WO2019090958A1 - 光源***及应用该光源***的投影装置 - Google Patents

光源***及应用该光源***的投影装置 Download PDF

Info

Publication number
WO2019090958A1
WO2019090958A1 PCT/CN2018/071425 CN2018071425W WO2019090958A1 WO 2019090958 A1 WO2019090958 A1 WO 2019090958A1 CN 2018071425 W CN2018071425 W CN 2018071425W WO 2019090958 A1 WO2019090958 A1 WO 2019090958A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
spot
source system
reflective
Prior art date
Application number
PCT/CN2018/071425
Other languages
English (en)
French (fr)
Inventor
侯海雄
唐晓峰
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019090958A1 publication Critical patent/WO2019090958A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a light source system and a projection apparatus using the same.
  • the advantages of laser light source in the field of cinema light sources are gradually revealed.
  • the efficiency of laser phosphor conversion to yellow fluorescence is 50%, which means that 50% of the laser energy is emitted in the form of heat.
  • the temperature rise of the fluorescent color wheel will affect the fluorescence output, in the technical field of phosphors, When the temperature rises, the decrease in the fluorescence output power causes thermal quenching.
  • the output light flux of the laser light source can reach tens of thousands of lumens, which can meet the requirements of general cinema light sources.
  • the laser light source is required to have a larger luminous flux output.
  • the present invention provides a light source system comprising a first light source module and a second light source module and a light combining device, the first light source module generates a first light, and the second light source module generates a second light; the first light is incident on The light combining device forms a first light spot, and the second light is incident on the light combining device to form a second light spot, and the light combining device combines the first light spot and the second light spot and simultaneously projects into the entrance of a light machine system. Glossy.
  • the present invention also provides a projection apparatus including the above-described light source system.
  • the light combining device of the light source system of the present invention projects the first spot and the second spot to the light incident surface of the light machine system, so that the light fluxes of the first light and the second light simultaneously enter the light incident surface of the light machine system, thereby increasing the projection.
  • the luminous flux to the optomechanical system increases the output brightness of the optomechanical system.
  • FIG. 1 is a schematic structural view of a light source system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a region beam splitter of a light source system according to a first embodiment of the present invention.
  • FIG 3 is a schematic structural view of a light combining device of a light source system according to a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another optical path of a light source system according to a first embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a light combining device of a light source system according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a forming process of a light combining device of a light source system according to a second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a light combining device of a light source system according to a third embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a light source system according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a light combining device of a light source system according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a light source system according to a fifth embodiment of the present invention.
  • Figure 11 is a schematic illustration of an embodiment of a light incident surface of a square bar of an optical machine.
  • Fig. 12 is a schematic view showing another embodiment of the light incident surface of the square rod of the optical machine.
  • FIG. 13 is a schematic structural diagram of a light source system according to a sixth embodiment of the present invention.
  • Light source system 100a, 100b, 100c, 100d Optical machine 7 Glossy surface 72, 72a, 72b First light source module 10 Second light source module 20 Reflective element 3, 4 Double telecentric lens system 6 Reflector 122, 123, 124 Upper laser module 111 Lower laser module 112 Reflective strip 121 Converging lens 131, 132 Square stick 14 Relay lens 151, 152 Regional beam splitter 16 Intermediate area 162 Surrounding area 164 Huang Guanglun 17 Collecting lens group 18 Scatter sheet 19 Cutting line g Light combining device 5a, 5b, 5c, 5d, 5e, 5f Reflector 51, 52 Reflective prism 54, 55a, 55b, 56a, 56b Right angle 541, 542 Bevel 543 side 544
  • the light source system of the invention is applied to a projection device for combining the spots emitted by two single light sources to be projected into the optical system, so that the luminous flux of the two light sources simultaneously enters the optical system, thereby improving the output brightness of the optical system.
  • the optomechanical system includes a glazing square bar 7, and a rectangular entrance surface 72 is formed at the entrance of the glazing bar 7.
  • the size of the light incident surface 72 is 10.45 mm ⁇ 19.56 mm.
  • the light spot emerging from the light source is imaged on the light incident surface 72 of the light machine square bar 7 into a rectangular spot having a size matching the size of the light incident surface 72 of the light machine bar 7.
  • FIG. 1 is a schematic structural diagram of a light source system 100a according to a first embodiment of the present invention.
  • the light source system 100a includes a first light source module 10 and a second light source module 20, reflective elements 3 and 4, a light combining device 5a, and a dual telecentric lens system 6.
  • the reflective elements 3 and 4 are two mirrors.
  • the first light source module 10 and the second light source module 20 have the same composition and structure, and are symmetrically disposed. It can be understood that, in other embodiments, the first light source module 10 and the second light source module 20 may also be asymmetrically disposed. In order to simplify the description, only the first light source module 10 will be described below.
  • the first light source module 10 includes an upper laser module 111, a lower laser module 112, a plurality of reflective elements, a plurality of focusing lenses, a shaping element, a plurality of relay lenses, a beam splitting element, a fluorescent wheel, a collecting lens group 18, and a scattering Slice 19.
  • the shaping element is a component capable of homogenizing and shaping light, such as a diffractive optical element, a fly-eye lens pair, a square bar, and the like.
  • the shaping element is a rod 14;
  • the beam splitting element is a region beam splitter 16;
  • the fluorescent wheel is a yellow light wheel 17;
  • these reflecting elements include a reflective strip 121, mirrors 122, 123, 124;
  • these focusing lenses include a focusing lens 131, 132.
  • These relay lenses include relay lenses 151, 152.
  • the upper laser module 111 and the lower laser module 112 are both 8 ⁇ 12 laser arrays.
  • the upper laser module 111 and the lower laser module 112 schematically only draw a 4 x 4 laser array.
  • the parallel light emitted from the upper laser module 111 and the lower laser module 112 is reflected by the corresponding reflection strip 121 and then spatially compressed, and then reflected by the mirror 122 and then focused by the focus lens 131 to the square rod 14 for homogenization and shaping.
  • the square bar 14 By using the square bar 14, on the one hand, the laser spot which is subsequently focused on the yellow light wheel 17 is made more uniform, and the conversion efficiency of the yellow fluorescence is improved; on the other hand, the square bar 14 can shape the laser to make the shape and size of the laser spot and the light.
  • the shape of the light incident surface 72 of the square bar 7 matches.
  • the laser light emitted from the square bar 14 passes through the parallelization of the relay lens 151 and the relay lens 152, and enters the area beam splitter 16.
  • the intermediate region 162 of the regional beam splitter 16 is a transmissive blue laser; the peripheral region 164 of the regional beam splitter 16 reflects a blue laser that transmits a yellow laser.
  • the regional beam splitter can adopt the method that the central region transmits the excitation light and the reflected laser light, or the central region reflects the excitation light and transmits the laser light to perform the splitting. Therefore, the blue light transmitted through the intermediate portion 162 of the regional beam splitter 16 is focused by the collecting lens group 18 onto the reflective diffusing film 19, and the function of the diffusing sheet 19 is to reduce the coherence of the laser light, since the collecting lens group 18 is the counterpart rod 14
  • the exit pupil image is focused, so that a rectangular spot is formed on the diffuser sheet 19, and the size of the rectangular spot is 2.43 mm x 2.59 mm.
  • the blue light distribution reflected back from the rectangular spot is a Lambertian distribution which, after being parallelized by the collecting lens group 18, reaches the area beam splitter 16, is reflected to the focusing lens 132, and is then reflected by the reflecting element 4 in the A position of FIG. Focusing on a blue rectangular spot.
  • the size of the blue rectangular spot is 10.45 mm x 9.78 mm.
  • the blue laser light passing through the peripheral region 164 of the regional beam splitter 16 is reflected to the yellow light wheel 17 to excite yellow fluorescence.
  • the blue light power of the substrate incident on the yellow light wheel 17 is 550 W, and finally is also focused to a yellow rectangular spot of 10.45 mm ⁇ 9.78 mm at the A position of Fig. 1, a yellow rectangular spot and a blue rectangular spot.
  • the overlay forms a white rectangular spot.
  • the optical path of the second light source module 20 is the same as that of the first light source module 10, and the light emitted by the second light source module 20 forms a white rectangular spot at the B position of FIG.
  • the light combining device 5a includes two mirrors 51 disposed vertically.
  • the two mirrors 51 are symmetrically arranged with respect to a horizontal plane (XZ plane).
  • the angle between each mirror 51 and the horizontal plane is 45 degrees.
  • the outer side surface of the two mirrors 51 is a reflecting surface, and the two reflecting surfaces are perpendicular to each other and symmetrically arranged with respect to a horizontal plane.
  • the light reflected by the rectangular mirror 51 at the A position can be regarded as the light directly emitted from the virtual object A1.
  • the light reflected by the rectangular spot at the B position through the lower mirror 51 can be regarded as the light directly emitted from the virtual object B1.
  • the rectangular spot in which the virtual object A1 and the virtual object B1 are combined is imaged by the double telecentric lens system 6 on the light incident surface 72 of the optical machine square bar 7.
  • the inverted images W1 and W2 formed by the virtual object A1 and the virtual material B1 each occupy half of the light incident surface 72 of the optical machine bar 7.
  • the spot at the A position, the spot at the B position, and the light incident surface 72 of the optical square bar 7 are both rectangular, and the rectangular spot at the A position and the rectangular spot at the B position are coupled to the optical bar 7 to be more efficient than the circle.
  • the shape spot is coupled to the square rod 7 of the optical machine with high efficiency.
  • the object main ray and the image main ray of the double telecentric lens system 6 are parallel to the optical axis, and the light caused by the positional tolerances of the first light source module 10, the second light source module 20 and the double telecentric lens system 6 during installation can be avoided.
  • the coupling efficiency of the machine bar 7 becomes lower.
  • the spot emerging from the first light source module 10 increases with the propagation path, the spot gradually becomes smaller.
  • the spot is minimized, and then the spot becomes larger as the propagation path increases.
  • a part of the light is not reflected by the mirror 51 and continues to propagate downward, and a part of the luminous flux is lost.
  • the lost luminous flux is equal to about 6% of the total luminous flux.
  • the spot emitted by the second light source module 20 also loses a part of the luminous flux.
  • FIG. 4 is a schematic diagram of another optical path of the light source system 100 according to the first embodiment of the present invention.
  • the light combining device 5a ie, the two mirrors 51
  • the light emitted by the first light source module 10 and the second light source module 20 is reflected by the reflective element 3 and the second reflective element 4, respectively, in FIG. 4C.
  • the position is focused into a rectangular spot.
  • the two rectangular spots are the same size and overlap.
  • the light combining device 5a ie, the two mirrors 51
  • the light emitted from the first light source module 10 and the second light source module 20 is reflected by the reflecting surfaces of the two reflecting mirrors 51 to form two rectangular spots arranged one above the other. That is, the C1 position and the C2 position in Fig. 4 are respectively focused into a rectangular spot.
  • the rectangular spot in which the C1 position and the C2 position are combined forms an image W1 and W2 on the light incident surface 72 of the optical machine bar 7 through the double telecentric lens system 6.
  • the two mirrors 51 are in line contact, that is, there is a gap between the reflecting surfaces of the two mirrors 51, which will result in C1.
  • the rectangular spot at the position and the C2 position cannot be fitted, and there is also a certain gap, thereby affecting the uniformity of the light projected to the light incident surface 72 of the square bar 7 of the optical machine.
  • the present invention further improves the light combining device, so that the two rectangular spots can be coupled to the light entering the optical system seamlessly and non-coincidentally. Face 72.
  • a light combining device 5b of a light source system includes two mirrors 52 symmetrically disposed with respect to a horizontal plane (XZ plane).
  • the two mirrors 52 are placed perpendicular to each other, and the reflecting surfaces of the two mirrors 52 are in seamless contact, so that the light emitted from the first light source module 10 and the second light source module 20 is reflected by the two mirrors 52 to form an upper and lower arrangement without gaps.
  • the two rectangular spots W1 and W2 can be closely attached together, that is, the two rectangular spots W1 and W2 are projected to the light incident surface 72 seamlessly and non-coincidentally.
  • the light combining device 5b seamlessly couples the two rectangular spots W1 and W2 to the light incident surface 72, so that the luminous fluxes of the first light source module 10 and the second light source module 20 simultaneously enter the optical system, thereby improving the output brightness of the optical system.
  • the ends of the two mirrors 51 of the light combining device 5a of the first embodiment can be respectively cut off by a triangular prism.
  • the two bottom surfaces of the triangular prism are isosceles right triangles, and the length of the right angle side is the thickness of the mirror.
  • the height of the triangular prism is the height of the mirror (as shown in Figure 6).
  • the portion between the two cut lines g of the two mirrors 51 is the portion to be cut, and the height direction refers to the direction perpendicular to the right-angled surface, so that it coincides with the height of the mirror 51.
  • the light combining device 5c of the light source system according to the third embodiment of the present invention may also be an integrally formed L-shaped mirror to make seamless contact between the two reflecting surfaces (outer sides of the L-shaped mirror).
  • FIG. 8 is a schematic structural diagram of a light source system 100b according to a fourth embodiment of the present invention.
  • the light source system 100b of the fourth embodiment is the same as the light path of the light source system 100a in the first embodiment except for the structure of the light combining device.
  • the light combining device 5d is a reflective prism 54 of a unitary structure.
  • the light combining device 5d adopts an overall structure, which makes it easier to control processing and assembly errors.
  • the cross section of the reflecting prism 54 is an isosceles right triangle.
  • the inclined surface 543 of the reflecting prism 54 is perpendicular to a horizontal plane (XZ plane), and the angles of the two right-angled surfaces 541 of the reflecting prism 54 and the horizontal plane (XZ plane) are respectively 45 degrees.
  • the slope 543 of the reflecting prism 54 is perpendicular to the horizontal plane (XZ plane).
  • the two right-angled faces 541 of the reflecting prism 54 are reflecting surfaces. That is, the two reflecting surfaces are perpendicular to each other and symmetrically arranged with respect to the horizontal plane.
  • the light combining device 5d When the light combining device 5d is not placed in the optical path, the light emitted by the first light source module 10 and the second light source module 20 is reflected by the reflective element 3 and the second reflective element 4 and then focused into a rectangular spot at the D position of FIG. 8, respectively.
  • the two rectangular spots are the same size and overlap.
  • the light combining device 5d When the light combining device 5d is placed in the optical path, the light emitted by the first light source module 10 and the second light source module 20 is reflected by the reflective element 3 and the second reflective element 4 and reflected by the light combining device 5d, respectively, at the position D1 of FIG. 8 and The D2 position is focused into a rectangular spot, and the rectangular spots of the D1 position and the D2 position are arranged seamlessly up and down, and the images W1 and W2 are formed on the light incident surface 72 of the optical machine bar 7 by the double telecentric lens system 6.
  • a high-reflection film is plated on the two right-angled faces 541 of the reflecting prism 54.
  • FIG. 10 is a schematic structural diagram of a light source system 100c according to a fifth embodiment of the present invention.
  • the light source system 100c of the fifth embodiment is different from the light source system 100a of the first embodiment in the structure of the light combining device.
  • the light combining device 5e of the fifth embodiment includes two reflecting prisms 55a, 55b.
  • the two reflecting prisms 55a, 55b are symmetrically arranged with respect to a horizontal plane (XZ plane).
  • the cross section of each of the reflecting prisms 55a, 55b is an isosceles right triangle, and the inclined surface of each of the reflecting prisms 55a, 55b faces the horizontal plane and is at an angle of 45 degrees with respect to the horizontal plane.
  • the slope of each of the reflecting prisms 55a, 55b is a reflecting surface, that is, the two reflecting surfaces are perpendicular to each other and symmetrically arranged with respect to the horizontal plane.
  • the light emitted from the first light source module 10 first passes through the reflective element 3 and is focused on the right-angled surface E1 of the reflective prism 55a into a rectangular spot that matches the size of the right-angled surface E1 of the reflective prism 55a, and enters the inclined surface of the reflective prism 55a. After the light is incident on the slope, total reflection occurs from the other right angle plane E3.
  • the light emitted by the second light source module 20 first passes through the reflective element 4 and is focused at a right angle E2 of the reflective prism 55b into a rectangular spot that matches the size of the right angle of the reflective prism 55b, and enters the right angle of the reflective prism 55b.
  • the light of the surface is incident on the inclined surface, total reflection occurs from the other right-angled surface E4.
  • the light emitted from the right-angled faces of the reflecting prisms 55a, 55b is collected by the double telecentric lens system 6 to the light incident surface 72 of the optical machine bar 7.
  • Corresponding to the rectangular spot which is seamlessly arranged and not coincident at the combination of E3 and E4 is imaged by the double telecentric lens system 6 to the light incident surface 72 of the optical machine bar 7 to form images W1 and W2.
  • the inclined surface of the reflective prisms 55a, 55b is plated with a high reflective film; at the same time, the two sides of the reflective prisms 55a, 55b are polished to have good total reflection performance, and the light is prevented from directly exiting from the side. Increases the efficiency of the light emitted by the reflective prism.
  • the light incident surface 72 of the optical square bar 7 is divided into two rectangles along the center of the long side, and the rectangular light spot emitted by the first light source module 10 and the second light source module 20 is combined with the light combining device and the double telecentric lens.
  • System 6 projects onto the two rectangles, respectively.
  • the light incident surface 72 of the optical machine bar 7 is divided into two rectangles along the center of the short side, and the positions of the first light source module 10, the second light source module 20, the light combining device, or the optical square bar are adjusted. Rectangular spots emerging from a light source module 10 and a second light source module 20 can be projected onto the two rectangles, respectively.
  • FIG. 13 is a schematic structural diagram of a light source system 100d according to a sixth embodiment of the present invention.
  • the sixth embodiment is to change the size and shape of the square bar 14 of the first light source module 10 and the second light source module 20 (please refer to FIG. 1 again), so that the first light source module 10 and the second light source module 20 emit a focused rectangle.
  • the spot size is 19.56 mm x 5.225 mm and is then focused on the entrance of the optical machine bar 7 by means of two reflective prisms 56a and 56b (the cross section of each of the reflective prisms 56a, 56b is an isosceles right triangle) and the double telecentric lens system 6.
  • the smooth surface 72, the final spot size of the two spots W side by side is 19.56 mm x 10.45 mm.
  • the light combining device of the light source system of the present invention projects a rectangular spot formed by the light emitted by the first light source module and the second light source module onto a rectangular light incident surface of the optical system, thereby improving the efficiency of the spot coupling into the optical system, so that The luminous flux of the light emitted by the light source module and the second light source module simultaneously enters the optical system, increasing the luminous flux projected to the optical system and improving the output brightness of the optical system.
  • the invention uses a semiconductor laser as an excitation light source, and the laser has the advantages of high energy density and small optical expansion amount, and the phosphor is excited to generate high-efficiency fluorescence, and a light source with high energy density can be obtained, which is applied in the field of illumination, especially for beam quality requirements. Higher occasions have an absolute advantage. Therefore, the novel light source system applied in the field of illumination provided by the present invention is particularly suitable for applications where the beam quality requirements are relatively high, and has a good generalization effect on the application field of the extended laser phosphor light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源***(100a,100b,100c,100d)及应用该光源***(100a,100b,100c,100d)的投影装置。上述光源***(100a,100b,100c,100d)包括一第一光源模块(10)及一第二光源模块(20)及一合光器件(5a,5b,5c,5d,5e,5f),第一光源模块(10)产生第一光线,第二光源模块(20)产生一第二光线;第一光线入射至该合光器件(5a,5b,5c,5d,5e,5f)形成一第一光斑,第二光线入射至该合光器件(5a,5b,5c,5d,5e,5f)形成一第二光斑,该合光器件(5a,5b,5c,5d,5e,5f)将该第一光斑及第二光斑组合在一起同时投射至一光机***的入光面(72)。该光源***(100a,100b,100c,100d)的合光器件(5a,5b,5c,5d,5e,5f)使得第一光线及第二光线的光通量同时进入光机***,提高了光机***的输出亮度。

Description

光源***及应用该光源***的投影装置 技术领域
本发明涉及光学技术领域,尤其涉及一种光源***及应用该光源***的投影装置。
背景技术
目前,随着荧光粉技术的不断进步,使得激光光源在影院光源领域的优势渐渐显露。目前荧光粉激光转化为黄色荧光的效率为50%,意味着有50%的激光能量是以热量形式散发出去的,荧光色轮的温度上升将影响荧光的输出,在荧光体的技术领域,若温度上升则荧光输出功率降低会产生热猝灭现象。现阶段的激光光源输出光通量已经能够达到几万流明,可以满足一般影院光源的要求,但应用在巨幕的影院,则要求激光光源有更大的光通量输出。
发明内容
鉴于此,有必要提供一种大光通量输出的光源***及应用该光源***的投影装置。
本发明提供一种光源***,包括一第一光源模块及一第二光源模块及一合光器件,第一光源模块产生第一光线,第二光源模块产生一第二光线;第一光线入射至该合光器件形成一第一光斑,第二光线入射至该合光器件形成一第二光斑,该合光器件将该第一光斑及第二光斑组合在一起同时投射至一光机***的入光面。
本发明还提供包括上述光源***的投影装置。
本发明光源***的合光器件将第一光斑及第二光斑投射至光机***的入光面,使得第一光线及第二光线的光通量同时进入光机***的入光面,增大了投射到光机***的光通量,提高了光机***的输出亮度。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的光源***的结构示意图。
图2是本发明第一实施例提供的光源***的区域分光片的平面示意图。
图3是本发明第一实施例提供的光源***的合光器件的结构示意图。
图4是本发明第一实施例提供的光源***的另一光路示意图。
图5是本发明第二实施例提供的光源***的合光器件的结构示意图。
图6是本发明第二实施例提供的光源***的合光器件的形成过程示意图。
图7是本发明第三实施例提供的光源***的合光器件的结构示意图。
图8是本发明第四实施例提供的光源***的结构示意图。
图9是本发明第四实施例提供的光源***的合光器件的结构示意图。
图10是本发明第五实施例提供的光源***的结构示意图。
图11是光机方棒的入光面的一实施例的示意图。
图12是光机方棒的入光面的另一实施例的示意图。
图13是本发明第六实施例提供的光源***的结构示意图。
主要元件符号说明
光源*** 100a、100b、100c、100d
光机方棒 7
入光面 72、72a、72b
第一光源模块 10
第二光源模块 20
反射元件 3、4
双远心透镜*** 6
反射镜 122、123、124
上激光模块 111
下激光模块 112
反射条 121
聚集透镜 131、132
方棒 14
中继透镜 151、152
区域分光片 16
中间区域 162
四周区域 164
黄光轮 17
收集透镜组 18
散射片 19
切除线 g
合光器件 5a、5b、5c、5d、5e、5f
反射镜 51、52
反射棱镜 54、55a、55b、56a、56b
直角面 541、542
斜面 543
侧面 544
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似应用,因此本发明不受下面公开的具体实施例的限制。
本发明光源***应用于投影装置,用于将两个单体光源出射的光斑组合在一起投射至光机***,使两个光源的光通量同时进入光机***,提高了光机***的输出亮度。该光机***包括一光机方棒7,光机方棒7的入口处形成一矩形的入光面72。本实施方式中,入光面72的尺寸是10.45mm×19.56mm。光源出射的光斑在光机方棒7的入光面72成像为大小与光机方棒7的入光面72大小匹配的矩形光斑。
请参阅图1,图1是本发明第一实施例提供的光源***100a的结构示意图。所述光源***100a包括一第一光源模块10与一第二光源模块20、反射元件3与4、一合光器件5a及一双远心透镜***6。本实施例中,反射元件3与4是两反射镜。
第一光源模块10与第二光源模块20的组成及结构相同,并且对称设置。可以理解的是,在其他实施方式中,第一光源模块10与第二光源模块20也可非对称设置。为了简化说明,下面仅对第一光源模块10进行说明。
第一光源模块10,包括上激光模块111、下激光模块112、若干反射元件、若干聚焦透镜、一整形元件、若干中继透镜、一分光元件、一荧光轮、一收集透镜组18及一散射片19。
整形元件为一能对光线进行匀光与整形处理的元件,如衍射光学元件、复眼透镜对、方棒等。本实施试中,整形元件是一方棒14;分光元件是一区域分光片16;荧光轮是一黄光轮17;这些反射元件包括反射条121、反射镜122、123、124;这些聚焦透镜包括聚焦透镜131、132。这些中继透镜包括中继透镜151、152。
如图1所示,本实施方式中,上激光模块111与下激光模块112都是8×12的激光阵列。为简化说明,上激光模块111与下激光模块112只示意性地画出4×4的激光阵列。从上激光模块111、下激光模块112出射的平行光经过对应的反射条121反射后在空间上被压缩,然后通过反射镜122反射后被聚焦透镜131聚焦到方棒14进行匀光及整形。利用方棒14,一方面,使得后续聚焦在黄光轮17上的激光光斑的更加均匀,提高黄色荧光的转换效率;另一方面,方棒14可对激光进行整形,使激光光斑的形状大小与光机方棒7的入光面72的形状大小相匹配。从方棒14出射的激光经过中继透镜151和中继透镜152的平行化后进入区域分光片16。请参阅图2,区域分光片16的中间区域162是透射蓝激光;区域分光片16的四周区域164反射蓝激光,透射黄激光。可以理解的是,区域分光片可以采用中心区域透射激发光、反射受激光的方式,也可以采用中心区域反射激发光、透射受激光的方式进行分光。所以经过区域分光片16的中间区域162透射的蓝光通过收集透镜组18聚焦到反射式的散射片19上,散射片19的作用是降低激光的相干性,由于收集透镜组18是对方棒14的出射光面成像聚焦,所以在散射片19上形成的也是一个矩形光斑,该矩形光斑的尺寸是2.43mm×2.59mm。从矩形光斑反射回去的蓝光光分布是朗伯分布,经过收集透镜组18的平行化后到达区域分光片16,再被反射到聚焦透镜132,然后经过反射元件4反射后在图1的A位置处聚焦形成一蓝色的矩形光斑。该蓝色的矩形光斑的尺寸是10.45mm×9.78mm。同理,经过区域分光片16的四周区域164的蓝激光被反射到黄光轮17后激发出黄荧光。本实施例中,入射到黄光轮17的基板的蓝光功率是550W,最终也在图1的A位置处聚焦成一个10.45mm×9.78mm的黄色的矩形光斑,黄色的矩形光斑与蓝色的矩形光斑叠加就形成了一个白色的矩形光斑。
同理,第二光源模块20的光路与第一光源模块10相同,第二光源模块20出射的光线在图1的B位置处形成一白色的矩形光斑。
请同时参阅图3,合光器件5a包括垂直设置的两反射镜51。该 两反射镜51相对水平面(XZ平面)对称设置。每一反射镜51与水平面的夹角成45度。两反射镜51的外侧面为反射面,两反射面相互垂直且相对水平面对称设置。A位置处的矩形光斑经过上部的反射镜51反射的光线可以看成是从虚物A1直接出射的光线。B位置处的矩形光斑经过下部的反射镜51反射的光线可以看成是从虚物B1直接出射的光线。
虚物A1和虚物B1组合成的矩形光斑由双远心透镜***6成像在光机方棒7的入光面72。虚物A1和虚物B1所成的倒像W1与W2各占光机方棒7的入光面72的一半。A位置处的光斑、B位置处的光斑与光机方棒7的入光面72均为矩形,A位置处的矩形光斑及B位置处的矩形光斑耦合进光机方棒7的效率比圆形光斑耦合进光机方棒7的效率大。
双远心透镜***6的物方主光线与像方主光线均平行于光轴,可以避免第一光源模块10、第二光源模块20与双远心透镜***6在安装时位置公差引起的光机方棒7耦合效率变低。
从第一光源模块10出射的光斑随着传播路径的增加,光斑逐渐变小,在A位置处聚焦为矩形光斑时,光斑最小,之后随着传播路径的增加,光斑越来越大。有一部分光线未能被反射镜51反射而继续往下传播,会损失一部分的光通量。根据Lighttools光学设计分析软件仿真,损失的光通量等于总光通量的6%左右。同理,第二光源模块20出射的光斑也会损失一部分的光通量。
请参阅图4,图4是本发明第一实施例提供的光源***100的另一光路示意图。当光路中没有放置合光器件5a(即两反射镜51)时,第一光源模块10及第二光源模块20发出的光线经过反射元件3和第二反射元件4反射后分别在图4的C位置处聚焦成一矩形光斑。这两个矩形光斑大小相同,重叠在一起。
当光路中放置合光器件5a(即两反射镜51)时,从第一光源模块10和第二光源模块20发出的光线经两反射镜51的反射面反射后分别形成上下排列的两矩形光斑,即分别在图4中C1位置和C2位 置聚焦成一矩形光斑。而C1位置和C2位置组合成的矩形光斑通过双远心透镜***6在光机方棒7的入光面72形成像W1与W2。
请再次参阅图3,由于反射镜51具有一定的厚度,两反射镜51相互垂直放置时,两反射镜51之间是线接触,即两反射镜51的反射面之间存在间隙,将导致C1位置和C2位置的矩形光斑不能贴合,也存在一定的空隙,从而影响最后投射至光机方棒7的入光面72的光线均匀度。
为了提高投射至光机方棒7的入光面72的光线均匀度,本发明对合光器件做了进一步的改进,使得两矩形光斑能够无缝且不重合地耦合进光机***的入光面72。
请参阅图5,本发明第二实施例提供的光源***的合光器件5b,包括相对水平面(XZ平面)对称设置的两反射镜52。两反射镜52相互垂直放置,两反射镜52的反射面之间无缝接触,使得从第一光源模块10和第二光源模块20发出的光线经两反射镜52反射分别形成上下排列且无间隙的两矩形光斑W1与W2可以紧紧贴合在一起,即两矩形光斑W1与W2无缝且不重合地投射到入光面72。合光器件5b将两矩形光斑W1与W2无缝耦合到入光面72,使得第一光源模块10和第二光源模块20的光通量同时进入光机***,提高了光机***的输出亮度。
具体地,可将第一实施例的合光器件5a的两反射镜51的端部分别切除掉一个三棱柱,三棱柱的两个底面是等腰直角三角形,直角边的长度是反射镜的厚度,三棱柱的高是反射镜的高度(如图6所示)。图6中,两反射镜51的两切除线g之间的部分即是要切除的部分,高度方向指的是垂直于直角面的方向,所以和反光镜51的高度是一致的。
请参阅图7,本发明第三实施例提供的光源***的合光器件5c还可以是一体成型的L形反射镜,使两反射面(L形反射镜的外侧面)之间无缝接触。
请参阅图8,图8为本发明第四实施例提供的光源***100b的 结构示意图。第四实施例的光源***100b与第一实施例中的光源***100a的光路相同,不同之处仅在于合光器件的结构。请同时参阅图9,合光器件5d是一整体结构的反射棱镜54。合光器件5d采用整体的结构,较易控制加工及装配误差。该反射棱镜54的截面为等腰直角三角形,该反射棱镜54的斜面543垂直水平面(XZ平面),该反射棱镜54的两直角面541分别与水平面(XZ平面)的夹角分别成45度,反射棱镜54的斜面543垂直水平面(XZ平面)。该反射棱镜54的两直角面541为反射面。即两反射面相互垂直且相对水平面对称设置。
当光路中未放置合光器件5d时,第一光源模块10及第二光源模块20发出的光线经过反射元件3和第二反射元件4反射后分别在图8的D位置处聚焦成一矩形光斑。这两个矩形光斑大小相同,重叠在一起。
当光路中放置合光器件5d时,第一光源模块10及第二光源模块20发出的光线经过反射元件3和第二反射元件4反射及合光器件5d反射后分别在图8的D1位置和D2位置聚焦成一矩形光斑,D1位置和D2位置的矩形光斑上下排列无缝且不重合,通过双远心透镜***6在光机方棒7的入光面72形成像W1与W2。
为了提高该反射棱镜54的反射效率,在该反射棱镜54的两直角面541镀有高反膜。
请参阅图10,图10为本发明第五实施例提供的光源***100c的结构示意图。第五实施例的光源***100c与第一实施例中的光源***100a的不同之处也在于合光器件的结构不同。第五实施例的合光器件5e,包括两反射棱镜55a、55b。两反射棱镜55a、55b相对水平面(XZ面)对称设置。每一反射棱镜55a、55b的截面呈等腰直角三角形,每一反射棱镜55a、55b的斜面朝向该水平面且与水平面的夹角分别成45度。每一反射棱镜55a、55b的斜面为反射面,即两反射面相互垂直且相对水平面对称设置。
第一光源模块10出射的光线首先经过反射元件3后在反射棱镜 55a的一直角面E1处聚焦为一个与反射棱镜55a的直角面E1尺寸大小相匹配的矩形光斑,进入反射棱镜55a的斜面的光线入射到斜面后发生全反射从另一直角面E3处出射。
同理,第二光源模块20出射的光线首先经过反射元件4后在反射棱镜55b的直角面E2处聚焦为一个与反射棱镜55b的直角面尺寸大小相匹配的矩形光斑,进入反射棱镜55b的直角面的光线入射到斜面后发生全反射从另一直角面E4处出射。
反射棱镜55a、55b的直角面出射的光线再通过双远心透镜***6收集到光机方棒7的入光面72。相当于将E3处和E4处组合的上下排列无缝且不重合的矩形光斑通过双远心透镜***6成像至光机方棒7的入光面72形成像W1与W2。
进入反射棱镜55a、55b的直角面的光线入射到斜面后大部分光线会发生全反射从另一直角面出射,超过临界角的光线会从斜面透射而损失掉。为了提高斜面的反射效率,在反射棱镜55a、55b的斜面镀上高反膜;同时,反射棱镜55a、55b的两个侧面进行抛光处理,具有良好的全反射性能,避免了光线从侧面直接出射,增加了反射棱镜出光的效率。
请参阅图11,光机方棒7的入光面72沿长边中心划分为两个矩形,第一光源模块10及第二光源模块20出射的矩形光斑经合光器件及双远心光透镜***6分别投射到该两个矩形。
请参阅图12,光机方棒7的入光面72沿短边中心划分为两个矩形,调整第一光源模块10、第二光源模块20、合光器件或光机方棒的位置,第一光源模块10及第二光源模块20出射的矩形光斑可分别投射到该两个矩形。
请参阅图13,图13为本发明第六实施例提供的光源***100d的结构示意图。第六实施例是通过更改第一光源模块10及第二光源模块20的方棒14(请再次参阅图1)的大小和形状,让第一光源模块10及第二光源模块20出射聚焦的矩形光斑大小为19.56mm×5.225mm,然后通过两反射棱镜56a与56b(每一反射棱镜 56a、56b的截面呈等腰直角三角形)和双远心透镜***6聚焦成像在光机方棒7的入光面72,最终两个光斑W并列地组合在一起的光斑大小为19.56mm×10.45mm。
本发明光源***的合光器件将第一光源模块及第二光源模块出射的光线形成的矩形光斑投射至光机***的矩形的入光面,提高了光斑耦合进入光机***的效率,使得第一光源模块及第二光源模块出射的光线的光通量同时进入光机***,增大了投射到光机***的光通量,提高了光机***的输出亮度。
本发明以半导体激光器为激发光源,激光器具有能量密度高,光学扩展量小的优势,激发荧光粉产生高效的荧光,能够得到具有高能量密度的光源,应用在照明领域,尤其是对光束质量要求比较高的场合,具有绝对的优势。因此,本发明所提供的应用于照明领域的新型光源***,尤其适合应用于对于光束质量要求比较高的场合,对于扩展激光荧光粉光源的应用领域具有很好的推广作用。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (18)

  1. 一种光源***,其特征在于,包括:
    一第一光源模块产生一第一光线;
    一第二光源模块产生一第二光线;及
    一合光器件;
    第一光线入射至该合光器件形成一第一光斑,第二光线入射至该合光器件形成一第二光斑,该合光器件将该第一光斑及第二光斑组合在一起同时投射至一光机***的入光面。
  2. 如权利要求1所述的光源***,其特征在于,光机***包括一光机方棒,该入光面形成于光机方棒的入口处,第一光斑、第二光斑及入光面大致为矩形。
  3. 如权利要求2所述的光源***,其特征在于,第一光斑及第二光斑分别占该入光面的一半。
  4. 如权利要求3所述的光源***,其特征在于,第一光斑及第二光斑分别投射到沿该入光面的短边中心或长边中心划分的两个矩形。
  5. 如权利要求1所述的光源***,其特征在于,光源***还包括沿一平面对称设置的一第一反射元件及一第二反射元件,第一反射元件将第一光线反射至该合光器件形成该第一光斑,第二反射元件将第二光线反射至该合光器件形成该第二光斑。
  6. 如权利要求5所述的光源***,其特征在于,合光器件包括相对该平面对称设置且相互垂直的一对反射镜,该对反射镜的反射面相互垂直且分别与该平面的夹角成45度,第一反射元件将第一光线及第二反射元件将第二光线分别入射至该对反射镜的反射面。
  7. 如权利要求6所述的光源***,其特征在于,该对反射镜的反射面无缝接触。
  8. 如权利要求6所述的光源***,其特征在于,该对反射镜是一体成型且呈L型。
  9. 如权利要求5所述的光源***,其特征在于,所述合光器件包括一反射棱镜,该反射棱镜的截面为等腰直角三角形,该反射棱镜的 两直角面为反射面,该反射棱镜的两直角面分别与该平面的夹角成45度,第一反射元件将第一光线及第二反射元件将第二光线分别反射至该反射棱镜的两直角面。
  10. 如权利要求9所述的光源***,其特征在于,该反射棱镜的直角面镀有高反膜。
  11. 如权利要求5所述的光源***,其特征在于,所述合光器件包括沿该平面对称设置且截面为等腰直角三角形的两反射棱镜,两反射棱镜的斜面为反射面,两反射棱镜的斜面相互垂直且分别与该平面的夹角呈45度,第一反射元件将第一光线及第二反射元件将第二光线分别反射至两反射棱镜的一直角面,每一反射棱镜的斜面将入射光线反射后从另一直角面射出。
  12. 如权利要求11所述的光源***,其特征在于,每一反射棱镜的斜面镀有高反膜。
  13. 如权利要求11所述的光源***,其特征在于,每一反射棱镜的两侧面为抛光面。
  14. 如权利要求1至13项任意一项所述的光源***,其特征在于,所述合光器件与光机***之间还设有一双远心透镜***,第一光斑及第二光斑通过所述双远心透镜***成像于所述光机***的入光面。
  15. 如权利要求1所述的光源***,其特征在于,第一光源模块及第二光源模块均包括有激光模块及整形元件,整形元件用于对激光模块出射的激光进行整形,使激光光斑的形状大小与光机***的入光面的形状大小相匹配。
  16. 如权利要求15所述的光源***,其特征在于,所述整形元件是一方棒。
  17. 如权利要求15所述的光源***,其特征在于,第一光源模块及第二光源模块分别还包括一荧光轮、一区域分光片及一散射片,从所述整形元件出射的激光经区域分光片透射的蓝激光入射至散射片以降低蓝激光的相干性,从所述整形元件出射的激光经区域分光片反 射的蓝激光入射至荧光轮后激发出黄荧光。
  18. 一种投影装置,其包括权利要求1-17中任一项所述的光源***。
PCT/CN2018/071425 2017-11-13 2018-01-04 光源***及应用该光源***的投影装置 WO2019090958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711116266.2 2017-11-13
CN201711116266.2A CN109782515B (zh) 2017-11-13 2017-11-13 光源***及应用该光源***的投影装置

Publications (1)

Publication Number Publication Date
WO2019090958A1 true WO2019090958A1 (zh) 2019-05-16

Family

ID=66439066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071425 WO2019090958A1 (zh) 2017-11-13 2018-01-04 光源***及应用该光源***的投影装置

Country Status (2)

Country Link
CN (1) CN109782515B (zh)
WO (1) WO2019090958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115292994A (zh) * 2022-07-21 2022-11-04 西安电子科技大学 针对球面光能收集计算的光机耦合方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062044A1 (en) * 2002-09-12 2004-04-01 Olympus Optical Co., Ltd Illumination apparatus and image projection apparatus using the illumination apparatus
CN103913937A (zh) * 2013-01-01 2014-07-09 深圳市光峰光电技术有限公司 发光装置及其相关投影***
CN105182672A (zh) * 2015-07-07 2015-12-23 杨毅 发光装置和投影显示装置
CN105259732A (zh) * 2015-11-18 2016-01-20 广景视睿科技(深圳)有限公司 一种光束合光***及其投影装置
CN205103532U (zh) * 2015-11-18 2016-03-23 广景视睿科技(深圳)有限公司 一种光束合光***及其投影装置
CN106873295A (zh) * 2017-03-24 2017-06-20 广景视睿科技(深圳)有限公司 一种投影机
CN206649272U (zh) * 2017-03-24 2017-11-17 广景视睿科技(深圳)有限公司 一种投影机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640391B1 (ja) * 2004-08-27 2005-04-20 株式会社林創研 照明光学装置
CN201804203U (zh) * 2010-08-04 2011-04-20 福州高意通讯有限公司 一种投影显示***
CN102455581A (zh) * 2010-10-15 2012-05-16 前鼎光电股份有限公司 具有均匀照明光学***的投影装置
CN102073139A (zh) * 2010-11-29 2011-05-25 广东威创视讯科技股份有限公司 一种led照明光源及投影机
TWI418920B (zh) * 2011-03-31 2013-12-11 Young Optics Inc 投影裝置
US8998447B2 (en) * 2012-09-26 2015-04-07 Projectdesign As Illumination devices using array of reflectors
WO2015122075A1 (ja) * 2014-02-17 2015-08-20 株式会社リコー 光照射装置及びこれを備えた画像表示装置
CN104765242B (zh) * 2015-05-05 2017-04-12 湖北久之洋红外***股份有限公司 多孔径拼接大孔径合成的高亮度三基色激光光源光学***
CN205193364U (zh) * 2015-12-14 2016-04-27 广景视睿科技(深圳)有限公司 一种合光***及其投影照明光路
CN105425521A (zh) * 2015-12-23 2016-03-23 海信集团有限公司 光源装置及映像显示装置
JP6783545B2 (ja) * 2016-04-19 2020-11-11 キヤノン株式会社 照明装置及びこれを用いた投射型表示装置
CN206112853U (zh) * 2016-09-03 2017-04-19 超视界激光科技(苏州)有限公司 激光光源模组
CN106324964A (zh) * 2016-11-16 2017-01-11 四川长虹电器股份有限公司 一种高效激光投影***
CN106324968A (zh) * 2016-11-28 2017-01-11 四川长虹电器股份有限公司 一种基于纯激光光学引擎的微投影机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062044A1 (en) * 2002-09-12 2004-04-01 Olympus Optical Co., Ltd Illumination apparatus and image projection apparatus using the illumination apparatus
CN103913937A (zh) * 2013-01-01 2014-07-09 深圳市光峰光电技术有限公司 发光装置及其相关投影***
CN105182672A (zh) * 2015-07-07 2015-12-23 杨毅 发光装置和投影显示装置
CN105259732A (zh) * 2015-11-18 2016-01-20 广景视睿科技(深圳)有限公司 一种光束合光***及其投影装置
CN205103532U (zh) * 2015-11-18 2016-03-23 广景视睿科技(深圳)有限公司 一种光束合光***及其投影装置
CN106873295A (zh) * 2017-03-24 2017-06-20 广景视睿科技(深圳)有限公司 一种投影机
CN206649272U (zh) * 2017-03-24 2017-11-17 广景视睿科技(深圳)有限公司 一种投影机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115292994A (zh) * 2022-07-21 2022-11-04 西安电子科技大学 针对球面光能收集计算的光机耦合方法
CN115292994B (zh) * 2022-07-21 2023-06-06 西安电子科技大学 针对球面光能收集计算的光机耦合方法

Also Published As

Publication number Publication date
CN109782515B (zh) 2022-06-03
CN109782515A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
US10197900B2 (en) Light-emitting device employing a reflective light focusing system having a focusing region and a non-focusing region and projection system incorporating the same
US7350924B2 (en) Illumination apparatus and image projection apparatus using the illumination apparatus
US11604401B2 (en) Light source device and projection apparatus
US10372028B2 (en) Light source device and projection type display apparatus
WO2019071951A1 (zh) 复眼透镜组及投影装置
US11223806B2 (en) Light source system, method for improving light efficiency thereof, and display device
CN113885284B (zh) 光源组件与投影设备
JP2018120111A (ja) 照明装置及びプロジェクター
CN113867088A (zh) 光学照明***及激光投影设备
WO2009110081A1 (ja) 投光光学系、及びこれを用いた投写型表示装置
US10634981B2 (en) Light source device and projection type display apparatus
WO2017084285A1 (zh) 一种光束合光***及其投影装置
CN111176059A (zh) 照明***
WO2019090958A1 (zh) 光源***及应用该光源***的投影装置
JP6604929B2 (ja) 光学ユニットおよびこれを用いた光学装置、光源装置、投射型表示装置
US10409149B2 (en) Phosphor wheel, light-emitting unit, and projector using same
CN116880119A (zh) 光源装置和投影设备
CN217639785U (zh) 一种多光源激光光源装置及投影***
US9851631B2 (en) Light source optical system and projection display apparatus employing the same
WO2012104958A1 (ja) 光源装置及び投写型表示装置
TW580545B (en) Multiple lamps illumination system
CN220526169U (zh) 一种投影设备
US11703749B2 (en) Light source apparatus, illuminator, and projector
CN220154786U (zh) 投影光机
CN219475980U (zh) 一种投影光学引擎的激光光源光学***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875863

Country of ref document: EP

Kind code of ref document: A1