WO2019093119A1 - Paste composition, semiconductor device, and electrical/electronic component - Google Patents

Paste composition, semiconductor device, and electrical/electronic component Download PDF

Info

Publication number
WO2019093119A1
WO2019093119A1 PCT/JP2018/039344 JP2018039344W WO2019093119A1 WO 2019093119 A1 WO2019093119 A1 WO 2019093119A1 JP 2018039344 W JP2018039344 W JP 2018039344W WO 2019093119 A1 WO2019093119 A1 WO 2019093119A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
paste composition
fine particles
copper fine
compound
Prior art date
Application number
PCT/JP2018/039344
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 正和
勇哉 似内
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2019093119A1 publication Critical patent/WO2019093119A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present embodiment relates to a paste composition and a semiconductor device and an electric / electronic component manufactured using the paste composition.
  • a method of bonding a heat spreader to the die pad portion of the semiconductor element itself or a lead frame to which the semiconductor element is bonded or A method (for example, refer to Patent Document 1) or the like is adopted which has a function as a heat sink by exposing it.
  • the semiconductor element may be bonded to an organic substrate or the like having a heat dissipation mechanism such as a thermal via. Also in this case, high thermal conductivity is required of the material for bonding the semiconductor element.
  • the adhesive for bonding the light emitting element and the substrate may be discolored by heat or light, or the electric resistance value may change with time due to the high current input due to the high output of the light emitting element. .
  • the bonding material loses its adhesive force at the solder melting temperature and peels off when the electronic component or electronic device is soldered.
  • the enhancement of the performance of the white light emitting LED leads to an increase in the calorific value of the light emitting element chip, and along with this, the structure of the LED and the members used therefor are also required to improve the heat dissipation.
  • a copper particle-containing paste composition and a paste composition which are capable of sintering at low temperatures even in a non-reducing atmosphere, have excellent thermal conductivity, have excellent adhesive properties, and have reflow resistance are desired. It is done.
  • the paste composition of the present embodiment contains (A) copper fine particles having a thickness or short diameter of 10 to 500 nm, and (B) a sintering aid containing an acid anhydride structure, and the (A) copper fine particles described above.
  • the (B) sintering aid is blended in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass.
  • the paste composition of the present embodiment includes (A) copper fine particles having a thickness or short diameter of 10 to 500 nm, and (B) a sintering aid including an acid anhydride structure.
  • the (A) copper fine particle used in the present embodiment is not particularly limited as long as its thickness or short diameter is 10 to 500 nm.
  • the shape of the (A) copper fine particle for example, a spherical shape, a plate shape, a flake shape, a scaly shape, a dendritic shape, a rod shape, a wire shape or the like can be used.
  • the thickness may be plate-like, flake-like or scaly, and the shortest diameter in the dendritic or rod-like or wire-like or spherical shape may satisfy the above range.
  • the “diameter” means, for example, in the dendritic, rod-like or wire-like shape, the length of the diameter in the cross section perpendicular to the long axis of those, or in the spherical shape, the cross section passing through the center.
  • the calculation method of this diameter does not necessarily need to confirm a cross section, and may be calculated by the method using an electron micrograph as mentioned later.
  • the copper fine particles have the above-described thickness or short diameter that satisfies the above range, so that the sintering temperature is lowered, so that the sintering operation can be easily performed.
  • the (A) copper fine particles may be fine particles that self-sinter at 100 ° C. to 250 ° C.
  • self-sintering refers to a phenomenon in which copper fine particles in a dispersed state aggregate under specific temperature conditions and then form a metal bond between the copper fine particles.
  • the (A) copper fine particles may be coated with a compound that suppresses oxidation of the surface, and examples of such a compound include an amine compound, a carboxylic acid compound, and the like.
  • coating means that the compound which suppresses the said oxidation has adhered to all or one part of the surface of copper particulates.
  • the copper particulate surface may be coated with an amine compound, or may be coated with an amino alcohol represented by the following chemical formula (1).
  • the copper fine particles whose surface is coated with an amine compound are easy to be removed because the coating layer is coordinate bonded, and they are sintered at a low temperature.
  • the copper fine particles are appropriately dispersed by combining with a sintering aid containing an acid anhydride structure (B) described later, and sintering is performed at a low temperature.
  • R 1 may be the same or different, and independently of each other represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxy group or a methoxy group, and n and m are integers of 0 to 10) And m + n is 10 or less.
  • the copper fine particles coated with such an amine compound are prepared by mixing the copper-containing compound, the amine compound and the reducing compound in an organic solvent to form a mixture, and heating the mixture to a temperature at which the copper-containing compound is thermally decomposed. It is obtained by doing.
  • the copper microparticles thus obtained are coated with an organic compound ion derived from a copper-containing compound and an amine compound, which are generated by decomposing the copper-containing compound.
  • the copper particles coated on the surface with these components are excellent in low-temperature sinterability.
  • the raw material used for manufacture of the copper fine particle of this embodiment is demonstrated below.
  • the copper-containing compound used here is a material for depositing metallic copper to form fine copper particles.
  • the copper-containing compound is decomposed by heating to release copper ions.
  • the copper ions are reduced to metal copper.
  • the copper-containing compound may be decomposed by heating to release copper ions and organic ions derived from the copper-containing compound.
  • Such copper-containing compounds include, for example, copper carboxylate, cuprous oxide, copper nitrate, copper sulfate and the like in which a carboxylic acid such as formic acid, oxalic acid, malonic acid, benzoic acid and phthalic acid is combined with copper. .
  • the amine compound used here may have an amino group as long as it forms a complex (copper-containing compound-amine complex) with the copper-containing compound.
  • amino alcohol, alkyl amine, alkoxy amine etc. are mentioned.
  • the amine compound can be appropriately selected and used according to the conditions of the thermal decomposition of the copper-containing compound to be used, the characteristics expected of the copper fine particles to be produced, and the like. These amine compounds adhere to the surface of copper microparticles obtained by thermally decomposing a copper-containing compound, and have the function of suppressing the oxidation of copper microparticles.
  • the amino compound may be an amino alcohol.
  • the amino alcohol may be an alcohol having an amino group represented by the above chemical formula (1). Specifically as this amino alcohol, aminoethanol, heptaminol, propanolamine, 1-amino-2-propanol, 2-aminodibutanol, 2-diethylaminoethanol, 3-diethylamino-1,2-propanediol, 3 And -dimethylamino-1,2-propanediol, 3-methylamino-1,2-propanediol, 3-amino-1,2-propanediol and the like.
  • the amino alcohol may have a boiling point of 70 to 300 ° C. from the viewpoint of sinterability.
  • the amino alcohol may be liquid at normal temperature from the viewpoint of workability.
  • the structure of the alkylamine is not particularly limited as long as it is an amine compound in which an aliphatic hydrocarbon group such as an alkyl group is bonded to an amino group.
  • Examples of the amine compound include alkyl monoamines having one amino group and alkyl diamines having two amino groups.
  • the above alkyl group may further have a substituent.
  • alkyl monoamines dipropylamine, butylamine, dibutylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, 3-aminopropyltriethoxysilane, dodecylamine, oleylamine etc. It can be mentioned.
  • alkyldiamine ethylenediamine, N, N-dimethylethylenediamine, N, N'-dimethylethylenediamine, N, N-diethylethylenediamine, N, N'-diethylethylenediamine, 1,3-propanediamine, 2,2-dimethyl- 1,3-propanediamine, N, N-dimethyl-1,3-diaminopropane, N, N′-dimethyl-1,3-diaminopropane, N, N-diethyl-1,3-diaminopropane, 1,4 -Diaminobutane, 1,5-diamino-2-methylpentane, 1,6-diaminohexane, N, N'-dimethyl-1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane and the like , Is mentioned.
  • the alkyl monoamine is an alkyl monoamine such as a primary amine (R 2 NH 2 ) or a secondary amine (R 3 R 4 NH). May be.
  • the alkylamine does not include the alkoxyamine described below.
  • the alkoxyamine is not particularly limited as long as it is an amine compound having an alkoxyl group, and examples thereof include an alkoxy monoamine having one amino group and an alkoxy diamine having two amino groups.
  • examples of the alkoxy monoamine include methoxyethylamine, 2-ethoxyethylamine, 3-butoxypropylamine and the like
  • examples of the alkoxydiamine include N-methoxy-1,3-propanediamine and N-methoxy-1,4- A butane diamine etc. are mentioned.
  • the alkoxyamine may be an alkoxymonoamine such as a primary amine (R 2 ONH 2 ) or a secondary amine (R 3 (R 4 O) NH), in consideration of the coordination power to copper formed by reduction.
  • the substituent R 2 of the primary amine described in the above alkylamine and alkoxyamine represents an alkyl group and may be an alkyl group having 4 to 18 carbon atoms.
  • the substituents R 3 and R 4 of the secondary amine each represent an alkyl group, and may be an alkyl group having 4 to 18 carbon atoms.
  • the substituents R 3 and R 4 may be identical or different.
  • these alkyl groups may have a substituent such as silyl group or glycidyl group.
  • the boiling point of the amine compound may be 70 ° C. or more and 200 ° C. or less, and may be 120 ° C. or more and 200 ° C. or less. If the boiling point of the amine compound is 70 ° C. or more, there is no possibility that the amine is volatilized in the heating step, and if it is 200 ° C. or less, it is removed at the time of sintering the copper fine particles and it becomes easy to sinter at low temperature. Furthermore, the boiling point of the amino compound may be higher than the heating temperature in the heating step, or lower than the sintering temperature in use. Moreover, as this amine compound, it can also be used individually by 1 type or in combination of 2 or more.
  • the reducing compound used here is not particularly limited as long as it has a reducing power to reduce copper ions generated by the decomposition of the copper-containing compound and release metallic copper.
  • the boiling point of the reducing compound may be 70 ° C. or higher, or may be higher than the heating temperature in the heating step.
  • the reducing compound may be a compound soluble in an organic solvent (C) described later, which is composed of carbon, hydrogen and oxygen.
  • Such reducing compounds typically include hydrazine derivatives.
  • this hydrazine derivative include hydrazine monohydrate, methylhydrazine, ethylhydrazine, n-propylhydrazine, i-propylhydrazine, n-butylhydrazine, i-butylhydrazine, sec-butylhydrazine, t-butylhydrazine, n-pentylhydrazine, i-pentylhydrazine, neo-pentylhydrazine, t-pentylhydrazine, n-hexylhydrazine, i-hexylhydrazine, n-heptylhydrazine, n-octylhydrazine, n-nonylhydrazine, n-decylhydrazine, n-undecylhydrazine, n-d
  • the above-mentioned copper-containing compound, amine compound and reducing compound may be mixed in an organic solvent.
  • the organic solvent used here can be used without particular limitation as long as it can be used as a reaction solvent which does not inhibit the properties of the complex and the like generated from the mixture obtained by the above mixing.
  • the organic solvent may be an alcohol which is compatible with the above-described reducing compound.
  • the reduction reaction of copper ions by the reducing compound since the reduction reaction of copper ions by the reducing compound is an exothermic reaction, it may be an organic solvent which does not volatilize during the reduction reaction. Therefore, the boiling point of the organic solvent is 70 ° C. or higher, and may be composed of carbon, hydrogen and oxygen. When the boiling point of the organic solvent is 70 ° C. or more, the formation of copper ions by the decomposition of the copper-containing compound-alcoholamine compound complex and the control of the deposition of metallic copper by the reduction of the formed copper ions become easy, become stable.
  • alcohol used as an organic solvent 1-propanol, 2-propanol, butanol, pentanol, hexanol, heptanol, octanol, ethylene glycol, 1,3-propanediol, 1,2-propanediol, butyl carbitol, Examples include butyl carbitol acetate, ethyl carbitol, ethyl carbitol acetate, diethylene glycol diethyl ether, butyl cellosolve and the like.
  • the above-mentioned amino alcohol and reducing compound are not included in this organic solvent.
  • Copper fine particles can be produced as follows using the above-described copper-containing compound, amine compound, reducing compound, and an organic solvent which is optionally added.
  • the mixture is formed by first storing the organic solvent in the reaction vessel and then mixing the copper-containing compound, the amine compound, and the reducing compound. The order of this mixing may mix the said compound in what kind of order.
  • the copper-containing compound and the amine compound are first mixed, and mixed for about 5 to 30 minutes at 0 to 50 ° C. May be added and mixed.
  • the amount of each compound used may be 0.5 to 10 mol of the amine compound amino alcohol and 0.5 to 5 mol of the reducing compound with respect to 1 mol of the copper-containing compound.
  • the amount of the organic solvent may be such that each component can sufficiently react. For example, about 50 to 2000 mL may be used.
  • the mixture obtained by mixing above is sufficiently heated to allow the thermal decomposition reaction of the copper-containing compound to proceed.
  • the copper-containing compound forming a complex is decomposed into the organic ion derived from the copper-containing compound and the copper ion.
  • the copper ion is reduced by the reducing compound, and metallic copper precipitates and grows into copper fine particles.
  • the metal ion derived from the copper-containing compound at the same time as the metal copper precipitates tends to be coordinated to the specific crystal plane of the metal copper that has been precipitated. For this reason, it is possible to control the growth direction of the copper particulates to be generated, and to obtain plate-like copper particulates efficiently.
  • the amine compound adheres to the surface of the copper fine particles, and has an effect of preventing the particles from becoming coarse by reducing the growth.
  • the heating temperature in the heating step of this mixture is a temperature at which the copper-containing compound is thermally decomposed and reduced to form plate-like copper fine particles.
  • the heating temperature may be, for example, 70 ° C. to 150 ° C., or may be 80 to 120 ° C. Furthermore, at this time, the heating temperature may be lower than the boiling point of the raw material component and the organic solvent.
  • the heating temperature is 70 ° C. or more, the thermal decomposition reaction of the copper-containing compound proceeds stably, so copper microparticles can be efficiently generated.
  • the heating temperature is 150 ° C. or less, the volatilization amount of the amine compound is reduced, so the uniformity in the system is maintained, and the thermal decomposition of the copper-containing compound proceeds stably, thereby efficiently forming copper fine particles. it can.
  • the solid precipitated here may be separated from the organic solvent or the like by centrifugation or the like, and then the solid may be dried under reduced pressure.
  • the copper microparticles of the present embodiment can be obtained by such an operation.
  • the complex formed from the copper-containing compound and the reducing agent is thermally decomposed in the amine compound, and the amine compound forms a coordination bond with the copper atom generated. It is surmised that aggregation of these copper atoms results in the formation of copper microparticles coated with an amine compound.
  • the obtained copper fine particles are composed of an amine compound and an organic ion derived from copper carboxylate which is generated by thermally decomposing the copper carboxylate in addition thereto. It is presumed that the surface is coated.
  • Such copper particulates have specific properties and shapes derived from molecules that coat the surface.
  • the copper fine particles can have any shape and size by appropriately selecting the kind of copper-containing compound, amine compound, reducing agent and reaction temperature to be used. Further, by adding an amino alcohol and another amine compound as an amine compound to the mixture of the copper-containing compound and the reducing agent, the copper fine particles generated by the above thermal decomposition are also coated with the other amine compound. Thereby, the oxidation of copper particulates is reduced and the growth direction of copper particulates is controlled. Thus, when the growth direction of the metallic copper is controlled, the obtained copper fine particles have a plate shape.
  • the copper particles obtained by the above-described method for producing copper particles can be fired at a low temperature.
  • the paste composition using the copper fine particles can be fired even in a non-reducing atmosphere.
  • the resistance can be reduced, and the amount of outgassing that can cause generation of voids is small, so a dense sintered film can be obtained.
  • the shape of the obtained copper fine particles can be confirmed by observation with a scanning electron microscope (manufactured by JEOL Ltd., trade name: JSM-7600F; SEM).
  • an average value is an arithmetic average value, and it is good also as ten or more copper microparticles
  • the sintering aid containing the acid anhydride structure (B) used in the present embodiment is a substance that promotes the sintering of the (A) copper fine particles or a substance that densifies a sintered body obtained by sintering. If it is, it will not be limited in particular.
  • the (B) sintering aid has a structure in which two molecules of oxo acid are dehydrated and condensed.
  • the sintering aid may have a structure in which the carboxyl groups of the compound having a plurality of carboxyl groups are dehydrated and condensed in the molecule.
  • the carboxylic acid anhydride since the carboxylic acid anhydride has a high ability to coordinate to the surface of the copper fine particle, it is substituted with a protective group on the surface of the copper fine particle, and the carboxylic acid anhydride is coordinated to the surface of the copper fine particle.
  • the copper fine particle which the carboxylic anhydride coordinated to the surface improves the dispersibility.
  • the carboxylic anhydride since the carboxylic anhydride is excellent in volatility, low temperature sinterability is improved.
  • the melting point of the sintering aid (B) used in the present embodiment may be in the range of 40 to 150.degree. When the melting point of the sintering aid is in this range, the sintering promoting property of the paste composition is improved and the workability such as the stability of the life of the paste composition is improved.
  • the boiling point of the sintering aid (B) used in the present embodiment may be 100 to 300 ° C., or may be 100 to 275 ° C. If the boiling point is in this range, there is no risk of void formation.
  • By blending such an acid anhydride as a sintering aid it is possible to obtain a paste composition having improved adhesion properties, thermal conductivity and reflow peel resistance.
  • the amount of the sintering additive (B) may be 0.01 to 1 part by mass, based on 100 parts by mass of the (A) copper fine particles. Adhesive property improves that the compounding quantity of a sintering aid is 0.01 mass part or more, and since there is no possibility of void generation
  • the paste composition of the present embodiment may use (C) an organic solvent.
  • the organic solvent (C) used here any known solvent can be used as long as it functions as a reducing agent.
  • alcohol may be sufficient and, for example, aliphatic polyhydric alcohol can be mentioned.
  • aliphatic polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, diprylene glycol, 1,4-butanediol, glycerin, glycols such as polyethylene glycol, and the like. These organic solvents can be used alone or in combination of two or more.
  • the paste composition of the present embodiment a dense sintered structure is obtained by using alcohol as the organic solvent (C), so the conductivity is high, and the adhesion with a substrate such as a lead frame is high. It becomes a thing.
  • This mechanism is presumed as follows. Since the bonding portion is sandwiched between the semiconductor element and the substrate, the alcohol is partially refluxed by heating at the time of sintering. Because of this, the alcohol stays at the joint for a while without volatilizing immediately. At this time, the copper oxide partially present in the copper particles of the paste composition and the metal oxide (for example, copper oxide) present on the substrate surface to be bonded are reduced to a metal (for example, copper) by alcohol. . Thereafter, the copper particles sinter with the reduced metal (eg, copper). As a result, the paste composition at the bonding portion forms a metal bond having high conductivity and high adhesion to the substrate.
  • alcohol organic solvent
  • the boiling point of the organic solvent (C) may be 100 to 300 ° C., or may be 150 to 290 ° C.
  • the volatility does not become too high even at normal temperature, the reduction ability by the volatilization of the dispersion medium can be maintained, and stable adhesive strength can be obtained.
  • the boiling point is 300 ° C. or less, sintering of the cured film (conductive film) is easily caused, and a film excellent in compactness can be formed.
  • the organic solvent is not volatilized and the remaining of the organic solvent in the film can be reduced.
  • the blending amount may be 7 to 20 parts by mass based on 100 parts by mass of copper particles. If it is 7 parts by mass or more, the viscosity is not too high and the workability can be improved, and if it is 20 parts by mass or less, the viscosity is not too low, and the copper settling in the paste is reduced, and the reliability is improved. It can be enhanced.
  • the paste composition of the present embodiment may use (D) a thermosetting resin.
  • the thermosetting resin (D) used in the present embodiment is not particularly limited as long as it is a thermosetting resin generally used as an adhesive application.
  • the thermosetting resin may be a liquid resin or a resin which is liquid at room temperature (25 ° C.).
  • Examples of the (D) thermosetting resin include cyanate resin, epoxy resin, radical polymerizable acrylic resin, maleimide resin and the like. These may be used alone or in combination of two or more.
  • an adhesive material (paste) having an appropriate viscosity can be obtained.
  • the paste composition of the present embodiment includes a thermosetting resin, the temperature of the paste composition is increased by the reaction heat at the time of curing thereof, and the sinterability of the copper particles is promoted.
  • thermosetting resin (D) when blended, it is blended so as to be 1 to 20 parts by mass when the above (A) copper fine particles are 100 parts by mass.
  • thermosetting resin is 1 part by mass or more, sufficient adhesiveness by the thermosetting resin can be obtained, and when the thermosetting resin is 20 parts by mass or less, high thermal conductivity can be sufficiently ensured. The heat dissipation can be improved.
  • the amount of the organic component is not too large, and deterioration due to light and heat can be suppressed, and as a result, the lifetime of the light-emitting device can be increased. By setting it as such a compounding range, it is easy to reduce the contact between copper particles and to maintain the mechanical strength of the entire adhesive layer by utilizing the adhesive performance of the thermosetting resin.
  • a curing accelerator in addition to the above-described components, a curing accelerator, a stress reducing agent such as rubber or silicone, a coupling agent, an antifoamer, and the like generally compounded in this type of composition.
  • Surfactants, colorants (pigments, dyes), various polymerization inhibitors, antioxidants, solvents, and other various additives can be blended as necessary. Any of these additives may be used alone or in combination of two or more.
  • the paste composition of the present embodiment includes each of the components (A) to (B) described above, optional components (C) and (D) blended if necessary, and other additives such as a coupling agent and the like, After sufficiently mixing the solvent and the like, the mixture can be further kneaded by a disperser, a kneader, a three-roll mill or the like, and then defoamed to prepare.
  • the paste composition also includes those with low viscosity such as a slurry or an ink.
  • the viscosity of the paste composition of the present embodiment may be, for example, 20 to 300 Pa ⁇ s, or 30 to 200 Pa ⁇ s.
  • the adhesive strength of the paste composition of the present embodiment may be 20 MPa or more, 25 MPa or more, or 30 MPa or more.
  • the said viscosity and adhesive strength can be measured by the method as described in an Example.
  • the paste composition of the present embodiment thus obtained is excellent in high thermal conductivity and heat dissipation. Therefore, when used as a bonding material of the element or the heat dissipation member to the substrate or the like, the heat dissipation inside the device can be improved and the product characteristics can be stabilized.
  • the semiconductor device of the present embodiment is formed by adhering a semiconductor element on a substrate serving as an element support member, using the above-described paste composition. That is, here, the paste composition is used as a die attach paste, and the semiconductor element and the substrate are adhered and fixed via this paste composition.
  • the semiconductor element may be a known semiconductor element, and examples thereof include a transistor, a diode, and the like.
  • a light emitting element such as an LED may be mentioned.
  • the type of the light emitting element is not particularly limited.
  • a light emitting layer in which a nitride semiconductor such as InN, AlN, GaN, InGaN, AlGaN, InGaAlN or the like is formed on a substrate by MOCVD method is also mentioned.
  • a support member formed of a material such as copper, copper-plated copper, PPF (precoating lead frame), glass epoxy, ceramics, etc. may be mentioned.
  • the paste composition of this embodiment can also adhere to a substrate that has not been metal plated.
  • the connection reliability with respect to the temperature cycle after mounting is dramatically improved as compared with the related art.
  • the electric resistance value is sufficiently small and the change with time is small, there is an advantage that the output does not decrease with time even when driven for a long time and the life is long.
  • the electric / electronic device of the present embodiment is formed by bonding a heat dissipation member to a heat generating member using the above-described paste composition. That is, here, the paste composition is used as a heat radiation member bonding material, and the heat radiation member and the heat generation member are bonded and fixed via the paste composition.
  • the heat generating member the above-described semiconductor element or a member having the semiconductor element may be used, or any other heat generating member may be used.
  • heat generating members other than semiconductor elements include optical pickups and power transistors.
  • a heat dissipation member a heat sink, a heat spreader, etc. are mentioned.
  • the heat radiating member to the heat generating member using the above-described paste composition
  • the heat generated by the heat generating member can be efficiently released to the outside by the heat radiating member, and the temperature rise of the heat generating member It can be suppressed.
  • the heat-generating member and the heat-radiating member may be bonded directly via the paste composition, or may be bonded indirectly by sandwiching another member having a high thermal conductivity.
  • Synthesis Example 2 Similar to Synthesis Example 1 except that 1-amino-2-propanol of Example 1 was replaced with 60 mmol of octylamine, plate-shaped powdery copper microparticles 2 with a particle diameter of 0.10 ⁇ m were obtained. The surface of the copper fine particle 1 was coated with octylamine.
  • Examples 1 to 4 Comparative Example 1
  • Each component was mixed according to the composition (parts by mass) of Table 1 and kneaded with a roll to obtain a resin paste.
  • cured material was investigated, and the following method evaluated. The results are shown in Table 1 together.
  • the materials used in Examples 1 to 4 and Comparative Example 1 are as follows. Commercial products were used except for the copper fine particles obtained in Synthesis Examples 1 and 2.
  • A1 Commercially available copper fine particles (Mitsui Metals Co., Ltd., trade name: CH-0200; particle diameter: 0.16 ⁇ m)
  • A2 Copper fine particle 1 (polyhedron shape, particle diameter 0.22 ⁇ m)
  • A3 Copper fine particle 2 (plate shape, particle diameter 0.10 ⁇ m)
  • (B) sintering auxiliary material (B1): sintering aid 1 (glutaric anhydride, manufactured by Wako Pure Chemical Industries, Ltd., melting point 50 ° C., boiling point 150 ° C.)
  • (Other sintering aids] Malonic acid (manufactured by Wako Pure Chemical Industries, Ltd., melting point 135 ° C.)
  • thermosetting resin (D1): thermosetting resin 1 (diallyl bisphenol A diglycidyl ether type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., trade name: RD-810 NM; epoxy equivalent 223, hydrolyzable chlorine 150 ppm (1N KOH-ethanol, dioxane Solvent, reflux 30 minutes)
  • Polymerization initiator Dicumyl peroxide (manufactured by NOF Corp., trade name: Park Mill C; decomposition temperature in rapid heating test: 126 ° C.)
  • Thermal conductivity The thermal conductivity after curing of the paste composition was cured at 200 ° C. for 60 minutes, and then the thermal conductivity was measured by a laser flash method according to JIS R 1611-1997.
  • Heat bonding strength (die shear strength)
  • the sample for the measurement of adhesive strength at the time was a back surface gold chip provided with a gold deposited layer on the 4 mm ⁇ 4 mm adhesive surface, and using the obtained paste composition, solid copper frame and PPF (Ni-PC / Au plating) Copper frame) and cured at 200.degree. C. for 60 minutes.
  • the heat bond strength was measured after curing and moisture absorption treatment (85 ° C., relative humidity 85%, 72 hours) using a mount strength measuring apparatus at heat at 260 ° C.
  • Thermal bond strength (cold thermal cycle processing) after high temperature heat treatment is one cycle consisting of heating up from -40 ° C to 250 ° C and cooling down to -40 ° C as 100 cycles and 1000 cycles 2.) For each of the latter, the hot die shear strength at 260 ° C. was measured using a mount strength measurement device.
  • Thermal shock resistance is 85 ° C, relative humidity 85%, after absorbing moisture for 168 hours, IR reflow treatment (260 ° C, 10 seconds) and thermal cycle treatment (-55 ° C to 150 ° C), and -55
  • the operation of cooling to 0 C was regarded as one cycle, and this was performed 1000 cycles), and the number of internal cracks in each package after each treatment was observed with an acoustic microscope.
  • the evaluation results show the number of cracked samples for five samples.
  • Chip Silicon chip and backside gold plated chip
  • Lead frame PPF and copper Sealing material molding: 175 ° C, 2 minutes
  • Post mold cure 175 ° C, 8 hours
  • the paste composition of the present embodiment is excellent in thermal conductivity and excellent in low stress property by containing a sintering aid containing an acid anhydride structure in addition to predetermined copper particles. It was found that the characteristics were good and the reflow peeling resistance was excellent. Moreover, the paste composition of the present embodiment is particularly excellent in hot adhesive strength after high temperature treatment. Therefore, by using this paste composition as a die attach paste for element bonding or a heat radiation member bonding material, a semiconductor device and an electric / electronic device having excellent reliability can be obtained.

Abstract

The present invention provides a paste composition that has exceptional high thermal conductivity and heat dissipation properties and is capable of satisfactorily bonding a semiconductor element and a light-emitting element to a substrate without pressure. The present invention provides: a paste composition including (A) copper microparticles in which the thickness or minor axis is 10-500 nm, and (B) a sintering auxiliary agent that includes an acid anhydride structure, 0.01-1 parts by mass of the (B) sintering auxiliary member being mixed per 100 parts by mass of the (A) copper microparticles; a semiconductor device in which said paste composition is used as a die-attach paste; and an electrical/electronic component in which said paste composition is used as a material for bonding a heat dissipation member.

Description

ペースト組成物、半導体装置及び電気・電子部品Paste composition, semiconductor device and electric / electronic component
 本実施形態は、ペースト組成物並びに該ペースト組成物を使用して製造した半導体装置及び電気・電子部品に関するものである。 The present embodiment relates to a paste composition and a semiconductor device and an electric / electronic component manufactured using the paste composition.
 半導体製品の大容量、高速処理化及び微細配線化に伴い半導体製品作動中に発生する熱の処理、いわゆるサーマルマネージメントが注目されてきている。
 このため半導体製品にヒートスプレッダー、またはヒートシンクなどの放熱部材を取り付ける方法などが一般的に採用されており、放熱部材を接着する材料自体の熱伝導率はより高いものが望まれてきている。
 また、半導体製品の形態によっては、サーマルマネージメントをより効率的なものとするため、半導体素子そのもの又は半導体素子を接着したリードフレームのダイパッド部にヒートスプレッダーを接着する方法、またはダイパッド部をパッケージ表面に露出させることにより放熱板としての機能を持たせる方法(例えば、特許文献1参照)などが採用されている。
With the large-capacity, high-speed processing and fine wiring of semiconductor products, the processing of heat generated during the operation of semiconductor products, so-called thermal management, has attracted attention.
For this reason, a method of attaching a heat spreader or a heat dissipating member such as a heat sink to a semiconductor product is generally adopted, and a material having higher heat conductivity of the material itself for bonding the heat dissipating member is desired.
Also, depending on the form of the semiconductor product, in order to make thermal management more efficient, a method of bonding a heat spreader to the die pad portion of the semiconductor element itself or a lead frame to which the semiconductor element is bonded, or A method (for example, refer to Patent Document 1) or the like is adopted which has a function as a heat sink by exposing it.
 さらには半導体素子をサーマルビアなどの放熱機構を有する有機基板などに接着する場合もある。この場合も半導体素子を接着する材料に高熱伝導性が要求される。また、近年の白色発光LEDの高輝度化により、フルカラー液晶画面のバックライト照明、シーリングライト、またはダウンライト等の照明装置にも広く用いられるようになっている。ところで、発光素子の高出力化による高電流投入により、発光素子と基板とを接着する接着剤が、熱または光等で変色したり、電気抵抗値の経時変化が発生したりするおそれがあった。とりわけ半導体素子とリードフレームとの接合を接着剤の接着力に完全に頼る方法では、電子部品、または電子機器のはんだ実装時に接合材料がはんだ溶融温度下において接着力を失って剥離し、不灯に至るおそれがあった。また、白色発光LEDの高性能化は、発光素子チップの発熱量の増大を招くこととなり、これに伴いLEDの構造及びそれに使用する部材にも放熱性の向上が求められている。 Furthermore, the semiconductor element may be bonded to an organic substrate or the like having a heat dissipation mechanism such as a thermal via. Also in this case, high thermal conductivity is required of the material for bonding the semiconductor element. In addition, with the recent increase in the brightness of white light emitting LEDs, they are widely used in illumination devices such as backlight illumination of full color liquid crystal screens, ceiling lights, and down lights. By the way, there was a possibility that the adhesive for bonding the light emitting element and the substrate may be discolored by heat or light, or the electric resistance value may change with time due to the high current input due to the high output of the light emitting element. . In particular, in a method that relies entirely on the adhesive force of the adhesive to bond the semiconductor element to the lead frame, the bonding material loses its adhesive force at the solder melting temperature and peels off when the electronic component or electronic device is soldered. There was a risk of Further, the enhancement of the performance of the white light emitting LED leads to an increase in the calorific value of the light emitting element chip, and along with this, the structure of the LED and the members used therefor are also required to improve the heat dissipation.
 特に、近年、電力損失の少ない炭化ケイ素(SiC)、窒化ガリウムのようなワイドバンドギャップ半導体を使用するパワー半導体装置の開発が盛んとなり、素子自身の耐熱性が高く、大電流による250℃以上の高温動作が可能となっている。しかし、その特性を発揮するためには、動作発熱を効率的に放熱する必要があり、導電性及び伝熱性に加え、長期高温耐熱性に優れた接合材料が求められている。 In particular, in recent years, development of power semiconductor devices using wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride with little power loss has become active, and the heat resistance of the element itself is high. High temperature operation is possible. However, in order to exhibit the characteristics, it is necessary to efficiently dissipate the operation heat, and a bonding material having excellent long-term high temperature heat resistance in addition to conductivity and heat conductivity is required.
 このように半導体装置及び電気・電子機器の各部材の接着に用いられる材料(ダイアタッチペースト、または放熱部材接着用材料等)に高い熱伝導性が要求されている。また、これらの材料は、同時に製品の基板搭載時のリフロー処理に耐える必要もあり、さらには大面積の接着が要求される場合も多く、構成部材間の熱膨張係数の違いによる反りなどの発生を低減するための低応力性も併せ持つ必要がある。 As described above, high thermal conductivity is required for materials (such as a die attach paste or a material for bonding a heat dissipation member) used for bonding each member of a semiconductor device and an electric / electronic device. In addition, these materials need to simultaneously withstand the reflow process at the time of substrate mounting of the product, and in many cases adhesion of a large area is required, and the occurrence of warpage or the like due to the difference in thermal expansion coefficient between components It is also necessary to have low stress to reduce the stress.
 ここで、通常、高熱伝導性を有する接着剤を得るには、銀粉、銅粉などの金属フィラー、または窒化アルミニウム、窒化ボロンなどのセラミック系フィラーなどを充填剤として有機系のバインダーに高い含有率で分散させている(例えば、特許文献2参照)。しかし、その結果、硬化物の弾性率の増加を伴い、熱伝導性とリフロー性(上記リフロー処理後に剥離が生じにくいこと)の両立が難しくなるおそれがあった。 Here, in general, to obtain an adhesive having high thermal conductivity, a high content ratio of an organic binder using a metal filler such as silver powder or copper powder or a ceramic filler such as aluminum nitride or boron nitride as a filler (See, for example, Patent Document 2). However, as a result, with the increase of the elastic modulus of the cured product, it may be difficult to simultaneously achieve both the thermal conductivity and the reflow property (that peeling is hardly caused after the reflow process).
 ところが、昨今、そうした要求に耐えうる接合方法の候補として、バルク体の銀よりも低温の条件下で接合を可能とする、銀ナノ粒子による接合方法が着目されるようになってきた(例えば、特許文献3参照)。
 ところで、銀粒子は導電性が非常に良好であるが、価格が高いこと、またはマイグレーション発生のおそれがあることから、他の金属への代替が検討されている。そこで、現在、銀粒子と比較して安価で、且つ耐マイグレーション性のある銅粒子に注目が集まっている。
However, as a candidate for a bonding method that can withstand such requirements, attention has recently been focused on a bonding method using silver nanoparticles that enables bonding under conditions lower than bulk silver (for example, Patent Document 3).
By the way, although silver particles have very good conductivity, they are being considered as alternatives to other metals because of their high cost and the possibility of migration. Therefore, attention is currently focused on copper particles that are inexpensive and migration resistant compared to silver particles.
特開2006-086273号公報Japanese Patent Application Publication No. 2006-86273 特開2005-113059号公報JP 2005-113059 A 特開2011-240406号公報JP, 2011-240406, A
 しかしながら、銅ナノ粒子の焼結による接合には、導電性の発現に、300℃という高温が必要である。さらに、銅ナノ粒子は粒子径が小さく、酸化されやすい。このため、取扱い、または処理に手間がかかる場合がある。さらに、銅粒子の焼結には表面酸化膜の除去の観点から、還元雰囲気での焼結を必要としていた。 However, for bonding by sintering of copper nanoparticles, a high temperature of 300 ° C. is required to develop conductivity. Furthermore, copper nanoparticles have a small particle size and are easily oxidized. For this reason, handling or processing may take time and effort. Furthermore, sintering of copper particles requires sintering in a reducing atmosphere from the viewpoint of removal of the surface oxide film.
 そこで、還元雰囲気でなくとも低温での焼結が可能であり、熱伝導性に優れ、接着特性が良好で、且つ耐リフロー性を有する、銅粒子を含むペースト組成物並びに該ペースト組成物が求められている。 Therefore, a copper particle-containing paste composition and a paste composition which are capable of sintering at low temperatures even in a non-reducing atmosphere, have excellent thermal conductivity, have excellent adhesive properties, and have reflow resistance are desired. It is done.
 本実施形態のペースト組成物は、(A)厚さ又は短径が10~500nmの銅微粒子と、(B)酸無水物構造を含む焼結助剤と、を含み、前記(A)銅微粒子 100質量部に対して、前記(B)焼結助材が0.01~1質量部配合される。 The paste composition of the present embodiment contains (A) copper fine particles having a thickness or short diameter of 10 to 500 nm, and (B) a sintering aid containing an acid anhydride structure, and the (A) copper fine particles described above. The (B) sintering aid is blended in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass.
 上記のように、本実施形態のペースト組成物は、(A)厚さ又は短径が10~500nmの銅微粒子と、(B)酸無水物構造を含む焼結助剤と、を含む。 As described above, the paste composition of the present embodiment includes (A) copper fine particles having a thickness or short diameter of 10 to 500 nm, and (B) a sintering aid including an acid anhydride structure.
 以下、本発明について、一実施形態を参照しながら詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to an embodiment.
<ペースト組成物>
(銅微粒子)
 本実施形態で用いられる(A)銅微粒子は、その厚さ又は短径が10~500nmのものであれば特に限定されるものではない。この(A)銅微粒子の形状は、例えば、球状、プレート型、フレーク状、鱗片状、樹枝状、ロッド状、ワイヤ状等が使用できる。ここで、プレート型、フレーク状、鱗片状ではその厚さが、また樹枝状、ロッド状、ワイヤ状、球状では、その直径における最も短い径が上記範囲を満たしていればよい。ここで「直径」とは、例えば、樹枝状、ロッド状、ワイヤ状では、それらが有する長軸に対する垂直断面、球状では中心を通る断面における径の長さを意味する。なお、この直径の算出方法は、必ずしも断面を確認する必要はなく、後述するように電子顕微鏡写真を用いた方法で算出してもよい。
<Paste composition>
(Copper fine particles)
The (A) copper fine particle used in the present embodiment is not particularly limited as long as its thickness or short diameter is 10 to 500 nm. As the shape of the (A) copper fine particle, for example, a spherical shape, a plate shape, a flake shape, a scaly shape, a dendritic shape, a rod shape, a wire shape or the like can be used. Here, the thickness may be plate-like, flake-like or scaly, and the shortest diameter in the dendritic or rod-like or wire-like or spherical shape may satisfy the above range. Here, the “diameter” means, for example, in the dendritic, rod-like or wire-like shape, the length of the diameter in the cross section perpendicular to the long axis of those, or in the spherical shape, the cross section passing through the center. In addition, the calculation method of this diameter does not necessarily need to confirm a cross section, and may be calculated by the method using an electron micrograph as mentioned later.
 (A)銅微粒子は、上記のような厚さ又は短径が上記範囲を満たすことで、焼結温度が低下するため、焼結操作を簡便に行うことができる。この(A)銅微粒子としては、100℃~250℃で自己焼結する微粒子でもよい。なお、ここで自己焼結とは、特定の温度条件下において分散状態にある銅微粒子が凝集した後、銅微粒子間で金属結合を形成する現象をいう。 (A) The copper fine particles have the above-described thickness or short diameter that satisfies the above range, so that the sintering temperature is lowered, so that the sintering operation can be easily performed. The (A) copper fine particles may be fine particles that self-sinter at 100 ° C. to 250 ° C. Here, self-sintering refers to a phenomenon in which copper fine particles in a dispersed state aggregate under specific temperature conditions and then form a metal bond between the copper fine particles.
 本実施形態において、(A)銅微粒子は、その表面の酸化を抑制する化合物で被覆されていてもよく、このような化合物としては、例えば、アミン化合物、カルボン酸化合物等が挙げられる。なお、本明細書において被覆とは、銅微粒子の表面の全部又は一部に上記酸化を抑制する化合物が付着していることを意味する。 In the present embodiment, the (A) copper fine particles may be coated with a compound that suppresses oxidation of the surface, and examples of such a compound include an amine compound, a carboxylic acid compound, and the like. In addition, in this specification, coating means that the compound which suppresses the said oxidation has adhered to all or one part of the surface of copper particulates.
 銅微粒子表面はアミン化合物で被覆されていてもよく、または下記化学式(1)で表されるアミノアルコールによって被覆されていてもよい。
 このように、表面をアミン化合物で被覆された銅微粒子は、被覆層が配位結合しているため被覆層が容易に除去されやすく、低温で焼結する。さらに、後述する(B)酸無水物構造を含む焼結助剤と組み合わせることで銅微粒子が適度に分散し、低温で焼結する。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、同一又は異なっていてもよく、互いに独立して、水素原子、炭素数1~4のアルキル基、ヒドロキシ基又はメトキシ基を表し、n及びmは0~10の整数を表し、m+nは10以下である。)
The copper particulate surface may be coated with an amine compound, or may be coated with an amino alcohol represented by the following chemical formula (1).
As described above, the copper fine particles whose surface is coated with an amine compound are easy to be removed because the coating layer is coordinate bonded, and they are sintered at a low temperature. Furthermore, the copper fine particles are appropriately dispersed by combining with a sintering aid containing an acid anhydride structure (B) described later, and sintering is performed at a low temperature.
Figure JPOXMLDOC01-appb-C000002
(Wherein R 1 may be the same or different, and independently of each other represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxy group or a methoxy group, and n and m are integers of 0 to 10) And m + n is 10 or less.)
 このようなアミン化合物で被覆された銅微粒子は、含銅化合物と、アミン化合物、還元性化合物と、を有機溶剤中で混合して混合物とし、該混合物を含銅化合物が熱分解する温度に加熱することで得られる。 The copper fine particles coated with such an amine compound are prepared by mixing the copper-containing compound, the amine compound and the reducing compound in an organic solvent to form a mixture, and heating the mixture to a temperature at which the copper-containing compound is thermally decomposed. It is obtained by doing.
 このようにして得られる銅微粒子は、含銅化合物を分解することで生じた含銅化合物に由来する有機物イオンとアミン化合物とによって被覆されている。これら成分で表面を被覆された銅微粒子は低温焼結性に優れている。 The copper microparticles thus obtained are coated with an organic compound ion derived from a copper-containing compound and an amine compound, which are generated by decomposing the copper-containing compound. The copper particles coated on the surface with these components are excellent in low-temperature sinterability.
 本実施形態の銅微粒子の製造に使用する原料について、以下説明する。 The raw material used for manufacture of the copper fine particle of this embodiment is demonstrated below.
〈含銅化合物〉
 ここで用いる含銅化合物は、金属銅を析出させ銅微粒子とするための材料である。含銅化合物は、加熱により分解して銅イオンを放出する。この銅イオンが還元されて金属銅となる。含銅化合物は、加熱により分解して銅イオン、及び含銅化合物由来の有機物イオンを放出するものでもよい。
<Copper-containing compounds>
The copper-containing compound used here is a material for depositing metallic copper to form fine copper particles. The copper-containing compound is decomposed by heating to release copper ions. The copper ions are reduced to metal copper. The copper-containing compound may be decomposed by heating to release copper ions and organic ions derived from the copper-containing compound.
 このような含銅化合物としては、例えば、ギ酸、シュウ酸、マロン酸、安息香酸、フタル酸などのカルボン酸と銅が化合したカルボン酸銅、亜酸化銅、硝酸銅、硫酸銅等が挙げられる。 Such copper-containing compounds include, for example, copper carboxylate, cuprous oxide, copper nitrate, copper sulfate and the like in which a carboxylic acid such as formic acid, oxalic acid, malonic acid, benzoic acid and phthalic acid is combined with copper. .
(アミン化合物)
 ここで用いるアミン化合物は、アミノ基を有し、含銅化合物と錯体(含銅化合物-アミン錯体)を形成するものであればよい。例えば、アミノアルコール、アルキルアミン、アルコキシアミン等が挙げられる。アミン化合物は、使用する含銅化合物の熱分解の条件、製造される銅微粒子に期待される特性等に応じて、適宜選択して用いることができる。
 これらアミン化合物は、含銅化合物を熱分解することで得られる銅微粒子の表面に付着し、銅微粒子の酸化を抑制する機能を有する。
(Amine compound)
The amine compound used here may have an amino group as long as it forms a complex (copper-containing compound-amine complex) with the copper-containing compound. For example, amino alcohol, alkyl amine, alkoxy amine etc. are mentioned. The amine compound can be appropriately selected and used according to the conditions of the thermal decomposition of the copper-containing compound to be used, the characteristics expected of the copper fine particles to be produced, and the like.
These amine compounds adhere to the surface of copper microparticles obtained by thermally decomposing a copper-containing compound, and have the function of suppressing the oxidation of copper microparticles.
 アミノ化合物としては、アミノアルコールでもよい。アミノアルコールは、上記化学式(1)であらわされるアミノ基を有するアルコールでもよい。
 このアミノアルコールとしては、具体的には、アミノエタノール、ヘプタミノール、プロパノールアミン、1-アミノ-2-プロパノール、2-アミノジブタノール、2-ジエチルアミノエタノール、3-ジエチルアミノ-1,2-プロパンジオール、3-ジメチルアミノ-1,2-プロパンジオール、3-メチルアミノ-1,2-プロパンジオール、3-アミノ-1,2-プロパンジオール等が挙げられる。アミノアルコールは、焼結性の観点から沸点が70~300℃でもよい。アミノアルコールは、作業性の観点から常温で液体でもよい。
The amino compound may be an amino alcohol. The amino alcohol may be an alcohol having an amino group represented by the above chemical formula (1).
Specifically as this amino alcohol, aminoethanol, heptaminol, propanolamine, 1-amino-2-propanol, 2-aminodibutanol, 2-diethylaminoethanol, 3-diethylamino-1,2-propanediol, 3 And -dimethylamino-1,2-propanediol, 3-methylamino-1,2-propanediol, 3-amino-1,2-propanediol and the like. The amino alcohol may have a boiling point of 70 to 300 ° C. from the viewpoint of sinterability. The amino alcohol may be liquid at normal temperature from the viewpoint of workability.
 アルキルアミンは、アミノ基にアルキル基等の脂肪族炭化水素基が結合したアミン化合物であれば、特にその構造に制限がない。アミン化合物は、アミノ基を1個有するアルキルモノアミン、アミノ基を2個有するアルキルジアミンが挙げられる。なお、上記アルキル基はさらに置換基を有していてもよい。 The structure of the alkylamine is not particularly limited as long as it is an amine compound in which an aliphatic hydrocarbon group such as an alkyl group is bonded to an amino group. Examples of the amine compound include alkyl monoamines having one amino group and alkyl diamines having two amino groups. The above alkyl group may further have a substituent.
 具体的には、アルキルモノアミンとしては、ジプロピルアミン、ブチルアミン、ジブチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、3-アミノプロピルトリエトキシシラン、ドデシルアミン、オレイルアミン等、が挙げられる。
 アルキルジアミンとしては、エチレンジアミン、N,N-ジメチルエチレンジアミン、N,N´-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N´-ジエチルエチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-ジアミノプロパン、N,N´-ジメチル-1,3-ジアミノプロパン、N,N-ジエチル-1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノ-2-メチルペンタン、1,6-ジアミノヘキサン、N,N´-ジメチル-1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン等、が挙げられる。
 なお、含銅化合物と反応して上記含銅化合物-アミン錯体を効率的に形成するため、アルキルモノアミンは一級アミン(RNH)又は二級アミン(RNH)等のアルキルモノアミンでもよい。
 なお、アルキルアミンには、以下に説明するアルコキシアミンは含まない。
Specifically, as alkyl monoamines, dipropylamine, butylamine, dibutylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, 3-aminopropyltriethoxysilane, dodecylamine, oleylamine etc. It can be mentioned.
As the alkyldiamine, ethylenediamine, N, N-dimethylethylenediamine, N, N'-dimethylethylenediamine, N, N-diethylethylenediamine, N, N'-diethylethylenediamine, 1,3-propanediamine, 2,2-dimethyl- 1,3-propanediamine, N, N-dimethyl-1,3-diaminopropane, N, N′-dimethyl-1,3-diaminopropane, N, N-diethyl-1,3-diaminopropane, 1,4 -Diaminobutane, 1,5-diamino-2-methylpentane, 1,6-diaminohexane, N, N'-dimethyl-1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane and the like , Is mentioned.
In order to react with the copper-containing compound to efficiently form the above-mentioned copper-containing compound-amine complex, the alkyl monoamine is an alkyl monoamine such as a primary amine (R 2 NH 2 ) or a secondary amine (R 3 R 4 NH). May be.
The alkylamine does not include the alkoxyamine described below.
 アルコキシアミンとしては、アルコキシル基を有するアミン化合物であれば、特にその構造に制限がなく、例えば、アミノ基を1個有するアルコキシモノアミン、アミノ基を2個有するアルコキシジアミンが挙げられる。具体的には、アルコキシモノアミンとしては、メトキシエチルアミン、2-エトキシエチルアミン、3-ブトキシプロピルアミン等が、アルコキシジアミンとしては、N-メトキシ-1,3-プロパンジアミン、N-メトキシ-1,4-ブタンジアミン等が挙げられる。アルコキシアミンは、還元され生成した銅に対する配位力を考慮し、一級アミン(RONH)又は二級アミン(R(RO)NH)等のアルコキシモノアミンでもよい。 The alkoxyamine is not particularly limited as long as it is an amine compound having an alkoxyl group, and examples thereof include an alkoxy monoamine having one amino group and an alkoxy diamine having two amino groups. Specifically, examples of the alkoxy monoamine include methoxyethylamine, 2-ethoxyethylamine, 3-butoxypropylamine and the like, and examples of the alkoxydiamine include N-methoxy-1,3-propanediamine and N-methoxy-1,4- A butane diamine etc. are mentioned. The alkoxyamine may be an alkoxymonoamine such as a primary amine (R 2 ONH 2 ) or a secondary amine (R 3 (R 4 O) NH), in consideration of the coordination power to copper formed by reduction.
 ここで、上記アルキルアミン及びアルコキシアミンで記載している一級アミンの置換基Rはアルキル基を表し、炭素数4~18のアルキル基でもよい。また、二級アミンの置換基R及びRは、アルキル基を表し、共に炭素数4~18のアルキル基でもよい。置換基R及びRは、同一でも異なっていてもよい。さらに、これらのアルキル基には、シリル基、グリシジル基等の置換基を有していてもよい。 Here, the substituent R 2 of the primary amine described in the above alkylamine and alkoxyamine represents an alkyl group and may be an alkyl group having 4 to 18 carbon atoms. The substituents R 3 and R 4 of the secondary amine each represent an alkyl group, and may be an alkyl group having 4 to 18 carbon atoms. The substituents R 3 and R 4 may be identical or different. Furthermore, these alkyl groups may have a substituent such as silyl group or glycidyl group.
 このアミン化合物の沸点は、70℃以上200℃以下でもよく、120℃以上200℃以下でもよい。アミン化合物の沸点が70℃以上あれば加熱工程でアミンが揮発してしまうおそれがなく、200℃以下であると銅微粒子の焼結時に除去され、低温で焼結しやすくなる。さらに、アミノ化合物の沸点は、加熱工程における加熱温度以上でもよく、使用時における焼結温度以下でもよい。
 また、このアミン化合物としては、1つを単独で又は2つ以上を併用して用いることもできる。
The boiling point of the amine compound may be 70 ° C. or more and 200 ° C. or less, and may be 120 ° C. or more and 200 ° C. or less. If the boiling point of the amine compound is 70 ° C. or more, there is no possibility that the amine is volatilized in the heating step, and if it is 200 ° C. or less, it is removed at the time of sintering the copper fine particles and it becomes easy to sinter at low temperature. Furthermore, the boiling point of the amino compound may be higher than the heating temperature in the heating step, or lower than the sintering temperature in use.
Moreover, as this amine compound, it can also be used individually by 1 type or in combination of 2 or more.
〈還元性化合物〉
 ここで用いる還元性化合物は、含銅化合物の分解により生じた銅イオンを還元し、金属銅を遊離させる還元力を有するものであれば、特に限定されない。さらに、還元性化合物は、その沸点が70℃以上でもよく、加熱工程における加熱温度以上でもよい。さらに、還元性化合物は、炭素、水素及び酸素から構成される後述する(C)有機溶剤に溶解する化合物でもよい。
<Reducing compound>
The reducing compound used here is not particularly limited as long as it has a reducing power to reduce copper ions generated by the decomposition of the copper-containing compound and release metallic copper. Furthermore, the boiling point of the reducing compound may be 70 ° C. or higher, or may be higher than the heating temperature in the heating step. Furthermore, the reducing compound may be a compound soluble in an organic solvent (C) described later, which is composed of carbon, hydrogen and oxygen.
 このような還元性化合物としては、典型的には、ヒドラジン誘導体が挙げられる。このヒドラジン誘導体としては、例えば、ヒドラジン一水和物、メチルヒドラジン、エチルヒドラジン、n-プロピルヒドラジン、i-プロピルヒドラジン、n-ブチルヒドラジン、i-ブチルヒドラジン、sec-ブチルヒドラジン、t-ブチルヒドラジン、n-ペンチルヒドラジン、i-ペンチルヒドラジン、neo-ペンチルヒドラジン、t-ペンチルヒドラジン、n-ヘキシルヒドラジン、i-ヘキシルヒドラジン、n-ヘプチルヒドラジン、n-オクチルヒドラジン、n-ノニルヒドラジン、n-デシルヒドラジン、n-ウンデシルヒドラジン、n-ドデシルヒドラジン、シクロヘキシルヒドラジン、フェニルヒドラジン、4-メチルフェニルヒドラジン、ベンジルヒドラジン、2-フェニルエチルヒドラジン、2-ヒドラジノエタノール、アセトヒドラジン等が挙げられる。 Such reducing compounds typically include hydrazine derivatives. Examples of this hydrazine derivative include hydrazine monohydrate, methylhydrazine, ethylhydrazine, n-propylhydrazine, i-propylhydrazine, n-butylhydrazine, i-butylhydrazine, sec-butylhydrazine, t-butylhydrazine, n-pentylhydrazine, i-pentylhydrazine, neo-pentylhydrazine, t-pentylhydrazine, n-hexylhydrazine, i-hexylhydrazine, n-heptylhydrazine, n-octylhydrazine, n-nonylhydrazine, n-decylhydrazine, n-undecylhydrazine, n-dodecylhydrazine, cyclohexylhydrazine, phenylhydrazine, 4-methylphenylhydrazine, benzylhydrazine, 2-phenylethylhydrazine, 2-hydrazinoe Nord, aceto hydrazine and the like.
〈有機溶剤〉
 本実施形態において使用する銅微粒子を製造する際には、上記含銅化合物とアミン化合物と還元性化合物とを、有機溶剤中で混合してもよい。
 ここで用いられる有機溶剤は、上記混合して得られる混合物から生成する錯体等の性質を阻害しない反応溶媒として用いることができるものであれば、特に限定されずに使用できる。有機溶剤は、上記した還元性化合物に対して相溶性を示すアルコールでもよい。
<Organic solvent>
When producing copper fine particles used in the present embodiment, the above-mentioned copper-containing compound, amine compound and reducing compound may be mixed in an organic solvent.
The organic solvent used here can be used without particular limitation as long as it can be used as a reaction solvent which does not inhibit the properties of the complex and the like generated from the mixture obtained by the above mixing. The organic solvent may be an alcohol which is compatible with the above-described reducing compound.
 また、還元性化合物による銅イオンの還元反応は発熱反応であるため、還元反応中に揮発しない有機溶剤でもよい。従って、有機溶剤の沸点は70℃以上であり、炭素、水素及び酸素から構成されていてもよい。有機溶剤の沸点が70℃以上であると、含銅化合物-アルコールアミン化合物錯体の分解による銅イオンの生成、及び生成した銅イオンの還元による金属銅の析出の制御が容易となり、銅微粒子の形状が安定する。 Further, since the reduction reaction of copper ions by the reducing compound is an exothermic reaction, it may be an organic solvent which does not volatilize during the reduction reaction. Therefore, the boiling point of the organic solvent is 70 ° C. or higher, and may be composed of carbon, hydrogen and oxygen. When the boiling point of the organic solvent is 70 ° C. or more, the formation of copper ions by the decomposition of the copper-containing compound-alcoholamine compound complex and the control of the deposition of metallic copper by the reduction of the formed copper ions become easy, Becomes stable.
 有機溶剤として用いられる上記アルコールとしては、1-プロパノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、ブチルカルビトール、ブチルカルビトールアセテート、エチルカルビトール、エチルカルビトールアセテート、ジエチレングリコールジエチルエーテル、ブチルセロソルブなどが挙げられる。
 なお、この有機溶剤には、上記したアミノアルコール、還元性化合物は含まれない。
As the above-mentioned alcohol used as an organic solvent, 1-propanol, 2-propanol, butanol, pentanol, hexanol, heptanol, octanol, ethylene glycol, 1,3-propanediol, 1,2-propanediol, butyl carbitol, Examples include butyl carbitol acetate, ethyl carbitol, ethyl carbitol acetate, diethylene glycol diethyl ether, butyl cellosolve and the like.
The above-mentioned amino alcohol and reducing compound are not included in this organic solvent.
 上記説明した含銅化合物、アミン化合物、還元性化合物、さらに必要に応じて添加される有機溶剤を用いて、以下のように銅微粒子を製造することができる。 Copper fine particles can be produced as follows using the above-described copper-containing compound, amine compound, reducing compound, and an organic solvent which is optionally added.
〈混合物の形成〉
 混合物は、まず、反応容器中に有機溶剤を収容し、次いで、含銅化合物、アミン化合物、および還元性化合物を混合して形成する。この混合の順番は、上記化合物をどのような順番で混合しても構わない。
<Formation of mixture>
The mixture is formed by first storing the organic solvent in the reaction vessel and then mixing the copper-containing compound, the amine compound, and the reducing compound. The order of this mixing may mix the said compound in what kind of order.
 含銅化合物とアミン化合物の錯体を効率的に形成させる場合は、先に含銅化合物とアミン化合物を混合して、0~50℃で5~30分程度混合しておき、さらに、還元性化合物を添加、混合してもよい。 In the case of efficiently forming a complex of a copper-containing compound and an amine compound, the copper-containing compound and the amine compound are first mixed, and mixed for about 5 to 30 minutes at 0 to 50 ° C. May be added and mixed.
 この混合にあたって、各化合物の使用量は、含銅化合物1molに対し、アミン化合物アミノアルコールを0.5~10mol、還元性化合物を0.5~5mol、各々配合してもよい。このとき、有機溶剤は各成分が十分に反応を行うことができる量であればよい。例えば、50~2000mL程度用いるようにすればよい。 In this mixing, the amount of each compound used may be 0.5 to 10 mol of the amine compound amino alcohol and 0.5 to 5 mol of the reducing compound with respect to 1 mol of the copper-containing compound. At this time, the amount of the organic solvent may be such that each component can sufficiently react. For example, about 50 to 2000 mL may be used.
〈混合物の加熱〉
 次の工程は、上記で混合して得られた混合物を十分に加熱して含銅化合物の熱分解反応を進行させる。この加熱により、錯体を形成している含銅化合物は含銅化合物由来の有機物イオンと銅イオンとに分解される。銅イオンは還元性化合物により還元され、金属銅が析出、成長して銅微粒子となる。
<Heating of mixture>
In the next step, the mixture obtained by mixing above is sufficiently heated to allow the thermal decomposition reaction of the copper-containing compound to proceed. By this heating, the copper-containing compound forming a complex is decomposed into the organic ion derived from the copper-containing compound and the copper ion. The copper ion is reduced by the reducing compound, and metallic copper precipitates and grows into copper fine particles.
 そして、このとき金属銅が析出すると同時に生成する含銅化合物由来の有機物イオンは、析出した金属銅の特定の結晶面に配位する傾向がある。このため、生成する銅微粒子の成長方向が制御でき、プレート状の銅微粒子を効率的に得ることも可能である。
 また、アミン化合物は、銅微粒子の表面に付着し、成長を低減することで粒子が粗大化するのを防ぐ作用を有している。
And at this time, the metal ion derived from the copper-containing compound at the same time as the metal copper precipitates tends to be coordinated to the specific crystal plane of the metal copper that has been precipitated. For this reason, it is possible to control the growth direction of the copper particulates to be generated, and to obtain plate-like copper particulates efficiently.
In addition, the amine compound adheres to the surface of the copper fine particles, and has an effect of preventing the particles from becoming coarse by reducing the growth.
 この混合物の加熱工程における加熱温度は、含銅化合物が熱分解及び還元され、プレート状の銅微粒子が生成できる温度である。加熱温度は、例えば、70℃~150℃でもよく、80~120℃でもよい。さらに、このとき、加熱温度は原料成分及び有機溶剤の沸点よりも低くしてもよい。加熱温度が70℃以上では、含銅化合物の熱分解反応は安定して進行するため銅微粒子を効率的に生成できる。また、加熱温度が150℃以下では、アミン化合物の揮発量は低減されるため、系中の均一性が保持され、含銅化合物の熱分解が安定して進行するため銅微粒子を効率的に生成できる。 The heating temperature in the heating step of this mixture is a temperature at which the copper-containing compound is thermally decomposed and reduced to form plate-like copper fine particles. The heating temperature may be, for example, 70 ° C. to 150 ° C., or may be 80 to 120 ° C. Furthermore, at this time, the heating temperature may be lower than the boiling point of the raw material component and the organic solvent. When the heating temperature is 70 ° C. or more, the thermal decomposition reaction of the copper-containing compound proceeds stably, so copper microparticles can be efficiently generated. Further, when the heating temperature is 150 ° C. or less, the volatilization amount of the amine compound is reduced, so the uniformity in the system is maintained, and the thermal decomposition of the copper-containing compound proceeds stably, thereby efficiently forming copper fine particles. it can.
 ここで析出した固形物は、遠心分離等により有機溶剤等と分離した後、その固形物を減圧乾燥すればよい。このような操作によって、本実施形態の銅微粒子を得ることができる。 The solid precipitated here may be separated from the organic solvent or the like by centrifugation or the like, and then the solid may be dried under reduced pressure. The copper microparticles of the present embodiment can be obtained by such an operation.
〈銅微粒子の形状、サイズ〉
  本実施形態の銅微粒子は、含銅化合物と還元剤から形成された錯体が、アミン化合物中で熱分解されて生成した銅原子に、アミン化合物が配位結合を形成した状態となっている。
 これらの銅原子が凝集することで、アミン化合物に被覆された銅微粒子が形成されると推察される。また、含銅化合物としてカルボン酸銅を使用した場合、得られた銅微粒子は、アミン化合物と、それに加えてカルボン酸銅を熱分解することで生じたカルボン酸銅に由来する有機物イオンと、によって表面が被覆されていると推察される。このような銅微粒子は、表面を被覆する分子に由来する特定の特性・形状を有する。
 従って、使用する含銅化合物、アミン化合物、還元剤の種類、反応温度を適宜選択することによって、銅微粒子は任意の形状およびサイズを得ることができる。
 さらに含銅化合物と還元剤の混合物中に、アミン化合物としてアミノアルコールとその他のアミン化合物を添加することで、上記熱分解によって生成した銅微粒子は、その他のアミン化合物によっても被覆される。これにより、銅微粒子の酸化が低減され、銅微粒子の成長方向が制御される。
 このように金属銅の成長方向が制御されると、得られた銅微粒子はプレート形状となる。
<Shape and size of copper particles>
In the copper fine particles of the present embodiment, the complex formed from the copper-containing compound and the reducing agent is thermally decomposed in the amine compound, and the amine compound forms a coordination bond with the copper atom generated.
It is surmised that aggregation of these copper atoms results in the formation of copper microparticles coated with an amine compound. In addition, when copper carboxylate is used as the copper-containing compound, the obtained copper fine particles are composed of an amine compound and an organic ion derived from copper carboxylate which is generated by thermally decomposing the copper carboxylate in addition thereto. It is presumed that the surface is coated. Such copper particulates have specific properties and shapes derived from molecules that coat the surface.
Therefore, the copper fine particles can have any shape and size by appropriately selecting the kind of copper-containing compound, amine compound, reducing agent and reaction temperature to be used.
Further, by adding an amino alcohol and another amine compound as an amine compound to the mixture of the copper-containing compound and the reducing agent, the copper fine particles generated by the above thermal decomposition are also coated with the other amine compound. Thereby, the oxidation of copper particulates is reduced and the growth direction of copper particulates is controlled.
Thus, when the growth direction of the metallic copper is controlled, the obtained copper fine particles have a plate shape.
 上記の銅微粒子の製造方法により得られた銅微粒子は、低温焼成が可能となる。この銅微粒子を用いたペースト組成物は、還元雰囲気でなくとも焼成可能である。また上記銅微粒子は、低温で焼成しても低抵抗化が可能で、ボイドの発生原因となりうるアウトガスの排出量が少ないため、緻密な焼結膜が得られる。 The copper particles obtained by the above-described method for producing copper particles can be fired at a low temperature. The paste composition using the copper fine particles can be fired even in a non-reducing atmosphere. In addition, even if the copper fine particles are fired at a low temperature, the resistance can be reduced, and the amount of outgassing that can cause generation of voids is small, so a dense sintered film can be obtained.
 上記した銅微粒子の製造方法によれば、大気中で低温焼成が可能な銅微粒子を、簡便な操作により、効率よく製造できる。 According to the above-described method for producing copper fine particles, copper fine particles which can be fired at low temperature in the atmosphere can be efficiently produced by a simple operation.
 なお、得られた銅微粒子の形状は、走査電子顕微鏡(日本電子株式会社製、商品名:JSM-7600F;SEM)で観察することにより確認できる。また、本明細書における上記銅微粒子の大きさ(厚さ、短径及び長径)は、それぞれ同SEMの観察画像に基づく任意に選択した10個の銅微粒子(n=10)の平均値として算出する。なお、平均値は算術平均値であり、その算出にあたっては10個以上の銅微粒子としてもよい。 The shape of the obtained copper fine particles can be confirmed by observation with a scanning electron microscope (manufactured by JEOL Ltd., trade name: JSM-7600F; SEM). In addition, the size (thickness, minor axis and major axis) of the copper fine particle in the present specification is calculated as an average value of 10 copper fine particles (n = 10) arbitrarily selected based on the observation image of the same SEM. Do. In addition, an average value is an arithmetic average value, and it is good also as ten or more copper microparticles | fine-particles in the calculation.
 本実施形態で使用する(B)酸無水物構造を含む焼結助剤は、上記(A)銅微粒子の焼結を促進するもの又は焼結して得られる焼結体を緻密化するものであれば、特に限定されない。この(B)焼結助材としては、オキソ酸2分子が脱水縮合した構造を有する。焼結助材は、複数のカルボキシル基を有する化合物のカルボキシル基が分子内で脱水縮合した構造を有してもよい。
 特に、カルボン酸無水物は銅微粒子表面への配位能が高いため、銅微粒子表面の保護基と置換し、銅微粒子表面にカルボン酸無水物が配位する。カルボン酸無水物が表面に配位した銅微粒子は分散性が向上する。また、カルボン酸無水物は揮発性に優れていることから、低温焼結性が向上する。
The sintering aid containing the acid anhydride structure (B) used in the present embodiment is a substance that promotes the sintering of the (A) copper fine particles or a substance that densifies a sintered body obtained by sintering. If it is, it will not be limited in particular. The (B) sintering aid has a structure in which two molecules of oxo acid are dehydrated and condensed. The sintering aid may have a structure in which the carboxyl groups of the compound having a plurality of carboxyl groups are dehydrated and condensed in the molecule.
In particular, since the carboxylic acid anhydride has a high ability to coordinate to the surface of the copper fine particle, it is substituted with a protective group on the surface of the copper fine particle, and the carboxylic acid anhydride is coordinated to the surface of the copper fine particle. The copper fine particle which the carboxylic anhydride coordinated to the surface improves the dispersibility. In addition, since the carboxylic anhydride is excellent in volatility, low temperature sinterability is improved.
 この(B)焼結助材としては、具体的には、無水酢酸、プロピオン酸無水物、酪酸無水物、イソ酪酸無水物、吉草酸無水物、トリメチル酢酸無水物、ヘキサン酸無水物、ヘプタン酸無水物、デカン酸無水物、ラウリン酸無水物、ミリスチン酸無水物、パルミチン酸無水物、ステアリン酸無水物、ドコサン酸無水物、クロトン酸無水物、メタクリル酸無水物、オレイン酸無水物、リノール酸無水物、クロロ酢酸無水物、ヨード酢酸無水物、ジクロロ酢酸無水物、トリフルオロ酢酸無水物、クロロジフルオロ酢酸無水物、トリクロロ酢酸無水物、ペンタフルオロプロピオン酸無水物、ヘプタフルオロ酪酸無水物、無水コハク酸、メチルコハク酸無水物、2,2-ジメチルコハク酸無水物、イタコン酸無水物、無水マレイン酸、グルタル酸無水物、ジグリコール酸無水物、安息香酸無水物、フェニルコハク酸無水物、フェニルマレイン酸無水物、ホモフタル酸無水物、イサト酸無水物、無水フタル酸、テトラフルオロフタル酸無水物、テトラブロモフタル酸無水物等が挙げられる。 Specifically as this (B) sintering auxiliary material, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, trimethyl acetic anhydride, hexanoic acid anhydride, heptanoic acid Anhydride, Decanoic Anhydride, Lauric Anhydride, Myristic Anhydride, Palmitic Anhydride, Stearic Anhydride, Docosanoic Anhydride, Crotonic Anhydride, Methacrylic Anhydride, Oleic Anhydride, Linoleic Acid Anhydride, chloroacetic acid anhydride, iodoacetic acid anhydride, dichloroacetic acid anhydride, trifluoroacetic acid anhydride, chlorodifluoroacetic acid anhydride, trichloroacetic acid anhydride, pentafluoropropionic acid anhydride, heptafluorobutyric acid anhydride, succinic anhydride Acid, methylsuccinic anhydride, 2,2-dimethylsuccinic anhydride, itaconic anhydride, maleic anhydride, glutaric anhydride Diglycolic acid anhydride, benzoic acid anhydride, phenyl succinic acid anhydride, phenyl maleic acid anhydride, homophthalic acid anhydride, isatoic acid anhydride, phthalic acid anhydride, tetrafluorophthalic acid anhydride, tetrabromophthalic acid anhydride Etc.
 これらの中でも、芳香族を含まない化合物がボイド発生のおそれがなく低温焼結性に優れている。 Among these, compounds which do not contain an aromatic group have no fear of void formation and are excellent in low-temperature sinterability.
 本実施形態で使用する(B)焼結助剤の融点は40~150℃の範囲でもよい。焼結助剤の融点がこの範囲にあると、ペースト組成物の焼結促進性が向上するとともにペースト組成物のライフの安定性等の作業性が向上する。 The melting point of the sintering aid (B) used in the present embodiment may be in the range of 40 to 150.degree. When the melting point of the sintering aid is in this range, the sintering promoting property of the paste composition is improved and the workability such as the stability of the life of the paste composition is improved.
 本実施形態で使用する(B)焼結助剤の沸点は100~300℃でもよく、100~275℃でもよい。沸点がこの範囲にあるとボイド発生のおそれがない。このような酸無水物を焼結助剤として配合することにより、接着特性、熱伝導性およびリフロー剥離耐性が向上したペースト組成物を得ることができる。 The boiling point of the sintering aid (B) used in the present embodiment may be 100 to 300 ° C., or may be 100 to 275 ° C. If the boiling point is in this range, there is no risk of void formation. By blending such an acid anhydride as a sintering aid, it is possible to obtain a paste composition having improved adhesion properties, thermal conductivity and reflow peel resistance.
 (B)焼結助材の配合量は、(A)銅微粒子を100質量部としたとき、0.01~1質量部でもよい。焼結助材の配合量が、0.01質量部以上であると接着特性が向上し、1質量部以下であるとボイド発生のおそれがないため、熱伝導性およびリフロー剥離耐性が向上したペースト組成物を得ることができる。 The amount of the sintering additive (B) may be 0.01 to 1 part by mass, based on 100 parts by mass of the (A) copper fine particles. Adhesive property improves that the compounding quantity of a sintering aid is 0.01 mass part or more, and since there is no possibility of void generation | occurrence | production that it is 1 mass part or less, the paste in which thermal conductivity and reflow peeling resistance improved. A composition can be obtained.
 さらに、本実施形態のペースト組成物は(C)有機溶剤を使用してもよい。
 ここで用いる(C)有機溶剤は、還元剤として機能する溶剤であれば公知の溶剤を用いることができる。この(C)有機溶剤としては、アルコールでもよく、例えば、脂肪族多価アルコールを挙げることができる。脂肪族多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロビレングリコール、1,4-ブタンジオール、グリセリン、ポリエチレングリコールなどのグリコール類などを挙げることができる。これらの有機溶剤は、単独で又は二種以上組み合わせて使用できる。
Furthermore, the paste composition of the present embodiment may use (C) an organic solvent.
As the organic solvent (C) used here, any known solvent can be used as long as it functions as a reducing agent. As this (C) organic solvent, alcohol may be sufficient and, for example, aliphatic polyhydric alcohol can be mentioned. Examples of aliphatic polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, diprylene glycol, 1,4-butanediol, glycerin, glycols such as polyethylene glycol, and the like. These organic solvents can be used alone or in combination of two or more.
 本実施形態のペースト組成物は、(C)有機溶剤として、アルコールを用いることにより、緻密な焼結構造が得られるため、導電性が高く、且つリードフレーム、等の基板との密着性の高いものとなる。
 このメカニズムは以下の様に推定している。
 接合箇所は、半導体素子と基板に挟まれているため、焼結時の加熱によりアルコールが一部還流状態となる。このため、アルコールは、直ちに揮発することなく、暫時接合箇所に留まる。このとき、ペースト組成物の銅粒子中に一部存在している酸化銅、及び接合する基板表面に存在する酸化金属(例えば、酸化銅)は、アルコールによって金属(例えば、銅)に還元される。その後、銅粒子は、還元された金属(例えば、銅)と焼結が進行する。
 これにより、接合箇所のペースト組成物は、導電性が高く、且つ基板との密着性の高い金属結合を形成する。
In the paste composition of the present embodiment, a dense sintered structure is obtained by using alcohol as the organic solvent (C), so the conductivity is high, and the adhesion with a substrate such as a lead frame is high. It becomes a thing.
This mechanism is presumed as follows.
Since the bonding portion is sandwiched between the semiconductor element and the substrate, the alcohol is partially refluxed by heating at the time of sintering. Because of this, the alcohol stays at the joint for a while without volatilizing immediately. At this time, the copper oxide partially present in the copper particles of the paste composition and the metal oxide (for example, copper oxide) present on the substrate surface to be bonded are reduced to a metal (for example, copper) by alcohol. . Thereafter, the copper particles sinter with the reduced metal (eg, copper).
As a result, the paste composition at the bonding portion forms a metal bond having high conductivity and high adhesion to the substrate.
 (C)有機溶剤の沸点は、具体的には、100~300℃でもよく、150~290℃でもよい。沸点が100℃以上であると、常温でも揮発性が高くなり過ぎず、分散媒の揮発による還元能力を維持することができ、安定した接着強度を得ることができる。また、沸点が300℃以下であると、硬化膜(導電膜)の焼結が生じやすく、緻密性に優れた膜を形成することができる。また、有機溶剤が揮発せず膜中に有機溶剤が残存するのを低減することができる。 Specifically, the boiling point of the organic solvent (C) may be 100 to 300 ° C., or may be 150 to 290 ° C. When the boiling point is 100 ° C. or higher, the volatility does not become too high even at normal temperature, the reduction ability by the volatilization of the dispersion medium can be maintained, and stable adhesive strength can be obtained. Further, when the boiling point is 300 ° C. or less, sintering of the cured film (conductive film) is easily caused, and a film excellent in compactness can be formed. In addition, the organic solvent is not volatilized and the remaining of the organic solvent in the film can be reduced.
 有機溶剤を配合する場合、その配合量は、銅粒子を100質量部としたとき、7~20質量部でもよい。7質量部以上であると粘度が高くなり過ぎず、作業性を向上させることができ、20質量部以下であると粘度が低くなり過ぎず、ペースト中の銅の沈下を低減し、信頼性を高めることができる。 When the organic solvent is blended, the blending amount may be 7 to 20 parts by mass based on 100 parts by mass of copper particles. If it is 7 parts by mass or more, the viscosity is not too high and the workability can be improved, and if it is 20 parts by mass or less, the viscosity is not too low, and the copper settling in the paste is reduced, and the reliability is improved. It can be enhanced.
 さらに、本実施形態のペースト組成物は(D)熱硬化性樹脂を使用してもよい。
 本実施形態で使用する(D)熱硬化性樹脂は、一般に接着剤用途として使用される熱硬化性樹脂であれば特に限定されずに使用できる。熱硬化性樹脂は、液状樹脂でもよく、室温(25℃)で液状である樹脂でもよい。この(D)熱硬化性樹脂としては、例えば、シアネート樹脂、エポキシ樹脂、ラジカル重合性のアクリル樹脂、マレイミド樹脂などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。本実施形態のペースト組成物が(D)熱硬化性樹脂を含むことで、適度な粘度を有する接着材料(ペースト)とすることができる。また、本実施形態のペースト組成物が熱硬化性樹脂を含むと、その硬化時の反応熱によってペースト組成物の温度が上昇し、銅微粒子の焼結性を促進させる。
Furthermore, the paste composition of the present embodiment may use (D) a thermosetting resin.
The thermosetting resin (D) used in the present embodiment is not particularly limited as long as it is a thermosetting resin generally used as an adhesive application. The thermosetting resin may be a liquid resin or a resin which is liquid at room temperature (25 ° C.). Examples of the (D) thermosetting resin include cyanate resin, epoxy resin, radical polymerizable acrylic resin, maleimide resin and the like. These may be used alone or in combination of two or more. When the paste composition of the present embodiment includes (D) a thermosetting resin, an adhesive material (paste) having an appropriate viscosity can be obtained. In addition, when the paste composition of the present embodiment includes a thermosetting resin, the temperature of the paste composition is increased by the reaction heat at the time of curing thereof, and the sinterability of the copper particles is promoted.
 ここで、(D)熱硬化性樹脂を配合する場合は、上記(A)銅微粒子を100質量部としたとき、1~20質量部となるように配合される。熱硬化性樹脂が1質量部以上であると熱硬化性樹脂による接着性を十分に得ることができ、熱硬化性樹脂が20質量部以下であると、高熱伝導性を十分に確保することができ、熱放散性を向上させることができる。また、有機成分が多くなり過ぎず、光及び熱による劣化を抑え、その結果、発光装置の寿命を高めることができる。このような配合範囲とすることで、熱硬化性樹脂の接着性能を利用して、銅粒子相互の接触を低減し、かつ、接着層全体の機械的強度を保持することが、容易にできる。 Here, when the thermosetting resin (D) is blended, it is blended so as to be 1 to 20 parts by mass when the above (A) copper fine particles are 100 parts by mass. When the thermosetting resin is 1 part by mass or more, sufficient adhesiveness by the thermosetting resin can be obtained, and when the thermosetting resin is 20 parts by mass or less, high thermal conductivity can be sufficiently ensured. The heat dissipation can be improved. In addition, the amount of the organic component is not too large, and deterioration due to light and heat can be suppressed, and as a result, the lifetime of the light-emitting device can be increased. By setting it as such a compounding range, it is easy to reduce the contact between copper particles and to maintain the mechanical strength of the entire adhesive layer by utilizing the adhesive performance of the thermosetting resin.
 本実施形態のペースト組成物には、以上の各成分の他、この種の組成物に一般に配合される、硬化促進剤、ゴムまたはシリコーン等の低応力化剤、カップリング剤、消泡剤、界面活性剤、着色剤(顔料、染料)、各種重合禁止剤、酸化防止剤、溶剤、その他の各種添加剤を、必要に応じて配合することができる。これらの各添加剤はいずれも1種を単独で使用してもよく、2種以上を混合して使用してもよい。 In the paste composition of the present embodiment, in addition to the above-described components, a curing accelerator, a stress reducing agent such as rubber or silicone, a coupling agent, an antifoamer, and the like generally compounded in this type of composition. Surfactants, colorants (pigments, dyes), various polymerization inhibitors, antioxidants, solvents, and other various additives can be blended as necessary. Any of these additives may be used alone or in combination of two or more.
 本実施形態のペースト組成物は、上記した(A)~(B)の各成分、及び必要に応じて配合される(C)、(D)の任意成分、その他カップリング剤等の添加剤及び溶剤等を十分に混合した後、さらにディスパース、ニーダー、3本ロールミル等により混練処理を行い、次いで、脱泡することにより、調製することができる。なお、本明細書において、ペースト組成物には、スラリー、またはインク等の粘度の低いものも包含される。本実施形態のペースト組成物の粘度は、例えば、20~300Pa・sでもよく、30~200Pa・sでもよい。
 また、本実施形態のペースト組成物の接着強度は、20MPa以上でもよく、25MPa以上でもよく、30MPa以上でもよい。
 なお、上記粘度及び接着強度は、実施例に記載の方法により測定することができる。
The paste composition of the present embodiment includes each of the components (A) to (B) described above, optional components (C) and (D) blended if necessary, and other additives such as a coupling agent and the like, After sufficiently mixing the solvent and the like, the mixture can be further kneaded by a disperser, a kneader, a three-roll mill or the like, and then defoamed to prepare. In the present specification, the paste composition also includes those with low viscosity such as a slurry or an ink. The viscosity of the paste composition of the present embodiment may be, for example, 20 to 300 Pa · s, or 30 to 200 Pa · s.
Further, the adhesive strength of the paste composition of the present embodiment may be 20 MPa or more, 25 MPa or more, or 30 MPa or more.
In addition, the said viscosity and adhesive strength can be measured by the method as described in an Example.
 このようにして得られる本実施形態のペースト組成物は、高熱伝導性、熱放散性に優れる。そのため、素子や放熱部材の基板等への接合材料として使用すると、装置内部の熱の外部への放散性が改善され、製品特性を安定させることができる。 The paste composition of the present embodiment thus obtained is excellent in high thermal conductivity and heat dissipation. Therefore, when used as a bonding material of the element or the heat dissipation member to the substrate or the like, the heat dissipation inside the device can be improved and the product characteristics can be stabilized.
 次に、本実施形態の半導体装置及び電気・電子機器について説明する。
 本実施形態の半導体装置は、上記したペースト組成物を用いて、半導体素子を素子支持部材となる基板上に接着してなるものである。すなわち、ここでペースト組成物はダイアタッチペーストとして使用され、このペースト組成物を介して半導体素子と基板とが接着し、固定される。
Next, the semiconductor device and the electric / electronic device of the present embodiment will be described.
The semiconductor device of the present embodiment is formed by adhering a semiconductor element on a substrate serving as an element support member, using the above-described paste composition. That is, here, the paste composition is used as a die attach paste, and the semiconductor element and the substrate are adhered and fixed via this paste composition.
 ここで、半導体素子は、公知の半導体素子であればよく、例えば、トランジスタ、ダイオード等が挙げられる。さらに、この半導体素子としては、LED等の発光素子が挙げられる。また、発光素子の種類は特に制限されるものではなく、例えば、MOCVD法等によって基板上にInN、AlN、GaN、InGaN、AlGaN、InGaAlN等の窒化物半導体を発光層として形成させたものも挙げられる。また、素子支持部材は、銅、銅メッキ銅、PPF(プリプレーティングリードフレーム)、ガラスエポキシ、セラミックス等の材料で形成された支持部材が挙げられる。 Here, the semiconductor element may be a known semiconductor element, and examples thereof include a transistor, a diode, and the like. Furthermore, as this semiconductor element, a light emitting element such as an LED may be mentioned. Further, the type of the light emitting element is not particularly limited. For example, a light emitting layer in which a nitride semiconductor such as InN, AlN, GaN, InGaN, AlGaN, InGaAlN or the like is formed on a substrate by MOCVD method is also mentioned. Be Further, as the element support member, a support member formed of a material such as copper, copper-plated copper, PPF (precoating lead frame), glass epoxy, ceramics, etc. may be mentioned.
 本実施形態のペースト組成物は、金属メッキ処理されていない基材も接着できる。このようにして得られた半導体装置は、実装後の温度サイクルに対する接続信頼性が従来に比べ飛躍的に向上したものとなる。また、電気抵抗値が十分小さく経時変化が少ないため、長時間の駆動でも出力の経時的減少が少なく長寿命であるという利点がある。 The paste composition of this embodiment can also adhere to a substrate that has not been metal plated. In the semiconductor device obtained in this manner, the connection reliability with respect to the temperature cycle after mounting is dramatically improved as compared with the related art. In addition, since the electric resistance value is sufficiently small and the change with time is small, there is an advantage that the output does not decrease with time even when driven for a long time and the life is long.
 また、本実施形態の電気・電子機器は、上記したペースト組成物を用いて、発熱部材に放熱部材を接着してなるものである。すなわち、ここでペースト組成物は放熱部材接着用材料として使用され、このペースト組成物を介して放熱部材と発熱部材とが接着し、固定される。 Moreover, the electric / electronic device of the present embodiment is formed by bonding a heat dissipation member to a heat generating member using the above-described paste composition. That is, here, the paste composition is used as a heat radiation member bonding material, and the heat radiation member and the heat generation member are bonded and fixed via the paste composition.
 ここで、発熱部材としては、上記した半導体素子又は該半導体素子を有する部材でもよいし、それ以外の発熱部材でもよい。半導体素子以外の発熱部材としては、光ピックアップ、パワートランジスタ等が挙げられる。また、放熱部材としては、ヒートシンク、ヒートスプレッダー等が挙げられる。 Here, as the heat generating member, the above-described semiconductor element or a member having the semiconductor element may be used, or any other heat generating member may be used. Examples of heat generating members other than semiconductor elements include optical pickups and power transistors. Moreover, as a heat dissipation member, a heat sink, a heat spreader, etc. are mentioned.
 このように、発熱部材に上記したペースト組成物を用いて放熱部材を接着することで、発熱部材で発生した熱を放熱部材により効率良く外部へ放出することが可能となり、発熱部材の温度上昇を抑えることができる。なお、発熱部材と放熱部材とは、ペースト組成物を介して直接接着してもよいし、他の熱伝導率の高い部材を間に挟んで間接的に接着してもよい。 As described above, by bonding the heat radiating member to the heat generating member using the above-described paste composition, the heat generated by the heat generating member can be efficiently released to the outside by the heat radiating member, and the temperature rise of the heat generating member It can be suppressed. The heat-generating member and the heat-radiating member may be bonded directly via the paste composition, or may be bonded indirectly by sandwiching another member having a high thermal conductivity.
 次に、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれらの実施例に何ら限定されるものではない。 Next, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these examples.
[合成例1]
 クエン酸銅(5mmol)とクエン酸(3.75mmol)、ブチルセロソルブ(3ml)を50mlのサンプル瓶に入れ、アルミブロック式加熱撹拌機中、90℃で5分混合した。これに1-アミノ-2-プロパノール(60mmol)を加え、さらに5分加熱し、銅前駆体溶液とした。この溶液を室温まで冷却した後、1-プロパノール 3mLに溶解させたヒドラジノエタノール(20mmol)を、サンプル瓶の銅前駆体溶液に加え、5分撹拌した。
Synthesis Example 1
Copper citrate (5 mmol), citric acid (3.75 mmol) and butyl cellosolve (3 ml) were placed in a 50 ml sample bottle and mixed at 90 ° C. for 5 minutes in an aluminum block heating stirrer. To this was added 1-amino-2-propanol (60 mmol), and the mixture was heated for another 5 minutes to give a copper precursor solution. After cooling this solution to room temperature, hydrazinoethanol (20 mmol) dissolved in 3 mL of 1-propanol was added to the copper precursor solution in the sample bottle and stirred for 5 minutes.
 再び90℃のアルミブロック式加熱撹拌機で2時間加熱撹拌した。5分後エタノール(関東化学、特級) 2mLを加え、遠心分離(4000rpm(1分間))して、粒子径0.22μmで多面体形状の粉体状の銅微粒子1を得た。銅微粒子1は、1-アミノ-2-プロパノールによって、その表面が被覆されていた。 It heat-stirred with the 90 degreeC aluminum block type heating stirrer again for 2 hours. After 5 minutes, 2 mL of ethanol (Kanto Chemical, special grade) was added and centrifuged (4000 rpm (1 minute)) to obtain powdery copper fine particles 1 having a particle diameter of 0.22 μm and having a polyhedral shape. The surface of the copper fine particle 1 was coated with 1-amino-2-propanol.
[合成例2]
 実施例1の1-アミノ-2-プロパノールをオクチルアミン 60mmolに置き換えた以外は合成例1と同じに、粒子径0.10μmでプレート形状の粉体状の銅微粒子2を得た。銅微粒子1は、オクチルアミンによって、その表面が被覆されていた。
Synthesis Example 2
Similar to Synthesis Example 1 except that 1-amino-2-propanol of Example 1 was replaced with 60 mmol of octylamine, plate-shaped powdery copper microparticles 2 with a particle diameter of 0.10 μm were obtained. The surface of the copper fine particle 1 was coated with octylamine.
(実施例1~4、比較例1)
 表1の配合(質量部)に従って各成分を混合し、ロールで混練し、樹脂ペーストを得た。また、得られたペースト組成物及びその硬化物の特性を調べ、以下の方法で評価した。その結果を表1に併せて示す。なお、実施例1~4及び比較例1で用いた材料は、下記の通りである。合成例1及び2で得られた銅微粒子以外は市販品を使用した。
(Examples 1 to 4, Comparative Example 1)
Each component was mixed according to the composition (parts by mass) of Table 1 and kneaded with a roll to obtain a resin paste. Moreover, the characteristic of the obtained paste composition and its hardened | cured material was investigated, and the following method evaluated. The results are shown in Table 1 together. The materials used in Examples 1 to 4 and Comparative Example 1 are as follows. Commercial products were used except for the copper fine particles obtained in Synthesis Examples 1 and 2.
[(A)銅微粒子]
 (A1):市販銅微粒子(三井金属社製、商品名:CH-0200;粒子径:0.16μm)
 (A2):銅微粒子1(多面体形状、粒子径0.22μm)
 (A3):銅微粒子2(プレート形状、粒子径0.10μm)
[(A) Copper fine particles]
(A1): Commercially available copper fine particles (Mitsui Metals Co., Ltd., trade name: CH-0200; particle diameter: 0.16 μm)
(A2): Copper fine particle 1 (polyhedron shape, particle diameter 0.22 μm)
(A3): Copper fine particle 2 (plate shape, particle diameter 0.10 μm)
[(B)焼結助材]
 (B1):焼結助剤1(グルタル酸無水物、和光純薬工業株式会社製、融点 50℃、沸点 150℃)
 (B2):焼結助剤2(コハク酸無水物、和光純薬工業株式会社製、融点 118℃、沸点 261℃)
[その他の焼結助材]
 マロン酸(和光純薬工業株式会社製、融点 135℃)
[(B) sintering auxiliary material]
(B1): sintering aid 1 (glutaric anhydride, manufactured by Wako Pure Chemical Industries, Ltd., melting point 50 ° C., boiling point 150 ° C.)
(B2): sintering aid 2 (succinic anhydride, manufactured by Wako Pure Chemical Industries, Ltd., melting point 118 ° C., boiling point 261 ° C.)
[Other sintering aids]
Malonic acid (manufactured by Wako Pure Chemical Industries, Ltd., melting point 135 ° C.)
[(C)有機溶剤]
 (C1):有機溶剤1(ジエチレングリコール、東京化成工業(株)製)
[(D)熱硬化性樹脂]
 (D1):熱硬化性樹脂1(ジアリルビスフェノールAジグリシジルエーテル型エポキシ樹脂、日本化薬株式会社製、商品名:RD-810NM;エポキシ当量 223、加水分解性塩素 150ppm(1N KOH-エタノール、ジオキサン溶媒、還流30分)
(その他)
 重合開始剤:ジクミルパーオキサイド(日本油脂(株)製、商品名:パークミルC;急速加熱試験における分解温度:126℃)
[(C) Organic solvent]
(C1): Organic solvent 1 (diethylene glycol, manufactured by Tokyo Chemical Industry Co., Ltd.)
[(D) thermosetting resin]
(D1): thermosetting resin 1 (diallyl bisphenol A diglycidyl ether type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., trade name: RD-810 NM; epoxy equivalent 223, hydrolyzable chlorine 150 ppm (1N KOH-ethanol, dioxane Solvent, reflux 30 minutes)
(Others)
Polymerization initiator: Dicumyl peroxide (manufactured by NOF Corp., trade name: Park Mill C; decomposition temperature in rapid heating test: 126 ° C.)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<評価方法>
[粘度]
 ペースト組成物の粘度は、D型粘度計(3°コーン)を用いて、25℃、5rpmでの値を測定した。
<Evaluation method>
[viscosity]
The viscosity of the paste composition was measured at 25 ° C. at 5 rpm using a D-type viscometer (3 ° cone).
[熱伝導率]
 ペースト組成物の硬化後の熱伝導率は、200℃、60分で硬化した後、JIS R 1611-1997に従い、レーザーフラッシュ法により熱伝導率を測定した。
[Thermal conductivity]
The thermal conductivity after curing of the paste composition was cured at 200 ° C. for 60 minutes, and then the thermal conductivity was measured by a laser flash method according to JIS R 1611-1997.
[電気抵抗]
 電気抵抗測定用試料は、ガラス基板(厚み1mm)にスクリーン印刷法により厚み200μmとなるように塗布し、175℃、200℃、300℃、60分で硬化した。
 電気抵抗は、得られた配線を製品名「MCP-T600」(三菱化学(株)製)を用い4端子法にてを測定した。
[Electric resistance]
The sample for electric resistance measurement was apply | coated so that it might become 200 micrometers in thickness by screen printing method to a glass substrate (thickness 1mm), and it hardened | cured in 175 degreeC, 200 degreeC, 300 degreeC, and 60 minutes.
The electrical resistance of the obtained wiring was measured by a four-terminal method using a product name “MCP-T600” (manufactured by Mitsubishi Chemical Corporation).
[熱時接着強度](die shear strength)
 熱時接着強度測定用試料は、4mm×4mmの接着面に金蒸着層を設けた裏面金チップを、得られたペースト組成物を用いて、無垢の銅フレーム及びPPF(Ni-PC/Auめっきした銅フレーム)にマウントし、200℃、60分で硬化した。
 熱時接着強度は、硬化及び吸湿処理(85℃、相対湿度85%、72時間)後、マウント強度測定装置を用い、260℃での熱時ダイシェア強度を測定した。
[Heat bonding strength] (die shear strength)
The sample for the measurement of adhesive strength at the time was a back surface gold chip provided with a gold deposited layer on the 4 mm × 4 mm adhesive surface, and using the obtained paste composition, solid copper frame and PPF (Ni-PC / Au plating) Copper frame) and cured at 200.degree. C. for 60 minutes.
The heat bond strength was measured after curing and moisture absorption treatment (85 ° C., relative humidity 85%, 72 hours) using a mount strength measuring apparatus at heat at 260 ° C.
[高温熱処理後の熱時接着強度]
 高温熱処理後の熱時接着強度測定用試料は、4mm×4mmの接着面に金蒸着層を設けた裏面金チップを、得られたペースト組成物を用いて、表面にNi-PC/AuめっきしたMo基板にマウントし、200℃、60分で硬化した。
 高温熱処理後の熱時接着強度(加熱処理)は、高温熱処理として加熱処理(250℃の加熱処理を、100時間及び1000時間)後、マウント強度測定装置を用い、260℃での熱時ダイシェア強度を測定した。
 高温熱処理後の熱時接着強度(冷熱サイクル処理)は、冷熱サイクル処理(-40℃から250℃まで昇温し、また-40℃に冷却する操作を1サイクルとし、これを100サイクル及び1000サイクル)後のそれぞれについて、マウント強度測定装置を用い、260℃での熱時ダイシェア強度を測定した。
[Heat bonding strength after high temperature heat treatment]
The sample for the measurement of adhesive strength at the time of high temperature heat treatment was Ni-PC / Au plated on the surface of the back surface gold chip provided with a gold deposition layer on the adhesion surface of 4 mm × 4 mm using the obtained paste composition It was mounted on a Mo substrate and cured at 200 ° C. for 60 minutes.
Thermal bond strength (heat treatment) after high-temperature heat treatment is heat-treated as a high-temperature heat treatment (heat treatment at 250 ° C for 100 hours and 1000 hours), and then using a mount strength measuring device, heat shear strength at 260 ° C Was measured.
Thermal bond strength (cold thermal cycle processing) after high temperature heat treatment is one cycle consisting of heating up from -40 ° C to 250 ° C and cooling down to -40 ° C as 100 cycles and 1000 cycles 2.) For each of the latter, the hot die shear strength at 260 ° C. was measured using a mount strength measurement device.
[耐冷熱衝撃性]
 耐冷熱衝撃性測定用試料は、6mm×6mmの接着面に金蒸着層を設けた裏面金シリコンチップを得られたペースト組成物を用いて銅フレーム及びPPFにマウントし、オーブンを使用し、200℃、60分の加熱硬化(OV硬化)を行った後、京セラ(株)製エポキシ封止材(商品名:KD-G3000C)を用いて、下記の条件で成形した。
 耐冷熱衝撃性は、85℃、相対湿度85%、168時間吸湿処理した後、IRリフロー処理(260℃、10秒)及び冷熱サイクル処理(-55℃から150℃まで昇温し、また-55℃に冷却する操作を1サイクルとし、これを1000サイクル)を行い、各処理後それぞれのパッケージの内部クラックの発生数を超音波顕微鏡で観察した。
 評価結果は、5個のサンプルについてクラックの発生したサンプル数を示す。
[Cold-heat shock resistance]
The sample for measurement of thermal shock resistance is mounted on a copper frame and PPF using the paste composition obtained on the back surface gold silicon chip provided with a gold deposition layer on the adhesion surface of 6 mm × 6 mm, using an oven, 200 After heat curing (OV curing) at 60 ° C. for 60 minutes, molding was performed under the following conditions using an epoxy sealing material (trade name: KD-G3000C) manufactured by KYOCERA Corporation.
Thermal shock resistance is 85 ° C, relative humidity 85%, after absorbing moisture for 168 hours, IR reflow treatment (260 ° C, 10 seconds) and thermal cycle treatment (-55 ° C to 150 ° C), and -55 The operation of cooling to 0 C was regarded as one cycle, and this was performed 1000 cycles), and the number of internal cracks in each package after each treatment was observed with an acoustic microscope.
The evaluation results show the number of cracked samples for five samples.
 パッケージ:80pQFP(14mm×20mm×2mm厚さ)
 チップ:シリコンチップ及び裏面金メッキチップ
 リードフレーム:PPF及び銅
 封止材の成形:175℃、2分間
 ポストモールドキュアー:175℃、8時間
Package: 80 pQFP (14 mm x 20 mm x 2 mm thickness)
Chip: Silicon chip and backside gold plated chip Lead frame: PPF and copper Sealing material molding: 175 ° C, 2 minutes Post mold cure: 175 ° C, 8 hours
 以上の結果より、本実施形態のペースト組成物は、所定の銅粒子に加え、酸無水物構造を含む焼結助剤を含有させることにより、熱伝導性に優れ、低応力性に優れ、接着特性が良好でリフロー剥離耐性に優れることがわかった。
 また、本実施形態のペースト組成物は、特に高温処理後の熱時接着強度が良好である。従って、このペースト組成物は、素子接着用ダイアタッチペースト又は放熱部材接着用材料として使用することで信頼性に優れた半導体装置及び電気・電子機器とできる。
From the above results, the paste composition of the present embodiment is excellent in thermal conductivity and excellent in low stress property by containing a sintering aid containing an acid anhydride structure in addition to predetermined copper particles. It was found that the characteristics were good and the reflow peeling resistance was excellent.
Moreover, the paste composition of the present embodiment is particularly excellent in hot adhesive strength after high temperature treatment. Therefore, by using this paste composition as a die attach paste for element bonding or a heat radiation member bonding material, a semiconductor device and an electric / electronic device having excellent reliability can be obtained.

Claims (8)

  1.  (A)厚さ又は短径が10~500nmの銅微粒子と、(B)酸無水物構造を含む焼結助剤と、を含み、
     前記(A)銅微粒子 100質量部に対して、前記(B)焼結助材が0.01~1質量部配合されているペースト組成物。
    (A) copper fine particles having a thickness or short diameter of 10 to 500 nm, and (B) a sintering aid containing an acid anhydride structure,
    A paste composition comprising 0.01 to 1 parts by mass of the (B) sintering auxiliary material with respect to 100 parts by mass of the (A) copper fine particles.
  2.  前記(A)銅微粒子が、表面をアミン化合物で被覆された銅微粒子である請求項1記載のペースト組成物。 The paste composition according to claim 1, wherein the (A) copper fine particles are copper fine particles whose surface is coated with an amine compound.
  3.  前記(A)銅微粒子が、下記化学式(1)に示すアミノアルコールによって被覆されている請求項1又は2に記載のペースト組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、同一又は異なっていてもよく、互いに独立して、水素原子、炭素数1~4のアルキル基、ヒドロキシ基又はメトキシ基を表し、n及びmは0~10の整数を表し、m+nは10以下である。)
    The paste composition according to claim 1 or 2, wherein the (A) copper fine particles are coated with an amino alcohol represented by the following chemical formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 may be the same or different, and independently of each other represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxy group or a methoxy group, and n and m are integers of 0 to 10) And m + n is 10 or less.)
  4.  さらに、(C)有機溶剤を含み、該(C)有機溶剤が、還元剤として機能するアルコール(ヒドロキシ化合物)である請求項1乃至3のいずれか1項記載のペースト組成物。 The paste composition according to any one of claims 1 to 3, further comprising (C) an organic solvent, wherein the (C) organic solvent is an alcohol (hydroxy compound) functioning as a reducing agent.
  5.  前記(B)焼結助剤が、融点40~150℃、沸点が100~300℃の酸無水物である請求項1乃至4のいずれか1項記載のペースト組成物。 The paste composition according to any one of claims 1 to 4, wherein the (B) sintering aid is an acid anhydride having a melting point of 40 to 150 ° C and a boiling point of 100 to 300 ° C.
  6.  基板と、
     前記基板上に、請求項1乃至5のいずれか1項記載のペースト組成物を含むダイアタッチ材料の硬化物を介して接着された半導体素子と、を有する半導体装置。
    A substrate,
    A semiconductor device, comprising: a semiconductor element bonded on the substrate via a cured product of a die attach material containing the paste composition according to any one of claims 1 to 5.
  7.  前記半導体素子が、発光素子である請求項6記載の半導体装置。 The semiconductor device according to claim 6, wherein the semiconductor element is a light emitting element.
  8.  発熱部材と、
     前記発熱部材に、請求項1乃至5のいずれか1項記載のペースト組成物を含む放熱部材接着用材料の硬化物を介して接着された放熱部材と、を有する電気・電子機器。
    A heat generating member,
    An electric / electronic device comprising: a heat radiating member bonded to the heat generating member via a cured product of a heat radiating member bonding material containing the paste composition according to any one of claims 1 to 5.
PCT/JP2018/039344 2017-11-13 2018-10-23 Paste composition, semiconductor device, and electrical/electronic component WO2019093119A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017218317 2017-11-13
JP2017-218317 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019093119A1 true WO2019093119A1 (en) 2019-05-16

Family

ID=66437689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039344 WO2019093119A1 (en) 2017-11-13 2018-10-23 Paste composition, semiconductor device, and electrical/electronic component

Country Status (2)

Country Link
TW (1) TWI699412B (en)
WO (1) WO2019093119A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329945A (en) * 2001-04-27 2002-11-15 Harima Chem Inc Method of forming inter-board conductivity, utilizing anisotrop conductive material
JP2009074054A (en) * 2007-09-21 2009-04-09 Samsung Electro Mech Co Ltd Non-aqueous electroconductive nano ink composition
JP2011216475A (en) * 2010-03-18 2011-10-27 Furukawa Electric Co Ltd:The Conductive paste, its manufacturing method, and conductive connection member
JP2012023014A (en) * 2010-06-16 2012-02-02 National Institute For Materials Science Metal nanoparticle paste, electronic component assembly using metal nanoparticle paste, led module and method for forming circuit of printed wiring board
WO2015129466A1 (en) * 2014-02-27 2015-09-03 学校法人関西大学 Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
JP2016089146A (en) * 2014-10-30 2016-05-23 日華化学株式会社 Electroconductive ink composition and electroconductive member produced by using teh same
JP2017206755A (en) * 2016-05-20 2017-11-24 京セラ株式会社 Method for producing copper fine particle, copper fine particle, paste composition, semiconductor device and electric/electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329945A (en) * 2001-04-27 2002-11-15 Harima Chem Inc Method of forming inter-board conductivity, utilizing anisotrop conductive material
JP2009074054A (en) * 2007-09-21 2009-04-09 Samsung Electro Mech Co Ltd Non-aqueous electroconductive nano ink composition
JP2011216475A (en) * 2010-03-18 2011-10-27 Furukawa Electric Co Ltd:The Conductive paste, its manufacturing method, and conductive connection member
JP2012023014A (en) * 2010-06-16 2012-02-02 National Institute For Materials Science Metal nanoparticle paste, electronic component assembly using metal nanoparticle paste, led module and method for forming circuit of printed wiring board
WO2015129466A1 (en) * 2014-02-27 2015-09-03 学校法人関西大学 Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
JP2016089146A (en) * 2014-10-30 2016-05-23 日華化学株式会社 Electroconductive ink composition and electroconductive member produced by using teh same
JP2017206755A (en) * 2016-05-20 2017-11-24 京セラ株式会社 Method for producing copper fine particle, copper fine particle, paste composition, semiconductor device and electric/electronic component

Also Published As

Publication number Publication date
TW201922986A (en) 2019-06-16
TWI699412B (en) 2020-07-21

Similar Documents

Publication Publication Date Title
JP7222904B2 (en) Paste composition, semiconductor device and electric/electronic parts
TWI711670B (en) High performance, thermally conductive surface mount (die attach) adhesives
JP6381738B1 (en) Paste-like metal particle composition, bonding method, and electronic device manufacturing method
JP6857453B2 (en) Manufacturing method of copper fine particles, copper fine particles, paste composition, semiconductor devices and electrical / electronic parts
JP2013143243A (en) Conductive bonding material, bonding method of ceramic electronic material using the same, and ceramic electronic device
WO2019065221A1 (en) Paste composition, semiconductor device, and electrical/electronic component
TW202014260A (en) Production method for copper particles, bonding paste, semiconductor device, and electrical and electronic components
WO2019093119A1 (en) Paste composition, semiconductor device, and electrical/electronic component
JP7465747B2 (en) Coated copper particles, method for producing coated copper particles, copper paste, method for producing copper paste, and semiconductor device
JP7443948B2 (en) Compositions, methods for forming silver sintered products, joining methods, articles and methods for manufacturing articles
WO2018159115A1 (en) Method for manufacturing semiconductor device
JP7129043B2 (en) Method for producing bonding copper particles, bonding paste, semiconductor device, and electric/electronic component
WO2022196620A1 (en) Paste composition, semiconductor device, electrical component and electronic component
WO2023191028A1 (en) Copper particle and method for producing same, paste composition, semiconductor device, electrical component, and electronic component
CN113165069B (en) Copper particle, method for producing copper particle, copper paste, semiconductor device, and electric/electronic component
TW202026074A (en) Production method for copper particles used in bonding, paste used in bonding, and semiconductor device and electric and electronic component
JP7231734B2 (en) ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE
JP2021134362A (en) Coated copper particle, copper paste and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP