WO2019090881A1 - 基于单点双传感器的气液分层流管道泄漏定位方法及*** - Google Patents

基于单点双传感器的气液分层流管道泄漏定位方法及*** Download PDF

Info

Publication number
WO2019090881A1
WO2019090881A1 PCT/CN2017/115386 CN2017115386W WO2019090881A1 WO 2019090881 A1 WO2019090881 A1 WO 2019090881A1 CN 2017115386 W CN2017115386 W CN 2017115386W WO 2019090881 A1 WO2019090881 A1 WO 2019090881A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
gas
liquid
sound
tested
Prior art date
Application number
PCT/CN2017/115386
Other languages
English (en)
French (fr)
Inventor
李玉星
刘翠伟
孟令雅
胡其会
韩辉
方丽萍
王武昌
敬华飞
王雅真
梁杰
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US16/475,192 priority Critical patent/US11162643B2/en
Publication of WO2019090881A1 publication Critical patent/WO2019090881A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Definitions

  • the invention belongs to the technical field of acoustic wave leakage monitoring of gas-liquid mixed pipelines, and particularly relates to a gas-liquid stratified flow pipeline leakage positioning method and system based on single-point dual sensors.
  • the acoustic wave method has many advantages, which is the hotspot of current research.
  • the traditional acoustic wave method needs to install the sensor at both ends of the pipeline, and then realize the leakage by solving the time difference between the sound velocity and the sound wave reaching the two ends of the pipeline. Accurate positioning.
  • Most of the research at home and abroad is based on the sound velocity and the positioning method of the time difference between the two sensors. If the sensor is installed at one end, the time difference cannot be calculated, or the time difference is very small, and the positioning cannot be completed. Therefore, there is less research on single point installation of sensors.
  • the patents of the oil and gas pipeline leakage positioning method involving the acoustic wave method at home and abroad mainly include:
  • the prior art discloses a fluid pipeline leak detection and positioning method, which is provided with at least two sensing devices on the pipeline to be tested, and the two sensing devices are separated by a certain distance, and the two sensing devices can simultaneously The acoustic vibration of the pipe in both directions is sensed, and the leakage is located by solving the time difference between the four signals in the two directions of the two sensing devices.
  • the prior art discloses a method for leaking and positioning of oil and gas pipelines based on acoustic amplitude.
  • the method uses wavelet analysis to obtain low-frequency sound wave amplitude for leak detection and localization, and establishes the propagation of leaked sound waves in oil and gas pipeline media.
  • the model proposes a leak location method that does not consider the speed of sound and time difference.
  • the realization of the leak location of the oil and gas pipeline disclosed by the above technology is more dependent on the monitoring of the gas-liquid single-phase pipeline at the two ends of the pipeline, and the specific performance is as follows: the sensor is installed at both ends of the gas-liquid single-phase pipeline, and the sound wave signal is leaked. Go to both ends of the pipeline and collect and process them for positioning;
  • a leak location method based on single-point and dual-sensor which further locates the leakage of gas-liquid stratified flow pipeline, reduces investment, and increases the feasibility of on-site application of acoustic wave method.
  • the object of the present invention is to provide a gas-liquid stratified flow pipeline leakage positioning method based on a single-point dual sensor, which aims to solve the problem that the current sensor must be installed at both ends of the pipeline and the current acoustic wave method is more used for the single-phase pipeline. Increase the feasibility and applicability of the acoustic wave method.
  • a gas-liquid stratified flow pipeline leakage positioning method based on single-point dual sensor includes the following steps:
  • Step 1 separately collecting liquid-borne sound waves and gas-borne sound waves at the same point at one end of the pipeline to be tested;
  • Step 2 Calculate the transmission time difference of the above two kinds of sound waves
  • Step 3 According to the collected sound velocity of the sound wave propagating inside the pipeline to be tested, the sound velocity in the gas medium, the sound velocity of the liquid propagating liquid in the pipeline to be tested, the sound velocity in the liquid medium, and the transmission time difference between the two sound waves, respectively Measure the leak location of the pipe for positioning.
  • the method for positioning the leak position of the pipeline to be tested is specifically:
  • c 1 is the speed of sound of sound waves propagating in a gaseous medium
  • c 2 is the speed of sound of sound waves propagating in a liquid medium
  • the invention discloses a gas-liquid stratified flow pipeline leakage positioning system based on single-point dual sensor, comprising:
  • a sensor installed at the same point at one end of the pipeline to be tested for collecting sound waves propagating in the liquid inside the pipeline to be tested and sound waves propagating the gas;
  • the sound velocity of the sound wave propagating in the gas medium according to the collected gas inside the pipeline to be tested, the sound velocity of the sound wave propagating the liquid inside the pipeline to be tested, the sound velocity in the liquid medium, and the transmission time difference between the two sound waves, the pipeline to be tested A device for positioning the leak location.
  • the senor for collecting sound waves propagating inside the pipeline to be tested is installed at the bottom, and a sensor for collecting sound waves propagating gas inside the pipeline to be tested is installed at the top.
  • the device for positioning the leak position of the pipeline to be tested is according to the formula: Positioning the leak location of the pipe to be tested;
  • c 1 is the speed of sound of sound waves propagating in a gaseous medium
  • c 2 is the speed of sound of sound waves propagating in a liquid medium
  • the single-point dual-sensor based gas-liquid stratified flow pipeline leakage positioning method can locate the leakage of the gas-liquid stratified flow pipeline by the established leak detection formula of the single-point dual-sensor pipeline to be tested, and improve the leakage of the gas-liquid stratified flow pipeline
  • the feasibility and applicability of the acoustic wave method is simple and convenient to operate, and better solves the problem that the sensor must be arranged at both ends at present and the sonic method is more used for the gas-liquid single-phase pipeline.
  • FIG. 1 is a schematic diagram of a method for leaking and positioning a gas-liquid stratified flow pipeline based on a single-point dual sensor according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for leaking and positioning a gas-liquid stratified flow pipeline based on a single-point dual sensor according to an embodiment of the present invention.
  • the single-point dual sensor based gas-liquid stratified flow pipeline leakage positioning method of the embodiment of the invention comprises the following steps:
  • S101 Establish a leakage positioning formula based on a single point and two sensors for the pipeline to be tested.
  • S104 The sound velocity in the gas medium, the sound velocity in the liquid medium and the time difference are substituted into the leakage positioning formula based on the single point dual sensor, and the leakage can be positioned.
  • the single-point dual sensor based gas-liquid stratified flow pipeline leakage positioning system disclosed by the invention comprises:
  • a sensor installed at the same point at one end of the pipeline to be tested for collecting sound waves propagating in the liquid inside the pipeline to be tested and sound waves propagating the gas;
  • the sound velocity of the sound wave propagating in the gas medium according to the collected gas inside the pipeline to be tested, the sound velocity of the sound wave propagating the liquid inside the pipeline to be tested, the sound velocity in the liquid medium, and the transmission time difference between the two sound waves, the pipeline to be tested A device for positioning the leak location.
  • the specific implementation process of the present invention is: a leak point occurs at a certain point of the pipeline, two sensors are installed at the same point of the pipeline, one is installed at the top of the pipeline, and one is installed at the bottom of the pipeline, and the signal collected by the bottom sensor is The sound wave transmitted by the liquid in the tube, the signal collected by the top sensor is the sound wave propagating in the gas in the tube, the sound velocity of the sound wave propagating in the gas medium is c 1 , the sound velocity of the sound wave propagating in the tube wall is c 2 , and the time difference between the two sound waves
  • the formula can be based on the leak: The position of the leak point can be solved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种基于单点双传感器的气液分层流管道泄漏定位方法,包括:建立待测管道基于单点双传感器的泄漏定位公式(S101);在待测管道一端同一点安装两个传感器(S102),底部传感器采集的信号为管内液体传播的声波,顶部传感器采集的信号为管内气体传播的声波;将两个声波进行处理得到时间差(S103);将气体介质中的声速、液体介质中的声速与时间差代入基于单点双传感器的泄漏定位公式(S104),即可对泄漏进行定位(S105)。通过基于单点双传感器的泄漏定位方法,避免了传感器在管道两端安装,避免了单传感器对泄漏声波信号的漏检,减少了传感器安装数量,成本低,安全性高,对气液分层流管道适用性强。还提供一种基于单点双传感器的气液分层流管道泄漏定位***。

Description

基于单点双传感器的气液分层流管道泄漏定位方法及*** 技术领域
本发明属于气液混输管道声波法泄漏监测技术领域,尤其涉及一种基于单点双传感器的气液分层流管道泄漏定位方法及***。
背景技术
目前用于油气管道泄漏定位的方法有很多,其中声波法具有诸多优势,是目前研究的热点,传统声波法需要将传感器安装在管道两端,然后通过求解声速和声波到达管道两端的时间差实现泄漏的准确定位。国内外研究大都是基于声速以及两个传感器时间差的定位方法进行的,如果将传感器安装在一端,就没法计算时间差,或者时间差非常小,不能完成定位。因此,针对传感器单点安装研究较少。
根据调研,现阶段国内外涉及声波法的油气管道泄漏定位方法的专利主要有:
现有技术公开了一种流体管道泄漏检测定位方法,该方法在被测管道上至少设置有两个传感装置,两个传感装置之间间隔一定距离,且两个传感装置能够同时对两个方向上的管道声振动进行感应,进而通过求解两个传感装置两个方向上共四个信号之间的时间差对泄漏进行定位。
现有技术公开了一种基于声波幅值的油气管道泄漏定位方法,该方法采用经过小波分析处理后得到低频段声波幅值来进行泄漏检测和定位,建立了泄漏声波在油气管道介质内的传播模型,提出了一种不考虑声速及时间差的泄漏定位方法。
上述技术公开的对油气管道泄漏定位的实现更多的是依靠传感器在管道两端布置针对气液单相管线进行监测,具体表现为:传感器安装在气液单相管道两端,泄漏声波信号传播到管道两端并被采集处理进而进行定位;
上述方法均是在待测管道两端同时安装传感器,也没有考虑到对于气液分层流管道泄漏位置的定位,目前针对气液混输管道还没有见到相关专利,因为管道内部同时存在气液两相时,声速是不确定的,没法进行定位。
另外,在待测管道两端同时安装传感器,增加了采样点设置密度,增大了安装成本,这都降低了声波法推广的可行性和适用性。
为解决以上问题,提出了基于单点双传感器的泄漏定位方法,进而对气液分层流管道泄漏进行定位,降低投资,增加声波法现场应用的可行性。
发明内容
本发明的目的在于提供一种基于单点双传感器的气液分层流管道泄漏定位方法,旨在解决现阶段传感器必须安装在管道两端且目前声波法更多用于单相管道的问题,增加声波法的可行性和适用性。
为了实现上述目的,本发明采用如下技术方案:
一种基于单点双传感器的气液分层流管道泄漏定位方法,包括以下步骤:
步骤一:分别采集待测管道一端同一点的液体传播的声波和气体传播的声波;
步骤二:求取上述两种声波的传输时间差;
步骤三:分别根据采集到的待测管道内部气体传播的声波在所述气体介质中的声速、待测管道内部液体传播的声波在所述液体介质中的声速以及两种声波的传输时间差,对待测管道泄漏位置进行定位。
进一步地,所述步骤三中,对待测管道泄漏位置进行定位的方法具体为:
Figure PCTCN2017115386-appb-000001
其中,c 1为声波在气体介质中传播的声速,c 2为声波在液体介质中传播的声速。
本发明公开了一种基于单点双传感器的气液分层流管道泄漏定位***,包括:
安装在待测管道一端同一点的分别用于采集待测管道内部液体传播的声波和气体传播的声波的传感器;
用于求取采集到的两种声波的传输时间差的装置;
用于根据采集到的待测管道内部气体传播的声波在所述气体介质中的声速、待测管道内部液体传播的声波在所述液体介质中的声速以及两种声波的传输时间差,对待测管道泄漏位置进行定位的装置。
进一步地,所述的用于采集待测管道内部液体传播的声波的传感器安装在底部,用于采集待测管道内部气体传播的声波的传感器安装在顶部。
进一步地,所述的对待测管道泄漏位置进行定位的装置,根据公式:
Figure PCTCN2017115386-appb-000002
对待测管道泄漏位置进行定位;
其中,c 1为声波在气体介质中传播的声速,c 2为声波在液体介质中传播的声速。
本发明有益效果
本发明提供的基于单点双传感器的气液分层流管道泄漏定位方法,通过建立的待测管段基于单点双传感器的泄漏定位公式,能够对气液分层流管道的泄漏进行定位,提高了声波法的可行性和适用性。本发明方法简单,操作方便,较好的解决了现阶段传感器必须两端布置以及声波法更多用于气液单相管道的问题。
附图说明
图1是本发明实施例提供的基于单点双传感器的气液分层流管道泄漏定位方法的步骤图;
图2是本发明实施例提供的基于单点双传感器的气液分层流管道泄漏定位方法原理流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图及具体实施例对本发明的应用原理作进一步描述。
如图1所示,本发明实施例的基于单点双传感器的气液分层流管道泄漏定位方法包括以下步骤:
S101:建立待测管道基于单点双传感器的泄漏定位公式。
S102:在待测管道一端同一点安装两个传感器。
S103:将两个声波进行处理得到时间差。
S104:将气体介质中的声速、液体介质中的声速与时间差代入基于单点双传感器的泄漏定位公式,即可对泄漏进行定位。
本发明公开的基于单点双传感器的气液分层流管道泄漏定位***包括:
安装在待测管道一端同一点的分别用于采集待测管道内部液体传播的声波和气体传播的声波的传感器;
用于求取采集到的两种声波的传输时间差的装置;
用于根据采集到的待测管道内部气体传播的声波在所述气体介质中的声速、待测管道内部液体传播的声波在所述液体介质中的声速以及两种声波的传输时间差,对待测管道泄漏位置进行定位的装置。
如图2所示,本发明的具体实施流程为:泄漏点发生在管道某点处,两个传感器安装在 管道同一点,一个安装于管道顶部,一个安装于管道底部,底部传感器采集的信号为管内液体传播的声波,顶部传感器采集的信号为管内气体传播的声波,声波在气体介质中传播的声速为c 1,声波在管壁中传播的声速为c 2,且两个声波之间的时间差为Δt,则可根据泄漏定位公式:
Figure PCTCN2017115386-appb-000003
可求解得到泄漏点位置。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (5)

  1. 一种基于单点双传感器的气液分层流管道泄漏定位方法,其特征在于,包括以下步骤:
    步骤一:分别采集待测管道一端同一点的液体传播的声波和气体传播的声波;
    步骤二:求取上述两种声波的传输时间差;
    步骤三:分别根据采集到的待测管道内部气体传播的声波在所述气体介质中的声速、待测管道内部液体传播的声波在所述液体介质中的声速以及两种声波的传输时间差,对待测管道泄漏位置进行定位。
  2. 如权利要求1所述的一种基于单点双传感器的气液分层流管道泄漏定位方法,其特征在于,所述步骤三中,对待测管道泄漏位置进行定位的方法具体为:
    Figure PCTCN2017115386-appb-100001
    其中,c 1为声波在气体介质中传播的声速,c 2为声波在液体介质中传播的声速。
  3. 一种基于单点双传感器的气液分层流管道泄漏定位***,其特征在于,包括:
    安装在待测管道一端同一点的分别用于采集待测管道内部液体传播的声波和气体传播的声波的传感器;
    用于求取采集到的两种声波的传输时间差的装置;
    用于根据采集到的待测管道内部气体传播的声波在所述气体介质中的声速、待测管道内部液体传播的声波在所述液体介质中的声速以及两种声波的传输时间差,对待测管道泄漏位置进行定位的装置。
  4. 如权利要求3所述的一种基于单点双传感器的气液分层流管道泄漏定位***,其特征在于,包括:所述的用于采集待测管道内部液体传播的声波的传感器安装在底部,用于采集待测管道内部气体传播的声波的传感器安装在顶部。
  5. 如权利要求3所述的一种基于单点双传感器的气液分层流管道泄漏定位***,其特征在于,所述的对待测管道泄漏位置进行定位的装置,根据公式:
    Figure PCTCN2017115386-appb-100002
    对待测管道泄漏位置进行定位;
    其中,c 1为声波在气体介质中传播的声速,c 2为声波在液体介质中传播的声速。
PCT/CN2017/115386 2017-11-13 2017-12-11 基于单点双传感器的气液分层流管道泄漏定位方法及*** WO2019090881A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,192 US11162643B2 (en) 2017-11-13 2017-12-11 Single-point dual sensor-based leakage positioning method and system for gas-liquid stratified flow pipeline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711114217.5 2017-11-13
CN201711114217.5A CN107940245A (zh) 2017-11-13 2017-11-13 基于单点双传感器的气液分层流管道泄漏定位方法及***

Publications (1)

Publication Number Publication Date
WO2019090881A1 true WO2019090881A1 (zh) 2019-05-16

Family

ID=61933905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115386 WO2019090881A1 (zh) 2017-11-13 2017-12-11 基于单点双传感器的气液分层流管道泄漏定位方法及***

Country Status (3)

Country Link
US (1) US11162643B2 (zh)
CN (1) CN107940245A (zh)
WO (1) WO2019090881A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048404A (zh) * 2021-03-12 2021-06-29 常州大学 一种城市气体管道微小泄漏诊断方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351897A (zh) * 2020-03-15 2020-06-30 江苏尚美环保科技有限公司 一种烟气硫化物在线监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294326A (ja) * 1985-06-24 1986-12-25 Tokyo Gas Co Ltd 配管における漏洩箇所の検出方法
US5038614A (en) * 1989-08-10 1991-08-13 Atlantic Richfield Company Acoustic vibration detection of fluid leakage from conduits
US20020149487A1 (en) * 2001-03-02 2002-10-17 Harvey Haines In-ground pipeline monitoring
CN101206010A (zh) * 2007-12-14 2008-06-25 济南大学 基于声波协同检测的管道震击破坏定位***及其定位方法
CN103672415A (zh) * 2013-12-06 2014-03-26 中国石油大学(华东) 基于非介入式传感器的气体管道泄漏检测和定位***及方法
CN104132248A (zh) * 2014-07-31 2014-11-05 重庆大学 流体管道泄漏检测定位方法
KR101525329B1 (ko) * 2013-12-30 2015-06-03 한국원자력연구원 모드분리기법을 이용한 매설배관의 누설위치 추정방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255540A (ja) * 1985-09-04 1987-03-11 Hitachi Ltd 漏洩検出装置
US10634536B2 (en) * 2013-12-23 2020-04-28 Exxonmobil Research And Engineering Company Method and system for multi-phase flow measurement
CN104595729B (zh) 2015-01-15 2015-08-12 中国石油大学(华东) 一种基于声波幅值的油气管道泄漏定位方法
GB2545164B (en) * 2015-11-24 2019-09-25 Schlumberger Holdings A stratified flow multiphase flowmeter
CN111771042A (zh) * 2017-10-11 2020-10-13 英国石油勘探运作有限公司 使用声学频域特征来检测事件
US20210389486A1 (en) * 2018-11-29 2021-12-16 Bp Exploration Operating Company Limited DAS Data Processing to Identify Fluid Inflow Locations and Fluid Type

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294326A (ja) * 1985-06-24 1986-12-25 Tokyo Gas Co Ltd 配管における漏洩箇所の検出方法
US5038614A (en) * 1989-08-10 1991-08-13 Atlantic Richfield Company Acoustic vibration detection of fluid leakage from conduits
US20020149487A1 (en) * 2001-03-02 2002-10-17 Harvey Haines In-ground pipeline monitoring
CN101206010A (zh) * 2007-12-14 2008-06-25 济南大学 基于声波协同检测的管道震击破坏定位***及其定位方法
CN103672415A (zh) * 2013-12-06 2014-03-26 中国石油大学(华东) 基于非介入式传感器的气体管道泄漏检测和定位***及方法
KR101525329B1 (ko) * 2013-12-30 2015-06-03 한국원자력연구원 모드분리기법을 이용한 매설배관의 누설위치 추정방법
CN104132248A (zh) * 2014-07-31 2014-11-05 重庆大学 流体管道泄漏检测定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048404A (zh) * 2021-03-12 2021-06-29 常州大学 一种城市气体管道微小泄漏诊断方法
CN113048404B (zh) * 2021-03-12 2022-08-16 常州大学 一种城市气体管道微小泄漏诊断方法

Also Published As

Publication number Publication date
US11162643B2 (en) 2021-11-02
CN107940245A (zh) 2018-04-20
US20190338889A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
CN104747912A (zh) 流体输送管道泄漏声发射时频定位方法
CN106289121B (zh) 一种变径管等效管长的计算方法
WO2021088557A1 (zh) 基于激励响应的油气管道泄漏检测方法及***
CN105953080B (zh) 基于同侧传感器布置的声波泄漏定位方法
MX2017003914A (es) Sistema y metodo de deteccion de fuga de medidor de flujo ultrasonico.
CN103245454A (zh) 一种非侵入式管道实时监测和预警及故障定位***
AU2017393649B2 (en) Leakage positioning method based on speed difference
CN202074237U (zh) 管道泄漏监测与负压保护装置
CN103672415B (zh) 基于非介入式传感器的气体管道泄漏检测和定位***及方法
WO2019090881A1 (zh) 基于单点双传感器的气液分层流管道泄漏定位方法及***
CN103629534A (zh) 一种基于综合信号的输油管道泄漏检测和定位方法
CN107024603B (zh) 气液两相泡状流流速声电双模态测量方法
CN104007287A (zh) 一种基于超声波的管道流体流速检测方法
CN106932606B (zh) 气液两相弹状流和塞状流流速声电双模态测量方法
KR101525329B1 (ko) 모드분리기법을 이용한 매설배관의 누설위치 추정방법
CN107035974B (zh) 一种地下管道漏水检测装置及其检测方法
CN106195648B (zh) 一种变径管等效管长的实验测试方法
CN104132251A (zh) 压力流体管道声振动信号多向采集方法及装置
CN110131594A (zh) 一种基于超声波波速变化的泄漏定位方法
CN102182937A (zh) 管道泄漏振动信号采集增强装置
CN206546192U (zh) 一种基于超声波的流体检测装置
CN213299632U (zh) 一种供水管道泄漏的高精度报警装置
CN205091283U (zh) 一种超声波石油凝点测量装置
CN107990152B (zh) 一种基于同点双传感器的气体管道泄漏定位方法
CN207162136U (zh) 一种地下管线测漏检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931368

Country of ref document: EP

Kind code of ref document: A1