WO2019090745A1 - Harq编号确定方法、网络设备、终端和计算机存储介质 - Google Patents

Harq编号确定方法、网络设备、终端和计算机存储介质 Download PDF

Info

Publication number
WO2019090745A1
WO2019090745A1 PCT/CN2017/110583 CN2017110583W WO2019090745A1 WO 2019090745 A1 WO2019090745 A1 WO 2019090745A1 CN 2017110583 W CN2017110583 W CN 2017110583W WO 2019090745 A1 WO2019090745 A1 WO 2019090745A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain resource
harq
offset
current
Prior art date
Application number
PCT/CN2017/110583
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201780094191.4A priority Critical patent/CN111108710A/zh
Priority to KR1020207012834A priority patent/KR20200086667A/ko
Priority to PCT/CN2017/110583 priority patent/WO2019090745A1/zh
Priority to JP2020524815A priority patent/JP7113079B6/ja
Priority to EP17931254.1A priority patent/EP3697008B1/en
Priority to PCT/CN2018/114444 priority patent/WO2019091414A1/zh
Priority to CN202010331515.5A priority patent/CN111510260B/zh
Priority to CN201880054713.2A priority patent/CN111183603A/zh
Priority to EP18875124.2A priority patent/EP3700116B1/en
Priority to TW107139963A priority patent/TWI785143B/zh
Publication of WO2019090745A1 publication Critical patent/WO2019090745A1/zh
Priority to US16/869,437 priority patent/US10892856B2/en
Priority to US16/869,485 priority patent/US11223451B2/en
Priority to US17/454,143 priority patent/US11689322B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1628List acknowledgements, i.e. the acknowledgement message consisting of a list of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to a wireless communication technology, and in particular, to a hybrid automatic repeat request (HARQ, Radio Resource Control) number determination method, a network device, a terminal, and a computer storage medium.
  • HARQ Hybrid automatic repeat request
  • Radio Resource Control Radio Resource Control
  • the current 5G system introduces Ultra-Reliable Low Latency Communication (URLLC), which is characterized by ultra-high reliability (for example, 19.99) in extreme delays (for example, 1 ms) (for example, 99.999) %) transmission.
  • URLLC Ultra-Reliable Low Latency Communication
  • Grant free adopts the pre-configured and semi-persistent resource configuration mode, and the terminal can transmit on the configured resources according to service requirements. This technology avoids the process of resource request (SR, Schedule Request) and buffer status report (BSR, Buffer Status Report), and increases the effective transmission time of the terminal.
  • HARQ is generally implemented in a "stop-and-wait" manner.
  • the process temporarily suspends transmission before waiting for ACK/NACK feedback. After receiving feedback/scheduling signaling, it selects to send new data or retransmit old data according to the feedback result/scheduling information.
  • HARQ adopts multiple processes. That is, while a process is waiting for feedback/scheduling, other processes are transferred. In order to avoid data confusion between multiple processes, the HARQ process is represented by a HARQ number (ID).
  • ID HARQ number
  • the HARQ ID in the Long Term Evolution (LTE) system is calculated according to the Transmission Time Interval (TTI), the period, and the number of processes.
  • TTI Transmission Time Interval
  • the problem that the HARQ indication is inaccurate may occur.
  • multiple repeated calculations of the same data block (TB) result in different HARQ IDs.
  • one TB corresponds to multiple processes, which reduces the efficiency of retransmission and merges, and causes different TB errors. And the problem.
  • the embodiments of the present invention provide a HARQ number determining method, a network device, a terminal, and a computer storage medium.
  • An embodiment of the present invention provides a method for determining a HARQ number, where the method includes:
  • the network device determines a current time domain resource sequence number, a HARQ process number, and at least one of determining time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number; the time domain resource configuration information a time domain resource offset and/or a time domain resource period including a non-dynamic resource configuration;
  • the network device is based on the current transmission time domain resource sequence number, the number of HARQ processes, and the time domain resource configuration information, the HARQ number offset, and the number of transmission times of the current transmission data block. Determining the HARQ number by the at least one information, the network device determining the HARQ number based on the current transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of the HARQ processes.
  • the network device is based on the current transmission time domain resource sequence number, the number of HARQ processes, and the time domain resource configuration information, the HARQ number offset, and the number of transmission times of the current transmission data block. Determining, by the at least one information, a HARQ number, including: the network device is based on the currently transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and the HARQ The number offset determines the HARQ number.
  • the network device is based on the current transmission time domain resource sequence number, the number of HARQ processes, and the time domain resource configuration information, the HARQ number offset, and the number of transmission times of the current transmission data block. Determining a HARQ number by at least one type of information, including: the network The device determines the HARQ number based on the current transmitted time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset.
  • the network device is based on the current transmission time domain resource sequence number, the number of HARQ processes, and the time domain resource configuration information, the HARQ number offset, and the number of transmission times of the current transmission data block. Determining, by the network device, the HARQ number, the network device, based on the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, and the time domain resource period The HARQ process number and the HARQ number offset determine a HARQ number.
  • the network device is based on the currently transmitted time domain resource sequence number, the number of HARQ processes, and the time domain resource configuration information, the HARQ number offset, and the number of transmission times of the current transmission data block. Determining the HARQ number of the at least one information, including: the network device is based on the current transmission time domain resource sequence number, the current transmission data block transmission times, the time domain resource period, the HARQ process number, and the The HARQ number offset determines the HARQ number.
  • the network device is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a currently transmitted transmission number. Determining the HARQ number, the network device determining, according to the currently transmitted time domain resource sequence number, the currently transmitted transmission number, the time domain resource period, and the HARQ process number, the HARQ number.
  • the network device is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a currently transmitted transmission number. Determining the HARQ number, the network device is based on the current transmission time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, the time domain resource period, and the The number of HARQ processes is determined by the HARQ number.
  • the unit of the time domain resource offset is the same as the absolute duration of the transmission or different.
  • the unit of the time domain resource period is the same as or different from the absolute duration of the transmission.
  • the method further includes: the network device sending signaling to the terminal, where the signaling carries at least: the number of the HARQ processes, the time domain resource configuration information, and the HARQ number offset.
  • the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • the embodiment of the present invention further provides a method for determining a HARQ number, where the method includes: determining, by a terminal, a current time domain resource sequence number, a HARQ process number, and determining a time domain resource configuration information, a HARQ number offset, and a current transmission data. At least one of the number of transmissions of the block; the time domain resource configuration information includes a time domain resource offset and/or a time domain resource period;
  • the terminal Determining, by the terminal, the HARQ number based on at least one of the currently transmitted time domain resource sequence number, the HARQ process number, the time domain resource configuration information, the HARQ number offset, and the current transmission data block transmission times.
  • the method further includes: the terminal receiving signaling from the network device, and determining, according to the signaling, at least one of the following information: the number of the HARQ processes, the time domain resource configuration information, The HARQ number offset; the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • the terminal is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • An information determining a HARQ number includes: determining, by the terminal, a HARQ number based on the currently transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of the HARQ processes.
  • the terminal is based on the currently transmitted time domain resource sequence number, the number of HARQ processes, and the time domain resource configuration information, the HARQ number offset, and the current transmission. At least one of the number of transmissions of the data block determines the HARQ number, including: the terminal is based on the current transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, and the HARQ The number of processes and the HARQ number offset determine the HARQ number.
  • the terminal is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • An information determining a HARQ number includes: determining, by the terminal, a HARQ number based on the currently transmitted time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset.
  • the terminal is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • An information determining a HARQ number including: the terminal is based on the current transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, the time domain resource period, and the The HARQ process number and the HARQ number offset determine the HARQ number.
  • the terminal is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • An information determining a HARQ number including: the terminal is based on the currently transmitted time domain resource sequence number, the current transmission data block transmission number, the time domain resource period, the HARQ process number, and the HARQ number.
  • the offset determines the HARQ number.
  • the terminal is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • An information determining a HARQ number includes: determining, by the terminal, a HARQ number based on the currently transmitted time domain resource sequence number, the currently transmitted transmission number, the time domain resource period, and the HARQ process number.
  • the terminal is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • An information determining a HARQ number including: the terminal is based on the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, the time domain resource period, and the The number of HARQ processes is determined by the HARQ number.
  • the unit of the time domain resource offset is the same as or different from the absolute duration of the transmission.
  • the unit of the time domain resource period is the same as or different from the absolute duration of the transmission.
  • the embodiment of the present invention further provides a network device, where the network device includes: a first determining unit and a second determining unit;
  • the first determining unit is configured to determine a current time domain resource sequence number, a HARQ process number, and determine at least one of time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number;
  • the time domain resource configuration information includes a time domain resource offset and/or a time domain resource period of the non-dynamic resource configuration;
  • the second determining unit is configured to determine, according to the first determining unit, the currently transmitted time domain resource sequence number, the HARQ process number, the time domain resource configuration information, a HARQ number offset, and a current transmission. At least one of the number of transmissions of the data block determines the HARQ number.
  • the second determining unit is configured to determine a HARQ number based on the currently transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of the HARQ processes. .
  • the second determining unit is configured to be based on the current transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and the The HARQ number offset determines the HARQ number.
  • the second determining unit is configured to determine the HARQ number based on the currently transmitted time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset.
  • the second determining unit is configured to be based on the currently transmitted time domain resource sequence number, the time domain resource offset, the number of transmissions of the current transport data block, and the time domain.
  • the resource period, the number of HARQ processes, and the HARQ number offset determine the HARQ number.
  • the second determining unit is configured to be based on the current transmitted time domain resource sequence number, the current transmission data block transmission times, the time domain resource period, the HARQ process number, and the The HARQ number offset determines the HARQ number.
  • the second determining unit is configured to determine the HARQ number based on the currently transmitted time domain resource sequence number, the currently transmitted transmission number, the time domain resource period, and the HARQ process number.
  • the second determining unit is configured to be based on the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, and the time domain resource.
  • the period and the number of HARQ processes determine the HARQ number.
  • the unit of the time domain resource offset is the same as or different from the absolute duration of the transmission.
  • the unit of the time domain resource period is the same as or different from the absolute duration of the transmission.
  • the network device further includes a sending unit, configured to send signaling to the terminal, where the signaling carries at least: the number of the HARQ processes, the time domain resource configuration information, and the HARQ number.
  • the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • An embodiment of the present invention further provides a terminal, where the terminal includes a third determining unit and a fourth Determining unit;
  • the third determining unit is configured to determine a current time domain resource sequence number, a HARQ process number, and determine at least one of time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number;
  • the time domain resource configuration information includes a time domain resource offset and/or a time domain resource period;
  • the fourth determining unit is configured to determine, according to the third determining unit, the currently transmitted time domain resource sequence number, the number of the HARQ processes, the time domain resource configuration information, the HARQ number offset, and the current transmission. At least one of the number of transmissions of the data block determines the HARQ number.
  • the terminal further includes a receiving unit configured to receive signaling from the network device, where the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling;
  • the third determining unit is configured to determine at least one of the following information based on the signaling received by the receiving unit: the number of HARQ processes, the time domain resource configuration information, and the HARQ number offset.
  • the fourth determining unit is configured to determine a HARQ number based on the currently transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of the HARQ processes. .
  • the fourth determining unit is configured to be based on the current transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and the The HARQ number offset determines the HARQ number.
  • the fourth determining unit is configured to determine the HARQ number based on the currently transmitted time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset.
  • the fourth determining unit is configured to be based on the current transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, and the The time domain resource period, the number of HARQ processes, and the HARQ number offset determine a HARQ number.
  • the fourth determining unit is configured to be based on the currently transmitted time domain resource sequence number, the number of transmissions of the current transport data block, the time domain resource period, the HARQ process number, and the The HARQ number offset determines the HARQ number.
  • the fourth determining unit is configured to determine the HARQ number based on the currently transmitted time domain resource sequence number, the currently transmitted transmission number, the time domain resource period, and the HARQ process number.
  • the fourth determining unit is configured to be based on the current transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, and the time domain resource.
  • the period and the number of HARQ processes determine the HARQ number.
  • the unit of the time domain resource offset is the same as or different from the absolute duration of the transmission.
  • the unit of the time domain resource period is the same as or different from the absolute duration of the transmission.
  • the embodiment of the present invention further provides a network device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the program to implement the embodiment of the present invention.
  • the steps of the HARQ number determination method applied to the network device including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the program to implement the embodiment of the present invention.
  • the embodiment of the present invention further provides a terminal, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the program to implement the embodiment of the present invention.
  • the steps of the HARQ number determination method applied to the terminal including: a memory, a processor, and a computer program stored on the memory and operable on the processor, where the processor executes the program to implement the embodiment of the present invention.
  • the embodiment of the present invention further provides a computer storage medium, where the computer instruction is stored, and when the instruction is executed by the processor, the step of determining the HARQ number determining method applied to the network device according to the embodiment of the present invention is implemented;
  • the steps of the HARQ number determining method applied to the terminal according to the embodiment of the present invention are implemented.
  • the method for determining a HARQ number, the network device, the terminal, and the computer storage medium includes: determining, by the network device, a current time domain resource sequence number, a number of HARQ processes, and determining a time domain resource configuration information, a HARQ number. At least one of an offset, a number of transmissions of the current transmission data block; the time domain resource configuration information includes a time domain resource offset and/or a time domain resource period of the non-dynamic resource configuration; the network device is based on The HARQ number is determined by at least one of the currently transmitted time domain resource sequence number, the HARQ process number, and the time domain resource configuration information, the HARQ number offset, and the current transmission data block transmission times.
  • At least one of the time domain resource configuration information, the HARQ number offset, and the current transmission data block transmission times of the non-dynamic resource, and the currently transmitted time domain resource sequence number, HARQ The number of processes is combined to determine the HARQ number, and the multiple random transmissions in the Grant free mechanism are used to cause the same data block to correspond to multiple HARQ IDs, so that one TB corresponds to one process, avoiding waste of HARQ process numbers, and avoiding different TB error merges. The problem occurred, which improved the efficiency of retransmission and merger.
  • FIG. 1 is a schematic flowchart of a method for determining a HARQ number according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a method for determining a HARQ number according to Embodiment 2 of the present invention
  • 3a and 3b are schematic diagrams showing a first application of a method for determining a HARQ number according to an embodiment of the present invention
  • 4a and 4b are schematic diagrams showing a second application of a method for determining a HARQ number according to an embodiment of the present invention
  • FIG. 5a and FIG. 5b are schematic diagrams of a third application of a method for determining a HARQ number according to an embodiment of the present invention.
  • 6a and 6b are a fourth application diagram of a method for determining a HARQ number according to an embodiment of the present invention. intention;
  • FIG. 7 is a schematic diagram of a fifth application of a method for determining a HARQ number according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another composition structure of a network device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a structure of a terminal according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing another composition structure of a terminal according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of hardware components of a network device/terminal according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for determining a HARQ number.
  • 1 is a schematic flowchart of a method for determining a HARQ number according to Embodiment 1 of the present invention; as shown in FIG. 1, the method includes:
  • Step 101 The network device determines a current time domain resource sequence number, a HARQ process number, and at least one of determining time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • the resource configuration information includes a time domain resource offset and/or a time domain resource period of the non-dynamic resource configuration.
  • Step 102 The network device is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • the information determines the HARQ number.
  • the time domain resource sequence number may be any one of a radio frame number, a subframe number, a slot number, and a symbol number.
  • the network device determines a current time domain resource sequence number, a time domain resource offset, a time domain resource period, and the number of the HARQ processes, and is based on the current transmitted time domain resource sequence number, The time domain resource offset, the time domain resource period, and the number of HARQ processes determine a HARQ number.
  • the network device determines, according to the current transmission time domain resource, a current time domain resource sequence number, a time domain resource offset, a time domain resource period, a HARQ process number, and a HARQ number offset.
  • the sequence number, the time domain resource offset, the time domain resource period, and the number of HARQ processes determine a HARQ number.
  • the network device determines a time domain resource sequence number, a time domain resource period, a HARQ process number, and a HARQ number offset of the current transmission, based on the current transmission time domain resource sequence number, and the time domain resource period.
  • the HARQ process number and the HARQ number offset determine a HARQ number.
  • the network device determines a time domain resource sequence number, a time domain resource offset, a current transmission data block transmission number, a time domain resource period, a HARQ process number, and a HARQ number offset of the current transmission, based on the Determining HARQ of the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, the time domain resource period, the HARQ process number, and the HARQ number offset Numbering.
  • the network device determines a current time domain resource sequence number, a current transmission data block transmission number, a time domain resource period, a HARQ process number, and a HARQ number offset, based on the currently transmitted time domain resource.
  • the sequence number, the number of transmissions of the current transport data block, the time domain resource period, the number of HARQ processes, and the HARQ number offset determine a HARQ number.
  • the network device determines a time domain resource sequence number of the current transmission, a current transmission transmission number, a time domain resource period, and a HARQ process number, based on the currently transmitted time domain resource sequence number, and the current transmission transmission.
  • the number of times, the time domain resource period, and the number of HARQ processes determine the HARQ number.
  • the network device determines a current time domain resource sequence number, a current transmission data block transmission number, a time domain resource period, and a HARQ process number, based on the current transmission time domain resource sequence number, and the time domain.
  • Resource offset, transmission time of the current transmission data block The number, the time domain resource period, and the number of the HARQ processes determine a HARQ number.
  • the unit of the time domain resource offset is the same as or different from the absolute duration of the transmission.
  • the unit of the time domain resource period is the same as or different from the absolute duration of the transmission.
  • At least one of the time domain resource configuration information, the HARQ number offset, and the current transmission data block transmission times of the non-dynamic resource, and the currently transmitted time domain resource sequence number, HARQ The number of processes is combined to determine the HARQ number, and the multiple random transmissions in the Grant free mechanism are used to cause the same data block to correspond to multiple HARQ IDs, so that one TB corresponds to one process, avoiding waste of HARQ process numbers, and avoiding different TB error merges. The problem occurred, which improved the efficiency of retransmission and merger.
  • the embodiment of the invention further provides a method for determining a HARQ number.
  • 2 is a schematic flowchart of a method for determining a HARQ number according to Embodiment 2 of the present invention; as shown in FIG. 2, the method includes:
  • Step 201 The terminal determines a current time domain resource sequence number, a HARQ process number, and at least one of determining time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number; the time domain resource
  • the configuration information includes a time domain resource offset and/or a time domain resource period.
  • Step 202 The terminal is based on at least one of a current time domain resource sequence number, a number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number. Determine the HARQ number.
  • the time domain resource sequence number may be any one of a radio frame number, a subframe number, a slot number, and a symbol number.
  • the method further includes: the terminal receiving signaling from the network device, and determining, according to the signaling, at least one of the following information: the number of the HARQ processes, the time Domain resource configuration information, the HARQ number offset; the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • the terminal determines a current time domain resource sequence number, a time domain resource offset, a time domain resource period, and the number of the HARQ processes, and is based on the current transmitted time domain resource sequence number and the time
  • the HARQ number is determined by the domain resource offset, the time domain resource period, and the number of the HARQ processes.
  • the terminal determines the time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and the HARQ number offset of the current transmission, based on the current transmitted time domain resource sequence number. And determining, by the time domain resource offset, the time domain resource period, and the number of the HARQ processes, a HARQ number.
  • the terminal determines a time domain resource sequence number, a time domain resource period, a HARQ process number, and a HARQ number offset of the current transmission, based on the current transmission time domain resource sequence number, the time domain resource period, The HARQ process number and the HARQ number offset determine a HARQ number.
  • the terminal determines a time domain resource sequence number, a time domain resource offset, a current transmission data block transmission number, a time domain resource period, a HARQ process number, and a HARQ number offset of the current transmission, according to the foregoing.
  • the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, the time domain resource period, the HARQ process number, and the HARQ number offset determine the HARQ number .
  • the terminal determines a current time domain resource sequence number, a current transmission data block transmission number, a time domain resource period, a HARQ process number, and a HARQ number offset, based on the current transmitted time domain resource sequence number. And determining, by the number of transmissions of the current transport data block, the time domain resource period, the number of the HARQ processes, and the HARQ number offset, a HARQ number.
  • the terminal determines a current time domain resource sequence number and current transmission.
  • the number of transmissions, the time domain resource period, and the number of HARQ processes are determined based on the current transmission time domain resource sequence number, the current transmission transmission number, the time domain resource period, and the HARQ process number.
  • the terminal determines a current time domain resource sequence number, a current transmission data block transmission number, a time domain resource period, and a HARQ process number, based on the current transmission time domain resource sequence number and the time domain resource.
  • the offset, the number of transmissions of the current transport data block, the time domain resource period, and the number of HARQ processes determine a HARQ number.
  • the unit of the time domain resource offset is the same as or different from the absolute duration of the transmission.
  • the unit of the time domain resource period is the same as or different from the absolute duration of the transmission.
  • At least one of the time domain resource configuration information, the HARQ number offset, and the current transmission data block transmission times of the non-dynamic resource, and the currently transmitted time domain resource sequence number, HARQ The number of processes is combined to determine the HARQ number, and the multiple random transmissions in the Grant free mechanism are used to cause the same data block to correspond to multiple HARQ IDs, so that one TB corresponds to one process, avoiding waste of HARQ process numbers, and avoiding different TB error merges. The problem occurred, which improved the efficiency of retransmission and merger.
  • the scenario determines the HARQ number based on the current time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of HARQ processes.
  • the technical solution of the scenario avoids the situation that multiple repeated transmissions cause multiple HARQ IDs corresponding to the same data block.
  • the HARQ number satisfies the following expression:
  • the HARQ Process ID is a HARQ number
  • t represents a time domain resource sequence number currently transmitted
  • Toffset represents a time domain resource offset
  • T represents a time domain resource period
  • B represents a HARQ process number
  • floor represents a rounding down, of course, In other ways, it can also be processed by up-rounding; modulo means modulo operation.
  • T_temp, Toffset_temp, and T_temp are parameters obtained by converting t, Toffset, and T according to a specific time unit.
  • the absolute time units of t_temp, Toffset_temp, and T_temp are the same, and the absolute time units of t, Toffset, and T may be the same or different.
  • FIG. 3 is a schematic diagram of a first application of the method for determining a HARQ number according to an embodiment of the present invention
  • the starting number of the HARQ process in the above scenario is 0. If the starting number of the HARQ process is not 0, an offset value is added to the above expression (1). For example, the starting number of the HARQ process is 1. Then the HARQ ID satisfies:
  • HARQ Process ID [floor(t_temp-Toffset_temp/T_temp)]modulo B+1.
  • the starting number of the HARQ process in the above scenario is 0. If the starting number of the HARQ process is not 0, an offset value is added to the above expression (1). For example, the starting number of the HARQ process is 1. Then the HARQ ID satisfies:
  • HARQ Process ID [floor(t_temp-Toffset_temp/T_temp)]modulo B+1.
  • T represents an interval between transmissions of two non-automatic retransmissions.
  • the scenario determines the HARQ number based on the current transmission time domain resource sequence number, time domain resource offset, time domain resource period, HARQ process number, and HARQ number offset.
  • the scenario in this scenario is used in the scenario where multiple Grant free resources are configured, and the HARQ ID overlaps.
  • the HARQ number satisfies the following expression:
  • the HARQ process ID is a HARQ number, t represents a time domain resource sequence number currently transmitted, Toffset represents a time domain resource offset, T represents a time domain resource period, B represents a HARQ process number, and Hoffset represents a HARQ ID offset; It means rounding down. Of course, in other ways, it can also be processed by up-rounding; modulo means modulo operation.
  • T_temp, Toffset_temp, and T_temp are parameters obtained by converting t, Toffset, and T according to a specific time unit.
  • the absolute time units of t_temp, Toffset_temp, and T_temp are the same, and the absolute time units of t, Toffset, and T may be the same or different.
  • FIG. 4a and FIG. 4b are schematic diagrams showing a second application of the method for determining a HARQ number according to an embodiment of the present invention. As shown in FIG. 4a and FIG. 4b, two Grants are configured in the same unit as the absolute duration of the transmission. Free resources.
  • the starting number of the HARQ process in the above scenario is 0. If the starting number of the HARQ process is not 0, an offset value is added to the above expression (2). For example, the starting number of the HARQ process is 1. Then the HARQ ID satisfies:
  • HARQ Process ID [floor(t_temp-Toffset_temp/T_temp)] moduloB+Hoffset+1.
  • the above example is a scene in which the units of Toffset and T are the same as the absolute duration of the transmission.
  • the scenes in which the units of Toffset and T are different from the absolute duration of the transmission refer to the description of Toffset and T in FIG. 3b in the scene 1 . This example is no longer described in this scenario.
  • T represents an interval between transmissions of two non-automatic retransmissions.
  • the scenario determines the HARQ number based on the current transmitted time domain resource sequence number, time domain resource period, HARQ process number, and HARQ number offset.
  • the HARQ number satisfies the following expression:
  • the HARQ Process ID is a HARQ number
  • t represents a current time domain resource sequence number
  • T represents a time domain resource period
  • B represents a HARQ process number
  • Hoffset represents a HARQ ID offset
  • floor represents a rounding down, of course, In other ways, it can also be processed by up-rounding; modulo means modulo operation.
  • T_temp and T_temp are parameters obtained by converting t and T according to a specific time unit.
  • the absolute time units of t_temp and T_temp are the same, t and T. Absolute time units can be the same or different.
  • the starting position of the scene is limited.
  • the starting position of the Grant free resource must be an integer multiple of the period, or the starting position of the modular period is less than the period; or the sum of the starting position and the number of repetitions is less than the period of the modulo period.
  • FIG. 5a and FIG. 5b are schematic diagrams of a third application of the method for determining a HARQ number according to an embodiment of the present invention; as shown in FIG. 5a and FIG. 5b, a scenario in which the units of Toffset and T are the same as the absolute duration of transmission, and two Grants are configured.
  • the starting number of the HARQ process in the above scenario is 0. If the starting number of the HARQ process is not 0, an offset value is added to the above expression (3). For example, the starting number of the HARQ process is 1. Then the HARQ ID satisfies:
  • HARQ Process ID [floor(t_temp/T_temp)]modulo B+Hoffset+1.
  • the above example is a scene in which the units of Toffset and T are the same as the absolute duration of the transmission.
  • the scenes in which the units of Toffset and T are different from the absolute duration of the transmission refer to the description of Toffset and T in FIG. 3b in the scene 1 . This example is no longer described in this scenario.
  • the scenario determines the HARQ number based on the current transmission time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, the time domain resource period, the HARQ process number, and the HARQ number offset.
  • the technical solution of the scenario avoids multiple repeated transmissions and causes multiple correspondences of the same data block.
  • the situation of the HARQ ID occurs, especially in the scenario where the number of repeated transmissions is greater than the period T of the Grant free resource.
  • the HARQ number satisfies the following expression:
  • HARQ Process ID [floor(t_temp-Toffset_temp-current_n/T)]modulo B+Hoffset (4)
  • the HARQ process ID is a HARQ number
  • t represents a time domain resource sequence number currently transmitted
  • Toffset represents a time domain resource offset
  • current_n represents the number of transmissions of the current transmission data block
  • T represents a time domain resource period
  • B represents a HARQ process number.
  • Hoffset represents the HARQ ID offset; floor represents the rounding down, of course, in other ways can also be processed by the up-rounding operation; modulo represents the modulo operation.
  • T_temp, Toffset_temp, and T_temp are parameters obtained by converting t, Toffset, and T according to a specific time unit.
  • the absolute time units of t_temp, Toffset_temp, and T_temp are the same, and the absolute time units of t, Toffset, and T may be the same or different.
  • the formula is directly expressed by current_n; when the number of transmissions is numbered from 1, the formula is directly expressed by current_n-1.
  • T is the time domain interval of the Grant free resource.
  • the starting number of the HARQ process in the above scenario is 0. If the starting number of the HARQ process is not 0, an offset value is added to the above expression (4). For example, the starting number of the HARQ process is 1. Then the HARQ ID satisfies:
  • HARQ Process ID [floor(t_temp-Toffset_temp-current_n/T)]modulo B+Hoffset+1.
  • FIG. 6a and FIG. 6b are schematic diagrams of a fourth application of the method for determining a HARQ number according to an embodiment of the present invention. As shown in FIG. 6a and FIG. 6b, the unit of Toffset and T is the same as the absolute duration of transmission. Scenario, configure two Grant free resources.
  • the above example is a scene in which the units of Toffset and T are the same as the absolute duration of the transmission.
  • the scenes in which the units of Toffset and T are different from the absolute duration of the transmission refer to the description of Toffset and T in FIG. 3b in the scene 1 . This example is no longer described in this scenario.
  • the scenario determines the HARQ number based on the current transmission time domain resource sequence number, the time domain resource offset, the number of transmissions of the current transmission data block, the time domain resource period, and the number of HARQ processes.
  • the HARQ number satisfies the following expression:
  • HARQ Process ID [floor(t_temp-Toffset_temp-current_n/T)]modulo B.
  • the HARQ process ID is a HARQ number
  • t represents a time domain resource sequence number currently transmitted
  • Toffset represents a time domain resource offset
  • current_n represents the number of transmissions of the current transmission data block
  • T represents a time domain resource period
  • B represents a HARQ process number.
  • floor means rounding down, of course, in other ways, it can also be processed by up-rounding
  • modulo means modulo operation.
  • T_temp, Toffset_temp, and T_temp are parameters obtained by converting t, Toffset, and T according to a specific time unit.
  • the absolute time units of t_temp, Toffset_temp, and T_temp are the same, and the absolute time units of t, Toffset, and T may be the same or different.
  • T is the time domain interval of the Grant free resource.
  • the scenario determines the HARQ number based on the current transmitted time domain resource sequence number, the number of transmissions of the current transport data block, the time domain resource period, the number of HARQ processes, and the HARQ number offset.
  • the HARQ number satisfies the following expression:
  • HARQ Process ID [floor(t_temp-current_n/T)]modulo B+Hoffset.
  • the HARQ process ID is a HARQ number
  • t represents a current time domain resource sequence number
  • current_n represents the number of transmissions of the current transmission data block
  • T represents a time domain resource period
  • B represents a HARQ process number
  • Hoffset represents a HARQ ID offset.
  • Floor means rounding down, of course, in other ways, it can also be processed by up-rounding; modulo means modulo operation.
  • T_temp and T_temp are parameters obtained by converting t and T according to a specific time unit.
  • the absolute time units of t_temp and T_temp are the same, and the absolute time units of t and T may be the same or different.
  • T is the time domain interval of the Grant free resource.
  • the scenario determines the HARQ number based on the current time domain resource sequence number, the number of current transmissions, the time domain resource period, and the number of HARQ processes.
  • the HARQ number satisfies the following expression:
  • HARQ Process ID [floor(t_temp-current_n/T)]modulo B.
  • the HARQ Process ID is a HARQ number
  • t represents a current time domain resource sequence number
  • current_n represents the number of transmissions of the current transmission data block
  • T represents a time domain resource period
  • B represents a HARQ process number
  • floor represents a rounding down, of course
  • modulo means modulo operation.
  • T_temp and T_temp are parameters obtained by converting t and T according to a specific time unit.
  • the absolute time units of t_temp and T_temp are the same, and the absolute time units of t and T may be the same or different.
  • T is the time domain interval of the Grant free resource.
  • the transmission pattern may further be further included.
  • the network device is based on the currently transmitted time domain resource sequence number, the current transmission data block transmission times, the time domain resource period, the HARQ process number, and the Determining a HARQ number by the HARQ number offset, comprising: the network device is based on the currently transmitted time domain resource sequence number, the number of transmissions of the current transmission data block, the currently transmitted transmission pattern, the time domain resource period, The HARQ process number and the HARQ number offset determine a HARQ number.
  • the network device is based on the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, the time domain resource period, and the The number of HARQ processes determines a HARQ number, including: the network device is based on the current transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, the currently transmitted transmission pattern, and the The time domain resource period and the number of the HARQ processes determine the HARQ number.
  • the network device is based on the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, the time domain resource period, and the The HARQ process number and the HARQ number offset determine the HARQ number, including: the network device based on the currently transmitted time domain resource sequence number, the time domain resource offset, and the current transmission data block transmission times And the currently transmitted transmission pattern, the time domain resource period, the number of HARQ processes, and the HARQ number offset determine a HARQ number.
  • the HARQ number satisfies the following expression:
  • HARQ Process ID [floor(t_temp-Patten(current_n)+Pattern(0))/T)]modulo B+Hoffset.
  • the HARQ process ID is a HARQ number
  • t indicates a current time domain resource sequence number
  • current_n indicates the number of transmissions of the current transmission data block
  • the Pattern is a transmission pattern of multiple transmissions
  • T indicates a time domain resource period
  • B indicates a HARQ process number.
  • Hoffset represents the HARQ ID offset; floor represents rounding down, of course, in other ways, it can also be processed by up-rounding; modulo means modulo operation.
  • T_temp and T_temp are parameters obtained by converting t and T according to a specific time unit.
  • the absolute time units of t_temp and T_temp are the same, and the absolute time units of t and T may be the same or different.
  • the HARQ number satisfies the following expression:
  • HARQ Process ID [floor(t_temp-Patten(current_n)+Pattern(0))/T)]modulo B.
  • the HARQ process ID is a HARQ number
  • t indicates a current time domain resource sequence number
  • current_n indicates the number of transmissions of the current transmission data block
  • the Pattern is a transmission pattern of multiple transmissions
  • T indicates a time domain resource period
  • B indicates a HARQ process number.
  • floor means rounding down, of course, in other ways, it can also be processed by up-rounding
  • modulo means modulo operation.
  • T_temp and T_temp are parameters obtained by converting t and T according to a specific time unit.
  • the absolute time units of t_temp and T_temp are the same, and the absolute time units of t and T may be the same or different.
  • T is the time domain interval of the Grant free resource.
  • the HARQ number satisfies the following expression:
  • HARQ Process ID [floor(t_temp-Toffset_temp-Patten(current_n)+Pattern(0))/T)]modulo B.
  • the HARQ process ID is a HARQ number
  • t indicates a time domain resource sequence number currently transmitted
  • Toffset indicates a time domain resource offset
  • current_n indicates a number of transmission times of the currently transmitted data block
  • Pattern is a transmission pattern of multiple transmissions
  • T indicates Domain resource period
  • B indicates the number of HARQ processes
  • floor indicates rounding down, of course, in other ways, it can also be processed by up-rounding
  • modulo means modulo operation.
  • T_temp, Toffset_temp, and T_temp are parameters obtained by converting t, Toffset, and T according to a specific time unit.
  • the absolute time units of t_temp, Toffset_temp, and T_temp are the same, and the absolute time units of t, Toffset, and T may be the same or different.
  • the formula is directly expressed by current_n;
  • the number of transmissions is numbered from 1, and the formula is directly expressed by current_n-1.
  • T is the time domain interval of the Grant free resource.
  • the HARQ number satisfies the following expression:
  • HARQ Process ID [floor(t_temp-Toffset_temp-Patten(current_n)+Pattern(0))/T)] modulo B+Hoffset.
  • the HARQ process ID is a HARQ number
  • t indicates a time domain resource sequence number currently transmitted
  • Toffset indicates a time domain resource offset
  • current_n indicates a number of transmission times of the currently transmitted data block
  • Pattern is a transmission pattern of multiple transmissions
  • T indicates Domain resource period
  • B indicates the number of HARQ processes
  • Hoffset indicates the HARQ ID offset
  • floor indicates rounding down, of course, in other modes, it can also be processed by up-rounding
  • modulo means modulo operation.
  • T_temp, Toffset_temp, and T_temp are parameters obtained by converting t, Toffset, and T according to a specific time unit.
  • the absolute time units of t_temp, Toffset_temp, and T_temp are the same, and the absolute time units of t, Toffset, and T may be the same or different.
  • the formula is directly expressed by current_n; when the number of transmissions is numbered from 1, the formula is directly expressed by current_n-1.
  • T is the time domain interval of the Grant free resource.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present invention; as shown in FIG. 8, the network device includes: a first determining unit 31 and a second determining unit 32;
  • the first determining unit 31 is configured to determine a current time domain resource sequence number, a HARQ process number, and determine at least one of time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number.
  • the time domain resource configuration information includes a time domain resource offset and/or a time domain resource period of the non-dynamic resource configuration;
  • the second determining unit 32 is configured to determine, according to the first determining unit 31, the currently transmitted time domain resource sequence number, the HARQ process number, the time domain resource configuration information, the HARQ number offset, Determining at least one of the number of transmissions of the current transport block HARQ number.
  • the second determining unit 32 is configured to determine, according to the currently transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of the HARQ processes. HARQ number.
  • the second determining unit 32 is configured to be based on the currently transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and The HARQ number offset determines the HARQ number.
  • the second determining unit 32 is configured to determine the HARQ based on the currently transmitted time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset. Numbering.
  • the second determining unit 32 is configured to be based on the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, and the time The domain resource period, the number of HARQ processes, and the HARQ number offset determine the HARQ number.
  • the second determining unit 32 is configured to be based on the current transmission time domain resource sequence number, the current transmission data block transmission times, the time domain resource period, and the HARQ process number. And the HARQ number offset determines the HARQ number.
  • the second determining unit 32 is configured to determine the HARQ based on the currently transmitted time domain resource sequence number, the currently transmitted transmission number, the time domain resource period, and the HARQ process number. Numbering.
  • the second determining unit 32 is configured to be based on the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, and the time The domain resource period and the number of HARQ processes determine the HARQ number.
  • the unit of the time domain resource offset is the same as or different from the absolute duration of the transmission.
  • the unit of the time domain resource period is the same as or different from the absolute duration of the transmission.
  • the network device further includes a sending unit 33, configured to send signaling to the terminal, where the signaling carries at least: the number of the HARQ processes, the time domain resource One of configuration information, the HARQ number offset; the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • the first determining unit 31 and the second determining unit 32 in the network device may be implemented by a central processing unit (CPU) and a digital signal processor (DSP, Digital Signal) in practical applications.
  • the processor, the micro-control unit (MCU) or the field-programmable gate array (FPGA) is implemented; the transmitting unit 33 in the network device can pass the communication module in practical applications (including: Basic communication suite, operating system, communication module, standardized interface and protocol, etc.) and transceiver antenna implementation.
  • the network device provided by the foregoing embodiment performs the HARQ number determination, only the division of each of the foregoing program modules is illustrated. In actual applications, the foregoing processing may be performed by different program modules as needed. The internal structure of the network device is divided into different program modules to complete all or part of the processing described above.
  • the network device and the method embodiment of the foregoing embodiments are in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present invention; as shown in FIG. 10, the terminal includes a third determining unit 41 and a fourth determining unit 42;
  • the third determining unit 41 is configured to determine a current time domain resource sequence number, a HARQ process number, and determine time domain resource configuration information, a HARQ number offset, and current transmission data. At least one of the number of transmissions of the block; the time domain resource configuration information includes a time domain resource offset and/or a time domain resource period;
  • the fourth determining unit 42 is configured to determine, according to the third transmission unit 41, the currently transmitted time domain resource sequence number, the HARQ process number, the time domain resource configuration information, the HARQ number offset, At least one of the number of transmissions of the current transmission data block determines the HARQ number.
  • the terminal further includes a receiving unit 43 configured to receive signaling from a network device, where the signaling includes RRC signaling, higher layer signaling, or physical layer signaling.
  • the signaling includes RRC signaling, higher layer signaling, or physical layer signaling.
  • the third determining unit 41 is configured to determine at least one of the following information based on the signaling received by the receiving unit 43: the number of HARQ processes, the time domain resource configuration information, and the HARQ number offset. the amount.
  • the fourth determining unit 42 is configured to determine, according to the currently transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of the HARQ processes. HARQ number.
  • the fourth determining unit 42 is configured to be based on the currently transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and The HARQ number offset determines the HARQ number.
  • the fourth determining unit 42 is configured to determine the HARQ based on the currently transmitted time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset. Numbering.
  • the fourth determining unit 42 is configured to be based on the currently transmitted time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, and the time The domain resource period, the number of HARQ processes, and the HARQ number offset determine the HARQ number.
  • the fourth determining unit 42 is configured to be based on the currently transmitted time domain resource sequence number, the current transmission data block transmission times, the time domain resource period, and the HARQ process number. And the HARQ number offset determines the HARQ number.
  • the fourth determining unit 42 is configured to determine HARQ based on the currently transmitted time domain resource sequence number, the currently transmitted transmission number, the time domain resource period, and the HARQ process number. Numbering.
  • the fourth determining unit 42 is configured to be based on the current transmission time domain resource sequence number, the time domain resource offset, the current transmission data block transmission times, and the time The domain resource period and the number of HARQ processes determine the HARQ number.
  • the unit of the time domain resource offset is the same as or different from the absolute duration of the transmission.
  • the unit of the time domain resource period is the same as or different from the absolute duration of the transmission.
  • the third determining unit 41 and the fourth determining unit 42 of the terminal may be implemented by a CPU, a DSP, an MCU or an FPGA in the terminal in actual applications; the receiving unit 43 of the terminal is actually Applications can be implemented through communication modules (including: basic communication suites, operating systems, communication modules, standardized interfaces and protocols, etc.) and transceiver antennas.
  • the terminal provided by the foregoing embodiment performs the HARQ number determination, only the division of each of the foregoing program modules is illustrated. In actual applications, the foregoing processing may be performed by different program modules as needed. The internal structure of the terminal is divided into different program modules to perform all or part of the processing described above.
  • the terminal and the method embodiment provided by the foregoing embodiments are in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • FIG. 12 is a network device according to an embodiment of the present invention/ A schematic diagram of the hardware composition of the terminal.
  • the network device/terminal includes at least one processor 51 and a memory 52 for storing a computer program executable on the processor 51.
  • the network device/terminal also includes communication components for transmitting data; the various components are coupled together by a bus system 54.
  • bus system 54 is used to implement connection communication between these components.
  • the bus system 54 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 54 in FIG.
  • memory 52 can be either volatile memory or non-volatile memory, as well as both volatile and non-volatile memory.
  • the non-volatile memory may be a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), or an Erasable Programmable Read (EPROM). Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM), Ferromagnetic Random Access Memory (FRAM), Flash Memory, Magnetic Surface Memory , CD-ROM, or Compact Disc Read-Only Memory (CD-ROM); the magnetic surface memory can be a disk storage or a tape storage.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • SSRAM Dynamic Random Access
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM enhancement Synchronous Dynamic Random Access Memory
  • SLDRAM synchronously connected dynamic random access memory
  • DRRAM Direct RAM Bus Random Access Memory
  • Processor 51 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 51 or an instruction in a form of software.
  • the processor 51 described above may be a general purpose processor, a DSP, or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • the processor 51 can implement or perform the various methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can reside in a storage medium located in memory 52, which reads the information in memory 52 and, in conjunction with its hardware, performs the steps of the foregoing method.
  • the processor 51 when the processor 51 executes the program, it is implemented to: determine a current time domain resource sequence number, a HARQ process number, and determine time domain resource configuration information, a HARQ number offset, At least one of the number of transmissions of the current transmission data block; the time domain resource configuration information includes a time domain resource offset and/or a time domain resource period of the non-dynamic resource configuration; and the time domain resource based on the current transmission
  • the HARQ number is determined by the sequence number, the number of the HARQ processes, and at least one of the time domain resource configuration information, the HARQ number offset, and the number of transmissions of the current transport data block.
  • the implementation when the processor 51 executes the program, the implementation is: based on the current transmission time domain resource sequence number, the time domain resource offset, the time domain resource period, and the HARQ process number. Determine the HARQ number.
  • the processor 51 implements the program: based on the current transmission
  • the HARQ number is determined by the transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and the HARQ number offset.
  • the method is: determining, according to the current transmission time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset. HARQ number.
  • the method when the processor 51 executes the program, the method is implemented, based on the current transmission time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, and the The time domain resource period, the number of HARQ processes, and the HARQ number offset determine a HARQ number.
  • the implementation when the processor 51 executes the program, the implementation is: based on the currently transmitted time domain resource sequence number, the number of transmissions of the current transmission data block, the time domain resource period, and the HARQ process. The number and the HARQ number offset determine the HARQ number.
  • the method is: determining, according to the current transmission time domain resource sequence number, the current transmission transmission number, the time domain resource period, and the HARQ process number. HARQ number.
  • the method when the processor 51 executes the program, the method is implemented, based on the current transmission time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, and the The time domain resource period and the number of HARQ processes determine the HARQ number.
  • the processor 51 is configured to: send signaling to the terminal, where the signaling carries at least: the number of the HARQ processes, the time domain resource configuration information, and the HARQ.
  • the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • the processor 51 when the processor 51 executes the program, it is implemented to: determine a current time domain resource sequence number, a HARQ process number, and determine time domain resource configuration information, a HARQ number offset, and a current Transmitting at least one of the number of transmissions of the data block;
  • the time domain resource configuration information includes a time domain resource offset and/or a time domain resource period; based on the current transmitted time domain resource sequence number, the number of the HARQ processes, and the time domain resource configuration information, and the HARQ number offset.
  • the at least one of the shift amount and the number of transmissions of the currently transmitted data block determines the HARQ number.
  • the processor 51 is configured to: receive signaling from a network device, and determine at least one of the following information based on the signaling: the number of the HARQ processes, the time domain resource Configuration information, the HARQ number offset; the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • the implementation when the processor 51 executes the program, the implementation is: based on the current transmission time domain resource sequence number, the time domain resource offset, the time domain resource period, and the HARQ process number. Determine the HARQ number.
  • the implementation when the processor 51 executes the program, the implementation is: based on the current transmission time domain resource sequence number, the time domain resource offset, the time domain resource period, and the HARQ process number. And the HARQ number offset determines the HARQ number.
  • the method is: determining, according to the current transmission time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset. HARQ number.
  • the method when the processor 51 executes the program, the method is implemented, based on the current transmission time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, and the The time domain resource period, the number of HARQ processes, and the HARQ number offset determine a HARQ number.
  • the implementation when the processor 51 executes the program, the implementation is: based on the currently transmitted time domain resource sequence number, the number of transmissions of the current transmission data block, the time domain resource period, and the HARQ process. The number and the HARQ number offset determine the HARQ number.
  • the processor 51 implements the program: based on the current transmission
  • the HARQ number is determined by the number of the time domain resource to be transmitted, the number of transmissions of the current transmission, the time domain resource period, and the number of the HARQ processes.
  • the method when the processor 51 executes the program, the method is implemented, based on the current transmission time domain resource sequence number, the time domain resource offset, the current transmission data block transmission number, and the The time domain resource period and the number of HARQ processes determine the HARQ number.
  • the embodiment of the present invention further provides a computer storage medium, for example, comprising a memory 52 stored in a network device/terminal and stored in a network device, and the computer program can be executed by the processor 51 of the device to complete the foregoing method.
  • the computer storage medium may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM; or may be various devices including one or any combination of the above memories.
  • the computer storage medium includes a memory that is stored in a network device and stores a computer program.
  • the computer storage medium provided by the embodiment of the present invention has a computer program stored thereon, and when the computer program is executed by the processor, Execution: determining a current time domain resource sequence number, a HARQ process number, and determining at least one of time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number; the time domain resource configuration information a time domain resource offset and/or a time domain resource period including a non-dynamic resource configuration; a time domain resource sequence number based on the current transmission, the number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset At least one of the number of transmissions of the current transmission data block determines the HARQ number.
  • the computer program when executed by the processor, performing: determining, according to the current transmission time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of the HARQ processes HARQ number.
  • the computer program when executed by the processor, executing: based on the current The HARQ number is determined by the transmitted time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and the HARQ number offset.
  • the computer program when executed by the processor, performing: determining HARQ based on the current transmitted time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset. Numbering.
  • a time domain resource serial number based on the current transmission, the time domain resource offset, a number of transmissions of the current transmission data block, and the time The domain resource period, the number of HARQ processes, and the HARQ number offset determine the HARQ number.
  • the computer program when executed by the processor, performing: a time domain resource serial number based on the current transmission, a number of transmissions of the current transmission data block, the time domain resource period, and the number of the HARQ processes. And the HARQ number offset determines the HARQ number.
  • the computer program when executed by the processor, performing: determining HARQ based on the current transmission time domain resource sequence number, the current transmission transmission number, the time domain resource period, and the HARQ process number. Numbering.
  • a time domain resource serial number based on the current transmission, the time domain resource offset, a number of transmissions of the current transmission data block, and the time The domain resource period and the number of HARQ processes determine the HARQ number.
  • the method when the computer program is executed by the processor, the method is: sending signaling to the terminal, where the signaling carries at least: the number of the HARQ processes, the time domain resource configuration information, and the HARQ number.
  • the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • the computer storage medium includes a memory in which a computer program is stored in the terminal, and the computer storage medium provided by the embodiment of the present invention has a computer program stored thereon, and when the computer program is executed by the processor, Execution: Determine the time domain of the current transmission a resource sequence number, a number of HARQ processes, and at least one of determining time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number; the time domain resource configuration information includes a time domain resource offset and And a time domain resource period; based on at least one of a time domain resource sequence number of the current transmission, the number of the HARQ processes, and the time domain resource configuration information, a HARQ number offset, and a current transmission data block transmission number The information determines the HARQ number.
  • the computer program when executed by the processor, performing: receiving signaling from the network device, and determining at least one of the following information based on the signaling: the number of HARQ processes, the time domain resource configuration Information, the HARQ number offset; the signaling includes one of RRC signaling, higher layer signaling, or physical layer signaling.
  • the computer program when executed by the processor, performing: determining, according to the current transmission time domain resource sequence number, the time domain resource offset, the time domain resource period, and the number of the HARQ processes HARQ number.
  • the computer program when executed by the processor, performing: based on the current transmission time domain resource sequence number, the time domain resource offset, the time domain resource period, the HARQ process number, and The HARQ number offset determines the HARQ number.
  • the computer program when executed by the processor, performing: determining HARQ based on the current transmitted time domain resource sequence number, the time domain resource period, the HARQ process number, and the HARQ number offset. Numbering.
  • a time domain resource serial number based on the current transmission, the time domain resource offset, a number of transmissions of the current transmission data block, and the time The domain resource period, the number of HARQ processes, and the HARQ number offset determine the HARQ number.
  • the computer program when executed by the processor, performing: a time domain resource serial number based on the current transmission, a number of transmissions of the current transmission data block, the time domain resource period, and the number of the HARQ processes. And the HARQ number offset determines the HARQ number.
  • the computer program when executed by the processor, performing: determining HARQ based on the current transmission time domain resource sequence number, the current transmission transmission number, the time domain resource period, and the HARQ process number. Numbering.
  • a time domain resource serial number based on the current transmission, the time domain resource offset, a number of transmissions of the current transmission data block, and the time The domain resource period and the number of HARQ processes determine the HARQ number.
  • the disclosed terminal, network device, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the steps of the foregoing method embodiments are included; and the foregoing storage medium includes: a mobile storage device, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Computer And Data Communications (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种HARQ编号确定方法、网络设备、终端和计算机存储介质。所述方法包括:网络设备确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。

Description

HARQ编号确定方法、网络设备、终端和计算机存储介质 技术领域
本发明涉及无线通信技术,具体涉及一种混合自动重传请求(HARQ,Radio Resource Control)编号确定方法、网络设备、终端和计算机存储介质。
背景技术
目前的5G***引入了超高可靠超低时延通信(URLLC,Ultra-Reliable Low Latency Communication),该业务的特征是在极端的时延内(例如,1ms)实现超高可靠性(例如,99.999%)的传输。为了实现这个目标,Grant free概念被提出来。Grant free采用了预配置\半持续状态的资源配置方式,终端可以根据业务需求在配置的资源上传输。该技术避免了资源请求(SR,Schedule Request)和缓存状态上报(BSR,Buffer Status Report)的过程,增加了终端有效传输时间。
HARQ一般采用“停止-等待”方式实现。对于某一个HARQ进程,在等待ACK/NACK反馈之前,此进程暂时中止传输,当收到反馈/调度信令后,再根据反馈结果/调度信息选择发送新数据或者重传旧数据。为了保证***传输效率,HARQ采用了多进程。即在某个进程等待反馈/调度的期间,传输其他进程。为了避免多个进程之间数据混乱,采用HARQ编号(ID)表示HARQ进程。
长期演进(LTE)***中的HARQ ID根据传输时间间隔(TTI,Transmission Time Interval)标识、周期和进程数计算获得。但在5G***中,如果Grant free机制下采用重复传输,会出现HARQ指示不准确的问题,例如,同一个数据块(TB)的多次重复计算得到不同的HARQ ID。这样,一个TB对应多个进程,既降低了重传合并的效率,又造成了不同TB错误合 并的问题。
发明内容
为解决现有存在的技术问题,本发明实施例提供了一种HARQ编号确定方法、网络设备、终端和计算机存储介质。
本发明实施例提供了一种HARQ编号确定方法,所述方法包括:
网络设备确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;
所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述网络 设备基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输的传输次数中的至少一种信息确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输的传输次数中的至少一种信息确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述时域资源偏移量的单位与传输的绝对时长相同或 不同。
在一实施例中,所述时域资源周期的单位与传输的绝对时长相同或不同。
在一实施例中,所述方法还包括:所述网络设备向终端发送信令,所述信令中携带至少包括:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量中的一种;所述信令包括RRC信令、高层信令或物理层信令中的一种。
本发明实施例还提供了一种HARQ编号确定方法,所述方法包括:终端确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括时域资源偏移量和/或时域资源周期;
所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,所述方法还包括:所述终端接收来自网络设备的信令,基于所述信令确定以下信息的至少之一:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量;所述信令包括RRC信令、高层信令或物理层信令中的一种。
在一实施例中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述终端基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输 数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述终端基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述终端基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述终端基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述终端基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述终端基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:所述终端基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
在一实施例中,所述时域资源周期的单位与传输的绝对时长相同或不同。
本发明实施例还提供了一种网络设备,所述网络设备包括:第一确定单元和第二确定单元;
所述第一确定单元,配置为确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;
所述第二确定单元,配置为基于所述第一确定单元确定的所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
在一实施例中,所述时域资源周期的单位与传输的绝对时长相同或不同。
在一实施例中,所述网络设备还包括发送单元,配置为向终端发送信令,所述信令中携带至少包括:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量中的一种;所述信令包括RRC信令、高层信令或物理层信令中的一种。
本发明实施例还提供了一种终端,所述终端包括第三确定单元和第四 确定单元;其中,
所述第三确定单元,配置为确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括时域资源偏移量和/或时域资源周期;
所述第四确定单元,配置为基于所述第三确定单元确定的所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,所述终端还包括接收单元,配置为接收来自网络设备的信令,所述信令包括RRC信令、高层信令或物理层信令中的一种;
所述第三确定单元,配置为基于所述接收单元接收的所述信令确定以下信息的至少之一:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量。
在一实施例中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述 时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
在一实施例中,所述时域资源周期的单位与传输的绝对时长相同或不同。
本发明实施例还提供了一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本发明实施例所述的应用于网络设备的HARQ编号确定方法的步骤。
本发明实施例还提供了一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本发明实施例所述的应用于终端的HARQ编号确定方法的步骤。
本发明实施例还提供了一种计算机存储介质,其上存储有计算机指令,该指令被处理器执行时实现本发明实施例所述的应用于网络设备的HARQ编号确定方法的步骤;
或者,该指令被处理器执行时实现本发明实施例所述的应用于终端的HARQ编号确定方法的步骤。
本发明实施例提供的HARQ编号确定方法、网络设备、终端和计算机存储介质,所述方法包括:网络设备确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。采用本发明实施例的技术方案,通过作为非动态资源的时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息与当前传输的时域资源序号、HARQ进程数结合确定HARQ编号,避免Grant free机制下多次重复传输造成同一个数据块对应多个HARQ ID的情况发生,使得一个TB对应一个进程,避免HARQ进程号浪费,避免了不同TB错误合并的问题发生,提升了重传合并的效率。
附图说明
图1为本发明实施例一的HARQ编号确定方法的流程示意图;
图2为本发明实施例二的HARQ编号确定方法的流程示意图;
图3a和图3b为本发明实施例的HARQ编号确定方法的第一种应用示意图;
图4a和图4b为本发明实施例的HARQ编号确定方法的第二种应用示意图;
图5a和图5b为本发明实施例的HARQ编号确定方法的第三种应用示意图;
图6a和图6b为本发明实施例的HARQ编号确定方法的第四种应用示 意图;
图7为本发明实施例的HARQ编号确定方法的第五种应用示意图;
图8为本发明实施例的网络设备的一种组成结构示意图;
图9为本发明实施例的网络设备的另一种组成结构示意图;
图10为本发明实施例的终端的一种组成结构示意图;
图11为本发明实施例的终端的另一种组成结构示意图;
图12为本发明实施例的网络设备/终端的硬件组成结构示意图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细的说明。
实施例一
本发明实施例提供了一种HARQ编号确定方法。图1为本发明实施例一的HARQ编号确定方法的流程示意图;如图1所示,所述方法包括:
步骤101:网络设备确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期。
步骤102:所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
本发明实施例中,所述时域资源序号可以是无线帧号、子帧号、时隙号、符号编号中的任一种。
作为第一种实施方式,网络设备确定当前传输的时域资源序号、时域资源偏移量、时域资源周期和所述HARQ进程数,则基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第二种实施方式,网络设备确定当前传输的时域资源序号、时域资源偏移量、时域资源周期、HARQ进程数和HARQ编号偏移量,则基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第三种实施方式,网络设备确定当前传输的时域资源序号、时域资源周期、HARQ进程数和HARQ编号偏移量,基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第四种实施方式,网络设备确定当前传输的时域资源序号、时域资源偏移量、当前传输数据块的传输次数、时域资源周期、HARQ进程数和HARQ编号偏移量,基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第五种实施方式,网络设备确定当前传输的时域资源序号、当前传输数据块的传输次数、时域资源周期、HARQ进程数和HARQ编号偏移量,基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第六种实施方式,网络设备确定当前传输的时域资源序号、当前传输的传输次数、时域资源周期和HARQ进程数,基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第七种实施方式,网络设备确定当前传输的时域资源序号、当前传输数据块的传输次数、时域资源周期和HARQ进程数,基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次 数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
本发明实施例中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
本发明实施例中,所述时域资源周期的单位与传输的绝对时长相同或不同。
采用本发明实施例的技术方案,通过作为非动态资源的时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息与当前传输的时域资源序号、HARQ进程数结合确定HARQ编号,避免Grant free机制下多次重复传输造成同一个数据块对应多个HARQ ID的情况发生,使得一个TB对应一个进程,避免HARQ进程号浪费,避免了不同TB错误合并的问题发生,提升了重传合并的效率。
实施例二
本发明实施例还提供了一种HARQ编号确定方法。图2为本发明实施例二的HARQ编号确定方法的流程示意图;如图2所示,所述方法包括:
步骤201:终端确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括时域资源偏移量和/或时域资源周期。
步骤202:所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
本发明实施例中,所述时域资源序号可以是无线帧号、子帧号、时隙号、符号编号中的任一种。
本发明实施例中,所述方法还包括:所述终端接收来自网络设备的信令,基于所述信令确定以下信息的至少之一:所述HARQ进程数、所述时 域资源配置信息、所述HARQ编号偏移量;所述信令包括RRC信令、高层信令或物理层信令中的一种。
作为第一种实施方式,终端确定当前传输的时域资源序号、时域资源偏移量、时域资源周期和所述HARQ进程数,则基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第二种实施方式,终端确定当前传输的时域资源序号、时域资源偏移量、时域资源周期、HARQ进程数和HARQ编号偏移量,则基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第三种实施方式,终端确定当前传输的时域资源序号、时域资源周期、HARQ进程数和HARQ编号偏移量,基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第四种实施方式,终端确定当前传输的时域资源序号、时域资源偏移量、当前传输数据块的传输次数、时域资源周期、HARQ进程数和HARQ编号偏移量,基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第五种实施方式,终端确定当前传输的时域资源序号、当前传输数据块的传输次数、时域资源周期、HARQ进程数和HARQ编号偏移量,基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第六种实施方式,终端确定当前传输的时域资源序号、当前传输 的传输次数、时域资源周期和HARQ进程数,基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第七种实施方式,终端确定当前传输的时域资源序号、当前传输数据块的传输次数、时域资源周期和HARQ进程数,基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
本发明实施例中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
本发明实施例中,所述时域资源周期的单位与传输的绝对时长相同或不同。
采用本发明实施例的技术方案,通过作为非动态资源的时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息与当前传输的时域资源序号、HARQ进程数结合确定HARQ编号,避免Grant free机制下多次重复传输造成同一个数据块对应多个HARQ ID的情况发生,使得一个TB对应一个进程,避免HARQ进程号浪费,避免了不同TB错误合并的问题发生,提升了重传合并的效率。
下面结合具体的应用场景对本发明实施例的HARQ编号确定方法进行说明。
场景一
本场景基于当前传输的时域资源序号、时域资源偏移量、时域资源周期和HARQ进程数确定HARQ编号。本场景技术方案避免多次重复传输造成同一个数据块对应多个HARQ ID的情况发生。作为一种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-Toffset_temp/T_temp)]modulo B   (1)
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,Toffset表示时域资源偏移量,T表示时域资源周期,B表示HARQ进程数;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、Toffset_temp、T_temp分别为t、Toffset、T按照特定的时间单位折算获得的参数,t_temp、Toffset_temp、T_temp的绝对时间单位相同,t、Toffset、T的绝对时间单位可以相同也可以不同。
图3a和图3b为本发明实施例的HARQ编号确定方法的第一种应用示意图;如图3a所示,为Toffset、T的单位与传输的绝对时长相同的场景,例如:T=2ms(2slots),Toffset=1ms(1slot),进程数为3,一次传输的绝对时长为1ms(1slot),则Toffset_temp=Toffset,T_temp=T,则按照表达式(1)计算获得的HARQ ID满足:
HARQ Process ID=[floor(t-1/2)]modulo 3;
则t=1、2时,HARQ Process ID=0;t=3、4时,HARQ Process ID=1;t=5、6时,HARQ Process ID=2。
上述场景的HARQ进程的起始编号为0,若HARQ进程的起始编号不为0,则在上述表达式(1)的基础上增加一个偏移值,例如HARQ进程的起始编号为1,则HARQ ID满足:
HARQ Process ID=[floor(t_temp-Toffset_temp/T_temp)]modulo B+1。
如图3b所示,为Toffset、T的单位与传输的绝对时长不同的场景,例如,T=2ms(2slots),Toffset=1ms(1slot),进程数为3,一次传输的绝对时长为0.5ms(0.5slot),则Toffset_temp=1/0.5=2,T_temp=2/0.5=4,则按照表达式(1)计算获得的HARQ ID满足:
HARQ Process ID=[floor(t-2/4)]modulo 3;
则t=2、4时,HARQ Process ID=0;t=6、8时,HARQ Process ID=1; t=10、12时,HARQ Process ID=2。
上述场景的HARQ进程的起始编号为0,若HARQ进程的起始编号不为0,则在上述表达式(1)的基础上增加一个偏移值,例如HARQ进程的起始编号为1,则HARQ ID满足:
HARQ Process ID=[floor(t_temp-Toffset_temp/T_temp)]modulo B+1。
本发明实施例中,T表示两次非自动重传的传输之间的间隔。
场景二
本场景基于当前传输的时域资源序号、时域资源偏移量、时域资源周期、HARQ进程数和HARQ编号偏移量确定HARQ编号。本场景技术方案用于多个Grant free资源配置的场景中,HARQ ID重叠的问题。作为一种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-Toffset_temp/T_temp)]modulo B+Hoffset             (2)
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,Toffset表示时域资源偏移量,T表示时域资源周期,B表示HARQ进程数;Hoffset表示HARQ ID偏移量;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、Toffset_temp、T_temp分别为t、Toffset、T按照特定的时间单位折算获得的参数,t_temp、Toffset_temp、T_temp的绝对时间单位相同,t、Toffset、T的绝对时间单位可以相同也可以不同。
图4a和图4b为本发明实施例的HARQ编号确定方法的第二种应用示意图;如图4a和图4b所示,为Toffset、T的单位与传输的绝对时长相同的场景,配置两个Grant free资源。Grant Free资源1:T1=2ms(2slots),Toffset1=1ms(1slot),进程数为3,Hoffset=0;Grant Free资源2:T2=4ms(4slots),Toffset2=1ms(1slot),进程数为2,Hoffset=3;一次传输的绝对时长为1ms(1slot),则Grant Free资源1和Grant Free资源2按照表达式(2)分 别计算获得的HARQ ID满足:
HARQ Process ID for Grant free 1=[floor(t-1/2)]modulo 3;
HARQ Process ID for Grant free 2=[floor(t-1/4)]modulo 2+3;
则对于Grant free资源1,如图4a所示,t=1、2时,HARQ Process ID=0;t=3、4时,HARQ Process ID=1;t=5、6时,HARQ Process ID=2。
则对于Grant free资源2,如图4b所示,t=1、2时,HARQ Process ID=3;t=5、6时,HARQ Process ID=4。
上述场景的HARQ进程的起始编号为0,若HARQ进程的起始编号不为0,则在上述表达式(2)的基础上增加一个偏移值,例如HARQ进程的起始编号为1,则HARQ ID满足:
HARQ Process ID=[floor(t_temp-Toffset_temp/T_temp)]moduloB+Hoffset+1。
上述示例为Toffset、T的单位与传输的绝对时长相同的场景;对于Toffset、T的单位与传输的绝对时长不相同的场景,可参照场景一中如图3b的对Toffset、T的折算描述,本场景中不再举例描述。
本发明实施例中,T表示两次非自动重传的传输之间的间隔。
场景三
本场景基于当前传输的时域资源序号、时域资源周期、HARQ进程数和HARQ编号偏移量确定HARQ编号。作为一种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp/T_temp)]modulo B+Hoffset     (3)
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,T表示时域资源周期,B表示HARQ进程数;Hoffset表示HARQ ID偏移量;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、T_temp分别为t、T按照特定的时间单位折算获得的参数,t_temp、T_temp的绝对时间单位相同,t、T的 绝对时间单位可以相同也可以不同。通常本场景的起始位置受限,例如,Grant free资源的起始位置必须是周期的整数倍,或者起始位置modulo周期小于周期;或者起始位置与重复次数之和modulo周期小于周期。
图5a和图5b为本发明实施例的HARQ编号确定方法的第三种应用示意图;如图5a和图5b所示,为Toffset、T的单位与传输的绝对时长相同的场景,配置两个Grant free资源。Grant Free资源1:T1=2ms(2slots),进程数为3,Hoffset=0;Grant Free资源2:T2=4ms(4slots),进程数为2,Hoffset=3;一次传输的绝对时长为1ms(1slot),则Grant Free资源1和Grant Free资源2按照表达式(3)分别计算获得的HARQ ID满足:
HARQ Process ID for grant free1=[floor(t/2)]modulo 3;
HARQ Process ID for grant free2=[floor(t/4)]modulo 2+3;
则对于Grant free资源1,如图5a所示,t=1、2时,HARQ Process ID=0,t=3、4时,HARQ Process ID=1;t=5、6时,HARQ Process ID=2。
则对于Grant free资源2,如图5b所示,t=1、2时,HARQ Process ID=3,t=5、6时,HARQ Process ID=4。
上述场景的HARQ进程的起始编号为0,若HARQ进程的起始编号不为0,则在上述表达式(3)的基础上增加一个偏移值,例如HARQ进程的起始编号为1,则HARQ ID满足:
HARQ Process ID=[floor(t_temp/T_temp)]modulo B+Hoffset+1.
上述示例为Toffset、T的单位与传输的绝对时长相同的场景;对于Toffset、T的单位与传输的绝对时长不相同的场景,可参照场景一中如图3b的对Toffset、T的折算描述,本场景中不再举例描述。
场景四
本场景基于当前传输的时域资源序号、时域资源偏移量、当前传输数据块的传输次数、时域资源周期、HARQ进程数和HARQ编号偏移量确定HARQ编号。本场景技术方案避免多次重复传输造成同一个数据块对应多 个HARQ ID的情况发生,尤其在重复传输次数大于Grant free资源时域周期T的场景。作为一种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-Toffset_temp-current_n/T)]modulo B+Hoffset          (4)
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,Toffset表示时域资源偏移量,current_n表示当前传输数据块的传输次数,T表示时域资源周期,B表示HARQ进程数;Hoffset表示HARQ ID偏移量;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、Toffset_temp、T_temp分别为t、Toffset、T按照特定的时间单位折算获得的参数,t_temp、Toffset_temp、T_temp的绝对时间单位相同,t、Toffset、T的绝对时间单位可以相同也可以不同。其中,若传输次数从0开始编号,则公式中直接用current_n表达;传输次数从1开始编号,则公式中直接用current_n-1表达。其中,T(包括T1和T2)是Grant free资源的时域间隔。
本场景的应用示意具体可参照图4a和图4b所示,为Toffset、T的单位与传输的绝对时长相同的场景,配置两个Grant free资源。Grant Free资源1:T1=1ms(2slots),Toffset1=1ms(1slot),进程数为3,Hoffset=0;Grant Free资源2:T2=4ms(4slots),Toffset2=1ms(1slot),进程数为2,Hoffset=3;一次传输的绝对时长为1ms(1slot),则Grant Free资源1和Grant Free资源2按照表达式(4)分别计算获得的HARQ ID满足:
HARQ Process ID for Grant free 1=[floor(t-1-current_n/2)]modulo 3;
HARQ Process ID for Grant free 2=[floor(t-1-currrent_n/4)]modulo 2+3;
则对于Grant free资源1,如图4a所示,t=1、2时,current_n=0、1,HARQ Process ID=0;t=3、4时,current_n=0、1,HARQ Process ID=1;t=5、6时,HARQ Process ID=2。
则对于Grant free资源2,如图4b所示,t=1、2时,current_n=0、1, HARQ Process ID=3;t=5、6时,current_n=0、1,HARQ Process ID=4。
上述场景的HARQ进程的起始编号为0,若HARQ进程的起始编号不为0,则在上述表达式(4)的基础上增加一个偏移值,例如HARQ进程的起始编号为1,则HARQ ID满足:
HARQ Process ID=[floor(t_temp-Toffset_temp-current_n/T)]modulo B+Hoffset+1。
作为另一种示例,图6a和图6b为本发明实施例的HARQ编号确定方法的第四种应用示意图;如图6a和图6b所示,为Toffset、T的单位与传输的绝对时长相同的场景,配置两个Grant free资源。Grant Free资源1:T1=1ms(2slots),Toffset1=1ms(1slot),进程数为3,Hoffset=0;Grant Free资源2:T2=4ms(4slots),Toffset2=1ms(1slot),进程数为2,Hoffset=3;一次传输的绝对时长为1ms(1slot),则Grant Free资源1和Grant Free资源2按照表达式(4)分别计算获得的HARQ ID满足:
HARQ Process ID for Grant free 1=[floor(t-0-current_n/2)]modulo 3;
HARQ Process ID for Grant free 2=[floor(t-1-currrent_n/4)]modulo 2+3;
则对于Grant free资源1,如图6a所示,t=1、2时,current_n=0、1,HARQ Process ID=0;t=3、4时,current_n=0、1,HARQ Process ID=1;t=5、6时,HARQ Process ID=2。
则对于Grant free资源2,如图6b所示,t=1、2时,current_n=0、1,HARQ Process ID=3;t=5、6时,current_n=0、1,HARQ Process ID=4。
上述示例为Toffset、T的单位与传输的绝对时长相同的场景;对于Toffset、T的单位与传输的绝对时长不相同的场景,可参照场景一中如图3b的对Toffset、T的折算描述,本场景中不再举例描述。
场景五
本场景基于当前传输的时域资源序号、时域资源偏移量、当前传输数据块的传输次数、时域资源周期和HARQ进程数量确定HARQ编号。作为 一种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-Toffset_temp-current_n/T)]modulo B。
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,Toffset表示时域资源偏移量,current_n表示当前传输数据块的传输次数,T表示时域资源周期,B表示HARQ进程数;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、Toffset_temp、T_temp分别为t、Toffset、T按照特定的时间单位折算获得的参数,t_temp、Toffset_temp、T_temp的绝对时间单位相同,t、Toffset、T的绝对时间单位可以相同也可以不同。其中,若传输次数从0开始编号,则公式中直接用current_n表达;传输次数从1开始编号,则公式中直接用current_n-1表达。其中,T(包括T1和T2)是Grant free资源的时域间隔。
场景六
本场景基于当前传输的时域资源序号、当前传输数据块的传输次数、时域资源周期、HARQ进程数和HARQ编号偏移量确定HARQ编号。作为一种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-current_n/T)]modulo B+Hoffset。
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,current_n表示当前传输数据块的传输次数,T表示时域资源周期,B表示HARQ进程数;Hoffset表示HARQ ID偏移量;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、T_temp分别为t、T按照特定的时间单位折算获得的参数,t_temp、T_temp的绝对时间单位相同,t、T的绝对时间单位可以相同也可以不同。其中,若传输次数从0开始编号,则公式中直接用current_n表达;传输次数从1开始编号,则公式中直接用current_n-1表达。其中,T(包括T1和T2)是Grant free资源的时域间隔。
场景七
本场景基于当前传输的时域资源序号、当前传输的传输次数、时域资源周期和HARQ进程数确定HARQ编号。作为一种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-current_n/T)]modulo B。
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,current_n表示当前传输数据块的传输次数,T表示时域资源周期,B表示HARQ进程数;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、T_temp分别为t、T按照特定的时间单位折算获得的参数,t_temp、T_temp的绝对时间单位相同,t、T的绝对时间单位可以相同也可以不同。其中,若传输次数从0开始编号,则公式中直接用current_n表达;传输次数从1开始编号,则公式中直接用current_n-1表达。其中,T(包括T1和T2)是Grant free资源的时域间隔。
场景八
基于前述场景四至场景七,在确定HARQ编号过程中结合当前传输数据块的传输次数时,进一步还可包括传输图样。可以理解为,作为第一种实施方式,所述网络设备基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、当前传输的传输图样、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第二种实施方式,所述网络设备基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确 定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述当前传输的传输次数、当前传输的传输图样、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第三种实施方式,所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、当前传输的传输图样、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第四种实施方式,所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号,包括:所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、当前传输的传输图样、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
具体的,作为第一种实施方式的具体说明。作为一种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-Patten(current_n)+Pattern(0))/T)]modulo B+Hoffset。
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,current_n表示当前传输数据块的传输次数,Pattern为多次传输的传输图样,T表示时域资源周期,B表示HARQ进程数,Hoffset表示HARQ ID偏移量;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、T_temp分别为t、T按照特定的时间单位折算获得的参数,t_temp、T_temp的绝对时间单位相同,t、T的绝对时间单位可以相同也可以不同。其中,若传输次数从0开始编号, 则公式中直接用current_n表达;传输次数从1开始编号,则公式中直接用current_n-1表达。其中,T(包括T1和T2)是Grant free资源的时域间隔。如图7所示,Pattern(0)=0,Pattern(1)=2,Pattern(2)=3;T=6,B=2,Hoffset=0。
作为第二种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-Patten(current_n)+Pattern(0))/T)]modulo B。
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,current_n表示当前传输数据块的传输次数,Pattern为多次传输的传输图样,T表示时域资源周期,B表示HARQ进程数;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、T_temp分别为t、T按照特定的时间单位折算获得的参数,t_temp、T_temp的绝对时间单位相同,t、T的绝对时间单位可以相同也可以不同。其中,若传输次数从0开始编号,则公式中直接用current_n表达;传输次数从1开始编号,则公式中直接用current_n-1表达。其中,T(包括T1和T2)是Grant free资源的时域间隔。
作为第三种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-Toffset_temp-Patten(current_n)+Pattern(0))/T)]modulo B。
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,Toffset表示时域资源偏移量,current_n表示当前传输数据块的传输次数,Pattern为多次传输的传输图样,T表示时域资源周期,B表示HARQ进程数;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、Toffset_temp、T_temp分别为t、Toffset、T按照特定的时间单位折算获得的参数,t_temp、Toffset_temp、T_temp的绝对时间单位相同,t、Toffset、T的绝对时间单位可以相同也可以不同。其中,若传输次数从0开始编号,则公式中直接用current_n表达; 传输次数从1开始编号,则公式中直接用current_n-1表达。其中,T(包括T1和T2)是Grant free资源的时域间隔。
作为第四种示例,所述HARQ编号满足以下表达式:
HARQ Process ID=[floor(t_temp-Toffset_temp-Patten(current_n)+Pattern(0))/T)]modulo B+Hoffset。
其中,HARQ Process ID为HARQ编号,t表示当前传输的时域资源序号,Toffset表示时域资源偏移量,current_n表示当前传输数据块的传输次数,Pattern为多次传输的传输图样,T表示时域资源周期,B表示HARQ进程数,Hoffset表示HARQ ID偏移量;floor表示向下取整,当然,在其他方式中也可通过向上取整运算进行处理;modulo表示取模运算。t_temp、Toffset_temp、T_temp分别为t、Toffset、T按照特定的时间单位折算获得的参数,t_temp、Toffset_temp、T_temp的绝对时间单位相同,t、Toffset、T的绝对时间单位可以相同也可以不同。其中,若传输次数从0开始编号,则公式中直接用current_n表达;传输次数从1开始编号,则公式中直接用current_n-1表达。其中,T(包括T1和T2)是Grant free资源的时域间隔。
实施例三
本发明实施例还提供了一种网络设备。图8为本发明实施例的网络设备的一种组成结构示意图;如图8所示,所述网络设备包括:第一确定单元31和第二确定单元32;
所述第一确定单元31,配置为确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;
所述第二确定单元32,配置为基于所述第一确定单元31确定的所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定 HARQ编号。
作为第一种实施方式,所述第二确定单元32,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第二种实施方式,所述第二确定单元32,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第三种实施方式,所述第二确定单元32,配置为基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第四种实施方式,所述第二确定单元32,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第五种实施方式,所述第二确定单元32,配置为基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第六种实施方式,所述第二确定单元32,配置为基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第七种实施方式,所述第二确定单元32,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
本发明实施例中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
本发明实施例中,所述时域资源周期的单位与传输的绝对时长相同或不同。
作为一种实施方式,如图9所示,所述网络设备还包括发送单元33,配置为向终端发送信令,所述信令中携带至少包括:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量中的一种;所述信令包括RRC信令、高层信令或物理层信令中的一种。
本发明实施例中,所述网络设备中的第一确定单元31和第二确定单元32,在实际应用中均可由中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)、微控制单元(MCU,Microcontroller Unit)或可编程门阵列(FPGA,Field-Programmable Gate Array)实现;所述网络设备中的发送单元33,在实际应用中可通过通信模组(包含:基础通信套件、操作***、通信模块、标准化接口和协议等)及收发天线实现。
需要说明的是:上述实施例提供的网络设备在进行HARQ编号确定时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将网络设备的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的网络设备与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
实施例四
本发明实施例还提供了一种终端。图10为本发明实施例的终端的一种组成结构示意图;如图10所示,所述终端包括第三确定单元41和第四确定单元42;其中,
所述第三确定单元41,配置为确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据 块的传输次数中的至少一种信息;所述时域资源配置信息包括时域资源偏移量和/或时域资源周期;
所述第四确定单元42,配置为基于所述第三确定单元41确定的所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,如图11所示,所述终端还包括接收单元43,配置为接收来自网络设备的信令,所述信令包括RRC信令、高层信令或物理层信令中的一种;
所述第三确定单元41,配置为基于所述接收单元43接收的所述信令确定以下信息的至少之一:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量。
作为第一种实施方式,所述第四确定单元42,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第二种实施方式,所述第四确定单元42,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第三种实施方式,所述第四确定单元42,配置为基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第四种实施方式,所述第四确定单元42,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第五种实施方式,所述第四确定单元42,配置为基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
作为第六种实施方式,所述第四确定单元42,配置为基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
作为第七种实施方式,所述第四确定单元42,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
本发明实施例中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
本发明实施例中,所述时域资源周期的单位与传输的绝对时长相同或不同。
本发明实施例中,所述终端的第三确定单元41和第四确定单元42,在实际应用中均可由终端中的CPU、DSP、MCU或FPGA实现;所述终端的接收单元43,在实际应用中可通过通信模组(包含:基础通信套件、操作***、通信模块、标准化接口和协议等)及收发天线实现。
需要说明的是:上述实施例提供的终端在进行HARQ编号确定时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将终端的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的终端与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
实施例五
本发明实施例还提供了一种终端。图12为本发明实施例的网络设备/ 终端的硬件组成结构示意图,如图12所示,网络设备/终端包括:至少一个处理器51和用于存储能够在处理器51上运行的计算机程序的存储器52。网络设备/终端还包括用于传输数据的通信组件;各个组件通过总线***54耦合在一起。可理解,总线***54用于实现这些组件之间的连接通信。总线***54除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图12中将各种总线都标为总线***54。
可以理解,存储器52可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic  Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器52旨在包括但不限于这些和任意其它适合类型的存储器。
上述本发明实施例揭示的方法可以应用于处理器51中,或者由处理器51实现。处理器51可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器51中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器51可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器51可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器52,处理器51读取存储器52中的信息,结合其硬件完成前述方法的步骤。
作为第一种实施方式,作为网络设备,所述处理器51执行所述程序时实现:确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传 输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:向终端发送信令,所述信令中携带至少包括:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量中的一种;所述信令包括RRC信令、高层信令或物理层信令中的一种。
作为另一种实施方式,作为终端,所述处理器51执行所述程序时实现:确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息; 所述时域资源配置信息包括时域资源偏移量和/或时域资源周期;基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:接收来自网络设备的信令,基于所述信令确定以下信息的至少之一:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量;所述信令包括RRC信令、高层信令或物理层信令中的一种。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传 输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,所述处理器51执行所述程序时实现:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
实施例六
本发明实施例还提供了一种计算机存储介质,例如包括图12所示的位于网络设备/终端中的存储有计算机程序的存储器52,上述计算机程序可由设备的处理器51执行,以完成前述方法所述步骤。计算机存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
作为一种实施方式,所述计算机存储介质包括位于网络设备中存储有计算机程序的存储器,则本发明实施例提供的计算机存储介质,其上存储有计算机程序,该计算机程序被处理器运行时,执行:确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前 传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:向终端发送信令,所述信令中携带至少包括:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量中的一种;所述信令包括RRC信令、高层信令或物理层信令中的一种。
作为另一种实施方式,所述计算机存储介质包括位于终端中存储有计算机程序的存储器,则本发明实施例提供的计算机存储介质,其上存储有计算机程序,该计算机程序被处理器运行时,执行:确定当前传输的时域 资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括时域资源偏移量和/或时域资源周期;基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:接收来自网络设备的信令,基于所述信令确定以下信息的至少之一:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量;所述信令包括RRC信令、高层信令或物理层信令中的一种。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在一实施例中,该计算机程序被处理器运行时,执行:基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
在本申请所提供的几个实施例中,应该理解到,所揭露的终端、网络设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各 种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种混合自动重传请求HARQ编号确定方法,所述方法包括:
    网络设备确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;
    所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
  2. 根据权利要求1所述的方法,其中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  3. 根据权利要求1所述的方法,其中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  4. 根据权利要求1所述的方法,其中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编 号,包括:
    所述网络设备基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  5. 根据权利要求1所述的方法,其中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  6. 根据权利要求1所述的方法,其中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述网络设备基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  7. 根据权利要求1所述的方法,其中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输的传输次数中的至少一种信息确定HARQ编号,包括:
    所述网络设备基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  8. 根据权利要求1所述的方法,其中,所述网络设备基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ 编号偏移量、当前传输的传输次数中的至少一种信息确定HARQ编号,包括:
    所述网络设备基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  9. 根据权利要求1至8任一项所述的方法,其中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
  10. 根据权利要求1至8任一项所述的方法,其中,所述时域资源周期的单位与传输的绝对时长相同或不同。
  11. 根据权利要求1至8任一项所述的方法,其中,所述方法还包括:
    所述网络设备向终端发送信令,所述信令中携带至少包括:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量中的一种;所述信令包括RRC信令、高层信令或物理层信令中的一种。
  12. 一种HARQ编号确定方法,所述方法包括:
    终端确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括时域资源偏移量和/或时域资源周期;
    所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:所述终端接收来自网络设备的信令,基于所述信令确定以下信息的至少之一:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量;所述信令包括RRC信令、高层信令或物理层信令中的一种。
  14. 根据权利要求12所述的方法,其中,所述终端基于所述当前传输 的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述终端基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  15. 根据权利要求12所述的方法,其中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述终端基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  16. 根据权利要求12所述的方法,其中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述终端基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  17. 根据权利要求12所述的方法,其中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述终端基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  18. 根据权利要求12所述的方法,其中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述终端基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  19. 根据权利要求12所述的方法,其中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述终端基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  20. 根据权利要求12所述的方法,其中,所述终端基于所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号,包括:
    所述终端基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  21. 根据权利要求12至20任一项所述的方法,其中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
  22. 根据权利要求12至20任一项所述的方法,其中,所述时域资源周期的单位与传输的绝对时长相同或不同。
  23. 一种网络设备,所述网络设备包括:第一确定单元和第二确定单 元;
    所述第一确定单元,配置为确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括非动态资源配置的时域资源偏移量和/或时域资源周期;
    所述第二确定单元,配置为基于所述第一确定单元确定的所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
  24. 根据权利要求23所述的网络设备,其中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  25. 根据权利要求23所述的网络设备,其中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  26. 根据权利要求23所述的网络设备,其中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  27. 根据权利要求23所述的网络设备,其中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  28. 根据权利要求23所述的网络设备,其中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定 HARQ编号。
  29. 根据权利要求23所述的网络设备,其中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  30. 根据权利要求23所述的网络设备,其中,所述第二确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  31. 根据权利要求23至30任一项所述的网络设备,其中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
  32. 根据权利要求23至30任一项所述的网络设备,其中,所述时域资源周期的单位与传输的绝对时长相同或不同。
  33. 根据权利要求23至30任一项所述的网络设备,其中,所述网络设备还包括发送单元,配置为向终端发送信令,所述信令中携带至少包括:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量中的一种;所述信令包括RRC信令、高层信令或物理层信令中的一种。
  34. 一种终端,所述终端包括第三确定单元和第四确定单元;其中,
    所述第三确定单元,配置为确定当前传输的时域资源序号、HARQ进程数,以及确定时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息;所述时域资源配置信息包括时域资源偏移量和/或时域资源周期;
    所述第四确定单元,配置为基于所述第三确定单元确定的所述当前传输的时域资源序号、所述HARQ进程数以及所述时域资源配置信息、HARQ编号偏移量、当前传输数据块的传输次数中的至少一种信息确定HARQ编号。
  35. 根据权利要求34所述的终端,其中,所述终端还包括接收单元,配置为接收来自网络设备的信令,所述信令包括RRC信令、高层信令或物理层信令中的一种;
    所述第三确定单元,配置为基于所述接收单元接收的所述信令确定以下信息的至少之一:所述HARQ进程数、所述时域资源配置信息、所述HARQ编号偏移量。
  36. 根据权利要求34所述的终端,其中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  37. 根据权利要求34所述的终端,其中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  38. 根据权利要求34所述的终端,其中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  39. 根据权利要求34所述的终端,其中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  40. 根据权利要求34所述的终端,其中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述当前传输数据块的传输次数、所述时域资源周期、所述HARQ进程数和所述HARQ编号偏移量确定HARQ编号。
  41. 根据权利要求34所述的终端,其中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述当前传输的传输次数、所述时域 资源周期和所述HARQ进程数确定HARQ编号。
  42. 根据权利要求34所述的终端,其中,所述第四确定单元,配置为基于所述当前传输的时域资源序号、所述时域资源偏移量、所述当前传输数据块的传输次数、所述时域资源周期和所述HARQ进程数确定HARQ编号。
  43. 根据权利要求34至42任一项所述的终端,其中,所述时域资源偏移量的单位与传输的绝对时长相同或不同。
  44. 根据权利要求34至42任一项所述的终端,其中,所述时域资源周期的单位与传输的绝对时长相同或不同。
  45. 一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1-11任一项所述的HARQ编号确定方法的步骤。
  46. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求12-22任一项所述的HARQ编号确定方法的步骤。
  47. 一种计算机存储介质,其上存储有计算机指令,该指令被处理器执行时实现权利要求1-11任一项所述的HARQ编号确定方法的步骤;
    或者,该指令被处理器执行时实现权利要求12-22任一项所述的HARQ编号确定方法的步骤。
PCT/CN2017/110583 2017-11-10 2017-11-10 Harq编号确定方法、网络设备、终端和计算机存储介质 WO2019090745A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN201780094191.4A CN111108710A (zh) 2017-11-10 2017-11-10 Harq编号确定方法、网络设备、终端和计算机存储介质
KR1020207012834A KR20200086667A (ko) 2017-11-10 2017-11-10 Harq 번호 결정 방법, 네트워크 장치, 단말 및 컴퓨터 저장 매체
PCT/CN2017/110583 WO2019090745A1 (zh) 2017-11-10 2017-11-10 Harq编号确定方法、网络设备、终端和计算机存储介质
JP2020524815A JP7113079B6 (ja) 2017-11-10 2017-11-10 Harq id決定方法、ネットワーク装置、端末及びコンピュータ記憶媒体
EP17931254.1A EP3697008B1 (en) 2017-11-10 2017-11-10 Method for determining harq number, network device, terminal and computer storage medium
PCT/CN2018/114444 WO2019091414A1 (zh) 2017-11-10 2018-11-07 Harq编号确定方法、网络设备、终端和计算机存储介质
CN202010331515.5A CN111510260B (zh) 2017-11-10 2018-11-07 Harq编号确定方法、网络设备、终端和计算机存储介质
CN201880054713.2A CN111183603A (zh) 2017-11-10 2018-11-07 Harq编号确定方法、网络设备、终端和计算机存储介质
EP18875124.2A EP3700116B1 (en) 2017-11-10 2018-11-07 Harq number determination method, network device, terminal, and computer storage medium
TW107139963A TWI785143B (zh) 2017-11-10 2018-11-09 Harq編號確定方法、網路設備、終端和電腦存儲媒介
US16/869,437 US10892856B2 (en) 2017-11-10 2020-05-07 Method for determining HARQ number and network device
US16/869,485 US11223451B2 (en) 2017-11-10 2020-05-07 HARQ number determination method, network device, and terminal
US17/454,143 US11689322B2 (en) 2017-11-10 2021-11-09 HARQ number determination method, network device, and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110583 WO2019090745A1 (zh) 2017-11-10 2017-11-10 Harq编号确定方法、网络设备、终端和计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/869,437 Continuation US10892856B2 (en) 2017-11-10 2020-05-07 Method for determining HARQ number and network device

Publications (1)

Publication Number Publication Date
WO2019090745A1 true WO2019090745A1 (zh) 2019-05-16

Family

ID=66437543

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/110583 WO2019090745A1 (zh) 2017-11-10 2017-11-10 Harq编号确定方法、网络设备、终端和计算机存储介质
PCT/CN2018/114444 WO2019091414A1 (zh) 2017-11-10 2018-11-07 Harq编号确定方法、网络设备、终端和计算机存储介质

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114444 WO2019091414A1 (zh) 2017-11-10 2018-11-07 Harq编号确定方法、网络设备、终端和计算机存储介质

Country Status (7)

Country Link
US (3) US10892856B2 (zh)
EP (2) EP3697008B1 (zh)
JP (1) JP7113079B6 (zh)
KR (1) KR20200086667A (zh)
CN (3) CN111108710A (zh)
TW (1) TWI785143B (zh)
WO (2) WO2019090745A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811114B (zh) * 2017-05-05 2020-12-01 中兴通讯股份有限公司 一种半持续调度的混合自动重传请求的传输方法及装置
CN111108710A (zh) 2017-11-10 2020-05-05 Oppo广东移动通信有限公司 Harq编号确定方法、网络设备、终端和计算机存储介质
US11509426B2 (en) * 2019-08-14 2022-11-22 Ofinno, Llc URLLC HARQ processes
WO2021030943A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种确定重复传输资源的方法及装置
US12021632B2 (en) * 2020-08-06 2024-06-25 Nokia Technologies Oy Inconsistency free pipelined hybrid automatic repeat request scheme for non-terrestrial network channel
CN113556217B (zh) * 2021-09-18 2022-01-25 深圳传音控股股份有限公司 通信方法、网络设备、终端设备及存储介质
CN117792582A (zh) * 2022-09-19 2024-03-29 荣耀终端有限公司 Harq进程标识的确定方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064805A2 (en) * 2008-12-03 2010-06-10 Lg Electronics Inc. Method for performing harq for relay station
CN102160318A (zh) * 2008-07-18 2011-08-17 捷讯研究有限公司 混合自动重传请求进程映射规则
CN106301711A (zh) * 2007-10-23 2017-01-04 诺基亚技术有限公司 在半持续性传输中改善的重传能力

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100586053C (zh) * 2006-07-12 2010-01-27 大唐移动通信设备有限公司 混合自动重传请求进程处理方法及装置
CN101132262B (zh) * 2006-08-21 2011-04-20 大唐移动通信设备有限公司 一种tdd***同步harq的实现及数据传输的方法
CN101507302A (zh) * 2006-08-21 2009-08-12 交互数字技术公司 用于分组实时服务的资源分配、调度以及信令发送
WO2009132169A1 (en) * 2008-04-25 2009-10-29 Interdigital Patent Holdings, Inc. Methods to implement transmission time interval bundling
KR101139583B1 (ko) * 2008-06-06 2012-04-27 리서치 인 모션 리미티드 다운링크 반지속적 스케쥴링을 위해 하이브리드 자동 반복 요청 정보에 대해 예비할당된 시그널링
CN101651529A (zh) * 2008-08-14 2010-02-17 华为技术有限公司 一种数据重传方法、装置及***
CN101686116B (zh) * 2008-09-23 2012-10-31 电信科学技术研究院 预留混合自动重传请求进程指示方法、***及设备
CN103648175B (zh) * 2010-03-22 2017-09-29 华为技术有限公司 多子帧调度方法、***和设备
CN102394728B (zh) * 2011-11-17 2014-08-20 电信科学技术研究院 下行进程号的确定方法和设备
CN103326834A (zh) * 2013-05-21 2013-09-25 北京邮电大学 Harq重传方法与装置、接收harq重传的方法与装置
US10602488B2 (en) * 2015-10-22 2020-03-24 Qualocmm Incorporated HARQ and control channel timing for enhanced machine type communications (EMTC)
CN106130702A (zh) * 2016-07-15 2016-11-16 深圳市金立通信设备有限公司 一种混合自动重传请求进程处理方法、设备及通信***
KR20220123728A (ko) * 2016-08-12 2022-09-08 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 무선 네트워크 및 디바이스에서의 주기적 자원 할당
US10382170B2 (en) * 2016-09-25 2019-08-13 Ofinno, Llc HARQ process in semi-persistent scheduling
US10869333B2 (en) * 2016-12-16 2020-12-15 Huawei Technologies Co., Ltd. Systems and methods for mixed grant-free and grant-based uplink transmissions
WO2018171242A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. Configuration, indication and ack/nack for multiple harq grant-free transmission
CA3061750C (en) * 2017-05-04 2020-07-14 Ofinno, Llc Semi-persistent scheduling in a wireless network
US10601551B2 (en) * 2017-05-04 2020-03-24 Sharp Kabushiki Kaisha Hybrid automatic repeat request for uplink ultra-reliable and low-latency communications
CN111279774B (zh) * 2017-08-10 2023-07-21 夏普株式会社 用于不具有授权的上行链路传输的过程、基站和用户设备
CN111108710A (zh) * 2017-11-10 2020-05-05 Oppo广东移动通信有限公司 Harq编号确定方法、网络设备、终端和计算机存储介质
DK3711220T3 (da) * 2017-11-16 2022-05-30 Ericsson Telefon Ab L M Datatransmission og gentransmission til semi-persistent planlægning
US10819473B2 (en) * 2018-08-01 2020-10-27 Charter Communications Operating, Llc Disabling, using a designated process, hybrid automatic repeat request (HARQ) acknowledgments for packets for which acknowledgements are supported at network or higher layer
US11497018B2 (en) * 2019-01-11 2022-11-08 Qualcomm Incorporated HARQ process identifier determination for multiple configured scheduling processes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301711A (zh) * 2007-10-23 2017-01-04 诺基亚技术有限公司 在半持续性传输中改善的重传能力
CN102160318A (zh) * 2008-07-18 2011-08-17 捷讯研究有限公司 混合自动重传请求进程映射规则
WO2010064805A2 (en) * 2008-12-03 2010-06-10 Lg Electronics Inc. Method for performing harq for relay station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3697008A4 *

Also Published As

Publication number Publication date
CN111183603A (zh) 2020-05-19
US11689322B2 (en) 2023-06-27
TWI785143B (zh) 2022-12-01
WO2019091414A1 (zh) 2019-05-16
EP3697008B1 (en) 2022-04-13
EP3700116A1 (en) 2020-08-26
EP3697008A4 (en) 2020-09-30
US11223451B2 (en) 2022-01-11
KR20200086667A (ko) 2020-07-17
JP2021510942A (ja) 2021-04-30
CN111510260A (zh) 2020-08-07
JP7113079B6 (ja) 2022-09-30
EP3697008A1 (en) 2020-08-19
EP3700116B1 (en) 2022-09-14
US20200266938A1 (en) 2020-08-20
US10892856B2 (en) 2021-01-12
JP7113079B2 (ja) 2022-08-04
US20220069948A1 (en) 2022-03-03
TW201924256A (zh) 2019-06-16
CN111510260B (zh) 2023-04-18
US20200266933A1 (en) 2020-08-20
EP3700116A4 (en) 2020-12-16
CN111108710A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2019090745A1 (zh) Harq编号确定方法、网络设备、终端和计算机存储介质
TWI707558B (zh) 使用者設備及進行重傳之方法
EP3910841A1 (en) Method executed by user equipment, and user equipment
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
EP3459195B1 (en) Systems and methods for frequency-division duplex transmission time interval operation
WO2020200162A1 (zh) 确定反馈信息的方法和通信装置
WO2020221271A1 (zh) 传输混合自动重传请求harq反馈信息的方法和通信装置
WO2013091578A1 (zh) 通信方法、基站和用户设备
KR20200004373A (ko) 전송 방법, 단말 장치 및 기지국
JP2019501545A (ja) フィードバック情報の伝送方法、端末装置及び基地局
EP3927057A1 (en) Transmission method for physical uplink shared channel, terminal, and network device
JP2022520113A (ja) 物理上り共有チャネルの伝送方法、端末、及びネットワーク機器
JP2022023970A (ja) 通信方法、ネットワークデバイス、および端末
TW202241171A (zh) 用於重傳之混成自動重複請求確認(harq-ack)碼簿之指示技術
WO2020088466A1 (zh) 信息传输方法及装置
US20220287029A1 (en) Uci transmission and reception methods, device, system, apparatus, and medium
WO2018201807A1 (zh) 一种确定数据是否受到破坏的方法及装置
WO2020200124A1 (zh) 信息传输方法及相关装置
JP2000078118A (ja) 自動再送要求データ伝送方法
WO2022121856A1 (zh) 半持续调度物理下行共享信道的码本生成方法及装置
WO2023231910A1 (zh) 反馈信息发送方法、反馈信息接收方法、终端及存储介质
CN117676877A (zh) 一种通信方法、装置、通信设备和计算机存储介质
JP2023521114A (ja) マルチ送受信ポイントアーキテクチャにおける再送信方法および装置
CN114793153A (zh) 非周期参考信号传输方法及相关装置
CN115118393A (zh) 反馈信息处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017931254

Country of ref document: EP

Effective date: 20200515