WO2019093233A1 - Touch sensor - Google Patents

Touch sensor Download PDF

Info

Publication number
WO2019093233A1
WO2019093233A1 PCT/JP2018/040795 JP2018040795W WO2019093233A1 WO 2019093233 A1 WO2019093233 A1 WO 2019093233A1 JP 2018040795 W JP2018040795 W JP 2018040795W WO 2019093233 A1 WO2019093233 A1 WO 2019093233A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch sensor
substrate
disposed
floating
Prior art date
Application number
PCT/JP2018/040795
Other languages
French (fr)
Japanese (ja)
Inventor
桂舟 村岡
健二 柴田
由樹 谷口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019552759A priority Critical patent/JPWO2019093233A1/en
Publication of WO2019093233A1 publication Critical patent/WO2019093233A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present disclosure relates to a touch sensor.
  • Patent Document 1 As a touch sensor capable of touch operation and press operation, for example, the one shown in Patent Document 1 is known.
  • Patent Document 1 a substrate, first and second electrodes formed on the substrate and spaced from each other, a display module disposed above the substrate, and a display module are disposed.
  • a touch sensor comprising a panel and a spacer layer formed between the display module and the panel.
  • the display module is capable of bending and deforming so as to be reduced in thickness by receiving pressure on the panel.
  • the display module has a reference potential layer disposed to face the first electrode and the second electrode. The reference potential layer is previously set to the ground potential.
  • the touch sensor includes one or more substrates, any one of the one or more substrates, a transmitting electrode capable of emitting an electric field, and any one or more of the one or more substrates.
  • a receiving electrode which is disposed at a distance from the transmitting electrode and can receive an electric field from the transmitting electrode, a ground electrode disposed at any one of the one or more substrates, and the one or more receiving electrodes.
  • a floating electrode disposed in the first direction of the above substrate.
  • the floating electrode When viewed in the first direction, the floating electrode is disposed so as to overlap at least a portion of the ground electrode, at least a portion of the transmission electrode, and at least a portion of the reception electrode;
  • the transmitting electrode, the receiving electrode, and the ground electrode are electrically independent of each other, and the floating electrode and the ground electrode are pressed by the first direction or a direction opposite to the first direction.
  • the electrical connection state in the touch sensor can be simplified.
  • FIG. 1 is an overall perspective view of the touch sensor according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing the configuration of the touch sensor according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG.
  • FIG. 4 is a view showing a state where a pressing force is applied to the touch sensor shown in FIG.
  • FIG. 5 is a schematic view showing in plan the overlapping state of the transmission electrode, the reception electrode, and the ground electrode and the floating electrode.
  • FIG. 6A is a schematic view showing in plan the overlapping state of the transmission electrode, the reception electrode, and the ground electrode and the floating electrode.
  • FIG. 6B is a schematic view showing in plan the overlapping state of the transmitting electrode, the receiving electrode, and the ground electrode and the floating electrode.
  • FIG. 1 is an overall perspective view of the touch sensor according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing the configuration of the touch sensor according to the first embodiment.
  • FIG. 3 is a cross-
  • FIG. 7 is a cross-sectional view showing the configuration of the touch sensor according to the second embodiment.
  • FIG. 8A is an exploded perspective view showing the configuration of the touch sensor according to the third embodiment.
  • FIG. 8B is an exploded perspective view showing the configuration of the touch sensor according to Embodiment 4.
  • FIG. 9 is an exploded perspective view showing the configuration of the touch sensor according to the fifth embodiment.
  • FIG. 10A is a cross-sectional view showing a configuration of a touch sensor according to Embodiment 5.
  • FIG. 10B is a cross-sectional view showing a state in which the touch sensor shown in FIG. 10A is pressed.
  • FIG. 11 is a top view showing the positional relationship between the base and the spring in the fifth embodiment.
  • 12A is a perspective view of a spring according to Embodiment 5.
  • FIG. 12B is a top view of a spring according to Embodiment 5.
  • FIG. 12C is a side view of a spring according to Embodiment 5.
  • the distance between the reference potential layer and the first electrode and the distance between the reference potential layer and the second electrode are reduced by the display module and the spacer layer.
  • the capacitance is absorbed by the reference potential layer, the mutual capacitance between the first electrode and the second electrode is reduced.
  • the amount of decrease in mutual capacitance is acquired by the electrode on the receiving side, and the magnitude of the pressure due to the pressing operation is calculated.
  • the reference potential layer must be set in advance to the ground potential. That is, an electrical connection state for setting the reference potential layer to the ground potential in the touch sensor must be formed in advance. For this reason, there is a possibility that the electrical connection state in the touch sensor may be complicated.
  • FIG. 1 shows the entire touch sensor 1 according to the first embodiment.
  • the touch sensor 1 is a sensor-type input device capable of touch operation and press operation.
  • the touch sensor 1 is, for example, various devices in which a display device such as a liquid crystal display or an organic EL display is incorporated (for example, an in-vehicle device such as a car navigation, a display device of a personal computer, a mobile phone, a portable information terminal, a portable game machine, It is used as an input device for copying machines, ticket machines, automatic teller machines, etc.).
  • the X direction is a direction from left to right of the touch sensor 1 shown in FIG. 1
  • the Y direction is a direction from the front side to the back of the touch sensor 1 shown in FIG.
  • the direction from top to bottom of the touch sensor 1 is defined. Note that such a positional relationship is irrelevant to the actual direction in the touch sensor 1 or the device in which the touch sensor 1 is incorporated.
  • the touch sensor 1 includes a cover member 2 having light transparency.
  • the cover member 2 contains glass or resin.
  • the cover member 2 is formed, for example, in a rectangular plate shape, and is stacked on the upper surface of a third substrate 13 described later (see FIGS. 2 and 3).
  • a window frame portion 3 having a substantially frame shape in dark color such as black is formed by printing or the like.
  • a translucent operation surface 4 is formed in the internal rectangular area surrounded by the window frame portion 3.
  • the operation surface 4 is mainly configured as a surface on which a user's finger or the like contacts with the touch operation of the touch sensor 1.
  • the touch sensor 1 has a flexible wiring board 5.
  • the flexible wiring board 5 is configured so as to be flexible and not change its electrical characteristics even in a deformed state.
  • the flexible wiring board 5 includes, for example, a flexible insulating film such as polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or the like.
  • the touch sensor 1 includes a first substrate 11, a second substrate 12, and a third substrate 13.
  • the first substrate 11 includes, for example, a resin material having light transmittance such as polycarbonate, polyethylene terephthalate, polyether sulfone, PMMA (acrylic), COP (cycloolefin polymer) or the like, or glass.
  • the first substrate 11 is formed in a rectangular shape, and has a thickness of, for example, about 1 to 3 mm. Further, the first substrate 11 has a first surface R1 and a second surface R2 located on the opposite side of the first surface R1.
  • the second substrate 12 is disposed below the first substrate 11 so that the upper surface thereof faces the second surface R2 of the first substrate 11.
  • the third substrate 13 is stacked on the first substrate 11 so that the lower surface faces the first surface R1.
  • Each of the second substrate 12 and the third substrate 13 includes the same resin material and glass as the first substrate 11 and has the same shape and thickness as the first substrate 11.
  • a liquid crystal display (LCD) 19 is disposed below the third substrate 13.
  • the first surface R1 of the first substrate 11 is provided with a sensor unit (not shown) for enabling a touch operation. Further, the sensor portion is provided with a substrate wiring (not shown) for electrically connecting to an external circuit (not shown) through the flexible wiring board 5.
  • the transmission electrode 21 and the reception electrode 22 are provided on the first substrate 11.
  • the transmission electrode 21 and the reception electrode 22 are disposed in the vicinity of a corner on the first surface R1.
  • the transmission electrode 21 and the reception electrode 22 are hatched by dots.
  • the transmission electrode 21 is connected to a drive circuit (not shown) and configured to emit an electric field to the surroundings by the drive circuit.
  • the transmission electrode 21 is stacked on the first surface R1 of the first substrate 11, and is disposed at a position closer to the peripheral portion of the first surface R1 of the first substrate 11 than the position of the ground electrode 23 described later.
  • the material of the transmission electrode 21 is, for example, a transparent electrode containing a metal oxide such as indium tin oxide or tin oxide, a metal electrode such as copper, silver or gold, or a metal electrode which is difficult to see by thinning or blackening a metal. Is used.
  • the transmission electrode 21 is formed in substantially T shape, it is not restricted to this shape, It is possible to make it various shapes.
  • the transmission electrode 21 may be comb-shaped.
  • the receiving electrode 22 is configured to receive the electric field emitted from the transmitting electrode 21.
  • the receiving electrode 22 is made of the same material as the transmitting electrode 21 and formed in a substantially C shape. Further, the receiving electrode 22 is stacked on the first surface R1 of the first substrate 11, and is disposed to face the transmitting electrode 21 with a gap. Specifically, the receiving electrode 22 is disposed such that the C-shaped opening portion faces the convex portion of the transmitting electrode 21.
  • the shape of the receiving electrode 22 is not limited to the substantially C shape, but can be various shapes. For example, the receiving electrode 22 may be comb-shaped. When each of the transmission electrode 21 and the reception electrode 22 has a comb shape, the projection and the recess can be arranged to face each other.
  • the transmission electrode 21 and the reception electrode 22 are disposed on the same substrate (here, the first substrate 11) in the present embodiment, they need not necessarily be disposed on the same substrate, and may be disposed on different substrates. Good. Moreover, although it arrange
  • the ground electrode 23 set to the ground potential is stacked.
  • the ground electrode 23 is made of, for example, the same material as that of the transmission electrode 21 and is formed in a substantially rectangular shape whose long side extends along the Y direction. Further, the ground electrode 23 is disposed at an interval from the transmission electrode 21 and the reception electrode 22. In FIG. 2, the ground electrode 23 is adjacent to the receiving electrode 22 at an interval.
  • the transmission electrode 21, the reception electrode 22, and the ground electrode 23 are hatched by dots.
  • Each of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 is provided with corresponding lead wirings 24a, 24b, and 24c for electrically connecting to an external circuit (not shown).
  • the lead wirings 24 a to 24 c are formed on the first surface R 1 of the first substrate 11.
  • One end of the lead-out wiring 24 a is electrically connected to the transmission electrode 21, and the other end of the lead-out wiring 24 a is electrically connected to the flexible wiring board 5.
  • One end of the lead wiring 24 b is electrically connected to the reception electrode 22, and the other end of the lead wiring 24 b is electrically connected to the flexible wiring board 5.
  • One end of the lead-out wiring 24 c is electrically connected to the ground electrode 23, and the other end of the lead-out wiring 24 c is electrically connected to the flexible wiring board 5.
  • the floating electrode 25 is disposed below the transmission electrode 21, the reception electrode 22, and the ground electrode 23.
  • the floating electrode 25 is electrically independent of each of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 and is not electrically connected to an external circuit (not shown).
  • a material of the floating electrode 25 for example, a copper foil tape, a thin plate material made of metal or the like is preferable.
  • FIG. 5 is a schematic plan view showing an overlapping state of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 and the floating electrode 25 as viewed from above.
  • the floating electrode 25 is stacked on the upper surface of the second substrate 12 and has a long side extending in the Y direction and formed in a substantially rectangular shape.
  • the floating electrode 25 when viewed from the top, all of the ground electrodes 23 overlap the floating electrodes 25.
  • the peripheral portion of the floating electrode 25 is shown by a broken line in FIG.
  • all of the transmission electrodes 21 and all of the reception electrodes overlap the floating electrode 25.
  • the floating electrode 25 is formed to overlap with all of the transmission electrode 21, the reception electrode 22, and the ground electrode 23. That is, the floating electrode 25 faces all of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 through the first substrate 11 and the elastic member 15 when viewed in the Z direction.
  • the floating electrode 25 is preferably formed to have a length (width dimension) in the X direction larger than a length (width dimension) in the X direction of the ground electrode 23. Furthermore, the floating electrode 25 is more preferably formed such that both sides in the X direction are positioned outside the both sides in the X direction of the ground electrode 23.
  • a shielding electrode 26 set to the ground potential is formed on the upper surface of the third substrate 13.
  • the shielding electrode 26 is made of the same material as that of the transmitting electrode 21 and is formed in a substantially rectangular shape whose long side extends along the Y direction.
  • the shield electrode 26 is disposed at a position overlapping the transmission electrode 21 and the reception electrode 22 via the third substrate 13 when viewed in the Z direction.
  • the shielding electrode 26 is provided with a lead wiring 24 d for electrically connecting to an external circuit (not shown). In order to prevent the user's finger touching the touch sensor 1 from affecting the capacitance generated between the transmission electrode 21 and the reception electrode 22, the shielding electrode 26 is formed.
  • the elastic member 15 receives the pressing force F (force in the Z direction) toward the first substrate 11 when the touch sensor 1 is pressed to reduce the thickness, thereby reducing the thickness of the transmission electrode 21.
  • the receiving electrode 22 and the ground electrode 23 approaches the floating electrode 25.
  • the elastic member 15 is formed in a rectangular flat plate shape.
  • the elastic member 15 is preferably formed to have a thickness greater than the thickness of the first substrate 11 (that is, the distance between the first surface R1 and the second surface R2). Further, when viewed from above, the floating electrode 25 is formed to be disposed inside the outer edge of the elastic member 15.
  • the elastic member 15 is disposed on the upper surface of the second substrate 12. That is, the elastic member 15 is disposed between the second surface R2 of the first substrate 11 and the upper surface of the second substrate 12. That is, the elastic member 15 is disposed between the ground electrode 23 and the floating electrode 25. By this arrangement, the ground electrode 23 is arranged to face the floating electrode 25 via the elastic member 15.
  • a material of the elastic member 15 for example, an optical transparent double-sided sheet (OCA) having a relatively high elastic modulus, a thin plate material made of rubber or the like is preferable.
  • the pressing force F in the Z direction (first direction)
  • the elastic member 15 is elastically deformed by (the force in the first direction) so as to reduce the thickness.
  • the pressing force F is described as a force in the first direction, the same change occurs even in the direction opposite to the first direction (in the direction from the lower side to the upper side in FIG. 4).
  • the elastic member 15 is elastically deformed so that the thickness is from the dimension d1 (see FIG. 3) to the dimension d2 (see FIG. 4). That is, when receiving the pressing force F, the elastic member 15 is compressed in the Z direction.
  • each of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 and the floating electrode 25 come close to each other.
  • the potential difference between the ground electrode 23 and the floating electrode 25 decreases. That is, the potential of the floating electrode 25 comes closer to the ground potential.
  • the transmission electrode 21 and the reception electrode 22 approach the floating electrode 25, the electric field radiated from the transmission electrode 21 changes due to the relationship with the potential of the floating electrode 25 approaching the ground potential. That is, before and after the compressive deformation in the elastic member 15, the capacitance between the transmission electrode 21 and the reception electrode 22 changes. The change in capacitance is received by the receiving electrode 22, and a control circuit (not shown) electrically connected to the touch sensor 1 determines the state of the pressing operation on the operation surface 4.
  • the floating electrode 25 is electrically independent of each of the transmission electrode 21, the receiving electrode 22, and the ground electrode 23, the floating electrode 25 has a ground potential in the touch sensor 1. It is not necessary to form an electrical connection state for setting. Thereby, the electrical connection state in the touch sensor 1 can be simplified.
  • the touch sensor 1 is configured such that the distance between the ground electrode 23 and the floating electrode 25 is reduced by the pressing force F of the pressing operation. Therefore, as the ground electrode 23 approaches the floating electrode 25 due to the pressing force F, the floating electrode 25 approaches the ground potential. On the other hand, as the transmission electrode 21 and the reception electrode 22 approach the floating electrode 25, the capacitance between the transmission electrode 21 and the reception electrode 22 changes. As a result, in a configuration in which a control unit (not shown) is combined with the touch sensor 1, the control unit can perform pressure sensing in accordance with the pressing operation. Furthermore, for example, even when the pressing force F is relatively weak, the change in electrostatic capacitance between the transmission electrode 21 and the receiving electrode 22 is likely to occur as the potential of the floating electrode 25 approaches the ground potential. It is also possible to accurately detect the pressure value of F by the control unit.
  • the elastic member 15 is disposed between the ground electrode 23 and the floating electrode 25, and the ground electrode 23 faces the floating electrode 25 with the elastic member 15 interposed therebetween. For this reason, when the elastic member 15 receives the pressing force F and is compressed in the Z direction (first direction), the ground electrode 23 approaches the floating electrode 25. The floating electrode 25 can be appropriately brought close to the ground potential by the action of the elastic member 15.
  • the elastic member 15 is disposed between the second surface R2 of the first substrate 11 and the upper surface of the second substrate 12 opposed to the second surface R2. Therefore, when the elastic member 15 is compressed by the pressing force F, the distance between the first substrate 11 and the second substrate 12 decreases. By providing the elastic member 15, the ground electrode 23 can be easily approached toward the floating electrode 25.
  • the thickness of the elastic member 15 in the Z direction is formed to be larger than the thickness of the first substrate 11. Therefore, when the elastic member 15 receives the pressing force F and is compressed, the amount of displacement due to the compression is determined by the distance between the first surface R1 and the second surface R2 of the first substrate 11 (the first substrate 11 It is possible to make the thickness of the As a result, the distance by which the ground electrode 23 moves toward the floating electrode 25 can be made relatively long, and the potential of the floating electrode 25 changes as the potential of the floating electrode 25 approaches the ground potential. Capacitance can be greatly changed.
  • the floating electrode 25 is formed such that the width in the X direction (second direction) is larger than the width in the X direction of the ground electrode 23. As a result, the entire width in the X direction of the ground electrode 23 faces the floating electrode 25. As a result, the floating electrode 25 can be efficiently brought close to the ground potential.
  • ground electrodes 23 face the floating electrodes 25 via the first substrate 11. Thus, when the pressing force F acts on the touch sensor 1, all of the ground electrode 23 approaches the floating electrode 25, so the floating electrode 25 can be efficiently brought close to the ground potential.
  • the floating electrode 25 when viewed in the first direction, the floating electrode 25 is formed to be disposed inside the outer edge of the elastic member 15. Therefore, the transmission electrode 21, the reception electrode 22, and the ground electrode 23 can be brought close to the floating electrode 25 so that a planar deviation does not occur when the pressing force F acts on the touch sensor 1.
  • ground electrode 23 may overlap with the floating electrode 25.
  • a part (approximately half in the example of FIG. 6A) of the ground electrode 23 faces the floating electrode 25 via the first substrate 11 in the Z direction.
  • a part of the transmission electrode 21 and the reception electrode 22 may overlap with the floating electrode 25.
  • a part of the transmission electrode 21, a part of the reception electrode 22, and a part of the ground electrode 23 face the floating electrode 25 with the first substrate 11 in the Z direction.
  • the third substrate 13 and the shielding electrode 26 are disposed above the first substrate 11. However, as shown in FIG. 7, in the second embodiment, the third substrate 13 and the shielding electrode 26 are disposed. It has not been. That is, the third substrate 13 and the shielding electrode 26 do not necessarily have to be configured.
  • the floating electrode 25 is disposed on the first substrate 11, and the transmission electrode 21, the receiving electrode 22, and the ground electrode 23 are disposed on the second substrate 12.
  • the touch sensor 1 according to the third embodiment will be described with reference to FIG. 8A.
  • the operation unit 27 for pressing operation is provided on the upper surface of the window frame portion 3 of the cover member 2.
  • the operation unit 27 is formed in, for example, a substantially rectangular shape, and is disposed at a position corresponding to the upper side of the transmission electrode 21 and the reception electrode 22 on the top surface of the cover member 2.
  • the touch sensor 1 according to the fourth embodiment will be described with reference to FIG. 8B.
  • the transmission electrode 21, the reception electrode 22 and the ground electrode 23 are disposed on the first substrate 11, but the transmission electrode 21, the reception electrode 22 and the ground electrode 23 are not necessarily the same substrate (here, It does not have to be disposed on one substrate 11).
  • the transmission electrode 21 and the reception electrode 22 may be disposed on the third substrate 13, and the ground electrode 23 may be disposed on the first substrate 11.
  • the transmission electrode 21, the reception electrode 22, and the ground electrode 23 are disposed on the first substrate 11, and the floating electrode 25 is disposed on the second substrate 12. As shown in FIG. 7, the transmission electrode 21, the reception electrode 22, and the ground electrode 23 may be disposed on the second substrate 12, and the floating electrode 25 may be disposed on the first substrate 11.
  • each of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 may be disposed on different substrates.
  • the transmission electrode 21, the reception electrode 22, and the ground electrode 23 are disposed on the upper surface of the substrate, but may be disposed on the lower surface.
  • positioned is not specifically limited.
  • the floating electrode 25 may be disposed on the liquid crystal display 19 without configuring the second substrate 12.
  • the transmission electrode 21, the reception electrode 22, and the ground electrode 23 do not necessarily have to be disposed on the same substrate (here, the first substrate 11).
  • the electrodes such as the transmission electrode 21, the reception electrode 22, the ground electrode 23, and the floating electrode 25 do not have to be disposed on the upper surface of the substrate, and may be disposed on the lower surface.
  • the touch sensor 1 according to the fifth embodiment will be described with reference to FIGS. 9 to 10B.
  • symbol may be attached
  • the liquid crystal display 19 is disposed below the second substrate 12.
  • the vibration unit 50 is disposed below the base material 30.
  • the second substrate 12 is not formed, and the floating electrode 25 is disposed on the base 30.
  • the elastic member 15 is not formed, and instead, the spring 40 (elastic body) disposed between the cover member 2 and the base 30 is provided.
  • the third substrate 13 and the first substrate 11 are disposed below the cover member 2 so that the third substrate 13 is located above and the first substrate 11 is located below.
  • the three substrates 13 and the first substrate 11 are integrated through the transparent adhesive layer.
  • a liquid crystal display 19 (not shown in FIGS. 9 to 10B) is mounted on the lower surface of the first substrate 11 and integrated with the cover member 2.
  • the cover member 2 integrated with the third substrate 13, the first substrate 11, and the liquid crystal display 19 is disposed on the base 30 via a spring 40.
  • the locations where the springs 40 are disposed are indicated by arrows. That is, the spring 40 is disposed to connect the lower surface of the cover member 2 and the base 30.
  • FIG. 10A is a cross-sectional view showing the configuration of the touch sensor 1 according to the fifth embodiment, and shows a state before pressing from above.
  • FIG. 10B shows a state in which the touch sensor 1 shown in FIG. 10A is pressed from above.
  • the cover member 2 is supported by four springs 40 disposed on the upper surface of the base material 30, and can be depressed by a predetermined distance from above.
  • a space (air layer 100) larger than the predetermined distance exists between the first substrate 11 and the floating electrode 25 and the base material 30.
  • the air layer 100 is compressed by pressing the cover member 2 from above. That is, the thickness of the air layer between the cover member 2 and the base 30 is compressed from the length L1 to the length L2.
  • the spring 40 is in contact with the lower surface of the cover member 2, and the other end (lower end 40c) of the spring 40 is It is in contact with the top surface of the substrate 30.
  • the springs 40 are disposed at the four corners of the substrate 30.
  • the spring 40 preferably does not overlap with any of the transmission electrode 21, the reception electrode 22, the ground electrode 23, and the floating electrode 25 in plan view. With this configuration, unnecessary capacitive coupling to the spring 40 can be suppressed, and the influence on radio waves can also be reduced.
  • FIG. 11 is a top view showing the positional relationship between the base 30 and the spring 40.
  • FIG. 12A is a perspective view of the spring 40
  • FIG. 12B is a top view of the spring 40
  • FIG. 12C is a side view of the spring 40.
  • the spring 40 has a substantially rectangular shape elongated in the X direction in plan view.
  • the spring 40 has an upper end portion 40a, a middle portion 40b, and a lower end portion 40c, which are arranged along the longitudinal direction (X direction).
  • the spring 40 is bent at the boundary between the upper end 40a and the middle 40b, and is bent at the boundary between the middle 40b and the lower end 40c.
  • the intermediate portion 40b is inclined with respect to a horizontal surface (surface along the X direction and the Y direction) from the upper end 40a to the lower end 40c.
  • FIGS. 9 and 11 four springs 40 are disposed at the four corners between the cover member 2 and the base 30. Although the spring 40 is not shown in FIG. 10 in order to make the drawing easy to understand, the spring 40 is disposed between the cover member 2 and the base 30. The place where the spring 40 is disposed is indicated by an arrow in FIG.
  • the four springs 40 arranged at the four corners of the substrate 30 are arranged to extend in the X direction.
  • the four springs 40 are all arranged in the same direction, and the upper end 40a is arranged in the X direction (right side in FIG. 11).
  • the lower end portion 40c is disposed so as to be located in the direction opposite to the X direction (left side in FIG. 11).
  • the lower end portion 40 c of the spring 40 is fixed to the base material 30, and the upper end portion 40 a of the spring 40 is fixed to the lower surface of the cover member 2.
  • the fixing method is not particularly limited.
  • only the lower end 40c may be fixed to the base material 30, and the upper end 40a may not be fixed to the cover member 2 and may be in contact with the cover member 2. Conversely, only the upper end 40 a may be fixed to the cover member 2, and the lower end 40 c may not be fixed to the base 30 and may be in contact with the base 30.
  • a vibrating unit 50 is disposed below the base material 30.
  • the vibration unit 50 gives the base 30 a vibration that shakes in the Y direction.
  • the description of the mechanism for generating the vibration of the vibrating unit 50 is omitted, as the vibrating unit 50, a motor etc. may be mentioned.
  • the vibrating portion 50 is shown in a plate shape for ease of explanation, but it only shows the positional relationship with the substrate 30, and the shape of the vibrating portion 50 is a plate It is not necessarily the case.
  • the base material 30 and the vibration part 50 may be integrally formed.
  • the upper surface of the vibrating portion 50 is used as the base material 30, and the floating electrode 25 is formed on the upper surface of the vibrating portion 50.
  • the base 30 is made of a conductive metal or the arrangement range of the floating electrode 25 of the base 30 is partially made of a conductive metal, it is not necessary to configure the floating electrode 25.
  • the conductive metal case portion of the vibrating portion 50 may be used instead of the floating electrode 25.
  • the cover member 2 When the cover member 2 is pushed down, the four springs 40 bend and the cover member 2 approaches the substrate 30. That is, the cover member 2 moves to the base material 30 side so that the distance of the arrow shown to FIG. 10A becomes short.
  • the spring 40 of the present embodiment is in the shape of a flat spring as shown in FIG. 12A, when the cover member 2 is pushed down, the inclination angle of the intermediate portion 40b becomes gentle with respect to the horizontal surface, and the cover member 2 slightly Move in the X direction and approach the substrate 30. At this time, the distance of the above-mentioned space (the thickness of the air layer 100) is narrowed. Even if the cover member 2 is pressed, some remaining space exists between the cover member 2 and the base material 30.
  • the distance between the floating electrode 25 and the transmission electrode 21, the reception electrode 22, and the ground electrode 23 decreases. Also in the touch sensor 1 according to the present embodiment, the depressed state can be detected as in the first embodiment described above.
  • the four springs 40 return to their original shapes and return to the state before the operation.
  • position control of the cover member 2 with a housing (not shown) or the like makes it easy for the cover member 2 to return to the position before the operation.
  • the base material 30 vibrates in the Y direction.
  • the four springs 40 are arranged to extend in a direction (X direction) orthogonal to the vibration direction (Y direction) of the base material 30.
  • the spring 40 is fixed between the base 30 and the cover member 2.
  • the vibration of the substrate 30 absorbed by the four springs 40 is small. That is, by making the vibration direction and the extension direction of the spring 40 orthogonal, the vibration in the base material 30 is efficiently transmitted to the cover member 2 even if there is a remaining space.
  • the extension directions of the four springs 40 and the vibration directions of the base material 30 (that is, the vibration directions of the vibrating portion 50 transmitted to the base material 30) be orthogonal to each other. That is, it is desirable to set the vibration direction of the base material 30 in the direction in which the four springs 40 do not easily bend.
  • the vibration unit 50 operates in response to the detection unit (not shown) detecting that the distance between the transmission electrode 21, the reception electrode 22, and the ground electrode 23 with respect to the floating electrode 25 approaches. It may be configured.
  • the user who operates (presses) the cover member 2 may operate the vibration unit 50 so as to obtain a click feeling.
  • the sense of click here means the sense of click that can be obtained when the switch is pressed.
  • the user may operate the vibration unit 50 so as to obtain a plurality of clicks at short time intervals through the cover member 2.
  • the user may operate the vibration unit 50 to obtain vibration for a predetermined time through the cover member 2.
  • the vibration unit 50 may be operated such that the magnitude of the vibration is variable according to the amount of depression of the user.
  • the four springs 40 preferably have a shape or arrangement that hardly absorbs the vibration in the vibration direction of the base material 30, and may be other than the shape or the arrangement described above. The number is also not limited to four.
  • the push detection mechanism in which a person presses the cover member 2.
  • the pressing detection mechanism may have another configuration. Further, the configuration may be such that the pressing detection mechanism is not provided. In many cases, a component that can obtain vibration from the cover member 2 is required. In response to such a demand, it is determined as appropriate whether to adopt a form having a pressing detection mechanism or a form not having a pressing detection mechanism.
  • Embodiment 5 demonstrated using the spring 40 which is a leaf
  • the floating electrode 25 overlaps the transmitting electrode 21, the receiving electrode 22 and the ground electrode in plan view (viewed in the Z direction), but the present invention is not limited to this configuration.
  • the floating electrode 25 may overlap at least the receiving electrode 22 and the ground electrode 23 in plan view. However, when the floating electrode 25 overlaps with the transmission electrode 21, the capacitance between the transmission electrode 21 and the reception electrode 22 can be largely changed, and the detection accuracy of the pressing operation can be further improved.
  • the ground electrode 23 may be disposed above the transmission electrode 21 so that the ground electrode 23 and the transmission electrode 21 overlap each other in plan view.
  • the receiving electrode 22 may be disposed above the ground electrode 23, and the ground electrode 23 and the receiving electrode 22 may be disposed so as to overlap in a plan view.
  • the floating electrode 25 is stacked on the upper surface of the second substrate 12.
  • the present invention is not limited to this embodiment, and the floating electrode 25 may be stacked on the lower surface of the second substrate 12. Good.
  • the floating member 25 may be disposed at an interval in the Z direction from the lower surface (the second surface R2) of the first substrate 11 without forming the elastic member 15 (not shown). That is, the air layer and the first substrate 11 may be disposed between the ground electrode 23 and the floating electrode 25.
  • the first substrate 11 is preferably supported so as to be deformed toward the second substrate 12 by a support (not shown) or the like. The first substrate 11 is deformed so as to bend in the Z direction in response to the pressing force F (force in the Z direction), and comes close to the second substrate 12 toward the air layer. Thereby, the distance between the ground electrode 23 and the floating electrode 25 is reduced.
  • the elastic member 15 is omitted, the same function and effect as those of the above-described embodiment can be obtained.
  • substrate 11 and the elastic member 15 are formed as another member, it does not restrict to this form.
  • the first substrate 11 may be formed of an elastic body.
  • the touch sensor 1 does not have to include the elastic member 15.
  • the positional relationship between the transmission electrode 21 and the reception electrode 22 in plan view may be interchanged, and the transmission electrode 21 may be disposed closer to the ground electrode 23 than the reception electrode 22.
  • the elastic member 15 is the same magnitude
  • the form which can be pressed and operated from the upper side (upper surface side of the cover member 2) of the touch sensor 1 was shown, it does not restrict to this form. That is, the form may be such that pressing operation can be performed from the lower side of the touch sensor 1.
  • the touch sensor 1 of the present disclosure includes any one of one or more substrates (the first substrate 11, the second substrate 12, the third substrate 13, etc.) and the first substrate 11, the second substrate 12, or the third substrate 13. Are disposed on any one of the transmission electrode 21 capable of emitting an electric field, the first substrate 11, the second substrate 12, and the third substrate 13 and spaced apart from the transmission electrode 21.
  • the receiving electrode 22 capable of receiving an electric field, the ground electrode 23 disposed on any of the first substrate 11, the second substrate 12, and the third substrate 13, and the first substrate 11, the second substrate 12, and the third substrate 13.
  • a floating electrode 25 disposed in the Z direction.
  • the floating electrode 25 When viewed in the Z direction, the floating electrode 25 is disposed to overlap at least a portion of the ground electrode 23, at least a portion of the transmission electrode 21, and at least a portion of the reception electrode 22.
  • the floating electrode 25, the transmitting electrode 21, the receiving electrode 22, and the ground electrode 23 are electrically independent of each other.
  • the distance between the floating electrode 25 and the ground electrode 23 is reduced by pressing in the Z direction or the direction opposite to the Z direction.
  • the touch sensor 1 of the present disclosure may further include an elastic member 15 disposed between the ground electrode 23 and the floating electrode 25. More preferably, the elastic member 15 is compressed by pressing in the Z direction or a direction opposite to the Z direction, and the elastic member 15 is compressed to reduce the distance between the floating electrode 25 and the ground electrode 23.
  • the thickness of the elastic member 15 in the Z direction is the thickness of the first substrate 11 of the first substrate 11, the second substrate 12, and the third substrate 13 on which the ground electrode 23 is disposed. It is more preferable that the thickness is larger.
  • the touch sensor 1 of the present disclosure it is more preferable that all of the ground electrodes 23 overlap the floating electrodes 25 when viewed in the Z direction.
  • the floating electrode 25 be disposed inside the outer edge of the elastic member 15 when viewed in the Z direction.
  • the touch sensor 1 of the present disclosure further includes a cover member 2, a base 30 on which the floating electrode 25 is disposed, and an elastic body (for example, a spring 40) located between the cover 2 and the base 30.
  • an elastic body for example, a spring 40 located between the cover 2 and the base 30.
  • An upper end 40 a of the spring 40 is in contact with the cover member 2, and a lower end 40 c of the spring 40 is in contact with the base 30.
  • One or more substrates are disposed between the cover member and the substrate 30.
  • the spring 40 is a leaf spring.
  • the spring 40 is disposed at a position not overlapping any of the transmission electrode 21, the reception electrode 22, the ground electrode 23, and the floating electrode 24 when viewed in the Z direction.
  • the touch sensor 1 of the present disclosure may further include a vibrating unit 50 that vibrates the base 30.
  • the direction in which the spring 40 extends is the X direction
  • the vibrating portion 50 vibrates the base along a direction (for example, the Y direction) orthogonal to the Z direction and intersecting the X direction. .
  • the “direction in which the spring 40 extends” is a direction connecting the upper end 40 a and the lower end 40 c when viewed in the Z direction.
  • the X direction and the Y direction are orthogonal to each other in the touch sensor 1 of the present disclosure.
  • the base 30 and the vibrating portion 50 may be integrally formed.
  • the present disclosure can be industrially used as a sensor-type input device that can be pressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

This touch sensor is provided with: a transmission electrode which is arranged on any one of one or more substrates; a reception electrode; a ground electrode; and a floating electrode which is arranged in a first direction of the one or more substrates. When viewed from the first direction, the floating electrode is arranged so as to overlap the ground electrode, the transmission electrode and the reception electrode. The distance between the floating electrode and the ground electrode is reduced by means of pressing from the first direction or pressing from a direction opposite to the first direction.

Description

タッチセンサTouch sensor
 本開示はタッチセンサに関する。 The present disclosure relates to a touch sensor.
 従来から、タッチ操作および押圧操作が可能なタッチセンサに関して、例えば特許文献1に示されるものが知られている。 BACKGROUND ART Conventionally, as a touch sensor capable of touch operation and press operation, for example, the one shown in Patent Document 1 is known.
 特許文献1には、基板と、基板上に形成されかつ互いに間隔をあけて配置された第1電極および第2電極と、基板の上方に配置されたディスプレイモジュールと、ディスプレイモジュール上に配置されたパネルと、ディスプレイモジュールとパネルとの間に形成されたスペーサ層と、を備えたタッチセンサが開示されている。ディスプレイモジュールは、パネルに対する押圧力を受けて厚みが小さくなるように撓み変形可能となっている。また、ディスプレイモジュールは、第1電極および第2電極にそれぞれ対向するように配置された基準電位層を有している。この基準電位層は予めグランド電位に設定されている。 In Patent Document 1, a substrate, first and second electrodes formed on the substrate and spaced from each other, a display module disposed above the substrate, and a display module are disposed. A touch sensor is disclosed comprising a panel and a spacer layer formed between the display module and the panel. The display module is capable of bending and deforming so as to be reduced in thickness by receiving pressure on the panel. In addition, the display module has a reference potential layer disposed to face the first electrode and the second electrode. The reference potential layer is previously set to the ground potential.
特開2017-76421号公報JP, 2017-76421, A
 本開示の一態様のタッチセンサは、1またはそれ以上の基板と、前記1またはそれ以上の基板のいずれかに配置され、電界を放射できる送信電極と、前記1またはそれ以上の基板のいずれかに配置され、前記送信電極と間隔をあけて配置され、前記送信電極からの電界を受信できる受信電極と、前記1またはそれ以上の基板のいずれかに配置されるグランド電極と、前記1またはそれ以上の基板の第1の方向に配置されるフローティング電極と、を備える。前記第1の方向に見て、前記フローティング電極は、前記グランド電極の少なくとも一部と、前記送信電極の少なくとも一部と、前記受信電極の少なくとも一部と重なるように配置され、前記フローティング電極、前記送信電極、前記受信電極、および前記グランド電極は、互いに電気的に独立しており、前記第1の方向または前記第1の方向と反対の方向からの押圧により、前記フローティング電極と前記グランド電極との距離が小さくなる。 The touch sensor according to one aspect of the present disclosure includes one or more substrates, any one of the one or more substrates, a transmitting electrode capable of emitting an electric field, and any one or more of the one or more substrates. A receiving electrode which is disposed at a distance from the transmitting electrode and can receive an electric field from the transmitting electrode, a ground electrode disposed at any one of the one or more substrates, and the one or more receiving electrodes. And a floating electrode disposed in the first direction of the above substrate. When viewed in the first direction, the floating electrode is disposed so as to overlap at least a portion of the ground electrode, at least a portion of the transmission electrode, and at least a portion of the reception electrode; The transmitting electrode, the receiving electrode, and the ground electrode are electrically independent of each other, and the floating electrode and the ground electrode are pressed by the first direction or a direction opposite to the first direction. The distance between
 この構成によるとタッチセンサ内での電気的な接続状態を簡素化することができる。 According to this configuration, the electrical connection state in the touch sensor can be simplified.
図1は、実施の形態1に係るタッチセンサの全体斜視図である。FIG. 1 is an overall perspective view of the touch sensor according to the first embodiment. 図2は、実施の形態1に係るタッチセンサの構成を示す分解斜視図である。FIG. 2 is an exploded perspective view showing the configuration of the touch sensor according to the first embodiment. 図3は、図1のIII-III線の断面図である。FIG. 3 is a cross-sectional view taken along line III-III of FIG. 図4は、図3に示すタッチセンサに押圧力が作用したときの状態を示す図である。FIG. 4 is a view showing a state where a pressing force is applied to the touch sensor shown in FIG. 図5は、送信電極、受信電極、およびグランド電極とフローティング電極との重なり状態を平面的に示す模式図である。FIG. 5 is a schematic view showing in plan the overlapping state of the transmission electrode, the reception electrode, and the ground electrode and the floating electrode. 図6Aは、送信電極、受信電極、およびグランド電極とフローティング電極との重なり状態を平面的に示す模式図である。FIG. 6A is a schematic view showing in plan the overlapping state of the transmission electrode, the reception electrode, and the ground electrode and the floating electrode. 図6Bは、送信電極、受信電極、およびグランド電極とフローティング電極との重なり状態を平面的に示す模式図である。FIG. 6B is a schematic view showing in plan the overlapping state of the transmitting electrode, the receiving electrode, and the ground electrode and the floating electrode. 図7は、実施の形態2に係るタッチセンサの構成を示す断面図である。FIG. 7 is a cross-sectional view showing the configuration of the touch sensor according to the second embodiment. 図8Aは、実施の形態3に係るタッチセンサの構成を示す分解斜視図である。FIG. 8A is an exploded perspective view showing the configuration of the touch sensor according to the third embodiment. 図8Bは、実施の形態4に係るタッチセンサの構成を示す分解斜視図である。FIG. 8B is an exploded perspective view showing the configuration of the touch sensor according to Embodiment 4. 図9は、実施の形態5に係るタッチセンサの構成を示す分解斜視図である。FIG. 9 is an exploded perspective view showing the configuration of the touch sensor according to the fifth embodiment. 図10Aは、実施の形態5に係るタッチセンサの構成を示す断面図である。FIG. 10A is a cross-sectional view showing a configuration of a touch sensor according to Embodiment 5. 図10Bは、図10Aに示すタッチセンサが押圧された状態を示す断面図である。FIG. 10B is a cross-sectional view showing a state in which the touch sensor shown in FIG. 10A is pressed. 図11は、実施の形態5に係る基材とバネの位置関係を示す上面図である。FIG. 11 is a top view showing the positional relationship between the base and the spring in the fifth embodiment. 図12Aは、実施の形態5に係るバネの斜視図である。12A is a perspective view of a spring according to Embodiment 5. FIG. 図12Bは、実施の形態5に係るバネの上面図である。12B is a top view of a spring according to Embodiment 5. FIG. 図12Cは、実施の形態5に係るバネの側面図である。12C is a side view of a spring according to Embodiment 5. FIG.
 上述した従来のタッチセンサでは、押圧力を受けたときにディスプレイモジュールおよびスペーサ層により、基準電位層と第1電極との間隔および基準電位層と第2電極との間隔が小さくなる。このとき、基準電位層に静電容量が吸収される結果、第1電極と第2電極との間の相互静電容量が減少する。この相互静電容量の減少量を、受信側となる電極が取得して押圧操作による圧力の大きさを算出している。 In the above-described conventional touch sensor, when a pressing force is applied, the distance between the reference potential layer and the first electrode and the distance between the reference potential layer and the second electrode are reduced by the display module and the spacer layer. At this time, as the capacitance is absorbed by the reference potential layer, the mutual capacitance between the first electrode and the second electrode is reduced. The amount of decrease in mutual capacitance is acquired by the electrode on the receiving side, and the magnitude of the pressure due to the pressing operation is calculated.
 しかしながら、従来のタッチセンサでは、予め基準電位層をグランド電位に設定しておかなければならない。すなわち、基準電位層を、タッチセンサ内においてグランド電位に設定するための電気的な接続状態を予め形成しなければならない。このため、タッチセンサ内での電気的な接続状態が複雑になってしまう恐れがある。 However, in the conventional touch sensor, the reference potential layer must be set in advance to the ground potential. That is, an electrical connection state for setting the reference potential layer to the ground potential in the touch sensor must be formed in advance. For this reason, there is a possibility that the electrical connection state in the touch sensor may be complicated.
 以下、本開示の実施の形態について図面を参照しながら説明する。以下の実施の形態の説明は、例示に過ぎず、本開示、本開示の適用物、および本開示の用途を制限することを意図するものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The following description of the embodiments is illustrative only and is not intended to limit the present disclosure, applications of the present disclosure, and applications of the present disclosure.
 また、本開示では、「上」、「下」、「上方」、「下方」等の方向を示す用語を用いて説明するが、これらは相対的な位置関係を示しているだけであり、それにより本開示が限定されるものではない。 In addition, although the present disclosure is described using terms indicating directions such as “upper”, “lower”, “upper”, “lower”, etc., these merely indicate relative positional relationships, The present disclosure is not limited by the
 (実施の形態1)
 図1は、実施の形態1に係るタッチセンサ1の全体を示している。タッチセンサ1は、タッチ操作および押圧操作が可能なセンサ型入力装置である。タッチセンサ1は、例えば液晶ディスプレイまたは有機ELディスプレイ等の表示装置が組み込まれた種々の機器(例えばカーナビゲーション等の車載装置、パーソナルコンピュータのディスプレイ機器、携帯電話、携帯情報端末、携帯型ゲーム機、コピー機、券売機、現金自動預け払い機など)に対する入力装置として用いられる。
Embodiment 1
FIG. 1 shows the entire touch sensor 1 according to the first embodiment. The touch sensor 1 is a sensor-type input device capable of touch operation and press operation. The touch sensor 1 is, for example, various devices in which a display device such as a liquid crystal display or an organic EL display is incorporated (for example, an in-vehicle device such as a car navigation, a display device of a personal computer, a mobile phone, a portable information terminal, a portable game machine, It is used as an input device for copying machines, ticket machines, automatic teller machines, etc.).
 以下の説明において、X方向を図1に示すタッチセンサ1の左から右に向かう方向、Y方向を図1に示すタッチセンサ1の手前側から奥側に向かう方向、Z方向を図1に示すタッチセンサ1の上から下に向かう方向として定めるものとする。なお、このような位置関係は、タッチセンサ1またはタッチセンサ1が組み込まれた機器における実際の方向とは無関係である。 In the following description, the X direction is a direction from left to right of the touch sensor 1 shown in FIG. 1, the Y direction is a direction from the front side to the back of the touch sensor 1 shown in FIG. The direction from top to bottom of the touch sensor 1 is defined. Note that such a positional relationship is irrelevant to the actual direction in the touch sensor 1 or the device in which the touch sensor 1 is incorporated.
 図1に示すように、タッチセンサ1は、光透過性を有するカバー部材2を備えている。カバー部材2は、ガラスまたは樹脂を含む。カバー部材2は、例えば長方形の板状に形成され、後述する第3基板13の上面に積層配置されている(図2,図3参照)。カバー部材2の下面外周には、印刷等により黒色等の暗色で略額縁状の窓枠部3が形成されている。窓枠部3で囲まれた内部の矩形領域には、透光可能な操作面4が形成されている。操作面4は、主にタッチセンサ1のタッチ操作に伴い使用者の手指などが接触する側の面として構成されている。 As shown in FIG. 1, the touch sensor 1 includes a cover member 2 having light transparency. The cover member 2 contains glass or resin. The cover member 2 is formed, for example, in a rectangular plate shape, and is stacked on the upper surface of a third substrate 13 described later (see FIGS. 2 and 3). On the outer periphery of the lower surface of the cover member 2, a window frame portion 3 having a substantially frame shape in dark color such as black is formed by printing or the like. In the internal rectangular area surrounded by the window frame portion 3, a translucent operation surface 4 is formed. The operation surface 4 is mainly configured as a surface on which a user's finger or the like contacts with the touch operation of the touch sensor 1.
 タッチセンサ1は、フレキシブル配線板5を有する。フレキシブル配線板5は、柔軟性を有しかつ変形状態でもその電気的特性が変化しないように構成されている。フレキシブル配線板5は、例えばポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等の可撓性を有する絶縁フィルムを含む。 The touch sensor 1 has a flexible wiring board 5. The flexible wiring board 5 is configured so as to be flexible and not change its electrical characteristics even in a deformed state. The flexible wiring board 5 includes, for example, a flexible insulating film such as polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or the like.
 図2および図3に示すように、タッチセンサ1は、第1基板11、第2基板12、および第3基板13を有する。 As shown in FIGS. 2 and 3, the touch sensor 1 includes a first substrate 11, a second substrate 12, and a third substrate 13.
 第1基板11は、例えばポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルホン、PMMA(アクリル)、COP(シクロオレフィンポリマー)等のような光透過性を有する樹脂材や、ガラスを含む。第1基板11は、長方形に形成され、例えば約1~3mmの厚みを有している。また、第1基板11は、第1面R1と、第1面R1の反対側に位置する第2面R2とを有している。 The first substrate 11 includes, for example, a resin material having light transmittance such as polycarbonate, polyethylene terephthalate, polyether sulfone, PMMA (acrylic), COP (cycloolefin polymer) or the like, or glass. The first substrate 11 is formed in a rectangular shape, and has a thickness of, for example, about 1 to 3 mm. Further, the first substrate 11 has a first surface R1 and a second surface R2 located on the opposite side of the first surface R1.
 第2基板12は、上面が第1基板11の第2面R2と対向するように第1基板11の下方に配置されている。また、第3基板13は、下面が第1面R1と対向するように第1基板11に積層配置されている。第2基板12および第3基板13の各々は、第1基板11と同様の樹脂材やガラスを含み、第1基板11と同様の形状および厚みを有している。さらに、第3基板13の下側には、液晶ディスプレイ(LCD)19が配置されている。 The second substrate 12 is disposed below the first substrate 11 so that the upper surface thereof faces the second surface R2 of the first substrate 11. The third substrate 13 is stacked on the first substrate 11 so that the lower surface faces the first surface R1. Each of the second substrate 12 and the third substrate 13 includes the same resin material and glass as the first substrate 11 and has the same shape and thickness as the first substrate 11. Furthermore, a liquid crystal display (LCD) 19 is disposed below the third substrate 13.
 第1基板11の第1面R1には、タッチ操作を可能とするためのセンサ部(図示せず)が設けられている。また、センサ部には、フレキシブル配線板5を介して外部回路(図示せず)と電気的に接続するための基板配線(図示せず)が設けられている。 The first surface R1 of the first substrate 11 is provided with a sensor unit (not shown) for enabling a touch operation. Further, the sensor portion is provided with a substrate wiring (not shown) for electrically connecting to an external circuit (not shown) through the flexible wiring board 5.
 図2および図3に示すように、第1基板11には、送信電極21および受信電極22が設けられている。送信電極21および受信電極22は、第1面R1上の隅角部付近に配設されている。なお、図2から図5では、送信電極21および受信電極22を強調して示すために、送信電極21および受信電極22に対してドットによるハッチングを付している。 As shown in FIGS. 2 and 3, the transmission electrode 21 and the reception electrode 22 are provided on the first substrate 11. The transmission electrode 21 and the reception electrode 22 are disposed in the vicinity of a corner on the first surface R1. In FIGS. 2 to 5, in order to emphasize and show the transmission electrode 21 and the reception electrode 22, the transmission electrode 21 and the reception electrode 22 are hatched by dots.
 送信電極21は、図示しない駆動回路に接続され、この駆動回路により周囲に電界を放射するように構成されている。送信電極21は、第1基板11の第1面R1上に積層配置され、後述するグランド電極23の位置よりも第1基板11における第1面R1の周縁部に近い位置に配置されている。送信電極21の材料としては、例えば酸化インジウム錫や酸化錫など金属酸化物を含む透明電極、銅や銀や金などの金属電極、金属を細線化や黒化することにより見えにくくした金属電極などが用いられる。また、送信電極21は、略T字状に形成されているが、この形状に限られず、種々の形状にすることが可能である。例えば、送信電極21は、櫛形であってもよい。 The transmission electrode 21 is connected to a drive circuit (not shown) and configured to emit an electric field to the surroundings by the drive circuit. The transmission electrode 21 is stacked on the first surface R1 of the first substrate 11, and is disposed at a position closer to the peripheral portion of the first surface R1 of the first substrate 11 than the position of the ground electrode 23 described later. The material of the transmission electrode 21 is, for example, a transparent electrode containing a metal oxide such as indium tin oxide or tin oxide, a metal electrode such as copper, silver or gold, or a metal electrode which is difficult to see by thinning or blackening a metal. Is used. Moreover, although the transmission electrode 21 is formed in substantially T shape, it is not restricted to this shape, It is possible to make it various shapes. For example, the transmission electrode 21 may be comb-shaped.
 受信電極22は、送信電極21から放射された電界を受信するように構成されている。受信電極22は、送信電極21と同様の材料からなり、略C字状に形成されている。また、受信電極22は、第1基板11の第1面R1上に積層配置され、送信電極21と間隔をあけて対向するように配置されている。具体的に、受信電極22は、C字状の開口部分が送信電極21の凸状部分と向き合った状態となるように配置されている。なお、受信電極22の形状としては、略C字状に限られず、種々の形状にすることが可能である。例えば受信電極22は、櫛形であってもよい。送信電極21および受信電極22のそれぞれが櫛形の場合、互いに凸部と凹部が向き合った状態に配置することができる。 The receiving electrode 22 is configured to receive the electric field emitted from the transmitting electrode 21. The receiving electrode 22 is made of the same material as the transmitting electrode 21 and formed in a substantially C shape. Further, the receiving electrode 22 is stacked on the first surface R1 of the first substrate 11, and is disposed to face the transmitting electrode 21 with a gap. Specifically, the receiving electrode 22 is disposed such that the C-shaped opening portion faces the convex portion of the transmitting electrode 21. The shape of the receiving electrode 22 is not limited to the substantially C shape, but can be various shapes. For example, the receiving electrode 22 may be comb-shaped. When each of the transmission electrode 21 and the reception electrode 22 has a comb shape, the projection and the recess can be arranged to face each other.
 なお、本実施の形態では、送信電極21および受信電極22が同じ基板(ここでは第1基板11)に配置されているが、必ずしも同じ基板に配置する必要はなく、異なる基板に配置されてもよい。また、基板の上面(ここでは第1基板11の第1面R1)に配置されているが、基板の下面(例えば第2面R2)に配置してもよい。 Although the transmission electrode 21 and the reception electrode 22 are disposed on the same substrate (here, the first substrate 11) in the present embodiment, they need not necessarily be disposed on the same substrate, and may be disposed on different substrates. Good. Moreover, although it arrange | positions on the upper surface (here 1st surface R1 of the 1st board | substrate 11) of a board | substrate, you may arrange | position on the lower surface (for example, 2nd surface R2) of a board | substrate.
 第1基板11の第1面R1上には、グランド電位に設定されたグランド電極23が積層配置されている。グランド電極23は、例えば送信電極21と同様の材料からなり、長辺がY方向に沿って延びる略長方形状に形成されている。また、グランド電極23は、送信電極21および受信電極22と間隔をあけて配置されている。図2では、グランド電極23が受信電極22と間隔をあけて隣り合っている。なお、図面において、送信電極21、受信電極22、グランド電極23を強調して示すために、送信電極21、受信電極22、グランド電極23に対してドットによるハッチングを付している。 On the first surface R1 of the first substrate 11, the ground electrode 23 set to the ground potential is stacked. The ground electrode 23 is made of, for example, the same material as that of the transmission electrode 21 and is formed in a substantially rectangular shape whose long side extends along the Y direction. Further, the ground electrode 23 is disposed at an interval from the transmission electrode 21 and the reception electrode 22. In FIG. 2, the ground electrode 23 is adjacent to the receiving electrode 22 at an interval. In the drawings, in order to emphasize and show the transmission electrode 21, the reception electrode 22, and the ground electrode 23, the transmission electrode 21, the reception electrode 22, and the ground electrode 23 are hatched by dots.
 送信電極21、受信電極22、およびグランド電極23のそれぞれには、外部回路(図示せず)と電気的に接続するための対応する引き回し配線24a、24b、および24cが設けられる。引き回し配線24a~24cは、第1基板11の第1面R1上に形成されている。引き回し配線24aの一端は送信電極21に電気的に接続され、引き回し配線24aの他端はフレキシブル配線板5に電気的に接続されている。引き回し配線24bの一端は受信電極22に電気的に接続され、引き回し配線24bの他端はフレキシブル配線板5に電気的に接続されている。引き回し配線24cの一端はグランド電極23に電気的に接続され、引き回し配線24cの他端はフレキシブル配線板5に電気的に接続されている。 Each of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 is provided with corresponding lead wirings 24a, 24b, and 24c for electrically connecting to an external circuit (not shown). The lead wirings 24 a to 24 c are formed on the first surface R 1 of the first substrate 11. One end of the lead-out wiring 24 a is electrically connected to the transmission electrode 21, and the other end of the lead-out wiring 24 a is electrically connected to the flexible wiring board 5. One end of the lead wiring 24 b is electrically connected to the reception electrode 22, and the other end of the lead wiring 24 b is electrically connected to the flexible wiring board 5. One end of the lead-out wiring 24 c is electrically connected to the ground electrode 23, and the other end of the lead-out wiring 24 c is electrically connected to the flexible wiring board 5.
 図2および図3に示すように、送信電極21、受信電極22、およびグランド電極23の下方には、フローティング電極25が配設されている。フローティング電極25は、送信電極21、受信電極22、およびグランド電極23の各々と電気的に独立しており、外部回路(図示せず)にも電気的に接続されていない。フローティング電極25の材料としては、例えば銅箔テープ、金属製の薄板材などが好ましい。 As shown in FIGS. 2 and 3, the floating electrode 25 is disposed below the transmission electrode 21, the reception electrode 22, and the ground electrode 23. The floating electrode 25 is electrically independent of each of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 and is not electrically connected to an external circuit (not shown). As a material of the floating electrode 25, for example, a copper foil tape, a thin plate material made of metal or the like is preferable.
 [フローティング電極25の詳細]
 ここでフローティング電極25の詳細について、図2、図3および図5を参照しながら説明する。
[Details of floating electrode 25]
Here, the details of the floating electrode 25 will be described with reference to FIGS. 2, 3 and 5.
 図5は、上方から見た送信電極21、受信電極22、およびグランド電極23とフローティング電極25との重なり状態を平面的に示す模式図である。 FIG. 5 is a schematic plan view showing an overlapping state of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 and the floating electrode 25 as viewed from above.
 図2および図3に示すように、フローティング電極25は、第2基板12の上面に積層配置され、長辺がY方向に沿って延びる略長方形状に形成されている。 As shown in FIGS. 2 and 3, the floating electrode 25 is stacked on the upper surface of the second substrate 12 and has a long side extending in the Y direction and formed in a substantially rectangular shape.
 図5に示すように、上方に見て、グランド電極23の全部は、フローティング電極25と重なっている。フローティング電極25の周縁部を図5に破線で示す。また、上方から見て(Z方向に見て)、送信電極21の全部および受信電極の全部は、フローティング電極25と重なっている。上方から見て(Z方向に見て)、フローティング電極25は、送信電極21および受信電極22ならびにグランド電極23の全てと重なるような大きさに形成されている。つまり、フローティング電極25は、Z方向に見て第1基板11と弾性部材15とを介して送信電極21および受信電極22とグランド電極23の全部と向き合っている。 As shown in FIG. 5, when viewed from the top, all of the ground electrodes 23 overlap the floating electrodes 25. The peripheral portion of the floating electrode 25 is shown by a broken line in FIG. Further, when viewed from above (as viewed in the Z direction), all of the transmission electrodes 21 and all of the reception electrodes overlap the floating electrode 25. When viewed from above (as viewed in the Z direction), the floating electrode 25 is formed to overlap with all of the transmission electrode 21, the reception electrode 22, and the ground electrode 23. That is, the floating electrode 25 faces all of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 through the first substrate 11 and the elastic member 15 when viewed in the Z direction.
 フローティング電極25は、X方向の長さ(幅寸法)がグランド電極23におけるX方向の長さ(幅寸法)よりも大きくなるように形成されているのが好ましい。さらに、フローティング電極25は、X方向の両側部がグランド電極23におけるX方向の両側部よりも外側に位置するように形成されているのがより好ましい。 The floating electrode 25 is preferably formed to have a length (width dimension) in the X direction larger than a length (width dimension) in the X direction of the ground electrode 23. Furthermore, the floating electrode 25 is more preferably formed such that both sides in the X direction are positioned outside the both sides in the X direction of the ground electrode 23.
 [遮蔽電極26の詳細]
 次に、遮蔽電極26について、図2、図3を参照しながら説明する。
[Details of Shielding Electrode 26]
Next, the shielding electrode 26 will be described with reference to FIGS. 2 and 3.
 図2および図3に示すように、第3基板13の上面には、グランド電位に設定された遮蔽電極26が形成されている。遮蔽電極26は、送信電極21と同様の材料からなり、長辺がY方向に沿って延びる略長方形状に形成されている。遮蔽電極26は、Z方向に見て第3基板13を介して送信電極21および受信電極22と重なる位置に配置されている。また、遮蔽電極26には、外部回路(図示せず)と電気的に接続するための引き回し配線24dが設けられている。タッチセンサ1に接触した使用者の手指が送信電極21と受信電極22との間に生じる静電容量に影響しないようにするために、遮蔽電極26は形成されている。 As shown in FIGS. 2 and 3, a shielding electrode 26 set to the ground potential is formed on the upper surface of the third substrate 13. The shielding electrode 26 is made of the same material as that of the transmitting electrode 21 and is formed in a substantially rectangular shape whose long side extends along the Y direction. The shield electrode 26 is disposed at a position overlapping the transmission electrode 21 and the reception electrode 22 via the third substrate 13 when viewed in the Z direction. Further, the shielding electrode 26 is provided with a lead wiring 24 d for electrically connecting to an external circuit (not shown). In order to prevent the user's finger touching the touch sensor 1 from affecting the capacitance generated between the transmission electrode 21 and the reception electrode 22, the shielding electrode 26 is formed.
 [弾性部材15の詳細]
 次に、弾性部材15について、図2~図4を参照しながら説明する。
[Details of Elastic Member 15]
Next, the elastic member 15 will be described with reference to FIGS. 2 to 4.
 図4に示すように、弾性部材15は、タッチセンサ1が押圧操作されたときの第1基板11に向かう押圧力F(Z方向の力)を受けて厚みが小さくなることにより送信電極21、受信電極22、およびグランド電極23の各々がフローティング電極25に接近する。 As shown in FIG. 4, the elastic member 15 receives the pressing force F (force in the Z direction) toward the first substrate 11 when the touch sensor 1 is pressed to reduce the thickness, thereby reducing the thickness of the transmission electrode 21. Each of the receiving electrode 22 and the ground electrode 23 approaches the floating electrode 25.
 図2に示すように、弾性部材15は、長方形の平板状に形成されている。弾性部材15は、その厚みが第1基板11の厚み(すなわち、第1面R1と第2面R2との距離)よりも大きくなるように形成されているのが好ましい。また、上方から見て、フローティング電極25は弾性部材15の外縁よりも内側に配置されるように形成されている。 As shown in FIG. 2, the elastic member 15 is formed in a rectangular flat plate shape. The elastic member 15 is preferably formed to have a thickness greater than the thickness of the first substrate 11 (that is, the distance between the first surface R1 and the second surface R2). Further, when viewed from above, the floating electrode 25 is formed to be disposed inside the outer edge of the elastic member 15.
 弾性部材15は、第2基板12の上面に配置されている。すなわち、弾性部材15は、第1基板11の第2面R2と第2基板12の上面との間に配置されている。つまり、弾性部材15はグランド電極23とフローティング電極25との間に配置されている。この配置により、グランド電極23は、弾性部材15を介してフローティング電極25と向かい合うように配置されている。ここで、弾性部材15の材料としては、例えば弾性率が比較的高い光学透明両面シート(OCA)、ゴム製の薄板材などが好ましい。 The elastic member 15 is disposed on the upper surface of the second substrate 12. That is, the elastic member 15 is disposed between the second surface R2 of the first substrate 11 and the upper surface of the second substrate 12. That is, the elastic member 15 is disposed between the ground electrode 23 and the floating electrode 25. By this arrangement, the ground electrode 23 is arranged to face the floating electrode 25 via the elastic member 15. Here, as a material of the elastic member 15, for example, an optical transparent double-sided sheet (OCA) having a relatively high elastic modulus, a thin plate material made of rubber or the like is preferable.
 [タッチセンサ1の押圧操作]
 次に、タッチセンサ1が押圧操作されたときの各構成の動作を説明する。
[Pressing Operation of Touch Sensor 1]
Next, the operation of each configuration when the touch sensor 1 is pressed will be described.
 図4に示すように、使用者がタッチセンサ1を上側から押圧操作すると(すなわち、使用者の手指がカバー部材2の上面を押圧すると)、Z方向(第1の方向)に向かう押圧力F(第1の方向の力)により弾性部材15は厚みが小さくなるように弾性変形する。なお、本開示では押圧力Fは第1の方向の力として説明するが、第1の方向と逆の方向(図4では下側から上側に向かう方向)であっても同様の変化をする。 As shown in FIG. 4, when the user presses the touch sensor 1 from the upper side (that is, when the user's fingers press the upper surface of the cover member 2), the pressing force F in the Z direction (first direction) The elastic member 15 is elastically deformed by (the force in the first direction) so as to reduce the thickness. In the present disclosure, although the pressing force F is described as a force in the first direction, the same change occurs even in the direction opposite to the first direction (in the direction from the lower side to the upper side in FIG. 4).
 具体的に、弾性部材15は、厚みが寸法d1(図3参照)から寸法d2(図4参照)となるように弾性変形する。すなわち、弾性部材15は、押圧力Fを受けるとZ方向に向かって圧縮された状態となる。 Specifically, the elastic member 15 is elastically deformed so that the thickness is from the dimension d1 (see FIG. 3) to the dimension d2 (see FIG. 4). That is, when receiving the pressing force F, the elastic member 15 is compressed in the Z direction.
 押圧力Fにより弾性部材15が圧縮された状態になると、送信電極21、受信電極22、およびグランド電極23の各々とフローティング電極25とが互いに接近するようになる。グランド電極23がフローティング電極25に接近していくと、グランド電極23とフローティング電極25との電位差が小さくなる。すなわち、フローティング電極25の電位がグランド電位に近づくようになる。 When the elastic member 15 is compressed by the pressing force F, each of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 and the floating electrode 25 come close to each other. As the ground electrode 23 approaches the floating electrode 25, the potential difference between the ground electrode 23 and the floating electrode 25 decreases. That is, the potential of the floating electrode 25 comes closer to the ground potential.
 一方、送信電極21および受信電極22がフローティング電極25に接近していくと、グランド電位に近づくフローティング電極25の電位との関係により送信電極21から放射される電界が変化する。すなわち、弾性部材15における圧縮変形の前後において、送信電極21と受信電極22との間における静電容量が変化する。この静電容量の変化を受信電極22が受信して、タッチセンサ1と電気的に接続された制御回路(図示せず)が操作面4に対する押圧操作の状態を判定する。 On the other hand, as the transmission electrode 21 and the reception electrode 22 approach the floating electrode 25, the electric field radiated from the transmission electrode 21 changes due to the relationship with the potential of the floating electrode 25 approaching the ground potential. That is, before and after the compressive deformation in the elastic member 15, the capacitance between the transmission electrode 21 and the reception electrode 22 changes. The change in capacitance is received by the receiving electrode 22, and a control circuit (not shown) electrically connected to the touch sensor 1 determines the state of the pressing operation on the operation surface 4.
 [実施の形態の作用効果]
 以上のように、タッチセンサ1では、フローティング電極25が送信電極21、受信電極22、およびグランド電極23の各々と電気的に独立していることから、タッチセンサ1内でフローティング電極25をグランド電位に設定するための電気的な接続状態を形成しなくてもよい。これにより、タッチセンサ1内での電気的な接続状態を簡素化することができる。
[Operation and effect of the embodiment]
As described above, in the touch sensor 1, since the floating electrode 25 is electrically independent of each of the transmission electrode 21, the receiving electrode 22, and the ground electrode 23, the floating electrode 25 has a ground potential in the touch sensor 1. It is not necessary to form an electrical connection state for setting. Thereby, the electrical connection state in the touch sensor 1 can be simplified.
 そして、タッチセンサ1は、押圧操作の押圧力Fによりグランド電極23とフローティング電極25との間隔が小さくなるように構成されている。このため、押圧力Fによりグランド電極23がフローティング電極25に接近するにつれてフローティング電極25がグランド電位に近づくようになる。一方、送信電極21および受信電極22がフローティング電極25に接近するにつれて送信電極21と受信電極22との間における静電容量が変化するようになる。その結果、図示しない制御部をタッチセンサ1に組み合わせた構成において、該制御部により押圧操作に伴う感圧検知を行うことが可能となる。さらに、例えば押圧力Fが比較的弱い場合であっても、フローティング電極25の電位がグランド電位に近づくにつれて送信電極21と受信電極22との間における静電容量の変化が生じやすくなり、押圧力Fの圧力値を上記制御部により正確に検知することも可能となる。 The touch sensor 1 is configured such that the distance between the ground electrode 23 and the floating electrode 25 is reduced by the pressing force F of the pressing operation. Therefore, as the ground electrode 23 approaches the floating electrode 25 due to the pressing force F, the floating electrode 25 approaches the ground potential. On the other hand, as the transmission electrode 21 and the reception electrode 22 approach the floating electrode 25, the capacitance between the transmission electrode 21 and the reception electrode 22 changes. As a result, in a configuration in which a control unit (not shown) is combined with the touch sensor 1, the control unit can perform pressure sensing in accordance with the pressing operation. Furthermore, for example, even when the pressing force F is relatively weak, the change in electrostatic capacitance between the transmission electrode 21 and the receiving electrode 22 is likely to occur as the potential of the floating electrode 25 approaches the ground potential. It is also possible to accurately detect the pressure value of F by the control unit.
 また、弾性部材15は、グランド電極23とフローティング電極25との間に配置され、グランド電極23が弾性部材15を介してフローティング電極25と向かい合っている。このため、弾性部材15が押圧力Fを受けてZ方向(第1の方向)に向かって圧縮されると、グランド電極23がフローティング電極25に向かって接近していくようになる。弾性部材15の作用により、フローティング電極25を適切にグランド電位に近づけることができる。 The elastic member 15 is disposed between the ground electrode 23 and the floating electrode 25, and the ground electrode 23 faces the floating electrode 25 with the elastic member 15 interposed therebetween. For this reason, when the elastic member 15 receives the pressing force F and is compressed in the Z direction (first direction), the ground electrode 23 approaches the floating electrode 25. The floating electrode 25 can be appropriately brought close to the ground potential by the action of the elastic member 15.
 また、弾性部材15は、第1基板11の第2面R2と、第2面R2と対向する第2基板12の上面との間に配置されている。このため、弾性部材15が押圧力Fにより圧縮されると、第1基板11と第2基板12との間隔が小さくなる。弾性部材15を設けることにより、グランド電極23を、フローティング電極25に向かって容易に接近させることができる。 Further, the elastic member 15 is disposed between the second surface R2 of the first substrate 11 and the upper surface of the second substrate 12 opposed to the second surface R2. Therefore, when the elastic member 15 is compressed by the pressing force F, the distance between the first substrate 11 and the second substrate 12 decreases. By providing the elastic member 15, the ground electrode 23 can be easily approached toward the floating electrode 25.
 Z方向における弾性部材15の厚みは第1基板11の厚みより大きくなるように形成されている。このため、弾性部材15が押圧力Fを受けて圧縮されたときに、その圧縮による変位量を、第1基板11の第1面R1と第2面R2との間の距離(第1基板11の厚み)よりも大きくすることが可能となる。その結果、グランド電極23がフローティング電極25に向かって移動する距離を相対的に長くすることができ、フローティング電極25の電位がグランド電位に近づくにつれて変化する送信電極21と受信電極22との間における静電容量を大きく変化させることができる。 The thickness of the elastic member 15 in the Z direction is formed to be larger than the thickness of the first substrate 11. Therefore, when the elastic member 15 receives the pressing force F and is compressed, the amount of displacement due to the compression is determined by the distance between the first surface R1 and the second surface R2 of the first substrate 11 (the first substrate 11 It is possible to make the thickness of the As a result, the distance by which the ground electrode 23 moves toward the floating electrode 25 can be made relatively long, and the potential of the floating electrode 25 changes as the potential of the floating electrode 25 approaches the ground potential. Capacitance can be greatly changed.
 フローティング電極25は、X方向(第2の方向)の幅がグランド電極23におけるX方向の幅よりも大きくなるように形成されている。これにより、グランド電極23におけるX方向の幅全体がフローティング電極25と向き合うようになる。その結果、フローティング電極25を効率的にグランド電位に近づけることができる。 The floating electrode 25 is formed such that the width in the X direction (second direction) is larger than the width in the X direction of the ground electrode 23. As a result, the entire width in the X direction of the ground electrode 23 faces the floating electrode 25. As a result, the floating electrode 25 can be efficiently brought close to the ground potential.
 また、グランド電極23の全部が第1基板11を介してフローティング電極25と向かい合っている。これにより、押圧力Fがタッチセンサ1に作用したときに、グランド電極23の全部がフローティング電極25に接近するため、フローティング電極25を効率的にグランド電位に近づけることができる。 Further, all of the ground electrodes 23 face the floating electrodes 25 via the first substrate 11. Thus, when the pressing force F acts on the touch sensor 1, all of the ground electrode 23 approaches the floating electrode 25, so the floating electrode 25 can be efficiently brought close to the ground potential.
 また、前記第1の方向に見て、フローティング電極25は、弾性部材15の外縁の内側に配置されるように形成されている。このため、送信電極21、受信電極22、およびグランド電極23を、押圧力Fがタッチセンサ1に作用したときにフローティング電極25に対して平面的な偏りが生じないように接近させることができる。 Further, when viewed in the first direction, the floating electrode 25 is formed to be disposed inside the outer edge of the elastic member 15. Therefore, the transmission electrode 21, the reception electrode 22, and the ground electrode 23 can be brought close to the floating electrode 25 so that a planar deviation does not occur when the pressing force F acts on the touch sensor 1.
 [フローティング電極25の変形例]
 次にフローティング電極25の変形例について、図6Aおよび図6Bを参照しながら説明する。
[Modification of floating electrode 25]
Next, a modification of the floating electrode 25 will be described with reference to FIGS. 6A and 6B.
 図5では、上方から見て、送信電極21の全部、受信電極22の全部、およびグランド電極23の全部が、フローティング電極25と重なっているが、必ずしもこの構成である必要はない。 In FIG. 5, when viewed from above, all of the transmission electrode 21, all of the reception electrode 22, and all of the ground electrode 23 overlap the floating electrode 25, but this configuration is not necessarily required.
 図6Aに示すように、グランド電極23は一部だけがフローティング電極25と重なっている構成であってもよい。図6Aでは、グランド電極23の一部(図6Aの例では約半分)がZ方向において第1基板11を介してフローティング電極25と向かい合っている。 As shown in FIG. 6A, only part of the ground electrode 23 may overlap with the floating electrode 25. In FIG. 6A, a part (approximately half in the example of FIG. 6A) of the ground electrode 23 faces the floating electrode 25 via the first substrate 11 in the Z direction.
 図6Aに示す変形例であっても、押圧操作の押圧力Fによりグランド電極23がフローティング電極25に接近していくにつれてフローティング電極25の電位はグランド電位に近づく。 Even in the modification shown in FIG. 6A, the potential of the floating electrode 25 approaches the ground potential as the ground electrode 23 approaches the floating electrode 25 due to the pressing force F of the pressing operation.
 図6Bに示すように、送信電極21および受信電極22についても一部だけがフローティング電極25と重なっている構成であってもよい。図6Bでは、送信電極21の一部、受信電極22の一部、グランド電極23の一部がZ方向において第1基板11を介してフローティング電極25と向かい合っている。 As shown in FIG. 6B, only a part of the transmission electrode 21 and the reception electrode 22 may overlap with the floating electrode 25. In FIG. 6B, a part of the transmission electrode 21, a part of the reception electrode 22, and a part of the ground electrode 23 face the floating electrode 25 with the first substrate 11 in the Z direction.
 図6Bについても図6Aと同様に、押圧操作の押圧力Fによりグランド電極23がフローティング電極25に接近していくにつれてフローティング電極25の電位がグランド電位に近づく。 In FIG. 6B as well as FIG. 6A, the potential of the floating electrode 25 approaches the ground potential as the ground electrode 23 approaches the floating electrode 25 due to the pressing force F of the pressing operation.
 (実施の形態2)
 次に、実施の形態2に係るタッチセンサ1について図7を参照しながら説明する。なお、上述した実施の形態1と同様の構成については同一の符号を付して説明を省略する場合がある。
Second Embodiment
Next, the touch sensor 1 according to the second embodiment will be described with reference to FIG. In addition, about the structure similar to Embodiment 1 mentioned above, the same code | symbol may be attached | subjected and description may be abbreviate | omitted.
 実施の形態1では、第1基板11の上方に第3基板13および遮蔽電極26が配置されているが、図7に示すように実施の形態2では、第3基板13および遮蔽電極26は配置されていない。つまり、第3基板13および遮蔽電極26は必ずしも構成される必要はない。 In the first embodiment, the third substrate 13 and the shielding electrode 26 are disposed above the first substrate 11. However, as shown in FIG. 7, in the second embodiment, the third substrate 13 and the shielding electrode 26 are disposed. It has not been. That is, the third substrate 13 and the shielding electrode 26 do not necessarily have to be configured.
 さらに、図7に示すタッチセンサ1では、第1基板11にフローティング電極25が配置され、第2基板12に送信電極21、受信電極22、グランド電極23が配置されている。 Furthermore, in the touch sensor 1 shown in FIG. 7, the floating electrode 25 is disposed on the first substrate 11, and the transmission electrode 21, the receiving electrode 22, and the ground electrode 23 are disposed on the second substrate 12.
 (実施の形態3)
 次に、実施の形態3に係るタッチセンサ1について図8Aを参照しながら説明する。図8Aに示すように、実施の形態3では、カバー部材2の窓枠部3の上面に押圧操作用の操作部27が設けられている。操作部27は、例えば略長方形状に形成され、カバー部材2の上面において送信電極21および受信電極22の上方に対応する位置に配置されている。タッチセンサ1に操作部27を設けることにより、押圧操作可能な操作位置を明確に特定することができる。
Third Embodiment
Next, the touch sensor 1 according to the third embodiment will be described with reference to FIG. 8A. As shown in FIG. 8A, in the third embodiment, the operation unit 27 for pressing operation is provided on the upper surface of the window frame portion 3 of the cover member 2. The operation unit 27 is formed in, for example, a substantially rectangular shape, and is disposed at a position corresponding to the upper side of the transmission electrode 21 and the reception electrode 22 on the top surface of the cover member 2. By providing the operation unit 27 in the touch sensor 1, the operation position where the pressing operation can be performed can be clearly specified.
 (実施の形態4)
 次に、実施の形態4に係るタッチセンサ1について図8Bを参照しながら説明する。実施の形態1では、第1基板11に送信電極21、受信電極22、およびグランド電極23が配置されているが、送信電極21、受信電極22、およびグランド電極23は必ずしも同じ基板(ここでは第1基板11)に配置される必要はない。例えば、図8Bに示すように、第3基板13に送信電極21および受信電極22が配置され、第1基板11にグランド電極23が配置されてもよい。
Embodiment 4
Next, the touch sensor 1 according to the fourth embodiment will be described with reference to FIG. 8B. In the first embodiment, the transmission electrode 21, the reception electrode 22 and the ground electrode 23 are disposed on the first substrate 11, but the transmission electrode 21, the reception electrode 22 and the ground electrode 23 are not necessarily the same substrate (here, It does not have to be disposed on one substrate 11). For example, as shown in FIG. 8B, the transmission electrode 21 and the reception electrode 22 may be disposed on the third substrate 13, and the ground electrode 23 may be disposed on the first substrate 11.
 図2を参照しながら説明した実施の形態1では、第1基板11に送信電極21、受信電極22、およびグランド電極23が配置され、第2基板12にフローティング電極25が配置されているが、図7に示すように、第2基板12に送信電極21、受信電極22、およびグランド電極23が配置され、第1基板11にフローティング電極25が配置されてもよい。 In the first embodiment described with reference to FIG. 2, the transmission electrode 21, the reception electrode 22, and the ground electrode 23 are disposed on the first substrate 11, and the floating electrode 25 is disposed on the second substrate 12. As shown in FIG. 7, the transmission electrode 21, the reception electrode 22, and the ground electrode 23 may be disposed on the second substrate 12, and the floating electrode 25 may be disposed on the first substrate 11.
 さらには、送信電極21、受信電極22、およびグランド電極23のそれぞれは、異なる基板に配置されてもよい。 Furthermore, each of the transmission electrode 21, the reception electrode 22, and the ground electrode 23 may be disposed on different substrates.
 また、上述した実施の形態では、送信電極21、受信電極22、およびグランド電極23は基板の上面に配置されているが、下面に配置されてもよい。 Further, in the embodiment described above, the transmission electrode 21, the reception electrode 22, and the ground electrode 23 are disposed on the upper surface of the substrate, but may be disposed on the lower surface.
 つまり、送信電極21、受信電極22、グランド電極23、フローティング電極25のそれぞれが配置される層は特に限定されない。 That is, the layer in which each of the transmission electrode 21, the reception electrode 22, the ground electrode 23, and the floating electrode 25 is arrange | positioned is not specifically limited.
 また、第2基板12を構成せず、フローティング電極25は液晶ディスプレイ19に配置されてもよい。 In addition, the floating electrode 25 may be disposed on the liquid crystal display 19 without configuring the second substrate 12.
 なお、上述した実施の形態は一例に過ぎず、送信電極21、受信電極22、およびグランド電極23は必ずしも同じ基板(ここでは第1基板11)に配置される必要はない。 The embodiment described above is merely an example, and the transmission electrode 21, the reception electrode 22, and the ground electrode 23 do not necessarily have to be disposed on the same substrate (here, the first substrate 11).
 また、送信電極21、受信電極22、グランド電極23、フローティング電極25など、それぞれの電極は、基板の必ずしも基板の上面に配置される必要はなく、下面に配置されてもよい。 Further, the electrodes such as the transmission electrode 21, the reception electrode 22, the ground electrode 23, and the floating electrode 25 do not have to be disposed on the upper surface of the substrate, and may be disposed on the lower surface.
 いずれの実施の形態においても、実施の形態1と同様の効果を奏することができる。 In any of the embodiments, the same effect as that of the first embodiment can be obtained.
 (実施の形態5)
 次に、実施の形態5に係るタッチセンサ1について図9~図10Bを参照しながら説明する。なお、上述した実施の形態と同様の構成については、同一の符号を付して説明を省略する場合がある。
Fifth Embodiment
Next, the touch sensor 1 according to the fifth embodiment will be described with reference to FIGS. 9 to 10B. In addition, about the structure similar to embodiment mentioned above, the same code | symbol may be attached | subjected and description may be abbreviate | omitted.
 上述した実施の形態1~4では第2基板12の下方に液晶ディスプレイ19が配置されていたが、本実施の形態では、液晶ディスプレイ19の代わりに基材30が配置されている例を用いて説明する。本実施の形態ではさらに、基材30の下方に振動部50が配置されている。本実施の形態では、第2基板12は形成されておらず、フローティング電極25は基材30の上に配置されている。また、本実施の形態では弾性部材15が形成されておらず、代わりにカバー部材2と基材30との間に配置されるバネ40(弾性体)を有する。カバー部材2の下方には第3基板13および第1基板11が配置されており、上方が第3基材13、下方が第1基材11の位置関係になるように、カバー部材2、第3基板13、および第1基板11が透明粘着層を介して一体化されている。液晶ディスプレイ19(図9~図10Bには図示せず)は第1基板11の下面に装着されており、カバー部材2と一体化されている。第3基板13、第1基板11、液晶ディスプレイ19と一体化されるカバー部材2は、基材30にバネ40を介して配置されている。なお、図10Aおよび図10Bにおいては、バネ40が配置される箇所を矢印で示している。つまり、バネ40はカバー部材2の下面と基材30とを繋ぐように配置されている。 In the first to fourth embodiments described above, the liquid crystal display 19 is disposed below the second substrate 12. However, in the present embodiment, using the example in which the base material 30 is disposed instead of the liquid crystal display 19. explain. Further, in the present embodiment, the vibration unit 50 is disposed below the base material 30. In the present embodiment, the second substrate 12 is not formed, and the floating electrode 25 is disposed on the base 30. Further, in the present embodiment, the elastic member 15 is not formed, and instead, the spring 40 (elastic body) disposed between the cover member 2 and the base 30 is provided. The third substrate 13 and the first substrate 11 are disposed below the cover member 2 so that the third substrate 13 is located above and the first substrate 11 is located below. The three substrates 13 and the first substrate 11 are integrated through the transparent adhesive layer. A liquid crystal display 19 (not shown in FIGS. 9 to 10B) is mounted on the lower surface of the first substrate 11 and integrated with the cover member 2. The cover member 2 integrated with the third substrate 13, the first substrate 11, and the liquid crystal display 19 is disposed on the base 30 via a spring 40. In FIGS. 10A and 10B, the locations where the springs 40 are disposed are indicated by arrows. That is, the spring 40 is disposed to connect the lower surface of the cover member 2 and the base 30.
 図10Aは、実施の形態5に係るタッチセンサ1の構成を示す断面図で、上方から押圧される前の状態を示している。図10Bは、図10Aに示すタッチセンサ1が上方から押圧された状態を示している。 FIG. 10A is a cross-sectional view showing the configuration of the touch sensor 1 according to the fifth embodiment, and shows a state before pressing from above. FIG. 10B shows a state in which the touch sensor 1 shown in FIG. 10A is pressed from above.
 図10Aに示すようにカバー部材2は、基材30の上面に配置される4つのバネ40で支えられており、上方から所定距離の押し下げが可能である。換言すれば、第1基板11とフローティング電極25、基材30との間には所定距離よりも大きい空間(空気層100)が存在する。 As shown in FIG. 10A, the cover member 2 is supported by four springs 40 disposed on the upper surface of the base material 30, and can be depressed by a predetermined distance from above. In other words, a space (air layer 100) larger than the predetermined distance exists between the first substrate 11 and the floating electrode 25 and the base material 30.
 カバー部材2が上方から押圧されることによって空気層100は圧縮される。つまりカバー部材2と基材30との間の空気層の厚さは、長さL1から長さL2に圧縮される。 The air layer 100 is compressed by pressing the cover member 2 from above. That is, the thickness of the air layer between the cover member 2 and the base 30 is compressed from the length L1 to the length L2.
 バネ40の詳細については図9~図12Cを参照しながら後述するが、バネ40の一端(上端部40a)はカバー部材2の下面に接しており、バネ40の他端(下端部40c)は基材30の上面に接している。そして、バネ40は基材30の四隅に配置されている。 The details of the spring 40 will be described later with reference to FIGS. 9 to 12C, but one end (upper end 40a) of the spring 40 is in contact with the lower surface of the cover member 2, and the other end (lower end 40c) of the spring 40 is It is in contact with the top surface of the substrate 30. The springs 40 are disposed at the four corners of the substrate 30.
 なお、バネ40は、平面視で送信電極21、受信電極22、グランド電極23、フローティング電極25のいずれとも重ならないことが望ましい。この構成であれば、バネ40に対する不要な容量結合を抑制し、電波への影響も低減できる。 The spring 40 preferably does not overlap with any of the transmission electrode 21, the reception electrode 22, the ground electrode 23, and the floating electrode 25 in plan view. With this configuration, unnecessary capacitive coupling to the spring 40 can be suppressed, and the influence on radio waves can also be reduced.
 [バネ40の構成の詳細]
 次に、バネ40の詳細については図9~図12Cを参照しながら説明する。図11は、基材30とバネ40の位置関係を示す上面図である。図12Aはバネ40の斜視図、図12Bはバネ40の上面図、図12Cはバネ40の側面図である。
[Details of Configuration of Spring 40]
Next, the details of the spring 40 will be described with reference to FIGS. 9 to 12C. FIG. 11 is a top view showing the positional relationship between the base 30 and the spring 40. As shown in FIG. 12A is a perspective view of the spring 40, FIG. 12B is a top view of the spring 40, and FIG. 12C is a side view of the spring 40.
 図11および図12Cに示すようにバネ40は、平面視ではX方向に長い略長方形の形状である。バネ40は、長手方向(X方向)に沿って並んでいる、上端部40a、中間部40b、下端部40cを有する。図12Aに示すようにバネ40は、上端部40aと中間部40bとの境で折れ曲がっており、中間部40bと下端部40cとの境で折れ曲がっている。そして中間部40bは、上端部40aから下端部40cに向かって水平面(X方向とY方向に沿う面)に対して傾斜している。 As shown in FIGS. 11 and 12C, the spring 40 has a substantially rectangular shape elongated in the X direction in plan view. The spring 40 has an upper end portion 40a, a middle portion 40b, and a lower end portion 40c, which are arranged along the longitudinal direction (X direction). As shown in FIG. 12A, the spring 40 is bent at the boundary between the upper end 40a and the middle 40b, and is bent at the boundary between the middle 40b and the lower end 40c. The intermediate portion 40b is inclined with respect to a horizontal surface (surface along the X direction and the Y direction) from the upper end 40a to the lower end 40c.
 図9および図11に示すように4つのバネ40は、カバー部材2と基材30との間の四隅に配置されている。図10では図面を分かり易くするためにバネ40は図示していないが、カバー部材2と基材30との間にはバネ40が配置されている。バネ40が配置される箇所を図10に矢印で示している。 As shown in FIGS. 9 and 11, four springs 40 are disposed at the four corners between the cover member 2 and the base 30. Although the spring 40 is not shown in FIG. 10 in order to make the drawing easy to understand, the spring 40 is disposed between the cover member 2 and the base 30. The place where the spring 40 is disposed is indicated by an arrow in FIG.
 基材30の四隅に配置される4つのバネ40は、X方向に延伸するように配置されている。4つのバネ40は全て同じ向きに配置されており、上端部40aがX方向(図11では右側)に位置するように配置されている。下端部40cがX方向と反対方向(図11では左側)に位置するように配置されている。バネ40の下端部40cは、基材30に固定され、バネ40の上端部40aは、カバー部材2の下面に固定されている。固定方法は、特に限定されない。また、必ずしも接続されている必要はなく、例えば、下端部40cだけが基材30に固定され、上端部40aはカバー部材2に固定されずカバー部材2に接しているだけでも良い。逆に、上端部40aだけがカバー部材2に固定され、下端部40cは基材30に固定されず基材に30に接しているだけでも良い。 Four springs 40 arranged at the four corners of the substrate 30 are arranged to extend in the X direction. The four springs 40 are all arranged in the same direction, and the upper end 40a is arranged in the X direction (right side in FIG. 11). The lower end portion 40c is disposed so as to be located in the direction opposite to the X direction (left side in FIG. 11). The lower end portion 40 c of the spring 40 is fixed to the base material 30, and the upper end portion 40 a of the spring 40 is fixed to the lower surface of the cover member 2. The fixing method is not particularly limited. Moreover, it is not necessary to be necessarily connected, for example, only the lower end 40c may be fixed to the base material 30, and the upper end 40a may not be fixed to the cover member 2 and may be in contact with the cover member 2. Conversely, only the upper end 40 a may be fixed to the cover member 2, and the lower end 40 c may not be fixed to the base 30 and may be in contact with the base 30.
 図9および図10に示すように、基材30の下方には、振動部50が配置されている。振動部50は、Y方向に沿って揺れるような振動を基材30に与える。振動部50の振動を発生させる機構の説明は省略するが、振動部50としてはモーターなどが挙げられる。 As shown in FIGS. 9 and 10, a vibrating unit 50 is disposed below the base material 30. The vibration unit 50 gives the base 30 a vibration that shakes in the Y direction. Although the description of the mechanism for generating the vibration of the vibrating unit 50 is omitted, as the vibrating unit 50, a motor etc. may be mentioned.
 なお、図9および図10では、説明を容易にするため振動部50を板状で示しているが、基材30との位置関係を示しているだけであり、振動部50の形状は、板状とは限らない。 In FIGS. 9 and 10, the vibrating portion 50 is shown in a plate shape for ease of explanation, but it only shows the positional relationship with the substrate 30, and the shape of the vibrating portion 50 is a plate It is not necessarily the case.
 また、基材30と振動部50は一体に形成されてもよい。この場合、振動部50の上面を基材30とし、振動部50の上面にフローティング電極25が形成される。基材30を導電金属製にする、または基材30のフローティング電極25の配置範囲を部分的に導電金属製にすると、フローティング電極25を構成する必要はない。または振動部50の導電金属製のケース部位をフローティング電極25の代わりに用いてもよい。 Moreover, the base material 30 and the vibration part 50 may be integrally formed. In this case, the upper surface of the vibrating portion 50 is used as the base material 30, and the floating electrode 25 is formed on the upper surface of the vibrating portion 50. When the base 30 is made of a conductive metal or the arrangement range of the floating electrode 25 of the base 30 is partially made of a conductive metal, it is not necessary to configure the floating electrode 25. Alternatively, the conductive metal case portion of the vibrating portion 50 may be used instead of the floating electrode 25.
 次に、以上のように構成された本実施の形態によるタッチセンサ1の動作について説明する。 Next, the operation of the touch sensor 1 according to the present embodiment configured as described above will be described.
 カバー部材2が押し下げられると、4つのバネ40が撓んでカバー部材2は基材30に近づく。つまり、図10Aに示す矢印の距離が短くなるようにカバー部材2が基材30側に移動する。本実施の形態のバネ40が図12Aに示すように板バネの形状であれば、カバー部材2が押し下げられると、水平面に対して中間部40bの傾斜角度が緩やかになり、カバー部材2は僅かにX方向に移動し、かつ、基材30に近づく。このとき上述した空間の距離(空気層100の厚さ)は狭まる。なお、いくらカバー部材2が押圧されたとしても、カバー部材2と基材30との間にはいくらかの残存空間が存在する。 When the cover member 2 is pushed down, the four springs 40 bend and the cover member 2 approaches the substrate 30. That is, the cover member 2 moves to the base material 30 side so that the distance of the arrow shown to FIG. 10A becomes short. If the spring 40 of the present embodiment is in the shape of a flat spring as shown in FIG. 12A, when the cover member 2 is pushed down, the inclination angle of the intermediate portion 40b becomes gentle with respect to the horizontal surface, and the cover member 2 slightly Move in the X direction and approach the substrate 30. At this time, the distance of the above-mentioned space (the thickness of the air layer 100) is narrowed. Even if the cover member 2 is pressed, some remaining space exists between the cover member 2 and the base material 30.
 カバー部材2が基材30に近づくのに応じて、フローティング電極25と送信電極21、受信電極22、グランド電極23との間の距離は小さくなる。本実施の形態のタッチセンサ1においても、上述した実施の形態1と同様に押し下げ状態の検出ができる。 As the cover member 2 approaches the base material 30, the distance between the floating electrode 25 and the transmission electrode 21, the reception electrode 22, and the ground electrode 23 decreases. Also in the touch sensor 1 according to the present embodiment, the depressed state can be detected as in the first embodiment described above.
 カバー部材2の押し下げ力(Z方向の押圧力)を止めると、4つのバネ40は、元の形状に復帰して操作前の状態に戻る。例えば、カバー部材2は筐体(図示せず)などで位置規制することで、カバー部材2が操作前の位置に戻り易くなる。 When the pressing force (pressure in the Z direction) of the cover member 2 is stopped, the four springs 40 return to their original shapes and return to the state before the operation. For example, position control of the cover member 2 with a housing (not shown) or the like makes it easy for the cover member 2 to return to the position before the operation.
 本実施の形態では、振動部50が動作すると、基材30はY方向に沿って振動する。上方から見て、4つのバネ40は、基材30での振動方向(Y方向)に対して直交関係の方向(X方向)に延伸するように配置されている。バネ40は、基材30とカバー部材2との間に固定されている。 In the present embodiment, when the vibration unit 50 operates, the base material 30 vibrates in the Y direction. As viewed from above, the four springs 40 are arranged to extend in a direction (X direction) orthogonal to the vibration direction (Y direction) of the base material 30. The spring 40 is fixed between the base 30 and the cover member 2.
 この構成では、4つのバネ40によって吸収される基材30の振動は少ない。つまり、振動方向とバネ40の延伸方向を直交させることにより、基材30における振動は、残存空間があったとしても効率よくカバー部材2に伝達される。 In this configuration, the vibration of the substrate 30 absorbed by the four springs 40 is small. That is, by making the vibration direction and the extension direction of the spring 40 orthogonal, the vibration in the base material 30 is efficiently transmitted to the cover member 2 even if there is a remaining space.
 なお、4つのバネ40の延伸方向と基材30での振動方向(つまり、基材30に伝わる振動部50の振動方向)は直交関係であることが望ましいが、交差関係でもよい。すなわち、4つのバネ40がたわみ難い方向に、基材30の振動方向を設定することが望ましい。 It is desirable that the extension directions of the four springs 40 and the vibration directions of the base material 30 (that is, the vibration directions of the vibrating portion 50 transmitted to the base material 30) be orthogonal to each other. That is, it is desirable to set the vibration direction of the base material 30 in the direction in which the four springs 40 do not easily bend.
 例えば、フローティング電極25に対しての送信電極21、受信電極22、グランド電極23の距離が近づいたことを検出部(図示せず)が検出するのに応じて、振動部50が動作するように構成してもよい。 For example, the vibration unit 50 operates in response to the detection unit (not shown) detecting that the distance between the transmission electrode 21, the reception electrode 22, and the ground electrode 23 with respect to the floating electrode 25 approaches. It may be configured.
 例えば、カバー部材2を操作する(押圧する)使用者が、クリック感を得るように振動部50を動作させても良い。ここでいうクリック感とは、スイッチを押した時に得られるようなクリック感のことを言う。使用者が、カバー部材2を通じて短い時間間隔で、複数回のクリック感を得られるように振動部50を動作させても良い。使用者が、カバー部材2を通じて所定時間の間、振動が得られるように振動部50を動作させても良い。さらには、使用者の押し込み量によって、振動の大きさが可変するように振動部50を動作させてもよい。 For example, the user who operates (presses) the cover member 2 may operate the vibration unit 50 so as to obtain a click feeling. The sense of click here means the sense of click that can be obtained when the switch is pressed. The user may operate the vibration unit 50 so as to obtain a plurality of clicks at short time intervals through the cover member 2. The user may operate the vibration unit 50 to obtain vibration for a predetermined time through the cover member 2. Furthermore, the vibration unit 50 may be operated such that the magnitude of the vibration is variable according to the amount of depression of the user.
 なお、4つのバネ40は、基材30の振動方向に対して、その振動を吸収し難い形状や配置が望ましく、上述した形状や配置以外であってもよい。個数についても4つに限定されない。 The four springs 40 preferably have a shape or arrangement that hardly absorbs the vibration in the vibration direction of the base material 30, and may be other than the shape or the arrangement described above. The number is also not limited to four.
 なお、実施の形態5では、フローティング電極25および送信電極21、受信電極22、グランド電極23を有する構成において、人がカバー部材2を押圧する押し込み検出機構を用いて説明したが、本実施の形態は一例であり、押し込み検出機構は他の構成であってもよい。また、押し込み検出機構を設けていない構成にしてもよい。カバー部材2から振動を得られる構成品を要望されることも多い。このような要望に対して、必要に応じて押し込み検出機構を有する形態とする、もしくは押し込み検出機構を有しない形態とするかは適宜決定する。 In the fifth embodiment, in the configuration including the floating electrode 25, the transmission electrode 21, the reception electrode 22, and the ground electrode 23, the push detection mechanism is described in which a person presses the cover member 2. Is an example, and the pressing detection mechanism may have another configuration. Further, the configuration may be such that the pressing detection mechanism is not provided. In many cases, a component that can obtain vibration from the cover member 2 is required. In response to such a demand, it is determined as appropriate whether to adopt a form having a pressing detection mechanism or a form not having a pressing detection mechanism.
 また、実施の形態5では弾性体として板バネであるバネ40を用いて説明したが、この構成に限定されない。他の弾性体であってもよい。 Moreover, although Embodiment 5 demonstrated using the spring 40 which is a leaf | plate spring as an elastic body, it is not limited to this structure. It may be another elastic body.
 なお、上述した実施の形態1~6では、平面視で(Z方向に見て)フローティング電極25は、送信電極21、受信電極22、グランド電極と重なり合っているがこの構成に限定されない。 In the first to sixth embodiments described above, the floating electrode 25 overlaps the transmitting electrode 21, the receiving electrode 22 and the ground electrode in plan view (viewed in the Z direction), but the present invention is not limited to this configuration.
 平面視で、フローティング電極25は、少なくとも受信電極22およびグランド電極23と重なり合っていればよい。しかしながら、フローティング電極25が送信電極21と重なり合うことにより、送信電極21と受信電極22との間における静電容量を大きく変化させることができ、押圧操作の検出精度をより向上させることができる。 The floating electrode 25 may overlap at least the receiving electrode 22 and the ground electrode 23 in plan view. However, when the floating electrode 25 overlaps with the transmission electrode 21, the capacitance between the transmission electrode 21 and the reception electrode 22 can be largely changed, and the detection accuracy of the pressing operation can be further improved.
 また、グランド電極23を送信電極21の上方に配置し、グランド電極23と送信電極21とが互いに平面視で重なり合うように配置してもよい。この場合、受信電極22をグランド電極23の上方に配置し、グランド電極23と受信電極22とが平面視で重なり合うように配置してもよい。 Alternatively, the ground electrode 23 may be disposed above the transmission electrode 21 so that the ground electrode 23 and the transmission electrode 21 overlap each other in plan view. In this case, the receiving electrode 22 may be disposed above the ground electrode 23, and the ground electrode 23 and the receiving electrode 22 may be disposed so as to overlap in a plan view.
 また、上記実施の形態では、フローティング電極25を第2基板12の上面に積層配置した形態を示したが、この形態に限られず、フローティング電極25を第2基板12の下面に積層配置してもよい。 In the above embodiment, the floating electrode 25 is stacked on the upper surface of the second substrate 12. However, the present invention is not limited to this embodiment, and the floating electrode 25 may be stacked on the lower surface of the second substrate 12. Good.
 また、実施の形態1~4では、弾性部材15を有する形態を示したが、この形態に限らない。弾性部材15を構成せず、第1基板11の下面(第2面R2)からZ方向に間隔をあけてフローティング電極25を配置した形態(図示せず)としてもよい。すなわち、グランド電極23とフローティング電極25との間に、空気層および第1基板11が配置されてもよい。この場合、第1基板11は、支持体(図示せず)などにより第2基板12に向かって撓むように変形可能に支持されているのが好ましい。第1基板11は、押圧力F(Z方向への力)を受けてZ方向に撓むように変形し、空気層に向かって第2基板12に接近するようになる。これにより、グランド電極23とフローティング電極25との間隔が小さくなる。このように、弾性部材15を省略した形態であっても、上記実施の形態と同様の作用効果を奏しうる。 Further, in the first to fourth embodiments, the form having the elastic member 15 is shown, but the present invention is not limited to this form. Alternatively, the floating member 25 may be disposed at an interval in the Z direction from the lower surface (the second surface R2) of the first substrate 11 without forming the elastic member 15 (not shown). That is, the air layer and the first substrate 11 may be disposed between the ground electrode 23 and the floating electrode 25. In this case, the first substrate 11 is preferably supported so as to be deformed toward the second substrate 12 by a support (not shown) or the like. The first substrate 11 is deformed so as to bend in the Z direction in response to the pressing force F (force in the Z direction), and comes close to the second substrate 12 toward the air layer. Thereby, the distance between the ground electrode 23 and the floating electrode 25 is reduced. Thus, even if the elastic member 15 is omitted, the same function and effect as those of the above-described embodiment can be obtained.
 また、上記実施の形態では、第1基板11と弾性部材15は別部材として形成されているが、この形態に限らない。第1基板11が弾性体で形成されていてもよい。第1基板11が弾性体である場合、タッチセンサ1は、弾性部材15を備える必要はない。 Moreover, in the said embodiment, although the 1st board | substrate 11 and the elastic member 15 are formed as another member, it does not restrict to this form. The first substrate 11 may be formed of an elastic body. When the first substrate 11 is an elastic body, the touch sensor 1 does not have to include the elastic member 15.
 また、送信電極21と受信電極22との平面視における位置関係を互いに入れ替え、送信電極21を受信電極22よりグランド電極23に近い位置に配置してもよい。 In addition, the positional relationship between the transmission electrode 21 and the reception electrode 22 in plan view may be interchanged, and the transmission electrode 21 may be disposed closer to the ground electrode 23 than the reception electrode 22.
 また、上記実施の形態では、平面視において、弾性部材15が第1基板11と同じ大きさであるが、この形態に限られない。すなわち、平面視において、弾性部材15は、第1基板11よりも小さくてもよい。平面視で、フローティング電極25の全てが弾性部材15と重なり合っていればよい。 Moreover, in the said embodiment, although the elastic member 15 is the same magnitude | size as the 1st board | substrate 11 in planar view, it is not restricted to this form. That is, in plan view, the elastic member 15 may be smaller than the first substrate 11. It suffices that all of the floating electrodes 25 overlap the elastic member 15 in plan view.
 また、上記実施の形態では、タッチセンサ1の上側(カバー部材2の上面側)から押圧操作可能な形態のみを示したが、この形態に限らない。すなわち、タッチセンサ1の下側から押圧操作可能な形態であってもよい。 Moreover, in the said embodiment, although only the form which can be pressed and operated from the upper side (upper surface side of the cover member 2) of the touch sensor 1 was shown, it does not restrict to this form. That is, the form may be such that pressing operation can be performed from the lower side of the touch sensor 1.
 なお、本開示は上述の実施の形態のみに限定されず、発明の範囲内で種々の変更が可能である。 In addition, this indication is not limited only to the above-mentioned embodiment, A various change is possible within the range of invention.
 (まとめ)
 本開示のタッチセンサ1は、1またはそれ以上の基板(第1基板11、第2基板12、第3基板13など)と、第1基板11、第2基板12、第3基板13のいずれかに配置され、電界を放射できる送信電極21と、第1基板11、第2基板12、第3基板13のいずれかに配置され、送信電極21と間隔をあけて配置され、送信電極21からの電界を受信できる受信電極22と、第1基板11、第2基板12、第3基板13のいずれかに配置されるグランド電極23と、第1基板11、第2基板12、第3基板13のZ方向に配置されるフローティング電極25と、を備える。Z方向に見て、フローティング電極25は、グランド電極23の少なくとも一部と、送信電極21の少なくとも一部と、受信電極22の少なくとも一部と重なるように配置される。フローティング電極25、送信電極21、受信電極22、およびグランド電極23は、互いに電気的に独立している。Z方向またはZ方向と反対の方向からの押圧により、フローティング電極25とグランド電極23との距離が小さくなる。
(Summary)
The touch sensor 1 of the present disclosure includes any one of one or more substrates (the first substrate 11, the second substrate 12, the third substrate 13, etc.) and the first substrate 11, the second substrate 12, or the third substrate 13. Are disposed on any one of the transmission electrode 21 capable of emitting an electric field, the first substrate 11, the second substrate 12, and the third substrate 13 and spaced apart from the transmission electrode 21. The receiving electrode 22 capable of receiving an electric field, the ground electrode 23 disposed on any of the first substrate 11, the second substrate 12, and the third substrate 13, and the first substrate 11, the second substrate 12, and the third substrate 13. And a floating electrode 25 disposed in the Z direction. When viewed in the Z direction, the floating electrode 25 is disposed to overlap at least a portion of the ground electrode 23, at least a portion of the transmission electrode 21, and at least a portion of the reception electrode 22. The floating electrode 25, the transmitting electrode 21, the receiving electrode 22, and the ground electrode 23 are electrically independent of each other. The distance between the floating electrode 25 and the ground electrode 23 is reduced by pressing in the Z direction or the direction opposite to the Z direction.
 また、本開示のタッチセンサ1は、グランド電極23とフローティング電極25との間に配置される弾性部材15を更に備えてもよい。弾性部材15は、Z方向またはZ方向と反対の方向からの押圧により圧縮され、弾性部材15が圧縮されることにより、フローティング電極25とグランド電極23との距離が小さくなるとより好ましい。 In addition, the touch sensor 1 of the present disclosure may further include an elastic member 15 disposed between the ground electrode 23 and the floating electrode 25. More preferably, the elastic member 15 is compressed by pressing in the Z direction or a direction opposite to the Z direction, and the elastic member 15 is compressed to reduce the distance between the floating electrode 25 and the ground electrode 23.
 また、本開示のタッチセンサ1は、弾性部材15のZ方向の厚みは、第1基板11、第2基板12、第3基板13のうち、グランド電極23が配置されている第1基板11の厚みより大きいとより好ましい。 In the touch sensor 1 of the present disclosure, the thickness of the elastic member 15 in the Z direction is the thickness of the first substrate 11 of the first substrate 11, the second substrate 12, and the third substrate 13 on which the ground electrode 23 is disposed. It is more preferable that the thickness is larger.
 また、本開示のタッチセンサ1は、Z方向に見て、グランド電極23の全部が、フローティング電極25と重なっているとより好ましい。 In the touch sensor 1 of the present disclosure, it is more preferable that all of the ground electrodes 23 overlap the floating electrodes 25 when viewed in the Z direction.
 また、本開示のタッチセンサ1は、Z方向に見て、送信電極21の全部および受信電極22の全部が、フローティング電極25と重なっているとより好ましい。 In the touch sensor 1 of the present disclosure, it is more preferable that all of the transmission electrode 21 and all of the reception electrode 22 overlap the floating electrode 25 when viewed in the Z direction.
 また、本開示のタッチセンサ1は、Z方向に見て、フローティング電極25が弾性部材15の外縁より内側に配置されるとより好ましい。 In the touch sensor 1 of the present disclosure, it is more preferable that the floating electrode 25 be disposed inside the outer edge of the elastic member 15 when viewed in the Z direction.
 本開示のタッチセンサ1は、カバー部材2と、フローティング電極25が配置される基材30と、カバー部材2と基材30との間に位置する弾性体(例えばバネ40)と、を更に備えてもよい。バネ40の上端部40aがカバー部材2に接し、バネ40の下端部40cが基材30に接している。カバー部材と基材30との間に1またはそれ以上の基板(第1基板11、第2基板12、第3基板13など)が配置される。 The touch sensor 1 of the present disclosure further includes a cover member 2, a base 30 on which the floating electrode 25 is disposed, and an elastic body (for example, a spring 40) located between the cover 2 and the base 30. May be An upper end 40 a of the spring 40 is in contact with the cover member 2, and a lower end 40 c of the spring 40 is in contact with the base 30. One or more substrates (a first substrate 11, a second substrate 12, a third substrate 13, etc.) are disposed between the cover member and the substrate 30.
 本開示のタッチセンサ1は、バネ40が板バネであるとより好ましい。 More preferably, in the touch sensor 1 of the present disclosure, the spring 40 is a leaf spring.
 本開示のタッチセンサ1は、Z方向に見て、バネ40は、送信電極21、受信電極22、グランド電極23、フローティング電極24のいずれとも重ならない位置に配置されているとより好ましい。 In the touch sensor 1 of the present disclosure, it is more preferable that the spring 40 is disposed at a position not overlapping any of the transmission electrode 21, the reception electrode 22, the ground electrode 23, and the floating electrode 24 when viewed in the Z direction.
 また、本開示のタッチセンサ1は、基材30を振動させる振動部50を更に備えてもよい。Z方向に見て、バネ40が延伸する方向をX方向とし、振動部50は、Z方向に直交し、かつ、X方向と交差する方向(例えばY方向)に沿って前記基材を振動させる。 The touch sensor 1 of the present disclosure may further include a vibrating unit 50 that vibrates the base 30. When viewed in the Z direction, the direction in which the spring 40 extends is the X direction, and the vibrating portion 50 vibrates the base along a direction (for example, the Y direction) orthogonal to the Z direction and intersecting the X direction. .
 なお、『バネ40が延伸する方向』とは、Z方向に見て、上端部40aと下端部40cとを結ぶ方向のことである。 The “direction in which the spring 40 extends” is a direction connecting the upper end 40 a and the lower end 40 c when viewed in the Z direction.
 本開示のタッチセンサ1は、X方向とY方向が直交しているとより好ましい。 More preferably, the X direction and the Y direction are orthogonal to each other in the touch sensor 1 of the present disclosure.
 本開示のタッチセンサ1は、基材30と振動部50が一体に形成されていてもよい。 In the touch sensor 1 of the present disclosure, the base 30 and the vibrating portion 50 may be integrally formed.
 本開示は、押圧操作可能なセンサ型入力装置として産業上の利用が可能である。 The present disclosure can be industrially used as a sensor-type input device that can be pressed.
 1 タッチセンサ
 2 カバー部材
 3 窓枠部
 4 操作面
 11 第1基板
 12 第2基板
 13 第3基板
 15 弾性部材
 19 液晶ディスプレイ(LCD)
 21 送信電極
 22 受信電極
 23 グランド電極
 24a,24b,24c,24d 引き回し配線
 25 フローティング電極
 26 遮蔽電極
 30 基材
 40 バネ(弾性体)
 40a 上端部
 40b 中間部
 40c 下端部
 50 振動部
 100 空気層
 L1,L2 長さ
 R1 第1面
 R2 第2面
 F 押圧力
DESCRIPTION OF SYMBOLS 1 touch sensor 2 cover member 3 window frame part 4 operation surface 11 1st board | substrate 12 2nd board | substrate 13 3rd board | substrate 15 elastic member 19 liquid crystal display (LCD)
Reference Signs List 21 transmission electrode 22 reception electrode 23 ground electrode 24 a, 24 b, 24 c, 24 d lead wiring 25 floating electrode 26 shielding electrode 30 base 40 spring (elastic body)
40a upper end portion 40b middle portion 40c lower end portion 50 vibrating portion 100 air layer L1, L2 length R1 first surface R2 second surface F pressing force

Claims (12)

 1またはそれ以上の基板と、
 前記1またはそれ以上の基板のいずれかに配置され、電界を放射できる送信電極と、
 前記1またはそれ以上の基板のいずれかに配置され、前記送信電極と間隔をあけて配置され、前記送信電極からの電界を受信できる受信電極と、
 前記1またはそれ以上の基板のいずれかに配置されるグランド電極と、
 前記1またはそれ以上の基板の第1の方向に配置されるフローティング電極と、
を備え、
 前記第1の方向に見て、前記フローティング電極は、前記グランド電極の少なくとも一部と、前記送信電極の少なくとも一部と、前記受信電極の少なくとも一部と重なるように配置され、
 前記フローティング電極、前記送信電極、前記受信電極、および前記グランド電極は、互いに電気的に独立しており、
 前記第1の方向または前記第1の方向と反対の方向からの押圧により、前記フローティング電極と前記グランド電極との距離が小さくなる、
タッチセンサ。
With one or more substrates,
A transmitting electrode disposed on any of the one or more substrates and capable of emitting an electric field;
A receiving electrode disposed on any of the one or more substrates, spaced from the transmitting electrode, and capable of receiving an electric field from the transmitting electrode;
A ground electrode disposed on any of the one or more substrates;
A floating electrode disposed in a first direction of the one or more substrates;
Equipped with
When viewed in the first direction, the floating electrode is disposed to overlap at least a portion of the ground electrode, at least a portion of the transmission electrode, and at least a portion of the reception electrode.
The floating electrode, the transmitting electrode, the receiving electrode, and the ground electrode are electrically independent of each other,
The distance between the floating electrode and the ground electrode is reduced by pressing from the first direction or a direction opposite to the first direction.
Touch sensor.
 前記グランド電極と前記フローティング電極との間に配置される弾性部材を更に備え、
 前記弾性部材は、前記第1の方向または前記第1の方向と反対の方向からの押圧により圧縮され、
 前記弾性部材が圧縮されることにより、前記フローティング電極と前記グランド電極との距離が小さくなる、
請求項1記載のタッチセンサ。
And a resilient member disposed between the ground electrode and the floating electrode.
The elastic member is compressed by pressing from the first direction or a direction opposite to the first direction,
By compressing the elastic member, the distance between the floating electrode and the ground electrode is reduced.
The touch sensor according to claim 1.
 前記弾性部材の前記第1の方向の厚みは、前記1またはそれ以上の基板のうち、前記グランド電極が配置されている第1の基板の厚みより大きい、
請求項2記載のタッチセンサ。
The thickness of the elastic member in the first direction is larger than the thickness of the first substrate on which the ground electrode is disposed among the one or more substrates.
The touch sensor according to claim 2.
 前記第1の方向に見て、前記グランド電極の全部が、前記フローティング電極と重なっている、
請求項1~3のいずれか1項に記載のタッチセンサ。
When viewed in the first direction, all of the ground electrodes overlap the floating electrodes.
The touch sensor according to any one of claims 1 to 3.
 前記第1の方向に見て、前記送信電極の全部および前記受信電極の全部が、前記フローティング電極と重なっている、
請求項1~4のいずれか1項に記載のタッチセンサ。
When viewed in the first direction, all of the transmission electrodes and all of the reception electrodes overlap the floating electrodes.
The touch sensor according to any one of claims 1 to 4.
 前記第1の方向に見て、前記フローティング電極は前記弾性部材の外縁より内側に配置される、
請求項2~5のいずれか1項に記載のタッチセンサ。
When viewed in the first direction, the floating electrode is disposed inside the outer edge of the elastic member
The touch sensor according to any one of claims 2 to 5.
 カバー部材と、
 前記フローティング電極が配置される基材と、
 前記カバー部材と前記基材との間に位置する弾性体と、
を更に備え、
 前記弾性体の一端が前記カバー部材に接し、前記弾性体の他端が前記基材に接しており、
 前記カバー部材と前記基材との間に1またはそれ以上の基板が配置される、
  請求項1記載のタッチセンサ。
A cover member,
A substrate on which the floating electrode is disposed;
An elastic body located between the cover member and the base material;
And further
One end of the elastic body is in contact with the cover member, and the other end of the elastic body is in contact with the base material,
One or more substrates are disposed between the cover member and the substrate,
The touch sensor according to claim 1.
 前記弾性体が板バネによって構成される、
 請求項7記載のタッチセンサ。
The elastic body is constituted by a plate spring,
The touch sensor according to claim 7.
 前記第1の方向に見て、前記板バネは、前記送信電極、受信電極、グランド電極、前記フローティング電極のいずれとも重ならない位置に配置されている、
 請求項8記載のタッチセンサ。
When viewed in the first direction, the leaf spring is disposed at a position not overlapping any of the transmission electrode, the reception electrode, the ground electrode, and the floating electrode.
The touch sensor according to claim 8.
 前記基材を振動させる振動部を更に備え、
 前記第1の方向に見て、前記板バネが延伸する方向を第2の方向とし、
 前記振動部は、前記第1の方向に直交し、かつ、前記第2の方向と交差する第3の方向に沿って前記基材を振動させる、
 請求項8記載のタッチセンサ。
It further comprises a vibration unit that vibrates the base material,
When viewed in the first direction, a direction in which the leaf spring extends is a second direction,
The vibrating unit vibrates the base along a third direction orthogonal to the first direction and intersecting the second direction.
The touch sensor according to claim 8.
 前記第2の方向と前記第3の方向が直交している、
 請求項10記載のタッチセンサ。
The second direction and the third direction are orthogonal to each other,
The touch sensor according to claim 10.
 前記基材と前記振動部が一体に形成されている、
 請求項10に記載のタッチセンサ。
The base and the vibrating portion are integrally formed.
The touch sensor according to claim 10.
PCT/JP2018/040795 2017-11-08 2018-11-02 Touch sensor WO2019093233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019552759A JPWO2019093233A1 (en) 2017-11-08 2018-11-02 Touch sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-215488 2017-11-08
JP2017215488 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093233A1 true WO2019093233A1 (en) 2019-05-16

Family

ID=66437830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040795 WO2019093233A1 (en) 2017-11-08 2018-11-02 Touch sensor

Country Status (2)

Country Link
JP (1) JPWO2019093233A1 (en)
WO (1) WO2019093233A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413152A (en) * 2021-05-27 2021-09-21 深圳中学 Non-contact finger motion detection instrument and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244514A (en) * 2009-03-19 2010-10-28 Sony Corp Sensor device and information processing apparatus
US20170115768A1 (en) * 2015-10-21 2017-04-27 FocalTech Systems, Co. Ltd. Touch display device and driving method thereof
JP2017168103A (en) * 2016-03-16 2017-09-21 株式会社 ハイディープHiDeep Inc. Touch input device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244514A (en) * 2009-03-19 2010-10-28 Sony Corp Sensor device and information processing apparatus
US20170115768A1 (en) * 2015-10-21 2017-04-27 FocalTech Systems, Co. Ltd. Touch display device and driving method thereof
JP2017168103A (en) * 2016-03-16 2017-09-21 株式会社 ハイディープHiDeep Inc. Touch input device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413152A (en) * 2021-05-27 2021-09-21 深圳中学 Non-contact finger motion detection instrument and method

Also Published As

Publication number Publication date
JPWO2019093233A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US11301103B2 (en) Touch input device
JP5347913B2 (en) SENSOR DEVICE, ELECTRONIC DEVICE, AND METHOD FOR MANUFACTURING SENSOR DEVICE
US11182000B2 (en) Smartphone
JP6622917B2 (en) Electrode sheet and touch input device capable of detecting pressure to which temperature compensation is applied
JP2012190452A (en) Electronic device
KR101693337B1 (en) Touch input device
KR101666866B1 (en) Smartphone
JP5448879B2 (en) Input device and electro-optical device with input device
KR101857080B1 (en) Electrode sheet and touch input device
WO2019093233A1 (en) Touch sensor
KR102174008B1 (en) Electrode sheet and touch input device
JP2021128357A (en) Touch sensor
JP2010033316A (en) Input device and mobile information processor using the same
KR101762279B1 (en) Electrode sheet and touch input device for detecting pressure with temperature compensation
JP2021015315A (en) Touch sensor
JP2017054238A (en) Projection capacitive touch sensor
JP2022049276A (en) Touch sensor
WO2019225079A1 (en) Fingerprint sensor
JP2014081870A (en) Touch panel
JP2021071846A (en) Touch sensor
JP2012174235A (en) Electronic equipment
KR20160076490A (en) Touch input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877087

Country of ref document: EP

Kind code of ref document: A1