복이동에 의하여 빔이 조사된 몰딩제(40)를 경화시키기 위하여, 베이스부재(20)에 조사되는 빔을 발생시키는 구성으로서, 다양한 구성이 가능하다.
예로서, 상기 광원은, 도 9에 도시된 바와 같이, 레이저빔을 발생시키는 광원과; 광원에서 나온 레이저빔을 몰딩제(40)에 조사하기 위한 광경로를 형성하는 광학계(120)를 포함할 수 있다.
상기 광원은, 일정파장범위 또는 단파장을 가지는 레이저빔을 발생시키는 광원으로 다양한 구성이 가능하다.
상기 광원은, 근 적외선 영역인 800nm부터 적외선 영역인 2um 사이의 파장 영역을 갖는 레이저빔을 발생시킬 수 있으나, 바람직하게는, 몰딩제(40)의 열원부가 비발광하는 파장 범위인 1,060~1,080nm 파장의 적외선을 발생시킬 수 있다.
예로서, 상기 광원은, 적외선 레이저빔을 출력하는 IR CW 레이저(Continuous wave laser)일 수 있으나, 이에 한정되는 것은 아니다.
상기 광원은 레이저빔을 발생시키는 구성으로 설명하였으나, 적외선이 아닌 일정 광도 이상의 자외선, 가시광 또는 근적외선 등을 출력하는 광원으로 구성될 수 있음은 물론이다.
상기 광학계(120)는, 광원에서 나온 적외선을 몰딩제(40)에 조사하기 위한 광경로를 형성하는 구성으로, 반사부재, 렌즈부재 및 조리개부재 등을 포함하는 등 다양한 구성이 가능하다.
여기서 상기 광학계(120)는, 레이저빔을 발생시키는 광원에 연결된 광케이블(140)과의 연결을 위한 어댑터부(130)를 포함할 수 있다.
상기 어댑터부(130)는, 광원이 광학계(120)와 이격되어 설치된 경우 광원에서 발생된 레이저빔을 전달하는 광케이블(140)에 연결되는 구성으로서 다양한 구성이 가능하다.
한편 상기 광원부(100)는, 도 4 및 도 5에 도시된 바와 같이, 광원에서 발생된 레이저빔을 베이스부재(20) 상에 형성되는 빔스폿을 갈바노미터 스캐너(110) 등을 이용하여 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동 등 상대왕복이동되는 빔을 발생시킴을 특징으로 한다.
여기서 상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 베이스부재(20) 상에 설치된 리플렉터(30)의 크기보다 큰 직경을 가짐이 바람직하다.
즉, 상기 빔스폿의 직경은, 베이스부재(20)에 설치된 하나 이상의 리플렉터(30)를 포함할 수 있을 정도의 크기로 형성됨이 바람직하다.
특히 상기 광원부(100)는, 발생된 광을 베이스부재(20) 상에 형성되는 빔스폿을 갈바노미터 스캐너(110) 등을 이용하여 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동 등 상대왕복이동시켜 베이스부재(20)의 리플렉터(30)에 충진된 몰딩제(40)의 경화에 충분한 열을 가함으로써 보다 신속하게 몰딩제(40)의 경화를 달성할 수 있다.
한편 상기 광원부(100)는, 100W ~ 1KW 범위의 세기를 가지며 후술하는 열원부(41)가 비발광하는 파장, 800nm~2㎛의 파장, 예를 들면 1060~1080nm 파장의 적외선 레이저빔을 조사하도록 구성됨이 바람직하다.
한편, 본 발명에서 몰딩제(40)는, 적외선에 의해 발열되는 열원부(41)를 혼합한 고분자 화합물(42)이다.
상기 열원부(41)는, 일정 파장의 적외선에 의해 발열이 유도될 수 있다.
상기 열원부(41)는, 필러 및 형광체 중 적어도 하나로 이루어지고, 비발광 천이를 통해 조사되는 적외선을 흡수하여 발열한다.
상기 고분자 화합물(42)은, 탄소섬유 화합물, 그라파이트, 그라핀, 탄소나노튜브, 실리콘 화합물, 질소 화합물, 붕소 화합물, 지르콘 화합물, 티타늄화합물, 알루미늄 화합물, 아연 화합물 중 어느 하나로 이루어진다.
상기 열원부(41)가 형광체로 이루어진 경우 상기 형광체는 YAG, TAG, Silicate, Nitride, Halide, Quantum dot 중 적어도 하나로 이루어지고, 열원부(41)가 혼합되는 비율은 열원부(41)의 무게에 대비하여 혼합 비율을 결정할 수 있으며, 고분자 화합물(42)의 점도와 LED 광원의 색 온도 목표에 따라 1wt% ~ 50wt% 중 어느 하나의 비율로 고분자 화합물(42)과 혼합되고, 통상적으로 5wt% ~ 100Wt%가 바람직하며, 일정 점도를 확보할 수 있으면 혼합되는 비율에 제한 받지 않고 혼합될 수 있다.
또한, 상기 혼합되는 열원부(41)의 크기는 수 나노미터(nm)에서 수십 마이크로미터(㎛) 크기까지 다양하게 적용될 수 있으나, 통상적으로 1~50 마이크로미터(㎛) 사이의 크기가 바람직하다.
상기 열원부(41)에는, 열원부(41)의 발열을 유도하기 위하여, 100W ~ 1KW 범위의 세기를 가지며 열원부가 비발광하는 파장, 800nm~2μm의 파장, 예를 들면 1060~1080nm 파장의 적외선 레이저빔이 조사됨이 바람직하다.
상기 열원부(41)는, 적외선을 흡수하여 가열되고, 적외선에 의해 가열된 열원부(41)는 발열을 통해 열원부(41) 주변으로 발생된 열이 전달되도록 하여 열원부(41) 주변의 고분자 화합물(42)이 열전도에 의한 경화를 통해 수축부가 생성될 수 있다.
따라서 상기 고분자 화합물(42)의 내부 수축을 유도하는 열원부(41)를 통해 고속 경화가 이루어질 수 있고, 고분자 화합물(42)과 열원부(41) 사이의 밀착력을 형상시켜 가스 배리어성을 개선할 수 있다.
또한, 상기 고분자 화합물(42)을 신속하게 경화시킴으로써, 고분자 화합물(42)의 수축과정에서 발생하는 스트레스 발생을 감소시킬 수 있으며, 스트레스가 열원부(41) 측으로 몰리게 하여 고분자 화합물(42)과 열원부(41) 사이에서 균일한 경화가 일어날 수 있게 한다.
상기 몰딩제(40)가 천천히 경화되면 형광체가 침전되어 발광효율이 낮아지게 되므로, 적외선으로 몰딩제(40)를 빠르게 경화시키는 방법은 컨벡션 오븐을 이용한 종래의 경화방법보다 발광효율의 관점에서 우수한 이점이 있다.
즉, 종래의 컨벡션 오븐 경화 방법은 도 6a에 도시된 바와 같이, 시간이 길게 소요되기 때문에 상대적으로 더 많은 형광체가 하향 침전되나, 본 발명에 따른 적외선 경화방식은 형광체가 침전하기 전에 빠른 경화를 수행함으로써, LED 광원의 특성을 개선할 수 있게 된다.
종래의 컨벡션 오븐에서 경화된 LED는 구동시간이 경과할수록 광량 저하가 크게 발생하는데 반해, 본 발명에 따른 적외선 경화방식은 적외선을 통해 가열된 열원부(41)에서 발생한 열이 상기 열원부(41) 주변의 몰딩제(40)를 수축시켜 몰딩제(40)와 열원부(41) 사이의 계면이 더욱 견고하게 밀착됨으로써, 구동시 신뢰도가 더욱 향상되도록 할 수 있다.
또한, 종래의 컨벡션 오븐을 이용한 경화방법은 가스 배리어성이 낮아 침투된 유황가스로 인해 변색이 심하게 발생되는 문제점이 있는데 반해, 본 발명에 따른 경화방법은, 도 6b에 도시된 바와 같이, 레이저빔에 의해 열원부(41)에서 발생한 열이 열원부(41) 주변의 몰딩제(40)를 수축시켜서 몰딩제(40)와 열원부(41) 사이의 계면이 더욱 견고하게 밀착되어 유황가스의 침투를 효과적으로 차단하여 변색과 가스 배리어성이 월등히 향상시킬 수 있다.
이때, 상기 LED 제조시스템은, 디스펜서부(200)로 순차적으로 로딩될 다수의 베이스부재(20)들이 적재되는 베이스부재로딩부(300)와; LED 제조시스템로부터 베이스부재(20)을 전달받아 언로딩적부재(320)로 언로딩하기 위한 베이스부재언로딩부(400)를 더 포함할 수 있다.
상기 베이스부재로딩부(300)는, 다수의 LED소자(10)들이 실장된 베이스부재(20)이 적재된 로딩적재부(30)로부터 베이스부재(20)을 LED 제조시스템로 로딩하는 구성으로 다양한 구성이 가능하다.
상기 로딩적재부(310)는, LED소자(10)가 실장되고 몰딩제(40)가 도포되지 않은 상태의 베이스부재(20)들이 적재되어 보관하는 매거진(magazine) 또는 캐리어(carrier)와 같은 보관용기를 포함할 수 있다.
상기 베이스부재로딩부(300)는, 로딩적재부(310)에 적재된 베이스부재(20)이 로딩위치에서 순차적으로 배출되도록 로딩적재부(310)를 수평방향으로 이송하거나 또는 수직방향으로 승강시키기 위한 엘리베이터부를 추가로 포함할 수 있다.
상기 베이스부재언로딩부(400)는, LED 제조시스템로부터 경화공정이 완료된 베이스부재(20)을 전달받아 언로딩적부재(320)로 언로딩하는 구성으로 다양한 구성이 가능하다.
상기 언로딩적부재(320)는, LED 제조시스템에서 LED 패키지 경화가 완료된 베이스부재(20)들이 적재되는 매거진(magazine) 또는 캐리어(carrier)와 같은 보관용기를 포함할 수 있다.
또한, 상기 베이스부재언로딩부(400)는, 베이스부재(20)이 언로딩위치에서 순차적으로 언로딩적부재(320)로 언로딩되도록 언로딩적부재(320)를 수평방향으로 이송하거나 수직방향으로 승강시키기 위한 엘리베이터부를 추가로 포함할 수 있다.
한편, 상기 LED 제조시스템은, 베이스부재로딩부(300)로부터 베이스부재(20)을 전달받거나 베이스부재로딩부(400)로 베이스부재(20)을 전달하며, LED 제조시스템의 하측에 설치되어 베이스부재(20)을 수평방향으로 이송하는 선형이동장치(600)를 포함할 수 있다.
한편, 상기 LED 제조시스템은, 베이스부재로딩부(300) 및 LED 제조시스템 사이에 설치되며, 베이스부재로딩부(300)로부터 로딩된 베이스부재(20)의 리플렉터(30) 내측에 몰딩제(40)를 충진하는 디스펜서부(200)를 추가로 포함할 수 있다.
상기 디스펜서부(200)는, 다수의 LED소자(10)들이 실장된 베이스부재(20)에 설치되는 리플렉터(30) 내측에 몰딩제(40)를 충진하는 구성으로 다양한 구성이 가능하다.
예로서, 상기 디스펜서부(200)는, 베이스부재(20)의 이동경로상 상측에 설치되어 베이스부재(20)의 리플렉터(30) 내측에 몰딩제(40)를 공급하는 노즐부를 포함할 수 있다.
상기 노즐부는, 다양한 방식의 공급시스템이 적용될 수 있으며, 외부의 몰딩제공급장치와 연결될 수 있다.
그리고, 상기 LED 제조시스템은, 도 2에 도시된 바와 같이, 디스펜서부(200)와 LED 제조시스템 사이에 설치되어 베이스부재(20) 상면이미지를 획득하는 제1이미지획득부(610)를 포함할 수 있다.
상기 제1이미지획득부(610)는, 디스펜서부(200)에서 몰딩단계를 마친 베이스부재(20)의 상면이미지를 획득하여 LED 패키지의 몰딩상태를 검사하는 구성으로 다양한 구성이 가능하다.
상기 제1이미지획득부(610)는, 카메라와 같은 광학패키지로 구성될 수 있다.
또한, 상기 LED 제조시스템은, 도 2에 도시된 바와 같이, LED 제조시스템과 베이스부재언로딩부(400) 사이에 설치되어 베이스부재(20) 상면이미지를 획득하는 제2이미지획득부(620)를 더 포함할 수 있다.
상기 제2이미지획득부(610)는, LED 제조시스템에서 경화단계를 마친 베이스부재(20)의 상면이미지를 획득하여 LED 패키지의 경화상태를 검사하는 구성으로 다양한 구성이 가능하다.
상기 제2이미지획득부(620)는, 카메라와 같은 광학패키지로 구성될 수 있다.
한편 본 발명에 따른 상기 LED 제조시스템 및 LED 제조 방법은, 경화공정이 수행될 LED 패키지가 도 3에 도시된 구조 이외에, 도 7에 도시된 바와 같은, 구조를 가질 수 있다.
구체적으로, 본 발명에 따른 상기 LED 제조시스템 및 LED 제조 방법에 제조되는 LED 패키지는, 도 7에 도시된 바와 같이, 상면에 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 다수의 LED 소자(52)들이 배치되고, 상기 각 LED 소자(52)는, 상면에 접착층(53)이 형성되어 그 위에 시트구조의 형광체(54)가 부착되는 베이스부재(20)로부터 제조될 수 있다. 여기서 본 발명의 제2실시예에 따른 LED 소자에 있어서 베이스부재는 다른 구성을 가질 수 있으나, 설명의 편의상 같은 도면부호를 부여한다.
상기 베이스부재(20)는, 도 1에 도시된 바와 같은, 상면에 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 다수의 LED 소자(52)들이 배치되는 리드프레임, 기판 등이 될 수 있다.
여기서, 상기 LED 패키지는, 금속세선을 통해 베이스부재(20)의 리드에 연결(와이어 본딩)되어 베이스부재(20)에 실장된 LED소자(10)로 구성될 수 있다.
한편 상기 LED소자(10)는, 베이스부재(20)에 실장되어 전기인가에 의하여 빛을 발하는 박판구조의 소자로서 반도체 공정 등을 거쳐 제조되는 LED 소자이다.
상기 형광체(54)는, LED 소자(52)의 상면에 부착되는 시트구조의 부재로서, 재질에 따라서 세라믹, 글라스, 필름 구조의 형광체로 구성되는 등 다양한 구성을 가질 수 있다.
특히 상기 형광체(54)는, LED 소자(52)의 상면에 부착되도록 시트 구조를 가짐을 특징으로 한다.
상기 접착층(53)은, LED 소자(52)의 상면에 형성되어 시트구조의 형광체(54)를 부착하는 층으로서 형광체의 종류에 따라서 다양한 물성을 가질 수 있다.
한편 상기와 같은 구조를 가지는 LED 패키지는, 접착층(53)이 개재된 상태로 LED 소자(52)의 상면에 시트구조의 형광체(54)를 부착한 후 도 1, 도 2 및 도 4, 후술하는 도 8 내지 도 13에 도시된 바와 같은, LED 소자 제조시스템 및 LED 소자 제조방법에 의하여 제조될 수 있다.
구체적으로, 상기 접착층(53)이 개재된 상태로 LED 소자(52)의 상면에 시트구조의 형광체(54)를 부착된 베이스부재(20)는, 선형이동장치(600) 또는 스테이지부(60)에 의하여 후술하는 광원부(100)에 의하여 레이저빔이 조사되는 빔조사영역을 통과한다.
이때 상기 광원부(100)는, 도 5에 도시된 바와 같이, 발생된 광을 베이스부재(20) 상에 형성되는 빔스폿을 갈바노미터 스캐너(110) 등을 이용하여 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동되는 레이저빔을 발생시킴을 특징으로 한다.
여기서 상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 베이스부재(20) 상에 설치된 리플렉터(30)의 크기보다 큰 직경을 가짐이 바람직하다.
즉, 상기 빔스폿의 직경은, 베이스부재(20)에 설치된 하나 이상의 리플렉터(30)를 포함할 수 있을 정도의 크기로 형성됨이 바람직하다.
특히 상기 광원부(100)는, 발생된 광을 베이스부재(20) 상에 형성되는 빔스폿을 갈바노미터 스캐너(110) 등을 이용하여 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동 등 상대왕복이동시켜 베이스부재(20)의 접착층(53)의 경화에 충분한 열을 가함으로써 보다 신속하게 접착층(53)의 경화를 달성할 수 있다.
한편 상기 광원부(100)는, 100W ~ 1KW 범위의 세기를 가지며 파장, 800nm~2㎛의 파장, 예를 들면 1,060~1,080nm 파장의 적외선 레이저빔을 조사하도록 구성됨이 바람직하다.
본 발명의 핵심 기술적요지는, 각 LED 패키지에 몰딩제/형광체에 광을 집중 조사하는 종래의 제조방법을 탈피하여 레이저빔에 의하여 형성되는 빔스폿을 복수의 LED 패키지들에 걸쳐 이동시킴으로써 각 LED 패키지에 몰딩제 내지 형광체의 접착을 위한 접착제를 가열경화시켜 경화공정의 수행시간을 현저히 단축시켜 생산성을 크게 향상시키는데 있다.
특히 도 3 및 도 7에 도시된 바와 같이, LED 패키지의 제조를 위한 기본 구성에 따라서 다양한 실시예가 가능하다.
예로서, 본 발명은, LED 제조방법으로서, 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되며 상기 각 LED소자(10)에 대응되어 몰딩제(40)가 내측에 충진되는 다수의 리플렉터(30)들이 설치되는 베이스부재(20)에 대하여 LED소자(10)의 몰딩제(40)를 경화시키기 위한 LED 제조방법으로서, 광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행할 수 있다.
또한 본 발명은, LED 제조방법으로서, 상면에 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 다수의 LED 소자(52)들이 배치되고, 상기 각 LED 소자(52)는, 상면에 접착층(53)이 형성되어 그 위에 시트구조의 형광체(54)가 부착되는 베이스부재(20)에 대하여 상기 각 LED소자(52)의 상면에 형성된 접착층(53)를 경화시키기 위한 LED 제조방법으로서, 광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행할 수 있다.
한편 본 발명의 핵심 기술적요지의 구현에 있어서, LED 제조시스템 또한 다양한 실시예가 가능하다.
예로서, 본 발명의 다른 실시예에 따른 LED 제조시스템은, 도 8 내지 도 13에 도시된 바와 같이, 광원부(100) 및 베이스부재(20) 사이의 상대왕복이동을 위하여 베이스부재(20)가 안착되며 광원부(100)에 대하여 상대이동되는 스테이지부(60)를 포함할 수 있다.
상기 스테이지부(60)는, 광원부(100) 및 베이스부재(20) 사이의 상대왕복이동을 위하여 베이스부재(20)가 안착되며 광원부(100)에 대하여 상대이동되는 구성으로서 다양한 구성이 가능하다.
상기 스테이지부(60)는, 경화공정이 수행될 베이스부재(20)가 삽입되어 레이저빔의 조사에 의하여 경화공정이 수행되는 공정스테이지부(650)를 포함할 수 있다.
상기 공정스테이지부(650)는, 경화공정이 수행될 베이스부재(20)가 삽입되어 레이저빔의 조사에 의하여 경화공정이 수행되는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 공정스테이지부(650)는, 베이스부재(20)가 안착되는 하부플레이트(653)과, 빔조사영역에서의 빔조사가 가능하도록 관통 또는 슬롯 등에 의하여 형성되는 개구(654)가 형성된 상부플레이트(652)를 포함할 수 있다.
여기서 상기 상부플레이트(652)는, 하부플레이트(653)에 대한 베이스부재(20)의 원할한 안착을 위하여 하부플레이트(653)에 대하여 상하 이동이 가능하도록 설치됨이 바람직하다.
이에 상기 상부플레이트(652)는, 리프트부재(655)에 의하여 하부플레이트(653)에 대하여 상하 이동될 수 있다.
한편 상기 스테이지부(60)는, 하부플레이트(653)에 대한 베이스부재(20)의 원할한 안착을 위하여 공정스테이지부(650)의 전방에 설치되어 경화공정이 수행될 베이스부재(20)가 외부로부터 삽입된 후 공정스테이지부(650)으로 전달하는 로딩스테이지부(640)와; 공정스테이지부(650)의 후방에 설치되어 경화공정이 완료된 베이스부재(20)를 공정스테이지부(650)으로부터 전달받아 외부로 배출하는 언로딩스테이지부(660)을 포함할 수 있다.
상기 로딩스테이지부(640)는, 하부플레이트(653)에 대한 베이스부재(20)의 원할한 안착을 위하여 공정스테이지부(650)의 전방에 설치되어 경화공정이 수행될 베이스부재(20)가 외부로부터 삽입된 후 공정스테이지부(650)으로 전달하는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 로딩스테이지부(640)는, 베이스부재(20)의 저면을 지지하는 하부플레이트(643)와, 베이스부재(20)의 이동을 가이드하도록 하부플레이트(643)와 간격을 두고 설치되는 상부플레이트(644)를 포함할 수 있다.
여기서 상기 상부플레이트(644)는, 베이스부재(20)를 공정스테이지부(650)로 전달할 수 있도록 하부플레이트(643)에 안착된 베이스부재(20)를 푸시하는 푸시부재(690)의 이동을 안내하는 절개부(641)가 형성될 수 있다.
상기 절개부(641)는, 로딩스테이지부(640)로부터 공정스테이지부(650)로의 베이스부재(20)의 전달을 위하여 베이스부재(20)의 이동방향으로 상부플레이트(644)를 절개하도록 형성될 수 있다.
여기서 상기 푸시부재(690)는, 베이스부재(20)를 공정스테이지부(650)로 전달할 수 있도록 하부플레이트(643)에 안착된 베이스부재(20)를 푸시하는 구성으로서, 선형이동부(미도시)에 의하여 공정스테이지부(650)를 항하여 베이스부재(20)를 가압하는 구성으로서 다양한 구성이 가능하다.
특히 상기 푸시부재(690)는, 외부로부터 로딩스테이지부(640)로 후속되는 베이스부재(20)가 될 때 그 이동에 간섭되지 않도록 상하이동이 가능하도록 설치된다.
그리고 상기 푸시부재(690)는, 베이스부재(20)를 로딩스테이지부(640)로 충분하게 이동될 수 있도록 베이스부재(20)가 접촉되는 부분이 더 돌출되도록 'L'자 형상을 이룸이 바람직하다.
상기 언로딩스테이지부(660)는, 공정스테이지부(650)의 후방에 설치되어 경화공정이 완료된 베이스부재(20)를 공정스테이지부(650)으로부터 전달받아 외부로 배출하는 구성으로서 다양한 구성이 가능하다.
예로서, 상기 언로딩스테이지부(660)는, 베이스부재(20)의 저면을 지지하는 하부플레이트(663)와, 베이스부재(20)의 이동을 가이드하도록 하부플레이트(663)와 간격을 두고 설치되는 상부플레이트(664)를 포함할 수 있다.
여기서 상기 하부플레이트(663)는, 언로딩스테이지부(660)로부터 외부로 베이스부재(20)의 전달을 위하여 하부플레이트(663)에 안착된 베이스부재(20)를 푸시하는 푸시부재(680)의 이동을 안내하는 절개부(661)가 형성될 수 있다.
상기 절개부(661)는, 언로딩스테이지부(660)로부터 외부로 베이스부재(20)의 전달을 위하여 베이스부재(20)의 이동방향으로 하부플레이트(663)를 절개하도록 형성될 수 있다.
여기서 상기 푸시부재(680)는, 베이스부재(20)를 공정스테이지부(650)로부터 외부로 전달할 수 있도록 하부플레이트(663)에 안착된 베이스부재(20)를 푸시하는 구성으로서, 선형이동부(미도시)에 의하여 공정스테이지부(650)로부터 외부로 향하여 베이스부재(20)를 가압하는 구성으로서 다양한 구성이 가능하다.
특히 상기 푸시부재(680)는, 외부로부터 언로딩스테이지부(660)로 후속되는 베이스부재(20)가 될 때 그 이동에 간섭되지 않도록 상하이동이 가능하도록 설치된다.
그리고 상기 푸시부재(680)는, 베이스부재(20)를 언로딩스테이지부(640)로부터 외부로 충분하게 이동될 수 있도록 베이스부재(20)가 접촉되는 부분이 더 돌출되도록 뒤집어진 'L'자 형상을 이룸이 바람직하다.
한편 상기 푸시부재(680)는, 언로딩스테이지부(640)로부터 외부로의 외부재출에 더하여 공정스테이지부(650)로부터 언로딩스테이지부(640)로의 베이스부재(20)의 전달을 위한 푸시부재로 같이 사용될 수 있다.
여기서 상기 공정스테이지부(650)의 하부플레이트(653)는, 베이스부재(20)를 공정스테이지부(650)로부터 언로딩스테이지부(640)로 전달할 수 있도록 하부플레이트(653)에 안착된 베이스부재(20)를 푸시하는 푸시부재(680)의 이동을 안내하는 절개부(651)가 형성될 수 있다.
상기 절개부(651)는, 공정스테이지부(650)로부터 언로딩스테이지부(640)로의 베이스부재(20)의 전달을 위하여 베이스부재(20)의 이동방향으로 하부플레이트(653)를 절개하도록 형성될 수 있다.
한편 상기 광원부(100)는, 앞서 설명한 스테이지부(60)의 구성에 대응하여 레이저빔을 발생시키는 광원과; 빔조사영역에 위치된 공정스테이지부(650)에 안착된 베이스부재(20) 상에 광원에서 발생된 레이저빔을 조사하여 빔스폿을 형성하는 스캐너(110)와; 광원에서 발생된 레이저빔을 스캐너(110)로 유도하는 광학계(120)를 포함할 수 있다.
여기서 상기 빔조사영역은, 광원부(100)의 스캐너(110)에 의하여 조사되는 레이점빔이 베이스부재(20) 상에 가열에 충분한 빔스폿이 형성되는 영역으로서 스테이지부(60)의 선형이동에 의하여 베이스부재(20)가 이동될 수 있다.
그리고 상기 공정스테이지부(650)가 빔조사영역에 위치되면 스캐너(110)에 대한 스테이지부(60)의 상대이동에 의하여 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 베이스부재(20)에 대한 상대왕복이동에 의하여 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하게 된다.
이를 위하여 상기 공정스테이지부(650)를 포함하는 스테이지부(60)는, 도 10a에 도시된 바와 같이, 경화공정 수행을 위한 베이스부재(20)가 로딩되는 위치에서, 도 10b에 도시된 바와 같이, 경화공정을 수행하기 위하여 빔조사영역을 이동될 수 있다.
또한 상기 경화공정 수행시 베이스부재(20) 상의 빔스폿의 이동패턴은, 도 4 및 도 5를 참조하여 앞서 설명한 바와 같이 베이스부재(20)의 이동방향과 수직인 방향으로 선형왕복이동하는 패턴 이외에, 도 10c에 도시된 바와 같이 지그재그 패턴을 이루는 등 원활한 경화조건을 전제로 다양한 이동패턴을 가질 수 있다.
또한 상기 빔스폿의 상대왕복이동의 미리 설정된 횟수는, 경화대상인 몰딩제(40) 또는 접착층(53)의 물성에 따라서 결정된다.
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.

Claims (19)

  1. 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되며 상기 각 LED소자(10)에 대응되어 몰딩제(40)가 내측에 충진되는 다수의 리플렉터(30)들이 설치되는 베이스부재(20)에 대하여 LED소자(10)의 몰딩제(40)를 경화시키기 위한 LED 제조시스템으로서,
    광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조시스템.
  2. 청구항 1에 있어서,
    상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 상기 리플렉터(30)의 평면크기보다 큰 것을 특징으로 하는 LED 제조시스템.
  3. 상면에 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 다수의 LED 소자(52)들이 배치되고, 상기 각 LED 소자(52)는, 상면에 접착층(53)이 형성되어 그 위에 시트구조의 형광체(54)가 부착되는 베이스부재(20)에 대하여 상기 각 LED소자(52)의 상면에 형성된 접착층(53)를 경화시키기 위한 LED 제조시스템으로서,
    광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조시스템.
  4. 청구항 3에 있어서,
    상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 상기 형광체(54)의 평면크기보다 큰 것을 특징으로 하는 LED 제조시스템.
  5. 청구항 1 내지 청구항 4 중 어느 하나의 항에 있어서,
    상기 베이스부재(20)을 선형이동시키는 선형이동장치(600)를 포함하며,
    상기 광원부(100)는, 상기 선형이동장치(600)에 의하여 선형이동되는 상기 베이스부재(20) 상에서 빔스폿을 상기 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동시키는 것을 특징으로 하는 LED 제조시스템.
  6. 청구항 5에 있어서,
    상기 광원부(100)는, 상기 베이스부재(20) 상에 형성되는 상기 빔스폿을 스캐너(110)을 이용하여 상기 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동시키는 것을 특징으로 하는 LED 제조시스템.
  7. 청구항 1 내지 청구항 4 중 어느 하나의 항에 있어서,
    상기 광원부(100)는, 100W ~ 1KW 범위의 세기를 가지며,
    상기 광원부(100)는, 파장, 800nm~2㎛의 파장의 레이저빔을 조사하도록 구성된 것을 특징으로 하는 LED 제조시스템.
  8. 청구항 1 내지 청구항 4 중 어느 하나의 항에 있어서,
    상기 광원부(100) 및 상기 베이스부재(20) 사이의 상대왕복이동을 위하여 상기 베이스부재(20)가 안착되며 상기 광원부(100)에 대하여 상대이동되는 스테이지부(60)를 포함하는 것을 특징으로 하는 LED 제조시스템.
  9. 청구항 8에 있어서,
    상기 스테이지부(60)는,
    상기 경화공정이 수행될 베이스부재(20)가 삽입되어 레이저빔의 조사에 의하여 상기 경화공정이 수행되는 공정스테이지부(650)를 포함하는 것을 특징으로 하는 LED 제조시스템.
  10. 청구항 9에 있어서,
    상기 공정스테이지부(650)의 전방에 설치되어 상기 경화공정 상기 경화공정이 수행될 베이스부재(20)가 외부로부터 삽입된 후 상기 공정스테이지부(650)으로 전달하는 로딩스테이지부(640)와;
    상기 공정스테이지부(650)의 후방에 설치되어 상기 경화공정이 완료된 베이스부재(20)를 상기 공정스테이지부(650)으로부터 전달받아 외부로 배출하는 언로딩스테이지부(660)을 포함하는 것을 특징으로 하는 LED 제조시스템.
  11. 청구항 9에 있어서,
    상기 광원부(100)는,
    레이저빔을 발생시키는 광원과;
    상기 빔조사영역에 위치된 상기 공정스테이지부(650)에 안착된 베이스부재(20) 상에 상기 광원에서 발생된 레이저빔을 조사하여 빔스폿을 형성하는 스캐너(110)와;
    상기 광원에서 발생된 레이저빔을 상기 스캐너(110)로 유도하는 광학계(120)를 포함하는 것을 특징으로 하는 LED 제조시스템.
  12. 청구항 8에 있어서,
    상기 광원부(100)는, 상기 베이스부재(20) 상에 형성되는 상기 빔스폿을 스캐너(110)을 이용하여 상기 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동되는 것을 특징으로 하는 LED 제조시스템.
  13. 청구항 8에 있어서,
    상기 광원부(100)는, 100W ~ 1KW 범위의 세기를 가지며,
    상기 광원부(100)는, 파장, 800nm~2㎛의 파장의 레이저빔을 조사하도록 구성된 것을 특징으로 하는 LED 제조시스템.
  14. 다수의 LED소자(10)들이 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 실장되며 상기 각 LED소자(10)에 대응되어 몰딩제(40)가 내측에 충진되는 다수의 리플렉터(30)들이 설치되는 베이스부재(20)에 대하여 LED소자(10)의 몰딩제(40)를 경화시키기 위한 LED 제조방법으로서,
    광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조방법.
  15. 청구항 14에 있어서,
    상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 상기 리플렉터(30)의 평면크기보다 큰 것을 특징으로 하는 LED 제조방법.
  16. 상면에 N × M 매트릭스 (여기서, N 및 M은 자연수) 형태로 다수의 LED 소자(52)들이 배치되고, 상기 각 LED 소자(52)는, 상면에 접착층(53)이 형성되어 그 위에 시트구조의 형광체(54)가 부착되는 베이스부재(20)에 대하여 상기 각 LED소자(52)의 상면에 형성된 접착층(53)를 경화시키기 위한 LED 제조방법으로서,
    광원부(100)에서 발생되는 빔의 조사에 의하여 상기 베이스부재(20) 상에 형성되는 빔스폿을 복수의 상기 리플렉터(30)들에 걸쳐 미리 설정된 횟수의 상기 베이스부재(20)에 대한 상대왕복이동에 의하여 상기 빔이 조사된 몰딩제(40)를 경화시키는 경화공정을 수행하는 것을 특징으로 하는 LED 제조방법.
  17. 청구항 16에 있어서,
    상기 베이스부재(20) 상에 형성되는 빔스폿의 직경은, 상기 형광체(54)의 평면크기보다 큰 것을 특징으로 하는 LED 제조방법.
  18. 청구항 14 내지 청구항 17 중 어느 하나의 항에 있어서,
    상기 광원부(100)는, 상기 베이스부재(20) 상에 형성되는 상기 빔스폿을 스캐너(110)을 이용하여 상기 베이스부재(20)의 선형이동방향과 수직인 방향으로 왕복이동시키는 것을 특징으로 하는 LED 제조방법.
  19. 청구항 14 내지 청구항 17 중 어느 하나의 항에 있어서,
    상기 광원부(100)는, 100W ~ 1KW 범위의 세기를 가지며,
    상기 광원부(100)는, 파장, 800nm~2㎛의 파장의 레이저빔을 조사하도록 구성된 것을 특징으로 하는 LED 제조방법.
PCT/KR2018/013513 2017-11-08 2018-11-08 Led 제조시스템 및 led 제조방법 WO2019093778A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880052375.9A CN111108611B (zh) 2017-11-08 2018-11-08 Led制造***及led制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0148144 2017-11-08
KR20170148144 2017-11-08
KR10-2018-0062375 2018-05-31
KR1020180062375A KR20190052600A (ko) 2017-11-08 2018-05-31 Led 제조시스템 및 led 제조방법

Publications (1)

Publication Number Publication Date
WO2019093778A1 true WO2019093778A1 (ko) 2019-05-16

Family

ID=66438419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013513 WO2019093778A1 (ko) 2017-11-08 2018-11-08 Led 제조시스템 및 led 제조방법

Country Status (2)

Country Link
KR (1) KR102546064B1 (ko)
WO (1) WO2019093778A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101548A (ja) * 2003-08-15 2005-04-14 Semiconductor Energy Lab Co Ltd レーザ照射方法及びそれを用いた半導体装置の作製方法、並びに半導体装置
KR101167184B1 (ko) * 2011-05-25 2012-07-24 한국광기술원 Led 패키지 봉지재의 경화 장치
JP2013021314A (ja) * 2011-06-16 2013-01-31 Nitto Denko Corp 蛍光接着シート、蛍光体層付発光ダイオード素子、発光ダイオード装置およびそれらの製造方法
KR20160032582A (ko) * 2014-09-16 2016-03-24 한국광기술원 형광체 발열을 이용한 봉지재 경화 장치 및 방법
KR101607778B1 (ko) * 2014-11-28 2016-03-30 한국광기술원 Led 패키지 제조 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102049445B1 (ko) * 2013-05-31 2019-11-28 삼성디스플레이 주식회사 레이저 빔 조사 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법
JP2016128250A (ja) * 2014-09-10 2016-07-14 大日本印刷株式会社 複合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101548A (ja) * 2003-08-15 2005-04-14 Semiconductor Energy Lab Co Ltd レーザ照射方法及びそれを用いた半導体装置の作製方法、並びに半導体装置
KR101167184B1 (ko) * 2011-05-25 2012-07-24 한국광기술원 Led 패키지 봉지재의 경화 장치
JP2013021314A (ja) * 2011-06-16 2013-01-31 Nitto Denko Corp 蛍光接着シート、蛍光体層付発光ダイオード素子、発光ダイオード装置およびそれらの製造方法
KR20160032582A (ko) * 2014-09-16 2016-03-24 한국광기술원 형광체 발열을 이용한 봉지재 경화 장치 및 방법
KR101607778B1 (ko) * 2014-11-28 2016-03-30 한국광기술원 Led 패키지 제조 장치

Also Published As

Publication number Publication date
KR20190052645A (ko) 2019-05-16
KR102546064B1 (ko) 2023-06-21

Similar Documents

Publication Publication Date Title
WO2010077082A2 (ko) 발광소자 패키지 및 그 제조방법
WO2018143682A1 (ko) 발광 다이오드 유닛
WO2019098596A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
CN100539221C (zh) 半导体发光器件和半导体发光器件组装体
KR101887551B1 (ko) Led 제조장치 및 이를 포함하는 led 제조시스템
WO2016032167A1 (ko) 발광 소자 패키지
WO2013032128A1 (en) Optical member, display device, and light emitting device having the same
WO2011145794A1 (ko) 파장변환층을 갖는 발광 다이오드 칩과 그 제조 방법, 및 그것을 포함하는 패키지 및 그 제조 방법
WO2010002221A2 (ko) 파장변환형 발광다이오드 칩 및 이를 구비한 발광장치
WO2013073897A2 (ko) 발광소자 패키지 및 이를 구비하는 백라이트 유닛
WO2017119661A1 (ko) 반도체 소자
WO2020190046A1 (ko) 발광 소자 패키지 및 이의 어플리케이션
WO2013162337A1 (en) Light emitting device and light emitting device package
WO2020080779A1 (en) Light emitting diode and manufacturing method of light emitting diode
WO2019045505A1 (ko) 반도체 소자 및 이를 포함하는 헤드 램프
WO2021256787A1 (ko) 복수의 유닛 픽셀을 갖는 발광 모듈, 그것을 제조하는 방법, 및 그것을 갖는 디스플레이 장치
WO2019231115A1 (ko) 반도체 소자 패키지 및 이를 포함하는 광조사장치
WO2017074035A1 (ko) 발광소자 패키지, 및 이를 포함하는 조명시스템
WO2020096325A1 (ko) 마이크로 led 위치 오차 보정 캐리어 및 마이크로 led 전사시스템
WO2019093778A1 (ko) Led 제조시스템 및 led 제조방법
WO2016018071A1 (ko) 광원 모듈
WO2014084645A1 (ko) 발광소자 패키지 및 이의 제작 방법
WO2017003095A1 (ko) 발광소자 패키지 이를 포함하는 발광소자 모듈
WO2020190027A2 (ko) 조명 장치 및 조명 장치를 포함하는 이동식 차량
WO2020036320A1 (ko) 발광 다이오드 패키지 및 발광 다이오드 패키지를 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876752

Country of ref document: EP

Kind code of ref document: A1