WO2019090785A1 - Dynamic traffic control - Google Patents

Dynamic traffic control Download PDF

Info

Publication number
WO2019090785A1
WO2019090785A1 PCT/CN2017/110734 CN2017110734W WO2019090785A1 WO 2019090785 A1 WO2019090785 A1 WO 2019090785A1 CN 2017110734 W CN2017110734 W CN 2017110734W WO 2019090785 A1 WO2019090785 A1 WO 2019090785A1
Authority
WO
WIPO (PCT)
Prior art keywords
roadway
traffic
median barrier
transportation system
moveable
Prior art date
Application number
PCT/CN2017/110734
Other languages
French (fr)
Inventor
Biyun ZHOU
Markus Seidel
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to PCT/CN2017/110734 priority Critical patent/WO2019090785A1/en
Priority to CN201780095980.XA priority patent/CN111212947A/en
Publication of WO2019090785A1 publication Critical patent/WO2019090785A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/006Lane control by movable lane separating barriers, e.g. shiftable barriers, retractable kerbs ; Apparatus or barriers specially adapted therefor, e.g. wheeled barriers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights

Definitions

  • Embodiments of present disclosure generally relate to the field of transportation, and more particularly to a system for dynamic traffic control.
  • a two-way road is a roadway that allows vehicles to travel in two directions.
  • an isolation strip is arranged in the middle of the roadway to distinguish different travel directions.
  • the isolation strip may be simply implemented as an isolation line painted on the middle of the roadway to remind users of vehicles to stay on their side of the roadway.
  • the isolation strip may be implemented as a median barrier that physically separates the roadway, and vehicles can only stay on their side of the roadway due to the median barrier.
  • the isolation strip is fixed on a roadway.
  • the isolation line is painted on the roadway, and if a new isolation line needs to replace the painted isolation line, the painted isolation line should be erased and the new isolation line should be painted on the road, which will cost a lot of time and resources.
  • the isolation strips are generally not moveable or adjustable. Even if the isolation strips are moved, it will take a long time and need a lot of manual operations, and thus the moving efficiency is very low.
  • Embodiments of the present disclosure provide systems for dynamic traffic control.
  • a moveable median barrier that is moved automatically based on the traffic of the roadway is arranged on or above the roadway, or a plurality of light-based isolation strips whose modes may be controlled automatically based on the traffic of the roadway are arranged on the roadway.
  • the traffic of the roadway can be controlled dynamically by use of the moveable median barrier or the light-based isolation strips.
  • the traffic control system comprises tracks for a roadway and a movable median barrier equipped with moving mechanism that is movable along the tracks to move the median barrier.
  • the traffic control system further comprises a controller configured to, based on traffic of the roadway, control movements of the moving mechanism along the tracks to move the moveable median barrier 280 to change lanes of the roadway.
  • the traffic of the roadway can be controlled dynamically by use of the moveable median barrier, and the movement of the moveable median barrier is enabled automatically to relieve the tidal phenomenon of traffic, without any manual operations or any specifically-designed barrier transfer machine (BTM) , and thus the traffic control efficiency can be enhanced.
  • BTM barrier transfer machine
  • the moving mechanism includes wheels, and at least one of the tracks includes magnetic elements, and the controller is further configured to control magnetism of the magnetic elements to apply magnetic traction to the wheels.
  • the controller is further configured to control magnetism of the magnetic elements to apply magnetic traction to the wheels.
  • the controller is further configured to, in response to determining that traffic in a direction (X) of the roadway exceeds a threshold, cause the moveable median barrier 280 to move to increase the number or width of lanes in the direction (X) . Accordingly, the movable median barrier can be controlled based on the real time traffic of the roadway, thereby improving the dynamic and intelligent degree of the traffic control system.
  • the moving mechanism is arranged under posts of the movable median barrier, thereby strengthening the structure of the traffic control system.
  • a unit for the movement of the movable median barrier is a half width of a lane, thereby enabling the movable median barrier to have multiple isolation statuses.
  • the traffic control system further comprises a locking mechanism operable to receive a signal from the controller and to, in response to the received signal, lock the moving mechanism to prevent the movable median barrier moving. Since the locking mechanism can be locked and unlocked by the controller, the moveable median barrier can be prevented from moving during the time that the movable median barrier is not moved.
  • the tracks and the moveable median barrier may be arranged on or above the roadway.
  • the roadway is a transportation system for low-speed vehicles
  • the transpiration system further comprises two roadside barriers for protecting users in the transportation system.
  • the traffic control system may be dedicated to the low-speed transportation system in order to relieve the tidal phenomenon of traffic for low-speed vehicles.
  • the traffic control system comprises isolation strips arranged along lanes on a roadway, each of the isolation strips includes a plurality of luminous elements arranged near or on surface of the roadway.
  • the traffic control system further comprises a controller configured to, based on traffic of the roadway, control modes of the plurality of luminous elements to control status of the isolation strips.
  • the traffic of the roadway can be controlled dynamically by use of the light-based isolation strips, and the control of the light-based isolation strips is controlled automatically to relieve the tidal phenomenon of traffic without any manual operations, and thus the traffic control efficiency can be enhanced.
  • the controller is configured to, in response to determining that traffic in a direction (X) of the roadway exceeds a threshold, turn off the luminous elements of at least one of the isolation strips to increase the number or width of lanes in the direction (X) . Accordingly, the light-based isolation strips can be controlled based on the real time traffic of the roadway, thereby improving the dynamic and intelligent degree of the traffic control system.
  • the luminous elements include light-emitting diodes (LEDs) , thereby reducing power consummation and extending life span.
  • LEDs light-emitting diodes
  • the luminous elements are covered by reflection protection means, such as light covers.
  • reflection protection means such as light covers.
  • the roadway is a transportation system for low-speed vehicles
  • the transpiration system further comprises two roadside barriers for protecting users in the transportation system.
  • the traffic control system may be dedicated to the low-speed transportation system in order to relieve the tidal phenomenon of traffic for low-speed vehicles.
  • the traffic control system further comprises an interaction device configured to interact with a user based on at least one of: entrance of a user to the roadway, pressure of the user on the roadway, a movement speed of the user, and surrounding environment of the roadway. Accordingly, the cycling experience may be enhanced through the interactions between the users and transportation system.
  • a transportation system for low-speed vehicles includes the any of the traffic control system as described above.
  • FIG. 1 illustrates a schematic diagram of an urban area in which a transportation system in accordance with embodiment of the present disclosure can be implemented
  • FIG. 2 illustrates a schematic diagram of a traffic control system including a moveable median barrier according to embodiments of the present disclosure
  • FIG. 3 illustrates a schematic diagram of the traffic control system where the moveable median barrier has been moved according to embodiments of the present disclosure
  • FIG. 4 illustrates a top view of the traffic control system including the moveable median barrier according to embodiments of the present disclosure
  • FIG. 5 illustrates a top view of the traffic control system where the moveable median barrier has been moved according to embodiments of the present disclosure
  • FIG. 6 illustrates a front view of the traffic control system including the moveable median barrier according to embodiments of the present disclosure
  • FIG. 7 illustrates a side view of the traffic control system including the moveable median barrier according to embodiments of the present disclosure
  • FIG. 8 illustrates a front view of a traffic control system including light-based isolation strips according to embodiments of the present disclosure
  • FIG. 9 illustrates a front view of the traffic control system where the light-based isolation strips has been controlled according to embodiments of the present disclosure.
  • FIG. 10 illustrates a front view of the traffic control system including an interaction device according to embodiments of the present disclosure.
  • the term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • moving mechanism is to be read as various types of moving mechanisms that may be controlled mechanically, electronically or magnetically, including but not limited to a wheel, a roller, a cartwheel, a slider, a slide bearing, multi-joint link means and so on.
  • the isolation strips are generally not moveable, so they cannot relieve the tidal phenomenon of traffic where one side of the roadway has a high traffic while the other side of the roadway has a low traffic.
  • One improvement is to use a customized barrier transfer machine (BTM) to reposition the isolation strip.
  • BTM barrier transfer machine
  • Embodiments of the present disclosure provide systems for dynamic traffic control.
  • a moveable median barrier that is moved automatically based on the traffic of the roadway is arranged on or above the roadway, or a plurality of light-based isolation strips whose modes may be controlled automatically based on the traffic of the roadway are arranged on the roadway.
  • the traffic of the roadway can be controlled dynamically by use of the moveable median barrier or the light-based isolation strips.
  • FIG. 1 illustrates a schematic diagram of an urban area 100 in which a transportation system 110 in accordance with embodiments of the present disclosure can be implemented.
  • the transportation system 110 may be also referred to as “Skyway” .
  • the transportation system 110 includes one or more pathways for various vehicles to travel thereon.
  • the transportation system 110 may further include one or more accessories such an enclosure for protecting the pathway (s) from the outside, one or more sensors, one or more controllers, or the like. It is to be understood that the phrase “transportation system” as used herein does not include the vehicles traveling on the one or more pathways.
  • the vehicles traveling in the transportation system may include, but are not limited to, low-speed vehicles, for example.
  • the low-speed vehicles may have a maximum design speed of, for example, 30-50 km/h, depending on the safety and/or capacity requirements of the transportation system 110.
  • the low-speed vehicles may be designed exclusively for the transportation system 110. Alternatively, or in addition, general low-speed vehicles may be allowed.
  • low-speed vehicles may include, but are not limited to, bicycles 120-1, electric bicycles 120-2, motorcycles 120-3, and/or the like. Such vehicles may be collectively or individually referred to as low-speed vehicles 120.
  • the transportation system 110 may be separated from roads or pathways for high-speed vehicles, such as cars, buses, trucks, and the like, with the maximum design speed above 50 km/h, for example.
  • the low-speed vehicles 120 generally occupy less space than the high-speed vehicles. Therefore, the transportation system 110 can be built in a flexible manner in the urban area 100, for example, to provide more convenience for daily commute and/or to relieve traffic congestion in a city.
  • Some low-speed vehicles 120 are not equipped with shelters or enclosures to shield from extreme environmental conditions such as rainfall, haze, noise, and so on.
  • at least a part of the transportation system 110 may be constructed as a semi-enclosed or fully-enclosed space, for example, by sidewalls and/or a roof across sides of the transportation system 110.
  • the sidewalls and/or the roof of the transportation system 110 may be designed in any suitable shape to provide aesthetic effect or be adapted to different structures above or below the ground.
  • the transportation system 110 can support vehicles of any suitable design speed.
  • the transportation system 110 can support a variety of types of vehicles, including, but not limited to, two-wheeled vehicles, three-wheeled vehicles, single-lane vehicles, vehicles without bodywork, and vehicles without a seat, for example, footboards with steering handle (also known as scooters) or without steering handle.
  • the transportation system 110 may only allow two-wheeled vehicles, for example, bicycles 120-1 and electric bicycles 120-2. In this case, the transportation system 110 may not have a speed limit for the two-wheeled vehicles.
  • the transportation system 110 may be constructed overhead, on the ground, and/or under the ground. In some embodiments, the transportation system 110 may extend through one or more obstacles such as building (s) . A number of entrances 112-1, 112-3 and exits 112-2, 112-4 may be provided along the transportation system 110 to allow drivers and their vehicles to enter and exit from the transportation system 110 in the middle of their driving. In some embodiments, the transportation system 110 may have one or more lanes.
  • the transportation system 110 may be an elevated transportation system that extends through residential areas, commercial districts, and/or office districts.
  • the transportation system 110 may tunnel through buildings such as a shopping mall, so that the drivers can order and pick up food, drink, and any other goods provided in the shopping mall.
  • the transportation system 110 may also include a bridge over a river or road to be compatible with an existing road network of the city.
  • the construction and layout of the urban area 100 and the transportation system 110 are described above for the purpose of illustration only, without suggesting any limitations as to the scope of the present disclosure.
  • the present disclosure can be implemented with a different construction and/or arrangement.
  • the transportation system 110 can be implemented in a rural area.
  • transportation system 110 is descried herein, the systems for dynamic traffic control described below according to embodiments of the present disclosure are not limited to the low-speed vehicles in transportation system 110.
  • FIG. 2 illustrates a schematic diagram of a traffic control system 200 including a moveable median barrier 280 according to embodiments of the present disclosure.
  • the traffic control system 200 includes a plurality of tracks 220, 230, 240, 250, 260 and 270 arranged on a roadway 210.
  • the roadway 210 includes roadsides 210-1 and 210-2 and includes lanes 290 and 295 in two directions.
  • the roadway 210 may be described below as transportation system 110 for low-speed vehicles with reference to FIG. 1, but other transportation environments may be also possible.
  • the tracks 220, 230, 240, 250, 260 and 270 are arranged separately, and they may be substantially parallel with each other.
  • the traffic control system 200 further includes a moveable median barrier 280 (such as a fence) .
  • the moveable median barrier 280 may be composed of several detachable barriers.
  • the tracks 220, 230, 240, 250, 260 and 270 may be arranged substantially perpendicular to the moveable median barrier 280.
  • the moveable median barrier 280 has a moving mechanism (s) 215.
  • the moving mechanism 215 includes a plurality of wheels 225, 235, 245, 255, 265 and 275 at the bottom of the moveable median barrier 280.
  • the wheels 225, 235, 245, 255, 265 and 275 are moveable along the tracks 220, 230, 240, 250, 260 and 270 in order to move the moveable median barrier 280.
  • the traffic control system 200 may include a plurality of posts 228, 238, 248, 258, 268 and 278 under which the wheels 225, 235, 245, 255, 265 and 275 may be arranged.
  • each post may have one wheel at its bottom.
  • each post may have a plurality of wheels side by side.
  • the traffic control system 200 further includes a controller (not shown) that is configured to control movements of the wheels 225, 235, 245, 255, 265 and 275 along the tracks 220, 230, 240, 250, 260 and 270 based on traffic (for example, the real time traffic information) of the roadway 210, thereby automatically moving the median barrier 280 to change lanes 290, 295 of the roadway 210.
  • a controller (not shown) that is configured to control movements of the wheels 225, 235, 245, 255, 265 and 275 along the tracks 220, 230, 240, 250, 260 and 270 based on traffic (for example, the real time traffic information) of the roadway 210, thereby automatically moving the median barrier 280 to change lanes 290, 295 of the roadway 210.
  • the controller may be arranged near or within the roadway 210, or may be arranged remotely.
  • wheels 225, 235, 245, 255, 265 and 275 are only examples of the mechanisms for moving the moveable median barrier.
  • other types of moving mechanisms can be used, including, but not limited to, one or more rollers, one or more cartwheels, one or more sliders, one or more slide bearings, multi-joint link means and so on.
  • tracks 220, 230, 240, 250, 260 and 270 and the moveable median barrier 280 are shown to be arranged on the roadway 210, at least some of them may be arranged above the roadway 210.
  • the moveable median barrier 280 may be installed on the roof of the transportation system 110 and/or any other components hanging above the roadway.
  • FIG. 3 illustrates a schematic diagram of the traffic control system 200 where the moveable median barrier 280 has been moved according to embodiments of the present disclosure.
  • the wheels 225, 235, 245, 255, 265 and 275 are controlled by the controller to move along the tracks 220, 230, 240, 250, 260 and 270 such that the moveable median barrier 280 is moved away from the roadside 210-2.
  • the lane (s) 295 will have a greater number of lanes or broader than that of the lane (s) 290, as shown in FIG. 3, and the high traffic issue in lane (s) 295 can be relieved. This is helpful for the roadways with tidal phenomenon of traffic.
  • FIG. 4 illustrates a top view of the traffic control system 200 including the moveable median barrier 280 according to embodiments of the present disclosure.
  • the roadway 210 is divided equally by the moveable median barrier 280, and lanes 401 and 402 at the roadside 210-1 has a different travel direction with lanes 403 and 404 at the roadside 210-2.
  • the controller receives a signal indicating that the traffic of lanes 403 and 404 is significantly greater than that of lanes 401 and 402, or that the traffic of lanes 403 and 404 is greater than the predetermined threshold (such as 1100 pcu/h which means passenger car unit every hour) , the controller will control the moveable median barrier 280 to move away from the roadside 210-2.
  • the predetermined threshold such as 1100 pcu/h which means passenger car unit every hour
  • FIG. 5 illustrates a top view of the traffic control system 200
  • the lane 402 in one direction turns into a lane 402’in the different direction.
  • the lanes at the roadside 210-2 are increased while the lanes at the roadside 210-1 are decreased, and thus the high traffic issue at the roadside 210-2 can be relieved.
  • FIG. 6 illustrates a front view of the traffic control system 200 including the moveable median barrier according to embodiments of the present disclosure.
  • the track 220 has a plurality of magnetic elements 601, 602, 603, 604 and 605, and the magnetism of magnetic elements 601, 602, 603, 604 and 605 may be controlled by the controller such that the wheel 225 may be moved along the track 220 by means of magnetic traction.
  • the wheels 225, 235, 245, 255, 265 and 275 may be composed of some magnetic metal materials, such as Fe-based material. In some embodiments, if the magnetism is applied to the magnetic element 601 while no magnetism is applied to the magnetic elements 602, 603, 604 or 605, the wheel 225 may move toward the magnetic element 601.
  • the five magnetic elements 601, 602, 603, 604 and 605 may represent five statues of the track 220, such as the middle, 0.4m left from the middle, 0.4m right from the middle, 0.8m left from the middle, and 0.8m right from the middle. It is to be understood that the values of 0.4m and 0.8m are exemplary examples, other values may be also possible. Five statues can make enable the moveable median barrier 280 to move smoothly and do not influence the traffic flow.
  • magnetic traction is described as a way of moving the moveable median barrier
  • other tractions that can enable the moveable median barrier to move may be also possible, such as mechanical traction, electric traction and so on.
  • FIG. 7 illustrates a side view of the traffic control system 200 including the moveable median barrier according to embodiments of the present disclosure.
  • the posts 228, 238, 248, 258, 268 and 278 may be arranged substantially parallel with each other.
  • the traffic control system 200 may include a locking mechanism 226 for the wheel 225, for the sake of brevity, the locking mechanisms for wheels 235, 245, 255, 265 and 275 are not shown, collectively referred to as the locking mechanism 226.
  • the locking mechanism 226 may lock the wheels 225, 235, 245, 255, 265 and 275 accordingly in order to prevent the moveable median barrier 280 moving.
  • the controller needs to move to the moveable median barrier 280, it sends an unlocking signal to the locking mechanism 226 first. After the moveable median barrier 280 has been moved, the controller sends a locking signal to the locking mechanism 226 to lock the wheels 225, 235, 245, 255, 265 and 275.
  • the roadway 210 may be the transportation system 110 for low-speed vehicles with reference to FIG. 1, as described above, and the transportation system 110 may further include two roadside barriers (not shown) at the roadsides 210-1 and 210-2 for protecting users in the transportation system 110.
  • FIG. 8 illustrates a front view of a traffic control system 800 including light-based isolation strips 820, 830 and 840 according to embodiments of the present disclosure.
  • the traffic control system 800 includes a plurality of isolation strips 820, 830, 840 arranged along lanes 850, 855, 860 and 865 on a roadway 810, and the roadway 810 includes roadsides 810-1 and 810-2.
  • the roadway 810 may be described below as transportation system 110 for low-speed vehicles with reference to FIG. 1, but other transportation environments may be also possible.
  • Lanes 850 and 855 at the roadside 810-1 are in different direction with lanes 860 and 865 at the roadside 810-2.
  • the status of isolation strips 820, 830, 840 can be controlled to guide the traffic flow on the roadside 810, and each of isolation strips 820, 830, 840 includes a plurality of luminous elements arranged near or on surface of the roadway 810.
  • the isolation strip 820 has a plurality of luminous elements 821
  • the isolation strip 830 has a plurality of luminous elements 831
  • isolation strip 840 has a plurality of luminous elements 841.
  • the luminous elements 821, 831 and 841 may be implemented by or include light-emitting diodes (LEDs) whose modes can be controlled automatically.
  • the luminous elements 821, 831 and 841 may be protected and covered by reflection protection means (not shown) .
  • the reflection protection means may be light covers or coatings, but other types of reflection protection means may be also possible.
  • the traffic control system 800 further includes a controller (not shown) that is configured to control modes of the plurality of luminous elements 821, 831 and 841 based on traffic (for example real time traffic information) of the roadway 810, thereby controlling the status of the isolation strips 820, 830 and 840.
  • a controller not shown
  • luminous elements 831 are turned on while luminous elements 821 and 841 are turned off, and thus the roadway 810 is divided equally by the isolation strip 830, and lanes 850 and 855 at the roadside 810-1 has a different travel direction with lanes 860 and 865 at the roadside 810-2.
  • FIG. 9 illustrates a front view of the traffic control system 800 where light-based isolation strips 820, 830 and 840 have been controlled according to embodiments of the present disclosure.
  • the controller may turn on luminous elements 821 and turn off luminous elements 831 and 841.
  • the isolation strip 820 will be used as the isolation strip of the roadway 810 to replace the isolation strip 830, as shown in FIG. 9, and the lane 855 in one direction turns into a lane 855’in another direction.
  • the lanes at the roadside 810-2 are increased while the lanes at the roadside 810-1 are decreased, and thus the high traffic issue at the roadside 810-2 can be relieved.
  • the roadway 810 may be the transportation system 110 for low-speed vehicles with reference to FIG. 1, and the transportation system 110 may further include two roadside barriers (not shown) at the roadsides 810-1 and 810-2 for protecting users in the transportation system 110.
  • FIG. 10 illustrates a front view of a traffic control system 800 including an interaction device 880 according to embodiments of the present disclosure.
  • an interaction device 880 arranged on the roadway 810, such as an interaction screen with LED elements.
  • the interaction device 880 may interact with a user (such as a cyclist) who cycles the bicycle 120-1. For example, if the user enters into the area of the roadway 810 or the interaction device 880, the interaction device 880 may present a welcome message (such as a dynamic light pattern) to the user.
  • a welcome message such as a dynamic light pattern
  • the interaction device 880 may change the light pattern based on the pressure of the user on the roadway, the interaction device 880 may change the rhythm based on a movement speed of the user, and the interaction device 880 may change the light color based on surrounding environment of the roadway, for example, cool light in hot night and warm light in cold night. Accordingly, the cycling experience may be enhanced through the interactions between the users and transportation system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

Systems (200, 800) for dynamic traffic control, comprising: a moveable median barrier (280) that can be moved automatically based on the traffic of the roadway (210) is arranged on or above the roadway (210), or a plurality of light-based isolation strips (820, 830, 840) whose modes can be controlled automatically based on the traffic of the roadway (810) are arranged on the roadway (810). In this way, the traffic of the roadway (210, 810) can be controlled dynamically by use of the moveable median barrier (280) or the light-based isolation strips (820, 830, 840).

Description

DYNAMIC TRAFFIC CONTROL FIELD
Embodiments of present disclosure generally relate to the field of transportation, and more particularly to a system for dynamic traffic control.
BACKGROUND
A two-way road is a roadway that allows vehicles to travel in two directions. On most two-way roads, especially main roads, an isolation strip is arranged in the middle of the roadway to distinguish different travel directions. For example, the isolation strip may be simply implemented as an isolation line painted on the middle of the roadway to remind users of vehicles to stay on their side of the roadway. For another example, the isolation strip may be implemented as a median barrier that physically separates the roadway, and vehicles can only stay on their side of the roadway due to the median barrier.
Generally, the isolation strip is fixed on a roadway. For example, the isolation line is painted on the roadway, and if a new isolation line needs to replace the painted isolation line, the painted isolation line should be erased and the new isolation line should be painted on the road, which will cost a lot of time and resources. Accordingly, the isolation strips are generally not moveable or adjustable. Even if the isolation strips are moved, it will take a long time and need a lot of manual operations, and thus the moving efficiency is very low.
SUMMARY
Embodiments of the present disclosure provide systems for dynamic traffic control. According to embodiments of the present disclosure, a moveable median barrier that is moved automatically based on the traffic of the roadway is arranged on or above the roadway, or a plurality of light-based isolation strips whose modes may be controlled automatically based on the traffic of the roadway are arranged on the roadway. In this way, the traffic of the roadway can be controlled dynamically by use of the moveable median barrier or the light-based isolation strips.
In a first aspect, there is provided a system for traffic control. The traffic control  system comprises tracks for a roadway and a movable median barrier equipped with moving mechanism that is movable along the tracks to move the median barrier. The traffic control system further comprises a controller configured to, based on traffic of the roadway, control movements of the moving mechanism along the tracks to move the moveable median barrier 280 to change lanes of the roadway.
According to embodiments of the present disclosure, the traffic of the roadway can be controlled dynamically by use of the moveable median barrier, and the movement of the moveable median barrier is enabled automatically to relieve the tidal phenomenon of traffic, without any manual operations or any specifically-designed barrier transfer machine (BTM) , and thus the traffic control efficiency can be enhanced.
In some embodiments, the moving mechanism includes wheels, and at least one of the tracks includes magnetic elements, and the controller is further configured to control magnetism of the magnetic elements to apply magnetic traction to the wheels. By use of the magnetic elements for implementing magnetic traction, the movement of the moveable median barrier can be controlled automatically, and the cost for relieving the tidal phenomenon of traffic may be low.
In some embodiments, the controller is further configured to, in response to determining that traffic in a direction (X) of the roadway exceeds a threshold, cause the moveable median barrier 280 to move to increase the number or width of lanes in the direction (X) . Accordingly, the movable median barrier can be controlled based on the real time traffic of the roadway, thereby improving the dynamic and intelligent degree of the traffic control system.
In some embodiments, the moving mechanism is arranged under posts of the movable median barrier, thereby strengthening the structure of the traffic control system.
In some embodiments, a unit for the movement of the movable median barrier is a half width of a lane, thereby enabling the movable median barrier to have multiple isolation statuses.
In some embodiments, the traffic control system further comprises a locking mechanism operable to receive a signal from the controller and to, in response to the received signal, lock the moving mechanism to prevent the movable median barrier moving. Since the locking mechanism can be locked and unlocked by the controller, the moveable  median barrier can be prevented from moving during the time that the movable median barrier is not moved.
In some embodiments, the tracks and the moveable median barrier may be arranged on or above the roadway.
In some embodiments, the roadway is a transportation system for low-speed vehicles, and the transpiration system further comprises two roadside barriers for protecting users in the transportation system. Accordingly, the traffic control system may be dedicated to the low-speed transportation system in order to relieve the tidal phenomenon of traffic for low-speed vehicles.
In a second aspect, there is provided a system for traffic control. The traffic control system comprises isolation strips arranged along lanes on a roadway, each of the isolation strips includes a plurality of luminous elements arranged near or on surface of the roadway. The traffic control system further comprises a controller configured to, based on traffic of the roadway, control modes of the plurality of luminous elements to control status of the isolation strips.
With such a system, the traffic of the roadway can be controlled dynamically by use of the light-based isolation strips, and the control of the light-based isolation strips is controlled automatically to relieve the tidal phenomenon of traffic without any manual operations, and thus the traffic control efficiency can be enhanced.
In some embodiments, the controller is configured to, in response to determining that traffic in a direction (X) of the roadway exceeds a threshold, turn off the luminous elements of at least one of the isolation strips to increase the number or width of lanes in the direction (X) . Accordingly, the light-based isolation strips can be controlled based on the real time traffic of the roadway, thereby improving the dynamic and intelligent degree of the traffic control system.
In some embodiments, the luminous elements include light-emitting diodes (LEDs) , thereby reducing power consummation and extending life span.
In some embodiments, the luminous elements are covered by reflection protection means, such as light covers. By use of the reflection protection means, the light of the luminous elements can be recognized more easily in the daytime, even with the strong sunlight.
In some embodiments, the roadway is a transportation system for low-speed vehicles, and the transpiration system further comprises two roadside barriers for protecting users in the transportation system. Accordingly, the traffic control system may be dedicated to the low-speed transportation system in order to relieve the tidal phenomenon of traffic for low-speed vehicles.
In some embodiments, the traffic control system further comprises an interaction device configured to interact with a user based on at least one of: entrance of a user to the roadway, pressure of the user on the roadway, a movement speed of the user, and surrounding environment of the roadway. Accordingly, the cycling experience may be enhanced through the interactions between the users and transportation system.
In a third aspect, there is provided a transportation system for low-speed vehicles. The transportation system includes the any of the traffic control system as described above.
It is to be understood that the Summary is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the description below.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objectives, features and advantages of the present disclosure will become more apparent through more detailed depiction of example embodiments of the present disclosure in conjunction with the accompanying drawings, and in example embodiments of the present disclosure, same reference numerals usually represent same components.
FIG. 1 illustrates a schematic diagram of an urban area in which a transportation system in accordance with embodiment of the present disclosure can be implemented;
FIG. 2 illustrates a schematic diagram of a traffic control system including a moveable median barrier according to embodiments of the present disclosure;
FIG. 3 illustrates a schematic diagram of the traffic control system where the moveable median barrier has been moved according to embodiments of the present disclosure;
FIG. 4 illustrates a top view of the traffic control system including the moveable median barrier according to embodiments of the present disclosure;
FIG. 5 illustrates a top view of the traffic control system where the moveable median barrier has been moved according to embodiments of the present disclosure;
FIG. 6 illustrates a front view of the traffic control system including the moveable median barrier according to embodiments of the present disclosure;
FIG. 7 illustrates a side view of the traffic control system including the moveable median barrier according to embodiments of the present disclosure;
FIG. 8 illustrates a front view of a traffic control system including light-based isolation strips according to embodiments of the present disclosure;
FIG. 9 illustrates a front view of the traffic control system where the light-based isolation strips has been controlled according to embodiments of the present disclosure; and
FIG. 10 illustrates a front view of the traffic control system including an interaction device according to embodiments of the present disclosure.
DETAILED DESCRIPTION
The present disclosure will now be discussed with reference to several example embodiments. It is to be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the subject matter.
As used herein, the term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise. The term “moving mechanism” is to be read as various types of moving mechanisms that may be controlled mechanically, electronically or magnetically, including but not limited to a wheel, a roller, a cartwheel, a slider, a slide bearing,  multi-joint link means and so on.
Traditionally, the isolation strips are generally not moveable, so they cannot relieve the tidal phenomenon of traffic where one side of the roadway has a high traffic while the other side of the roadway has a low traffic. One improvement is to use a customized barrier transfer machine (BTM) to reposition the isolation strip. However, it will take a long time and need manual operations to change the isolation strips, and thus the traffic control efficiency is very low.
Embodiments of the present disclosure provide systems for dynamic traffic control. According to embodiments of the present disclosure, a moveable median barrier that is moved automatically based on the traffic of the roadway is arranged on or above the roadway, or a plurality of light-based isolation strips whose modes may be controlled automatically based on the traffic of the roadway are arranged on the roadway. In this way, the traffic of the roadway can be controlled dynamically by use of the moveable median barrier or the light-based isolation strips. Some example embodiments of the present disclosure are described below with respect to FIGS. 1-10.
FIG. 1 illustrates a schematic diagram of an urban area 100 in which a transportation system 110 in accordance with embodiments of the present disclosure can be implemented. In the context of the present disclosure, the transportation system 110 may be also referred to as “Skyway” .
The transportation system 110 includes one or more pathways for various vehicles to travel thereon. In some embodiments, the transportation system 110 may further include one or more accessories such an enclosure for protecting the pathway (s) from the outside, one or more sensors, one or more controllers, or the like. It is to be understood that the phrase “transportation system” as used herein does not include the vehicles traveling on the one or more pathways.
Only by way of example, the vehicles traveling in the transportation system may include, but are not limited to, low-speed vehicles, for example. The low-speed vehicles may have a maximum design speed of, for example, 30-50 km/h, depending on the safety and/or capacity requirements of the transportation system 110. The low-speed vehicles may be designed exclusively for the transportation system 110. Alternatively, or in addition, general low-speed vehicles may be allowed.
Examples of such low-speed vehicles may include, but are not limited to, bicycles 120-1, electric bicycles 120-2, motorcycles 120-3, and/or the like. Such vehicles may be collectively or individually referred to as low-speed vehicles 120. The transportation system 110 may be separated from roads or pathways for high-speed vehicles, such as cars, buses, trucks, and the like, with the maximum design speed above 50 km/h, for example.
The low-speed vehicles 120 generally occupy less space than the high-speed vehicles. Therefore, the transportation system 110 can be built in a flexible manner in the urban area 100, for example, to provide more convenience for daily commute and/or to relieve traffic congestion in a city.
Some low-speed vehicles 120 are not equipped with shelters or enclosures to shield from extreme environmental conditions such as rainfall, haze, noise, and so on. To alleviate this problem, at least a part of the transportation system 110 may be constructed as a semi-enclosed or fully-enclosed space, for example, by sidewalls and/or a roof across sides of the transportation system 110. The sidewalls and/or the roof of the transportation system 110 may be designed in any suitable shape to provide aesthetic effect or be adapted to different structures above or below the ground.
It is to be understood that although some embodiments of the transportation system 110 has been and will be described with reference to low-speed vehicles 120, this is merely for illustration without suggesting any limitation as to the scope of the present disclosure. In addition to or instead of the low-speed vehicles, in some embodiments, the transportation system 110 can support vehicles of any suitable design speed.
Moreover, the transportation system 110 can support a variety of types of vehicles, including, but not limited to, two-wheeled vehicles, three-wheeled vehicles, single-lane vehicles, vehicles without bodywork, and vehicles without a seat, for example, footboards with steering handle (also known as scooters) or without steering handle. For example, the transportation system 110 may only allow two-wheeled vehicles, for example, bicycles 120-1 and electric bicycles 120-2. In this case, the transportation system 110 may not have a speed limit for the two-wheeled vehicles.
The transportation system 110 may be constructed overhead, on the ground, and/or under the ground. In some embodiments, the transportation system 110 may extend through one or more obstacles such as building (s) . A number of entrances 112-1, 112-3 and exits 112-2, 112-4 may be provided along the transportation system 110 to allow  drivers and their vehicles to enter and exit from the transportation system 110 in the middle of their driving. In some embodiments, the transportation system 110 may have one or more lanes.
In some embodiments, the transportation system 110 may be an elevated transportation system that extends through residential areas, commercial districts, and/or office districts. By way of example, the transportation system 110 may tunnel through buildings such as a shopping mall, so that the drivers can order and pick up food, drink, and any other goods provided in the shopping mall. The transportation system 110 may also include a bridge over a river or road to be compatible with an existing road network of the city.
It is to be understood that the construction and layout of the urban area 100 and the transportation system 110 are described above for the purpose of illustration only, without suggesting any limitations as to the scope of the present disclosure. The present disclosure can be implemented with a different construction and/or arrangement. Alternatively, or in addition, the transportation system 110 can be implemented in a rural area.
It is to be understood that although the transportation system 110 is descried herein, the systems for dynamic traffic control described below according to embodiments of the present disclosure are not limited to the low-speed vehicles in transportation system 110.
FIG. 2 illustrates a schematic diagram of a traffic control system 200 including a moveable median barrier 280 according to embodiments of the present disclosure. As shown, the traffic control system 200 includes a plurality of  tracks  220, 230, 240, 250, 260 and 270 arranged on a roadway 210. The roadway 210 includes roadsides 210-1 and 210-2 and includes  lanes  290 and 295 in two directions. For convenience of description, the roadway 210 may be described below as transportation system 110 for low-speed vehicles with reference to FIG. 1, but other transportation environments may be also possible. In some embodiments, the  tracks  220, 230, 240, 250, 260 and 270 are arranged separately, and they may be substantially parallel with each other. The traffic control system 200 further includes a moveable median barrier 280 (such as a fence) . For example, the moveable median barrier 280 may be composed of several detachable barriers. In some embodiments, the  tracks  220, 230, 240, 250, 260 and 270 may be arranged substantially perpendicular to the moveable median barrier 280.
The moveable median barrier 280 has a moving mechanism (s) 215. In this example, the moving mechanism 215 includes a plurality of  wheels  225, 235, 245, 255, 265 and 275 at the bottom of the moveable median barrier 280. The  wheels  225, 235, 245, 255, 265 and 275 are moveable along the  tracks  220, 230, 240, 250, 260 and 270 in order to move the moveable median barrier 280. In some embodiments, the traffic control system 200 may include a plurality of  posts  228, 238, 248, 258, 268 and 278 under which the  wheels  225, 235, 245, 255, 265 and 275 may be arranged. Optionally, as shown in FIG. 2, each post may have one wheel at its bottom. Alternatively, each post may have a plurality of wheels side by side.
The traffic control system 200 further includes a controller (not shown) that is configured to control movements of the  wheels  225, 235, 245, 255, 265 and 275 along the  tracks  220, 230, 240, 250, 260 and 270 based on traffic (for example, the real time traffic information) of the roadway 210, thereby automatically moving the median barrier 280 to change  lanes  290, 295 of the roadway 210. It is to be understood that the controller may be arranged near or within the roadway 210, or may be arranged remotely.
It is to be understood that although the  wheels  225, 235, 245, 255, 265 and 275 are only examples of the mechanisms for moving the moveable median barrier. In addition to or instead of the wheels, in some embodiments, other types of moving mechanisms can be used, including, but not limited to, one or more rollers, one or more cartwheels, one or more sliders, one or more slide bearings, multi-joint link means and so on.
In addition, although the  tracks  220, 230, 240, 250, 260 and 270 and the moveable median barrier 280 are shown to be arranged on the roadway 210, at least some of them may be arranged above the roadway 210. For example, the moveable median barrier 280 may be installed on the roof of the transportation system 110 and/or any other components hanging above the roadway.
FIG. 3 illustrates a schematic diagram of the traffic control system 200 where the moveable median barrier 280 has been moved according to embodiments of the present disclosure. In the shown example, if the traffic in the lane (s) 295 is relatively high, for example, the traffic in the direction (X) of lane (s) 295 exceeds a predefined threshold, the  wheels  225, 235, 245, 255, 265 and 275 are controlled by the controller to move along the  tracks  220, 230, 240, 250, 260 and 270 such that the moveable median barrier 280 is moved away from the roadside 210-2. In this way, the lane (s) 295 will have a greater number of  lanes or broader than that of the lane (s) 290, as shown in FIG. 3, and the high traffic issue in lane (s) 295 can be relieved. This is helpful for the roadways with tidal phenomenon of traffic.
FIG. 4 illustrates a top view of the traffic control system 200 including the moveable median barrier 280 according to embodiments of the present disclosure. At a time point, the roadway 210 is divided equally by the moveable median barrier 280, and  lanes  401 and 402 at the roadside 210-1 has a different travel direction with  lanes  403 and 404 at the roadside 210-2. If the controller receives a signal indicating that the traffic of  lanes  403 and 404 is significantly greater than that of  lanes  401 and 402, or that the traffic of  lanes  403 and 404 is greater than the predetermined threshold (such as 1100 pcu/h which means passenger car unit every hour) , the controller will control the moveable median barrier 280 to move away from the roadside 210-2.
After the moveable median barrier 280 has been moved, as shown in FIG. 5 which illustrates a top view of the traffic control system 200, the lane 402 in one direction turns into a lane 402’in the different direction. In this way, the lanes at the roadside 210-2 are increased while the lanes at the roadside 210-1 are decreased, and thus the high traffic issue at the roadside 210-2 can be relieved.
FIG. 6 illustrates a front view of the traffic control system 200 including the moveable median barrier according to embodiments of the present disclosure. The track 220 has a plurality of  magnetic elements  601, 602, 603, 604 and 605, and the magnetism of  magnetic elements  601, 602, 603, 604 and 605 may be controlled by the controller such that the wheel 225 may be moved along the track 220 by means of magnetic traction. The  wheels  225, 235, 245, 255, 265 and 275 may be composed of some magnetic metal materials, such as Fe-based material. In some embodiments, if the magnetism is applied to the magnetic element 601 while no magnetism is applied to the  magnetic elements  602, 603, 604 or 605, the wheel 225 may move toward the magnetic element 601.
In some embodiments, the five  magnetic elements  601, 602, 603, 604 and 605 may represent five statues of the track 220, such as the middle, 0.4m left from the middle, 0.4m right from the middle, 0.8m left from the middle, and 0.8m right from the middle. It is to be understood that the values of 0.4m and 0.8m are exemplary examples, other values may be also possible. Five statues can make enable the moveable median barrier 280 to move smoothly and do not influence the traffic flow.
It is to be understood that although magnetic traction is described as a way of moving the moveable median barrier, other tractions that can enable the moveable median barrier to move may be also possible, such as mechanical traction, electric traction and so on.
FIG. 7 illustrates a side view of the traffic control system 200 including the moveable median barrier according to embodiments of the present disclosure. In this embodiment, the  posts  228, 238, 248, 258, 268 and 278 may be arranged substantially parallel with each other. Specifically, the traffic control system 200 may include a locking mechanism 226 for the wheel 225, for the sake of brevity, the locking mechanisms for  wheels  235, 245, 255, 265 and 275 are not shown, collectively referred to as the locking mechanism 226. Upon receipt of control signal from the controller, the locking mechanism 226 may lock the  wheels  225, 235, 245, 255, 265 and 275 accordingly in order to prevent the moveable median barrier 280 moving. For example, under normal condition, the  wheels  225, 235, 245, 255, 265 and 275 are locked, if the controller needs to move to the moveable median barrier 280, it sends an unlocking signal to the locking mechanism 226 first. After the moveable median barrier 280 has been moved, the controller sends a locking signal to the locking mechanism 226 to lock the  wheels  225, 235, 245, 255, 265 and 275.
In some embodiments, the roadway 210 may be the transportation system 110 for low-speed vehicles with reference to FIG. 1, as described above, and the transportation system 110 may further include two roadside barriers (not shown) at the roadsides 210-1 and 210-2 for protecting users in the transportation system 110.
FIG. 8 illustrates a front view of a traffic control system 800 including light-based isolation strips 820, 830 and 840 according to embodiments of the present disclosure. The traffic control system 800 includes a plurality of isolation strips 820, 830, 840 arranged along  lanes  850, 855, 860 and 865 on a roadway 810, and the roadway 810 includes roadsides 810-1 and 810-2. For convenience of description, the roadway 810 may be described below as transportation system 110 for low-speed vehicles with reference to FIG. 1, but other transportation environments may be also possible.  Lanes  850 and 855 at the roadside 810-1 are in different direction with  lanes  860 and 865 at the roadside 810-2.
According to embodiments of the present disclosure, the status of isolation strips 820, 830, 840 can be controlled to guide the traffic flow on the roadside 810, and each of  isolation strips 820, 830, 840 includes a plurality of luminous elements arranged near or on surface of the roadway 810. As shown, the isolation strip 820 has a plurality of luminous elements 821, the isolation strip 830 has a plurality of luminous elements 831, and isolation strip 840 has a plurality of luminous elements 841. The  luminous elements  821, 831 and 841 may be implemented by or include light-emitting diodes (LEDs) whose modes can be controlled automatically. To enable the  luminous elements  821, 831 and 841 to be recognized more easily by the users in the daytime, in some embodiments, the  luminous elements  821, 831, 841 may be protected and covered by reflection protection means (not shown) . For example, the reflection protection means may be light covers or coatings, but other types of reflection protection means may be also possible.
The traffic control system 800 further includes a controller (not shown) that is configured to control modes of the plurality of  luminous elements  821, 831 and 841 based on traffic (for example real time traffic information) of the roadway 810, thereby controlling the status of the isolation strips 820, 830 and 840. As shown in FIG. 8, under normal condition, luminous elements 831 are turned on while  luminous elements  821 and 841 are turned off, and thus the roadway 810 is divided equally by the isolation strip 830, and  lanes  850 and 855 at the roadside 810-1 has a different travel direction with  lanes  860 and 865 at the roadside 810-2.
FIG. 9 illustrates a front view of the traffic control system 800 where light-based isolation strips 820, 830 and 840 have been controlled according to embodiments of the present disclosure. If the controller receives a signal indicating that the traffic of  lanes  860 and 865 is significantly greater than that of lanes 850 and 555, or that the traffic of  lanes  860 and 865 is greater than the predetermined threshold (such as 1100 pcu/h) , the controller may turn on luminous elements 821 and turn off  luminous elements  831 and 841. At this time, the isolation strip 820 will be used as the isolation strip of the roadway 810 to replace the isolation strip 830, as shown in FIG. 9, and the lane 855 in one direction turns into a lane 855’in another direction. In this way, the lanes at the roadside 810-2 are increased while the lanes at the roadside 810-1 are decreased, and thus the high traffic issue at the roadside 810-2 can be relieved.
In some embodiments, the roadway 810 may be the transportation system 110 for low-speed vehicles with reference to FIG. 1, and the transportation system 110 may further include two roadside barriers (not shown) at the roadsides 810-1 and 810-2 for protecting  users in the transportation system 110.
FIG. 10 illustrates a front view of a traffic control system 800 including an interaction device 880 according to embodiments of the present disclosure. As shown in FIG. 10, there is an interaction device 880 arranged on the roadway 810, such as an interaction screen with LED elements. The interaction device 880 may interact with a user (such as a cyclist) who cycles the bicycle 120-1. For example, ifthe user enters into the area of the roadway 810 or the interaction device 880, the interaction device 880 may present a welcome message (such as a dynamic light pattern) to the user. In some embodiments, the interaction device 880 may change the light pattern based on the pressure of the user on the roadway, the interaction device 880 may change the rhythm based on a movement speed of the user, and the interaction device 880 may change the light color based on surrounding environment of the roadway, for example, cool light in hot night and warm light in cold night. Accordingly, the cycling experience may be enhanced through the interactions between the users and transportation system.
Although the present disclosure has been described with languages specific to structural characteristics and/or method logic actions, it should be appreciated that the subject matter defined by the attached claims is not limited to the above described particular characteristics and actions. Conversely, the above described particular characteristics and actions are only example forms for realizing the claims.

Claims (15)

  1. A system (200) for traffic control comprising:
    tracks (220, 230, 240, 250, 260, 270) for a roadway (210) ;
    a movable median barrier (280) equipped with moving mechanism (215) that is movable along the tracks (220, 230, 240, 250, 260, 270) to move the median barrier (280) ; and
    a controller configured to, based on traffic of the roadway (210) , control movements of the moving mechanism (215) along the tracks (220, 230, 240, 250, 260, 270) to move the moveable median barrier (280) to change lanes (290, 295, 401, 402, 403, 404) of the roadway (210) .
  2. The system (200) of claim 1, wherein the moving mechanism (215) includes wheels (225, 235, 245, 255, 265, 275) , and at least one of the tracks (220, 230, 240, 250, 260, 270) includes magnetic elements (601, 602, 603, 604, 605) , and the controller is further configured to control magnetism of the magnetic elements (601, 602, 603, 604, 605) to apply magnetic traction to the wheels (225, 235, 245, 255, 265, 275) .
  3. The system (200) of claim 1, wherein the controller is further configured to, in response to determining that traffic in a direction (X) of the roadway (210) exceeds a threshold, cause the movable median barrier (280) to move to increase the number or width of lanes (290, 295, 401, 402, 403, 404) in the direction (X) .
  4. The system (200) of claim 1, wherein the moving mechanism (215) is arranged under posts (228, 238, 248, 258, 268, 278) of the movable median barrier (280) .
  5. The system (200) of claim 1, wherein a unit for the movement of the movable median barrier (280) is a half width of a lane (290, 295, 401, 402, 403, 404) .
  6. The system (200) of claim 1, further comprising:
    a locking mechanism (226) operable to receive a signal from the controller and to, in response to the received signal, lock the moving mechanism (215) to prevent the moveable median barrier (280) moving.
  7. The system (200) of claim 1, wherein the tracks (220, 230, 240, 250, 260, 270) and the movable median barrier (280) are arranged on or above the roadway (210) .
  8. The system (200) of claim 1, wherein the roadway (210) is a transportation system (110) for low-speed vehicles, and the transportation system (110) further comprises two roadside barriers for protecting users in the transportation system (110) .
  9. A system (800) for traffic control comprising:
    isolation strips (820, 830, 840) arranged along lanes (850, 855, 860, 865) on a roadway (810) , each of the isolation strips (820, 830, 840) including a plurality of luminous elements (821, 831, 841) arranged near or on surface of the roadway (810) ; and
    a controller configured to, based on traffic of the roadway (810) , control modes of the plurality of luminous elements (821, 831, 841) to control status of the isolation strips (820, 830, 840) .
  10. The system (800) of claim 9, wherein the controller is configured to, in response to determining that traffic in a direction (X) of the roadway (810) exceeds a threshold, turn off the luminous elements (821, 831, 841) of at least one of the isolation strips (820, 830, 840) to increase the number or width of lanes (850, 855, 860, 865) in the direction (X) .
  11. The system (800) of claim 9, wherein the luminous elements (821, 831, 841) include light-emitting diodes (LEDs) .
  12. The system (800) of claim 11, wherein the luminous elements (821, 831, 841) are covered by reflection protection means.
  13. The system (800) of claim 9, wherein the roadway (810) is a transportation system (110) for low-speed vehicles, and transportation system (110) further comprises two roadside barriers for protecting users in the transportation system (110) .
  14. The system (800) of claim 13, further comprising:
    an interaction device (880) configured to interact with a user based on at least one of: entrance of a user to the roadway (810) , pressure of the user on the roadway (810) , a movement speed of the user, and surrounding environment of the roadway (810) .
  15. A transportation system (110) for low-speed vehicles, comprising the system (200) of any of claims 1-8 and/or the system (800) of any of claims 9-14.
PCT/CN2017/110734 2017-11-13 2017-11-13 Dynamic traffic control WO2019090785A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/110734 WO2019090785A1 (en) 2017-11-13 2017-11-13 Dynamic traffic control
CN201780095980.XA CN111212947A (en) 2017-11-13 2017-11-13 Dynamic traffic control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110734 WO2019090785A1 (en) 2017-11-13 2017-11-13 Dynamic traffic control

Publications (1)

Publication Number Publication Date
WO2019090785A1 true WO2019090785A1 (en) 2019-05-16

Family

ID=66438141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110734 WO2019090785A1 (en) 2017-11-13 2017-11-13 Dynamic traffic control

Country Status (2)

Country Link
CN (1) CN111212947A (en)
WO (1) WO2019090785A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111021286A (en) * 2019-12-19 2020-04-17 荆门欧曼凯机电设备有限公司 Illumination method of intelligent road illumination isolation belt
CN114086490A (en) * 2020-11-30 2022-02-25 广东禅农科技股份有限公司 Movable intelligent expressway lane borrowing barrier system
CN114360262A (en) * 2021-12-30 2022-04-15 武汉理工大学 Dynamically adjustable lane borrowing left-turn control system and method
US11403940B2 (en) 2020-01-07 2022-08-02 Toyota Motor Engineering & Manufacturing North America, Inc. Methods and systems for installing a structure using moveable objects
US11748781B1 (en) 2022-05-23 2023-09-05 Toyota Motor Engineering & Manufacturing North America, Inc. Methods, systems, and vehicles for route modification and displaying contents

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182667B (en) * 2021-11-17 2023-02-07 安庆师范大学 Intelligent water horse for tidal lane and operation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050102872A1 (en) * 2003-11-19 2005-05-19 Marc-Andre Seguin Traffic-signalling system
CN201250393Y (en) * 2008-07-21 2009-06-03 上海市杨浦区齐齐哈尔路第一小学 Mobile median strip
CN201610535U (en) * 2009-07-30 2010-10-20 河海大学 Movable type guardrail
CN105070068A (en) * 2015-08-20 2015-11-18 山东交通学院 Device for marking tidal lane lines and working method of device
CN105632199A (en) * 2016-03-15 2016-06-01 西南交通大学 A self-adaptive tidal lane and crossing transition system based on LED traffic signs and a control method
CN206292974U (en) * 2016-12-26 2017-06-30 上海工程技术大学 A kind of tide Lane use control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20060009A1 (en) * 2006-01-04 2007-07-05 A & T Europ Spa DRIVING SYSTEM OF SWIMMING POOL WALLS
CN102852102B (en) * 2012-10-08 2014-12-24 石家庄优创科技股份有限公司 Intelligentized traffic isolation system
CN103036482A (en) * 2012-12-07 2013-04-10 葛昂 High-efficient electromagnetic drive system
CN203284751U (en) * 2013-03-26 2013-11-13 北京物资学院 Automatic moving road block device
CN205875052U (en) * 2016-07-21 2017-01-11 苏州蓝远信息科技有限公司 Highway isolation barrier device that shifts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050102872A1 (en) * 2003-11-19 2005-05-19 Marc-Andre Seguin Traffic-signalling system
CN201250393Y (en) * 2008-07-21 2009-06-03 上海市杨浦区齐齐哈尔路第一小学 Mobile median strip
CN201610535U (en) * 2009-07-30 2010-10-20 河海大学 Movable type guardrail
CN105070068A (en) * 2015-08-20 2015-11-18 山东交通学院 Device for marking tidal lane lines and working method of device
CN105632199A (en) * 2016-03-15 2016-06-01 西南交通大学 A self-adaptive tidal lane and crossing transition system based on LED traffic signs and a control method
CN206292974U (en) * 2016-12-26 2017-06-30 上海工程技术大学 A kind of tide Lane use control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111021286A (en) * 2019-12-19 2020-04-17 荆门欧曼凯机电设备有限公司 Illumination method of intelligent road illumination isolation belt
US11403940B2 (en) 2020-01-07 2022-08-02 Toyota Motor Engineering & Manufacturing North America, Inc. Methods and systems for installing a structure using moveable objects
CN114086490A (en) * 2020-11-30 2022-02-25 广东禅农科技股份有限公司 Movable intelligent expressway lane borrowing barrier system
CN114360262A (en) * 2021-12-30 2022-04-15 武汉理工大学 Dynamically adjustable lane borrowing left-turn control system and method
US11748781B1 (en) 2022-05-23 2023-09-05 Toyota Motor Engineering & Manufacturing North America, Inc. Methods, systems, and vehicles for route modification and displaying contents

Also Published As

Publication number Publication date
CN111212947A (en) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2019090785A1 (en) Dynamic traffic control
CN104929004B (en) Arterial highway and local road access port traffic dispersion system
CN202090252U (en) Road structure for relieving urban traffic jam
CN1122132C (en) Waiting and boarding-disembarking station for urban public transport
US20020076276A1 (en) Butzek-troemel roundabout or "spiralabout"
CN106192642A (en) A kind of multi-functional cross overpass
WO2018072293A1 (en) Smart green highway system
CN110158510A (en) A kind of pedestrains safety crossing facilities and control method
CN100383340C (en) One-way gallop bridge
KR101441661B1 (en) Flow underground facility without a lane reduction in the surface road
KR20100021686A (en) Bicycle expressway
CN203321008U (en) Stereo garage at crossroad
Tiwari Pedestrian infrastructure in the city transport system: a case study of Delhi Geetam Tiwari
CN108978384A (en) A kind of ground straight trip viaduct
CN205259677U (en) Lift guardrail suitable for stereo garage
CN211112965U (en) Three-dimensional traffic bridge
CN205775678U (en) A kind of multi-functional cross overpass
CN203866661U (en) Flyover
CN102194314A (en) Method and road facilities for maximizing traffic flow
CN209324085U (en) Overhead parking field
CN103088733B (en) Anti-congestion three-dimensional traffic system
CN205711811U (en) Intelligence municipal administration deceleration strip
CN105600663A (en) Automatic pedestrian transportation system
CN206887663U (en) Electric car, bicycle and pedestrian are layered designated lane
CN204982578U (en) Crossroad does not have red light individual layer overpass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931088

Country of ref document: EP

Kind code of ref document: A1