WO2019093770A1 - Molded product manufactured from high heat resistant polycarbonate ester - Google Patents

Molded product manufactured from high heat resistant polycarbonate ester Download PDF

Info

Publication number
WO2019093770A1
WO2019093770A1 PCT/KR2018/013491 KR2018013491W WO2019093770A1 WO 2019093770 A1 WO2019093770 A1 WO 2019093770A1 KR 2018013491 W KR2018013491 W KR 2018013491W WO 2019093770 A1 WO2019093770 A1 WO 2019093770A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
formula
molded article
ester
dianhydrohexitol
Prior art date
Application number
PCT/KR2018/013491
Other languages
French (fr)
Korean (ko)
Inventor
오광세
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180135681A external-priority patent/KR102634462B1/en
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Priority to US16/757,570 priority Critical patent/US11590682B2/en
Priority to CN201880070594.XA priority patent/CN111278890A/en
Priority to ES18877033T priority patent/ES2950732T3/en
Priority to JP2020519777A priority patent/JP7279714B2/en
Priority to EP18877033.3A priority patent/EP3708601B1/en
Publication of WO2019093770A1 publication Critical patent/WO2019093770A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a molded article made from a high-temperature-resistant bio-based polycarbonate ester, and more particularly, to a molded article which is excellent in heat resistance and has a wide variety of properties such as automobile, electric and electronic display, It can be applied to the field.
  • Bio-based polycarbonate esters prepared by melt polycondensation of 1,4: 3,6-dianhydrohexitol with carbonates or 1,4-cyclohexanedicarboxylate are useful as biocide- Bioplastic containing bio-based monomers derived from the sources, namely 1,4: 3,6-dianhydrohexitol.
  • the bio-based polycarbonate ester has a high transparency of PMMA (poly (methyl methacrylate)) and a high heat resistance of bisphenol A (BPA) polycarbonate, which are typical transparent resins.
  • the structural characteristics of such a bio-based polycarbonate ester do not include BPA that induces environmental hormones, and by copolymerizing a 1,4-cyclohexanedicarboxylate monomer having an aliphatic cyclic molecular structure, 1,4: 3,6- Dianhydrohexitol can improve the poor ductility of the molecular structure. Further, the disadvantage of the carbonate bond can be compensated by replacing a part of the carbonate bond with an ester bond.
  • 1,4-cyclohexanedicarboxylic acid (1,4-dimethyl-cyclohexanedicarboxylate, DMCD) or 1,4-cyclohexanedicarboxylic acid (CHDA )
  • DMCD 1,4-dimethyl-cyclohexanedicarboxylate
  • CHDA 1,4-cyclohexanedicarboxylic acid
  • the development of high heat-resistant materials that can be applied to various fields such as automobile, electronic equipment, industrial lighting, and medical treatment has been progressed with a recent glass transition temperature (Tg) of 170 ° C or higher.
  • Tg glass transition temperature
  • the bio-based polycarbonate esters prepared by the melt polycondensation of 1,4: 3,6-dianhydrohexitol and the carbonate or 1,4-cyclohexanedicarboxylate have a Tg of 170 DEG C or lower, It is necessary to improve the heat resistance.
  • an object of the present invention is to provide a polycarbonate resin composition which uses a low-cost raw material that meets heat resistance and economy, and which is capable of maintaining high transparency of a bio-based polycarbonate ester, To provide a molded article.
  • the present invention provides a molded article produced from a high-temperature-resistant bio-based polycarbonate ester,
  • the molded article of the present invention is made from a high-temperature-resistant bio-based polycarbonate ester and is eco-friendly because it does not contain bisphenols, and can be used in various products with an excellent heat resistance at a glass transition temperature of 160 ° C or higher.
  • the present invention relates to a molded article made from a high heat resistant bio-based polycarbonate ester,
  • the high-temperature-resistant bio-based polycarbonate ester comprises repeating units 1 represented by the following formula (1): A repeating unit 2 represented by the following formula (2); And a repeating unit 3 represented by the following formula (3).
  • the recurring unit 1 is obtained from the reaction of 1,4: 3,6-dianhydrohexitol and carbonate, and the recurring unit 2 is 1,4: 3,6-dianhydrohexitol and 1,4-cyclo Hexanedicarboxylate, and the repeating unit 3 can be obtained from the reaction of 1,4: 3,6-dianhydrohexitol and terephthalate.
  • the cis / trans ratio of 1,4-cyclohexanedicarboxylate in the repeating unit 2 may be 1/99 to 99/1%, 20/80 to 80/20%, or 30/70 to 70/30% .
  • the 1,4: 3,6-dianhydrohexitol may be isomanide, isosorbide and isoidide, and may be specifically isosorbide.
  • x is a real number of more than 0 and less than 1
  • Y is a real number greater than 0 and less than or equal to 0.7
  • z is a real number greater than 0 and less than or equal to 0.6
  • x + y + z can be 1.
  • x is a real number of more than 0 and not more than 0.9, or not more than 0 and not more than 0.8
  • y is a real number of not less than 0 and not more than 0.6, or not less than 0 and not more than 0.5
  • z is more than 0 and not more than 0.5
  • X + y + z may be a real number.
  • the high temperature resistant biobased polycarbonate ester may have a glass transition temperature (Tg) of 160 to 240 ° C and a melt flow index (MI) at 260 ° C and a load of 2.16 kg of 5 to 150 g / 10 min.
  • the polycarbonate ester may have a Tg of 170 to 220 ⁇ , or 180 to 200 ⁇ , an MI of 10 to 100 g / 10 min, or 15 to 50 g / 10 min at 260 ⁇ and a load of 2.16 kg .
  • the high heat-resistant bio-based polycarbonate ester may have an intrinsic viscosity (IV) of 0.3 to 2.3 dL / g.
  • polycarbonate is superior in heat resistance and mechanical properties to polyesters but relatively insufficient in terms of chemical resistance, residual stress and molding cycle time.
  • polycarbonate esters containing both a carbonate and an ester bond in a single chain have both disadvantages and advantages of each single bond polymer. Accordingly, the molded article produced from the high-temperature-resistant bio-based polycarbonate ester can be used as a material for various fields requiring excellent heat resistance.
  • the molding process of the high-temperature-resistant bio-based polycarbonate ester is not particularly limited.
  • a molding process such as injection molding, extrusion molding, blow molding, extrusion blow molding, inflation molding, calendar molding, foam molding, balloon molding, vacuum molding, and radiation can be applied.
  • the use of the molded article produced from the high heat-resistant bio-based polycarbonate ester is not particularly limited, but it can be used as a substitute for conventional heat resistance and optical molded articles on the basis of its excellent heat resistance and transparency.
  • the molded product may be an automobile component, an electric / electronic component, a display component, an air component, a mechanical component, an illumination component, a medical product, or a food container.
  • the high heat resistant bio-based polycarbonate esters of the present invention can be prepared by the following method.
  • R < 1 > is methyl or hydrogen
  • R 2 and R 3 are each an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms, and the aryl group is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, An alkoxy group having 1 to 18 carbon atoms, a cycloalkoxy group having 4 to 20 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, an alkylsulfonyl group having 1 to 18 carbon atoms, a cycloalkylsulfonyl group having 4 to 20 carbon atoms, A sulfonyl group, and an ester substituent.
  • the ester substituent may be an alkyl ester having 1 to 18 carbon atoms, a cycloalkyl ester having 4 to 20 carbon atoms, or an aryl ester having 6 to 18 carbon atoms
  • the compound represented by the formula (4) is converted into an intermediate reactant having a halogen functional group at the terminal thereof, followed by a nucleophilic reaction with a phenol or phenol substituent, or a phenol or phenol substituent is transesterified Esterification reaction is carried out to prepare a compound represented by the above formula (5).
  • the phenol substituent may be a compound represented by the following general formula (9).
  • R 5 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, a cycloalkoxy group having 4 to 20 carbon atoms, An alkylsulfonyl group having 1 to 18 carbon atoms, a cycloalkylsulfonyl group having 4 to 20 carbon atoms, an arylsulfonyl group having 6 to 18 carbon atoms, or an ester substituent.
  • the ester substituent may be an alkyl ester having 1 to 18 carbon atoms, a cycloalkyl ester having 4 to 20 carbon atoms, or an aryl ester having 6 to 18 carbon atoms.
  • the intermediate reactant having a halogen functional group at the terminal thereof may be a compound represented by the following formula (8).
  • R < 4 > are each independently F, Cl or Br.
  • the intermediate reactant containing a halogen functional group at the terminal may be terephthaloyl chloride (TPC) in which R 4 is Cl.
  • the intermediate reactant having a halogen functional group at the terminal may be prepared by reacting the compound of formula (4) (dicarboxylate or dicarboxylic acid) with a halogenated compound.
  • the halogenated compound may be selected from the group consisting of phosgene, triphosgene, thionyl chloride, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride, At least one selected from the group consisting of phosphorus pentabromide and cyanuric fluoride.
  • the halogenated compound may be at least one chlorinating agent selected from the group consisting of phosgene, thionyl chloride, and oxalyl chloride, which facilitates removal of reaction by-products.
  • the halogenated compound may be phosgene.
  • the addition amount of the halogenated compound may be 1 to 10 times, 1.5 to 7.5 times, or 2 to 5 times the number of mols of the total molar amount of the compound of Formula 4 initially introduced.
  • the reaction conditions and time may vary depending on the type of the compound of formula (IV) and the halogenated compound.
  • the conversion to the intermediate reactant can be carried out at atmospheric pressure and a temperature of -30 to 150 ⁇ for 5 minutes to 48 hours. More specifically, the conversion to the intermediate reactant can be carried out at normal pressure and at a temperature of from 20 to 100 DEG C, or from 40 to 80 DEG C for from 10 minutes to 24 hours.
  • an organic solvent may be used to dissolve or disperse the compound of the formula (4).
  • the organic solvent that may be used herein may be, for example, benzene, toluene, xylene, mesitylene, methylene chloride, dichloroethane, chloroform, carbon tetrachloride, monochlorobenzene, o- Dioxane, acetonitrile, and the like.
  • a catalyst may be used depending on the kind of the compound of the formula (4) and the halogenated compound used in the conversion to the intermediate reactant.
  • the type of the catalyst is not particularly limited so long as it is in conformity with this object.
  • Examples of the organic catalyst which can be used herein include dimethylformamide, dimethylacetamide, methylpyrrolidone, dimethyl imidazolidinone, tetramethylurea, tetraethylurea and tetrabutylurea.
  • dimethylformamide, tetramethylurea or dimethylimidazolidinone may be used as the organic catalyst
  • aluminum chloride or titanium tetrachloride may be used as the inorganic catalyst
  • dimethyl formamide may be used as a commercially preferable organic catalyst
  • aluminum chloride may be used as an inorganic catalyst.
  • the amount of the catalyst to be used in the conversion to the intermediate reactant is not particularly limited, but depends on the type of the compound of formula (IV) and the halogenated compound. Specifically, the amount of the catalyst used in the conversion to the intermediate reactant may be in the range of more than 0 to 10 mol%, more than 0 and 5 mol%, or more than 0 and 3 mol% or less based on the total molar amount of the compound of Formula 4 initially introduced have. When the amount of the catalyst used is less than the above range in the conversion to the intermediate reactant, the problem of lowering the reaction rate and causing the runaway reaction and the exothermic reaction can be prevented.
  • the step (1) is a step wherein Terephthalic acid (TPA) in which R 1 is hydrogen or dimethyl terephthalate (DMT) in which R 1 is methyl is reacted with TPC which is an intermediate reactant having a halogen functional group at the terminal Diphenyl terephthalate (DPT) represented by the general formula (5) can be prepared by reacting with phenol or a phenol substituent (see Scheme 1 below).
  • TPA Terephthalic acid
  • DMT dimethyl terephthalate
  • DPT Diphenyl terephthalate
  • the molar ratio of the compound represented by Formula 8 to the phenol or phenol substituent may be 1: 1 to 5. Specifically, in the nucleophilic reaction, the molar ratio of the compound represented by Formula 8 to the phenol or phenol substituent may be 1: 2 to 3.
  • the final yield of the compound (DPT) represented by the formula (5) which is a problem that may occur due to the use of an excessive phenol or phenol substituent Can be prevented.
  • TPA in which R 1 is hydrogen or DMT in which R 1 is methyl is transesterified or esterified with a phenol or phenol substituent in the above formula (4) to prepare a compound represented by the following formula (See Scheme 1 above).
  • the transesterification or esterification reaction may be carried out at 20 to 300 < 0 > C. Specifically, the transesterification or esterification reaction is carried out at 50 to 250 ° C or 100 to 200 ° C at normal pressure, or at 50 to 300 ° C under a pressure of 0.1 to 10 kgf / cm 2 or 1 to 5 kgf / cm 2 .
  • the transesterification or esterification reaction may be carried out for 5 minutes to 48 hours, or 10 minutes to 24 hours.
  • the molar ratio of the compound represented by Formula 4 to the phenol or phenol substituent may be 1: 2 to 40. Specifically, in the ester exchange or esterification reaction, the molar ratio of the compound represented by Formula 4 to the phenol or phenol substituent may be 1: 3 to 30, or 1: 4 to 20.
  • the final yield of the compound of the general formula (5) which may be caused by a small amount of phenol or phenol substituent, can be prevented from lowering.
  • a compound represented by the following formulas (5) to (7) and 1,4: 3,6-dianhydrohexitol are subjected to a melt polycondensation reaction to obtain a compound containing the repeating units 1 to 3 represented by the following formulas .
  • R 2 and R 3 are each an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms, and the aryl group is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, An alkoxy group having 1 to 18 carbon atoms, a cycloalkoxy group having 4 to 20 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, an alkylsulfonyl group having 1 to 18 carbon atoms, a cycloalkylsulfonyl group having 4 to 20 carbon atoms, A sulfonyl group, and an ester substituent.
  • the ester substituent may be an alkyl ester having 1 to 18 carbon atoms, a cycloalkyl ester having 4 to 20 carbon atoms, or an aryl ester having 6 to 18 carbon atoms
  • the cis / trans ratio of the compound represented by Formula 6 may be 1/99 to 99/1%, 10/90 to 90/10%, or 20/80 to 80/20%. Also, the cis / trans ratio of 1,4-cyclohexanedicarboxylate in the repeating unit 2 represented by the general formula (2) is 1/99 to 99/1%, 20/80 to 80/20%, or 30/70 to 70 / 30%.
  • the compound represented by the formula (7) may be prepared by reacting a compound represented by the formula (7) with a compound selected from the group consisting of dimethyl carbonate, diethyl carbonate, di-t-butyl carbonate, diphenyl carbonate, ditolyl carbonate ditolyl carbonate or bis (methylsalicyl) carbonate.
  • diphenyl carbonate or substituted diphenyl carbonate may be used as the compound represented by the general formula (7).
  • the substituted diphenyl carbonate may be ditolyl carbonate or bis (methyl salicyl) carbonate.
  • the 1,4: 3,6-dianhydrohexitol may be isomanide, isosorbide and isoidide, and may be specifically isosorbide.
  • the heat resistance, transparency and transparency of the prepared high-temperature biobased polycarbonate ester In order to improve the mechanical properties, it is very important to control the purity of 1,4: 3,6-dianhydrohexitol used in the melt polycondensation reaction.
  • the 1,4: 3,6-dianhydrohexitol can be used in the form of a powder, a flake, or an aqueous solution.
  • the above 1,4: 3,6-dianhydrohexitol is easily oxidized and discolored when exposed to air for a long time, so that the color and molecular weight of the final polymer can not reach the target level Occurs.
  • the 1,4: 3,6-dianhydrohexitol should be exposed to the air in a minimum time, and it is preferably stored together with an oxygen scavenger such as an oxygen absorbent when stored after exposure.
  • an oxygen scavenger such as an oxygen absorbent when stored after exposure.
  • the impurities of the acid liquid component and the metal component may be controlled to 10 ppm or less, 5 ppm or less, or 3 ppm or less, respectively.
  • the high-temperature-resistant bio-based polycarbonate ester may be composed of the repeating units 1 to 3. Specifically, the 1,4: 3,6-dianhydrohexitol and the compound represented by the formula (7) react to form a carbonate bond (repeating unit 1, formula 1), and the 1,4: 3,6 Dianhydrohexitol and the compound represented by Formula 6 react to form an ester bond (Repeating Unit 2, Formula 2), and the 1,4: 3,6-dianhydrohexitol and the compound represented by Formula 5 The displayed compound may react to form an ester bond (repeating unit 3, formula 3).
  • a polycarbonate prepared by melt polycondensation of 1,4: 3,6-dianhydrohexitol and diphenyl carbonate (Formula 7) in which the amount of the compound represented by Formula 5 and Formula 6 is 0, Has a Tg of 163 ⁇ ⁇ .
  • increasing the amount of the compound represented by Chemical Formula 5 and Chemical Formula 6 increases the ester bond in the polymer chain.
  • polyester having a Tg of 215 ° C is produced.
  • polyester having a Tg of 132 ° C is produced.
  • the content of the repeating units 2 and 3 represented by the above formulas (2) and (3) and the number of carbonate and ester bonds existing in the polymer chain depend on the amount of the compound represented by the above formulas (5) and (6).
  • the polymer chain includes a carbonate and an ester bond together (including the above recurring units 1 to 3)
  • polymers having excellent heat resistance, transparency and processability Can be provided.
  • polycarbonate is superior in heat resistance and mechanical properties to polyesters but relatively insufficient in terms of chemical resistance, residual stress and molding cycle time.
  • polycarbonate esters containing both a carbonate and an ester bond in a single chain have both disadvantages and advantages of each single bond polymer.
  • melt polycondensation reaction can induce rapid removal of by-products from the molten reactant having a high viscosity, and the temperature increase and the decompression can be applied stepwise to promote the polymerization reaction rate.
  • (2-1) a step of subjecting to a primary reaction at a reduced pressure of 50 to 700 torr and at 130 to 250 ° C, 140 to 240 ° C, or 150 to 230 ° C for 0.1 to 10 hours, or 0.5 to 5 hours;
  • phenol may be generated as a reaction by-product during the melt polycondensation reaction.
  • the phenol as the reaction by-product is preferably discharged out of the reaction system.
  • the rate of temperature increase during the melt polycondensation reaction is within the above range, it is possible to prevent the reaction starting material from being vaporized or sublimated together with phenol as a reaction by-product.
  • the polycarbonate ester can be prepared by a batch process or a continuous process.
  • melt polycondensation reaction using 1,4: 3,6-dianhydrohexitol in order to produce a polymer having a high transparency, a relatively low reaction temperature is suitable. Further, in order to ensure the mechanical properties of the produced polymer, it is preferable that the above-mentioned melt polycondensation reaction proceeds to a high polymerization degree. For this purpose, it is effective to use a high viscosity polymerization reactor for the melt polycondensation reaction.
  • the target viscosity of the melt polycondensation reaction may be 10,000 to 1,000,000 poise, 20,000 to 500,000 poise, or 50,000 to 200,000 poise.
  • reaction product of step (2) (compound represented by the above formulas 5 to 7 and 1,4: 3,6-dianhydrohexitol)
  • a compound may be added, and the kind thereof is not limited.
  • the additional diol compound may be a primary, secondary, or tertiary diol compound, depending on the target properties.
  • the input amount of 1,4: 3,6-dianhydrohexitol is 1-q.
  • the bio-based carbon content ASTM-D6866
  • q may be 0 ⁇ q < 0.99. That is, the additional diol compound may be contained in an amount of less than 99 mol% based on 100 mol% of 1,4: 3,6-dianhydrohexitol.
  • the additional diol compound may be a diol compound having a single aliphatic ring or condensed heterogeneous ring at the center of the molecule.
  • the ring size and the heat resistance increase proportionally, but the optical properties do not depend on the ring size and the hydroxyl group position but depend on the characteristics of each raw material. Commercial manufacture and use become difficult.
  • the additional diol compound is selected from the group consisting of 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol (1 , 4-cyclohexanedimethanol), tricyclodecanedimethanol, 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane (2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, 2,2-bis (4-hydroxycyclohexyl) propane But are not limited to, 2,2-bis (4-hydroxycyclohexyl) propane, pentacyclopentadecanedimethanol, decalindimethanol, tricyclotetradecanedimethanol, norbornanedimethanol, Adamantanedimethanol, bicyclo [2.2.2] octane-2,3-dimethanol,
  • 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 2,2,4,4-tetramethyl-1,3-cyclobutanediol which can be prepared from biologically based raw materials, and tetrahydrofuran- 5,5 '- (1-methylethylidene) bis (2-furanmethanol), 5,5' - (1-methylethylidene) 2,4-di-o-methylene-D-mannitol, and 2,4: 3,5-di-o-methylene-D-mannitol.
  • the additional diol compound is selected from the group consisting of 1,4-cyclohexanedimethanol, 2,2-bis (4-hydroxycyclohexyl) propane, 2,2,4,4-tetramethyl- Or tetrahydrofuran-2,5-dimethanol.
  • step (2) the compound represented by the above Chemical Formulas 5 to 7 and 1,4: 3,6-dianhydrohexitol
  • An additional diphenyl ester compound may be further added in addition to the compound represented by the general formula (6).
  • the input amount of the additional diphenyl ester compound is p
  • the amount of the compound represented by the general formulas (5) to (7) is 1-p.
  • p satisfies 0? P ⁇ 1.
  • the additional diphenyl ester compound may be one kind or a mixture of two or more kinds.
  • the additional diphenyl ester can be prepared by reacting a primary, secondary or tertiary dicarboxylate or dicarboxylic acid (hereinafter additional dicarboxylate or dicarboxylic acid) with a phenol or phenol substituent.
  • additional dicarboxylate or dicarboxylic acid a primary, secondary or tertiary dicarboxylate or dicarboxylic acid
  • the additional diphenyl esters may be further dicarboxylates or dicarboxylic acids having a single aliphatic ring or condensed hetero- Can be prepared by reacting a carboxylic acid with a phenol or phenol substituent.
  • the additional dicarboxylate compound may be selected from the group consisting of dimethyl tetrahydrofuran-2,5-dicarboxylate, 1,2-dimethyl-cyclohexanedicarboxylate, , 1,3-dimethyl-cyclohexanedicarboxylate, dimethyl decahydro-2,4-naphthalene dicarboxylate, dimethyldecahydro-dicarboxylate, Dimethyl decahydro-2,5-naphthalene dicarboxylate, dimethyl decahydro-2,6-naphthalene dicarboxylate and dimethyl decahydro-2-naphthalene dicarboxylate. Dimethyl decahydro-2,7-naphthalene dicarboxylate, and the like.
  • the additional dicarboxylic acid compound may be selected from the group consisting of tetrahydrofuran-2,5-dicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, decahydro-2,4-naphthalenedicarboxylic acid, decahydro-2,5-naphthalene, Decahydro-2,5-naphthalenedicarboxylic acid, decahydro-2,6-naphthalenedicarboxylic acid and decahydro-2,7-naphthalenedicarboxylic acid (decahydro-2,7-naphthalenedicarboxylic acid).
  • the additional diphenyl esters may be dimethyltetrahydrofuran-2,5-dicarboxylate or tetrahydrofuran-2,5-dicarboxylic acid, or dimethyldecahydro-2,6- Naphthalene dicarboxylate or decahydro-2,6-naphthalene dicarboxylic acid.
  • a catalyst may be used for improving the reactivity.
  • the catalyst may be added to the reaction step at any time, but it is preferably added before the initiation of the reaction.
  • the catalyst is not particularly limited as long as it is an alkali metal and / or an alkaline earth metal catalyst commonly used in polycondensation polycondensation reaction.
  • the catalyst may be used in combination with a basic ammonium or amine, a basic phosphorus, or a basic boron compound, or may be used alone.
  • the alkali metal catalyst is lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), cesium hydroxide (CsOH), lithium carbonate (Li 2 CO 3), sodium carbonate ( Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), lithium acetate (LiOAc), sodium acetate (NaOAc), potassium acetate (KOAc) or cesium acetate .
  • the alkaline earth metal catalyst may be at least one selected from the group consisting of calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), magnesium hydroxide (Mg (OH) 2 ), strontium hydroxide (OH) 2 ), calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), magnesium carbonate (MgCO 3 ), strontium carbonate (SrCO 3 ), calcium acetate (Ca (OAc) 2 ), barium acetate ) 2 ), magnesium acetate (Mg (OAc) 2 ), or strontium acetate (Sr (OAc) 2 ).
  • the catalyst may be an oxide, hydride, amide, or phenolate of an alkali metal and / or an alkaline earth metal, for example, magnesium oxide (MgO) Barium oxide (BaO), sodium aluminate (NaAlO 2 ), and the like.
  • the catalyst may also be a catalyst such as zinc oxide (ZnO), lead oxide (PbO), dibutyltin oxide ((C 4 H 9 ) 2 SnO), antimony trioxide (Sb 2 O 3 )
  • the amount of catalyst used in the melt polycondensation reaction may be more than 0 mmol, not more than 0 mmol, not more than 3 mmol, or not more than 0 mmol but not more than 1 mmol, per 1 mol of the total diol compound.
  • the amount of the catalyst used is within the above range, it is possible to prevent a problem that the degree of polymerization falls below the target degree of polymerization, and a problem that a side reaction or the like occurs and the target physical property such as transparency is lowered.
  • additives may be further added to the reactant, if necessary.
  • additives include, for example, antioxidants and heat stabilizers such as hindered phenols, hydroquinone, phosphites, and substituted compounds thereof; UV absorbers such as resorcinol and salicylate; Color protectants such as phosphites and hydro phosphites; Lubricants such as montanic acid and stearyl alcohol; And the like.
  • dyes and pigments can be used as colorants, carbon black can be used as a conductive agent, a coloring agent, or a nucleation agent.
  • all of the above-mentioned additives can be used within the range of properties of the final polymer, in particular, the transparency is not impaired.
  • DPT was synthesized in the same manner as in Preparation Example 1, except that 1.27 g (0.017 mol) of dimethylformamide was added as an organic catalyst. As a result of synthesis, the reaction yield was 84%, and the purity of DPT was 99.7% by GC analysis.
  • the toluene was removed from the separated toluene solution using an evaporator, and the obtained crude DPT was recrystallized and purified. Thereafter, the purified DPT was vacuum-dried at 90 DEG C for 24 hours to obtain 106 g of DPT, and the reaction yield was 65%.
  • Example 1 Production of polycarbonate ester based on a high-temperature bio
  • Polycarbonate esters were prepared in the same manner as in Example 1 except that the compositions of the polymer samples were used in the amounts shown in Table 1 below.
  • DPCD DPCD was not used, and DPT obtained in Preparation Example 1, 2549 g (11.9 mol) of DPC (Changfeng), 1988 g (13.6 mol) ISB (Roquette Freres) and 490 g
  • a polycarbonate ester was prepared in the same manner as in Example 1, except that 1,4-cyclohexane dimethanol (CHDM, manufactured by SK Chemicals) was used.
  • Polymerization Polycarbonate ester had a Tg of 155 ⁇ ⁇ and an IV of 0.55 dL / g.
  • Polycarbonate esters were prepared in the same manner as in Comparative Example 1, except that the compositions of the polymer samples were used in the amounts shown in Table 1 below.
  • the glass transition temperature was measured using a differential scanning calorimeter (Q20, TA INSTRUMENTS) according to ASTM D3418.
  • the light transmittance of a specimen having a thickness of 4 mm was measured using a spectrophotometer (CM-3600A, Konica Minolta) according to ASTM D1003.
  • MI Melt flow index
  • the melt flow index was measured using a melt indexer (G-01, TOYOSEIKI) according to ASTM D1238 under conditions of 260 ° C and 2.16 kg load.
  • Example 1 One 0 0.8 0.1 0.1 168 92 72
  • Example 2 One 0 0.7 0.2 0.1 164 92 100
  • Example 3 One 0 0.6 0.2 0.2 172 92 71
  • Example 4 One 0 0.5 0.2 0.3 180 91 41
  • Example 5 One 0 0.4 0.3 0.3 178 92 70
  • Example 6 One 0 0.3 0.4 0.3 174 92 99
  • Example 7 One 0 0.2 0.4 0.4 182 91 69
  • Example 8 One 0 0.1 0.4 0.5 190 91 39
  • Example 9 One 0 0.3 0.3 0.4 185 91 42
  • Example 10 One 0 0.2 0.3 0.5 193 90 14 Comparative Example 1 0.8 0.2 0.7 0 0.3 155 90 35 Comparative Example 2 0.8 0.2 0.6 0.1 0.3 152 91 65 Comparative Example 3 0.7 0.3 0.6 0 0.4 154 89 37
  • the diphenyl terephthalate (DPT) represented by the formula (5) was prepared according to the production method of the present invention, and the high heat resistant biocarbon based polycarbonate esters of Examples 1 to 10 prepared using the same Based polycarbonate ester copolymerized only with conventional DPC and 1,4-diphenyl-cyclohexanedicarboxylate (DPCD), the glass transition temperature was high and it was suitable for applications requiring high heat resistance.
  • DPT diphenyl terephthalate
  • DPCD 1,4-diphenyl-cyclohexanedicarboxylate
  • the glass transition temperature is decreased as the content of the aliphatic cyclic monomer increases, but the melt flow rate is increased Respectively.
  • Example 10 when the content of DPT repeating units was increased (Examples 2 to 4 and Examples 6 to 8), it was confirmed that the glass transition temperature was increased but the melt flow index was decreased. Particularly, it can be seen that the melt flow index is similar in Example 3, even though the glass transition temperature is higher than that in Example 1, and the melt flow index is similar in Example 7, even though the glass transition temperature is higher than in Examples 1 and 3. Also, in Example 10, the glass transition temperature had the maximum value among the examples, but the melt flow index was relatively low due to the low content of DPCD repeating units.
  • the light transmittances of Examples 1 to 10 were all 90% or more, which is equal to or higher than 90% of maximum light transmittance of BPA polycarbonate products having the same level of heat resistance, And the light transmittance was more than 91%.
  • the bio-based polycarbonate esters of Comparative Examples 1 to 3 using 1,4-cyclohexane dimethanol (CHDM) had low glass transition temperatures and were not suitable for high heat resistance applications, The melt flow index was not high.
  • the light transmittance was decreased as the content of the DPT repeating unit was increased.
  • the highly heat-resistant bio-based polycarbonate ester thus prepared is excellent in heat resistance, transparency and fluidity, and can be used for various high heat resistance applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention relates to a molded product manufactured from a high heat resistant bio-based polycarbonate ester. More specifically, the molded product has excellent heat resistance, and thus can be applied to various fields such as those of automobiles, electrical electronics, displays, aviation, machines, lighting, medicine or food.

Description

고내열 폴리카보네이트 에스테르로부터 제조된 성형품Molded articles made from high heat-resistant polycarbonate esters
본 발명은 고내열 생물기반 폴리카보네이트 에스테르로부터 제조된 성형품에 관한 것으로, 더욱 상세하게는 상기 성형품은 내열도가 우수하여, 자동차, 전기전자, 디스플레이, 항공, 기계, 조명, 의료 또는 식품 등의 다양한 분야에 적용할 수 있다.The present invention relates to a molded article made from a high-temperature-resistant bio-based polycarbonate ester, and more particularly, to a molded article which is excellent in heat resistance and has a wide variety of properties such as automobile, electric and electronic display, It can be applied to the field.
1,4:3,6-디안히드로헥시톨(1,4:3,6-dianhydrohexitol)과 카보네이트 또는 1,4-사이클로헥산디카르복시레이트의 용융 축중합으로 제조되는 생물기반 폴리카보네이트 에스테르는 생물자원들로부터 유도된 생물기반 단량체, 즉 1,4:3,6-디안히드로헥시톨을 함유하고 있는 바이오플라스틱(bioplastic)이다. 상기 생물기반 폴리카보네이트 에스테르는 대표적 범용 투명 수지인 PMMA(poly(methyl methacrylate))의 높은 투명도와 비스페놀 A(이하 BPA) 폴리카보네이트의 높은 내열도를 갖는다.Bio-based polycarbonate esters prepared by melt polycondensation of 1,4: 3,6-dianhydrohexitol with carbonates or 1,4-cyclohexanedicarboxylate are useful as biocide- Bioplastic containing bio-based monomers derived from the sources, namely 1,4: 3,6-dianhydrohexitol. The bio-based polycarbonate ester has a high transparency of PMMA (poly (methyl methacrylate)) and a high heat resistance of bisphenol A (BPA) polycarbonate, which are typical transparent resins.
이와 같은 생물기반 폴리카보네이트 에스테르의 구조적 특징은 환경 호르몬을 유발하는 BPA를 포함하지 않으며, 지방족 고리 분자 구조를 갖는 1,4-사이클로헥산디카르복시레이트 단량체를 공중합함으로써, 1,4:3,6-디안히드로헥시톨 분자 구조의 부족한 연성(ductility)을 향상시켜줄 수 있다. 또한, 카보네이트 결합의 일부를 에스테르 결합으로 대체함으로써 카보네이트 결합의 단점을 보완할 수 있다.The structural characteristics of such a bio-based polycarbonate ester do not include BPA that induces environmental hormones, and by copolymerizing a 1,4-cyclohexanedicarboxylate monomer having an aliphatic cyclic molecular structure, 1,4: 3,6- Dianhydrohexitol can improve the poor ductility of the molecular structure. Further, the disadvantage of the carbonate bond can be compensated by replacing a part of the carbonate bond with an ester bond.
한편, 1,4-디메틸-사이클로헥산디카르복시레이트(1,4-dimethyl-cyclohexanedicarboxylate, DMCD) 또는 DMCD의 가수분해 원료인 1,4-사이클로헥산디카르복실산(1,4-cyclohexanedicarboxylic acid, CHDA)은 분자 중심에 지방족 고리 구조를 갖기 때문에 고분자 사슬에 도입될 경우, 고분자의 UV 안정성과 내후성(weatherability)을 향상시킬 수 있으며, 분자 구조내 유연성과 경도의 독특한 결합으로 인해 고분자의 광택 유지도, 황변 억제력, 가수분해 안정성, 내부식성 및 내화학성을 개선할 수 있다. 이와 같은 DMCD 또는 CHDA와 같은 지방족 고리 구조가 고분자 사슬에 존재할 경우, 지방족 고리의 분자 플립 모션(flip motion) 현상에 의한 사슬 2차 완화(secondary relaxation)를 발생시켜 고분자의 기계물성을 향상시키며, 특히 충격강도를 높여주는 장점이 있다.On the other hand, 1,4-cyclohexanedicarboxylic acid (1,4-dimethyl-cyclohexanedicarboxylate, DMCD) or 1,4-cyclohexanedicarboxylic acid (CHDA ) Has an aliphatic cyclic structure at the center of the molecule. Therefore, when introduced into a polymer chain, it can improve the UV stability and weatherability of the polymer. Due to the unique combination of flexibility and hardness in the molecular structure, Yellowing resistance, hydrolytic stability, corrosion resistance and chemical resistance. When such an aliphatic ring structure such as DMCD or CHDA is present in the polymer chain, secondary mechanical relaxation of the polymer due to the molecular flip motion of the aliphatic ring is caused to improve the mechanical properties of the polymer. It has the advantage of increasing the impact strength.
한편, 최근 유리전이온도(Tg)가 170℃ 이상이며, 자동차, 전자기기, 산업조명 및 의료 등 다양한 분야에 적용할 수 있는 고내열 소재에 대한 개발이 진행되고 있으며, 그 수요도 늘어나고 있다. 그러나, 1,4:3,6-디안히드로헥시톨과 카보네이트 또는 1,4-사이클로헥산디카르복시레이트의 용융 축중합으로 제조되는 생물기반 폴리카보네이트 에스테르는 Tg가 170℃ 이하로, 고내열 제품에 적용하기 위해서는 내열도 향상이 필요하다.On the other hand, the development of high heat-resistant materials that can be applied to various fields such as automobile, electronic equipment, industrial lighting, and medical treatment has been progressed with a recent glass transition temperature (Tg) of 170 ° C or higher. However, the bio-based polycarbonate esters prepared by the melt polycondensation of 1,4: 3,6-dianhydrohexitol and the carbonate or 1,4-cyclohexanedicarboxylate have a Tg of 170 DEG C or lower, It is necessary to improve the heat resistance.
BPA 폴리카보네이트의 내열도를 증가시키기 위한 방법으로 부피가 크고(bulky) 단단한 구조를 가진 다양한 단량체들을 사용하여 공중합된 폴리카보네이트가 개발되고 있다. 그러나, 부피가 크고 단단한 구조의 단량체들은 합성 과정이 어렵고 복잡하기 때문에 고가이고, 또한 충분한 내열도 향상을 위해서는 상당량의 BPA를 대체해야 하기 때문에 BPA 폴리카보네이트의 우수한 기계적 특성 감소와 함께 투명도와 유동성 감소를 동반하는 문제가 있다.As a method for increasing the heat resistance of BPA polycarbonate, copolymerized polycarbonates have been developed using various monomers having a bulky and rigid structure. However, since monomers having a bulky and hard structure are expensive and complicated to synthesize, they are expensive and have to be replaced with a large amount of BPA in order to improve sufficient heat resistance. Therefore, the transparency and fluidity of the BPA polycarbonate are reduced, There is a problem accompanying it.
따라서, 본 발명의 목적은 내열도 향상과 경제성에 부합하는 저가의 원료를 사용하고, 생물기반 폴리카보네이트 에스테르의 높은 투명성을 유지함과 동시에 높은 유동성을 구현할 수 있는 고내열 생물기반 폴리카보네이트 에스테르로부터 제조된 성형품을 제공하는 것이다.Accordingly, an object of the present invention is to provide a polycarbonate resin composition which uses a low-cost raw material that meets heat resistance and economy, and which is capable of maintaining high transparency of a bio-based polycarbonate ester, To provide a molded article.
상기 목적을 달성하기 위하여, 본 발명은 고내열 생물기반 폴리카보네이트 에스테르로부터 제조된 성형품으로서,In order to achieve the above object, the present invention provides a molded article produced from a high-temperature-resistant bio-based polycarbonate ester,
상기 고내열 생물기반 폴리카보네이트 에스테르가 하기 화학식 1로 표시되는 반복단위 1; 하기 화학식 2로 표시되는 반복단위 2; 및 하기 화학식 3으로 표시되는 반복단위 3;을 포함하는, 성형품을 제공한다:Wherein the high heat-resistant bio-based polycarbonate ester comprises a repeating unit 1 represented by the following formula (1); A repeating unit 2 represented by the following formula (2); And a repeating unit 3 represented by the following general formula (3): < EMI ID =
[화학식 1][Chemical Formula 1]
Figure PCTKR2018013491-appb-I000001
Figure PCTKR2018013491-appb-I000001
[화학식 2](2)
Figure PCTKR2018013491-appb-I000002
Figure PCTKR2018013491-appb-I000002
[화학식 3](3)
Figure PCTKR2018013491-appb-I000003
.
Figure PCTKR2018013491-appb-I000003
.
본 발명의 성형품은 고내열 생물기반 폴리카보네이트 에스테르로부터 제조되어 비스페놀류를 포함하지 않아 친환경적이며, 유리전이온도 160℃ 이상의 우수한 내열도를 가져 다양한 제품에 사용될 수 있다.The molded article of the present invention is made from a high-temperature-resistant bio-based polycarbonate ester and is eco-friendly because it does not contain bisphenols, and can be used in various products with an excellent heat resistance at a glass transition temperature of 160 ° C or higher.
이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
성형품Molded product
본 발명은 고내열 생물기반 폴리카보네이트 에스테르로부터 제조된 성형품으로서,The present invention relates to a molded article made from a high heat resistant bio-based polycarbonate ester,
상기 고내열 생물기반 폴리카보네이트 에스테르는 하기 화학식 1로 표시되는 반복단위 1; 하기 화학식 2로 표시되는 반복단위 2; 및 하기 화학식 3으로 표시되는 반복단위 3;을 포함하는, 성형품을 제공한다.The high-temperature-resistant bio-based polycarbonate ester comprises repeating units 1 represented by the following formula (1): A repeating unit 2 represented by the following formula (2); And a repeating unit 3 represented by the following formula (3).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018013491-appb-I000004
Figure PCTKR2018013491-appb-I000004
[화학식 2](2)
Figure PCTKR2018013491-appb-I000005
Figure PCTKR2018013491-appb-I000005
[화학식 3](3)
Figure PCTKR2018013491-appb-I000006
Figure PCTKR2018013491-appb-I000006
상기 반복단위 1은 1,4:3,6-디안히드로헥시톨 및 카보네이트의 반응으로부터 수득되고, 상기 반복단위 2는 1,4:3,6-디안히드로헥시톨 및 1,4-사이클로헥산디카복시레이트의 반응으로부터 수득되며, 상기 반복단위 3은 1,4:3,6-디안히드로헥시톨 및 테레프탈레이트의 반응으로부터 수득될 수 있다. The recurring unit 1 is obtained from the reaction of 1,4: 3,6-dianhydrohexitol and carbonate, and the recurring unit 2 is 1,4: 3,6-dianhydrohexitol and 1,4-cyclo Hexanedicarboxylate, and the repeating unit 3 can be obtained from the reaction of 1,4: 3,6-dianhydrohexitol and terephthalate.
상기 반복단위 2에서 1,4-사이클로헥산디카복시레이트의 시스/트랜스 비율은 1/99 내지 99/1 %, 20/80 내지 80/20 %, 또는 30/70 내지 70/30 %일 수 있다.The cis / trans ratio of 1,4-cyclohexanedicarboxylate in the repeating unit 2 may be 1/99 to 99/1%, 20/80 to 80/20%, or 30/70 to 70/30% .
상기 1,4:3,6-디안히드로헥시톨은 이소만나이드, 이소소르바이드 및 이소이다이드일 수 있으며, 구체적으로 이소소르바이드일 수 있다.The 1,4: 3,6-dianhydrohexitol may be isomanide, isosorbide and isoidide, and may be specifically isosorbide.
구체적으로, 상기 고내열 생물기반 폴리카보네이트 에스테르는 상기 반복단위 1 내지 3으로 이루어지며, 상기 반복단위 1 내지 3의 몰분율을 각각 x, y 및 z라고 할 때, 상기 x는 0 초과 1 미만의 실수이고, y는 0 초과 0.7 이하의 실수이며, z는 0 초과 0.6 이하의 실수이며, x+y+z는 1일 수 있다. 보다 구체적으로, 상기 x는 0 초과 0.9 이하, 또는 0 초과 0.8 이하의 실수이고, y는 0 초과 0.6 이하, 또는 0 초과 0.5 이하의 실수이며, z는 0 초과 0.5 이하, 또는 0 초과 0.4 이하의 실수이고, x+y+z는 1일 수 있다.More specifically, when the molar fractions of the repeating units 1 to 3 are represented by x, y, and z, respectively, x is a real number of more than 0 and less than 1 Y is a real number greater than 0 and less than or equal to 0.7, z is a real number greater than 0 and less than or equal to 0.6, and x + y + z can be 1. More specifically, x is a real number of more than 0 and not more than 0.9, or not more than 0 and not more than 0.8, y is a real number of not less than 0 and not more than 0.6, or not less than 0 and not more than 0.5, z is more than 0 and not more than 0.5, X + y + z may be a real number.
상기 고내열 생물기반 폴리카보네이트 에스테르는 유리전이온도(Tg)가 160 내지 240℃이고, 260℃ 및 하중 2.16 kg에서의 융용흐름지수(MI)가 5 내지 150 g/10분일 수 있다. 구체적으로, 상기 폴리카보네이트 에스테르는 Tg가 170 내지 220℃, 또는 180 내지 200℃이고, 260℃ 및 하중 2.16 kg에서의 MI가 10 내지 100 g/10분, 또는 15 내지 50 g/10분일 수 있다.The high temperature resistant biobased polycarbonate ester may have a glass transition temperature (Tg) of 160 to 240 ° C and a melt flow index (MI) at 260 ° C and a load of 2.16 kg of 5 to 150 g / 10 min. Specifically, the polycarbonate ester may have a Tg of 170 to 220 캜, or 180 to 200 캜, an MI of 10 to 100 g / 10 min, or 15 to 50 g / 10 min at 260 캜 and a load of 2.16 kg .
상기 고내열 생물기반 폴리카보네이트 에스테르는 고유 점도(intrinsic viscosity, IV)가 0.3 내지 2.3 dL/g일 수 있다.The high heat-resistant bio-based polycarbonate ester may have an intrinsic viscosity (IV) of 0.3 to 2.3 dL / g.
일반적으로 폴리카보네이트의 경우, 폴리에스테르에 비해 내열도와 기계적 물성은 우수하나, 내화학성, 잔류 응력 및 성형 사이클 타임(cycle time) 면에서는 상대적으로 미흡하다. 그러나, 상술한 바와 같이 단일 사슬 내에 카보네이트와 에스테르 결합을 함께 포함하는 폴리카보네이트 에스테르는 각 단일 결합 고분자의 단점은 보완되고 장점은 모두 갖는다. 따라서, 상기 고내열 생물기반 폴리카보네이트 에스테르로부터 제조된 성형품은 우수한 내열도를 필요로 하는 다양한 분야의 소재로 사용할 수 있다.Generally, polycarbonate is superior in heat resistance and mechanical properties to polyesters but relatively insufficient in terms of chemical resistance, residual stress and molding cycle time. However, as described above, polycarbonate esters containing both a carbonate and an ester bond in a single chain have both disadvantages and advantages of each single bond polymer. Accordingly, the molded article produced from the high-temperature-resistant bio-based polycarbonate ester can be used as a material for various fields requiring excellent heat resistance.
상기 고내열 생물기반 폴리카보네이트 에스테르의 성형 가공법은 특별히 제한되지 않는다. 예를 들어, 사출 성형, 압출 성형, 블로우 성형, 압출 중공 성형, 인플레이션 성형, 캘린더 성형, 발포 성형, 벌룬 성형, 진공 성형, 방사 등의 성형 가공법이 적용될 수 있다.The molding process of the high-temperature-resistant bio-based polycarbonate ester is not particularly limited. For example, a molding process such as injection molding, extrusion molding, blow molding, extrusion blow molding, inflation molding, calendar molding, foam molding, balloon molding, vacuum molding, and radiation can be applied.
상기 고내열 생물기반 폴리카보네이트 에스테르로부터 제조된 성형품의 용도는 특별히 제한되지 않지만, 내열도 및 투명도가 뛰어난 특징을 바탕으로, 종래 내열용 및 광학용 성형품의 대체품으로 사용될 수 있다. 구체적으로, 상기 성형품은 자동차 부품, 전기전자 부품, 디스플레이 부품, 항공 부품, 기계 부품, 조명 부품, 의료 용품 또는 식품 용기일 수 있다.The use of the molded article produced from the high heat-resistant bio-based polycarbonate ester is not particularly limited, but it can be used as a substitute for conventional heat resistance and optical molded articles on the basis of its excellent heat resistance and transparency. Specifically, the molded product may be an automobile component, an electric / electronic component, a display component, an air component, a mechanical component, an illumination component, a medical product, or a food container.
고내열 생물기반 폴리카보네이트 에스테르의 제조방법METHOD FOR PREPARING POLYBONATE ESTER BASED ON HIGH STORAGE BIOLOGICAL
본 발명의 고내열 생물기반 폴리카보네이트 에스테르는 하기와 같은 방법으로 제조될 수 있다.The high heat resistant bio-based polycarbonate esters of the present invention can be prepared by the following method.
상기 고내열 생물기반 폴리카보네이트 에스테르의 제조방법은 (1) 하기 화학식 4로 표시되는 화합물을 말단에 할로겐 작용기를 포함하는 중간 반응물로 전환한 후 페놀 또는 페놀 치환체와 친핵 반응시키거나, 하기 화학식 4로 표시되는 화합물과 페놀 또는 페놀 치환체를 에스테르교환 또는 에스테르화 반응시켜 하기 화학식 5로 표시되는 화합물을 제조하는 단계; 및(1) converting a compound represented by the following general formula (4) into an intermediate reactant having a halogen functional group at the terminal thereof, followed by nucleophilic reaction with a phenol or phenol substituent, or A step of transesterifying or esterifying a compound to be displayed with a phenol or phenol substituent to prepare a compound represented by the following formula (5); And
(2) 하기 화학식 5 내지 7로 표시되는 화합물 및 1,4:3,6-디안히드로헥시톨을 용융 축중합 반응시켜 하기 화학식 1 내지 3으로 표시되는 반복단위 1 내지 3을 포함하는 화합물을 제조하는 단계;를 포함한다.(2) a compound represented by the following general formulas (5) to (7) and 1,4: 3,6-dianhydrohexitol under the melt polycondensation reaction to obtain a compound containing the repeating units 1 to 3 represented by the following general formulas The method comprising the steps of:
[화학식 1][Chemical Formula 1]
Figure PCTKR2018013491-appb-I000007
Figure PCTKR2018013491-appb-I000007
[화학식 2](2)
Figure PCTKR2018013491-appb-I000008
Figure PCTKR2018013491-appb-I000008
[화학식 3](3)
Figure PCTKR2018013491-appb-I000009
Figure PCTKR2018013491-appb-I000009
[화학식 4][Chemical Formula 4]
Figure PCTKR2018013491-appb-I000010
Figure PCTKR2018013491-appb-I000010
[화학식 5][Chemical Formula 5]
Figure PCTKR2018013491-appb-I000011
Figure PCTKR2018013491-appb-I000011
[화학식 6][Chemical Formula 6]
Figure PCTKR2018013491-appb-I000012
Figure PCTKR2018013491-appb-I000012
[화학식 7](7)
Figure PCTKR2018013491-appb-I000013
Figure PCTKR2018013491-appb-I000013
상기 화학식에서,In the above formulas,
R1은 메틸 또는 수소이고,R < 1 > is methyl or hydrogen,
R2 및 R3은 각각 탄소수 1 내지 18의 알킬기 또는 탄소수 6 내지 18의 아릴기이고, 상기 아릴기는 탄소수 1 내지 18의 알킬기, 탄소수 4 내지 20의 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 1 내지 18의 알콕시기, 탄소수 4 내지 20의 사이클로알콕시기, 탄소수 6 내지 18의 아릴옥시기, 탄소수 1 내지 18의 알킬술포닐기, 탄소수 4 내지 20의 사이클로알킬술포닐기, 탄소수 6 내지 18의 아릴술포닐기 및 에스테르 치환기로 이루어진 군으로부터 선택된 1종 이상의 치환기를 가질 수 있다. 이때, 에스테르 치환기는 탄소수 1 내지 18의 알킬 에스테르, 탄소수 4 내지 20의 사이클로알킬 에스테르 또는 탄소수 6 내지 18의 아릴 에스테르일 수 있다.R 2 and R 3 are each an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms, and the aryl group is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, An alkoxy group having 1 to 18 carbon atoms, a cycloalkoxy group having 4 to 20 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, an alkylsulfonyl group having 1 to 18 carbon atoms, a cycloalkylsulfonyl group having 4 to 20 carbon atoms, A sulfonyl group, and an ester substituent. The ester substituent may be an alkyl ester having 1 to 18 carbon atoms, a cycloalkyl ester having 4 to 20 carbon atoms, or an aryl ester having 6 to 18 carbon atoms.
단계 (1)Step (1)
본 단계에서는 상기 화학식 4로 표시되는 화합물을 말단에 할로겐 작용기를 포함하는 중간 반응물로 전환한 후 페놀 또는 페놀 치환체와 친핵 반응시키거나, 상기 화학식 4로 표시되는 화합물과 페놀 또는 페놀 치환체를 에스테르교환 또는 에스테르화 반응시켜 상기 화학식 5로 표시되는 화합물을 제조한다.In this step, the compound represented by the formula (4) is converted into an intermediate reactant having a halogen functional group at the terminal thereof, followed by a nucleophilic reaction with a phenol or phenol substituent, or a phenol or phenol substituent is transesterified Esterification reaction is carried out to prepare a compound represented by the above formula (5).
상기 페놀 치환체는 하기 화학식 9로 표시되는 화합물일 수 있다.The phenol substituent may be a compound represented by the following general formula (9).
[화학식 9][Chemical Formula 9]
Figure PCTKR2018013491-appb-I000014
Figure PCTKR2018013491-appb-I000014
상기 화학식 9에서,In the above formula (9)
상기 R5는 탄소수 1 내지 18의 알킬기, 탄소수 4 내지 20의 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 1 내지 18의 알콕시기, 탄소수 4 내지 20의 사이클로알콕시기, 탄소수 6 내지 18의 아릴옥시기, 탄소수 1 내지 18의 알킬술포닐기, 탄소수 4 내지 20의 사이클로알킬술포닐기, 탄소수 6 내지 18의 아릴술포닐기 또는 에스테르 치환기이다. 이때, 상기 에스테르 치환기는 탄소수 1 내지 18의 알킬 에스테르, 탄소수 4 내지 20의 사이클로알킬 에스테르 또는 탄소수 6 내지 18의 아릴 에스테르일 수 있다.Wherein R 5 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, a cycloalkoxy group having 4 to 20 carbon atoms, An alkylsulfonyl group having 1 to 18 carbon atoms, a cycloalkylsulfonyl group having 4 to 20 carbon atoms, an arylsulfonyl group having 6 to 18 carbon atoms, or an ester substituent. The ester substituent may be an alkyl ester having 1 to 18 carbon atoms, a cycloalkyl ester having 4 to 20 carbon atoms, or an aryl ester having 6 to 18 carbon atoms.
중간 반응물Intermediate reactant
상기 말단에 할로겐 작용기를 포함하는 중간 반응물은 하기 화학식 8로 표시되는 화합물일 수 있다.The intermediate reactant having a halogen functional group at the terminal thereof may be a compound represented by the following formula (8).
[화학식 8][Chemical Formula 8]
Figure PCTKR2018013491-appb-I000015
Figure PCTKR2018013491-appb-I000015
상기 화학식 8에서,In Formula 8,
R4는 각각 독립적으로 F, Cl 또는 Br이다.R < 4 > are each independently F, Cl or Br.
구체적으로, 상기 말단에 할로겐 작용기를 포함하는 중간 반응물은 R4가 Cl인 테레프탈로일 클로라이드(terephthaloyl chloride, TPC)일 수 있다.Specifically, the intermediate reactant containing a halogen functional group at the terminal may be terephthaloyl chloride (TPC) in which R 4 is Cl.
또한, 상기 말단에 할로겐 작용기를 포함하는 중간 반응물은 상기 화학식 4의 화합물(디카르복시레이트 혹은 디카르복실산)과 할로겐화 화합물을 반응시켜 제조할 수 있다.The intermediate reactant having a halogen functional group at the terminal may be prepared by reacting the compound of formula (4) (dicarboxylate or dicarboxylic acid) with a halogenated compound.
상기 할로겐화 화합물은 포스겐(phosgene), 트리포스겐(triphosgene), 티오닐 클로라이드(thionyl chloride), 옥살릴 클로라이드(oxalyl chloride), 포스포러스 트리클로라이드(phosphorus trichloride), 포스포러스 펜타클로라이드(phosphorus pentachloride), 포스포러스 펜타브로마이드(phosphorus pentabromide) 및 시아누릭 플루오라이드(cyanuric fluoride)로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 구체적으로, 상기 할로겐화 화합물은 반응 부산물의 제거가 용이한 포스겐, 티오닐 클로라이드 및 옥살릴 클로라이드로 이루어진 군으로부터 선택된 1종 이상의 염소화제일 수 있다. 또한, 상업적인 면에서 바람직하게, 상기 할로겐화 화합물은 포스겐일 수 있다.The halogenated compound may be selected from the group consisting of phosgene, triphosgene, thionyl chloride, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride, At least one selected from the group consisting of phosphorus pentabromide and cyanuric fluoride. Specifically, the halogenated compound may be at least one chlorinating agent selected from the group consisting of phosgene, thionyl chloride, and oxalyl chloride, which facilitates removal of reaction by-products. Further, preferably, in a commercial aspect, the halogenated compound may be phosgene.
상기 할로겐화 화합물의 첨가량은 최초 투입된 상기 화학식 4의 화합물의 총 몰 수에 대하여 1 내지 10 배, 1.5 내지 7.5 배, 또는 2 내지 5 배의 몰 수일 수 있다. The addition amount of the halogenated compound may be 1 to 10 times, 1.5 to 7.5 times, or 2 to 5 times the number of mols of the total molar amount of the compound of Formula 4 initially introduced.
상기 중간 반응물로의 전환은 상기 화학식 4의 화합물과 상기 할로겐화 화합물의 종류에 따라 반응 조건 및 시간이 달라질 수 있다. 구체적으로, 상기 중간 반응물로의 전환은 상압 및 온도 -30 내지 150℃에서 5분 내지 48시간 동안 수행될 수 있다. 보다 구체적으로, 상기 중간 반응물로의 전환은 상압 및 온도 20 내지 100℃, 또는 40 내지 80℃에서 10분 내지 24시간 동안 수행될 수 있다.The reaction conditions and time may vary depending on the type of the compound of formula (IV) and the halogenated compound. Specifically, the conversion to the intermediate reactant can be carried out at atmospheric pressure and a temperature of -30 to 150 캜 for 5 minutes to 48 hours. More specifically, the conversion to the intermediate reactant can be carried out at normal pressure and at a temperature of from 20 to 100 DEG C, or from 40 to 80 DEG C for from 10 minutes to 24 hours.
상기 중간 반응물로의 전환에서, 상기 화학식 4의 화합물을 용해 혹은 분산시키기 위해 유기 용제가 사용될 수 있다. 이때, 사용 가능한 유기 용제는, 예를 들어, 벤젠, 톨루엔, 자일렌, 메시틸렌(mesitylene), 메틸렌 클로라이드, 디클로로에탄, 클로로포름, 카본 테트라클로라이드, 모노클로로벤젠, o-디클로로벤젠, 테트라하이드로퓨란, 디옥산, 아세토나이트릴 등이 있다.In the conversion to the intermediate reactant, an organic solvent may be used to dissolve or disperse the compound of the formula (4). The organic solvent that may be used herein may be, for example, benzene, toluene, xylene, mesitylene, methylene chloride, dichloroethane, chloroform, carbon tetrachloride, monochlorobenzene, o- Dioxane, acetonitrile, and the like.
중간 반응물의 전환률 및 반응 수율을 높이기 위해, 상기 중간 반응물로의 전환에서 사용되는 상기 화학식 4의 화합물과 할로겐화 화합물의 종류에 따라 촉매를 사용할 수 있다. 이와 같은 목적에 부합하는 한 촉매의 종류는 특별히 제한되지 않는다. 이때, 사용할 수 있는 유기 촉매로는 디메틸포름아마이드, 디메틸아세트아마이드, 메틸피롤리돈, 디메틸 이미다졸리디논(dimethyl imidazolidinone), 테트라메틸우레아, 테트라에틸우레아 및 테트라부틸우레아가 있으며, 무기 촉매로는 알루미늄 클로라이드(AlCl3), 아이언 클로라이드(FeCl3), 비스무스 클로라이드(BiCl3), 갈륨 클로라이드(GaCl3), 안티모니 펜타클로라이드(SbCl5), 보론 트리플루오라이드(BF3), 비스무스 트리플루오로메탄술포네이트(Bi(OTf)3), 티타늄 테트라클로라이드(TiCl4), 지르코늄 테트라클로라이드(ZrCl4), 티타늄 테트라브로마이드(TiBr4) 및 지르코늄 테트라브로마이드(ZrBr4)가 있다. 그 중 유기 촉매로는 디메틸포름아마이드, 테트라메틸우레아 또는 디메틸 이미다졸리디논이, 무기 촉매로는 알루미늄 클로라이드 또는 티타늄 테트라클로라이드를 사용할 수 있다. 또한, 상업적으로 바람직한 유기 촉매로는 디메틸포름아마이드, 무기 촉매로는 알루미늄 클로라이드를 사용할 수 있다.In order to increase the conversion rate and the reaction yield of the intermediate reactant, a catalyst may be used depending on the kind of the compound of the formula (4) and the halogenated compound used in the conversion to the intermediate reactant. The type of the catalyst is not particularly limited so long as it is in conformity with this object. Examples of the organic catalyst which can be used herein include dimethylformamide, dimethylacetamide, methylpyrrolidone, dimethyl imidazolidinone, tetramethylurea, tetraethylurea and tetrabutylurea. As the inorganic catalyst, (AlCl 3 ), iron chloride (FeCl 3 ), bismuth chloride (BiCl 3 ), gallium chloride (GaCl 3 ), antimony pentachloride (SbCl 5 ), boron trifluoride (BF 3 ), bismuth trifluoro (Bi (OTf) 3 ), titanium tetrachloride (TiCl 4 ), zirconium tetrachloride (ZrCl 4 ), titanium tetrabromide (TiBr 4 ) and zirconium tetrabromide (ZrBr 4 ). Among them, dimethylformamide, tetramethylurea or dimethylimidazolidinone may be used as the organic catalyst, and aluminum chloride or titanium tetrachloride may be used as the inorganic catalyst. In addition, dimethyl formamide may be used as a commercially preferable organic catalyst, and aluminum chloride may be used as an inorganic catalyst.
상기 중간 반응물로의 전환에서 촉매의 사용량은 특별히 제한되지 않으나, 상기 화학식 4의 화합물과 할로겐화 화합물의 종류에 따라 달라진다. 구체적으로, 상기 중간 반응물로의 전환에서 촉매의 사용량은 최초 투입되는 상기 화학식 4의 화합물의 총 몰 수에 대하여 0 초과 10 몰% 이하, 0 초과 5 몰% 이하, 또는 0 초과 3 몰% 이하일 수 있다. 상기 중간 반응물로의 전환에서 촉매의 사용량이 상기 범위 내일 경우, 반응속도가 낮아지는 문제, 및 반응의 폭주 및 발열반응을 유발하는 문제를 방지할 수 있다.The amount of the catalyst to be used in the conversion to the intermediate reactant is not particularly limited, but depends on the type of the compound of formula (IV) and the halogenated compound. Specifically, the amount of the catalyst used in the conversion to the intermediate reactant may be in the range of more than 0 to 10 mol%, more than 0 and 5 mol%, or more than 0 and 3 mol% or less based on the total molar amount of the compound of Formula 4 initially introduced have. When the amount of the catalyst used is less than the above range in the conversion to the intermediate reactant, the problem of lowering the reaction rate and causing the runaway reaction and the exothermic reaction can be prevented.
상기 단계 (1)은 상기 화학식 4에서 R1이 수소인 테레프탈산(terephthalic acid, TPA) 또는 R1이 메틸인 디메틸테레프탈레이트(dimethyl terephthalate, DMT)를 말단에 할로겐 작용기를 포함하는 중간 반응물인 TPC로 전환한 후, 페놀 또는 페놀 치환체와 반응시켜 상기 화학식 5로 표시되는 디페닐테레프탈레이트(diphenyl terephthalate, DPT)을 제조할 수 있다(하기 반응식 1 참조, 반응식 1에서 Me는 메틸이고, Ph는 페닐기이다).The step (1) is a step wherein Terephthalic acid (TPA) in which R 1 is hydrogen or dimethyl terephthalate (DMT) in which R 1 is methyl is reacted with TPC which is an intermediate reactant having a halogen functional group at the terminal Diphenyl terephthalate (DPT) represented by the general formula (5) can be prepared by reacting with phenol or a phenol substituent (see Scheme 1 below). In the scheme 1, Me is methyl and Ph is a phenyl group ).
[반응식 1][Reaction Scheme 1]
Figure PCTKR2018013491-appb-I000016
Figure PCTKR2018013491-appb-I000016
상기 친핵 반응에서 상기 화학식 8로 표시되는 화합물과 페놀 또는 페놀 치환체의 몰비가 1 : 1 내지 5일 수 있다. 구체적으로, 상기 친핵 반응에서 상기 화학식 8로 표시되는 화합물과 페놀 또는 페놀 치환체의 몰비가 1 : 2 내지 3일 수 있다. 상기 친핵 반응에서 상기 화학식 8로 표시되는 화합물과 페놀 또는 페놀 치환체의 몰비가 상기 범위 내일 경우, 과량의 페놀 또는 페놀 치환체 사용으로 인해 발생할 수 있는 문제인 상기 화학식 5로 표시되는 화합물(DPT)의 최종 수율이 저하되는 문제를 방지할 수 있다.In the nucleophilic reaction, the molar ratio of the compound represented by Formula 8 to the phenol or phenol substituent may be 1: 1 to 5. Specifically, in the nucleophilic reaction, the molar ratio of the compound represented by Formula 8 to the phenol or phenol substituent may be 1: 2 to 3. When the molar ratio of the compound represented by the formula (8) and the phenol or phenol substituent in the nucleophilic reaction is within the above range, the final yield of the compound (DPT) represented by the formula (5), which is a problem that may occur due to the use of an excessive phenol or phenol substituent Can be prevented.
에스테르교환 또는 에스테르화 반응Ester exchange or esterification reaction
또한, 상기 단계 (1)은 상기 화학식 4에서 R1이 수소인 TPA 또는 R1이 메틸인 DMT와 페놀 또는 페놀 치환체를 에스테르교환 또는 에스테르화 반응시켜 하기 화학식 5로 표시되는 화합물을 제조할 수 있다(상기 반응식 1 참조).In the above step (1), TPA in which R 1 is hydrogen or DMT in which R 1 is methyl is transesterified or esterified with a phenol or phenol substituent in the above formula (4) to prepare a compound represented by the following formula (See Scheme 1 above).
상기 에스테르교환 또는 에스테르화 반응은 20 내지 300℃에서 수행될 수 있다. 구체적으로, 상기 에스테르교환 또는 에스테르화 반응은 상압에서 50 내지 250℃ 또는 100 내지 200℃에서 수행되거나, 0.1 내지 10 kgf/㎠ 또는 1 내지 5 kgf/㎠의 압력 조건에서 50 내지 300℃에서 수행될 수 있다.The transesterification or esterification reaction may be carried out at 20 to 300 < 0 > C. Specifically, the transesterification or esterification reaction is carried out at 50 to 250 ° C or 100 to 200 ° C at normal pressure, or at 50 to 300 ° C under a pressure of 0.1 to 10 kgf / cm 2 or 1 to 5 kgf / cm 2 .
상기 에스테르교환 또는 에스테르화 반응은 5분 내지 48시간, 또는 10분 내지 24시간 동안 수행될 수 있다.The transesterification or esterification reaction may be carried out for 5 minutes to 48 hours, or 10 minutes to 24 hours.
상기 에스테르교환 또는 에스테르화 반응에서 상기 화학식 4로 표시되는 화합물과 페놀 또는 페놀 치환체의 몰비가 1 : 2 내지 40일 수 있다. 구체적으로, 상기 에스테르교환 또는 에스테르화 반응에서 상기 화학식 4로 표시되는 화합물과 페놀 또는 페놀 치환체의 몰비가 1 : 3 내지 30, 또는 1 : 4 내지 20일 수 있다. 상기 화학식 4로 표시되는 화합물과 페놀 또는 페놀 치환체의 몰비가 상기 범위 내일 경우, 소량의 페놀 또는 페놀 치환체로 인해 발생할 수 있는 상기 화학식 5의 화합물의 최종 수율의 저하를 방지할 수 있다.In the ester exchange or esterification reaction, the molar ratio of the compound represented by Formula 4 to the phenol or phenol substituent may be 1: 2 to 40. Specifically, in the ester exchange or esterification reaction, the molar ratio of the compound represented by Formula 4 to the phenol or phenol substituent may be 1: 3 to 30, or 1: 4 to 20. When the molar ratio of the compound represented by the general formula (4) and the phenol or phenol substituent is within the above range, the final yield of the compound of the general formula (5), which may be caused by a small amount of phenol or phenol substituent, can be prevented from lowering.
단계 (2)Step (2)
본 단계에서는 하기 화학식 5 내지 7로 표시되는 화합물 및 1,4:3,6-디안히드로헥시톨을 용융 축중합 반응시켜 하기 화학식 1 내지 3으로 표시되는 반복단위 1 내지 3을 포함하는 화합물을 제조한다.In this step, a compound represented by the following formulas (5) to (7) and 1,4: 3,6-dianhydrohexitol are subjected to a melt polycondensation reaction to obtain a compound containing the repeating units 1 to 3 represented by the following formulas .
[화학식 1][Chemical Formula 1]
Figure PCTKR2018013491-appb-I000017
Figure PCTKR2018013491-appb-I000017
[화학식 2](2)
Figure PCTKR2018013491-appb-I000018
Figure PCTKR2018013491-appb-I000018
[화학식 3](3)
Figure PCTKR2018013491-appb-I000019
Figure PCTKR2018013491-appb-I000019
[화학식 5][Chemical Formula 5]
Figure PCTKR2018013491-appb-I000020
Figure PCTKR2018013491-appb-I000020
[화학식 6][Chemical Formula 6]
Figure PCTKR2018013491-appb-I000021
Figure PCTKR2018013491-appb-I000021
[화학식 7](7)
Figure PCTKR2018013491-appb-I000022
Figure PCTKR2018013491-appb-I000022
상기 화학식에서,In the above formulas,
R2 및 R3은 각각 탄소수 1 내지 18의 알킬기 또는 탄소수 6 내지 18의 아릴기이고, 상기 아릴기는 탄소수 1 내지 18의 알킬기, 탄소수 4 내지 20의 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 1 내지 18의 알콕시기, 탄소수 4 내지 20의 사이클로알콕시기, 탄소수 6 내지 18의 아릴옥시기, 탄소수 1 내지 18의 알킬술포닐기, 탄소수 4 내지 20의 사이클로알킬술포닐기, 탄소수 6 내지 18의 아릴술포닐기 및 에스테르 치환기로 이루어진 군으로부터 선택된 1종 이상의 치환기를 가질 수 있다. 이때, 상기 에스테르 치환기는 탄소수 1 내지 18의 알킬 에스테르, 탄소수 4 내지 20의 사이클로알킬 에스테르 또는 탄소수 6 내지 18의 아릴 에스테르일 수 있다.R 2 and R 3 are each an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms, and the aryl group is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, An alkoxy group having 1 to 18 carbon atoms, a cycloalkoxy group having 4 to 20 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, an alkylsulfonyl group having 1 to 18 carbon atoms, a cycloalkylsulfonyl group having 4 to 20 carbon atoms, A sulfonyl group, and an ester substituent. The ester substituent may be an alkyl ester having 1 to 18 carbon atoms, a cycloalkyl ester having 4 to 20 carbon atoms, or an aryl ester having 6 to 18 carbon atoms.
상기 화학식 6으로 표시되는 화합물의 시스/트랜스 비율은 1/99 내지 99/1 %, 10/90 내지 90/10 %, 또는 20/80 내지 80/20 %일 수 있다. 또한, 화학식 2로 표시되는 반복단위 2 내의 1,4-사이클로헥산디카르복시레이트의 시스/트랜스 비율은 1/99 내지 99/1 %, 20/80 내지 80/20 %, 또는 30/70 내지 70/30 %일 수 있다.The cis / trans ratio of the compound represented by Formula 6 may be 1/99 to 99/1%, 10/90 to 90/10%, or 20/80 to 80/20%. Also, the cis / trans ratio of 1,4-cyclohexanedicarboxylate in the repeating unit 2 represented by the general formula (2) is 1/99 to 99/1%, 20/80 to 80/20%, or 30/70 to 70 / 30%.
상기 화학식 7로 표시되는 화합물은 디메틸 카보네이트(dimethyl carbonate), 디에틸 카보네이트(diethyl carbonate), 디-t-부틸 카보네이트(di-t-butyl carbonate), 디페닐 카보네이트(diphenyl carbonate), 디톨릴 카보네이트(ditolyl carbonate) 또는 비스(메틸살리실) 카보네이트(bis(methylsalicyl) carbonate)일 수 있다. The compound represented by the formula (7) may be prepared by reacting a compound represented by the formula (7) with a compound selected from the group consisting of dimethyl carbonate, diethyl carbonate, di-t-butyl carbonate, diphenyl carbonate, ditolyl carbonate ditolyl carbonate or bis (methylsalicyl) carbonate.
구체적으로, 상기 용융 축중합 반응은 감압 조건에서 진행되기 때문에, 상기 화학식 7로 표시되는 화합물로는 디페닐 카보네이트 또는 치환된 디페닐 카보네이트를 사용할 수 있다. 상기 치환된 디페닐 카보네이트는 디톨릴 카보네이트 또는 비스(메틸살리실) 카보네이트일 수 있다.Specifically, since the above-mentioned melt polycondensation reaction proceeds under reduced pressure, diphenyl carbonate or substituted diphenyl carbonate may be used as the compound represented by the general formula (7). The substituted diphenyl carbonate may be ditolyl carbonate or bis (methyl salicyl) carbonate.
1,4:3,6-디안히드로헥시톨1,4: 3,6-dianhydrohexitol
상기 1,4:3,6-디안히드로헥시톨은 이소만나이드, 이소소르바이드 및 이소이다이드일 수 있으며, 구체적으로 이소소르바이드일 수 있다.The 1,4: 3,6-dianhydrohexitol may be isomanide, isosorbide and isoidide, and may be specifically isosorbide.
한편, 제조된 고내열 생물기반 폴리카보네이트 에스테르의 내열도, 투명도 및 기계적 물성을 향상시키기 위해, 용융 축중합 반응에 사용되는 1,4:3,6-디안히드로헥시톨의 순도(purity)를 관리하는 것은 매우 중요하다. 상기 1,4:3,6-디안히드로헥시톨은 파우더, 플레이크(flake), 또는 수용액 형태로 사용 가능하다. 그러나, 상기 1,4:3,6-디안히드로헥시톨은 공기 중에 장시간 노출될 경우, 쉽게 산화(oxidation) 및 변색(discoloration)되어 최종 고분자의 색상과 분자량이 목표 수준에 도달되지 못하는 문제가 발생한다. 따라서, 상기 1,4:3,6-디안히드로헥시톨은 공기 중에 노출되는 시간을 최소화해야 하며, 노출 후 보관 시에는 산소 흡수제와 같은 산소 제거제와 함께 보관되는 것이 바람직하다. 또한, 순도 관리를 위해, 1,4:3,6-디안히드로헥시톨의 다단계 제조과정에서 함유된 불순물(impurity)을 제거하여 정제하는 것은 매우 중요하다. 구체적으로, 1,4:3,6-디안히드로헥시톨의 증류(distillation) 정제시 초량 분리로 제거가 가능한 극미량의 산 액상 성분 및 잔류량 분리로 제거가 가능한 알칼리 금속 성분 불순물의 제거가 중요하다. 상기 산 액상 성분 및 금속 성분의 불순물들은 각각 10 ppm 이하, 5 ppm 이하, 또는 3 ppm 이하로 관리될 수 있다.On the other hand, the heat resistance, transparency and transparency of the prepared high-temperature biobased polycarbonate ester In order to improve the mechanical properties, it is very important to control the purity of 1,4: 3,6-dianhydrohexitol used in the melt polycondensation reaction. The 1,4: 3,6-dianhydrohexitol can be used in the form of a powder, a flake, or an aqueous solution. However, the above 1,4: 3,6-dianhydrohexitol is easily oxidized and discolored when exposed to air for a long time, so that the color and molecular weight of the final polymer can not reach the target level Occurs. Therefore, it is preferable that the 1,4: 3,6-dianhydrohexitol should be exposed to the air in a minimum time, and it is preferably stored together with an oxygen scavenger such as an oxygen absorbent when stored after exposure. Also, for purity control, it is very important to purify by removing the impurity contained in the multistage production process of 1,4: 3,6-dianhydrohexitol. Concretely, it is important to remove alkali metal component impurities which can be removed by distillation purification of 1,4: 3,6-dianhydrohexitol in a trace amount of an acidic liquid component which can be removed by a conventional separation and a residual amount separation . The impurities of the acid liquid component and the metal component may be controlled to 10 ppm or less, 5 ppm or less, or 3 ppm or less, respectively.
고내열 생물기반 폴리카보네이트 에스테르High temperature biobased polycarbonate esters
상기 고내열 생물기반 폴리카보네이트 에스테르는 상기 반복단위 1 내지 3으로 이루어질 수 있다. 구체적으로, 상기 1,4:3,6-디안히드로헥시톨 및 상기 화학식 7로 표시되는 화합물은 반응하여 카보네이트 결합(반복단위 1, 화학식 1)을 형성하고, 상기 1,4:3,6-디안히드로헥시톨 및 상기 화학식 6으로 표시되는 화합물은 반응하여 에스테르 결합(반복단위 2, 화학식 2)을 형성하고, 상기 1,4:3,6-디안히드로헥시톨 및 상기 화학식 5로 표시되는 화합물은 반응하여 에스테르 결합(반복단위 3, 화학식 3)을 형성할 수 있다.The high-temperature-resistant bio-based polycarbonate ester may be composed of the repeating units 1 to 3. Specifically, the 1,4: 3,6-dianhydrohexitol and the compound represented by the formula (7) react to form a carbonate bond (repeating unit 1, formula 1), and the 1,4: 3,6 Dianhydrohexitol and the compound represented by Formula 6 react to form an ester bond (Repeating Unit 2, Formula 2), and the 1,4: 3,6-dianhydrohexitol and the compound represented by Formula 5 The displayed compound may react to form an ester bond (repeating unit 3, formula 3).
이때, 상기 1,4:3,6-디안히드로헥시톨의 몰분율을 1, 상기 화학식 7로 표시되는 화합물의 몰분율을 x, 상기 화학식 6으로 표시되는 화합물(1,4-디페닐-사이클로헥산디카르복시레이트, 1,4-diphenyl-cyclohexanedicarboxylate, DPCD)의 몰분율을 y, 상기 화학식 5로 표시되는 화합물(DPT)의 몰분율을 z라고 하면, x + y + z = 1이다(하기 반응식 2 참조, 반응식 2에서 Ph는 페닐기이다).When the molar fraction of the 1,4: 3,6-dianhydrohexitol is 1, the molar fraction of the compound represented by the formula (7) is x, and the compound represented by the formula 6 (1,4-diphenyl-cyclohexane Y + z = 1, where y is the mole fraction of the compound represented by the formula (5) and z is the mole fraction of the compound (DPT) represented by the formula (5) Ph in Scheme 2 is a phenyl group).
[반응식 2][Reaction Scheme 2]
Figure PCTKR2018013491-appb-I000023
Figure PCTKR2018013491-appb-I000023
구체적으로, 상기 화학식 5 및 화학식 6으로 표시되는 화합물의 투입량이 0인, 1,4:3,6-디안히드로헥시톨과 디페닐 카보네이트(상기 화학식 7)으로 용융 축중합되어 제조된 폴리카보네이트는 Tg가 163℃이다. 이때, 상기 화학식 5 및 화학식 6으로 표시되는 화합물의 투입량을 증가시키면 고분자 사슬 내에 에스테르 결합이 증가하게 된다. 상기 화학식 5로 표시되는 화합물의 투입량이 1이 되면 Tg가 215℃ 인 폴리에스테르가 제조되고, 상기 화학식 6으로 표시되는 화합물의 투입량이 1이 되면 Tg가 132℃인 폴리에스테르가 제조된다.Specifically, a polycarbonate prepared by melt polycondensation of 1,4: 3,6-dianhydrohexitol and diphenyl carbonate (Formula 7) in which the amount of the compound represented by Formula 5 and Formula 6 is 0, Has a Tg of 163 占 폚. At this time, increasing the amount of the compound represented by Chemical Formula 5 and Chemical Formula 6 increases the ester bond in the polymer chain. When the amount of the compound represented by Formula 5 is 1, polyester having a Tg of 215 ° C is produced. When the amount of the compound represented by Formula 6 is 1, polyester having a Tg of 132 ° C is produced.
따라서, 상기 화학식 5 및 화학식 6으로 표시되는 화합물의 투입량에 따라 고분자 사슬 내에 존재하는 상기 화학식 2 및 화학식 3으로 표시되는 반복단위 2 및 3의 함량과 카보네이트와 에스테르 결합 수가 달라진다. 이와 같이 고분자 사슬 내에 카보네이트와 에스테르 결합을 함께 포함하는 경우(상기 반복단위 1 내지 3 포함), 다양한 용도에 적합한 물성 구현이 가능하며, 특히 본 발명에서 구현하고자 하는 내열도, 투명도 및 가공성이 우수한 고분자를 제공할 수 있다.Accordingly, the content of the repeating units 2 and 3 represented by the above formulas (2) and (3) and the number of carbonate and ester bonds existing in the polymer chain depend on the amount of the compound represented by the above formulas (5) and (6). In the case where the polymer chain includes a carbonate and an ester bond together (including the above recurring units 1 to 3), it is possible to realize properties suitable for various purposes. In particular, polymers having excellent heat resistance, transparency and processability Can be provided.
1,4:3,6-디안히드로헥시톨 1 몰%를 기준으로, 상기 화학식 5로 표시되는 화합물, 상기 화학식 6으로 표시되는 화합물 및 상기 화학식 7로 표시되는 화합물의 총 사용량은 0.7 내지 1.3 몰%, 0.9 내지 1.1 몰%, 또는 0.95 내지 1.05 몰%일 수 있다.Based on 1 mol% of 1,4: 3,6-dianhydrohexitol, the total amount of the compound represented by the formula (5) Mol%, 0.9 to 1.1 mol%, or 0.95 to 1.05 mol%.
일반적으로 폴리카보네이트의 경우, 폴리에스테르에 비해 내열도와 기계적 물성은 우수하나, 내화학성, 잔류 응력 및 성형 사이클 타임(cycle time) 면에서는 상대적으로 미흡하다. 그러나, 상술한 바와 같이 단일 사슬 내에 카보네이트와 에스테르 결합을 함께 포함하는 폴리카보네이트 에스테르는 각 단일 결합 고분자의 단점은 보완되고 장점은 모두 갖는다.Generally, polycarbonate is superior in heat resistance and mechanical properties to polyesters but relatively insufficient in terms of chemical resistance, residual stress and molding cycle time. However, as described above, polycarbonate esters containing both a carbonate and an ester bond in a single chain have both disadvantages and advantages of each single bond polymer.
용융 축중합 반응Melt polycondensation reaction
상기 용융 축중합 반응은 높은 점도의 용융 반응물로부터 부산물 제거를 빨리 유도하고, 중합반응 속도를 촉진시키기 위하여 승온 및 감압이 단계적으로 적용될 수 있다.The above-mentioned melt polycondensation reaction can induce rapid removal of by-products from the molten reactant having a high viscosity, and the temperature increase and the decompression can be applied stepwise to promote the polymerization reaction rate.
구체적으로, 상기 용융 축중합 반응은 Specifically, the melt polycondensation reaction
(2-1) 50 내지 700 torr의 감압 및 130 내지 250℃, 140 내지 240℃, 또는 150 내지 230℃에서 0.1 내지 10시간, 또는 0.5 내지 5시간 동안 1차 반응시키는 단계; 및 (2-1) a step of subjecting to a primary reaction at a reduced pressure of 50 to 700 torr and at 130 to 250 ° C, 140 to 240 ° C, or 150 to 230 ° C for 0.1 to 10 hours, or 0.5 to 5 hours; And
(2-2) 0.1 내지 20 torr의 감압 및 200 내지 350℃, 220 내지 280℃, 또는 230 내지 270℃에서 0.1 내지 10시간, 또는 0.5 내지 5시간 동안 2차 반응시키는 단계;를 포함할 수 있다.(2-2) a second reaction at a reduced pressure of 0.1 to 20 torr and a second reaction at 200 to 350 DEG C, 220 to 280 DEG C, or 230 to 270 DEG C for 0.1 to 10 hours, or 0.5 to 5 hours .
구체적으로, 상기 용융 축중합 반응은Specifically, the melt polycondensation reaction
(2-1) 130 내지 200℃로 승온한 후 200 내지 700 torr로 감압하고, 0.1 내지 10℃/분의 속도로 200 내지 250℃까지 승온한 후 50 내지 180 torr로 감압하여 1차 반응시키는 단계; 및 (2-1) raising the temperature to 130 to 200 ° C, reducing the pressure to 200 to 700 torr, raising the temperature to 200 to 250 ° C at a rate of 0.1 to 10 ° C / minute, and then reducing the pressure to 50 to 180 torr ; And
(2-2) 1 내지 20 torr로 감압하고 0.1 내지 5℃/분의 속도로 200 내지 350 ℃까지 승온한 후 0.1 내지 1 torr로 감압하여 2차 반응시키는 단계;를 포함할 수 있다.(2-2) reducing the pressure to 1 to 20 torr, raising the temperature to 200 to 350 DEG C at a rate of 0.1 to 5 DEG C / minute, and then performing a second reaction at a reduced pressure of 0.1 to 1 torr.
한편, 상기 용융 축중합 반응 동안 반응 부산물로 페놀이 생성될 수 있다. 반응평형을 폴리카보네이트 에스테르 생성 방향으로 이동시키기 위해, 상기 반응 부산물인 페놀은 반응계 밖으로 배출되는 것이 바람직하다. 상기 용융 축중합 반응시 승온 속도가 상기 범위 내일 경우, 반응 원료가 반응 부산물인 페놀과 함께 기화 또는 승화되는 문제를 방지할 수 있다. 구체적으로, 상기 폴리카보네이트 에스테르의 제조는 회분식(batch) 또는 연속식(continuous) 공정을 이용할 수 있다.Meanwhile, phenol may be generated as a reaction by-product during the melt polycondensation reaction. In order to move the reaction equilibrium in the polycarbonate ester producing direction, the phenol as the reaction by-product is preferably discharged out of the reaction system. When the rate of temperature increase during the melt polycondensation reaction is within the above range, it is possible to prevent the reaction starting material from being vaporized or sublimated together with phenol as a reaction by-product. Specifically, the polycarbonate ester can be prepared by a batch process or a continuous process.
특히, 높은 투명도의 고분자를 제조하기 위해서 1,4:3,6-디안히드로헥시톨을 사용하는 용융 축중합 반응은 상대적으로 낮은 반응온도가 적합하다. 또한, 제조된 고분자의 기계적 물성 확보를 위해서 상기 용융 축중합 반응은 고중합도까지 진행되는 것이 바람직하다. 이를 위해, 상기 용융 축중합 반응은 고점도 중합반응기를 사용하는 것이 효과적이다. 상기 용융 축중합 반응의 목표 점도는 10,000 내지 1,000,000 포이즈(poise), 20,000 내지 500,000 포이즈, 또는 50,000 내지 200,000 포이즈일 수 있다.Particularly, in the melt polycondensation reaction using 1,4: 3,6-dianhydrohexitol in order to produce a polymer having a high transparency, a relatively low reaction temperature is suitable. Further, in order to ensure the mechanical properties of the produced polymer, it is preferable that the above-mentioned melt polycondensation reaction proceeds to a high polymerization degree. For this purpose, it is effective to use a high viscosity polymerization reactor for the melt polycondensation reaction. The target viscosity of the melt polycondensation reaction may be 10,000 to 1,000,000 poise, 20,000 to 500,000 poise, or 50,000 to 200,000 poise.
추가 디올 화합물Additional diol compounds
상기 단계 (2)의 반응물(상기 화학식 5 내지 7로 표시되는 화합물 및 1,4:3,6-디안히드로헥시톨)에 1,4:3,6-디안히드로헥시톨 이외에 추가의 디올 화합물이 첨가될 수 있으며, 그 종류는 제한되지 않는다. 상기 추가 디올 화합물은 목표 물성에 따라 1차, 2차, 또는 3차 디올 화합물일 수 있다.In addition to 1,4: 3,6-dianhydrohexitol, the reaction product of step (2) (compound represented by the above formulas 5 to 7 and 1,4: 3,6-dianhydrohexitol) A compound may be added, and the kind thereof is not limited. The additional diol compound may be a primary, secondary, or tertiary diol compound, depending on the target properties.
상기 추가 디올 화합물의 투입 함량을 q라 할 경우, 1,4:3,6-디안히드로헥시톨의 투입 함량은 1-q가 된다. 특히, 상기 추가 디올 화합물로 석유화학 기반 디올 화합물을 사용할 경우, 1,4:3,6-디안히드로헥시톨에서 비롯된 최종 고분자 함유 생물기반 탄소 함량(bio-based carbon content, ASTM-D6866)이 1 % 이상인 범위에서 사용될 수 있고, 이때 상기 q는 0 ≤ q < 0.99일 수 있다. 즉, 상기 추가 디올 화합물은 1,4:3,6-디안히드로헥시톨 100 몰%를 기준으로 99 몰% 미만으로 포함될 수 있다.When the added amount of the additional diol compound is q, the input amount of 1,4: 3,6-dianhydrohexitol is 1-q. Particularly, when the petroleum-based diol compound is used as the additional diol compound, the bio-based carbon content (ASTM-D6866) derived from 1,4: 3,6-dianhydrohexitol 1% or more, where q may be 0 < q &lt; 0.99. That is, the additional diol compound may be contained in an amount of less than 99 mol% based on 100 mol% of 1,4: 3,6-dianhydrohexitol.
이때, 제조된 고내열 생물기반 폴리카보네이트 에스테르의 내열도, 투명도, UV 안정성 및 내후성의 향상을 위해서, 상기 추가 디올 화합물은 분자 중심에 단일 지방족 고리 혹은 축합 이종고리를 갖는 디올 화합물일 수 있다. 한편, 일반적으로 히드록실기가 대칭구조일 경우, 고리 크기와 내열도는 비례하여 높아지나, 광학 특성은 고리 크기와 히드록실기 위치에 의존하지 않고 각 원료의 특성에 따라 다르며, 고리 크기가 커지면 상업적 제조와 이용이 어려워진다. 구체적으로, 상기 추가 디올 화합물은 1,2-사이클로헥산디메탄올(1,2-cyclohexanedimethanol), 1,3-사이클로헥산디메탄올(1,3-cyclohexanedimethanol), 1,4-사이클로헥산디메탄올(1,4-cyclohexanedimethanol), 트리사이클로데칸디메탄올(tricyclodecanedimethanol), 3,9-비스(1,1-디메틸-2-히드록시에틸)-2,4,8,10-테트라옥사스피로[5.5]운데칸(3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxaspiro[5,5]undecane), 2,2-비스(4-히드록시사이클로헥실)프로판(2,2-bis(4-hydroxycyclohexyl)propane), 펜타사이클로펜타데칸디메탄올(pentacyclopentadecanedimethanol), 데카린디메탄올(decalindimethanol), 트리사이클로테트라데칸디메탄올(tricyclotetradecanedimethanol), 노보네인디메탄올(norbornanedimethanol), 아다만테인디메탄올(adamantanedimethanol), 바이사이클로[2.2.2]옥탄-2,3-디메탄올(bicycle[2.2.2]octane-2,3-dimethanol), 1,2-사이클로헥산디올(1,2-cyclohexanediol), 1,3-사이클로헥산디올(1,3-cyclohexanediol), 1,4-사이클로헥산디올(1,4-cyclohexanediol), 2-메틸-1,4-사이클로헥산디올(2-methyl-1,4-cyclohexanediol), 트리사이클로데칸디올(tricyclodecanediol), 펜타사이클로펜타데칸디올(pentacyclopentadecanediol), 데카린디올(decalindiol), 트리사이클로테트라데칸디올(tricyclotetradecanediol), 노보네인디올(norbornanediol), 아다만테인디올(adamantanediol), 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol) 및 생물기반 원료에서 제조 가능한 테트라히드로퓨란-2,5-디메탄올(tetrahydrofuran-2,5-dimethanol), 5,5'-(1-메틸에틸리덴)비스(2-퓨란메탄올)(5,5'-(1-methylethylidene)bis(2-furanmethanol), 2,4:3,5-디-o-메틸렌-D-매니톨(2,4:3,5-di-o-methylene-D-mannitol)로 이루어지는 군으로부터 선택되는 1 종 이상일 수 있다. 구체적으로, 상기 추가 디올 화합물은 1,4-사이클로헥산디메탄올, 2,2-비스(4-히드록시사이클로헥실)프로판, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올, 또는 테트라히드로퓨란-2,5-디메탄올일 수 있다.At this time, in order to improve heat resistance, transparency, UV stability and weatherability of the produced high heat-resistant bio-based polycarbonate ester, the additional diol compound may be a diol compound having a single aliphatic ring or condensed heterogeneous ring at the center of the molecule. On the other hand, in general, when the hydroxyl group is symmetrical, the ring size and the heat resistance increase proportionally, but the optical properties do not depend on the ring size and the hydroxyl group position but depend on the characteristics of each raw material. Commercial manufacture and use become difficult. Specifically, the additional diol compound is selected from the group consisting of 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol (1 , 4-cyclohexanedimethanol), tricyclodecanedimethanol, 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane (2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, 2,2-bis (4-hydroxycyclohexyl) propane But are not limited to, 2,2-bis (4-hydroxycyclohexyl) propane, pentacyclopentadecanedimethanol, decalindimethanol, tricyclotetradecanedimethanol, norbornanedimethanol, Adamantanedimethanol, bicyclo [2.2.2] octane-2,3-dimethanol, 1,2-cyclohexanediol (1,2- cyclohexanediol), 1,3-cyclohexanediol, 1,4-cyclohexanediol, 2-methyl-1,4-cyclohexanediol, cyclohexanediol, tricyclodecanediol, pentacyclopentadecanediol, decalindiol, tricyclotetradecanediol, norbornanediol, adamantanediol, and the like. 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 2,2,4,4-tetramethyl-1,3-cyclobutanediol, which can be prepared from biologically based raw materials, and tetrahydrofuran- 5,5 '- (1-methylethylidene) bis (2-furanmethanol), 5,5' - (1-methylethylidene) 2,4-di-o-methylene-D-mannitol, and 2,4: 3,5-di-o-methylene-D-mannitol. Specifically, the additional diol compound is selected from the group consisting of 1,4-cyclohexanedimethanol, 2,2-bis (4-hydroxycyclohexyl) propane, 2,2,4,4-tetramethyl- Or tetrahydrofuran-2,5-dimethanol.
추가 디페닐 에스테르 화합물Additional diphenyl ester compounds
한편, 목표 물성에 따라 단계 (2)의 반응물(상기 화학식 5 내지 7로 표시되는 화합물 및 1,4:3,6-디안히드로헥시톨)에 고분자 사슬 내 에스테르 결합 단량체인 상기 화학식 5 및 상기 화학식 6으로 표시되는 화합물 이외에 추가 디페닐 에스테르 화합물이 더 첨가될 수 있다. 상기 추가 디페닐 에스테르 화합물의 투입량을 p라 할 경우, 화학식 5 내지 7로 표시되는 화합물의 투입량은 1-p이다. 이때, 상기 p는 0 ≤ p < 1을 만족한다.On the other hand, in the reaction product of step (2) (the compound represented by the above Chemical Formulas 5 to 7 and 1,4: 3,6-dianhydrohexitol) according to the target properties, An additional diphenyl ester compound may be further added in addition to the compound represented by the general formula (6). When the input amount of the additional diphenyl ester compound is p, the amount of the compound represented by the general formulas (5) to (7) is 1-p. At this time, p satisfies 0? P <1.
상기 추가 디페닐 에스테르 화합물은 한 종류일 수 있고, 두 종류 이상의 혼합물일 수 있다.The additional diphenyl ester compound may be one kind or a mixture of two or more kinds.
상기 추가 디페닐 에스테르는 1차, 2차 또는 3차 디카르복시레이트 혹은 디카르복실산(이하 추가 디카르복시레이트 혹은 디카르복실산)을 페놀 또는 페놀 치환체와 반응시켜 제조될 수 있다. 본 발명의 고내열 생물기반 폴리카보네이트 에스테르의 내열도, 투명도, UV 안정성 및 내후성을 추가 향상시키기 위해, 상기 추가 디페닐 에스테르는 분자 중심에 단일 지방족 고리 혹은 축합 이종고리를 가지는 추가 디카르복시레이트 또는 디카르복실산을 페놀 또는 페놀 치환체와 반응시켜 제조될 수 있다.The additional diphenyl ester can be prepared by reacting a primary, secondary or tertiary dicarboxylate or dicarboxylic acid (hereinafter additional dicarboxylate or dicarboxylic acid) with a phenol or phenol substituent. In order to further improve the heat resistance, transparency, UV stability and weatherability of the high heat-resistant bio-based polycarbonate esters of the present invention, the additional diphenyl esters may be further dicarboxylates or dicarboxylic acids having a single aliphatic ring or condensed hetero- Can be prepared by reacting a carboxylic acid with a phenol or phenol substituent.
상기 추가 디카르복시레이트 화합물은 디메틸 테트라히드로퓨란-2,5-디카르복시레이트(dimethyl tetrahydrofurane-2,5-dicarboxylate), 1,2-디메틸-사이클로헥산디카르복시레이트(1,2-dimethyl-cyclohexanedicarboxylate), 1,3-디메틸-사이클로헥산디카르복시레이트(1,3-dimethyl-cyclohexanedicarboxylate), 디메틸 데카히드로-2,4-나프탈렌디카르복시레이트(dimethyl decahydro-2,4-naphthalene dicarboxylate), 디메틸 데카히드로-2,5-나프탈렌 디카르복시레이트(dimethyl decahydro-2,5-naphthalene dicarboxylate), 디메틸 데카히드로-2,6-나프탈렌 디카르복시레이트(dimethyl decahydro-2,6-naphthalene dicarboxylate) 및 디메틸 데카히드로-2,7-나프탈렌 디카르복시레이트(dimethyl decahydro-2,7-naphthalene dicarboxylate)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The additional dicarboxylate compound may be selected from the group consisting of dimethyl tetrahydrofuran-2,5-dicarboxylate, 1,2-dimethyl-cyclohexanedicarboxylate, , 1,3-dimethyl-cyclohexanedicarboxylate, dimethyl decahydro-2,4-naphthalene dicarboxylate, dimethyldecahydro-dicarboxylate, Dimethyl decahydro-2,5-naphthalene dicarboxylate, dimethyl decahydro-2,6-naphthalene dicarboxylate and dimethyl decahydro-2-naphthalene dicarboxylate. Dimethyl decahydro-2,7-naphthalene dicarboxylate, and the like.
상기 추가 디카르복실산 화합물은 테트라히드로퓨란-2,5-디카르복실산(tetrahydrofuran-2,5-dicarboxylic acid), 1,2-사이클로헥산디카르복실산(1,2-cyclohexanedicarboxylic acid), 1,3-사이클로헥산디카르복실산(1,3-cyclohexanedicarboxylic acid), 데카히드로-2,4-나프탈렌디카르복실산(decahydro-2,4-naphthalenedicarboxylic acid), 데카히드로-2,5-나프탈렌디카르복실산(decahydro-2,5-naphthalenedicarboxylic acid), 데카히드로-2,6-나프탈렌디카르복실산(decahydro-2,6-naphthalenedicarboxylic acid) 및 데카히드로-2,7-나프탈렌디카르복실산(decahydro-2,7-naphthalenedicarboxylic acid)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The additional dicarboxylic acid compound may be selected from the group consisting of tetrahydrofuran-2,5-dicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, decahydro-2,4-naphthalenedicarboxylic acid, decahydro-2,5-naphthalene, Decahydro-2,5-naphthalenedicarboxylic acid, decahydro-2,6-naphthalenedicarboxylic acid and decahydro-2,7-naphthalenedicarboxylic acid (decahydro-2,7-naphthalenedicarboxylic acid).
구체적으로, 상기 추가 디페닐 에스테르는 생물기반 원료에서 제조 가능한 디메틸 테트라히드로퓨란-2,5-디카르복시레이트 또는 테트라히드로퓨란-2,5-디카르복실산, 또는 디메틸 데카히드로-2,6-나프탈렌 디카르복시레이트 또는 데카히드로-2,6-나프탈렌디카르복실산으로부터 제조될 수 있다.Specifically, the additional diphenyl esters may be dimethyltetrahydrofuran-2,5-dicarboxylate or tetrahydrofuran-2,5-dicarboxylic acid, or dimethyldecahydro-2,6- Naphthalene dicarboxylate or decahydro-2,6-naphthalene dicarboxylic acid.
용융 축중합 반응의 촉매A catalyst for melt polycondensation reaction
상기 용융 축중합 반응은 반응성 향상을 위해 촉매를 사용할 수 있다. 상기 촉매는 반응 단계에 언제든 첨가될 수 있으나, 반응 개시 전에 투입하는 것이 바람직하다.In the melt polycondensation reaction, a catalyst may be used for improving the reactivity. The catalyst may be added to the reaction step at any time, but it is preferably added before the initiation of the reaction.
상기 촉매는 폴리카보네이트 용융 축중합 반응에 통상적으로 사용되는 알칼리 금속 및/또는 알칼리 토금속 촉매라면 특별히 한정하지 않는다. 상기 촉매는 염기 암모늄 또는 아민, 염기 포스포러스(phosphorus), 또는 염기 보론 화합물 등과 함께 사용될 수 있고, 단독으로 사용할 수도 있다. 상기 알칼리 금속 촉매로는 리튬 히드록사이드(LiOH), 소듐 히드록사이드(NaOH), 포타슘 히드록사이드(KOH), 세슘 히드록사이드(CsOH), 리튬 카보네이트(Li2CO3), 소듐 카보네이트(Na2CO3), 포타슘 카보네이트(K2CO3), 세슘 카보네이트(Cs2CO3), 리튬 아세테이트(LiOAc), 소듐 아세테이트(NaOAc), 포타슘 아세테이트(KOAc) 또는 세슘 아세테이트(CsOAc) 등을 들 수 있다. 또한, 상기 알칼리 토금속 촉매로는 칼슘 히드록사이드(Ca(OH)2), 바륨 히드록사이드(Ba(OH)2), 마그네슘 히드록사이드(Mg(OH)2), 스트론튬 히드록사이드(Sr(OH)2), 칼슘 카보네이트(CaCO3), 바륨 카보네이트(BaCO3), 마그네슘 카보네이트(MgCO3), 스트론튬 카보네이트(SrCO3), 칼슘 아세테이트(Ca(OAc)2), 바륨 아세테이트(Ba(OAc)2), 마그네슘 아세테이트(Mg(OAc)2), 또는 스트론튬 아세테이트(Sr(OAc)2) 등을 들 수 있다. 나아가, 상기 촉매는 알칼리 금속 및/또는 알칼리 토금속의 옥사이드(oxide), 하이드라이드(hydride), 아마이드(amide), 또는 페놀레이트(phenolate)도 사용할 수 있으며, 예를 들면, 마그네슘 옥사이드(MgO), 바륨 옥사이드(BaO), 소듐 알루미네이트(NaAlO2) 등을 들 수 있다. 또한, 상기 촉매는 아연 옥사이드(ZnO), 리드 옥사이드(PbO), 디부틸틴 옥사이드((C4H9)2SnO), 안티모니 트리옥사이드(Sb2O3) 등의 촉매도 사용할 수 있다.The catalyst is not particularly limited as long as it is an alkali metal and / or an alkaline earth metal catalyst commonly used in polycondensation polycondensation reaction. The catalyst may be used in combination with a basic ammonium or amine, a basic phosphorus, or a basic boron compound, or may be used alone. The alkali metal catalyst is lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), cesium hydroxide (CsOH), lithium carbonate (Li 2 CO 3), sodium carbonate ( Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), lithium acetate (LiOAc), sodium acetate (NaOAc), potassium acetate (KOAc) or cesium acetate . The alkaline earth metal catalyst may be at least one selected from the group consisting of calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), magnesium hydroxide (Mg (OH) 2 ), strontium hydroxide (OH) 2 ), calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), magnesium carbonate (MgCO 3 ), strontium carbonate (SrCO 3 ), calcium acetate (Ca (OAc) 2 ), barium acetate ) 2 ), magnesium acetate (Mg (OAc) 2 ), or strontium acetate (Sr (OAc) 2 ). Further, the catalyst may be an oxide, hydride, amide, or phenolate of an alkali metal and / or an alkaline earth metal, for example, magnesium oxide (MgO) Barium oxide (BaO), sodium aluminate (NaAlO 2 ), and the like. The catalyst may also be a catalyst such as zinc oxide (ZnO), lead oxide (PbO), dibutyltin oxide ((C 4 H 9 ) 2 SnO), antimony trioxide (Sb 2 O 3 )
상기 용융 축중합 반응시 촉매 사용량은 전체 디올 화합물 1몰 당, 촉매의 금속 당량이 0 mmol 초과 5 mmol 이하, 0 mmol 초과 3 mmol 이하, 또는 0 mmol 초과 1 mmol 이하일 수 있다. 상기 촉매의 사용량이 상기 범위 내일 경우, 목표 중합도에 미달하게 되는 문제, 및 부반응 등이 발생하여 투명도 저하와 같은 목표 물성에 미달하는 문제를 방지할 수 있다.The amount of catalyst used in the melt polycondensation reaction may be more than 0 mmol, not more than 0 mmol, not more than 3 mmol, or not more than 0 mmol but not more than 1 mmol, per 1 mol of the total diol compound. When the amount of the catalyst used is within the above range, it is possible to prevent a problem that the degree of polymerization falls below the target degree of polymerization, and a problem that a side reaction or the like occurs and the target physical property such as transparency is lowered.
또한, 본 발명의 고내열 생물기반 폴리카보네이트 에스테르의 제조방법은, 필요에 따라, 반응물에 다양한 첨가제를 더 첨가할 수 있다. 상기 첨가제는, 예를 들어, 힌더드 페놀(hindered phenol), 히드로퀴논, 포스파이트, 및 이들의 치환된 화합물 등의 산화안정제(antioxidant) 및 열안정제; 레조시놀(resorcinol) 및 살리실레이트(salicylate) 등의 UV 흡수제; 포스파이트 및 히드로포스파이트 등의 색보호제; 몬타닉산(montanic acid) 및 스티아릴 알코올 등의 윤활제; 등을 들 수 있다. 또한, 착색제로 염료(dye)와 색소(pigment)들을 사용할 수 있고, 전도제(conductive agent), 착색제 또는 핵제(nucleation agent)로서 카본블랙을 사용할 수 있으며, 그 외에도 난연제, 가소제, 정전기방지제 등을 사용할 수 있다. 이때, 상기 언급된 모든 첨가제들은 최종 고분자 물성들 중에서도, 특히 투명도를 저해하지 않는 범위 내에서 사용될 수 있다.Further, in the method for producing a high-temperature-resistant bio-based polycarbonate ester of the present invention, various additives may be further added to the reactant, if necessary. Such additives include, for example, antioxidants and heat stabilizers such as hindered phenols, hydroquinone, phosphites, and substituted compounds thereof; UV absorbers such as resorcinol and salicylate; Color protectants such as phosphites and hydro phosphites; Lubricants such as montanic acid and stearyl alcohol; And the like. In addition, dyes and pigments can be used as colorants, carbon black can be used as a conductive agent, a coloring agent, or a nucleation agent. In addition, a flame retardant, a plasticizer, an antistatic agent, Can be used. At this time, all of the above-mentioned additives can be used within the range of properties of the final polymer, in particular, the transparency is not impaired.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로써, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The following examples illustrate the present invention, and the scope of the present invention is not limited by the following examples.
[실시예] [Example]
제조예 1. TPA를 사용한 DPT의 합성Production Example 1. Synthesis of DPT using TPA
사날 교반기(4-bladed agitator), 포스겐 및 질소 가스 주입구, 방출 가스 유출구 및 온도계가 장착된 1L의 둥근 바닥 플라스크에 100g(0.60mol)의 TPA(SK 케미칼사제)와 200g의 톨루엔을 투입하고, 상온에서 교반하였다. 상기 플라스크에 1.28mol의 포스겐 가스를 상압에서 10시간 동안 주입하고 반응시켰다. 이후, 잔류 포스겐과 부산물인 염산 가스를 제거하기 위해 질소를 2시간 동안 주입하여, 투명하고 균질한 반응 용액을 수득하였다. 상기 반응 용액을 GC 분석한 결과, TPC의 비율은 49 중량%이고, 반응 수율은 87 %였다.100 g (0.60 mol) of TPA (manufactured by SK Chemical) and 200 g of toluene were fed into a 1 L round bottom flask equipped with a four-bladed agitator, a phosgene and nitrogen gas inlet, a discharge gas outlet and a thermometer, Lt; / RTI &gt; 1.28 mol of phosgene gas was injected into the flask at normal pressure for 10 hours and reacted. Thereafter, nitrogen was injected for 2 hours to remove the residual phosgene and the hydrochloric acid gas as a by-product to obtain a transparent and homogeneous reaction solution. As a result of GC analysis of the reaction solution, the ratio of TPC was 49% by weight and the reaction yield was 87%.
이후, 상기 반응 용액으로부터 톨루엔 총 투입량의 50 중량%를 감압 증류로 제거하였다. 이후, 121g(1.28mol)의 페놀을 121g의 톨루엔에 용해시킨 페놀 용액을 낙하 깔대기(dropping funnel)를 통해 반응 용액에 2시간 동안 첨가하고 1시간 동안 교반하였다. 반응 종료 후, 반응 용액으로부터 톨루엔을 감압 증류로 제거한 후, 얻어진 미정제 DPT를 재결정 정제하였다. 그 다음, 정제된 DPT를 90℃에서 24시간 동안 진공 건조하여 162g의 DPT를 얻었다. 이때, 반응 수율은 85 %이고, GC 분석 결과 DPT의 순도는 99.8 %였다.Then, 50% by weight of the total amount of toluene was removed from the reaction solution by distillation under reduced pressure. Then, a phenol solution in which 121 g (1.28 mol) of phenol was dissolved in 121 g of toluene was added to the reaction solution through a dropping funnel for 2 hours, and the mixture was stirred for 1 hour. After completion of the reaction, toluene was removed from the reaction solution by distillation under reduced pressure, and the obtained crude DPT was recrystallized and purified. The purified DPT was then vacuum dried at 90 DEG C for 24 hours to give 162 g of DPT. At this time, the reaction yield was 85%, and the purity of DPT was 99.8% as a result of GC analysis.
제조예 2. TPA를 사용한 DPT의 합성Production Example 2. Synthesis of DPT using TPA
유기촉매로 1.27g(0.017mol)의 디메틸포름아마이드를 첨가한 것을 제외하고는, 상기 제조예 1과 동일한 방식으로 DPT를 합성하였다. 합성 결과, 반응 수율은 84 %이고, GC 분석 결과 DPT의 순도는 99.7 %였다.DPT was synthesized in the same manner as in Preparation Example 1, except that 1.27 g (0.017 mol) of dimethylformamide was added as an organic catalyst. As a result of synthesis, the reaction yield was 84%, and the purity of DPT was 99.7% by GC analysis.
제조예 3. DMT를 사용한 DPT의 합성Production Example 3. Synthesis of DPT using DMT
사날 교반기(4-bladed agitator), 포스겐 및 질소 가스 주입구, 방출 가스 유출구 및 온도계가 장착된 1L의 둥근 바닥 플라스크에 100g(0.51mol)의 DMT(SK 케미칼사제), 2.0g(0.015mol)의 알루미늄 클로라이드 및 200g의 톨루엔을 투입한 후, 상온에서 교반하였다. 상기 플라스크에 1.10mol의 포스겐 가스를 상압에서 10시간 동안 주입하고 반응시켰다. 이후, 잔류 포스겐과 부산물인 염산 가스를 증류 제거하기 위해 질소를 2시간 동안 주입하여, 투명하고 균질한 반응 용액을 수득하였다. 상기 반응 용액을 GC 분석한 결과, TPC의 비율은 48 중량%이고, 반응 수율은 89 %였다.(0.51 mol) of DMT (manufactured by SK Chemicals), 2.0 g (0.015 mol) of aluminum (0.015 mol) were added to a 1 L round bottom flask equipped with a stirrer, a 4-bladed agitator, a phosgene and nitrogen gas inlet, Chloride and 200 g of toluene were added thereto, followed by stirring at room temperature. 1.10 mol of a phosgene gas was injected into the flask at normal pressure for 10 hours and reacted. Thereafter, nitrogen was injected for 2 hours to distill off the residual phosgene and the by-product hydrochloric acid gas to obtain a transparent and homogeneous reaction solution. As a result of GC analysis of the reaction solution, the ratio of TPC was 48% by weight and the reaction yield was 89%.
이후, 상기 반응 용액으로부터 톨루엔 총 투입량의 50 중량%를 감압 증류로 제거하였다. 이후, 상기 반응 용액에 100g(1.06mol)의 페놀을 100g의 톨루엔에 용해시킨 페놀 용액을 낙하 깔때기를 이용하여 2시간 동안 첨가하고 1시간 동안 교반하였다. 반응 종료 후, 반응 용액으로부터 톨루엔을 감압 증류로 제거한 후, 얻어진 미정제 DPT를 재결정 정제하였다. 그 다음, 정제된 DPT를 90℃에서 24시간 진공 건조하여, 85g의 DPT를 얻었다. 상기 수득된 DPT의 반응 수율은 87%이고, GC 분석 결과 DPT의 순도는 99.7%였다.Then, 50% by weight of the total amount of toluene was removed from the reaction solution by distillation under reduced pressure. Then, a phenol solution obtained by dissolving 100 g (1.06 mol) of phenol in 100 g of toluene was added to the reaction solution for 2 hours using a dropping funnel and stirred for 1 hour. After completion of the reaction, toluene was removed from the reaction solution by distillation under reduced pressure, and the obtained crude DPT was recrystallized and purified. Then, the purified DPT was vacuum-dried at 90 DEG C for 24 hours to obtain 85 g of DPT. The reaction yield of the obtained DPT was 87%, and the purity of DPT was 99.7% by GC analysis.
제조예 4. TPA를 사용한 DPT의 합성Production Example 4. Synthesis of DPT using TPA
사날 교반기(4-bladed agitator), 냉각 콘덴서 및 온도계가 장착된 1L의 오토클레이브에 100g(0.6mol)의 TPA(SK 케미칼사제), 565g(6mol)의 페놀 및 1.83g(0.01mmol)의 아연 아세테이트(Zn(OAc)2) 촉매를 투입하였다. 이후 100℃로 승온하고 교반한 후 1 kgf/㎠으로 가압하고 승온하여 10시간 동안 200℃에서 반응을 진행하였으며, 이때 발생된 반응 부산물인 물은 오토클레이브 밖으로 유출시켰다. 반응 종료 후, 과량 투입된 페놀을 감압 증류하여 제거하고, 최종적으로 얻어진 미반응물 함유 고체 생성물을 얻었다.100 g (0.6 mol) of TPA (manufactured by SK Chemical), 565 g (6 mol) of phenol and 1.83 g (0.01 mmol) of zinc acetate were added to a 1 L autoclave equipped with a four-bladed agitator, a cooling condenser and a thermometer (Zn (OAc) 2 ) catalyst. Thereafter, the temperature was elevated to 100 ° C, stirred, pressurized to 1 kgf / cm 2, and heated at 200 ° C for 10 hours. The reaction by-product, water, was discharged out of the autoclave. After completion of the reaction, excess amount of phenol was removed by distillation under reduced pressure to obtain finally obtained solid product containing unreacted material.
이후 상기 136g의 미반응물 함유 고체 생성물, 282g의 페놀, 400g의 톨루엔 및 0.92g의 아연 아세테이트를 상술한 바와 같은 오토클레이브에 투입한 후, 상온에서 교반하였다. 이후, 100℃로 승온하고 상압에서 10시간 동안 반응을 진행하였으며, 이때 발생된 반응 부산물인 물은 오토클레이브 밖으로 유출시켰다. 반응 종료 후, 반응물을 50℃로 냉각하고, 여과기를 사용하여 반응물을 고액 분리하였다. 그 다음, 분리된 톨루엔 용액으로부터 증발기(evaporator)를 사용하여 톨루엔을 제거한 후, 얻어진 미정제 DPT를 재결정 정제하였다. 이후, 정제된 DPT를 90℃에서 24시간 진공 건조하여 80g의 DPT를 얻었다. 이때, 반응 수율은 42%였다.Thereafter, 136 g of the unreacted material-containing solid product, 282 g of phenol, 400 g of toluene and 0.92 g of zinc acetate were charged into the autoclave as described above, and then stirred at room temperature. Thereafter, the temperature was elevated to 100 ° C and the reaction was carried out at normal pressure for 10 hours. The reaction by-product, water, was discharged from the autoclave. After completion of the reaction, the reaction product was cooled to 50 DEG C and the reaction product was subjected to solid-liquid separation using a filter. Then, toluene was removed from the separated toluene solution using an evaporator, and the obtained crude DPT was recrystallized and purified. Thereafter, the purified DPT was vacuum-dried at 90 DEG C for 24 hours to obtain 80 g of DPT. At this time, the reaction yield was 42%.
제조예 5. DMT를 사용한 DPT의 합성Production Example 5. Synthesis of DPT using DMT
사날 교반기(4-bladed agitator), 냉각 콘덴서 및 온도계가 장착된 1L의 오토클레이브에 100g(0.51mol)의 DMT(SK 케미칼사제), 480g(5.10mol)의 페놀 및 1.72g(0.01mol)의 p-톨루엔술폰산(p-toluenesulfonic acid)을 넣었다. 이후, 100℃로 승온하고 교반한 후 1 kgf/㎠으로 가압하고 승온하여 10시간 동안 200℃에서 반응을 진행하였다. 이때 발생된 반응 부산물인 메탄올은 오토클레이브 밖으로 유출시켰다. 반응 종료 후, 과량 투입된 페놀을 감압 증류하여 제거하였으며, 최종적으로 얻어진 미반응물 함유 고체 생성물을 얻었다.(0.51 mol) of DMT (manufactured by SK Chemicals), 480 g (5.10 mol) of phenol and 1.72 g (0.01 mol) of p (0.01 mol) were added to a 1 L autoclave equipped with a stirrer, a 4-bladed agitator, - p-toluenesulfonic acid. Thereafter, the mixture was heated to 100 DEG C and stirred, and then the mixture was pressurized to 1 kgf / cm &lt; 2 &gt;, and the reaction was carried out at 200 DEG C for 10 hours. Methanol, which is a reaction byproduct generated at this time, was flowed out of the autoclave. After the completion of the reaction, excess phenol was removed by distillation under reduced pressure to obtain a finally obtained solid product containing the unreacted product.
이후 140g의 미반응물 함유 고체 생성물, 240g의 페놀, 400g의 톨루엔 및 0.86g의 p-톨루엔술폰산을 상술한 바와 같은 오토클레이브에 투입한 후, 상온에서 교반하였다. 이후, 100℃로 승온하고 상압에서 10시간 동안 반응을 진행하였으며, 이때 발생된 반응 부산물인 메탄올은 오토클레이브 밖으로 유출시켰다. 반응 종료 후, 반응물을 상온으로 냉각하고, 여과기를 사용하여 반응물을 고액 분리하였다. 그 다음, 분리된 톨루엔 용액으로부터 증발기를 사용하여 톨루엔을 제거한 후, 얻어진 미정제 DPT를 재결정 정제하였다. 이후, 정제된 DPT를 90℃에서 24시간 진공 건조하여, 106g의 DPT를 얻었고, 이때 반응 수율은 65%였다.Then, 140 g of the unreacted material-containing solid product, 240 g of phenol, 400 g of toluene and 0.86 g of p-toluenesulfonic acid were added to the autoclave as described above, followed by stirring at room temperature. Thereafter, the temperature was elevated to 100 ° C and the reaction was carried out at normal pressure for 10 hours. Methanol, which is a byproduct of the reaction, was flowed out of the autoclave. After completion of the reaction, the reaction product was cooled to room temperature, and the reaction product was subjected to solid-liquid separation using a filter. Then, the toluene was removed from the separated toluene solution using an evaporator, and the obtained crude DPT was recrystallized and purified. Thereafter, the purified DPT was vacuum-dried at 90 DEG C for 24 hours to obtain 106 g of DPT, and the reaction yield was 65%.
실시예 1. 고내열 생물기반 폴리카보네이트 에스테르 제조Example 1: Production of polycarbonate ester based on a high-temperature bio
18L 축중합 벤치 반응기에 1,995 g(13.7mol)의 이소소르바이드(ISB, Roquette Freres사제), 444 g(1.37mol)의 제조예 1에서 얻은 DPT, 1.37mol의 DPCD(SK 케미칼사제), 2,345 g(10.96mol)의 DPC(Changfeng사제), 및 2 g의 1 % 농도의 소듐 알루미네이트(NaAlO2) 수용액을 넣고 150℃로 승온하였다. 150℃ 도달 후, 400 torr로 감압한 다음, 1시간 동안 190℃로 승온하였다. 승온 동안 중합반응 부산물인 페놀이 유출되기 시작하였으며, 190℃ 도달 후, 100 torr로 감압하고, 20분 동안 유지한 다음 20분 동안 230℃로 승온하였다. 230℃ 도달 후, 10 torr로 감압하고, 10분 동안 250℃로 승온하였다. 250℃에서 1 torr 이하로 감압하고, 목표 교반 토크(torque) 도달할 때까지 반응을 진행하였다. 목표 교반 토크에 도달되면 반응을 종료하고, 가압으로 토출된 스트랜드(strand) 중합 반응물을 워터 배스(water bath)에서 급랭시킨 후, 펠렛(pellet)으로 절단하였다. 중합 제조된 폴리카보네이트 에스테르의 유리전이온도(Tg)는 168℃, 고유점도(IV)는 0.54 dL/g이었다.(ISB, manufactured by Roquette Freres), 444 g (1.37 mol) of DPT obtained in Preparation Example 1, 1.37 mol of DPCD (manufactured by SK Chemicals), 1,160 g 2,345 g (10.96 mol) of DPC (manufactured by Changfeng) and 2 g of sodium aluminate (NaAlO 2 ) aqueous solution having a concentration of 1% were placed and heated to 150 ° C. After reaching 150 ° C, the pressure was reduced to 400 torr and then the temperature was raised to 190 ° C for 1 hour. The phenol as a by-product of the polymerization reaction started to flow out at a temperature elevation. After reaching 190 ° C, the pressure was reduced to 100 torr, maintained for 20 minutes, and then heated to 230 ° C for 20 minutes. After reaching 230 캜, the pressure was reduced to 10 torr and the temperature was raised to 250 캜 for 10 minutes. The pressure was reduced to 1 torr or less at 250 DEG C, and the reaction was continued until the target stirring torque reached. When the target agitation torque is reached, the reaction is terminated and the strand polymerized material discharged by pressurization is quenched in a water bath and then cut with a pellet. Polymerization Polycarbonate ester had a glass transition temperature (Tg) of 168 占 폚 and an intrinsic viscosity (IV) of 0.54 dL / g.
실시예 2 내지 10. 고내열 생물기반 폴리카보네이트 에스테르 제조Examples 2 to 10. Manufacture of polycarbonate esters based on high-temperature bio materials
상기 실시예 1에서 고분자 시료들의 조성을 하기 표 1에 기재된 양으로 사용한 것을 제외하고는 동일한 방식으로 폴리카보네이트 에스테르를 제조하였다.Polycarbonate esters were prepared in the same manner as in Example 1 except that the compositions of the polymer samples were used in the amounts shown in Table 1 below.
비교예 1. CHDM을 사용한 생물기반 폴리카보네이트 에스테르 제조Comparative Example 1. Preparation of bio-based polycarbonate ester using CHDM
DPCD를 사용하지 않고, 1623g(5.1mol)의 제조예 1에서 얻는 DPT, 2549g(11.9mol)의 DPC(Changfeng사제), 1988g(13.6mol)의 ISB(Roquette Freres사제) 및 490g(3.4mol)의 1,4-사이클로헥산디메탄올(CHDM, SK 케미칼사제)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리카보네이트 에스테르를 제조하였다. 중합 제조된 폴리카보네이트 에스테르의 Tg는 155℃, IV는 0.55 dL/g이었다.DPCD was not used, and DPT obtained in Preparation Example 1, 2549 g (11.9 mol) of DPC (Changfeng), 1988 g (13.6 mol) ISB (Roquette Freres) and 490 g A polycarbonate ester was prepared in the same manner as in Example 1, except that 1,4-cyclohexane dimethanol (CHDM, manufactured by SK Chemicals) was used. Polymerization Polycarbonate ester had a Tg of 155 占 폚 and an IV of 0.55 dL / g.
비교예 2 내지 3.Comparative Examples 2 to 3.
고분자 시료들의 조성을 하기 표 1에 기재된 양으로 사용한 것을 제외하고는, 비교예 1과 동일한 방식으로 폴리카보네이트 에스테르를 제조하였다.Polycarbonate esters were prepared in the same manner as in Comparative Example 1, except that the compositions of the polymer samples were used in the amounts shown in Table 1 below.
시험예. 물성평가Test example. Property evaluation
실시예 1 내지 10 및 비교예 1 내지 3의 폴리카보네이트 에스테르를 대상으로 하기와 같은 방법으로 물성을 평가하였다. 측정된 물성을 하기 표 1에 나타내었다.The properties of the polycarbonate esters of Examples 1 to 10 and Comparative Examples 1 to 3 were evaluated by the following methods. The measured physical properties are shown in Table 1 below.
유리전이온도(Glass transition temperature ( TgTg ) 측정) Measure
ASTM D3418에 따라 시차 주사 열량계(differential scanning calorimeter, Q20, TA INSTRUMENTS사)를 이용하여 유리전이온도를 측정하였다.The glass transition temperature was measured using a differential scanning calorimeter (Q20, TA INSTRUMENTS) according to ASTM D3418.
광투과율Light transmittance (T) 측정(T) measurement
ASTM D1003에 따라 분광 광도계(spectrophotometer, CM-3600A, Konica Minolta사)를 이용하여 두께 4mm의 시편의 광투과율을 측정하였다.The light transmittance of a specimen having a thickness of 4 mm was measured using a spectrophotometer (CM-3600A, Konica Minolta) according to ASTM D1003.
용융흐름지수Melt flow index (MI) 측정(MI) measurement
ASTM D1238에 따라 멜트 인덱서(melt indexer, G-01, TOYOSEIKI사)를 이용하여 260℃ 및 2.16kg 하중 조건으로 용융흐름지수를 측정하였다.The melt flow index was measured using a melt indexer (G-01, TOYOSEIKI) according to ASTM D1238 under conditions of 260 ° C and 2.16 kg load.
구분division ISBISB CHDMCHDM DPCDPC DPCDDPCD DPTDPT Tg (℃)Tg (占 폚) T (%)T (%) MI (g/10분)MI (g / 10 min)
실시예 1Example 1 1One 00 0.80.8 0.10.1 0.10.1 168168 9292 7272
실시예 2Example 2 1One 00 0.70.7 0.20.2 0.10.1 164164 9292 100100
실시예 3Example 3 1One 00 0.60.6 0.20.2 0.20.2 172172 9292 7171
실시예 4Example 4 1One 00 0.50.5 0.20.2 0.30.3 180180 9191 4141
실시예 5Example 5 1One 00 0.40.4 0.30.3 0.30.3 178178 9292 7070
실시예 6Example 6 1One 00 0.30.3 0.40.4 0.30.3 174174 9292 9999
실시예 7Example 7 1One 00 0.20.2 0.40.4 0.40.4 182182 9191 6969
실시예 8Example 8 1One 00 0.10.1 0.40.4 0.50.5 190190 9191 3939
실시예 9Example 9 1One 00 0.30.3 0.30.3 0.40.4 185185 9191 4242
실시예 10Example 10 1One 00 0.20.2 0.30.3 0.50.5 193193 9090 1414
비교예 1Comparative Example 1 0.80.8 0.20.2 0.70.7 00 0.30.3 155155 9090 3535
비교예 2Comparative Example 2 0.80.8 0.20.2 0.60.6 0.10.1 0.30.3 152152 9191 6565
비교예 3Comparative Example 3 0.70.7 0.30.3 0.60.6 00 0.40.4 154154 8989 3737
상기 표 1에서 보는 바와 같이, 본 발명의 제조방법에 따라 화학식 5로 표시되는 디페닐테레프탈레이트(DPT)를 제조하고, 이를 이용하여 제조된 실시예 1 내지 10의 고내열 생물기반 폴리카보네이트 에스테르는, 기존의 DPC 및 1,4-디페닐-사이클로헥산디카르복시레이트(DPCD)로만 공중합된 생물기반 폴리카보네이트 에스테르에 비하여 유리전이온도가 높아, 고내열이 필요한 분야에 적합하였다.As shown in Table 1, the diphenyl terephthalate (DPT) represented by the formula (5) was prepared according to the production method of the present invention, and the high heat resistant biocarbon based polycarbonate esters of Examples 1 to 10 prepared using the same Based polycarbonate ester copolymerized only with conventional DPC and 1,4-diphenyl-cyclohexanedicarboxylate (DPCD), the glass transition temperature was high and it was suitable for applications requiring high heat resistance.
또한, DPCD 반복단위의 함량이 증가하는 경우(실시예 1, 2, 및 실시예 4 내지 6)에는 지방족 고리 단량체의 함량이 증가함에 따라 유리전이온도는 감소되지만 용융흐름지수가 증가하여 유동성이 증가하였다. Further, in the case where the content of the repeating units of DPCD is increased (Examples 1, 2, and 4 to 6), the glass transition temperature is decreased as the content of the aliphatic cyclic monomer increases, but the melt flow rate is increased Respectively.
나아가, DPT 반복단위의 함량이 증가하는 경우(실시예 2 내지 4, 및 실시예 6 내지 8)에는 유리전이온도가 증가되지만 용융흐름지수가 감소되는 것을 확인할 수 있었다. 특히, 실시예 3은 실시예 1 보다 유리전이온도가 높음에도 용융흐름지수가 유사하고, 실시예 7은 실시예 1 및 3 보다 유리전이온도가 높음에도 용융흐름지수가 유사함을 알 수 있다. 또한, 실시예 10은 유리전이온도가 실시예들 중 최대값을 가졌으나 DPCD 반복단위의 함량이 낮아 용융흐름지수가 상대적으로 낮았다.Further, when the content of DPT repeating units was increased (Examples 2 to 4 and Examples 6 to 8), it was confirmed that the glass transition temperature was increased but the melt flow index was decreased. Particularly, it can be seen that the melt flow index is similar in Example 3, even though the glass transition temperature is higher than that in Example 1, and the melt flow index is similar in Example 7, even though the glass transition temperature is higher than in Examples 1 and 3. Also, in Example 10, the glass transition temperature had the maximum value among the examples, but the melt flow index was relatively low due to the low content of DPCD repeating units.
더불어, 실시예 1 내지 10의 광투과율은 모두 90% 이상이었으며, 이는 동일 수준의 내열도를 갖는 BPA계 폴리카보네이트 제품의 최대 광투과율인 90% 대비 동등 수준 이상이며, 특히, 실시예 1 내지 9의 광투과율은 91% 이상으로 보다 우수한 특징을 보였다.In addition, the light transmittances of Examples 1 to 10 were all 90% or more, which is equal to or higher than 90% of maximum light transmittance of BPA polycarbonate products having the same level of heat resistance, And the light transmittance was more than 91%.
한편, 1,4-사이클로헥산디메탄올(CHDM)을 사용한 비교예 1 내지 3의 생물기반 폴리카보네이트 에스테르는 유리전이온도가 낮아 고내열 용도에 적합하지 않고, 실시예에 비해 유리전이온도가 상대적으로 낮음에도 용융흐름지수가 높지 않았다. 특히, 비교예 3은 DPT 반복단위의 함량이 증가함에 따라 광투과율이 감소되었다.On the other hand, the bio-based polycarbonate esters of Comparative Examples 1 to 3 using 1,4-cyclohexane dimethanol (CHDM) had low glass transition temperatures and were not suitable for high heat resistance applications, The melt flow index was not high. In particular, in Comparative Example 3, the light transmittance was decreased as the content of the DPT repeating unit was increased.
따라서, 고내열 용도에 해당하는 목표 물성에 따라, 1,4-디페닐-사이클로헥산디카르복시레이트와 디페닐테레프탈레이트 반복단위의 함량과 카보네이트와 에스테르의 결합 비율을 조절함으로써, 각 반복단위로부터 얻어지는 물성의 장단점 조절이 가능하며, 이에 따라 제조된 고내열 생물기반 폴리카보네이트 에스테르는 내열도, 투명도 및 유동성이 우수하여, 다양한 고내열 용도에 유용하게 사용 가능함을 알 수 있었다.Therefore, by controlling the content of the repeating unit of 1,4-diphenyl-cyclohexanedicarboxylate and diphenylterephthalate and the ratio of the carbonate to the ester bond according to the target properties corresponding to the high heat resistance use, It is possible to control the strength and weakness of physical properties, and thus the highly heat-resistant bio-based polycarbonate ester thus prepared is excellent in heat resistance, transparency and fluidity, and can be used for various high heat resistance applications.

Claims (12)

  1. 고내열 생물기반 폴리카보네이트 에스테르로부터 제조된 성형품으로서,A molded article produced from a high heat-resistant bio-based polycarbonate ester,
    상기 고내열 생물기반 폴리카보네이트 에스테르가 하기 화학식 1로 표시되는 반복단위 1; 하기 화학식 2로 표시되는 반복단위 2; 및 하기 화학식 3으로 표시되는 반복단위 3;을 포함하는, 성형품.Wherein the high heat-resistant bio-based polycarbonate ester comprises a repeating unit 1 represented by the following formula (1); A repeating unit 2 represented by the following formula (2); And a repeating unit (3) represented by the following general formula (3).
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018013491-appb-I000024
    Figure PCTKR2018013491-appb-I000024
    [화학식 2](2)
    Figure PCTKR2018013491-appb-I000025
    Figure PCTKR2018013491-appb-I000025
    [화학식 3](3)
    Figure PCTKR2018013491-appb-I000026
    Figure PCTKR2018013491-appb-I000026
  2. 제1항에 있어서,The method according to claim 1,
    상기 성형품이 자동차 부품인, 성형품.Wherein the molded article is an automobile part.
  3. 제1항에 있어서,The method according to claim 1,
    상기 성형품이 전기전자 부품인, 성형품.Wherein the molded article is an electric / electronic part.
  4. 제1항에 있어서,The method according to claim 1,
    상기 성형품이 조명 부품인, 성형품.Wherein the molded article is an illuminating part.
  5. 제1항에 있어서,The method according to claim 1,
    상기 성형품이 의료 용품인, 성형품.Wherein the molded article is a medical article.
  6. 제1항에 있어서,The method according to claim 1,
    상기 성형품이 디스플레이 부품인, 성형품.Wherein the molded article is a display part.
  7. 제1항에 있어서,The method according to claim 1,
    상기 성형품이 항공 부품인, 성형품.Wherein the molded article is an airborne part.
  8. 제1항에 있어서,The method according to claim 1,
    상기 성형품이 기계 부품인, 성형품.Wherein the molded article is a mechanical part.
  9. 제1항에 있어서,The method according to claim 1,
    상기 성형품이 식품 용기인, 성형품.Wherein the molded article is a food container.
  10. 제1항에 있어서,The method according to claim 1,
    상기 반복단위 1이 1,4:3,6-디안히드로헥시톨 및 카보네이트의 반응으로부터 수득되고,Wherein said recurring unit 1 is obtained from the reaction of 1,4: 3,6-dianhydrohexitol and carbonate,
    상기 반복단위 2가 1,4:3,6-디안히드로헥시톨 및 1,4-사이클로헥산 디카복시레이트의 반응으로부터 수득되며,Wherein said repeating unit 2 is obtained from the reaction of 1,4: 3,6-dianhydrohexitol and 1,4-cyclohexanedicarboxylate,
    상기 반복단위 3이 1,4:3,6-디안히드로헥시톨 및 테레프탈레이트의 반응으로부터 수득된, 성형품.Wherein said recurring unit 3 is obtained from the reaction of 1,4: 3,6-dianhydrohexitol and terephthalate.
  11. 제1항에 있어서,The method according to claim 1,
    상기 고내열 생물기반 폴리카보네이트 에스테르가 상기 반복단위 1 내지 3으로 이루어지며,Wherein the high-temperature-resistant bio-based polycarbonate ester comprises the repeating units 1 to 3,
    상기 반복단위 1 내지 3의 몰분율을 각각 x, y 및 z라고 할 때, 상기 x는 0 초과 1 미만의 실수이고, y는 0 초과 0.7 이하의 실수이며, z는 0 초과 0.6 이하의 실수이며, x+y+z는 1인, 성형품.X is a real number of more than 0 and less than 1, y is a real number of more than 0 and not more than 0.7, z is a real number of more than 0 and not more than 0.6, x + y + z = 1.
  12. 제1항에 있어서,The method according to claim 1,
    상기 고내열 생물기반 폴리카보네이트 에스테르는 유리전이온도가 160 내지 240℃이고, 260℃ 및 하중 2.16 kg에서의 융용흐름지수가 5 내지 150 g/10분인, 성형품.Wherein said high temperature resistant biobased polycarbonate ester has a glass transition temperature of from 160 to 240 DEG C and a melt flow index of from 5 to 150 g / 10 minutes at 260 DEG C and a load of 2.16 kg.
PCT/KR2018/013491 2017-11-09 2018-11-08 Molded product manufactured from high heat resistant polycarbonate ester WO2019093770A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/757,570 US11590682B2 (en) 2017-11-09 2018-11-08 Molded product manufactured from high heat resistant polycarbonate ester
CN201880070594.XA CN111278890A (en) 2017-11-09 2018-11-08 Molded article made of highly heat-resistant polycarbonate
ES18877033T ES2950732T3 (en) 2017-11-09 2018-11-08 Molded product manufactured from polycarbonate ester with high heat resistance
JP2020519777A JP7279714B2 (en) 2017-11-09 2018-11-08 Moldings made from highly heat-resistant polycarbonate esters
EP18877033.3A EP3708601B1 (en) 2017-11-09 2018-11-08 Molded product manufactured from high heat resistant polycarbonate ester

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170148867 2017-11-09
KR10-2017-0148867 2017-11-09
KR10-2018-0135681 2018-11-07
KR1020180135681A KR102634462B1 (en) 2017-11-09 2018-11-07 Molded product prepared from polycarbonate ester having high heat resistance

Publications (1)

Publication Number Publication Date
WO2019093770A1 true WO2019093770A1 (en) 2019-05-16

Family

ID=66439243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013491 WO2019093770A1 (en) 2017-11-09 2018-11-08 Molded product manufactured from high heat resistant polycarbonate ester

Country Status (1)

Country Link
WO (1) WO2019093770A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021254894A1 (en) * 2020-06-19 2021-12-23 Covestro Deutschland Ag Polyester carbonates consisting of different diols in a defined ratio
WO2021254892A1 (en) 2020-06-19 2021-12-23 Covestro Deutschland Ag Polyester carbonates from cycloaliphatic diacids, 1,4:3,6-dianhydrohexitol and a further aliphatic dihydroxy compound
WO2021254893A1 (en) 2020-06-19 2021-12-23 Covestro Deutschland Ag Polyester carbonates on the basis of cycloaliphatic diacids, 1,4:3,6-dianhydrohexitol and specific amounts of an additional aliphatic dihydroxy compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150012152A (en) * 2013-07-24 2015-02-03 에스케이케미칼주식회사 Polycarbonate ester having high heat resistance and transparency, and preparation method thereof
KR20160090703A (en) * 2015-01-22 2016-08-01 에스케이케미칼주식회사 Novel process for preparing polycarbonate ester having excellent transparency and high heat resistance
CN106800643A (en) * 2017-02-09 2017-06-06 中国科学院化学研究所 A kind of preparation method of high-fire resistance isobide type atactic polyester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150012152A (en) * 2013-07-24 2015-02-03 에스케이케미칼주식회사 Polycarbonate ester having high heat resistance and transparency, and preparation method thereof
KR20160090703A (en) * 2015-01-22 2016-08-01 에스케이케미칼주식회사 Novel process for preparing polycarbonate ester having excellent transparency and high heat resistance
CN106800643A (en) * 2017-02-09 2017-06-06 中国科学院化学研究所 A kind of preparation method of high-fire resistance isobide type atactic polyester

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENG, L.: "A designed synthetic strategy toward poly (isosorbide terephthalate) copolymers: a combination of temporary modification, transesterification, cyclization and polycondensation", POLYMER CHEMISTRY, 2015, pages 7470 - 7479, XP055586715, DOI: doi:10.1039/C5PY01167A *
FENG, L.: "A high-molecular-weight and high-Tg poly (ester carbonate) partially based on isosorbide: synthesis and structure-property relationships", POLYMER CHEMISTRY, 2015, pages 633 - 642, XP055586726, DOI: doi:10.1039/C4PY00976B *
See also references of EP3708601A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021254894A1 (en) * 2020-06-19 2021-12-23 Covestro Deutschland Ag Polyester carbonates consisting of different diols in a defined ratio
WO2021254892A1 (en) 2020-06-19 2021-12-23 Covestro Deutschland Ag Polyester carbonates from cycloaliphatic diacids, 1,4:3,6-dianhydrohexitol and a further aliphatic dihydroxy compound
WO2021254893A1 (en) 2020-06-19 2021-12-23 Covestro Deutschland Ag Polyester carbonates on the basis of cycloaliphatic diacids, 1,4:3,6-dianhydrohexitol and specific amounts of an additional aliphatic dihydroxy compound

Similar Documents

Publication Publication Date Title
WO2016117872A1 (en) Novel method for preparing highly transparent and highly heat-resistant polycarbonate ester
WO2019147051A1 (en) Bio-based polycarbonate ester and preparation method therefor
KR102634462B1 (en) Molded product prepared from polycarbonate ester having high heat resistance
KR102577308B1 (en) Polycarbonate ester having high heat resistance, and preparation method thereof
WO2020085686A1 (en) Polymerizable composition, and copolycarbonate ester and method for producing same
WO2019093770A1 (en) Molded product manufactured from high heat resistant polycarbonate ester
WO2019066292A1 (en) Highly heat-resistant polycarbonate ester and preparation method therefor
WO2015102305A1 (en) Composition for producing biodegradable polyester resin, and production method for biodegradable polyester resin
WO2020013507A1 (en) Bio-based polycarbonate ester resin for eyeglass frame
WO2020085662A1 (en) Highly bio-based polycarbonate ester and method for producing same
WO2012148187A2 (en) Method for preparing poly(1,4:3,6-dianhydrohexitol ester)
WO2020032399A1 (en) Polyester resin and preparation method therefor
KR102670159B1 (en) Biobased polycarbonate ester and preparing method thereof
WO2024039112A1 (en) Polyester resin comprising bis(glycol) terephthalate, and preparation method therefor
WO2023182859A1 (en) Polycarbonate copolymer, method for preparing same, and composition comprising same
WO2023277349A1 (en) Polyester copolymer comprising recycled monomer
WO2023249327A1 (en) Method for storing recycled bis(2-hydroxyethyl)terephthalate and method for preparing polyester resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877033

Country of ref document: EP

Effective date: 20200609