WO2019088025A1 - Methacrylic resin, methacrylic resin composition, and molded body - Google Patents

Methacrylic resin, methacrylic resin composition, and molded body Download PDF

Info

Publication number
WO2019088025A1
WO2019088025A1 PCT/JP2018/040128 JP2018040128W WO2019088025A1 WO 2019088025 A1 WO2019088025 A1 WO 2019088025A1 JP 2018040128 W JP2018040128 W JP 2018040128W WO 2019088025 A1 WO2019088025 A1 WO 2019088025A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylic resin
mass
methyl methacrylate
parts
resin composition
Prior art date
Application number
PCT/JP2018/040128
Other languages
French (fr)
Japanese (ja)
Inventor
達 阿部
竹友 山下
淳裕 中原
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019550374A priority Critical patent/JP7184793B2/en
Publication of WO2019088025A1 publication Critical patent/WO2019088025A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to methacrylic resins. More particularly, the present invention relates to a methacrylic resin having high thermal decomposition resistance, low foaming during molding, and high heat resistance.
  • the present invention also relates to a methacrylic resin composition and a molded article.
  • the methacrylic resin has high transparency and is useful as a material of a molded body used for an optical member, a lighting member, a signboard member, a decoration member and the like.
  • Patent Document 1 A methacrylic resin composition having improved thermal decomposition resistance, heat resistance and moldability is known (Patent Document 1). By using this resin composition, there is no foaming at the time of molding processing, and a molded article having high surface smoothness and relatively high heat resistance can be obtained. However, heat resistance is not sufficient in applications requiring heat resistance such as in-vehicle displays.
  • the present invention has been made in view of the above background, and the object of the present invention is a methacrylic resin, a methacrylic resin composition and a molded article having high heat decomposition resistance, low foaming at the time of molding, and heat resistance. To provide.
  • the present invention provides the following methacrylic resin, methacrylic resin composition and molded article.
  • [1] Comprising 99% by mass to 100% by mass of methyl methacrylate-derived structural units and 0% by mass to 1% by mass of acrylic acid ester-derived structural units,
  • the syndiotacticity (rr) in ternary notation is X%
  • the weight average molecular weight is Y
  • the amount of methyl methacrylate remaining is Z mass% in the methacrylic resin (A)
  • the remaining chain A methacrylic resin whose value calculated by the formula: X ⁇ Y / (10000 ⁇ Z ⁇ W) is 20 or more and 30 or less when the amount of transfer agent is W ppm in the methacrylic resin (A).
  • the amount of methyl methacrylate remaining is 55 to 58%, and the amount of methyl methacrylate remaining is 0.7% by mass or less in the methacrylic resin (A), and the methyl methacrylate dimer remaining
  • the amount of methyl methacrylate in the methacrylic resin (A) is 1,000 ppm or less, the amount of methyl methacrylate trimer remaining is 300 ppm or less in the methacrylic resin (A), and the amount of residual chain transfer agent is 200 ppm in the methacrylic resin (A) It is the following, The methacrylic resin as described in [1] whose glass transition temperature (Tg) satisfy
  • a methacrylic resin composition which further comprises 5 to 50 parts by mass of a crosslinked rubber with respect to 100 parts by mass of the methacrylic resin according to any one of [1] to [5].
  • a methacrylic resin composition further comprising 0.0001 to 0.1 parts by mass of light diffusing particles with respect to 100 parts by mass of the methacrylic resin according to any one of [1] to [5].
  • a molded article comprising the methacrylic resin according to any one of [1] to [5] or the methacrylic resin composition according to [6] or the methacrylic resin composition according to [7].
  • the molded object as described in [8] whose molded object is a film.
  • a methacrylic resin a methacrylic resin composition, and a molded article having high thermal decomposition resistance, low foaming at the time of molding, and heat resistance.
  • the methacrylic resin (A) of the present invention contains 99% by mass or more of a structural unit derived from methyl methacrylate.
  • the content of structural units derived from methyl methacrylate is preferably 99.5% by mass or more, and more preferably 100% by mass.
  • the “structural unit” is derived from a monomer, and the calculation of the ratio of each structural unit does not include components other than the monomer such as a chain transfer agent and a polymerization initiator.
  • the proportion of “structural units” is calculated based on a tetramer or higher methacrylic resin, and monomers, dimers and trimers of the raw materials such as methyl methacrylate and acrylic esters are proportions of structural units. Not considered in the calculation.
  • methyl methacrylate for example, methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl (meth) acrylate (Meth) acrylic acid alkyl esters such as hexyl; aryl acrylates such as phenyl acrylate; acrylic acid cycloalkylates such as cyclohexyl acrylate and norbornenyl acrylate; aromatic vinyls such as styrene and ⁇ -methylstyrene Acrylamide; methacrylamide; acrylonitrile; methacrylonitrile; and the like.
  • Examples include structural units derived from a vinyl-based monomer having only one polymerizable carbon-carbon double bond in one molecule.
  • structural units of (meth) acrylic acid ester are preferable in that they are easily copolymerized and a resin having high transparency can be obtained.
  • acrylic acid ester includes acrylic acid alkyl ester, acrylic acid aryl ester, acrylic acid cycloalkyl ester.
  • the content of structural units other than structural units derived from methyl methacrylate is preferably 1% by mass or less, more preferably 0.5% by mass or less, and most preferably 0.1% by mass or less.
  • the content of the structural unit derived from the acrylic ester is 0% by mass to 1% by mass.
  • 0% by mass that is, it is desirable not to contain.
  • the acid value of the methacrylic resin (A) tends to increase.
  • the syndiotacticity (rr) in ternary notation is X%
  • the weight average molecular weight is Y
  • the amount of methyl methacrylate remaining in the methacrylic resin (A) is The value calculated by the formula: X ⁇ Y / (10000 ⁇ Z ⁇ W) is 20 when the amount of remaining chain transfer agent is W ppm or less in the methacrylic resin (A). 30 or more, preferably 21 or more and 29 or less.
  • the value calculated by the formula: X ⁇ Y / (10000 ⁇ Z ⁇ W) is small, the heat resistance tends to be low, and the impact resistance and the toughness of the obtained film tend to be low. If the value calculated by the formula: X ⁇ Y / (10000 ⁇ Z ⁇ W) is large, the moldability tends to be poor and the thermal decomposition resistance tends to be low.
  • the methacrylic resin (A) of the present invention has a syndiotacticity (rr) of triad indication of 55% to 60%, preferably 56% to 59% or 55% to 58%. If the syndiotacticity is more than 60%, the glass transition temperature of the methacrylic resin will be high, and the thermal decomposition will not only decrease, but the molding processing temperature must be set high, and the resin will be easily foamed. On the other hand, when the syndiotacticity is less than 55%, the glass transition temperature is low and the resin becomes low in heat resistance.
  • syndiotacticity (rr) displayed in triples will be described.
  • meso chain of structural units in a polymer molecule
  • racemo chain of structural units in a polymer molecule
  • m and r racemo
  • a syndiotacticity in which a ratio in which two chains (bi-dim, diad) of three successive structural units (tri-d, triad) are both racemo (denoted as rr) is represented by a triad It is a city (rr) (hereinafter simply referred to as "syndiotacticity (rr)").
  • the syndiotacticity (rr) (%) in ternary notation is measured at 30 ° C. in deuterated chloroform, and the 1 H-NMR spectrum is measured.
  • the area (P) of the region of ⁇ 0.95 ppm and the area (Q) of the region of 0.6 ⁇ 1.35 ppm are measured, and the value is calculated by the formula: (P / Q) ⁇ 100.
  • the methacrylic resin (A) of the present invention preferably has a weight average molecular weight (hereinafter referred to as "Mw") of 50000 to 150000, more preferably 55000 to 120000, and still more preferably 57000 to 100000.
  • Mw weight average molecular weight
  • a film obtained when the Mw is 50,000 or more tends to be excellent in impact resistance and toughness.
  • the molecular weight is 150000 or less, the molding processability of the methacrylic resin is enhanced, so that the thickness of the obtained film tends to be uniform and the surface smoothness is excellent.
  • Mw weight average molecular weight
  • the ratio of Mw to number average molecular weight (hereinafter referred to as “Mn”) (Mw / Mn: hereinafter referred to as “molecular weight distribution”) is preferably 1.2. It is -2.5, more preferably 1.5-2.0.
  • Mw and Mn are values obtained by converting the chromatogram measured by gel permeation chromatography (GPC) into the molecular weight of standard polystyrene.
  • the methacrylic resin (A) of the present invention preferably has a melt flow rate of 0.1 g / 10 min or more, more preferably 0, which is measured at 230 ° C. under a load of 3.8 kg in accordance with JIS K 7210. 0.5 to 30 g / 10 min, more preferably 1.0 to 20 g / 10 min, and most preferably 1.1 to 5 g / 10 min.
  • the glass transition temperature of the methacrylic resin (A) satisfies the following formula.
  • the glass transition temperature of the methacrylic resin (A) is preferably 120 ° C. or more, more preferably 121 ° C. or more, still more preferably 122 ° C. or more.
  • the upper limit of the glass transition temperature of the methacrylic resin is usually 125 ° C. or less, preferably 124 ° C. or less, more preferably 123 ° C. or less.
  • the glass transition temperature can be controlled by adjusting the molecular weight and syndiotacticity (rr). When the glass transition temperature is in this range, deformation such as thermal contraction of the obtained film hardly occurs, and thermal decomposition of the resin at the time of molding of a molded article such as a film is easily suppressed.
  • the acid value of acetic acid conversion of the methacrylic resin (A) of the present invention is 40 ppm or less, preferably 30 ppm or less, more preferably 20 ppm or less from the viewpoint of good thermal decomposition resistance. If the acid value in terms of acetic acid is too high, it is not only inferior in thermal decomposition resistance, but also reacts with other compounds at the time of molding to generate gel and the like, which may cause a defect of the molded article, which is not preferable.
  • the evaluation of the acid value is a value calculated as the amount of acetic acid contained with respect to the weight of the methacrylic resin (A) after converting the acid value of JIS K 0070: 1992 into the amount of acetic acid instead of KOH conversion. Specifically, it may be measured by the method described in the examples.
  • the thermal weight retention measured at a constant temperature of 290 ° C. for 10 minutes in the air atmosphere of the methacrylic resin (A) of the present invention is preferably 90% or more, more preferably 91% or more, and more preferably 92% from the viewpoint of heat decomposition resistance The above is the most preferable.
  • the measurement of the thermal weight retention ratio is from 50 ° C. to 290 ° C. at a flow rate of 50 ml / min of the dry air at a flow rate of 50 ml / min of the methacrylic resin (A) under an air atmosphere using a thermogravimetric measurement device (manufactured by Shimadzu Corporation, TGA). After the temperature is raised at 20 ° C./min, the thermal weight loss may be measured under the condition of maintaining at 290 ° C. for 10 minutes as it is in the air atmosphere. For example, based on the weight (X1) of 50 ° C. (retention 100%), the heat decomposition resistance can be evaluated by the following equation based on the weight (X2) when held at 290 ° C. for 10 minutes. It can be said that the higher the thermal weight retention, the higher the thermal decomposition resistance.
  • the method for producing the methacrylic resin (A) is preferably a radical polymerization method from the viewpoints of low coloring, small acid value, good thermal decomposition resistance, and good productivity.
  • the radical polymerization method is preferably continuous bulk polymerization without solvent from the viewpoint of obtaining a low impurity concentration methacrylic resin (A).
  • the polymerization reaction is preferably performed with a low amount of dissolved oxygen.
  • the polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen gas.
  • the polymerization initiator used in the radical polymerization method for producing the methacrylic resin (A) is not particularly limited as long as it generates reactive radicals.
  • t-hexylperoxyisopropyl monocarbonate t-hexylperoxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, t-butylperoxypivalate T-Hexylperoxypivalate, t-butylperoxyneodecanoate, t-hexylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1 1,1-Bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2'-azobis (2-methylpropionitrile), 2, 2
  • t-hexylperoxy 2-ethylhexanoate 1,1-bis (t-hexylperoxy) cyclohexane and dimethyl 2,2'-azobis (2-methylpropionate) are preferable.
  • the one-hour half-life temperature of such a polymerization initiator is preferably 60 to 140 ° C., more preferably 80 to 120 ° C.
  • the polymerization initiator used for producing the methacrylic resin (A) preferably has a hydrogen extraction ability of 20% or less, more preferably 10% or less, and still more preferably 5% or less.
  • Such polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.0001 to 0.02 parts by mass, more preferably 0.001 to 0.01 parts by mass, and more preferably 100 parts by mass of the monomer to be subjected to the polymerization reaction. Is from 0.005 to 0.007 parts by mass.
  • hydrogen extraction ability can be known from the technical data of polymerization initiator manufacturer (for example, Nippon Oil and Fats Co., Ltd. technical data "Hydrogen extraction ability and initiator efficiency of organic peroxide" (prepared in April 2003) etc. .
  • it can be measured by a radical trapping method using ⁇ -methylstyrene dimer, ie, ⁇ -methylstyrene dimer trapping method. The said measurement is generally performed as follows. First, the polymerization initiator is cleaved in the coexistence of ⁇ -methylstyrene dimer as a radical trapping agent to form radical fragments.
  • radical fragments having low hydrogen abstraction ability are captured by being attached to the double bond of ⁇ -methylstyrene dimer.
  • radical fragments having high hydrogen abstraction ability abstract hydrogen from cyclohexane to generate cyclohexyl radicals, and the cyclohexyl radicals are added and captured to the double bond of ⁇ -methylstyrene dimer to form a cyclohexane capture product. Therefore, the hydrogen extraction ability is defined as the ratio (molar fraction) of radical fragments having a high hydrogen extraction ability to the theoretical amount of radical fragment generation, which is determined by quantifying cyclohexane or a cyclohexane scavenging product.
  • n-octyl mercaptan As a chain transfer agent used in the radical polymerization method for producing the methacrylic resin (A), n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol Ethylene glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- ( ⁇ -thiopropio) And alkyl mercaptans such as pentaerythritol tetrakisthiopropionate.
  • monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferable.
  • chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is preferably 0.1 to 1 part by mass, more preferably 0.15 to 0.8 parts by mass, still more preferably 0 based on 100 parts by mass of the monomer to be subjected to the polymerization reaction. 2 to 0.6 parts by weight, most preferably 0.2 to 0.5 parts by weight.
  • the amount of the chain transfer agent used is preferably 2500 to 10000 parts by mass, more preferably 3000 to 9000 parts by mass, and still more preferably 3500 to 6000 parts by mass with respect to 100 parts by mass of the polymerization initiator. When the amount of chain transfer agent used is in the above range, the resulting methacrylic resin (A) tends to have good moldability and high mechanical strength.
  • the temperature during the polymerization reaction is preferably 80 to 115 ° C., more preferably 90 to 110 ° C., and even more preferably 95 to 105 ° C.
  • productivity tends to be improved due to the improvement of the polymerization rate, the decrease in viscosity of the polymerization solution, and the like.
  • the polymerization temperature is 115 ° C. or less, the control of the polymerization rate is facilitated, the formation of by-products is suppressed, and a methacrylic resin having a desired glass transition temperature can be obtained.
  • the temperature at the time of the polymerization reaction can be controlled by the temperature of the reactor jacket and the polymerization rate.
  • the polymerization reaction time is preferably 0.5 to 4 hours, more preferably 1.5 to 3.5 hours, and still more preferably 1.5 to 3 hours. In the case of a continuous flow reactor, the polymerization reaction time is the average residence time in the reactor. When the temperature at the time of the polymerization reaction and the time of the polymerization reaction are in the above range, the methacrylic resin (A) having excellent transparency can be produced with high efficiency.
  • the polymerization conversion in the radical polymerization method for producing the methacrylic resin (A) is preferably 20 to 70% by mass, more preferably 30 to 60% by mass, and still more preferably 35 to 55% by mass.
  • the conversion rate of polymerization is at least 20% by mass, removal of the remaining unreacted monomer is facilitated when the volatile matter removal step is provided, and the resulting methacrylic resin is difficult to foam, and a molded article obtained The appearance of the tends to be good.
  • the polymerization conversion rate is 70% by mass or less, the viscosity of the polymerization solution tends to be low, and the productivity tends to be improved.
  • the radical polymerization may be carried out using a batch reactor, but from the viewpoint of productivity, it is preferable to carry out using a continuous flow reactor.
  • a polymerization reaction raw material a mixed solution containing a monomer, a polymerization initiator, a chain transfer agent, etc.
  • a polymerization reaction raw material a mixed solution containing a monomer, a polymerization initiator, a chain transfer agent, etc.
  • the liquid in the reactor is withdrawn at a flow rate corresponding to the volume.
  • a tubular reactor which can be brought into a state close to a plug flow and / or a tank reactor which can be brought into a state close to complete mixing can be used.
  • continuous flow polymerization may be performed in one reactor, or continuous flow polymerization may be performed by connecting two or more reactors.
  • a continuous flow type tank reactor for at least one unit.
  • the liquid volume in the tank reactor at the time of the polymerization reaction is preferably 1/4 to 3/4, more preferably 1/3 to 2/3, with respect to the volume of the tank reactor.
  • the reactor is usually fitted with a stirrer.
  • a stirring apparatus a static stirring apparatus and a dynamic stirring apparatus are mentioned.
  • the dynamic stirring device include a Max-blend type stirring device, a stirring device having a grid-like blade rotating around a vertical rotation shaft disposed at the center, a propeller type stirring device, a screw type stirring device and the like.
  • the Max Blend type stirring apparatus is preferably used from the viewpoint of uniform mixing.
  • the volatilization method may, for example, be an equilibrium flash method or an adiabatic flash method.
  • the volatilization temperature by the adiabatic flash method is preferably 200 to 270 ° C., more preferably 220 to 260 ° C.
  • the heating time of the resin in the adiabatic flush method is preferably 0.3 to 5 minutes, more preferably 0.4 to 3 minutes, and still more preferably 0.5 to 2 minutes.
  • the unreacted monomers removed can be recovered and used again for the polymerization reaction.
  • the yellow index of the recovered monomer may be high due to the heat applied during the recovery operation and the like.
  • the recovered monomer is preferably purified by an appropriate method such as distillation or adsorption purification using a column to reduce the acid value and the yellow index.
  • a resin mixture containing volatile matter such as polymer, monomer, dimer, trimer, chain transfer agent, etc. obtained after the polymerization is transferred from the reactor to a twin-screw extruder equipped with a vent. It can be transported continuously. This can be followed by equilibration or adiabatic flush at the twin screw extruder inlet, followed by devolatilization via the twin screw extruder vent.
  • the pressure of the resin melt immediately before the flash in the adiabatic flash is preferably 1.5 to 3.0 MPa, more preferably 2.0 to 2.5 MPa. If the pressure is less than 1.5 MPa, the flash tends to be insufficient and the amount of residual monomers tends to be large. On the other hand, when the pressure exceeds 3.0 MPa, stable production tends to be difficult to obtain.
  • the twin-screw extruder used in the present invention is preferably equipped with a vent.
  • the vent is preferably a vacuum vent or an open vent. At least one vent is provided downstream of the polymer inflow portion.
  • the pressure in the vacuum vent is preferably 30 Torr or less, more preferably 15 Torr or less, still more preferably 9 Torr or less, and most preferably 6 Torr or less. If the pressure in the vacuum vent is within the above range, the degassing efficiency is good, and monomers, dimers, trimers, chain transfer agents, etc. remaining in the methacrylic resin (A) can be reduced. .
  • the screw of the twin screw extruder is preferably a co-directional twin screw.
  • the shear energy applied to the resin is greater than in the single-axial case, and the degree of surface renewal is large, so degassing can be performed efficiently, so that the amount of remaining unreacted monomers, dimers, trimers, etc. can be reduced.
  • the screw configuration has a kneading segment portion of 5% or more with respect to the total screw length.
  • the kneading segment may, for example, be a rotor segment, a forward feed kneading disc, a reverse feed kneading disc, a mixing gear or the like.
  • the cylinder heating temperature of the twin-screw extruder is preferably 200 to 270 ° C., more preferably 220 to 260 ° C., and still more preferably 230 to 250 ° C. If it is less than 210 ° C., it takes a long time to degas, and the degassing tends to be insufficient. When degassing is insufficient, appearance defects such as silver may occur on the molded body. Conversely, if the temperature exceeds 270 ° C., the amount of terminal double bonds in the methacrylic resin (A) increases, and the acid value increases, making it difficult to ensure the thermal decomposition resistance. Also, the formation of the aforementioned dimers and trimers may be increased.
  • the methacrylic resin (A) of the present invention is preferably composed only of a methacrylic resin, but actually, when obtained as a methacrylic resin (A), a small amount of other optional components resulting from the production conditions is present There is.
  • Other components resulting from the production conditions include unreacted monomers, dimers, trimers, chain transfer agents and the like. In the present specification, for the sake of convenience, those containing these other components are also referred to as methacrylic resin (A).
  • the content of the other component is preferably 1% by mass or less in the methacrylic resin (A).
  • the content of the other components is in this range, the decrease in the glass transition temperature is reduced.
  • the amount of methyl methacrylate remaining in the remaining unreacted monomer is preferably 0.7% by mass or less, more preferably 0.6 in the methacrylic resin (A). It is at most mass%, more preferably at most 0.5 mass%.
  • the amount of methyl methacrylate dimer remaining in the methacrylic resin (A) of the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less in the methacrylic resin (A).
  • the amount of methyl methacrylate trimer remaining in the methacrylic resin (A) of the present invention is preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less, particularly 0 ppm, in the methacrylic resin (A).
  • the amount of the chain transfer agent remaining in the methacrylic resin (A) of the present invention is preferably 200 ppm or less, more preferably 150 ppm or less, still more preferably 100 ppm or less, in the methacrylic resin (A).
  • the methacrylic resin (A) of the present invention can be used as a methacrylic resin composition (B) by adding an ultraviolet light absorber, a polycarbonate resin, a phenoxy resin, a crosslinked rubber, light diffusing particles and the like.
  • an ultraviolet light absorber can be added to the methacrylic resin (A) of the present invention to use it as a methacrylic resin composition (B). That is, the methacrylic resin composition (B) can contain the methacrylic resin (A) and an ultraviolet absorber.
  • the ultraviolet absorber used in the present invention is a known ultraviolet absorber which may be blended into a thermoplastic resin. If the molecular weight of the ultraviolet absorber is 200 or less, problems such as foaming may occur when molding the methacrylic resin composition (B), so the lower limit of the molecular weight of the ultraviolet absorber is preferably 300. Or more, more preferably 500 or more, and still more preferably 600 or more.
  • the amount of the ultraviolet absorber which can be contained in the methacrylic resin composition (B) of the present invention is preferably 0.1 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the methacrylic resin (A). It is more preferably part, still more preferably 1 to 2 parts by mass.
  • UV absorbers are compounds having the ability to absorb UV light. UV absorbers are compounds that are said to mainly have the function of converting light energy into thermal energy.
  • UV absorbers examples include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic esters, formamidines and the like. One of these may be used alone, or two or more of these may be used in combination. Among these, benzotriazoles (compounds having a benzotriazole skeleton) and triazines (compounds having a triazine skeleton) are preferable.
  • the benzotriazoles or triazines have a high effect of suppressing deterioration (for example, yellowing etc.) of the resin due to ultraviolet light.
  • triazines examples include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) and analogues thereof.
  • Certain hydroxyphenyl triazine UV absorbers BASF; CGL777, TINUVIN 460, TINUVIN 479, etc.
  • a polycarbonate resin or a phenoxy resin can be added to the methacrylic resin (A) of the present invention to be used as a methacrylic resin composition (B).
  • a polycarbonate resin or a phenoxy resin By containing a polycarbonate resin or a phenoxy resin, it is possible to obtain a methacrylic resin composition (B) whose retardation can be easily adjusted.
  • the amount of the polycarbonate resin or phenoxy resin is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and still more preferably 0.8 to 4 parts by mass with respect to 100 parts by mass of the methacrylic resin (A). It is a mass part.
  • a cross-linked rubber can be added to the methacrylic resin (A) of the present invention to use it as a methacrylic resin composition (B). That is, the methacrylic resin composition (B) can contain the methacrylic resin (A) and a crosslinked rubber.
  • the content of the crosslinked rubber in the methacrylic resin composition (B) is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, still more preferably 15 to 30 with respect to 100 parts by mass of the methacrylic resin (A). It is a mass part.
  • the crosslinked rubber used in the present invention is a polymer exhibiting rubber elasticity in which a polymer chain is crosslinked by a structural unit derived from a crosslinkable monomer.
  • the crosslinkable monomer is one having two or more polymerizable functional groups in one monomer.
  • crosslinked rubber examples include acrylic crosslinked rubber and diene based crosslinked rubber, and more specifically, acrylic acid alkyl ester monomers, crosslinkable monomers and other vinyl monomers Copolymer rubber, copolymer rubber of conjugated diene monomer, crosslinkable monomer and other vinyl monomer, acrylic acid alkyl ester monomer and conjugated diene monomer and crosslinkable monomer Copolymer rubbers of monomers and other vinyl monomers can be mentioned.
  • the crosslinked rubber is preferably contained in the form of particles in the methacrylic resin composition.
  • the crosslinked rubber particle may be a single layer particle consisting only of a crosslinked rubber, or may be a multilayer particle consisting of a crosslinked rubber and another polymer.
  • core-shell type particles comprising a core comprising a crosslinked rubber and a shell comprising another polymer are preferred.
  • the volume-based average particle diameter of the crosslinked rubber particles used in the present invention is preferably 0.02 to 1 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, and still more preferably 0.1 to 0.3 ⁇ m.
  • the volume-based average particle diameter in the present specification is a value calculated based on electron microscopic observation of the methacrylic resin composition (B) containing crosslinked rubber particles.
  • Light diffusing particles can be added to the methacrylic resin (A) of the present invention to be used as a methacrylic resin composition (B). That is, the methacrylic resin composition (B) can contain the methacrylic resin (A) and light diffusing particles.
  • the content of the light diffusing particles in the methacrylic resin composition (B) is preferably 0.0001 to 0.1 parts by mass, more preferably 0.0002 to 0.01 based on 100 parts by mass of the methacrylic resin (A). It is a mass part.
  • the light diffusing particle used in the present invention is a particle having a refractive index different from that of the methacrylic resin (A) and scattering light. Light diffusing particles described in WO 2010/113422 are preferred.
  • the volume average particle diameter (volume average diameter) d of the light diffusion particles is preferably 0.5 to 5 ⁇ m, more preferably 0.75 to 4 ⁇ m, and particularly preferably 1 to 3 ⁇ m.
  • the volume average particle diameter d of the light diffusion particles is smaller than 0.5 ⁇ m, a difference in color may occur between the vicinity of the light incident end face of the molded body and the position away therefrom.
  • the volume average particle diameter d of the light diffusing particles is larger than 5 ⁇ m, the light diffusing particles having a relatively large particle diameter may become bright spots when the light source is turned on and may deteriorate the appearance.
  • the volume average particle diameter d in the present specification is a particle diameter obtained by photographing an electron micrograph of primary particles and determining by image analysis type particle size distribution measurement software.
  • the refractive index difference ( ⁇ n) between the methacrylic resin (A) and the light diffusing particles is preferably 0.3 to 3.
  • the refractive index difference ( ⁇ n) is smaller than 0.3, light can not be extracted efficiently, and the transparency may be inferior to the brightness when the light source is turned on.
  • the refractive index difference ( ⁇ n) is more preferably 0.4 or more.
  • the refractive index difference ( ⁇ n) is larger than 3, backscattering is dominant in scattered light, so that light can not be extracted efficiently, and the transparency at the time of lighting the light source is poor There is a case.
  • inorganic compound particles having a large difference in refractive index with respect to the methacrylic resin (A) are preferably used.
  • titanium oxide, zinc oxide and the like are preferably used.
  • the volume average particle diameter d of the light diffusion particles is too small, a change in color such as coloring which may be attributed to the Rayleigh scattering phenomenon may occur.
  • a change in color such as coloring that may be caused by the Rayleigh scattering phenomenon may occur.
  • the scattered light may be bluish near the light source and may be yellowish at a position away from the light source.
  • ⁇ d) of the volume average particle diameter d ( ⁇ m) of the light diffusing particle and the absolute value of the refractive index difference ( ⁇ n) in order to suppress the change in color such as coloring that is considered to be caused by the Rayleigh scattering phenomenon Is preferably 0.1 ⁇ m or more.
  • methacrylic resin composition (B) of the present invention may be contained in the methacrylic resin composition (B) of the present invention in addition to the methacrylic resin (A), the ultraviolet absorber, the polycarbonate resin, the phenoxy resin, the crosslinked rubber, and the light diffusing particles.
  • polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, Styrene resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; methyl methacrylate polymer, methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate, polybutylene terephthalate; nylon 6 , Nylon 66, polyamides such as polyamide elastomer; polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyfluorinated vinyl Silicone rubber, acrylic thermoplastic elastomer; styrene thermoplastic elastomer such
  • a filler In the methacrylic resin composition (B) according to the present invention, a filler, an antioxidant, a thermal deterioration inhibitor, a light stabilizer, a lubricant, a mold release agent, a polymer processing aid, an antistatic, in addition to the ultraviolet absorber.
  • the additive which may be mix
  • the filler examples include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate and magnesium carbonate.
  • the amount of the filler that can be contained in the methacrylic resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less, and still more preferably 0% by mass.
  • the antioxidant has an effect of preventing oxidative deterioration of the resin alone in the presence of oxygen.
  • phosphorus-based antioxidants, hindered phenol-based antioxidants, thioether-based antioxidants and the like can be mentioned.
  • One of these antioxidants may be used alone, or two or more thereof may be used in combination.
  • phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and a combination of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable.
  • the usage of the phosphorus-based antioxidant is 1: 5 to 2: 2 in mass ratio 1 is preferable, and 1: 2 to 1: 1 is more preferable.
  • phosphorus-based antioxidants examples include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (manufactured by ADEKA; trade name: Adekastab HP-10), tris (2,4-di-t-).
  • Butylphenyl) phosphite (manufactured by BASF AG; trade name: IRGAFOS 168), 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9 -Diphosphaspiro [5.5] undecane (manufactured by ADEKA; trade name: Adekastab PEP-36) and the like are preferable.
  • a hindered phenol-based antioxidant pentaerythrityl-tetrakis [3- (3,5-di t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX1010), octadecyl-3- ( Preferred is 3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF AG; trade name IRGANOX 1076).
  • the thermal deterioration inhibitor is capable of preventing thermal deterioration of the resin by trapping polymer radicals generated when exposed to high heat under substantially oxygen-free conditions.
  • thermal degradation inhibitor 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: SMILIZER GM), Preferred is 2,4-di t-amyl-6- (3 ′, 5′-di t-amyl-2′-hydroxy- ⁇ -methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: SMILIZER GS).
  • a light stabilizer is a compound that is said to have the function of capturing radicals generated mainly by oxidation by light.
  • Suitable light stabilizers can include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
  • stearic acid for example, stearic acid, behenic acid, stearoamic acid, methylene bis stearoamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, hydrogenated oil and the like can be mentioned.
  • the mold release agent examples include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as monoglyceride stearate and diglyceride stearate.
  • higher alcohols such as cetyl alcohol and stearyl alcohol
  • glycerin higher fatty acid esters such as monoglyceride stearate and diglyceride stearate.
  • the ratio is not particularly limited, but the amount of the higher alcohol used: the used amount of the glycerin fatty acid monoester is 2.5: 1 to 3.3 by mass ratio. 5: 1 is preferable, and 2.8: 1 to 3.2: 1 is more preferable.
  • the polymer processing aid is a polymer compound having an average polymerization degree of 3,000 to 40,000, and preferably 60% by mass or more of a methyl methacrylate unit and 40 mass of a vinyl monomer unit copolymerizable therewith. % Or less.
  • the average degree of polymerization of the polymer processing aid can be determined as a degree of polymerization in terms of PMMA using an automatic dilution capillary viscometer (Ubbelohde type) and measurement at 20 ° C. using chloroform as a solvent.
  • polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m which can usually be produced by emulsion polymerization, can be used.
  • the polymer particle may be a single layer particle consisting of a polymer having a single composition ratio and a single intrinsic viscosity, or a multilayer particle consisting of two or more polymers different in composition ratio or intrinsic viscosity. May be Among these, particles of a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferably mentioned.
  • the polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the effect of improving formability tends to be low. When the intrinsic viscosity is too large, the molding processability of the methacrylic resin composition tends to decrease. Specifically, there may be mentioned Metabrene-P series manufactured by Mitsubishi Rayon Co., Ltd. and Paraloid series manufactured by Dow Chemical Co.
  • flame retardants include organic halogen flame retardants such as tetrabromobisphenol A, decabromodiphenyl oxide and brominated polycarbonate; non-halogen flame retardants such as antimony oxide, aluminum hydroxide, zinc borate and tricresyl phosphate Etc.
  • organic halogen flame retardants such as tetrabromobisphenol A, decabromodiphenyl oxide and brominated polycarbonate
  • non-halogen flame retardants such as antimony oxide, aluminum hydroxide, zinc borate and tricresyl phosphate Etc.
  • antistatic agent for example, stearoamidopropyl dimethyl- ⁇ -hydroxyethyl ammonium nitrate and the like can be mentioned.
  • dyes and pigments examples include titanium oxide and bengala.
  • organic dye a compound having a function of converting ultraviolet light into visible light is preferably used.
  • Examples of the light diffusing agent and the matting agent include glass particles, polysiloxane based crosslinked particles, crosslinked polymer particles, talc, calcium carbonate and barium sulfate.
  • a fluorescent substance As a fluorescent substance, a fluorescent pigment, a fluorescent dye, a fluorescent white dye, a fluorescent whitening agent, a fluorescent bleaching agent etc. can be mentioned.
  • the total amount of the light diffusing agent, the organic dye, the matting agent and the phosphor is preferably 7% by mass or less, more preferably 5% by mass or less, still more preferably 4% by mass or less, most preferably 1% by mass or less is there.
  • the methacrylic resin composition (B) of the present invention preferably contains 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more of the methacrylic resin (A) of the present invention.
  • the haze of 3.2 mm thickness of the methacrylic resin (A) or the methacrylic resin composition (B) of the present invention is preferably 3.0% or less, more preferably 2.0% or less, and 1.5% or less More preferable.
  • the methacrylic resin (A) or the methacrylic resin composition (B) of the present invention can be in the form of pellets or the like in order to enhance convenience during storage, transportation, or molding.
  • the methacrylic resin (A) or the methacrylic resin composition (B) of the present invention can be reacted with a polymer by a known method.
  • a polymer reaction the imidization reaction described in JP-A-2008-273140, JP-A-2008-274187, JP-A-2010-254742 or JP-A-2010-261025, or the grafting described in JP-A-2012-20183. Reaction is mentioned.
  • the methacrylic resin (A) or the methacrylic resin composition (B) of the present invention can be formed into a molded product by a known molding method.
  • a molding method for example, T-die method (lamination method, co-extrusion method, etc.), inflation method (co-extrusion method, etc.), compression molding method, blow molding method, calendar molding method, vacuum molding method, injection molding method (insert Examples include melt-forming methods such as a method, a two-color method, a pressing method, a core back method, a sandwich method, and the like, and a solution casting method.
  • a mold is generally used to mold a resin.
  • the mold is often made of metal, but other than metal, for example, a rubber roll, tempered glass, etc. are also present.
  • the shape of the molded object of this invention is arbitrary and is not specifically limited, For example, a film, a sheet, a board, etc. may be sufficient.
  • billboard parts such as advertising towers, stand signs, sleeve signs, cross signs, roof signs and the like; display parts such as showcases, dividers, store displays; fluorescent light covers, mood lighting Lighting parts such as covers, lampshades, light ceilings, light walls and chandeliers; interior parts such as pendants and mirrors; constructions such as doors, domes, safety glass panes, partitions, stairwells, balcony waistboards, roofs of leisure buildings Components for aircraft windshields, visors for pilots, motorcycles, motor boat windshields, light shields for buses, side visors for cars, rear visors, head wings, headlight covers, glazing materials, sunroofs, head-up displays, etc.
  • Transport parts Picture nameplate, stereo cover, TV Electronic parts such as protective masks, display covers for vending machines; Medical equipment parts such as incubators and X-ray parts; Machine-related parts such as instrument covers, instrument covers, laboratory equipment, rulers, dials, observation windows; Display equipment Light guide plate for front light and film, light guide plate and film for back light, liquid crystal protective plate, Fresnel lens, lenticular lens, front plate of various displays, diffusion plate, optical member such as reflector, road sign, guide plate, Transportation parts such as curved mirrors and sound barriers; surface materials for car interiors; surface materials for mobile phones; film members such as marking films; for household appliances such as lids and control panels for washing machines and top panels for rice cookers Other members, greenhouse, large water tank, box water tank, clock panel, bathtub, sanitary, deskma Door, game parts, toys, and the like face protective mask at the time of welding.
  • the molded article of the present invention is an optical device represented by, for example, various covers, various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, watches and the like from the viewpoint of excellent weather resistance, and also video and optical recording.
  • Optical communication Information equipment related parts as cameras, finders such as VTRs, projection TVs, filters, prisms, Fresnel lenses, protective films for various optical disc (VD, CD, DVD, MD, LD etc.) substrates, optical switches, optical connectors Liquid Crystal Display, Light Guide Film for Liquid Crystal Display, Flat Panel Display, Light Guide Film for Flat Panel Display, Plasma Display, Light Guide Film for Plasma Display, Sheet, Light Guide Film for Electronic Paper, Retardation Film sheet, polarizing film ⁇ Sheets, polarizing plate protective films / sheets, polarizer protective films / sheets, wave plates, light diffusion films / sheets, prismatic films / sheets, reflective films / sheets, antireflective films / sheets, viewing angle widening films / sheets,
  • various liquid crystal display elements such as mobile phones, digital information terminals, pagers, navigation, liquid crystal displays for vehicles, liquid crystal monitors, light control panels, displays for OA equipment, displays for AV equipment, etc. and electroluminescence display It can be used for an element or a touch panel.
  • interior / exterior members for buildings, curtain walls, roof members, roof members, window members, gutters, exteriors, wall materials, floor materials, construction materials It can be particularly suitably applied to known building materials such as road construction members, retroreflective films / sheets, agricultural films / sheets, lighting covers, signs, light-transmitting sound barriers, and the like.
  • the molded article of the present invention is also applied to solar cell surface protective films, solar cell satire films, solar cell rear surface protective films, solar cell base films, gas barrier film substrates, gas barrier film protective films and the like as solar cell applications It is possible.
  • the film of the present invention which is one form of a molded article, is not particularly limited by the production method.
  • the film of the present invention can be prepared, for example, by using the above-mentioned methacrylic resin (A) or methacrylic resin composition (B) by a known method such as solution casting, melt casting, extrusion molding, inflation molding, blow molding and the like. It can be obtained by film formation.
  • the extrusion method is preferred. According to the extrusion method, it is possible to obtain a film having an improved toughness, an excellent handleability, and an excellent balance of toughness and surface hardness and rigidity.
  • the temperature of the methacrylic resin (A) or the methacrylic resin composition (B) discharged from the extruder is preferably set to 160 to 270 ° C., more preferably 220 to 260 ° C.
  • the polymer filter preferably has a filtration accuracy of 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and still more preferably 2 ⁇ m to 3 ⁇ m.
  • a polymer filter well-known things, such as a leaf disc type and a candle type, can be used.
  • heat generation may occur due to heat generation when it is filtered through a polymer filter, which may cause foaming to deteriorate the quality of the film.
  • the above-mentioned methacrylic resin (A) or methacrylic resin composition (B) is extruded from a T-die in a molten state from the viewpoint of obtaining a film with good surface smoothness, good mirror gloss and low haze. Then, a method including sandwiching and molding it with two or more mirror rolls or mirror belts is preferable.
  • the mirror roll or mirror belt is preferably made of metal.
  • the linear pressure between the pair of mirror rolls or mirror belts is preferably 2 N / mm or more, more preferably 10 N / mm or more, still more preferably 30 N / mm or more.
  • the surface temperature of a mirror surface roll or a mirror surface belt is both 130 degrees C or less. Moreover, it is preferable that at least one surface temperature of a pair of mirror surface roll or mirror surface belts is 60 degreeC or more.
  • the methacrylic resin (A) or the methacrylic resin composition (B) discharged from the extruder can be cooled at a speed faster than natural cooling, and the surface smoothness is excellent and It is easy to produce a low haze film.
  • the film of the present invention may be stretched.
  • the stretching method is not particularly limited, and examples thereof include uniaxial stretching method, simultaneous biaxial stretching method, sequential biaxial stretching method, and Tumbrer stretching method.
  • the temperature at the time of stretching is preferably 100 to 200 ° C., and more preferably 120 ° C. to 160 ° C. from the viewpoint that uniform stretching can be performed and a high strength film can be obtained.
  • Stretching is usually performed at 100 to 5000% / min based on length.
  • the stretching is preferably performed so as to have an area ratio of 1.5 to 8 times.
  • the thickness of the film of the present invention is not particularly limited, but when used as an optical film, the thickness is preferably 1 to 300 ⁇ m, more preferably 10 to 50 ⁇ m, and still more preferably 15 to 40 ⁇ m.
  • the film of the present invention has a haze of preferably 0.2% or less, more preferably 0.1% or less at a thickness of 40 ⁇ m. This is excellent in surface gloss and transparency.
  • the utilization efficiency of the light source is preferably increased. Furthermore, since it is excellent in the shaping precision at the time of performing surface shaping, it is preferable.
  • the film of the present invention has high heat decomposition resistance, low foaming at the time of molding, and heat resistance, so it has a polarizer protective film, a retardation film, a liquid crystal protective plate, a surface material of a portable information terminal, a portable information terminal
  • a polarizer protective film for the above, a light guide film, a transparent conductive film coated with silver nanowires or carbon nanotubes on the surface, a front plate of various displays, etc. are suitable.
  • the film of the present invention can reduce the retardation, it is suitable for a polarizer protective film.
  • the film of the present invention has transparency and heat resistance, IR cut films, crime prevention films, shatterproof films, decorative films, metal decorative films, solar cell backs are used as applications other than optical applications. It can be used for sheets, front sheets for flexible solar cells, shrink films, films for in-mold labels.
  • HLC-8320 Detector Differential Refractive Index Detector Column: Two TSKgel SuperMultipore HZM-M's manufactured by Tosoh Corporation and Super HZ 4000 connected in series were used. Eluent: Tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C. Calibration curve: made using data of 10 standard polystyrene
  • the 1 H-NMR spectrum of the methacrylic resin was measured using a nuclear magnetic resonance apparatus (ULTRA SHIELD 400 PLUS manufactured by Bruker) using deuterated chloroform as a solvent under conditions of room temperature and 64 integrations. From the spectrum, measure the area (X) of the region of 0.6 to 0.95 ppm when TMS is 0 ppm and the area (Y) of the region of 0.6 to 1.35 ppm, and then The syndiotacticity (rr) shown was calculated by the formula: (X / Y) ⁇ 100.
  • Glass transition temperature Tg Glass transition temperature Tg
  • DSC-50 product number manufactured by Shimadzu Corporation
  • JIS K 7121 room temperature
  • the DSC curve was measured under the condition that the temperature was raised from room temperature to 230 ° C. at 10 ° C./min a second time.
  • the midpoint glass transition temperature determined from the DSC curve measured at the second temperature rise was taken as the glass transition temperature in the present invention.
  • MFR melt flow rate
  • Example 1 Production of Methacrylic Resin [A-1]
  • MMA methyl methacrylate
  • 2,2'-azobis (2-methylpropionitrile) hydrolysis capacity: 1%, 1 hour half-life temperature: 83 ° C.
  • Nitrogen was fed into the raw material solution to remove dissolved oxygen in the raw material solution.
  • the feed solution was charged to 2/3 of the volume in a tank reactor connected by an autoclave and piping.
  • the temperature was maintained at 100 ° C. and the polymerization reaction was first initiated in a batch mode.
  • the feed solution is supplied from the autoclave to the tank reactor at a flow rate that achieves an average residence time of 120 minutes when the polymerization conversion ratio reaches 55% by mass, and the reaction solution is delivered at a flow rate corresponding to the feed flow rate of the feed solution.
  • the reactor was withdrawn from the tank reactor, maintained at a temperature of 100 ° C., and switched to a continuous flow polymerization reaction. After switching, the polymerization conversion at steady state was 45% by mass.
  • the reaction liquid withdrawn from the tank reactor in a steady state was supplied to a multi-tube heat exchanger with an internal temperature of 230 ° C. and heated at a flow rate at which the average residence time is 2 minutes. Then, the heated reaction solution was introduced into a flash evaporator to remove volatile components mainly composed of unreacted monomers to obtain a molten resin.
  • the molten resin from which volatile components had been removed was supplied to a twin-screw extruder having an internal temperature of 230 ° C., discharged into strands, and cut with a pelletizer to obtain a methacrylic resin [A-1].
  • the methacrylic resin composition [A-1] After drying the methacrylic resin composition [A-1] at 80 ° C. for 12 hours, it was melt-kneaded at a discharge rate of 30 kg / hr using a 50 mm ⁇ ⁇ ⁇ vent type single screw extruder of L / D 34. After melt-kneading, use a gear pump, pass through a leaf disc filter with a filtration area of 0.75 m 2 and a filtration accuracy of 5 ⁇ m, extrude from a 130 mm wide T-die at a temperature of 270 ° C, and film on a 90 ° C metal mirror roll. It shape
  • the unstretched film with a thickness of 160 ⁇ m obtained by the above method is cut into small pieces of 100 mm ⁇ 100 mm so that the two sides are parallel to the extrusion direction, and a pantograph type biaxial stretching tester (manufactured by Toyo Seiki Co., Ltd.) ), The stretching temperature of glass transition temperature + 10 ° C, the stretching speed of 150% / min in one direction, the stretching ratio of 2 times in one direction, the direction parallel to the extrusion direction first, and then the biaxial direction
  • the film was stretched under the condition of holding for 10 seconds and then quenched by taking it out at room temperature to obtain a biaxially stretched film with a thickness of 40 ⁇ m.
  • the measurement results of the obtained methacrylic resin [A-1] and biaxially stretched film are shown in Table 1.
  • Example 2 (Production of Methacrylic Resin [A-2]) Methacrylic resin [A-2] and 2 in the same manner as in Example 1 except that 0.0102 parts by mass of 2,2′-azobis (2-methylpropionitrile) and 0.315 parts by mass of n-octylmercaptan were used. An axial stretched film was obtained. The evaluation results are shown in Table 1.
  • Example 3 (Production of Methacrylic Resin [A-3]) Methacrylic resin [A-3] and a dimethacrylate resin in the same manner as in Example 1 except that 0.0094 parts by mass of 2,2'-azobis (2-methylpropionitrile) and 0.260 parts by mass of n-octylmercaptan were used. An axial stretched film was obtained. The evaluation results are shown in Table 1.
  • Comparative Example 2 (Production of Methacrylic Resin [A-5]) Methacrylic resin [A-5] and di-methyl methacrylate resin in the same manner as in Comparative Example 1 except that 0.0070 parts by mass of 2,2′-azobis (2-methylpropionitrile) and 0.275 parts by mass of n-octylmercaptan were used. An axial stretched film was obtained. The evaluation results are shown in Table 1.
  • Comparative Example 3 (Production of Methacrylic Resin [A-6]) Methacrylic resin [A-6] and di-methyl methacrylate in the same manner as in Comparative Example 1 except that 0.0066 parts by mass of 2,2'-azobis (2-methylpropionitrile) and 0.230 parts by mass of n-octylmercaptan were used. An axial stretched film was obtained. The evaluation results are shown in Table 1.
  • Comparative Example 5 (Production of Methacrylic Resin [A-8]) 100 parts by mass of methyl methacrylate, 8 parts by mass of methyl acrylate (MA), 0.0065 parts by mass of 2,2'-azobis (2-methylpropionitrile), 0.13 parts by mass of n-octylmercaptan, polymerization temperature A methacrylic resin [A-8] and a biaxially stretched film were obtained in the same manner as in Comparative Example 1 except that the temperature was changed to 150 ° C. The MMA content and the MA content were confirmed by 1 H-NMR. The evaluation results are shown in Table 1.
  • Comparative Example 6 (Production of Methacrylic Resin [A-9]) 100 parts by mass of methyl methacrylate, 1.1 parts by mass of methyl acrylate, 0.0068 parts by mass of 2,2'-azobis (2-methylpropionitrile), 0.235 parts by mass of n-octylmercaptan A methacrylic resin [A-9] and a biaxially stretched film were obtained in the same manner as in Comparative Example 1. The MMA content and the MA content were confirmed by 1 H-NMR. The evaluation results are shown in Table 1.
  • Comparative Example 7 (Production of Methacrylic Resin [A-10]) To 100 parts by mass of methyl methacrylate, 0.451 parts by mass of 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) and 0.2 parts by mass of n-octylmercaptan are added and dissolved to prepare a raw material solution. Obtained. 150 parts by mass of ion exchange water, 0.03 parts by mass of sodium sulfate and 0.46 parts by mass of the suspension dispersant were mixed to obtain a liquid mixture. The mixed solution and the raw material solution were charged into a pressure resistant polymerization tank, and the temperature was set to 35 ° C. to initiate a polymerization reaction while stirring under a nitrogen atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention provides a methacrylic resin containing 99-100 mass% of a structural unit derived from methyl methacrylate and 0-1 mass% of a structural unit derived from acrylic ester, wherein the value calculated by the equation of X·Y/(10000·Z·W) is 20-30 (in the equation, X (%) is the triad syndiotacticity (rr), Y is the weight average molecular weight, Z (mass%) is the amount of methyl methacrylate remaining in the methacrylic resin (A), and W (ppm) is the amount of chain transfer agent remaining in the methacrylic resin (A)).

Description

メタクリル樹脂、メタクリル樹脂組成物及び成形体Methacrylic resin, methacrylic resin composition and molded body
 本発明は、メタクリル樹脂に関する。より詳細に、本発明は、耐熱分解性が高く、成形時の発泡が少なく、耐熱性が高いメタクリル樹脂に関する。 The present invention relates to methacrylic resins. More particularly, the present invention relates to a methacrylic resin having high thermal decomposition resistance, low foaming during molding, and high heat resistance.
 また、本発明はメタクリル樹脂組成物及び成形体に関する。 The present invention also relates to a methacrylic resin composition and a molded article.
 メタクリル樹脂は、高い透明性を有し、光学部材、照明部材、看板部材、装飾部材等に用いられる成形体の材料として有用である。耐熱分解性、耐熱性及び成形加工性が改善されたメタクリル樹脂組成物が知られている(特許文献1)。該樹脂組成物を用いることで成形加工時の発泡がなく、表面平滑性が高く、比較的耐熱性の高い成形体が得られる。しかし、車載用ディスプレイなど耐熱性を求められる用途では耐熱性が十分とは言えなかった。 The methacrylic resin has high transparency and is useful as a material of a molded body used for an optical member, a lighting member, a signboard member, a decoration member and the like. BACKGROUND ART A methacrylic resin composition having improved thermal decomposition resistance, heat resistance and moldability is known (Patent Document 1). By using this resin composition, there is no foaming at the time of molding processing, and a molded article having high surface smoothness and relatively high heat resistance can be obtained. However, heat resistance is not sufficient in applications requiring heat resistance such as in-vehicle displays.
特開2017-48344号公報JP 2017-48344 A
 本発明は、上記背景に鑑みて成されたものであり、その目的とするところは、耐熱分解性が高く、成形時の発泡が少なく、耐熱性を有するメタクリル樹脂、メタクリル樹脂組成物及び成形体を提供することである。 The present invention has been made in view of the above background, and the object of the present invention is a methacrylic resin, a methacrylic resin composition and a molded article having high heat decomposition resistance, low foaming at the time of molding, and heat resistance. To provide.
 本発明は、以下のメタクリル樹脂、メタクリル樹脂組成物及び成形体を提供するものである。
[1]
 99質量%~100質量%のメタクリル酸メチルに由来する構造単位と、0質量%~1質量%のアクリル酸エステルに由来する構造単位を含み、
 三連子表示のシンジオタクティシティ(rr)がX %であり、重量平均分子量がYであり、残存するメタクリル酸メチルの量がメタクリル樹脂(A)中にZ質量%であり、残存する連鎖移動剤の量がメタクリル樹脂(A)中にW ppmである際に、式:X・Y/(10000・Z・W)で算出される値が20以上30以下であるメタクリル樹脂。
[2]
 三連子表示のシンジオタクティシティ(rr)が55~58%であり、残存するメタクリル酸メチルの量がメタクリル樹脂(A)中に0.7質量%以下、残存するメタクリル酸メチル二量体の量がメタクリル樹脂(A)中に1000ppm以下、残存するメタクリル酸メチル三量体の量がメタクリル樹脂(A)中に300ppm以下、残存する連鎖移動剤の量がメタクリル樹脂(A)中に200ppm以下であり、ガラス転移温度(Tg)が次式を満たす[1]に記載のメタクリル樹脂。
 Mw≧70,000のときTg(℃)≧121
 Mw<70,000のときTg(℃)≧131-(700000/Mw)
[3]
 空気雰囲気、温度290℃一定、時間10分で測定した熱重量保持率が90%以上である[1]または[2]に記載のメタクリル樹脂。
[4]
 メタクリル酸メチル構造単位が100質量%である[1]~[3]のいずれか一つに記載のメタクリル樹脂。
[5]
 重量平均分子量が50000~150000である[1]~[4]のいずれか一つに記載のメタクリル樹脂。
[6]
 [1]~[5]のいずれか一つに記載のメタクリル樹脂100質量部に対して架橋ゴム5~50質量部をさらに含有するメタクリル樹脂組成物。
[7]
 [1]~[5]のいずれか一つに記載のメタクリル樹脂100質量部に対して光拡散粒子0.0001~0.1質量部をさらに含有するメタクリル樹脂組成物。
[8]
 [1]~[5]のいずれか一つに記載のメタクリル樹脂または[6]に記載のメタクリル樹脂組成物または[7]に記載のメタクリル樹脂組成物からなる成形体。
[9]
 成形体がフィルムである、[8]に記載の成形体。
[10]
 90℃~110℃でラジカル重合法により重合する工程を含む[1]~[5]のいずれか一つに記載のメタクリル樹脂の製造方法。
[11]
 連続塊状重合法により重合する工程を含む、[1]~[5]のいずれか一つに記載のメタクリル樹脂の製造方法。
[12]
 [1]~[5]のいずれか一つに記載のメタクリル樹脂または[6]に記載のメタクリル樹脂組成物または[7]に記載のメタクリル樹脂組成物をダイから押し出す工程を含む、成形体の製造方法。
The present invention provides the following methacrylic resin, methacrylic resin composition and molded article.
[1]
Comprising 99% by mass to 100% by mass of methyl methacrylate-derived structural units and 0% by mass to 1% by mass of acrylic acid ester-derived structural units,
The syndiotacticity (rr) in ternary notation is X%, the weight average molecular weight is Y, and the amount of methyl methacrylate remaining is Z mass% in the methacrylic resin (A), and the remaining chain A methacrylic resin whose value calculated by the formula: X · Y / (10000 · Z · W) is 20 or more and 30 or less when the amount of transfer agent is W ppm in the methacrylic resin (A).
[2]
The amount of methyl methacrylate remaining is 55 to 58%, and the amount of methyl methacrylate remaining is 0.7% by mass or less in the methacrylic resin (A), and the methyl methacrylate dimer remaining The amount of methyl methacrylate in the methacrylic resin (A) is 1,000 ppm or less, the amount of methyl methacrylate trimer remaining is 300 ppm or less in the methacrylic resin (A), and the amount of residual chain transfer agent is 200 ppm in the methacrylic resin (A) It is the following, The methacrylic resin as described in [1] whose glass transition temperature (Tg) satisfy | fills following Formula.
Tg (° C.) ≧ 121 when Mw ≧ 70,000
Tg (° C.) ≧ 131- (700000 / Mw) when Mw <70,000
[3]
The methacrylic resin according to [1] or [2], which has an air atmosphere, a constant temperature of 290 ° C., and a thermal weight retention of 90% or more measured in 10 minutes.
[4]
The methacrylic resin according to any one of [1] to [3], wherein the methyl methacrylate structural unit is 100% by mass.
[5]
The methacrylic resin according to any one of [1] to [4], which has a weight average molecular weight of 50,000 to 150,000.
[6]
A methacrylic resin composition, which further comprises 5 to 50 parts by mass of a crosslinked rubber with respect to 100 parts by mass of the methacrylic resin according to any one of [1] to [5].
[7]
A methacrylic resin composition further comprising 0.0001 to 0.1 parts by mass of light diffusing particles with respect to 100 parts by mass of the methacrylic resin according to any one of [1] to [5].
[8]
A molded article comprising the methacrylic resin according to any one of [1] to [5] or the methacrylic resin composition according to [6] or the methacrylic resin composition according to [7].
[9]
The molded object as described in [8] whose molded object is a film.
[10]
The method for producing a methacrylic resin according to any one of [1] to [5], which comprises the step of polymerizing by radical polymerization at 90 ° C. to 110 ° C.
[11]
The method for producing a methacrylic resin according to any one of [1] to [5], which comprises the step of polymerizing by a continuous bulk polymerization method.
[12]
A molded article comprising the step of extruding the methacrylic resin according to any one of [1] to [5] or the methacrylic resin composition according to [6] or the methacrylic resin composition according to [7] from a die Production method.
 本発明によれば、耐熱分解性が高く、成形時の発泡が少なく、耐熱性を有するメタクリル樹脂、メタクリル樹脂組成物及び成形体を提供することができる。 According to the present invention, it is possible to provide a methacrylic resin, a methacrylic resin composition, and a molded article having high thermal decomposition resistance, low foaming at the time of molding, and heat resistance.
〔メタクリル樹脂(A)〕
 本発明のメタクリル樹脂(A)は、メタクリル酸メチルに由来する構造単位を99質量%以上含有するものである。メタクリル樹脂(A)において、メタクリル酸メチルに由来する構造単位の含有量は、好ましくは99.5質量%以上、より好ましくは100質量%である。
ここで、「構造単位」はモノマーに由来するものであり、各構造単位の割合の計算には、連鎖移動剤、重合開始剤などのモノマー以外の成分は含まない。また、「構造単位」の割合は、4量体以上のメタクリル樹脂に基づき計算し、メタクリル酸メチル、アクリル酸エステルなどの原料の単量体、二量体、三量体は構造単位の割合の計算において考慮しない。
[Methacrylic resin (A)]
The methacrylic resin (A) of the present invention contains 99% by mass or more of a structural unit derived from methyl methacrylate. In the methacrylic resin (A), the content of structural units derived from methyl methacrylate is preferably 99.5% by mass or more, and more preferably 100% by mass.
Here, the “structural unit” is derived from a monomer, and the calculation of the ratio of each structural unit does not include components other than the monomer such as a chain transfer agent and a polymerization initiator. In addition, the proportion of “structural units” is calculated based on a tetramer or higher methacrylic resin, and monomers, dimers and trimers of the raw materials such as methyl methacrylate and acrylic esters are proportions of structural units. Not considered in the calculation.
 メタクリル酸メチルに由来する構造単位以外の構造単位としては、例えば、アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルへキシルなどの(メタ)アクリル酸アルキルエステル;アクリル酸フェニルなどのアクリル酸アリールエステル;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸シクロアルキルエステル;スチレン、α-メチルスチレンなどの芳香族ビニル化合物;アクリルアミド;メタクリルアミド;アクリロニトリル;メタクリロニトリル;などの一分子中に重合性の炭素-炭素二重結合を一つだけ有するビニル系単量体に由来する構造単位が挙げられる。これらの中で、共重合し易く、高い透明性を有する樹脂が得られるという点から、(メタ)アクリル酸エステルの構造単位が好ましい。本明細書において、「アクリル酸エステル」は、アクリル酸アルキルエステル、アクリル酸アリールエステル、アクリル酸シクロアルキルエステルを含む。 As structural units other than structural units derived from methyl methacrylate, for example, methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl (meth) acrylate (Meth) acrylic acid alkyl esters such as hexyl; aryl acrylates such as phenyl acrylate; acrylic acid cycloalkylates such as cyclohexyl acrylate and norbornenyl acrylate; aromatic vinyls such as styrene and α-methylstyrene Acrylamide; methacrylamide; acrylonitrile; methacrylonitrile; and the like. Examples include structural units derived from a vinyl-based monomer having only one polymerizable carbon-carbon double bond in one molecule. Among these, structural units of (meth) acrylic acid ester are preferable in that they are easily copolymerized and a resin having high transparency can be obtained. As used herein, "acrylic acid ester" includes acrylic acid alkyl ester, acrylic acid aryl ester, acrylic acid cycloalkyl ester.
 メタクリル酸メチルに由来する構造単位以外の構造単位の含有量は1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が最も好ましい。 The content of structural units other than structural units derived from methyl methacrylate is preferably 1% by mass or less, more preferably 0.5% by mass or less, and most preferably 0.1% by mass or less.
 特に、アクリル酸エステルに由来する構造単位の含有量は、0質量%~1質量%である。好ましくは、0質量%、すなわち含有しないことが望ましい。アクリル酸エステルに由来する構造単位の含有量が1質量%超となると、メタクリル樹脂(A)の酸価が大きくなる傾向がある。 In particular, the content of the structural unit derived from the acrylic ester is 0% by mass to 1% by mass. Preferably, 0% by mass, that is, it is desirable not to contain. When the content of the structural unit derived from the acrylic ester exceeds 1% by mass, the acid value of the methacrylic resin (A) tends to increase.
 本発明のメタクリル樹脂(A)は、三連子表示のシンジオタクティシティ(rr)がX%であり、重量平均分子量がYであり、残存するメタクリル酸メチルの量がメタクリル樹脂(A)中にZ質量%であり、残存する連鎖移動剤の量がメタクリル樹脂(A)中にWppm以下である際に、式:X・Y/(10000・Z・W)で算出される値が、20以上30以下、好ましくは21以上29以下である。式:X・Y/(10000・Z・W)で算出される値が小さい場合、耐熱性が低く、得られるフィルムの耐衝撃性および靭性が低くなる傾向がある。式:X・Y/(10000・Z・W)で算出される値が大きい場合、成形加工性が悪く、耐熱分解性が低くなる傾向がある。 In the methacrylic resin (A) of the present invention, the syndiotacticity (rr) in ternary notation is X%, the weight average molecular weight is Y, and the amount of methyl methacrylate remaining in the methacrylic resin (A) is The value calculated by the formula: X · Y / (10000 · Z · W) is 20 when the amount of remaining chain transfer agent is W ppm or less in the methacrylic resin (A). 30 or more, preferably 21 or more and 29 or less. When the value calculated by the formula: X · Y / (10000 · Z · W) is small, the heat resistance tends to be low, and the impact resistance and the toughness of the obtained film tend to be low. If the value calculated by the formula: X · Y / (10000 · Z · W) is large, the moldability tends to be poor and the thermal decomposition resistance tends to be low.
 本発明のメタクリル樹脂(A)は、三連子表示のシンジオタクティシティ(rr)が、55%~60%であり、好ましくは56%~59%または55%~58%である。シンジオタクティシティが60%より大きいと、メタクリル樹脂のガラス転移温度が高くなる一方、耐熱分解が低下するだけでなく、成形加工温度を高く設定しなければならないため発泡し易くなる。一方、シンジオタクティシティが55%未満であると、ガラス転移温度が低く、耐熱性の低い樹脂になってしまう。 The methacrylic resin (A) of the present invention has a syndiotacticity (rr) of triad indication of 55% to 60%, preferably 56% to 59% or 55% to 58%. If the syndiotacticity is more than 60%, the glass transition temperature of the methacrylic resin will be high, and the thermal decomposition will not only decrease, but the molding processing temperature must be set high, and the resin will be easily foamed. On the other hand, when the syndiotacticity is less than 55%, the glass transition temperature is low and the resin becomes low in heat resistance.
 ここで、三連子表示のシンジオタクティシティ(rr)について説明する。ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。連続する3つの構造単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合が、三連子表示のシンジオタクティシティ(rr)(以下、単に「シンジオタクティシティ(rr)」と称する)である。 Here, syndiotacticity (rr) displayed in triples will be described. In the chain of structural units in a polymer molecule (biid, diad), those having the same configuration are referred to as meso and the opposite is referred to as racemo, and they are denoted by m and r, respectively. A syndiotacticity in which a ratio in which two chains (bi-dim, diad) of three successive structural units (tri-d, triad) are both racemo (denoted as rr) is represented by a triad It is a city (rr) (hereinafter simply referred to as "syndiotacticity (rr)").
 三連子表示のシンジオタクティシティ(rr)(%)は、重水素化クロロホルム中、30℃で、1H-NMRスペクトルを測定し、そのスペクトルからTMSを0ppmとした際の、0.6~0.95ppmの領域の面積(P)と0.6~1.35ppmの領域の面積(Q)とを計測し、式:(P/Q)×100にて算出した値である。 The syndiotacticity (rr) (%) in ternary notation is measured at 30 ° C. in deuterated chloroform, and the 1 H-NMR spectrum is measured. The area (P) of the region of ̃0.95 ppm and the area (Q) of the region of 0.6−1.35 ppm are measured, and the value is calculated by the formula: (P / Q) × 100.
 本発明のメタクリル樹脂(A)は、重量平均分子量(以下、「Mw」と称する)が好ましくは50000~150000、より好ましくは55000~120000、さらに好ましくは57000~100000である。かかるMwが50000以上であることで得られるフィルムは耐衝撃性および靭性に優れる傾向となる。150000以下であることでメタクリル樹脂の成形加工性が高まるので、得られるフィルムの厚さが均一で且つ表面平滑性に優れる傾向となる。また、メタクリル樹脂(A)を連続塊状重合で生産する場合、重合の制御のし易さの観点から、Mwは100000以下であることが好ましい。 The methacrylic resin (A) of the present invention preferably has a weight average molecular weight (hereinafter referred to as "Mw") of 50000 to 150000, more preferably 55000 to 120000, and still more preferably 57000 to 100000. A film obtained when the Mw is 50,000 or more tends to be excellent in impact resistance and toughness. When the molecular weight is 150000 or less, the molding processability of the methacrylic resin is enhanced, so that the thickness of the obtained film tends to be uniform and the surface smoothness is excellent. Moreover, when manufacturing methacrylic resin (A) by continuous block polymerization, it is preferable that Mw is 100000 or less from a viewpoint of the easiness of control of superposition | polymerization.
 本発明のメタクリル樹脂(A)は、Mwと数平均分子量(以下、「Mn」と称する)の比(Mw/Mn:以下、この値を「分子量分布」と称する)が、好ましくは1.2~2.5、より好ましくは1.5~2.0である。分子量分布が1.2以上であることでメタクリル樹脂の流動性が向上し、得られるフィルムは表面平滑性に優れる傾向となり、2.5以下であることで得られるフィルムは耐衝撃性および靭性に優れる傾向となる。なお、MwおよびMnは、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算した値である。 In the methacrylic resin (A) of the present invention, the ratio of Mw to number average molecular weight (hereinafter referred to as “Mn”) (Mw / Mn: hereinafter referred to as “molecular weight distribution”) is preferably 1.2. It is -2.5, more preferably 1.5-2.0. When the molecular weight distribution is 1.2 or more, the flowability of the methacrylic resin is improved, and the obtained film tends to be excellent in surface smoothness, and the film obtained by being 2.5 or less has impact resistance and toughness. It tends to be superior. Mw and Mn are values obtained by converting the chromatogram measured by gel permeation chromatography (GPC) into the molecular weight of standard polystyrene.
 本発明のメタクリル樹脂(A)は、JIS K7210に準拠して、230℃、3.8kg荷重の条件において測定される、メルトフローレートが、好ましくは0.1g/10分以上、より好ましくは0.5~30g/10分、さらに好ましくは1.0~20g/10分、最も好ましくは1.1~5g/10分である。 The methacrylic resin (A) of the present invention preferably has a melt flow rate of 0.1 g / 10 min or more, more preferably 0, which is measured at 230 ° C. under a load of 3.8 kg in accordance with JIS K 7210. 0.5 to 30 g / 10 min, more preferably 1.0 to 20 g / 10 min, and most preferably 1.1 to 5 g / 10 min.
 本発明の1つの好ましい実施形態において、メタクリル樹脂(A)のガラス転移温度は、次式を満たすものである。 In one preferred embodiment of the present invention, the glass transition temperature of the methacrylic resin (A) satisfies the following formula.
 Mw≧70,000のときTg(℃)≧121
 Mw<70,000のときTg(℃)≧131-(700000/Mw)。
Tg (° C.) ≧ 121 when Mw ≧ 70,000
Tg (° C.) ≧ 131− (700000 / Mw) when Mw <70,000.
 本発明の他の好ましい実施形態において、メタクリル樹脂(A)のガラス転移温度は、好ましくは120℃以上、より好ましくは121℃以上、さらに好ましくは122℃以上である。該メタクリル樹脂のガラス転移温度の上限は通常125℃以下であり、好ましくは124℃以下、より好ましくは123℃以下である。ガラス転移温度は、分子量やシンジオタクティシティ(rr)を調節することによって制御することができる。ガラス転移温度がこの範囲にあると、得られるフィルムの熱収縮などの変形が起こり難く、フィルム等の成形体の成形時における樹脂の熱分解を抑制しやすい。 In another preferred embodiment of the present invention, the glass transition temperature of the methacrylic resin (A) is preferably 120 ° C. or more, more preferably 121 ° C. or more, still more preferably 122 ° C. or more. The upper limit of the glass transition temperature of the methacrylic resin is usually 125 ° C. or less, preferably 124 ° C. or less, more preferably 123 ° C. or less. The glass transition temperature can be controlled by adjusting the molecular weight and syndiotacticity (rr). When the glass transition temperature is in this range, deformation such as thermal contraction of the obtained film hardly occurs, and thermal decomposition of the resin at the time of molding of a molded article such as a film is easily suppressed.
 本発明のメタクリル樹脂(A)の酢酸換算の酸価は、耐熱分解性が良好であるという観点から40ppm以下であり、好ましくは30ppm以下、より好ましくは20ppm以下である。酢酸換算の酸価が高すぎる場合、耐熱分解性に劣るだけでなく、成形時に他の化合物と反応してゲルなどを発生させ、成形体のブツ欠点になる恐れがあり、好ましくない。 The acid value of acetic acid conversion of the methacrylic resin (A) of the present invention is 40 ppm or less, preferably 30 ppm or less, more preferably 20 ppm or less from the viewpoint of good thermal decomposition resistance. If the acid value in terms of acetic acid is too high, it is not only inferior in thermal decomposition resistance, but also reacts with other compounds at the time of molding to generate gel and the like, which may cause a defect of the molded article, which is not preferable.
 酸価の評価は、JIS K 0070:1992の酸価をKOH換算ではなく酢酸量に換算した後、メタクリル樹脂(A)の重量に対して含有している酢酸量として算出した値である。具体的には実施例に記載の方法で測定すればよい。 The evaluation of the acid value is a value calculated as the amount of acetic acid contained with respect to the weight of the methacrylic resin (A) after converting the acid value of JIS K 0070: 1992 into the amount of acetic acid instead of KOH conversion. Specifically, it may be measured by the method described in the examples.
 本発明のメタクリル樹脂(A)の空気雰囲気、温度290℃一定、時間10分で測定した熱重量保持率は、耐熱分解性の観点から、90%以上が好ましく、91%以上がより好ましく92%以上が最も好ましい。 The thermal weight retention measured at a constant temperature of 290 ° C. for 10 minutes in the air atmosphere of the methacrylic resin (A) of the present invention is preferably 90% or more, more preferably 91% or more, and more preferably 92% from the viewpoint of heat decomposition resistance The above is the most preferable.
 熱重量保持率の測定は、熱重量測定装置(島津製作所製、TGA)を用いて、空気雰囲気下、メタクリル樹脂(A)を、乾燥空気の流速50ml/分にて、50℃から290℃まで20℃/分で昇温させた後、空気雰囲気下のまま290℃にて10分間保持する条件にて熱重量減少を測定すればよい。例えば50℃の重量(X1)を基準(保持率100%)にして、290℃にて10分間保持した時の重量(X2)をもとに、下記式で耐熱分解性を評価できる。熱重量保持率が高いほど耐熱分解性が高いと言える。 The measurement of the thermal weight retention ratio is from 50 ° C. to 290 ° C. at a flow rate of 50 ml / min of the dry air at a flow rate of 50 ml / min of the methacrylic resin (A) under an air atmosphere using a thermogravimetric measurement device (manufactured by Shimadzu Corporation, TGA). After the temperature is raised at 20 ° C./min, the thermal weight loss may be measured under the condition of maintaining at 290 ° C. for 10 minutes as it is in the air atmosphere. For example, based on the weight (X1) of 50 ° C. (retention 100%), the heat decomposition resistance can be evaluated by the following equation based on the weight (X2) when held at 290 ° C. for 10 minutes. It can be said that the higher the thermal weight retention, the higher the thermal decomposition resistance.
 熱重量保持率(%)=(X2/X1)×100(%)
 メタクリル樹脂(A)の製造方法は、着色が少なく、酸価が小さく、耐熱分解性が良好で、また生産性が良好であるという観点から、ラジカル重合法が好ましい。
Thermal weight retention (%) = (X2 / X1) x 100 (%)
The method for producing the methacrylic resin (A) is preferably a radical polymerization method from the viewpoints of low coloring, small acid value, good thermal decomposition resistance, and good productivity.
 該ラジカル重合法は、低不純物濃度のメタクリル樹脂(A)が得られるという観点から無溶媒で行う連続塊状重合が好ましい。成形体にシルバーや着色が発生するのを抑制する観点から、重合反応は溶存酸素量を低くして行うことが好ましい。また、重合反応は、窒素ガスなどの不活性ガス雰囲気中で行うことが好ましい。 The radical polymerization method is preferably continuous bulk polymerization without solvent from the viewpoint of obtaining a low impurity concentration methacrylic resin (A). From the viewpoint of suppressing the occurrence of silver and coloring in the molded product, the polymerization reaction is preferably performed with a low amount of dissolved oxygen. The polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen gas.
 メタクリル樹脂(A)の製造のためのラジカル重合法において用いられる重合開始剤は、反応性ラジカルを発生するものであれば特に限定されない。例えば、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエ-ト、t-ヘキシルパーオキシネオデカノエ-ト、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド、3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などが挙げられる。これらのうち、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ジメチル2,2’-アゾビス(2-メチルプロピオネート)が好ましい。 The polymerization initiator used in the radical polymerization method for producing the methacrylic resin (A) is not particularly limited as long as it generates reactive radicals. For example, t-hexylperoxyisopropyl monocarbonate, t-hexylperoxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, t-butylperoxypivalate T-Hexylperoxypivalate, t-butylperoxyneodecanoate, t-hexylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1 1,1-Bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2'-azobis (2-methylpropionitrile), 2, 2'-azobis (2-methylbutyronitrile), dimethyl 2,2'-azobis (2 Methyl propionate) and the like. Among these, t-hexylperoxy 2-ethylhexanoate, 1,1-bis (t-hexylperoxy) cyclohexane and dimethyl 2,2'-azobis (2-methylpropionate) are preferable.
 かかる重合開始剤の1時間半減期温度は好ましくは60~140℃、より好ましくは80~120℃である。また、メタクリル樹脂(A)の製造のために用いられる重合開始剤は、水素引抜き能が、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。このような重合開始剤は1種を単独でまたは2種以上を組み合わせて用いることができる。重合開始剤の使用量は、重合反応に供される単量体100質量部に対して好ましくは0.0001~0.02質量部、より好ましくは0.001~0.01質量部、さらに好ましくは0.005~0.007質量部である。 The one-hour half-life temperature of such a polymerization initiator is preferably 60 to 140 ° C., more preferably 80 to 120 ° C. The polymerization initiator used for producing the methacrylic resin (A) preferably has a hydrogen extraction ability of 20% or less, more preferably 10% or less, and still more preferably 5% or less. Such polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.0001 to 0.02 parts by mass, more preferably 0.001 to 0.01 parts by mass, and more preferably 100 parts by mass of the monomer to be subjected to the polymerization reaction. Is from 0.005 to 0.007 parts by mass.
 なお、水素引抜き能は重合開始剤製造業者の技術資料(例えば日本油脂株式会社技術資料「有機過酸化物の水素引抜き能と開始剤効率」(2003年4月作成))などによって知ることができる。また、α-メチルスチレンダイマーを使用したラジカルトラッピング法、即ちα-メチルスチレンダイマートラッピング法によって測定することができる。当該測定は、一般に、次のようにして行われる。まず、ラジカルトラッピング剤としてのα-メチルスチレンダイマーの共存下で重合開始剤を開裂させてラジカル断片を生成させる。生成したラジカル断片のうち、水素引抜き能が低いラジカル断片はα-メチルスチレンダイマーの二重結合に付加して捕捉される。一方、水素引抜き能が高いラジカル断片はシクロヘキサンから水素を引き抜き、シクロヘキシルラジカルを発生させ、該シクロヘキシルラジカルがα-メチルスチレンダイマーの二重結合に付加して捕捉され、シクロヘキサン捕捉生成物を生成する。そこで、シクロヘキサン、またはシクロヘキサン捕捉生成物を定量することで求められる、理論的なラジカル断片発生量に対する水素引抜き能が高いラジカル断片の割合(モル分率)を水素引抜き能とする。 In addition, hydrogen extraction ability can be known from the technical data of polymerization initiator manufacturer (for example, Nippon Oil and Fats Co., Ltd. technical data "Hydrogen extraction ability and initiator efficiency of organic peroxide" (prepared in April 2003) etc. . Also, it can be measured by a radical trapping method using α-methylstyrene dimer, ie, α-methylstyrene dimer trapping method. The said measurement is generally performed as follows. First, the polymerization initiator is cleaved in the coexistence of α-methylstyrene dimer as a radical trapping agent to form radical fragments. Among the generated radical fragments, radical fragments having low hydrogen abstraction ability are captured by being attached to the double bond of α-methylstyrene dimer. On the other hand, radical fragments having high hydrogen abstraction ability abstract hydrogen from cyclohexane to generate cyclohexyl radicals, and the cyclohexyl radicals are added and captured to the double bond of α-methylstyrene dimer to form a cyclohexane capture product. Therefore, the hydrogen extraction ability is defined as the ratio (molar fraction) of radical fragments having a high hydrogen extraction ability to the theoretical amount of radical fragment generation, which is determined by quantifying cyclohexane or a cyclohexane scavenging product.
 メタクリル樹脂(A)の製造のためのラジカル重合法において用いられる連鎖移動剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネートなどのアルキルメルカプタン類などが挙げられる。これらのうちn-オクチルメルカプタン、n-ドデシルメルカプタンなどの単官能アルキルメルカプタンが好ましい。これら連鎖移動剤は1種を単独で、または2種以上を組み合わせて用いることができる。 As a chain transfer agent used in the radical polymerization method for producing the methacrylic resin (A), n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol Ethylene glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- (β-thiopropio) And alkyl mercaptans such as pentaerythritol tetrakisthiopropionate. Among these, monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferable. These chain transfer agents can be used alone or in combination of two or more.
 かかる連鎖移動剤の使用量は重合反応に供される単量体100質量部に対して好ましくは0.1~1質量部、より好ましくは0.15~0.8質量部、さらに好ましくは0.2~0.6質量部、最も好ましくは0.2~0.5質量部である。また、該連鎖移動剤の使用量は、重合開始剤100質量部に対して好ましくは2500~10000質量部、より好ましくは3000~9000質量部、さらに好ましくは3500~6000質量部である。連鎖移動剤の使用量を上記範囲にすると、得られるメタクリル樹脂(A)は良好な成形加工性と高い力学強度を有する傾向となる。 The amount of the chain transfer agent used is preferably 0.1 to 1 part by mass, more preferably 0.15 to 0.8 parts by mass, still more preferably 0 based on 100 parts by mass of the monomer to be subjected to the polymerization reaction. 2 to 0.6 parts by weight, most preferably 0.2 to 0.5 parts by weight. The amount of the chain transfer agent used is preferably 2500 to 10000 parts by mass, more preferably 3000 to 9000 parts by mass, and still more preferably 3500 to 6000 parts by mass with respect to 100 parts by mass of the polymerization initiator. When the amount of chain transfer agent used is in the above range, the resulting methacrylic resin (A) tends to have good moldability and high mechanical strength.
 重合反応時の温度は好ましくは80~115℃、より好ましくは90~110℃、さらにより好ましくは95~105℃である。重合温度が80℃以上であることで、重合速度の向上、重合液の低粘度化などに起因して生産性が向上する傾向となる。また重合温度が115℃以下であることで、重合速度の制御が容易になり、さらに副生成物の生成が抑制され、また所望のガラス転移温度を有するメタクリル樹脂が得られる。重合反応時の温度は反応機のジャケットの温度や、重合率によって制御することができる。 The temperature during the polymerization reaction is preferably 80 to 115 ° C., more preferably 90 to 110 ° C., and even more preferably 95 to 105 ° C. When the polymerization temperature is 80 ° C. or higher, productivity tends to be improved due to the improvement of the polymerization rate, the decrease in viscosity of the polymerization solution, and the like. Further, when the polymerization temperature is 115 ° C. or less, the control of the polymerization rate is facilitated, the formation of by-products is suppressed, and a methacrylic resin having a desired glass transition temperature can be obtained. The temperature at the time of the polymerization reaction can be controlled by the temperature of the reactor jacket and the polymerization rate.
 重合反応の時間は好ましくは0.5~4時間、より好ましくは1.5~3.5時間、さらに好ましくは1.5~3時間である。なお、連続流通式反応装置の場合は、かかる重合反応の時間は反応器における平均滞留時間である。重合反応時の温度および重合反応の時間が上記範囲にあると、透明性に優れたメタクリル樹脂(A)を高効率で生産できる。 The polymerization reaction time is preferably 0.5 to 4 hours, more preferably 1.5 to 3.5 hours, and still more preferably 1.5 to 3 hours. In the case of a continuous flow reactor, the polymerization reaction time is the average residence time in the reactor. When the temperature at the time of the polymerization reaction and the time of the polymerization reaction are in the above range, the methacrylic resin (A) having excellent transparency can be produced with high efficiency.
 メタクリル樹脂(A)の製造のためのラジカル重合法における重合転化率は、好ましくは20~70質量%、より好ましくは30~60質量%、さらに好ましくは35~55質量%である。重合転化率が20質量%以上であることで、揮発分の除去工程を設けた場合において、残存する未反応単量体の除去が容易となり、得られるメタクリル樹脂が発泡し難く、得られる成形体の外観が良好となる傾向がある。重合転化率が70質量%以下であることで、重合液の粘度が低くなり生産性が向上する傾向がある。 The polymerization conversion in the radical polymerization method for producing the methacrylic resin (A) is preferably 20 to 70% by mass, more preferably 30 to 60% by mass, and still more preferably 35 to 55% by mass. When the conversion rate of polymerization is at least 20% by mass, removal of the remaining unreacted monomer is facilitated when the volatile matter removal step is provided, and the resulting methacrylic resin is difficult to foam, and a molded article obtained The appearance of the tends to be good. When the polymerization conversion rate is 70% by mass or less, the viscosity of the polymerization solution tends to be low, and the productivity tends to be improved.
 ラジカル重合は回分式反応装置を用いて行ってもよいが、生産性の観点から連続流通式反応装置を用いて行うことが好ましい。連続流通式反応では、例えば窒素雰囲気下などで重合反応原料(単量体、重合開始剤、連鎖移動剤などを含む混合液)を調製し、それを反応器に一定流量で供給し、該供給量に相当する流量で反応器内の液を抜き出す。反応器として、栓流に近い状態にすることができる管型反応器および/または完全混合に近い状態にすることができる槽型反応器を用いることができる。また、1基の反応器で連続流通式の重合を行ってもよいし、2基以上の反応器を繋いで連続流通式の重合を行ってもよい。本発明においては少なくとも1基は連続流通式の槽型反応器を採用することが好ましい。重合反応時における槽型反応器内の液量は、槽型反応器の容積に対して好ましくは1/4~3/4、より好ましくは1/3~2/3である。反応器には通常、撹拌装置が取り付けられている。撹拌装置としては静的撹拌装置、動的撹拌装置が挙げられる。動的撹拌装置としては、マックスブレンド式撹拌装置、中央に配した縦型回転軸の回りを回転する格子状の翼を有する撹拌装置、プロペラ式撹拌装置、スクリュー式撹拌装置などが挙げられる。これらのうちでマックスブレンド式撹拌装置が均一混合性の点から好ましく用いられる。 The radical polymerization may be carried out using a batch reactor, but from the viewpoint of productivity, it is preferable to carry out using a continuous flow reactor. In the continuous flow reaction, for example, a polymerization reaction raw material (a mixed solution containing a monomer, a polymerization initiator, a chain transfer agent, etc.) is prepared under a nitrogen atmosphere or the like, and supplied to the reactor at a constant flow rate. The liquid in the reactor is withdrawn at a flow rate corresponding to the volume. As a reactor, a tubular reactor which can be brought into a state close to a plug flow and / or a tank reactor which can be brought into a state close to complete mixing can be used. Further, continuous flow polymerization may be performed in one reactor, or continuous flow polymerization may be performed by connecting two or more reactors. In the present invention, it is preferable to adopt a continuous flow type tank reactor for at least one unit. The liquid volume in the tank reactor at the time of the polymerization reaction is preferably 1/4 to 3/4, more preferably 1/3 to 2/3, with respect to the volume of the tank reactor. The reactor is usually fitted with a stirrer. As a stirring apparatus, a static stirring apparatus and a dynamic stirring apparatus are mentioned. Examples of the dynamic stirring device include a Max-blend type stirring device, a stirring device having a grid-like blade rotating around a vertical rotation shaft disposed at the center, a propeller type stirring device, a screw type stirring device and the like. Among these, the Max Blend type stirring apparatus is preferably used from the viewpoint of uniform mixing.
 重合終了後、必要に応じて、単量体、二量体、三量体、連鎖移動剤等の揮発分を除去する。除去方法は特に制限されないが、加熱脱揮が好ましい。脱揮法としては、平衡フラッシュ方式や断熱フラッシュ方式が挙げられる。断熱フラッシュ方式による脱揮温度は、好ましくは200~270℃、より好ましくは220~260℃である。断熱フラッシュ方式で樹脂を加熱する時間は、好ましくは0.3~5分間、より好ましくは0.4~3分間、さらに好ましくは0.5~2分間である。このような温度範囲および加熱時間で脱揮させると、着色の少なく、酸価の少ないメタクリル樹脂(A)を得やすい。除去した未反応単量体は、回収して、再び重合反応に使用することができる。回収された単量体のイエロインデックスは回収操作時などに加えられる熱によって高くなっていることがある。回収された単量体は、蒸留やカラムによる吸着精製など適切な方法で精製して、酸価およびイエロインデックスを小さくすることが好ましい。 After completion of the polymerization, volatiles such as monomers, dimers, trimers and chain transfer agents are removed as required. The removal method is not particularly limited, but heat degassing is preferred. The volatilization method may, for example, be an equilibrium flash method or an adiabatic flash method. The volatilization temperature by the adiabatic flash method is preferably 200 to 270 ° C., more preferably 220 to 260 ° C. The heating time of the resin in the adiabatic flush method is preferably 0.3 to 5 minutes, more preferably 0.4 to 3 minutes, and still more preferably 0.5 to 2 minutes. By degassing in such a temperature range and heating time, it is easy to obtain a methacrylic resin (A) having a small color and a small acid value. The unreacted monomers removed can be recovered and used again for the polymerization reaction. The yellow index of the recovered monomer may be high due to the heat applied during the recovery operation and the like. The recovered monomer is preferably purified by an appropriate method such as distillation or adsorption purification using a column to reduce the acid value and the yellow index.
 また、前記重合後に得られた重合体と単量体、二量体、三量体、連鎖移動剤等の揮発分を含む樹脂混合物を、前記反応器から、ベントを備えた二軸押出機に連続的に移送することができる。続いて、二軸押出機入り口により平衡フラッシュまたは断熱フラッシュさせ、さらにそれに続いて二軸押出機ベントにより脱揮を行うことができる。 Also, from the reactor, a resin mixture containing volatile matter such as polymer, monomer, dimer, trimer, chain transfer agent, etc. obtained after the polymerization is transferred from the reactor to a twin-screw extruder equipped with a vent. It can be transported continuously. This can be followed by equilibration or adiabatic flush at the twin screw extruder inlet, followed by devolatilization via the twin screw extruder vent.
 前記の断熱フラッシュにおける、フラッシュ直前の樹脂溶融体の圧力は、好ましくは1.5~3.0MPa、より好ましくは2.0~2.5MPaである。1.5MPa未満ではフラッシュが不十分となり、残存単量体が多くなる傾向がある。逆に3.0MPaを超えると安定生産を得難くなる傾向がある。 The pressure of the resin melt immediately before the flash in the adiabatic flash is preferably 1.5 to 3.0 MPa, more preferably 2.0 to 2.5 MPa. If the pressure is less than 1.5 MPa, the flash tends to be insufficient and the amount of residual monomers tends to be large. On the other hand, when the pressure exceeds 3.0 MPa, stable production tends to be difficult to obtain.
 本発明に用いられる二軸押出機はベントを備えるものであることが好ましい。ベントは真空ベントまたはオープンベントであることが好ましい。ベントは重合体流入部より下流側に少なくとも1個設ける。なお、真空ベントにおける圧力は、30Torr以下が好ましく、15Torr以下がより好ましく、9Torr以下がさらに好ましく、6Torr以下がもっとも好ましい。該真空ベントにおける圧力が上記範囲内であれば、脱揮効率がよく、メタクリル樹脂(A)中に残存する単量体、二量体、三量体、連鎖移動剤等を少なくすることができる。 The twin-screw extruder used in the present invention is preferably equipped with a vent. The vent is preferably a vacuum vent or an open vent. At least one vent is provided downstream of the polymer inflow portion. The pressure in the vacuum vent is preferably 30 Torr or less, more preferably 15 Torr or less, still more preferably 9 Torr or less, and most preferably 6 Torr or less. If the pressure in the vacuum vent is within the above range, the degassing efficiency is good, and monomers, dimers, trimers, chain transfer agents, etc. remaining in the methacrylic resin (A) can be reduced. .
 前記二軸押出機のスクリューは、同方向二軸スクリューであることが好ましい。単軸の場合に比べ、樹脂に与えるせん断エネルギーが大きく、表面更新の程度が大きいことから脱揮を効率良く行えるため、残存する未反応単量体、二量体、三量体等を少なくできる。またそのスクリュー構成はスクリュー全長に対して5%以上の混練セグメント部位を有していることが好ましい。混練セグメントとしては、ロータセグメント、正送りニーディングディスク、逆送りニーディングディスク、ミキシングギアなどが挙げられる。 The screw of the twin screw extruder is preferably a co-directional twin screw. The shear energy applied to the resin is greater than in the single-axial case, and the degree of surface renewal is large, so degassing can be performed efficiently, so that the amount of remaining unreacted monomers, dimers, trimers, etc. can be reduced. . Moreover, it is preferable that the screw configuration has a kneading segment portion of 5% or more with respect to the total screw length. The kneading segment may, for example, be a rotor segment, a forward feed kneading disc, a reverse feed kneading disc, a mixing gear or the like.
 前記二軸押出機のシリンダ加熱温度は、200~270℃が好ましく、220~260℃がより好ましく、230~250℃がさらに好ましい。210℃未満では脱揮に時間を要し、脱揮不十分になりやすい。脱揮が不十分なときには成形体にシルバーなどの外観不良を起こすことがある。逆に270℃を超えると、メタクリル樹脂(A)において末端二重結合量が多くなり、また酸価を増大させ、耐熱分解性を確保する事が困難となる。また、前述の二量体および三量体の生成が多くなることもある。 The cylinder heating temperature of the twin-screw extruder is preferably 200 to 270 ° C., more preferably 220 to 260 ° C., and still more preferably 230 to 250 ° C. If it is less than 210 ° C., it takes a long time to degas, and the degassing tends to be insufficient. When degassing is insufficient, appearance defects such as silver may occur on the molded body. Conversely, if the temperature exceeds 270 ° C., the amount of terminal double bonds in the methacrylic resin (A) increases, and the acid value increases, making it difficult to ensure the thermal decomposition resistance. Also, the formation of the aforementioned dimers and trimers may be increased.
 本発明のメタクリル樹脂(A)は、メタクリル樹脂のみからなることが好ましいが、実際にはメタクリル樹脂(A)として得た場合に、製造条件に起因する他の任意成分が微量存在していることがある。この製造条件に起因する他の成分としては、未反応単量体、二量体、三量体、連鎖移動剤などが挙げられる。本明細書では、これら他の成分を含有したものも含めて、便宜上、メタクリル樹脂(A)と称する。 The methacrylic resin (A) of the present invention is preferably composed only of a methacrylic resin, but actually, when obtained as a methacrylic resin (A), a small amount of other optional components resulting from the production conditions is present There is. Other components resulting from the production conditions include unreacted monomers, dimers, trimers, chain transfer agents and the like. In the present specification, for the sake of convenience, those containing these other components are also referred to as methacrylic resin (A).
 本発明のメタクリル樹脂(A)は、上記他の成分の含有量が、メタクリル樹脂(A)中に、1質量%以下であることが好ましい。上記他の成分の含有量がこの範囲にあることで、ガラス転移温度の低下が少なくなる。 In the methacrylic resin (A) of the present invention, the content of the other component is preferably 1% by mass or less in the methacrylic resin (A). When the content of the other components is in this range, the decrease in the glass transition temperature is reduced.
 本発明のメタクリル樹脂(A)は、残存する未反応単量体のうち、残存するメタクリル酸メチルの量がメタクリル樹脂(A)中に好ましくは0.7質量%以下、より好ましくは0.6質量%以下、さらに好ましくは0.5質量%以下である。 In the methacrylic resin (A) of the present invention, the amount of methyl methacrylate remaining in the remaining unreacted monomer is preferably 0.7% by mass or less, more preferably 0.6 in the methacrylic resin (A). It is at most mass%, more preferably at most 0.5 mass%.
 本発明のメタクリル樹脂(A)は、残存するメタクリル酸メチル二量体量がメタクリル樹脂(A)中に好ましくは1000ppm以下、より好ましくは500ppm以下、さらに好ましくは300ppm以下である。 The amount of methyl methacrylate dimer remaining in the methacrylic resin (A) of the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less in the methacrylic resin (A).
 本発明のメタクリル樹脂(A)は、残存するメタクリル酸メチル三量体量がメタクリル樹脂(A)中に好ましくは300ppm以下、より好ましくは200ppm以下、さらに好ましくは100ppm以下、特に0ppmである。 The amount of methyl methacrylate trimer remaining in the methacrylic resin (A) of the present invention is preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less, particularly 0 ppm, in the methacrylic resin (A).
 本発明のメタクリル樹脂(A)は、残存する連鎖移動剤量がメタクリル樹脂(A)中に好ましくは200ppm以下、より好ましくは150ppm以下、さらに好ましくは100ppm以下である。 The amount of the chain transfer agent remaining in the methacrylic resin (A) of the present invention is preferably 200 ppm or less, more preferably 150 ppm or less, still more preferably 100 ppm or less, in the methacrylic resin (A).
〔メタクリル樹脂組成物(B)〕
 本発明のメタクリル樹脂(A)は、紫外線吸収剤、ポリカーボネート樹脂、フェノキシ樹脂、架橋ゴム、光拡散粒子等を加えてメタクリル樹脂組成物(B)として用いることができる。
[Methacryl resin composition (B)]
The methacrylic resin (A) of the present invention can be used as a methacrylic resin composition (B) by adding an ultraviolet light absorber, a polycarbonate resin, a phenoxy resin, a crosslinked rubber, light diffusing particles and the like.
 1つの好ましい実施形態において、本発明のメタクリル樹脂(A)に、紫外線吸収剤を加えてメタクリル樹脂組成物(B)として用いることができる。すなわち、メタクリル樹脂組成物(B)は、メタクリル樹脂(A)と、紫外線吸収剤を含有するものとすることができる。 In one preferred embodiment, an ultraviolet light absorber can be added to the methacrylic resin (A) of the present invention to use it as a methacrylic resin composition (B). That is, the methacrylic resin composition (B) can contain the methacrylic resin (A) and an ultraviolet absorber.
 本発明に用いられる紫外線吸収剤は、熱可塑性樹脂に配合されることがある公知の紫外線吸収剤である。紫外線吸収剤の分子量が200以下であると、メタクリル樹脂組成物(B)を成形する際に発泡が発生するなどの問題が生じることがあるため、紫外線吸収剤の分子量の下限値は好ましくは300以上、より好ましくは500以上、さらに好ましくは600以上である。 The ultraviolet absorber used in the present invention is a known ultraviolet absorber which may be blended into a thermoplastic resin. If the molecular weight of the ultraviolet absorber is 200 or less, problems such as foaming may occur when molding the methacrylic resin composition (B), so the lower limit of the molecular weight of the ultraviolet absorber is preferably 300. Or more, more preferably 500 or more, and still more preferably 600 or more.
 本発明のメタクリル樹脂組成物(B)に含有し得る紫外線吸収剤の量は、メタクリル樹脂(A)の100質量部に対して、0.1~5質量部が好ましく、0.5~3質量部より好ましく、1~2質量部がさらに好ましい。 The amount of the ultraviolet absorber which can be contained in the methacrylic resin composition (B) of the present invention is preferably 0.1 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the methacrylic resin (A). It is more preferably part, still more preferably 1 to 2 parts by mass.
 一般に、紫外線吸収剤は、紫外線を吸収する能力を有する化合物である。紫外線吸収剤は、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。 In general, UV absorbers are compounds having the ability to absorb UV light. UV absorbers are compounds that are said to mainly have the function of converting light energy into thermal energy.
 紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などを挙げることができる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。これらの中でも、ベンゾトリアゾール類(ベンゾトリアゾール骨格を有する化合物)、トリアジン類(トリアジン骨格を有する化合物)が好ましい。ベンゾトリアゾール類またはトリアジン類は、紫外線による樹脂の劣化(例えば、黄変など)を抑制する効果が高い。 Examples of UV absorbers include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic esters, formamidines and the like. One of these may be used alone, or two or more of these may be used in combination. Among these, benzotriazoles (compounds having a benzotriazole skeleton) and triazines (compounds having a triazine skeleton) are preferable. The benzotriazoles or triazines have a high effect of suppressing deterioration (for example, yellowing etc.) of the resin due to ultraviolet light.
 ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール〕(ADEKA社製;LA-31)、2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノールなどを挙げることができる。 As benzotriazoles, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN 329), 2- (2H-) Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN 234), 2,2′-methylenebis [6- (2H-benzotriazole-2) -Yl) -4-tert-octylphenol] (made by Adeka; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol and the like be able to.
 トリアジン類としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製;LA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;CGL777、TINUVIN460、TINUVIN479など)、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジンなどを挙げることができる。 Examples of triazines include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) and analogues thereof. Certain hydroxyphenyl triazine UV absorbers (BASF; CGL777, TINUVIN 460, TINUVIN 479, etc.), 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, etc. It can be mentioned.
 本発明のメタクリル樹脂(A)に、ポリカーボネート樹脂またはフェノキシ樹脂を加えてメタクリル樹脂組成物(B)として用いることができる。ポリカーボネート樹脂またはフェノキシ樹脂を含有することによって、位相差の調整が容易なメタクリル樹脂組成物(B)を得ることができる。ポリカーボネート樹脂またはフェノキシ樹脂の量は、メタクリル樹脂(A)100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~7質量部、さらに好ましくは0.8~4質量部である。 A polycarbonate resin or a phenoxy resin can be added to the methacrylic resin (A) of the present invention to be used as a methacrylic resin composition (B). By containing a polycarbonate resin or a phenoxy resin, it is possible to obtain a methacrylic resin composition (B) whose retardation can be easily adjusted. The amount of the polycarbonate resin or phenoxy resin is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and still more preferably 0.8 to 4 parts by mass with respect to 100 parts by mass of the methacrylic resin (A). It is a mass part.
 本発明のメタクリル樹脂(A)に、架橋ゴムを加えてメタクリル樹脂組成物(B)として用いることができる。すなわち、メタクリル樹脂組成物(B)は、メタクリル樹脂(A)と、架橋ゴムを含有するものとすることができる。 A cross-linked rubber can be added to the methacrylic resin (A) of the present invention to use it as a methacrylic resin composition (B). That is, the methacrylic resin composition (B) can contain the methacrylic resin (A) and a crosslinked rubber.
 架橋ゴムを含有することによって、耐衝撃性の高いフィルムなどの成形体を得ることができる。メタクリル樹脂組成物(B)における架橋ゴムの含有量は、メタクリル樹脂(A)100質量部に対して、好ましくは5~50質量部、より好ましくは10~40質量部、さらに好ましくは15~30質量部である。 By containing a crosslinked rubber, a molded article such as a film having high impact resistance can be obtained. The content of the crosslinked rubber in the methacrylic resin composition (B) is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, still more preferably 15 to 30 with respect to 100 parts by mass of the methacrylic resin (A). It is a mass part.
 本発明に用いられる架橋ゴムは、架橋性単量体に由来する構造単位によって高分子鎖が架橋されてなるゴム弾性を示す重合体である。なお、架橋性単量体は、1つの単量体中に2つ以上の重合性官能基を有するものである。 The crosslinked rubber used in the present invention is a polymer exhibiting rubber elasticity in which a polymer chain is crosslinked by a structural unit derived from a crosslinkable monomer. The crosslinkable monomer is one having two or more polymerizable functional groups in one monomer.
 架橋ゴムとしては、アクリル系架橋ゴム、ジエン系架橋ゴムなどを挙げることができ、より具体的には、アクリル酸アルキルエステル単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴム、共役ジエン系単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴム、アクリル酸アルキルエステル単量体と共役ジエン系単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴムなどを挙げることができる。 Examples of the crosslinked rubber include acrylic crosslinked rubber and diene based crosslinked rubber, and more specifically, acrylic acid alkyl ester monomers, crosslinkable monomers and other vinyl monomers Copolymer rubber, copolymer rubber of conjugated diene monomer, crosslinkable monomer and other vinyl monomer, acrylic acid alkyl ester monomer and conjugated diene monomer and crosslinkable monomer Copolymer rubbers of monomers and other vinyl monomers can be mentioned.
 本発明において架橋ゴムは粒子形態にてメタクリル樹脂組成物に含まれていることが好ましい。 In the present invention, the crosslinked rubber is preferably contained in the form of particles in the methacrylic resin composition.
 架橋ゴム粒子は、架橋ゴムのみからなる単層粒子であってもよいし、架橋ゴムと他の重合体とからなる多層粒子であってもよい。架橋ゴムと他の重合体とからなる多層粒子の形態としては、架橋ゴムからなるコアとそれ以外の重合体からなるシェルとを含んで成るコアシェル型粒子が好ましい。 The crosslinked rubber particle may be a single layer particle consisting only of a crosslinked rubber, or may be a multilayer particle consisting of a crosslinked rubber and another polymer. As a form of multilayer particles comprising a crosslinked rubber and another polymer, core-shell type particles comprising a core comprising a crosslinked rubber and a shell comprising another polymer are preferred.
 本発明に用いられる架橋ゴム粒子の体積基準平均粒子径は、好ましくは0.02~1μm、より好ましくは0.05~0.5μm、さらに好ましくは0.1~0.3μmである。 The volume-based average particle diameter of the crosslinked rubber particles used in the present invention is preferably 0.02 to 1 μm, more preferably 0.05 to 0.5 μm, and still more preferably 0.1 to 0.3 μm.
 このような体積基準平均粒子径を有する架橋ゴム粒子成分を用いると、成形体の外観上の欠点を著しく低減できる。なお、本明細書における体積基準平均粒子径は、架橋ゴム粒子を含むメタクリル樹脂組成物(B)の電子顕微鏡観察に基いて算出される値である。 Use of the crosslinked rubber particle component having such a volume-based average particle diameter can significantly reduce the appearance defect of the molded article. The volume-based average particle diameter in the present specification is a value calculated based on electron microscopic observation of the methacrylic resin composition (B) containing crosslinked rubber particles.
 本発明のメタクリル樹脂(A)に、光拡散粒子を加えてメタクリル樹脂組成物(B)として用いることができる。すなわち、メタクリル樹脂組成物(B)は、メタクリル樹脂(A)と、光拡散粒子を含有するものとすることができる。 Light diffusing particles can be added to the methacrylic resin (A) of the present invention to be used as a methacrylic resin composition (B). That is, the methacrylic resin composition (B) can contain the methacrylic resin (A) and light diffusing particles.
 光拡散粒子を含有することによって、メタクリル樹脂組成物(B)をシートにした際に、光源からシートの一端面に光を導入したとき、シートの厚み方向に光を散乱しながら、対向する他端面に向かって、シートの面方向に光を導光させることが可能となる。シート内に光拡散粒子を含有させる態様では、印刷および表面凹凸加工等により光拡散層を別途設ける必要なく安価に、導光性能に優れるシートを提供することができる。
メタクリル樹脂組成物(B)における光拡散粒子の含有量は、メタクリル樹脂(A)100質量部に対して、好ましくは0.0001~0.1質量部、より好ましくは0.0002~0.01質量部である。
When light is introduced from the light source to one end face of the sheet when the sheet is made into a sheet by containing the light diffusion particles, the light scatters in the thickness direction of the sheet and the other faces the other. It becomes possible to guide light in the surface direction of the sheet toward the end face. In the embodiment in which the light diffusion particles are contained in the sheet, it is possible to provide a sheet excellent in light guiding performance at low cost without the need to separately provide a light diffusion layer by printing, surface unevenness processing, and the like.
The content of the light diffusing particles in the methacrylic resin composition (B) is preferably 0.0001 to 0.1 parts by mass, more preferably 0.0002 to 0.01 based on 100 parts by mass of the methacrylic resin (A). It is a mass part.
 本発明に用いられる光拡散粒子は、メタアクリル樹脂(A)と異なる屈折率を有し、光を散乱する粒子である。WO2010/113422に記載の光拡散粒子が好ましい。 The light diffusing particle used in the present invention is a particle having a refractive index different from that of the methacrylic resin (A) and scattering light. Light diffusing particles described in WO 2010/113422 are preferred.
 光拡散粒子の体積平均粒径(体積平均直径)dは、0.5~5μmであることが好ましく、0.75~4μmであることがより好ましく、1~3μmであることが特に好ましい。光拡散粒子の体積平均粒径dが0.5μmより小さい場合、成形体の光入射端面付近とそこから離れた位置とで色目に差が生じることがある。光拡散粒子の体積平均粒径dが5μmより大きい場合、比較的粒径の大きな光拡散粒子が光源点灯時に輝点となって外観を損ねる恐れがある。なお、本明細書における体積平均粒径dは、一次粒子の電子顕微鏡写真を撮影し、画像解析式粒度分布測定ソフトウエアによって求められる粒径である。 The volume average particle diameter (volume average diameter) d of the light diffusion particles is preferably 0.5 to 5 μm, more preferably 0.75 to 4 μm, and particularly preferably 1 to 3 μm. When the volume average particle diameter d of the light diffusion particles is smaller than 0.5 μm, a difference in color may occur between the vicinity of the light incident end face of the molded body and the position away therefrom. When the volume average particle diameter d of the light diffusing particles is larger than 5 μm, the light diffusing particles having a relatively large particle diameter may become bright spots when the light source is turned on and may deteriorate the appearance. The volume average particle diameter d in the present specification is a particle diameter obtained by photographing an electron micrograph of primary particles and determining by image analysis type particle size distribution measurement software.
 メタクリル樹脂組成物(B)において、メタクリル樹脂(A)と光拡散粒子との屈折率差(Δn)は0.3~3であることが好ましい。屈折率差(Δn)が0.3より小さい場合、効率良く光を取り出すことができず、光源点灯時の明るさの割に透明感が劣る場合がある。屈折率差(Δn)は0.4以上であることがより好ましい。一方、屈折率差(Δn)が3より大きい場合、散乱光は後方散乱が支配的となるため、効率良く光を取り出すことができず、光源点灯時の明るさの割には透明感が劣る場合がある。 In the methacrylic resin composition (B), the refractive index difference (Δn) between the methacrylic resin (A) and the light diffusing particles is preferably 0.3 to 3. When the refractive index difference (Δn) is smaller than 0.3, light can not be extracted efficiently, and the transparency may be inferior to the brightness when the light source is turned on. The refractive index difference (Δn) is more preferably 0.4 or more. On the other hand, when the refractive index difference (Δn) is larger than 3, backscattering is dominant in scattered light, so that light can not be extracted efficiently, and the transparency at the time of lighting the light source is poor There is a case.
 光拡散粒子としては、メタクリル樹脂(A)に対して屈折率差の大きい無機化合物粒子が好ましく用いられ、例えば酸化チタンおよび酸化亜鉛等が好ましく用いられる。 As the light diffusion particles, inorganic compound particles having a large difference in refractive index with respect to the methacrylic resin (A) are preferably used. For example, titanium oxide, zinc oxide and the like are preferably used.
 光拡散粒子の体積平均粒径dが過小である場合、レイリー散乱現象に起因すると思われる着色等の色目の変化が起きる場合がある。また、屈折率差(Δn)が過小である場合も、レイリー散乱現象に起因すると思われる着色等の色目の変化が起こる場合がある。具体的には、光源付近では散乱光が青みを帯び、光源から離れた位置では黄色味を帯びる場合がある。 When the volume average particle diameter d of the light diffusion particles is too small, a change in color such as coloring which may be attributed to the Rayleigh scattering phenomenon may occur. In addition, even when the refractive index difference (Δn) is too small, a change in color such as coloring that may be caused by the Rayleigh scattering phenomenon may occur. Specifically, the scattered light may be bluish near the light source and may be yellowish at a position away from the light source.
 レイリー散乱現象に起因すると思われる着色等の色目の変化を抑制するため、光拡散粒子の体積平均粒径d(μm)と屈折率差(Δn)の絶対値との積(|Δn|・d)が0.1μm以上であることが好ましい。 The product (| Δn | · d) of the volume average particle diameter d (μm) of the light diffusing particle and the absolute value of the refractive index difference (Δn) in order to suppress the change in color such as coloring that is considered to be caused by the Rayleigh scattering phenomenon. Is preferably 0.1 μm or more.
 本発明のメタクリル樹脂組成物(B)には、メタクリル樹脂(A)、紫外線吸収剤、ポリカーボネート樹脂、フェノキシ樹脂、架橋ゴム及び光拡散粒子以外に、他の重合体が含有されていてもよい。 Other polymers may be contained in the methacrylic resin composition (B) of the present invention in addition to the methacrylic resin (A), the ultraviolet absorber, the polycarbonate resin, the phenoxy resin, the crosslinked rubber, and the light diffusing particles.
 他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネンなどのポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂などのスチレン系樹脂;メチルメタクリレート系重合体、メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマーなどのポリアミド;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーン変性樹脂;シリコーンゴム、アクリル系熱可塑性エラストマー;SEPS、SEBS、SISなどのスチレン系熱可塑性エラストマー;IR、EPR、EPDMなどのオレフィン系ゴムなどを挙げることができる。本発明のメタクリル樹脂組成物(B)に含有し得る他の重合体の量は好ましくは10質量%以下、より好ましくは5質量%以下、最も好ましくは1質量%以下である。 Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, Styrene resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; methyl methacrylate polymer, methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate, polybutylene terephthalate; nylon 6 , Nylon 66, polyamides such as polyamide elastomer; polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyfluorinated vinyl Silicone rubber, acrylic thermoplastic elastomer; styrene thermoplastic elastomer such as SEPS, SEBS, SIS; olefin rubber such as IR, EPR, EPDM, etc. be able to. The amount of other polymers that can be contained in the methacrylic resin composition (B) of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably 1% by mass or less.
 本発明に係るメタクリル樹脂組成物(B)には、紫外線吸収剤のほかに、フィラー、酸化防止剤、熱劣化防止剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、蛍光体などの通常の樹脂に配合されることがある添加剤が含まれていてもよい。 In the methacrylic resin composition (B) according to the present invention, a filler, an antioxidant, a thermal deterioration inhibitor, a light stabilizer, a lubricant, a mold release agent, a polymer processing aid, an antistatic, in addition to the ultraviolet absorber. The additive which may be mix | blended with normal resin, such as an agent, a flame retardant, a dye / pigment, a light diffusing agent, an organic pigment | dye, a matting agent, fluorescent substance, may be included.
 フィラーとしては、炭酸カルシウム、タルク、カーボンブラック、酸化チタン、シリカ、クレー、硫酸バリウム、炭酸マグネシウムなどを挙げることができる。本発明のメタクリル樹脂組成物に含有し得るフィラーの量は、好ましくは3質量%以下、より好ましくは1.5質量%以下、さらに好ましくは0質量%である。 Examples of the filler include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate and magnesium carbonate. The amount of the filler that can be contained in the methacrylic resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less, and still more preferably 0% by mass.
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤などを挙げることができる。これらの酸化防止剤は1種を単独で用いても、2種以上を併用してもよい。中でも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤やヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。 The antioxidant has an effect of preventing oxidative deterioration of the resin alone in the presence of oxygen. For example, phosphorus-based antioxidants, hindered phenol-based antioxidants, thioether-based antioxidants and the like can be mentioned. One of these antioxidants may be used alone, or two or more thereof may be used in combination. Among them, from the viewpoint of the effect of preventing deterioration of optical properties due to coloring, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and a combination of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable.
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤の使用量:ヒンダードフェノール系酸化防止剤の使用量は、質量比で、1:5~2:1が好ましく、1:2~1:1がより好ましい。 When a phosphorus-based antioxidant and a hindered phenol-based antioxidant are used in combination, the usage of the phosphorus-based antioxidant: the usage of the hindered phenol-based antioxidant is 1: 5 to 2: 2 in mass ratio 1 is preferable, and 1: 2 to 1: 1 is more preferable.
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト(ADEKA社製;商品名:アデカスタブHP-10)、トリス(2,4-ジt-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ〔5.5〕ウンデカン(ADEKA社製;商品名:アデカスタブPEP-36)などが好ましい。 Examples of phosphorus-based antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (manufactured by ADEKA; trade name: Adekastab HP-10), tris (2,4-di-t-). Butylphenyl) phosphite (manufactured by BASF AG; trade name: IRGAFOS 168), 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9 -Diphosphaspiro [5.5] undecane (manufactured by ADEKA; trade name: Adekastab PEP-36) and the like are preferable.
 ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANOX1076)などが好ましい。 As a hindered phenol-based antioxidant, pentaerythrityl-tetrakis [3- (3,5-di t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX1010), octadecyl-3- ( Preferred is 3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF AG; trade name IRGANOX 1076).
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。 The thermal deterioration inhibitor is capable of preventing thermal deterioration of the resin by trapping polymer radicals generated when exposed to high heat under substantially oxygen-free conditions.
 該熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4-ジt-アミル-6-(3’,5’-ジt-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが好ましい。 As the thermal degradation inhibitor, 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: SMILIZER GM), Preferred is 2,4-di t-amyl-6- (3 ′, 5′-di t-amyl-2′-hydroxy-α-methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: SMILIZER GS).
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物などのヒンダードアミン類を挙げることができる。 A light stabilizer is a compound that is said to have the function of capturing radicals generated mainly by oxidation by light. Suitable light stabilizers can include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
 滑剤としては、例えば、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、硬化油などを挙げることができる。 As the lubricant, for example, stearic acid, behenic acid, stearoamic acid, methylene bis stearoamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, hydrogenated oil and the like can be mentioned.
 離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどを挙げることができる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、その割合は特に制限されないが、高級アルコール類の使用量:グリセリン脂肪酸モノエステルの使用量は、質量比で、2.5:1~3.5:1が好ましく、2.8:1~3.2:1がより好ましい。 Examples of the mold release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as monoglyceride stearate and diglyceride stearate. In the present invention, it is preferable to use a higher alcohol and a glycerin fatty acid monoester in combination as a release agent. When the higher alcohol and the glycerin fatty acid monoester are used in combination, the ratio is not particularly limited, but the amount of the higher alcohol used: the used amount of the glycerin fatty acid monoester is 2.5: 1 to 3.3 by mass ratio. 5: 1 is preferable, and 2.8: 1 to 3.2: 1 is more preferable.
 高分子加工助剤は、平均重合度が3,000~40,000の高分子化合物であり、好ましくはメタクリル酸メチル単位60質量%以上およびこれと共重合可能なビニル系単量体単位40質量%以下からなるものである。なお、高分子加工助剤の平均重合度は自動希釈型毛細管粘度計(ウベローデ型)を用い、クロロホルムを溶媒として20℃で測定して、PMMA換算重合度で求めることができる。 The polymer processing aid is a polymer compound having an average polymerization degree of 3,000 to 40,000, and preferably 60% by mass or more of a methyl methacrylate unit and 40 mass of a vinyl monomer unit copolymerizable therewith. % Or less. The average degree of polymerization of the polymer processing aid can be determined as a degree of polymerization in terms of PMMA using an automatic dilution capillary viscometer (Ubbelohde type) and measurement at 20 ° C. using chloroform as a solvent.
 高分子加工助剤としては、通常、乳化重合法によって製造できる、0.05~0.5μmの粒子径を有する重合体粒子を用いることができる。該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましいものとして挙げられる。高分子加工助剤は、極限粘度が3~6dl/gであることが好ましい。極限粘度が小さすぎると成形性の改善効果が低い傾向がある。極限粘度が大きすぎるとメタクリル樹脂組成物の成形加工性の低下を招く傾向がある。具体的には、三菱レイヨン社製メタブレン-Pシリーズやダウ・ケミカル社製パラロイドシリーズを挙げることができる。 As the polymer processing aid, polymer particles having a particle diameter of 0.05 to 0.5 μm, which can usually be produced by emulsion polymerization, can be used. The polymer particle may be a single layer particle consisting of a polymer having a single composition ratio and a single intrinsic viscosity, or a multilayer particle consisting of two or more polymers different in composition ratio or intrinsic viscosity. May be Among these, particles of a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferably mentioned. The polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the effect of improving formability tends to be low. When the intrinsic viscosity is too large, the molding processability of the methacrylic resin composition tends to decrease. Specifically, there may be mentioned Metabrene-P series manufactured by Mitsubishi Rayon Co., Ltd. and Paraloid series manufactured by Dow Chemical Co.
 難燃剤としては、例えば、テトラブロモビスフェノールA、デカブロモジフェニルオキシド、臭素化ポリカーボネート等の有機ハロゲン系難燃剤;酸化アンチモン、水酸化アルミニウム、ホウ酸亜鉛、トリクレジルホスフェート等の非ハロゲン系難燃剤などが挙げられる。 Examples of flame retardants include organic halogen flame retardants such as tetrabromobisphenol A, decabromodiphenyl oxide and brominated polycarbonate; non-halogen flame retardants such as antimony oxide, aluminum hydroxide, zinc borate and tricresyl phosphate Etc.
 帯電防止剤としては、例えば、ステアロアミドプロピルジメチル-β-ヒドロキシエチルアンモニウムニトレートなどが挙げられる。 As the antistatic agent, for example, stearoamidopropyl dimethyl-β-hydroxyethyl ammonium nitrate and the like can be mentioned.
 染顔料としては、酸化チタン、ベンガラなどが挙げられる。 Examples of dyes and pigments include titanium oxide and bengala.
 有機色素としては、紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。 As the organic dye, a compound having a function of converting ultraviolet light into visible light is preferably used.
 光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどを挙げることができる。 Examples of the light diffusing agent and the matting agent include glass particles, polysiloxane based crosslinked particles, crosslinked polymer particles, talc, calcium carbonate and barium sulfate.
 蛍光体としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などを挙げることができる。 As a fluorescent substance, a fluorescent pigment, a fluorescent dye, a fluorescent white dye, a fluorescent whitening agent, a fluorescent bleaching agent etc. can be mentioned.
 本発明のメタクリル樹脂組成物(B)に含有し得る、酸化防止剤、熱劣化防止剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、および蛍光体の合計量は、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下、最も好ましくは1質量%以下である。 Antioxidants, thermal deterioration inhibitors, light stabilizers, lubricants, release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, which can be contained in the methacrylic resin composition (B) of the present invention The total amount of the light diffusing agent, the organic dye, the matting agent and the phosphor is preferably 7% by mass or less, more preferably 5% by mass or less, still more preferably 4% by mass or less, most preferably 1% by mass or less is there.
 本発明のメタクリル樹脂組成物(B)は、本発明のメタクリル樹脂(A)を50質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましい。 The methacrylic resin composition (B) of the present invention preferably contains 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more of the methacrylic resin (A) of the present invention.
 本発明のメタクリル樹脂(A)またはメタクリル樹脂組成物(B)は、3.2mm厚さのヘイズが、3.0%以下が好ましく、2.0%以下がより好ましく、1.5%以下がさらに好ましい。 The haze of 3.2 mm thickness of the methacrylic resin (A) or the methacrylic resin composition (B) of the present invention is preferably 3.0% or less, more preferably 2.0% or less, and 1.5% or less More preferable.
 本発明のメタクリル樹脂(A)またはメタクリル樹脂組成物(B)は、保存、運搬、または成形時の利便性を高めるために、ペレットなどの形態にすることができる。 The methacrylic resin (A) or the methacrylic resin composition (B) of the present invention can be in the form of pellets or the like in order to enhance convenience during storage, transportation, or molding.
 本発明のメタクリル樹脂(A)またはメタクリル樹脂組成物(B)は公知の方法により、高分子反応させることができる。高分子反応としては、特開2008-273140、特開2008-274187、特開2010-254742号や特開2010-261025号に記載のイミド化反応や、特開2012-201831号に記載のグラフト化反応が挙げられる。 The methacrylic resin (A) or the methacrylic resin composition (B) of the present invention can be reacted with a polymer by a known method. As the polymer reaction, the imidization reaction described in JP-A-2008-273140, JP-A-2008-274187, JP-A-2010-254742 or JP-A-2010-261025, or the grafting described in JP-A-2012-20183. Reaction is mentioned.
 本発明のメタクリル樹脂(A)またはメタクリル樹脂組成物(B)は公知の成形方法によって成形体とすることができる。成形方法としては、例えば、Tダイ法(ラミネート法、共押出法など)、インフレーション法(共押出法など)、圧縮成形法、ブロー成形法、カレンダー成形法、真空成形法、射出成形法(インサート法、二色法、プレス法、コアバック法、サンドイッチ法など)などの溶融成形法ならびに溶液キャスト法などを挙げることができる。 The methacrylic resin (A) or the methacrylic resin composition (B) of the present invention can be formed into a molded product by a known molding method. As a molding method, for example, T-die method (lamination method, co-extrusion method, etc.), inflation method (co-extrusion method, etc.), compression molding method, blow molding method, calendar molding method, vacuum molding method, injection molding method (insert Examples include melt-forming methods such as a method, a two-color method, a pressing method, a core back method, a sandwich method, and the like, and a solution casting method.
 これらの成形方法では、一般に樹脂を成形するために成形型が用いられる。例えば、シート成形用ロール、フィルム成形製膜用ロール、圧縮成形用金型、ブロー成形用金型、カレンダーロール、真空成形用金型、射出成形用金型、キャスト重合用鋳型反応釜などの成形型を挙げることができる。成形型は金属製であることが多いが、金属以外の、例えばゴムロール、強化ガラスなども存在する。 In these molding methods, a mold is generally used to mold a resin. For example, a sheet forming roll, a film forming film forming roll, a compression molding mold, a blow molding mold, a calender roll, a vacuum molding mold, an injection molding mold, a mold for a cast polymerization mold reaction kettle, etc. I can mention the type. The mold is often made of metal, but other than metal, for example, a rubber roll, tempered glass, etc. are also present.
 本発明の成形体の形状は任意であり特に限定されないが、例えばフィルム、シート、板などであってもよい。 Although the shape of the molded object of this invention is arbitrary and is not specifically limited, For example, a film, a sheet, a board, etc. may be sufficient.
 本発明の成形体の用途としては、例えば、広告塔、スタンド看板、袖看板、欄間看板、屋上看板などの看板部品;ショーケース、仕切板、店舗ディスプレイなどのディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリアなどの照明部品;ペンダント、ミラーなどのインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根などの建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバー、グレージング材、サンルーフ、ヘッドアップディスプレイなどの輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機用ディスプレイカバーなどの電子機器部品;保育器、レントゲン部品などの医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓などの機器関係部品;ディスプレイ装置のフロントライト用導光板およびフィルム、バックライト用導光板及びフィルム、液晶保護板、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板、反射材などの光学関係部品;道路標識、案内板、カーブミラー、防音壁などの交通関係部品;自動車内装用表面材、携帯電話の表面材、マーキングフィルムなどのフィルム部材;洗濯機の天蓋材やコントロールパネル、炊飯ジャーの天面パネルなどの家電製品用部材;その他、温室、大形水槽、箱水槽、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、熔接時の顔面保護用マスクなどが挙げられる。 As applications of the molded article of the present invention, for example, billboard parts such as advertising towers, stand signs, sleeve signs, cross signs, roof signs and the like; display parts such as showcases, dividers, store displays; fluorescent light covers, mood lighting Lighting parts such as covers, lampshades, light ceilings, light walls and chandeliers; interior parts such as pendants and mirrors; constructions such as doors, domes, safety glass panes, partitions, stairwells, balcony waistboards, roofs of leisure buildings Components for aircraft windshields, visors for pilots, motorcycles, motor boat windshields, light shields for buses, side visors for cars, rear visors, head wings, headlight covers, glazing materials, sunroofs, head-up displays, etc. Transport parts Picture nameplate, stereo cover, TV Electronic parts such as protective masks, display covers for vending machines; Medical equipment parts such as incubators and X-ray parts; Machine-related parts such as instrument covers, instrument covers, laboratory equipment, rulers, dials, observation windows; Display equipment Light guide plate for front light and film, light guide plate and film for back light, liquid crystal protective plate, Fresnel lens, lenticular lens, front plate of various displays, diffusion plate, optical member such as reflector, road sign, guide plate, Transportation parts such as curved mirrors and sound barriers; surface materials for car interiors; surface materials for mobile phones; film members such as marking films; for household appliances such as lids and control panels for washing machines and top panels for rice cookers Other members, greenhouse, large water tank, box water tank, clock panel, bathtub, sanitary, deskma Door, game parts, toys, and the like face protective mask at the time of welding.
 本発明の成形体は、耐候性に優れる点から、例えば、各種カバー、各種端子板、プリント配線板、スピーカー、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、また、映像・光記録・光通信・情報機器関連部品としてカメラ、VTR、プロジェクションTV等のファインダー、フィルター、プリズム、フレネルレンズ、各種光ディスク(VD、CD、DVD、MD、LD等)基板の保護フィルム、光スイッチ、光コネクター、液晶ディスプレイ、液晶ディスプレイ用導光フィルム・シート、フラットパネルディスプレイ、フラットパネルディスプレイ用導光フィルム・シート、プラズマディスプレイ、プラズマディスプレイ用導光フィルム・シート、電子ペーパー用導光フィルム・シート、位相差フィルム・シート、偏光フィルム・シート、偏光板保護フィルム・シート、偏光子保護フィルム・シート、波長板、光拡散フィルム・シート、プリズムフィルム・シート、反射フィルム・シート、反射防止フィルム・シート、視野角拡大フィルム・シート、防眩フィルム・シート、輝度向上フィルム・シート、液晶やエレクトロルミネッセンス用途の表示素子基板、タッチパネル、タッチパネル用導光フィルム・シート、各種前面板と各種モジュール間のスペーサーなど、各種の光学用途へ特に好適に適用可能である。 The molded article of the present invention is an optical device represented by, for example, various covers, various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, watches and the like from the viewpoint of excellent weather resistance, and also video and optical recording. · Optical communication · Information equipment related parts as cameras, finders such as VTRs, projection TVs, filters, prisms, Fresnel lenses, protective films for various optical disc (VD, CD, DVD, MD, LD etc.) substrates, optical switches, optical connectors Liquid Crystal Display, Light Guide Film for Liquid Crystal Display, Flat Panel Display, Light Guide Film for Flat Panel Display, Plasma Display, Light Guide Film for Plasma Display, Sheet, Light Guide Film for Electronic Paper, Retardation Film sheet, polarizing film · Sheets, polarizing plate protective films / sheets, polarizer protective films / sheets, wave plates, light diffusion films / sheets, prismatic films / sheets, reflective films / sheets, antireflective films / sheets, viewing angle widening films / sheets, Especially suitable for various optical applications such as glare film sheet, brightness enhancement film sheet, display element substrate for liquid crystal and electroluminescence applications, touch panel, light guide film sheet for touch panel, spacer between various front plates and various modules, etc. It is applicable.
 具体的には、例えば、携帯電話、デジタル情報端末、ポケットベル、ナビゲーション、車載用液晶ディスプレイ、液晶モニター、調光パネル、OA機器用ディスプレイ、AV機器用ディスプレイ等の各種液晶表示素子やエレクトロルミネッセンス表示素子あるいはタッチパネルなどに用いることができる。また、耐候性に優れている点から、例えば、建築用内・外装用部材、カーテンウォール、屋根用部材、屋根材、窓用部材、雨どい、エクステリア類、壁材、床材、造作材、道路建設用部材、再帰反射フィルム・シート、農業用フィルム・シート、照明カバー、看板、透光性遮音壁など、公知の建材用途へも特に好適に適用可能である。 Specifically, for example, various liquid crystal display elements such as mobile phones, digital information terminals, pagers, navigation, liquid crystal displays for vehicles, liquid crystal monitors, light control panels, displays for OA equipment, displays for AV equipment, etc. and electroluminescence display It can be used for an element or a touch panel. In addition, from the point of being superior in weather resistance, for example, interior / exterior members for buildings, curtain walls, roof members, roof members, window members, gutters, exteriors, wall materials, floor materials, construction materials, It can be particularly suitably applied to known building materials such as road construction members, retroreflective films / sheets, agricultural films / sheets, lighting covers, signs, light-transmitting sound barriers, and the like.
 本発明の成形体は、太陽電池用途として太陽電池表面保護フィルム、太陽電池用風刺フィルム、太陽電池用裏面保護フィルム、太陽電池用基盤フィルム、ガスバリアフィルム基材、ガスバリアフィルム用保護フィルムなどへも適用可能である。 The molded article of the present invention is also applied to solar cell surface protective films, solar cell satire films, solar cell rear surface protective films, solar cell base films, gas barrier film substrates, gas barrier film protective films and the like as solar cell applications It is possible.
 成形体の一形態である本発明のフィルムは、その製法によって特に限定されない。本発明のフィルムは、例えば、前記メタクリル樹脂(A)またはメタクリル樹脂組成物(B)を、溶液キャスト法、溶融流延法、押出成形法、インフレーション成形法、ブロー成形法などの公知の方法にて製膜することによって得ることができる。これらのうち、押出成形法が好ましい。押出成形法によれば、改善された靭性を持ち、取扱い性に優れ、靭性と表面硬度および剛性とのバランスに優れたフィルムを得ることができる。押出機から吐出されるメタクリル樹脂(A)またはメタクリル樹脂組成物(B)の温度は好ましくは160~270℃、より好ましくは220~260℃に設定する。 The film of the present invention, which is one form of a molded article, is not particularly limited by the production method. The film of the present invention can be prepared, for example, by using the above-mentioned methacrylic resin (A) or methacrylic resin composition (B) by a known method such as solution casting, melt casting, extrusion molding, inflation molding, blow molding and the like. It can be obtained by film formation. Among these, the extrusion method is preferred. According to the extrusion method, it is possible to obtain a film having an improved toughness, an excellent handleability, and an excellent balance of toughness and surface hardness and rigidity. The temperature of the methacrylic resin (A) or the methacrylic resin composition (B) discharged from the extruder is preferably set to 160 to 270 ° C., more preferably 220 to 260 ° C.
 これら公知の方法にて製膜する場合、前記メタクリル樹脂(A)またはメタクリル樹脂組成物(B)をダイスプレートに供給する前に、ポリマーフィルターで濾過を行うことが好ましい。ポリマーフィルターを押出成形機先端部に備え付けることで異物を効果的に除去することができる。ポリマーフィルターは、濾過精度が、好ましくは1μm以上10μm以下、より好ましくは1μm以上5μm以下、さらに好ましくは2μm以上3μm以下である。ポリマーフィルターとしては、リーフディスクタイプやキャンドルタイプなど公知のものを用いることができる。熱分解し易いメタクリル樹脂の場合、ポリマーフィルターで濾過する際の発熱により、熱分解が起こり、発泡しフィルムの品位が損なわれる場合がある。 When forming into a film by these well-known methods, it is preferable to filter with a polymer filter, before supplying the said methacrylic resin (A) or a methacrylic resin composition (B) to a dice plate. By providing the polymer filter at the tip of the extruder, foreign matter can be effectively removed. The polymer filter preferably has a filtration accuracy of 1 μm to 10 μm, more preferably 1 μm to 5 μm, and still more preferably 2 μm to 3 μm. As a polymer filter, well-known things, such as a leaf disc type and a candle type, can be used. In the case of a methacrylic resin which is easy to be thermally decomposed, heat generation may occur due to heat generation when it is filtered through a polymer filter, which may cause foaming to deteriorate the quality of the film.
 押出成形法のうち、良好な表面平滑性、良好な鏡面光沢、低ヘイズのフィルムが得られるという観点から、前記メタクリル樹脂(A)またはメタクリル樹脂組成物(B)を溶融状態でTダイから押出し、次いでそれを二つ以上の鏡面ロールまたは鏡面ベルトで挟持して成形することを含む方法が好ましい。鏡面ロールまたは鏡面ベルトは、金属製であることが好ましい。一対の鏡面ロールまたは鏡面ベルトの間の線圧は、好ましくは2N/mm以上、より好ましくは10N/mm以上、さらにより好ましくは30N/mm以上である。 Among the extrusion molding methods, the above-mentioned methacrylic resin (A) or methacrylic resin composition (B) is extruded from a T-die in a molten state from the viewpoint of obtaining a film with good surface smoothness, good mirror gloss and low haze. Then, a method including sandwiching and molding it with two or more mirror rolls or mirror belts is preferable. The mirror roll or mirror belt is preferably made of metal. The linear pressure between the pair of mirror rolls or mirror belts is preferably 2 N / mm or more, more preferably 10 N / mm or more, still more preferably 30 N / mm or more.
 また、鏡面ロールまたは鏡面ベルトの表面温度は共に130℃以下であることが好ましい。また、一対の鏡面ロール若しくは鏡面ベルトは、少なくとも一方の表面温度が60℃以上であることが好ましい。このような表面温度に設定すると、押出機から吐出される前記メタクリル樹脂(A)またはメタクリル樹脂組成物(B)を自然放冷よりも速い速度で冷却することができ、表面平滑性に優れ且つヘイズの低いフィルムを製造し易い。 Moreover, it is preferable that the surface temperature of a mirror surface roll or a mirror surface belt is both 130 degrees C or less. Moreover, it is preferable that at least one surface temperature of a pair of mirror surface roll or mirror surface belts is 60 degreeC or more. When such a surface temperature is set, the methacrylic resin (A) or the methacrylic resin composition (B) discharged from the extruder can be cooled at a speed faster than natural cooling, and the surface smoothness is excellent and It is easy to produce a low haze film.
 本発明のフィルムは延伸処理を施したものであってもよい。延伸処理によって、機械的強度が高まり、ひび割れし難いフィルムを得ることができる。延伸方法は特に限定されず、一軸延伸法、同時二軸延伸法、逐次二軸延伸法、チュブラー延伸法などを挙げることができる。延伸時の温度は、均一に延伸でき、高い強度のフィルムが得られるという観点から、100~200℃が好ましく、120℃~160℃がより好ましい。延伸は、通常長さ基準で100~5000%/分で行われる。延伸は、面積比で1.5~8倍になるように行うことが好ましい。延伸の後、熱固定を行うことによって、熱収縮の少ないフィルムを得ることができる。 The film of the present invention may be stretched. By the stretching process, mechanical strength is increased, and a film which is not easily cracked can be obtained. The stretching method is not particularly limited, and examples thereof include uniaxial stretching method, simultaneous biaxial stretching method, sequential biaxial stretching method, and Tumbrer stretching method. The temperature at the time of stretching is preferably 100 to 200 ° C., and more preferably 120 ° C. to 160 ° C. from the viewpoint that uniform stretching can be performed and a high strength film can be obtained. Stretching is usually performed at 100 to 5000% / min based on length. The stretching is preferably performed so as to have an area ratio of 1.5 to 8 times. By heat setting after stretching, a film with less heat shrinkage can be obtained.
 本発明のフィルムの厚さは、特に制限されないが、光学フィルムとして用いる場合、その厚さは、好ましくは1~300μm、より好ましくは10~50μm、さらに好ましくは15~40μmである。 The thickness of the film of the present invention is not particularly limited, but when used as an optical film, the thickness is preferably 1 to 300 μm, more preferably 10 to 50 μm, and still more preferably 15 to 40 μm.
 本発明のフィルムは、厚さ40μmにおけるヘイズが、好ましくは0.2%以下、より好ましくは0.1%以下である。これにより、表面光沢や透明性に優れる。また、液晶保護フィルムや導光フィルムなどの光学用途においては、光源の利用効率が高まり好ましい。さらに、表面賦形を行う際の賦形精度に優れるため好ましい。 The film of the present invention has a haze of preferably 0.2% or less, more preferably 0.1% or less at a thickness of 40 μm. This is excellent in surface gloss and transparency. In addition, in optical applications such as liquid crystal protective films and light guide films, the utilization efficiency of the light source is preferably increased. Furthermore, since it is excellent in the shaping precision at the time of performing surface shaping, it is preferable.
 本発明のフィルムは、耐熱分解性が高く、成形時の発泡が少なく、耐熱性を有するので、偏光子保護フィルム、位相差フィルム、液晶保護板、携帯型情報端末の表面材、携帯型情報端末の表示窓保護フィルム、導光フィルム、銀ナノワイヤーやカーボンナノチューブを表面に塗布した透明導電フィルム、各種ディスプレイの前面板用途などに好適である。特に本発明のフィルムは位相差を小さくできるため、偏光子保護フィルムに好適である。 The film of the present invention has high heat decomposition resistance, low foaming at the time of molding, and heat resistance, so it has a polarizer protective film, a retardation film, a liquid crystal protective plate, a surface material of a portable information terminal, a portable information terminal The display window protective film of the above, a light guide film, a transparent conductive film coated with silver nanowires or carbon nanotubes on the surface, a front plate of various displays, etc. are suitable. In particular, since the film of the present invention can reduce the retardation, it is suitable for a polarizer protective film.
 本発明のフィルムは、透明性、耐熱性を有しているので、光学用途以外の用途として、IRカットフィルムや、防犯フィルム、飛散防止フィルム、加飾フィルム、金属加飾フィルム、太陽電池のバックシート、フレキシブル太陽電池用フロントシート、シュリンクフィルム、インモールドラベル用フィルムに使用することができる。 Since the film of the present invention has transparency and heat resistance, IR cut films, crime prevention films, shatterproof films, decorative films, metal decorative films, solar cell backs are used as applications other than optical applications. It can be used for sheets, front sheets for flexible solar cells, shrink films, films for in-mold labels.
 以下、実施例および比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。なお、物性値等の測定は以下の方法によって実施した。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the following examples. In addition, the measurement of the physical-property value etc. was implemented by the following method.
(重合転化率)
 島津製作所社製ガスクロマトグラフ GC-14Aに、カラムとしてGL Sciences Inc.製 Inert CAP 1(df=0.4μm、0.25mmI.D.×60m)を繋ぎ、インジェクション温度を180℃に、検出器温度を180℃に、カラム温度を60℃(5分間保持)から昇温速度10℃/分で200℃まで昇温して、10分間保持する条件に設定して、測定を行い、この結果に基づいて重合転化率を算出した。
(Polymerization conversion rate)
Shimadzu Corporation gas chromatograph GC-14A, GL Sciences Inc. as a column. Inlet CAP 1 (df = 0.4 μm, 0.25 mm ID × 60 m), injection temperature to 180 ° C, detector temperature to 180 ° C, column temperature from 60 ° C (hold for 5 minutes) The temperature was raised to 200 ° C. at a temperature rate of 10 ° C./min, and the conditions for holding for 10 minutes were set, measurement was performed, and the polymerization conversion rate was calculated based on this result.
(重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布)
 ゲルパーミエーションクロマトグラフィ(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値を算出した。ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。
 GPC装置:東ソー株式会社製、HLC-8320
 検出器:示差屈折率検出器
 カラム:東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。
 溶離剤: テトラヒドロフラン
 溶離剤流量: 0.35ml/分
 カラム温度: 40℃
 検量線:標準ポリスチレン10点のデータを用いて作成
(Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution)
The chromatogram was measured by gel permeation chromatography (GPC) under the following conditions, and the value converted to the molecular weight of standard polystyrene was calculated. In the baseline, the slope of the high molecular weight peak of the GPC chart changes from zero to positive when the retention time is earlier, and the slope of the low molecular weight peak is negative to zero when the retention time is earlier The line connecting points that change to
GPC apparatus: Tosoh Corp. HLC-8320
Detector: Differential Refractive Index Detector Column: Two TSKgel SuperMultipore HZM-M's manufactured by Tosoh Corporation and Super HZ 4000 connected in series were used.
Eluent: Tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C.
Calibration curve: made using data of 10 standard polystyrene
(三連子表示のシンジオタクティシティ(rr))
 メタクリル樹脂の1H-NMRスペクトルを、核磁気共鳴装置(Bruker社製 ULTRA SHIELD 400 PLUS)を用いて、溶媒として重水素化クロロホルムを用い、室温、積算回数64回の条件にて、測定した。そのスペクトルからTMSを0ppmとした際の0.6~0.95ppmの領域の面積(X)と、0.6~1.35ppmの領域の面積(Y)とを計測し、次いで、三連子表示のシンジオタクティシティ(rr)を式:(X/Y)×100にて算出した。
(Things of syndiotacticity (rr) displayed)
The 1 H-NMR spectrum of the methacrylic resin was measured using a nuclear magnetic resonance apparatus (ULTRA SHIELD 400 PLUS manufactured by Bruker) using deuterated chloroform as a solvent under conditions of room temperature and 64 integrations. From the spectrum, measure the area (X) of the region of 0.6 to 0.95 ppm when TMS is 0 ppm and the area (Y) of the region of 0.6 to 1.35 ppm, and then The syndiotacticity (rr) shown was calculated by the formula: (X / Y) × 100.
(残存単量体、二量体、三量体、連鎖移動剤)
 島津製作所社製ガスクロマトグラフ GC-14Aに、カラムとしてGL Sciences Inc.製 INERT CAP 1(df=0.4μm、0.25mmI.D.×60m)を繋ぎ、下記分析条件にて分析を行い、それに基づいて算出した。含有揮発分については、リテンションタイムに基づき種類ごとに測定可能である。
 <分析条件>
  injection温度:250℃
  detector温度:250℃
  カラム温度条件:
   初期温度    :60℃
   初期温度保持時間:5分間
   昇温速度    :10℃/分
   最高温度    :250℃
   最高温度保持時間:10分間
(Residual monomer, dimer, trimer, chain transfer agent)
Shimadzu Corporation gas chromatograph GC-14A, GL Sciences Inc. as a column. A product of INERT CAP 1 (df = 0.4 μm, 0.25 mm ID × 60 m) was connected, and analysis was carried out under the following analysis conditions, and calculation was made based thereon. The contained volatile content can be measured for each type based on the retention time.
<Analytical conditions>
Injection temperature: 250 ° C
detector temperature: 250 ° C
Column temperature conditions:
Initial temperature: 60 ° C
Initial temperature holding time: 5 minutes Heating rate: 10 ° C / min Maximum temperature: 250 ° C
Maximum temperature holding time: 10 minutes
(ガラス転移温度Tg)
 メタクリル樹脂およびメタクリル樹脂組成物を、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、230℃まで1回目の昇温をし、次いで室温まで冷却し、その後、室温から230℃までを10℃/分で2回目の昇温をさせる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。
(Glass transition temperature Tg)
The methacrylic resin and the methacrylic resin composition are heated to 230 ° C. for the first time using a differential scanning calorimeter (DSC-50 (product number) manufactured by Shimadzu Corporation) in accordance with JIS K 7121 and then room temperature The DSC curve was measured under the condition that the temperature was raised from room temperature to 230 ° C. at 10 ° C./min a second time. The midpoint glass transition temperature determined from the DSC curve measured at the second temperature rise was taken as the glass transition temperature in the present invention.
(MFR)
 樹脂試料について、JIS K7210に準拠して、230℃、3.8kg荷重でメルトフローレート(MFR)を測定した。
(MFR)
The melt flow rate (MFR) of the resin sample was measured at 230 ° C. under a load of 3.8 kg in accordance with JIS K7210.
(熱重量保持率による耐熱分解性評価)
 樹脂試料について、熱重量測定装置(島津製作所製、TGA-50(品番))を用いて、空気雰囲気下、乾燥空気の流速50ml/分にて、50℃から290℃まで20℃/分で昇温させた後、空気雰囲気下のまま290℃にて10分間保持する条件にて熱重量減少を測定した。50℃の重量(X1)を基準(保持率100%)にして、290℃にて10分間保持した時の重量(X2)をもとに、下記式で耐熱分解性を評価した。
 熱重量保持率(%)=(X2/X1)×100(%)
(Evaluation of thermal decomposition resistance by thermal weight retention)
The resin sample is raised from 50 ° C. to 290 ° C. at a temperature of 20 ° C./min in an air atmosphere at a flow rate of 50 ml / min of dry air using a thermogravimetric apparatus (manufactured by Shimadzu Corporation, TGA-50 (part number)). After being warmed, the thermal weight loss was measured under the condition of maintaining at 290 ° C. for 10 minutes in the air atmosphere. Based on the weight (X1) at 50 ° C. (retention 100%), the heat decomposition resistance was evaluated by the following equation based on the weight (X2) when held at 290 ° C. for 10 minutes.
Thermal weight retention (%) = (X2 / X1) x 100 (%)
(酢酸換算の酸価)
 樹脂試料をクロロホルムに溶解させ、JIS-K0070-1992に記載の方法に準じて、水酸化カリウム水溶液で滴定することにより測定した酸価を測定し、クロロホルムのみの酸価を引いた数字を酸価とした。
 下記式(I)を用いて、得られた酸価を酢酸換算に換算した値を用いた。
 酢酸換算の酸価(ppm)=(酸価/1000)×(60/56)×1000000   (I) 
なお、式(I)における数値の意味は以下の通りである。
 1000   :ミリグラムをグラムに変換
 60     :酢酸の分子量
 56     :KOHの分子量
 1000000:ppm単位に換算
(Acid value converted to acetic acid)
The resin sample is dissolved in chloroform, and the acid value measured by titration with an aqueous solution of potassium hydroxide is measured according to the method described in JIS-K0070-1992, and the number obtained by subtracting the acid value of chloroform alone is the acid value And
The value which converted the obtained acid value into acetic acid conversion was used using following formula (I).
Acid value in acetic acid conversion (ppm) = (acid number / 1000) x (60/56) x 1,000,000 (I)
In addition, the meaning of the numerical value in Formula (I) is as follows.
1000: Convert milligrams to grams 60: Molecular weight of acetic acid 56: Molecular weight of KOH 1000000: Converted to ppm
(熱収縮温度)
 二軸延伸フィルムから、長さ20mm、幅5mm、厚さ40μmの試験片を切り出した。ここで、試験片の長手方向は、フィルム原反の幅方向( TD側) と平行方向とした。試験片の長手方向の両端部( 両端から5mmの部分) を一対のフィルムチャックで把持した。このとき一対のフィルムチャックの離間距離を10mmとした。一対のフィルムチャックによって二軸延伸フィルムに引張り荷重2gをかけ、これを応力・歪制御型熱機械分析装置(TMA)に取り付けた。上記のように試験片をセットした状態で、試験片を25℃ から120℃までを2℃/分の速度で昇温した。二軸延伸フィルムが収縮を開始する温度を熱収縮温度とした。
(Heat shrink temperature)
From the biaxially stretched film, a test piece having a length of 20 mm, a width of 5 mm, and a thickness of 40 μm was cut out. Here, the longitudinal direction of the test piece was parallel to the width direction (TD side) of the raw film. Both longitudinal end portions (5 mm from both ends) of the test piece were gripped by a pair of film chucks. At this time, the distance between the pair of film chucks was 10 mm. A tensile load of 2 g was applied to the biaxially stretched film by a pair of film chucks, and this was attached to a stress / strain control type thermomechanical analyzer (TMA). With the test piece set as described above, the test piece was heated from 25 ° C. to 120 ° C. at a rate of 2 ° C./minute. The temperature at which the biaxially stretched film starts to shrink was taken as the heat shrinkage temperature.
(総合評価)
 耐熱性(樹脂のガラス転移温度)に優れる成形品が得られることを基準とし、成形時の発泡の指標となる酸価や耐熱分解性などの結果から、成形材料としての総合評価を行った。
評価はA、B、Cの3段階で実施した。
(Comprehensive evaluation)
Based on the fact that a molded article having excellent heat resistance (glass transition temperature of resin) can be obtained, comprehensive evaluation as a molding material was performed based on the results of the acid value and the thermal decomposition resistance as an index of foaming during molding.
Evaluation was performed in three stages of A, B, and C.
(実施例1)(メタクリル樹脂〔A-1〕の製造) 
 攪拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたメタクリル酸メチル(MMA)100質量部、2,2’-アゾビス(2-メチルプロピオニトリル)(水素引抜能:1%、1時間半減期温度:83℃)0.012質量部、およびn-オクチルメルカプタン0.45質量部を入れ、撹拌して、原料液を得た。かかる原料液中に窒素を送り込み、原料液中の溶存酸素を除去した。
Example 1 (Production of Methacrylic Resin [A-1])
The inside of the autoclave equipped with a stirrer and a collection tube was purged with nitrogen. In this, 100 parts by mass of purified methyl methacrylate (MMA), 2,2'-azobis (2-methylpropionitrile) (hydrogen extraction capacity: 1%, 1 hour half-life temperature: 83 ° C.) 0.012 A mass part and 0.45 mass parts of n-octyl mercaptan were added and stirred to obtain a raw material liquid. Nitrogen was fed into the raw material solution to remove dissolved oxygen in the raw material solution.
 オートクレーブと配管で接続された槽型反応器に容量の2/3まで原料液を入れた。温度を100℃に維持して先ずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、平均滞留時間120分となる流量で、原料液をオートクレーブから槽型反応器に供給し、且つ原料液の供給流量に相当する流量で、反応液を槽型反応器から抜き出して、温度100℃に維持し、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は45質量%であった。 The feed solution was charged to 2/3 of the volume in a tank reactor connected by an autoclave and piping. The temperature was maintained at 100 ° C. and the polymerization reaction was first initiated in a batch mode. The feed solution is supplied from the autoclave to the tank reactor at a flow rate that achieves an average residence time of 120 minutes when the polymerization conversion ratio reaches 55% by mass, and the reaction solution is delivered at a flow rate corresponding to the feed flow rate of the feed solution. The reactor was withdrawn from the tank reactor, maintained at a temperature of 100 ° C., and switched to a continuous flow polymerization reaction. After switching, the polymerization conversion at steady state was 45% by mass.
 定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温230℃の二軸押出機に供給してストランド状に吐出し、ペレタイザーでカットして、メタクリル樹脂〔A-1〕を得た。 The reaction liquid withdrawn from the tank reactor in a steady state was supplied to a multi-tube heat exchanger with an internal temperature of 230 ° C. and heated at a flow rate at which the average residence time is 2 minutes. Then, the heated reaction solution was introduced into a flash evaporator to remove volatile components mainly composed of unreacted monomers to obtain a molten resin. The molten resin from which volatile components had been removed was supplied to a twin-screw extruder having an internal temperature of 230 ° C., discharged into strands, and cut with a pelletizer to obtain a methacrylic resin [A-1].
 メタクリル樹脂組成物〔A-1〕を80℃で12時間乾燥させた後、L/D34の50mmΦベント式1軸押出機を用いて吐出量30kg/hrにて溶融混錬した。溶融混錬後、ギアポンプを用いて、濾過面積0.75m、濾過精度5μmのリーフディスクフィルタに通し、幅130mmのTダイより温度270℃にて押出し、90℃の金属鏡面ロール上でフィルムを成形し、20m/minの速度にて引取り、厚み160μmの樹脂単層フィルムを製膜した。 After drying the methacrylic resin composition [A-1] at 80 ° C. for 12 hours, it was melt-kneaded at a discharge rate of 30 kg / hr using a 50 mm ベ ン ト vent type single screw extruder of L / D 34. After melt-kneading, use a gear pump, pass through a leaf disc filter with a filtration area of 0.75 m 2 and a filtration accuracy of 5 μm, extrude from a 130 mm wide T-die at a temperature of 270 ° C, and film on a 90 ° C metal mirror roll. It shape | molded, it pulled up at the speed | rate of 20 m / min, and formed the resin single layer film with a thickness of 160 micrometers.
 前記の手法にて得られた厚さ160μmの未延伸フィルムを、二辺が押出方向と平行となるように100mm×100mmの小片に切り出し、パンタグラフ式二軸延伸試験機(東洋精機(株)製)により、ガラス転移温度+10℃の延伸温度、一方向150%/分の延伸速度、一方向2倍の延伸倍率で押出方向と平行な方向を先に、次いでその垂直方向という順に逐次二軸延伸し(面積比で4倍)、10秒間保持の条件で延伸し、次いで室温下に取り出すことで急冷して、厚さ40μmの二軸延伸フィルムを得た。得られたメタクリル樹脂〔A-1〕と二軸延伸フィルムについての測定結果を表1に示す。 The unstretched film with a thickness of 160 μm obtained by the above method is cut into small pieces of 100 mm × 100 mm so that the two sides are parallel to the extrusion direction, and a pantograph type biaxial stretching tester (manufactured by Toyo Seiki Co., Ltd.) ), The stretching temperature of glass transition temperature + 10 ° C, the stretching speed of 150% / min in one direction, the stretching ratio of 2 times in one direction, the direction parallel to the extrusion direction first, and then the biaxial direction The film was stretched under the condition of holding for 10 seconds and then quenched by taking it out at room temperature to obtain a biaxially stretched film with a thickness of 40 μm. The measurement results of the obtained methacrylic resin [A-1] and biaxially stretched film are shown in Table 1.
(実施例2)(メタクリル樹脂〔A-2〕の製造) 
 2,2’-アゾビス(2-メチルプロピオニトリル)0.0102質量部、n-オクチルメルカプタン0.315質量部に変えた以外は実施例1と同じ方法でメタクリル樹脂〔A-2〕および二軸延伸フィルムを得た。評価結果を表1に示す。
Example 2 (Production of Methacrylic Resin [A-2])
Methacrylic resin [A-2] and 2 in the same manner as in Example 1 except that 0.0102 parts by mass of 2,2′-azobis (2-methylpropionitrile) and 0.315 parts by mass of n-octylmercaptan were used. An axial stretched film was obtained. The evaluation results are shown in Table 1.
(実施例3)(メタクリル樹脂〔A-3〕の製造) 
 2,2’-アゾビス(2-メチルプロピオニトリル)0.0094質量部、n-オクチルメルカプタン0.260質量部に変えた以外は実施例1と同じ方法でメタクリル樹脂〔A-3〕および二軸延伸フィルムを得た。評価結果を表1に示す。
Example 3 (Production of Methacrylic Resin [A-3])
Methacrylic resin [A-3] and a dimethacrylate resin in the same manner as in Example 1 except that 0.0094 parts by mass of 2,2'-azobis (2-methylpropionitrile) and 0.260 parts by mass of n-octylmercaptan were used. An axial stretched film was obtained. The evaluation results are shown in Table 1.
(比較例1)(メタクリル樹脂〔A-4〕の製造) 
 2,2’-アゾビス(2-メチルプロピオニトリル)0.0075質量部、n-オクチルメルカプタン0.428質量部、重合温度を140℃に変えた以外は実施例1と同じ方法でメタクリル樹脂〔A-4〕および二軸延伸フィルムを得た。評価結果を表1に示す。
Comparative Example 1 (Production of Methacrylic Resin [A-4])
Methacrylic resin in the same manner as in Example 1 except that 0.0075 parts by mass of 2,2′-azobis (2-methylpropionitrile), 0.428 parts by mass of n-octylmercaptan, and the polymerization temperature were changed to 140 ° C. A-4] and a biaxially stretched film were obtained. The evaluation results are shown in Table 1.
(比較例2)(メタクリル樹脂〔A-5〕の製造) 
 2,2’-アゾビス(2-メチルプロピオニトリル)0.0070質量部、n-オクチルメルカプタン0.275質量部に変えた以外は比較例1と同じ方法でメタクリル樹脂〔A-5〕および二軸延伸フィルムを得た。評価結果を表1に示す。
Comparative Example 2 (Production of Methacrylic Resin [A-5])
Methacrylic resin [A-5] and di-methyl methacrylate resin in the same manner as in Comparative Example 1 except that 0.0070 parts by mass of 2,2′-azobis (2-methylpropionitrile) and 0.275 parts by mass of n-octylmercaptan were used. An axial stretched film was obtained. The evaluation results are shown in Table 1.
(比較例3)(メタクリル樹脂〔A-6〕の製造) 
 2,2’-アゾビス(2-メチルプロピオニトリル)0.0066質量部、n-オクチルメルカプタン0.230質量部に変えた以外は比較例1と同じ方法でメタクリル樹脂〔A-6〕および二軸延伸フィルムを得た。評価結果を表1に示す。
Comparative Example 3 (Production of Methacrylic Resin [A-6])
Methacrylic resin [A-6] and di-methyl methacrylate in the same manner as in Comparative Example 1 except that 0.0066 parts by mass of 2,2'-azobis (2-methylpropionitrile) and 0.230 parts by mass of n-octylmercaptan were used. An axial stretched film was obtained. The evaluation results are shown in Table 1.
(比較例4)(メタクリル樹脂〔A-7〕の製造) 
 2,2’-アゾビス(2-メチルプロピオニトリル)0.0071質量部、n-オクチルメルカプタン0.285質量部、重合温度を120℃に変えた以外は実施例1と同じ方法でメタクリル樹脂〔A-7〕および二軸延伸フィルムを得た。評価結果を表1に示す。メルトフローレートが同程度である実施例2に比べて、110℃において二軸延伸フィルムが10%収縮していた。
Comparative Example 4 (Production of Methacrylic Resin [A-7])
Methacrylic resin in the same manner as in Example 1 except that 0.0071 parts by mass of 2,2′-azobis (2-methylpropionitrile), 0.285 parts by mass of n-octylmercaptan, and the polymerization temperature were changed to 120 ° C. A-7] and a biaxially stretched film were obtained. The evaluation results are shown in Table 1. The biaxially stretched film was shrunk by 10% at 110 ° C. as compared to Example 2 in which the melt flow rate was comparable.
(比較例5)(メタクリル樹脂〔A-8〕の製造) 
 メタクリル酸メチル100質量部、アクリル酸メチル(MA)8質量部、2,2’-アゾビス(2-メチルプロピオニトリル)0.0065質量部、n-オクチルメルカプタン0.13質量部、重合温度を150℃に変えた以外は比較例1と同じ方法でメタクリル樹脂〔A-8〕および二軸延伸フィルムを得た。MMA含有量、MA含有量は、H-NMRにより確認した。評価結果を表1に示す。
Comparative Example 5 (Production of Methacrylic Resin [A-8])
100 parts by mass of methyl methacrylate, 8 parts by mass of methyl acrylate (MA), 0.0065 parts by mass of 2,2'-azobis (2-methylpropionitrile), 0.13 parts by mass of n-octylmercaptan, polymerization temperature A methacrylic resin [A-8] and a biaxially stretched film were obtained in the same manner as in Comparative Example 1 except that the temperature was changed to 150 ° C. The MMA content and the MA content were confirmed by 1 H-NMR. The evaluation results are shown in Table 1.
(比較例6)(メタクリル樹脂〔A-9〕の製造) 
 メタクリル酸メチル100質量部、アクリル酸メチル1.1質量部、2,2’-アゾビス(2-メチルプロピオニトリル)0.0068質量部、n-オクチルメルカプタン0.235質量部に変えた以外は比較例1と同じ方法でメタクリル樹脂〔A-9〕および二軸延伸フィルムを得た。MMA含有量、MA含有量は、H-NMRにより確認した。評価結果を表1に示す。
Comparative Example 6 (Production of Methacrylic Resin [A-9])
100 parts by mass of methyl methacrylate, 1.1 parts by mass of methyl acrylate, 0.0068 parts by mass of 2,2'-azobis (2-methylpropionitrile), 0.235 parts by mass of n-octylmercaptan A methacrylic resin [A-9] and a biaxially stretched film were obtained in the same manner as in Comparative Example 1. The MMA content and the MA content were confirmed by 1 H-NMR. The evaluation results are shown in Table 1.
(比較例7)(メタクリル樹脂〔A-10〕の製造) 
 メタクリル酸メチル100質量部に2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)0.451質量部、n-オクチルメルカプタン0.2質量部を加え、溶解させて原料液を得た。150質量部のイオン交換水、0.03質量部の硫酸ナトリウムおよび0.46質量部の懸濁分散剤を混ぜ合わせて混合液を得た。耐圧重合槽に、前記混合液と前記原料液を仕込み、窒素雰囲気下で撹拌しながら、温度を35℃にして重合反応を開始させた。重合反応開始後、3時間経過時に、温度を90℃に上げ、撹拌を引き続き1時間行って、ビーズ状の微粒子が分散した分散液を得た。 得られた分散液を濾過し、微粒子をイオン交換水で洗浄したのち、80℃で4時間、100Paで減圧乾燥し、ビーズ状のメタクリル樹脂〔A-10〕を得た。得られたメタクリル樹脂〔A-10〕を230℃に制御された二軸押出機に供給して、未反応単量体などの揮発成分を分離除去し、次いで樹脂成分を押出成形してストランドにした。該ストランドをペレタイザーでカットし、ペレット状の成形体とした。メタクリル樹脂〔A-10〕のフィルム製膜および二軸延伸は実施例1と同じ方法で行った。評価結果を表1に示す。
Comparative Example 7 (Production of Methacrylic Resin [A-10])
To 100 parts by mass of methyl methacrylate, 0.451 parts by mass of 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) and 0.2 parts by mass of n-octylmercaptan are added and dissolved to prepare a raw material solution. Obtained. 150 parts by mass of ion exchange water, 0.03 parts by mass of sodium sulfate and 0.46 parts by mass of the suspension dispersant were mixed to obtain a liquid mixture. The mixed solution and the raw material solution were charged into a pressure resistant polymerization tank, and the temperature was set to 35 ° C. to initiate a polymerization reaction while stirring under a nitrogen atmosphere. After initiation of the polymerization reaction, the temperature was raised to 90 ° C. after 3 hours, and stirring was continued for 1 hour to obtain a dispersion in which bead-like fine particles were dispersed. The obtained dispersion was filtered, and the fine particles were washed with ion-exchanged water, and then dried under reduced pressure at 100 Pa for 4 hours at 80 ° C. to obtain a bead-shaped methacrylic resin [A-10]. The obtained methacrylic resin [A-10] is fed to a twin-screw extruder controlled at 230 ° C. to separate and remove volatile components such as unreacted monomers, and then resin components are extruded and formed into strands. did. The strand was cut by a pelletizer to form a pellet-like shaped body. Film formation and biaxial stretching of the methacrylic resin [A-10] were performed in the same manner as in Example 1. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (12)

  1.  99質量%~100質量%のメタクリル酸メチルに由来する構造単位と、0質量%~1質量%のアクリル酸エステルに由来する構造単位を含み、
     三連子表示のシンジオタクティシティ(rr)がX %であり、重量平均分子量がYであり、残存するメタクリル酸メチルの量がメタクリル樹脂(A)中にZ質量%であり、残存する連鎖移動剤の量がメタクリル樹脂(A)中にW ppmである際に、式:X・Y/(10000・Z・W)で算出される値が20以上30以下であるメタクリル樹脂。
    Comprising 99% by mass to 100% by mass of methyl methacrylate-derived structural units and 0% by mass to 1% by mass of acrylic acid ester-derived structural units,
    The syndiotacticity (rr) in ternary notation is X%, the weight average molecular weight is Y, and the amount of methyl methacrylate remaining is Z mass% in the methacrylic resin (A), and the remaining chain A methacrylic resin whose value calculated by the formula: X · Y / (10000 · Z · W) is 20 or more and 30 or less when the amount of transfer agent is W ppm in the methacrylic resin (A).
  2.  三連子表示のシンジオタクティシティ(rr)が55~58%であり、残存するメタクリル酸メチルの量がメタクリル樹脂(A)中に0.7質量%以下、残存するメタクリル酸メチル二量体の量がメタクリル樹脂(A)中に1000ppm以下、残存するメタクリル酸メチル三量体の量がメタクリル樹脂(A)中に300ppm以下、残存する連鎖移動剤の量がメタクリル樹脂(A)中に200ppm以下であり、ガラス転移温度(Tg)が次式を満たす請求項1に記載のメタクリル樹脂。
     Mw≧70,000のときTg(℃)≧121
     Mw<70,000のときTg(℃)≧131-(700000/Mw)
    The amount of methyl methacrylate remaining is 55 to 58%, and the amount of methyl methacrylate remaining is 0.7% by mass or less in the methacrylic resin (A), and the methyl methacrylate dimer remaining The amount of methyl methacrylate in the methacrylic resin (A) is 1,000 ppm or less, the amount of methyl methacrylate trimer remaining is 300 ppm or less in the methacrylic resin (A), and the amount of residual chain transfer agent is 200 ppm in the methacrylic resin (A) The methacrylic resin according to claim 1, which is the following and has a glass transition temperature (Tg) satisfying the following formula.
    Tg (° C.) ≧ 121 when Mw ≧ 70,000
    Tg (° C.) ≧ 131- (700000 / Mw) when Mw <70,000
  3.  空気雰囲気、温度290℃一定、時間10分で測定した熱重量保持率が90%以上である請求項1または2に記載のメタクリル樹脂。 The methacrylic resin according to claim 1 or 2, wherein the thermal weight retention measured in an air atmosphere at a constant temperature of 290 ° C for 10 minutes is 90% or more.
  4.  メタクリル酸メチル構造単位が100質量%である請求項1~3のいずれか一つに記載のメタクリル樹脂。 The methacrylic resin according to any one of claims 1 to 3, which has a methyl methacrylate structural unit of 100% by mass.
  5.  重量平均分子量が50000~150000である請求項1~4のいずれか一つに記載のメタクリル樹脂。 The methacrylic resin according to any one of claims 1 to 4, which has a weight average molecular weight of 50,000 to 150,000.
  6.  請求項1~5のいずれか一つに記載のメタクリル樹脂100質量部に対して架橋ゴム5~50質量部をさらに含有するメタクリル樹脂組成物。 A methacrylic resin composition further comprising 5 to 50 parts by mass of a crosslinked rubber based on 100 parts by mass of the methacrylic resin according to any one of claims 1 to 5.
  7.  請求項1~5のいずれか一つに記載のメタクリル樹脂100質量部に対して光拡散粒子0.0001~0.1質量部をさらに含有するメタクリル樹脂組成物。 A methacrylic resin composition further comprising 0.0001 to 0.1 parts by mass of light diffusing particles with respect to 100 parts by mass of the methacrylic resin according to any one of claims 1 to 5.
  8.  請求項1~5のいずれか一つに記載のメタクリル樹脂または請求項6に記載のメタクリル樹脂組成物または請求項7に記載のメタクリル樹脂組成物からなる成形体。 A molded article comprising the methacrylic resin according to any one of claims 1 to 5, the methacrylic resin composition according to claim 6, or the methacrylic resin composition according to claim 7.
  9.  成形体がフィルムである、請求項8に記載の成形体。 The shaped body according to claim 8, wherein the shaped body is a film.
  10.  90℃~110℃でラジカル重合法により重合する工程を含む請求項1~5のいずれか一つに記載のメタクリル樹脂の製造方法。 The method for producing a methacrylic resin according to any one of claims 1 to 5, comprising the step of polymerizing by radical polymerization at 90 ° C to 110 ° C.
  11.  連続塊状重合法により重合する工程を含む、請求項1~5のいずれか一つに記載のメタクリル樹脂の製造方法。 The method for producing a methacrylic resin according to any one of claims 1 to 5, comprising the step of polymerizing by a continuous bulk polymerization method.
  12.  請求項1~5のいずれか一つに記載のメタクリル樹脂または請求項6に記載のメタクリル樹脂組成物または請求項7に記載のメタクリル樹脂組成物をダイから押し出す工程を含む、成形体の製造方法。  A method for producing a molded article, comprising the step of extruding the methacrylic resin according to any one of claims 1 to 5 or the methacrylic resin composition according to claim 6 or the methacrylic resin composition according to claim 7 from a die. .
PCT/JP2018/040128 2017-10-30 2018-10-29 Methacrylic resin, methacrylic resin composition, and molded body WO2019088025A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550374A JP7184793B2 (en) 2017-10-30 2018-10-29 Methacrylic resin, methacrylic resin composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-209774 2017-10-30
JP2017209774 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019088025A1 true WO2019088025A1 (en) 2019-05-09

Family

ID=66333540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040128 WO2019088025A1 (en) 2017-10-30 2018-10-29 Methacrylic resin, methacrylic resin composition, and molded body

Country Status (2)

Country Link
JP (1) JP7184793B2 (en)
WO (1) WO2019088025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238885A1 (en) * 2022-06-07 2023-12-14 株式会社カネカ Methacrylic resin, method for producing same, resin composition and resin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026507A (en) * 1998-07-14 2000-01-25 Mitsubishi Rayon Co Ltd Methacrylic polymer and its production
WO2010113422A1 (en) * 2009-03-31 2010-10-07 株式会社クラレ Illuminant
WO2014185508A1 (en) * 2013-05-16 2014-11-20 株式会社クラレ Film
WO2015037691A1 (en) * 2013-09-11 2015-03-19 住友化学株式会社 Methacrylic resin composition
JP2017048344A (en) * 2015-09-04 2017-03-09 株式会社クラレ Methacryl resin, methacryl resin composition and molded body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026507A (en) * 1998-07-14 2000-01-25 Mitsubishi Rayon Co Ltd Methacrylic polymer and its production
WO2010113422A1 (en) * 2009-03-31 2010-10-07 株式会社クラレ Illuminant
WO2014185508A1 (en) * 2013-05-16 2014-11-20 株式会社クラレ Film
WO2015037691A1 (en) * 2013-09-11 2015-03-19 住友化学株式会社 Methacrylic resin composition
JP2017048344A (en) * 2015-09-04 2017-03-09 株式会社クラレ Methacryl resin, methacryl resin composition and molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238885A1 (en) * 2022-06-07 2023-12-14 株式会社カネカ Methacrylic resin, method for producing same, resin composition and resin film

Also Published As

Publication number Publication date
JPWO2019088025A1 (en) 2020-11-12
JP7184793B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
US10619043B2 (en) Methacrylic resin composition
KR102093533B1 (en) Methacrylic resin composition and molded body thereof
JP6345086B2 (en) Resin composition and molded body
WO2018074550A1 (en) Methacrylic resin composition
KR20220158257A (en) Acrylic composition and molded article
JP6909209B2 (en) Methacrylic resin composition and molded article
US11299600B2 (en) Methacrylic resin composition and use thereof
JP7184793B2 (en) Methacrylic resin, methacrylic resin composition and molded article
JP7187482B2 (en) METHACRYLIC RESIN COMPOSITION, MOLDED PRODUCT AND FILM
JP6908629B2 (en) Methacryl copolymer and molded article
WO2020241822A1 (en) Methacrylic copolymer and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872691

Country of ref document: EP

Kind code of ref document: A1