WO2019091070A1 - 安全输入动态采样电路 - Google Patents

安全输入动态采样电路 Download PDF

Info

Publication number
WO2019091070A1
WO2019091070A1 PCT/CN2018/086116 CN2018086116W WO2019091070A1 WO 2019091070 A1 WO2019091070 A1 WO 2019091070A1 CN 2018086116 W CN2018086116 W CN 2018086116W WO 2019091070 A1 WO2019091070 A1 WO 2019091070A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
signal
sampling
pin
photocoupler
Prior art date
Application number
PCT/CN2018/086116
Other languages
English (en)
French (fr)
Inventor
朱雳雄
王海龙
牛建华
周炜
贺龙龙
黄彬彬
周荣
孟庆尧
Original Assignee
北京全路通信信号研究设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京全路通信信号研究设计院集团有限公司 filed Critical 北京全路通信信号研究设计院集团有限公司
Priority to EP18875763.7A priority Critical patent/EP3712734B1/en
Priority to HRP20221285TT priority patent/HRP20221285T1/hr
Priority to EA202091215A priority patent/EA202091215A1/ru
Priority to RS20220966A priority patent/RS63669B1/sr
Publication of WO2019091070A1 publication Critical patent/WO2019091070A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • H03K19/017536Interface arrangements using opto-electronic devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Definitions

  • the present disclosure relates to the field of train control systems, and more particularly to a safety input dynamic sampling circuit.
  • the signal control system needs to collect the switching amount to achieve the acquisition of the external state. Because the electronic device is faulty or the like, the signal is fixed in a high or low logic state, and the input signal cannot be faithfully reflected. Therefore, the signal control system may get incorrect input information, thereby causing a logic error, thereby affecting driving safety.
  • the fixed input signal is 1 for the dangerous side
  • the input signal is 0 for the safe side. Therefore, in order to ensure the safety of the system, it is necessary to reduce the probability that the dangerous side signal is misjudged.
  • the embodiments of the present disclosure provide a secure input dynamic sampling circuit for solving the technical problem in the prior art that a dangerous side signal is misjudged due to an electronic device failure.
  • a safety input dynamic sampling circuit including: a rectifier circuit connected to an input signal to convert an input signal into a DC signal; a voltage stabilization circuit connected to the rectifier circuit, and a control station The voltage amplitude of the DC signal; the sampling circuit includes a first input end, a second input end, and a sampling end, the first input end receives the input signal, the second input end receives the sampling control signal, and the sampling end collects The first input corresponds to a DC signal.
  • the sampling circuit includes: a first photocoupler and a second photocoupler; a fourth pin of the first photocoupler and a second pin of the second photocoupler serve as a first input terminal and voltage regulator Circuit connection, the third pin of the first photocoupler is connected to the first pin of the second photocoupler; the second pin of the first photocoupler is used as the second input terminal, and the first pin is connected to the output voltage; The fourth pin of the two optocoupler is used as the sampling terminal, and the power supply voltage is connected at the same time, and the third pin is grounded.
  • the second pin of the first photocoupler is connected to the first resistor
  • the fourth pin of the second photocoupler is connected to the supply voltage through the second resistor
  • the rectifier circuit includes a first diode and a third resistor; an anode of the input signal is connected to a positive pole of the first diode, and a cathode of the first diode is connected to one end of the third resistor, The other end of the three resistors is connected to the voltage stabilizing circuit.
  • the voltage stabilizing circuit includes a second diode, a third diode, and a fourth resistor; an output of the rectifier circuit is respectively connected to a negative pole of the second diode and one end of the fourth resistor, and the fourth resistor The other end is connected to the fourth pin of the second photocoupler, the negative terminal of the third diode is connected to the second pin of the second photocoupler, the positive electrode of the third diode and the positive electrode of the second diode Connect to the negative side of the input signal separately.
  • the sampling control signal is 1, the signal collected by the sampling end is consistent with the signal input by the first input end.
  • the beneficial effects of the embodiments of the present disclosure include: controlling the collected signal of the sampling end by the sampling control signal of the second input end, and receiving the sampling control signal allowing the sampling, the input signal of the first input end is transmitted to the sampling end, thereby collecting The signal corresponding to the first input terminal determines the input signal of the railway system by comparing whether the signal at the sampling end is consistent with the signal at the second input end.
  • FIG. 1 is a schematic block diagram of a safety input dynamic sampling circuit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a principle of a safety input dynamic sampling circuit according to an embodiment of the present disclosure.
  • the safety input dynamic sampling circuit controls the collected signal of the sampling end through the sampling control signal of the second input end.
  • the sampling control signal that allows sampling the input signal of the first input end is transmitted to the sampling end.
  • a signal corresponding to the first input end is collected, and the input signal of the railway system is determined by comparing whether the signal of the sampling end is consistent with the signal of the second input end.
  • the schematic diagram of the safety input dynamic sampling circuit shown in FIG. 1 includes a rectifier circuit 10, a voltage stabilization circuit 11 and a sampling circuit 12.
  • the sampling circuit 12 has a first input terminal 121, a second input terminal 122, and a sampling terminal 123.
  • the rectifier circuit 10 is coupled to an input signal from a railway system.
  • the rectifier circuit 10 converts the input signal into a DC signal and inputs it to the voltage stabilization circuit 11.
  • the voltage stabilizing circuit 11 controls the voltage amplitude between the first input terminal 121 and the negative terminal of the input signal, and inputs the output DC signal to the first input terminal 121.
  • the second input terminal 12 receives the sampling control signal, controls the conduction of the input signal to the sampling terminal 123 by the sampling control signal, and conducts the input signal of the first input terminal 121 to the sampling terminal 123 in response to the sampling control signal allowing the sampling.
  • the fixed input signal is 1 for the dangerous side and the input signal is 0 for the safe side.
  • the dangerous side refers to the side where the harmful consequences occur.
  • the hazardous side In the event of a breakdown of a railway installation or system, there are two types of reversal: the hazardous side and the safe side.
  • the design For a safety system, the design must be reversed to the safe side. Therefore, in order to ensure the security of the system, it is necessary to reduce the probability that the dangerous side signal is misjudged, that is, reduce the probability that the input signal is erroneously judged to be zero.
  • I_P represents the input signal
  • O_EN represents the acquisition control signal
  • O_C represents the acquisition signal
  • the signal truth table is as follows.
  • O_EN When O_EN is 1, I_P is passed to the sampling terminal 123, so that O_C collects the signal.
  • the I_P input is 1, the conduction of the sampling circuit 12 is determined by O_EN, so the state of O_C is determined by O_EN; when the I_P input is 0, the sampling circuit 12 cannot be turned on regardless of any signal input from O_EN, and the O_C state is maintained at 0.
  • the change of the O_C signal is the same as the O_EN signal in the state where the input signal is 1, so the O_EN signal transmits the channel-encoded pulse signal, simultaneously detects the O_C signal, and transmits the O_EN transmission code and O_C.
  • the code is compared.
  • the O_EN transmission code is the same as the O_C code
  • the input signal I_P signal is at a high level 1.
  • the O_C does not receive the channel code, the input signal is 0 or the device or the system has a fault. The fault is backward security. Side failure.
  • FIG. 2 is a schematic diagram of a safety input dynamic sampling circuit according to an embodiment of the present disclosure, including a first diode D1, a second diode D2, a third diode D3, a first resistor R1, a second resistor R2, and a third Resistor R3 and fourth resistor R4, first photocoupler U1 and second photocoupler U2.
  • I_P and I_N are the positive and negative of the input signal
  • O_EN is the input of the acquisition control signal
  • O_C is the acquisition end.
  • the rectifier circuit 10 includes a first diode D1 and a third resistor R3; the anode of the input signal is connected to the anode of D1, the cathode of D1 is connected to one end of R3, and the other end of R3 is connected to the voltage stabilizing circuit.
  • the voltage stabilizing circuit 11 includes a second diode D2, a third diode D3, and a fourth resistor R4.
  • the output of the rectifier circuit (the other end of R3) is connected to the negative terminal of D2 and one end of R4, the other end of R4 is connected to the fourth pin of the second photocoupler U2 of the sampling circuit, and the negative terminal of D3 is connected to the second of U2.
  • the 2 pin, the positive pole of the third diode and the positive pole of the second diode are respectively connected to the negative pole of the input signal.
  • the sampling circuit 12 includes a first photocoupler U1 and a second photocoupler U2.
  • the fourth pin of U1 and the second pin of U2 are connected as a first input terminal to the voltage stabilizing circuit, the third pin of U1 is connected to the first pin of U2, and the second pin of U1 is used as the second input terminal.
  • the first pin is connected to the output voltage; the fourth pin of U2 is used as the sampling terminal, and the supply voltage is connected at the same time, and the third pin is grounded.
  • the second pin of U1 is connected to the second input terminal through the first resistor R1, the first pin is connected to the output voltage, and the fourth pin of U2 is connected to the supply voltage through the second resistor R2.
  • the O_C signal changes the same as the O_EN signal, so the O_EN signal transmits the channel-encoded pulse signal, simultaneously detects the O_C signal, and compares the O_EN transmission code with the O_C received code, when O_EN When the transmission code is the same as the O_C code, the I_P input signal is at a high level 1.
  • the O_C does not receive the channel code, the input signal is 0 or the device has a fault.
  • the first diode D1 in the rectifier circuit 10 is a rectifier diode, preferably MRA4007, and the third resistor R3 is preferably a chip resistor 1206 with a resistance of 2.7K ohms.
  • the second diode D2 in the voltage stabilizing circuit 11 is a Transient Voltage Suppressor (TVS) diode, preferably SMAJ10A, the third diode D3 is a Zener diode, preferably the model is MMSZ5V6, and the fourth resistor R4 is preferred.
  • the resistance is 1K ohms.
  • the first photocoupler U1 and the second photocoupler U2 in the sampling circuit 12 are transistor output photocouplers, preferably of the type TLP281; the first resistor R1 is preferably a thick film chip resistor 0603, and has a resistance of 390 ohms, second The resistor R2 is preferably a thick film chip resistor 0603 having a resistance of 3.9 K ohms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Amplifiers (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

一种安全输入动态采样电路,包括:整流电路(10),将输入信号转换为直流信号;稳压电路(11),与整流电路(10)连接,控制直流信号的电压幅值;采样电路(12),包括第一输入端(121)和第二输入端(122)及采样端(123),第一输入端(121)接收输入信号,第二输入端(122)接收采样控制信号,从采样端(123)采集与第一输入端(121)相对应的直流信号,降低了危险侧信号被误判的概率。

Description

安全输入动态采样电路
本申请要求于2017年11月13日递交的中国专利申请第201711116439.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及列车控制***领域,尤其涉及一种安全输入动态采样电路。
背景技术
在铁路***中存在大量的开关量,信号控制***需要对开关量进行采集以实现对外部状态的获取。由于电子器件故障等原因会使信号固定在高或低的逻辑状态,不能如实反映输入信号的情况,所以可能使信号控制***得到错误的输入信息,从而导致逻辑错误,进而影响行车安全。
在铁路***中固定输入信号为1为危险侧,输入信号为0为安全侧,所以为了保证***的安全性,需要减小危险侧信号被误判的概率。
发明内容
有鉴于此,本公开实施例提供了一种安全输入动态采样电路,用以解决现有技术中由于电子器件故障导致危险侧信号被误判的技术问题。
根据本公开实施例的一个方面,提供了一种安全输入动态采样电路,包括:整流电路,与输入信号连接,将输入信号转换为直流信号;稳压电路,与所述整流电路连接,控制所述直流信号的电压幅值;采样电路,包括第一输入端、第二输入端和采样端,所述第一输入端接收输入信号,第二输入端接收采样控制信号,所述采样端采集与所述第一输入端相对应的直流信号。
进一步地,所述采样电路包括:第一光电耦合器和第二光电耦合器;第一光电耦合器的第4引脚和第二光电耦合器的第2引脚作为第一输入端与稳压电路连接,第一光电耦合器的第3引脚连接第二光电 耦合器的第1引脚;第一光电耦合器的第2引脚作为第二输入端,第1引脚连接输出电压;第二光电耦合器的第4引脚作为采样端,同时连接供电电压,第3引脚接地。
进一步地,所述第一光电耦合器的第2引脚与第一电阻连接,所述第二光电耦合器的第4引脚通过第二电阻连接到供电电压。
进一步地,所述整流电路包括第一二极管和第三电阻;输入信号的正极连接到所述第一二极管的正极,第一二极管的负极连接到第三电阻的一端,第三电阻的另一端连接到稳压电路。
进一步地,所述稳压电路包括第二二极管、第三二极管和第四电阻;整流电路的输出分别连接到第二二极管的负极和第四电阻的一端,第四电阻的另一端连接到第二光电耦合器的第4引脚,第三二极管的负极连接到第二光电耦合器的第2引脚,第三二极管的正极和第二二极管的正极分别连接到输入信号的负极。
进一步地,所述采样控制信号为1时,所述采样端采集到的信号与所述第一输入端输入的信号一致。
本公开实施例的有益效果包括:通过第二输入端的采样控制信号来控制采样端的采集到的信号,在接收到允许采样的采样控制信号时,第一输入端的输入信号传递到采样端,从而采集到与第一输入端对应的信号,通过比较采样端的信号与第二输入端信号是否一致来判定铁路***的输入信号。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1是本公开实施例提供的安全输入动态采样电路的原理框图;
图2是本公开实施例提供的一种安全输入动态采样电路的原理示意图。
具体实施方式
以下基于实施例对本公开进行描述,但是本公开并不仅仅限于这些实施例。在下文对本公开的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本公开。为了避免混淆本公开的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
本公开实施例提供的安全输入动态采样电路通过第二输入端的采样控制信号来控制采样端的采集到的信号,在接收到允许采样的采样控制信号时,第一输入端的输入信号传递到采样端,从而采集到与第一输入端对应的信号,通过比较采样端的信号与第二输入端信号是否一致来判定铁路***的输入信号。
图1所示的安全输入动态采样电路原理框图,包括整流电路10,稳压电路11和采样电路12,其中采样电路12具有第一输入端121,第二输入端122,采样端123。整流电路10与输入信号连接,该输入信号来自铁路***。整流电路10将输入信号转换为直流信号后输入到稳压电路11。稳压电路11控制第一输入端121与输入信号负极之间的电压幅值,将输出的直流信号输入到第一输入端121。第二输入端12接收采样控制信号,通过采样控制信号控制输入信号向采样端123的传导,响应于允许采样的采样控制信号将第一输入端121的输入信号传导至采样端123。
在铁路***中固定输入信号为1代表危险侧,输入信号为0代表安全侧。危险侧是指发生危害后果的一侧。铁路设备或***发生故障时,有两种倒向:危险侧和安全侧,对于一个安全***,设计时就必须使故障倒向安全侧。所以为了保证***的安全性,需要减小危险侧信号被误判的概率,即减少输入信号为1时误判为0的概率。
以I_P代表输入信号,O_EN代表采集控制信号,O_C代表采集信号,信号真值表如下所示。
I_P信号O_EN OC
0 0 0
0 1 0
1 0 0
1 1 1
在O_EN为1时,I_P才会被传递到采样端123,从而使O_C采集到信号。I_P输入为1时,采样电路12的导通由O_EN决定,所以O_C的状态由O_EN决定;I_P输入为0时,无论O_EN输入任何信号,采样电路12都无法导通,O_C状态维持为0。
从上表可以看出,在输入信号为1的状态下O_C信号的变化与O_EN信号相同,所以O_EN信号发送通道编码的脉冲信号,同时检测O_C信号,并对O_EN的发送编码与O_C接收到的编码进行比较,当 O_EN发送编码与O_C编码相同时即输入信号I_P信号为高电平1,当O_C接收不到通道编码时即输入信号为0或者设备、***存在故障,该故障为倒向安全侧的故障。
图2是本公开实施例安全输入动态采样电路的原理图,包括第一二极管D1、第二二极管D2、第三二极管D3、第一电阻R1、第二电阻R2、第三电阻R3和第四电阻R4、第一光电耦合器U1和第二光电耦合器U2。I_P和I_N分别是输入信号的正和负,O_EN为采集控制信号输入端,O_C为采集端。
整流电路10包括第一二极管D1和第三电阻R3;输入信号的正极连接到D1的正极,D1的负极连接到R3的一端,R3的另一端连接到稳压电路。
稳压电路11包括第二二极管D2、第三二极管D3和第四电阻R4。整流电路的输出(R3的另一端)分别连接到D2的负极和R4的一端,R4的另一端连接到采样电路的第二光电耦合器U2的第4引脚,D3的负极连接到U2的第2引脚,第三二极管的正极和第二二极管的正极分别连接到输入信号的负极。
采样电路12包括第一光电耦合器U1和第二光电耦合器U2。U1的第4引脚和U2的第2引脚作为第一输入端与稳压电路连接,U1的第3引脚连接U2的第1引脚;U1的第2引脚作为第二输入端,第1引脚连接输出电压;U2的第4引脚作为采样端,同时连接供电电压,第3引脚接地。U1的第2引脚通过第一电阻R1连接到第二输入端,第1引脚连接输出电压,U2的第4引脚通过第二电阻R2连接到供电电压。
I_P输入为1时,U2的导通与否由O_EN决定,所以O_C的信号状态由O_EN决定;I_P输入为0时,无论O_EN输入任何信号,U2皆无法导通,故O_C状态维持为0。在O_EN为1时,I_P才会被传递到U2,从而使O_C采集到信号。在I_P输入信号为1的状态下O_C信号的变化与O_EN信号相同,所以O_EN信号发送通道编码的脉冲信号,同时检测O_C信号,并对O_EN的发送编码与O_C接收到的编码进行比较,当O_EN发送编码与O_C编码相同时即I_P输入信号为高电平1,当O_C接收不到通道编码时即输入信号为0或设备、***存在故障。
其中,整流电路10中的第一二极管D1为整流二极管,优选型号为MRA4007,第三电阻R3优选为贴片电阻1206,阻值为2.7K欧姆。 稳压电路11中第二二极管D2为瞬态抑制(Transient Voltage Suppressor,TVS)二极管,优选型号为SMAJ10A,第三二极管D3为齐纳二极管,优选型号为MMSZ5V6,第四电阻R4优选为贴片电阻1206,阻值为1K欧姆。采样电路12中第一光电耦合器U1和第二光电耦合器U2为晶体管输出光电耦合器,优选型号为TLP281;第一电阻R1优选为厚膜贴片电阻0603,阻值为390欧姆,第二电阻R2优选为厚膜贴片电阻0603,阻值为3.9K欧姆。
以上所述仅为本公开的优选实施例,并不用于限制本公开,对于本领域技术人员而言,本公开可以有各种改动和变化。凡在本公开的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (6)

  1. 一种安全输入动态采样电路,其中,包括:
    整流电路,与输入信号连接,将输入信号转换为直流信号;
    稳压电路,与所述整流电路连接,控制所述直流信号的电压幅值;
    采样电路,包括第一输入端、第二输入端和采样端,所述第一输入端接收输入信号,第二输入端接收采样控制信号,所述采样端采集与所述第一输入端相对应的直流信号。
  2. 根据权利要求1所述的安全输入动态采样电路,其中,所述采样电路包括:第一光电耦合器和第二光电耦合器;
    第一光电耦合器的第4引脚和第二光电耦合器的第2引脚作为第一输入端与稳压电路连接,第一光电耦合器的第3引脚连接第二光电耦合器的第1引脚;
    第一光电耦合器的第2引脚作为第二输入端,第1引脚连接输出电压;第二光电耦合器的第4引脚作为采样端,同时连接供电电压,第3引脚接地。
  3. 根据权利要求1或2所述的安全输入动态采样电路,其中,所述第一光电耦合器的第2引脚与第一电阻连接,所述第二光电耦合器的第4引脚通过第二电阻连接到供电电压。
  4. 根据权利要求1-3任一所述的安全输入动态采样电路,其中,所述整流电路包括第一二极管和第三电阻;输入信号的正极连接到所述第一二极管的正极,第一二极管的负极连接到第三电阻的一端,第三电阻的另一端连接到稳压电路。
  5. 根据权利要求1-4任一所述的安全输入动态采样电路,其中,所述稳压电路包括第二二极管、第三二极管和第四电阻;整流电路的输出分别连接到第二二极管的负极和第四电阻的一端,第四电阻的另一端连接到第二光电耦合器的第4引脚,第三二极管的负极连接到第二光电耦合器的第2引脚,第三二极管的正极和第二二极管的正极分别连接到输入信号的负极。
  6. 根据权利要求1-5任一所述的安全输入动态采样电路,其中,所述采样控制信号为1时,所述采样端采集到的信号与所述第一输入端输入的信号一致。
PCT/CN2018/086116 2017-11-13 2018-05-09 安全输入动态采样电路 WO2019091070A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18875763.7A EP3712734B1 (en) 2017-11-13 2018-05-09 Safe-input dynamic sampling circuit
HRP20221285TT HRP20221285T1 (hr) 2017-11-13 2018-05-09 Krug za dinamičko uzimanje uzorka sigurnog ulaza
EA202091215A EA202091215A1 (ru) 2017-11-13 2018-05-09 Динамический дискретизатор с безопасным входом
RS20220966A RS63669B1 (sr) 2017-11-13 2018-05-09 Kolo za dinamičko semplovanje sigurnog ulaza

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711116439.0A CN108153274B (zh) 2017-11-13 2017-11-13 安全输入动态采样电路
CN201711116439.0 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019091070A1 true WO2019091070A1 (zh) 2019-05-16

Family

ID=62468934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086116 WO2019091070A1 (zh) 2017-11-13 2018-05-09 安全输入动态采样电路

Country Status (7)

Country Link
EP (1) EP3712734B1 (zh)
CN (1) CN108153274B (zh)
EA (1) EA202091215A1 (zh)
HR (1) HRP20221285T1 (zh)
HU (1) HUE059278T2 (zh)
RS (1) RS63669B1 (zh)
WO (1) WO2019091070A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108153274B (zh) * 2017-11-13 2020-07-03 北京全路通信信号研究设计院集团有限公司 安全输入动态采样电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414187A (zh) * 2008-11-27 2009-04-22 湖南科技大学 操纵台在线检测装置
CN201656952U (zh) * 2010-02-10 2010-11-24 中国轻工业广州设计工程有限公司 模拟信号的采样隔离电路
CN103473942A (zh) * 2013-08-30 2013-12-25 深圳市法马新智能设备有限公司 交通信号倒计时控制装置
CN204360108U (zh) * 2014-12-25 2015-05-27 重庆川仪自动化股份有限公司 冗余4-20mA电流输出关断电路
CN108153274A (zh) * 2017-11-13 2018-06-12 北京全路通信信号研究设计院集团有限公司 安全输入动态采样电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2617560Y (zh) * 2003-05-23 2004-05-26 深圳市珊星电脑有限公司 用于注塑机控制电路的温度信号传送装置
CN201418038Y (zh) * 2009-05-26 2010-03-03 山西晋城无烟煤矿业集团有限责任公司 外接式矿用本安电源
CN101707831B (zh) * 2009-10-30 2014-06-25 海洋王照明科技股份有限公司 一种led驱动电路及led灯具
CN102628889B (zh) * 2012-04-17 2014-07-23 东莞市精诚电能设备有限公司 一种电压采样电路
CN202632100U (zh) * 2012-06-11 2012-12-26 浙江省电力公司 内置光耦型用电采集终端控制回路状态检测装置
CN203054093U (zh) * 2012-12-26 2013-07-10 常州同惠电子股份有限公司 利用同步采样在混合信号中提取直流信号的装置
CN204145456U (zh) * 2014-10-29 2015-02-04 上海沪工焊接集团股份有限公司 线性传输隔离电路
CN104505842B (zh) * 2014-12-16 2016-06-22 榆林学院 基于双向可控硅的过零触发电路
CN106941387A (zh) * 2017-05-09 2017-07-11 成都西亿达电子科技有限公司 应急广播终端故障自检电路、***及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414187A (zh) * 2008-11-27 2009-04-22 湖南科技大学 操纵台在线检测装置
CN201656952U (zh) * 2010-02-10 2010-11-24 中国轻工业广州设计工程有限公司 模拟信号的采样隔离电路
CN103473942A (zh) * 2013-08-30 2013-12-25 深圳市法马新智能设备有限公司 交通信号倒计时控制装置
CN204360108U (zh) * 2014-12-25 2015-05-27 重庆川仪自动化股份有限公司 冗余4-20mA电流输出关断电路
CN108153274A (zh) * 2017-11-13 2018-06-12 北京全路通信信号研究设计院集团有限公司 安全输入动态采样电路

Also Published As

Publication number Publication date
EP3712734A4 (en) 2020-12-09
HUE059278T2 (hu) 2022-11-28
RS63669B1 (sr) 2022-11-30
EP3712734B1 (en) 2022-08-03
CN108153274B (zh) 2020-07-03
HRP20221285T1 (hr) 2022-12-23
EA202091215A1 (ru) 2020-12-08
EP3712734A1 (en) 2020-09-23
CN108153274A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
EP2854281A1 (en) Power supply conversion module, power supply device and power supply method
JP2007259533A (ja) 半導体素子の保護回路
US20150280494A1 (en) Power Source Conversion Module, Power Supply Apparatus and Power Supply Method
CN201766490U (zh) 基于igbt桥式开关拓扑的驱动电路及其保护模块
WO2018103574A1 (zh) 过欠压保护电路和机顶盒
CN111355428B (zh) 安全转矩关断电路及其应用的电机控制***
CN206164074U (zh) 一种电源过流保护电路
CN102820874A (zh) 一种用于光控晶闸管的触发电路
CN102377326A (zh) 基于igbt桥式开关拓扑的驱动电路及其保护模块
WO2019091070A1 (zh) 安全输入动态采样电路
CN110611298A (zh) 用于飞轮储能装置的ipm保护***
WO2023020331A1 (zh) 滞环电路、应急照明电路及照明设备
US20130077202A1 (en) Shunt protection module and method for series connected devices
WO2017056552A1 (ja) 接点入力制御装置
CN103439640A (zh) 反并联晶闸管的高电位状态检测装置
CN203660518U (zh) 绝缘栅双极晶体管过流保护电路
JP2020167860A (ja) 処理回路および電源装置
CN109687572B (zh) 电力用48v直流供电切换装置
CN221408436U (zh) 电源反向输入保护电路及电源输出电路
EA040643B1 (ru) Динамический дискретизатор с безопасным входом
CN107819398B (zh) 过电压保护电路
CN220457112U (zh) 一种小功率供电及切断电路装置
CN221305723U (zh) 一种非隔离式直流本质安全电源
JP2014011708A (ja) 双方向通信システム、半導体駆動装置及び電力変換装置
CN112072616B (zh) Ipm过流检测电路及电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875763

Country of ref document: EP

Effective date: 20200615