WO2019087722A1 - Modified zirconium phosphate tungstate, negative thermal expansion filler, and polymeric composition - Google Patents

Modified zirconium phosphate tungstate, negative thermal expansion filler, and polymeric composition Download PDF

Info

Publication number
WO2019087722A1
WO2019087722A1 PCT/JP2018/037768 JP2018037768W WO2019087722A1 WO 2019087722 A1 WO2019087722 A1 WO 2019087722A1 JP 2018037768 W JP2018037768 W JP 2018037768W WO 2019087722 A1 WO2019087722 A1 WO 2019087722A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium phosphate
tungstate
modified
zirconium
thermal expansion
Prior art date
Application number
PCT/JP2018/037768
Other languages
French (fr)
Japanese (ja)
Inventor
純也 深沢
畠 透
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to JP2019507963A priority Critical patent/JP6553831B1/en
Publication of WO2019087722A1 publication Critical patent/WO2019087722A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black

Definitions

  • the present invention relates to a modified zirconium phosphate tungstate which is useful as a negative thermal expansion filler, a negative thermal expansion filler using the same and a polymer composition.
  • thermal expansion causes their length and volume to increase.
  • a material hereinafter sometimes referred to as a "negative thermal expansion material” which exhibits negative thermal expansion which decreases in volume conversely upon warming. It is known that materials that exhibit negative thermal expansion can be used with other materials to suppress changes in the thermal expansion of the material due to temperature changes.
  • ⁇ -eucryptite zirconium tungstate (ZrW 2 O 8 ), zirconium phosphate tungstate (Zr 2 WO 4 (PO 4 ) 2 ), Zn x Cd 1-
  • ZrW 2 O 8 zirconium tungstate
  • Zr 2 WO 4 (PO 4 ) 2 zirconium phosphate tungstate
  • Zn x Cd 1- Zn x Cd 1-
  • x (CN) 2 manganese nitride, bismuth, nickel, iron oxide and the like.
  • the linear expansion coefficient of zirconium phosphate tungstate is -3.4 to -3.0 ppm / ° C in the temperature range of 0 to 400 ° C, and the material has a large negative thermal expansion and exhibits positive thermal expansion (hereinafter referred to as "A low thermal expansion material can be produced by using it together with “a positive thermal expansion material” (see, for example, Patent Documents 1 to 3).
  • Patent Documents 4 to 5 It has also been proposed to use a negative thermal expansion material in combination with a polymer compound such as a resin of a positive thermal expansion material.
  • zirconium tungstate has a problem in affinity with a polymer compound such as a hydrophobic resin, and it is difficult to uniformly disperse it in the polymer compound, and hence phosphorus It is difficult to obtain a low thermal expansion material containing zirconium acid tungstate as a negative thermal expansion material.
  • Non-Patent Document 1 proposes treatment of zirconium tungstate tungstate with a coupling agent for the purpose of improving the dispersibility in polyimide, but the specific type of the coupling agent is as follows. Not disclosed.
  • JP 2005-35840 A JP, 2015-10006, A International Publication No. 2017/61403 brochure JP, 2015-38197, A JP, 2016-113608, A
  • an object of the present invention is to provide a modified zirconium phosphate tungstate which is preferably used as a negative thermal expansion filler to be contained in a polymer compound, since the Zr ion, W ion and P ion of zirconium tungstate are difficult to elute
  • An object of the present invention is to provide a negative thermal expansion filler and a polymer composition using the same.
  • a modified zirconium phosphate tungstate obtained by surface treating a particle surface of zirconium tungstate tungstate with a specific silane coupling agent is In the case of contact with water, elution of Zr ions, W ions and P ions is effectively suppressed, and the modified zirconium phosphate tungstate is uniformly dispersed in a polymer compound such as a resin, The inventors have found that it is possible to produce a low thermal expansion material containing a negative thermal expansion filler, and have completed the present invention.
  • the present invention (1) has the following general formula (1): R 1 -Si (OR 2 ) 3 (1) (Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.) It is a surface coating treatment product of zirconium phosphate tungstate particles by a silane coupling agent represented by the following.
  • the coated amount of the coating by the silane coupling agent represented by the general formula (1) is 0. 0. with respect to zirconium phosphate tungstate in modified phosphate zirconium tungstate. It is an object of the present invention to provide (1) the modified zirconium tungstophosphate characterized in having a content of 05 to 30% by mass.
  • the surface of the zirconium phosphate tungstate particles is treated with the following general formula (1): R 1 -Si (OR 2 ) 3 (1) (Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.) And providing a modified zirconium tungstate phosphate characterized by being obtained by surface coating treatment with a silane coupling agent represented by
  • the present invention (4) is characterized in that the amount of the silane coupling agent represented by the general formula (1) is 0.05 to 30% by mass with respect to the zirconium tungstophosphate particle.
  • the present invention is to provide a modified phosphated zirconium phosphate.
  • the invention (5) is characterized in that the BET specific surface area of the zirconium phosphate tungstate particles is 0.1 to 50 m 2 / g, any one of the modified phosphorus according to any one of (1) to (4). It is an object to provide a zirconium tungstate acid.
  • the present invention (6) is characterized in that the average particle diameter of the zirconium phosphate tungstate particles is 0.02 to 50 ⁇ m, wherein any one of the modified phosphoric acid tungspic acids (1) to (5) is characterized. It provides zirconium.
  • the zirconium phosphate tungstate particles further contain a subcomponent element, and any one of (1) to (6) modified zirconium phosphate tungstates is provided. It is
  • the present invention (8) is characterized in that the Zr ion elution concentration in the following ion elution test is 20 ppm or less, the W ion elution concentration is 400 ppm or less, and the P ion excess concentration is 100 ppm or less (1) to (7) 2.) any modified zirconium tungstate phosphate is provided.
  • the present invention (9) provides a negative thermal expansion filler comprising the modified zirconium phosphate tungstate according to any one of (1) to (8).
  • the present invention provides a polymer composition comprising the negative thermal expansion filler of (9) and a polymer compound.
  • the modified zirconium phosphate tungstate according to the first aspect of the present invention has the following general formula (1): R 1 -Si (OR 2 ) 3 (1) (Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.) It is a modified zirconium phosphate tungstate characterized in that it is a surface coating treatment of zirconium phosphate tungstate particles with a silane coupling agent represented by
  • the modified zirconium phosphate tungstate according to the second aspect of the present invention has a surface of zirconium phosphate tungstate particles represented by the following general formula (1): R 1 -Si (OR 2 ) 3 (1) (Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.) It is obtained by surface-coating treatment with a silane coupling agent represented by
  • the modified zirconium phosphate tungstate according to the first embodiment of the present invention is obtained by coating the surface of zirconium phosphate tungstate particles with a silane coupling agent. It is a surface coating treatment of zirconium particles.
  • the modified zirconium phosphate tungstate according to the second embodiment of the present invention is obtained by surface-coating the surface of the zirconium phosphate tungstate particles with a silane coupling agent.
  • the zirconium phosphate tungstate according to the present invention has the following general formula (2): Zr x WO y (PO 4 ) z (2) (Wherein, x is 1.7 ⁇ x ⁇ 2.3, preferably 1.8 ⁇ x ⁇ 2.2, and y is 0.85 ⁇ y ⁇ 1.15, preferably 0.90 ⁇ y ⁇ 1.10, z is 1.7 ⁇ z ⁇ 2.3, preferably 1.8 ⁇ z ⁇ 2.2) Is represented by
  • the zirconium phosphate tungstate particles according to the present invention are particles before being surface-coated.
  • the production history of the zirconium phosphate tungstate particles according to the present invention is not particularly limited, and the method for producing the zirconium phosphate tungstate particles according to the present invention includes, for example, 1) zirconium phosphate, tungsten oxide, MgO, etc.
  • a method of mixing reaction accelerators in a wet ball mill and calcining the obtained mixture for example, see JP-A-2005-35840), 2) a phosphorus source such as ammonium phosphate, a tungsten source such as ammonium tungstate and chloride
  • a method of wet mixing a zirconium source such as zirconium and then firing see, for example, JP-A-2015-10006), 3) a method of firing a mixture containing zirconium oxide, tungsten oxide and ammonium dihydrogen phosphate (eg, Materials Research Bulletin n, 44 (2009), p 2045-2049), 4)
  • a method of firing the reaction precursor using a mixture of a tungsten compound and an amorphous compound containing phosphorus and zirconium as a reaction precursor (WO 2017) (See pamphlet No.
  • the zirconium phosphate tungstate particles according to the present invention the zirconium phosphate tungstate particles obtained by the method of the above 4) control powder properties such as particle diameter and particle shape by an industrially advantageous method. It is preferable from the point that it is easy to do and that the thing excellent in negative thermal characteristics is easy to be obtained.
  • the BET specific surface area of the zirconium phosphate tungstate particles according to the present invention is not particularly limited, but is preferably 0.1 to 50 m 2 / g, and particularly preferably 0.1 to 20 m 2 / g.
  • the handling becomes easy when using the modified zirconium phosphate tungstate as a filler such as a resin or glass.
  • the average particle size of the zirconium phosphate tungstate particles according to the present invention is not particularly limited, but is preferably 0.02 to 50 ⁇ m, particularly preferably 0.5 to 50 as the average particle size obtained by scanning electron microscopy. It is 30 ⁇ m.
  • the average particle diameter of the zirconium phosphate tungstate particles is in the above range, when using the modified zirconium phosphate tungstate as a filler such as a resin or glass, handling becomes easy.
  • the zirconium phosphate tungstate according to the present invention can contain subcomponent elements for the purpose of improving the dispersibility with respect to the positive thermal expansion material and the packing characteristics.
  • Subcomponents of zirconium phosphate tungstate according to the present invention include, for example, Mg, V, Zn, Cu, Fe, Cr, Mn, Ni, Li, Al, B, Na, K, F, Cl, Br, I, Ca, Sr, Ba, Ti, Hf, Nb, Ta, Y, Yb, Si, Mo, Co, Bi, Te, Pb, Ag, Cd, In, Sn, Sb, Ga, Ge, La, Ce, Nd, Sm, Eu, Tb, Dy, Ho and the like can be mentioned.
  • These subcomponent elements may be of one type or of two or more types.
  • Mg and / or V are preferable in that the dispersibility to the positive thermal expansion material and the filling property become high.
  • the byproduct element refers to all elements other than Zr, W, P and O which are contained in 500 ppm or more of zirconium tungstate.
  • the total content of the subcomponent elements in the zirconium phosphate tungstate particles according to the present invention is preferably 0.1 to 3% by mass, particularly preferably 0.2 to 2% with respect to the entire zirconium phosphate tungstate particles. It is mass%.
  • the total content of the subcomponent elements in the zirconium phosphate tungstate particles is in the above range, it has excellent negative thermal expansion and is excellent in dispersibility and packing characteristics.
  • the total content of the subcomponent elements in the above-mentioned zirconium phosphate tungstate particles is the same as the by-product content
  • the content of the element is referred to, and when the zirconium phosphate tungstate particles contain two or more types of byproduct elements, the total content of the subcomponent elements in the above-mentioned zirconium phosphate tungstate particles is It refers to the total of the content of the two or more types of byproduct elements.
  • the shape of the zirconium phosphate tungstate particles according to the present invention is not particularly limited, and may be, for example, spherical, granular, plate-like, scaly, whisker-like, rod-like, filamentous or crushed.
  • the silane coupling agent according to the present invention has the following general formula (1): R 1 -Si (OR 2 ) 3 (1) (Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.) It is a silane coupling agent represented by
  • phosphoric acid is generated by the silane coupling agent represented by the general formula (1)
  • silane coupling agent represented by the general formula (1)
  • R 1 is an alkyl group having 3 or more carbon atoms, preferably 4 to 12, particularly preferably 6 to 12, and is preferably a linear alkyl group.
  • R 1 in the general formula (1) is in the above range, the elution of Zr ions, W ions and P ions is effectively suppressed, and when used as a negative thermal expansion filler, The dispersibility to resin becomes favorable.
  • R 2 in the general formula (1) is an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms.
  • the coated amount of the coating by the silane coupling agent represented by the general formula (1) can be determined by modifying the amount of tungsten phosphate in the modified phosphate zirconium phosphate.
  • the amount is preferably 0.05 to 30% by mass, particularly preferably 0.1 to 10% by mass, and more preferably 0.2 to 5.0% by mass, based on zirconium acid.
  • the coating amount of the coating with the silane coupling agent represented by the general formula (1) is in the above range, the elution of Zr ions, W ions and P ions is effectively suppressed, and the coupling agent The aggregation of the particles due to each other is suppressed, the hydrophobicity is also improved, and when used as a negative thermal expansion filler, the resin dispersibility is improved.
  • the amount of the silane coupling agent represented by the general formula (1) is preferably 0.05 to 30% by mass with respect to zirconium phosphate tungstate particles. %, Particularly preferably 0.1 to 10% by mass, and further preferably 0.2 to 5.0% by mass.
  • the amount of the silane coupling agent represented by the general formula (1) is in the above range, elution of Zr ions, W ions and P ions is effectively suppressed, and aggregation of particles by the coupling agent is achieved. And the hydrophobicity is also improved, and when used as a negative thermal expansion filler, the resin dispersibility is improved.
  • the amount of the silane coupling agent represented by the general formula (1) with respect to zirconium phosphate tansdenate is a general formula used for the surface coating treatment with respect to the mass of zirconium phosphate tanzdenate particles before the surface coating treatment is performed. It refers to the mass ratio of the silane coupling agent represented by (1).
  • the surface treatment method of the particles of zirconium phosphate tungstate with the coupling agent represented by the general formula (1) may be wet or dry.
  • the coupling agent represented by the general formula (1) is used as the surface treatment method.
  • Zirconium phosphate tungstate particles can be prepared by immersing zirconium phosphate tungstate particles in a solvent containing the desired concentration, spray drying together with the solvent, or drying after solid-liquid separation to obtain zirconium phosphate tungstate particles represented by the general formula (1) The surface treatment is performed with the coupling agent represented by these, and the method of coat
  • the surface treatment method may be the coupling agent represented by the general formula (1) and Method in which zirconium phosphate tungstate particles are mixed by dry method using mechanical means such as a Henschel mixer, air flow crusher or the like, or the coupling agent represented by the general formula (1) is diluted with a solvent, The method of mixing a dilution liquid and zirconium tungstate tungstate and heat-drying the obtained mixture is mentioned.
  • the modified zirconium phosphate tungstate of the first embodiment of the present invention and the modified zirconium phosphate tungstate of the second embodiment of the present invention suppress the elution of Zr ions and W ions even when contacted with water.
  • the Zr ion elution concentration in the ion elution test of the modified zirconium tungstate phosphate of the first embodiment of the present invention and the modified zirconium tungstate phosphate of the second embodiment of the present invention is 20 ppm.
  • the W ion elution concentration is 400 ppm or less, preferably 300 ppm or less, and the P ion excess concentration is 100 ppm or less, preferably 50 ppm or less.
  • modified zirconium tungstate phosphate of the first embodiment of the present invention and the modified zirconium tungstate phosphate of the second embodiment of the present invention are used in the form of powder or solvent dispersed.
  • the modified zirconium tungstate phosphate of the first aspect of the invention and the modified zirconium tungstate phosphate of the second aspect of the invention are used in combination with a positive thermal expansion material to provide a low thermal expansion material Can.
  • the first modified zirconium tungstate of the present invention and the second modified zirconium tungstate of the present invention are incorporated into a polymer compound to produce a low thermal expansion material. Is preferably used as a negative thermal expansion filler.
  • the negative thermal expansion filler of the present invention comprises the modified zirconium tungstate phosphate of the first embodiment of the present invention or the modified zirconium phosphate tungstate of the second embodiment of the present invention. It is a filler.
  • the polymer composition of the present invention is a polymer composition comprising the negative thermal expansion filler of the present invention and a polymer compound. That is, in the polymer composition of the present invention, as the negative thermal expansion filler of the polymer composition, the modified zirconium tungstate phosphate of the first form of the present invention or the modified phosphoric acid of the second form of the present invention Zirconium tungstate is used.
  • the polymer compound according to the polymer composition of the present invention is not particularly limited, and examples thereof include rubber, polyolefin, polycycloolefin, polystyrene, ABS, polyacrylate, polyphenylene sulfide, phenol resin, polyamide resin, polyimide resin, Epoxy resin, silicone resin, polycarbonate resin, polyethylene resin, polypropylene resin, polyethylene terephthalate resin (PET resin), polyvinyl chloride resin and the like can be mentioned.
  • the thermal expansion coefficient of the polymer composition is controlled by the content of the negative thermal expansion filler.
  • the content of the negative thermal expansion filler of the present invention is appropriately selected depending on the application and purpose, but in many cases, it is in the polymer composition of the present invention
  • the content of the negative thermal expansion filler of the present invention is 1 to 90% by volume with respect to the total amount of the polymer composition of the present invention.
  • the polymer composition of the present invention may optionally contain, in addition to the negative thermal expansion filler of the present invention, other components such as an antioxidant, a heat stabilizer, an ultraviolet light absorber, a lubricant, a release agent, and a dye.
  • additives such as colorants containing pigments, flame retardants, crosslinking agents, softeners, dispersing agents, curing agents, polymerization initiators, inorganic fillers and the like.
  • the polymer composition of the present invention is produced by a known method.
  • the polymer compound is a curable resin
  • a method of simultaneously mixing the curable resin (or prepolymer), the negative thermal expansion filler of the present invention, and other compounds optionally compounded, resin components There is a method of mixing the negative thermal expansion filler of the present invention and the other compound optionally mixed, and mixing it with a curable resin (or prepolymer).
  • the compound is a thermoplastic resin
  • molding simultaneously with mixing by an injection molding machine etc. are mentioned.
  • ZWP Sample 1 15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle diameter 1.2 ⁇ m) was placed in a beaker, 84 parts by mass of pure water was further added, and 1 part by mass of polycarboxylic acid ammonium salt was charged as a dispersant. The mixture was stirred for 120 minutes at room temperature (25 ° C.) using a (three-one motor stirrer) to prepare a 15 wt% slurry containing tungsten trioxide.
  • WO 3 commercially available tungsten trioxide
  • the average particle size of solid content in the slurry was 1.2 ⁇ m.
  • zirconium hydroxide and an 85% by mass aqueous phosphoric acid solution were added at room temperature (25 ° C.) such that the molar ratio of Zr: W: P in the slurry was 2.00: 1.00: 2.00.
  • the reaction was carried out with stirring for 2 hours.
  • the whole amount of the slurry was dried at 200 ° C. in the atmosphere for 24 hours to obtain a reaction precursor.
  • a reaction precursor As a result of X-ray diffraction of the obtained reaction precursor, only a diffraction peak of tungsten trioxide was observed.
  • the obtained reaction precursor was subjected to a baking reaction in the air at 950 ° C. for 2 hours to obtain a white baked product.
  • the fired product was single phase Zr 2 (WO 4 ) (PO 4 ) 2 .
  • the average particle size and BET specific surface area of the obtained zirconium phosphate tungstate sample were measured, and the results are shown in Table 1.
  • the particle shape was fractured (FIG. 1).
  • ⁇ Method of measuring average particle size The material to be measured is observed with a scanning electron microscope to obtain an SEM image, and then 100 particles are arbitrarily extracted from the SEM image, the particle size of each particle is measured, and their average value is used as an average particle. It calculated as a diameter.
  • ZWP Sample 2 15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle diameter 1.2 ⁇ m) was placed in a beaker, and 84 parts by mass of pure water was further added. The mixture was stirred at room temperature (25 ° C.) for 120 minutes to prepare a 15 wt% slurry containing tungsten trioxide. The average particle size of solid content in the slurry was 1.2 ⁇ m. Next, to this slurry, zirconium hydroxide, an 85% by mass aqueous phosphoric acid solution and magnesium hydroxide, and the molar ratio of Zr: W: P: Mg in the slurry is 2.00: 1.00: 2.00: 0.
  • the temperature was raised to 80 ° C. and the reaction was carried out with stirring for 4 hours.
  • 1 part by weight of polycarboxylic acid ammonium salt as a dispersant is added, and while stirring the slurry, it is supplied to a media stirring type bead mill charged with zirconia beads of 0.5 mm in diameter, mixed for 15 minutes and wet ground Did.
  • the average particle size of the solid content in the slurry after wet grinding was 0.3 ⁇ m.
  • the slurry was supplied to a spray dryer set at 220 ° C. at a supply rate of 2.4 L / h to obtain a reaction precursor.
  • the obtained reaction precursor was subjected to a baking reaction in the air at 960 ° C. for 2 hours to obtain a white baked product.
  • the fired product was single phase Zr 2 (WO 4 ) (PO 4 ) 2 .
  • the average particle size and BET specific surface area of the obtained zirconium phosphate tungstate sample were measured, and the results are shown in Table 1.
  • the particle shape was spherical (FIG. 2).
  • ZWP represents zirconium phosphate tungstate.
  • Example 1 0.25 g (0.5 mass%) of a silane coupling agent (decyl methoxysilane) is added to 50 g of ZWP sample 1 and crushed by an air flow crusher (AO jet mill manufactured by Seishin Enterprise Co., Ltd.) By mixing, crushed zirconium tungstate in the form of crushed, surface-coated treated modified zirconium tungstate sample A was obtained.
  • the conditions of an airflow crusher are as follows. Powder feeding rate: 3 g / minute Pusher pressure: 0.6 MPa ⁇ Jet pressure: 0.6MPa
  • Example 2 0.25 g (0.5 mass%) of silane coupling agent (decylmethoxysilane) is added to 50 g of ZWP sample 2 and mixed in a mixer (lab mixer: Labo Milser) at 20000 rpm for 1 minute Then, spherical modified zirconium phosphate tungstate Sample B in which spherical zirconium phosphate tungstate was surface-coated was obtained.
  • silane coupling agent decylmethoxysilane
  • Comparative Examples 1 and 2 The sample of Comparative Example 1 and the sample of Comparative Example 2 were used as the sample of Comparative Example 1 and the sample of Comparative Example 2 as ZWP sample 1 which is a zirconium phosphate tungstate sample not subjected to surface coating treatment.
  • the target temperature is obtained at a temperature rising rate of 20 ° C./minute in an XRD apparatus (Rigaku's Ultima IV) equipped with a temperature rising function. 10 minutes after reaching the target temperature, measure the lattice constant for the a-axis, b-axis, and c-axis of the sample, convert the lattice volume change (rectangular solid) into a line, and calculate the thermal expansion coefficient See, J. Mat. Sci., 35 (2000) 2451-2454. The results are shown in Table 2.
  • Examples 3 to 4 5.8 g of the modified zirconium phosphate tungstate sample A obtained in Example 1 or the modified zirconium phosphate tungstate sample B obtained in Example 2 and an epoxy resin (Mitsubishi Chemical jER 807, epoxy equivalent 160 ⁇ 175) Weighed 4.2 g and mixed at a rotational speed of 2000 rpm with a vacuum mixer (Awatori Neritaro ARV-310 manufactured by Shinky Co., Ltd.) to prepare a 30 vol% paste.
  • an epoxy resin Mitsubishi Chemical jER 807, epoxy equivalent 160 ⁇ 175

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A modified zirconium phosphate tungstate characterized by being a zirconium phosphate tungstate particle subjected to surface coating by means of a silane coupling agent represented by general formula (1): R1-Si(OR2)3 (where R1 is an alkyl group having 3 or more carbon atoms and R2 is an alkyl group having 1 to 4 carbon atoms). The present invention can provide the modified zirconium phosphate tungstate wherein Zr ions, W ions, and P ions of the zirconium phosphate tungstate do not tend to elute and which can be suitably used as a negative thermal expansion filler to be included in a polymeric compound, the negative thermal expansion filler, and a polymeric composition using the modified zirconium phosphate tungstate.

Description

改質リン酸タングステン酸ジルコニウム、負熱膨張フィラー及び高分子組成物Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
 本発明は、負熱膨張フィラーとして有用な改質リン酸タングステン酸ジルコニウム、それを用いる負熱膨張フィラー及び高分子組成物に関するものである。 The present invention relates to a modified zirconium phosphate tungstate which is useful as a negative thermal expansion filler, a negative thermal expansion filler using the same and a polymer composition.
 多くの物質は温度が上昇すると、熱膨張によって長さや体積が増大する。これに対して、温めると逆に体積が小さくなる負の熱膨張を示す材料(以下「負熱膨張材」ということもある。)も知られている。負の熱膨張を示す材料は、他の材料とともに用いて、温度変化による材料の熱膨張の変化を抑制することができることが知られている。 As the temperature of many materials increases, thermal expansion causes their length and volume to increase. On the other hand, there is also known a material (hereinafter sometimes referred to as a "negative thermal expansion material") which exhibits negative thermal expansion which decreases in volume conversely upon warming. It is known that materials that exhibit negative thermal expansion can be used with other materials to suppress changes in the thermal expansion of the material due to temperature changes.
 負の熱膨張を示す材料としては、例えば、β-ユークリプタイト、タングステン酸ジルコニウム(ZrW)、リン酸タングステン酸ジルコニウム(ZrWO(PO)、ZnCd1-x(CN)、マンガン窒化物、ビスマス・ニッケル・鉄酸化物等が知られている。 As materials exhibiting negative thermal expansion, for example, β-eucryptite, zirconium tungstate (ZrW 2 O 8 ), zirconium phosphate tungstate (Zr 2 WO 4 (PO 4 ) 2 ), Zn x Cd 1- There are known x (CN) 2 , manganese nitride, bismuth, nickel, iron oxide and the like.
 リン酸タングステン酸ジルコニウムの線膨張係数は、0~400℃の温度範囲で、-3.4~-3.0ppm/℃であり負熱膨張性が大きく、正の熱膨張を示す材料(以下「正熱膨張材」ということもある。)と併用することで、低熱膨張の材料を製造することができる(例えば、特許文献1~3参照)。 The linear expansion coefficient of zirconium phosphate tungstate is -3.4 to -3.0 ppm / ° C in the temperature range of 0 to 400 ° C, and the material has a large negative thermal expansion and exhibits positive thermal expansion (hereinafter referred to as " A low thermal expansion material can be produced by using it together with “a positive thermal expansion material” (see, for example, Patent Documents 1 to 3).
 また、正熱膨張材の樹脂等の高分子化合物と負熱膨張材とを併用することも提案されている(特許文献4~5)。 It has also been proposed to use a negative thermal expansion material in combination with a polymer compound such as a resin of a positive thermal expansion material (Patent Documents 4 to 5).
 しかしながら、リン酸タングステン酸ジルコニウムは、水に接触すると、特に構造中のZrイオンやWイオン、Pイオンが溶出し、このため負熱膨張材としての性能が低下するとの問題、あるいは、これら溶出金属イオンに起因した樹脂やその成形品の性能劣化の問題がある。 However, when zirconium phosphate tungstate comes in contact with water, in particular, Zr ions, W ions, and P ions in the structure are eluted, which causes a problem that the performance as a negative thermal expansion material decreases, or these eluted metals There is a problem of the performance deterioration of the resin and its molded item caused by the ions.
 また、上記問題に加えて、リン酸タングステン酸ジルコニウムは、疎水性の樹脂等の高分子化合物との親和性に問題があり、高分子化合物中に均一に分散させることが難しく、このため、リン酸タングステン酸ジルコニウムを負熱膨張材として含有する低熱膨張性材料を得ることが難しい。 Further, in addition to the above problems, zirconium tungstate has a problem in affinity with a polymer compound such as a hydrophobic resin, and it is difficult to uniformly disperse it in the polymer compound, and hence phosphorus It is difficult to obtain a low thermal expansion material containing zirconium acid tungstate as a negative thermal expansion material.
 また、下記非特許文献1には、ポリイミドに対して分散性を改良する目的でリン酸タングステン酸ジルコニウムをカップリング剤で処理することが提案されているものの具体的なカップリング剤の種類については開示されていない。 In addition, Non-Patent Document 1 below proposes treatment of zirconium tungstate tungstate with a coupling agent for the purpose of improving the dispersibility in polyimide, but the specific type of the coupling agent is as follows. Not disclosed.
特開2005-35840号公報JP 2005-35840 A 特開2015-10006号公報JP, 2015-10006, A 国際公開第2017/61403号パンフレットInternational Publication No. 2017/61403 brochure 特開2015-38197号公報JP, 2015-38197, A 特開2016-113608号公報JP, 2016-113608, A
 従って、本発明の目的は、リン酸タングステン酸ジルコニウムのZrイオン、Wイオン及びPイオンが溶出し難く、高分子化合物に含有させる負熱膨張フィラーとして好適に使用される改質リン酸タングステン酸ジルコニウム、それを用いる負熱膨張フィラー及び高分子組成物を提供することにある。 Accordingly, an object of the present invention is to provide a modified zirconium phosphate tungstate which is preferably used as a negative thermal expansion filler to be contained in a polymer compound, since the Zr ion, W ion and P ion of zirconium tungstate are difficult to elute An object of the present invention is to provide a negative thermal expansion filler and a polymer composition using the same.
 本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、リン酸タングステン酸ジルコニウムの粒子表面を、特定のシランカップリング剤で表面処理することにより得られる改質リン酸タングステン酸ジルコニウムは、水に接触した場合において、Zrイオン、Wイオン及びPイオンの溶出が効果的に抑制されること、及び該改質リン酸タングステン酸ジルコニウムは、樹脂等の高分子化合物中に均一に分散され、負熱膨張フィラーを含有する低熱膨張性材料の製造が可能となることを見出し、本発明を完成するに到った。 As a result of extensive research in view of the above situation, the inventors of the present invention have found that a modified zirconium phosphate tungstate obtained by surface treating a particle surface of zirconium tungstate tungstate with a specific silane coupling agent is In the case of contact with water, elution of Zr ions, W ions and P ions is effectively suppressed, and the modified zirconium phosphate tungstate is uniformly dispersed in a polymer compound such as a resin, The inventors have found that it is possible to produce a low thermal expansion material containing a negative thermal expansion filler, and have completed the present invention.
 すなわち、本発明(1)は、下記一般式(1):
   R-Si(OR   (1)
(式中、Rは、炭素数3以上のアルキル基を示す。Rは、炭素数1~4のアルキル基を示す。)
で表されるシランカップリング剤によるリン酸タングステン酸ジルコニウム粒子の表面被覆処理物であることを特徴とする改質リン酸タングステン酸ジルコニウムを提供するものである。
That is, the present invention (1) has the following general formula (1):
R 1 -Si (OR 2 ) 3 (1)
(Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.)
It is a surface coating treatment product of zirconium phosphate tungstate particles by a silane coupling agent represented by the following.
 また、本発明(2)は、前記一般式(1)で表されるシランカップリング剤による被覆物の被覆量が、改質リン酸タングスデン酸ジルコニウム中のリン酸タングスデン酸ジルコニウムに対し、0.05~30質量%であることを特徴とする(1)の改質リン酸タングスデン酸ジルコニウムを提供するものである。 Further, in the present invention (2), the coated amount of the coating by the silane coupling agent represented by the general formula (1) is 0. 0. with respect to zirconium phosphate tungstate in modified phosphate zirconium tungstate. It is an object of the present invention to provide (1) the modified zirconium tungstophosphate characterized in having a content of 05 to 30% by mass.
 また、本発明(3)は、リン酸タングステン酸ジルコニウム粒子の表面を、下記一般式(1):
   R-Si(OR   (1)
(式中、Rは、炭素数3以上のアルキル基を示す。Rは、炭素数1~4のアルキル基を示す。)
で表されるシランカップリング剤で表面被覆処理して得られたものであることを特徴とする改質リン酸タングステン酸ジルコニウムを提供するものである。
In the present invention (3), the surface of the zirconium phosphate tungstate particles is treated with the following general formula (1):
R 1 -Si (OR 2 ) 3 (1)
(Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.)
And providing a modified zirconium tungstate phosphate characterized by being obtained by surface coating treatment with a silane coupling agent represented by
 また、本発明(4)は、前記一般式(1)で表されるシランカップリング剤量が、前記リン酸タングスデン酸ジルコニウム粒子に対し、0.05~30質量%であることを特徴とする(3)の改質リン酸タングスデン酸ジルコニウムを提供するものである。 The present invention (4) is characterized in that the amount of the silane coupling agent represented by the general formula (1) is 0.05 to 30% by mass with respect to the zirconium tungstophosphate particle. (3) The present invention is to provide a modified phosphated zirconium phosphate.
 また、本発明(5)は、前記リン酸タングステン酸ジルコニウム粒子のBET比表面積が、0.1~50m/gであることを特徴とする(1)~(4)いずれかの改質リン酸タングステン酸ジルコニウムを提供するものである。 Further, the invention (5) is characterized in that the BET specific surface area of the zirconium phosphate tungstate particles is 0.1 to 50 m 2 / g, any one of the modified phosphorus according to any one of (1) to (4). It is an object to provide a zirconium tungstate acid.
 また、本発明(6)は、前記リン酸タングステン酸ジルコニウム粒子の平均粒子径が、0.02~50μmであることを特徴とする(1)~(5)いずれかの改質リン酸タングスデン酸ジルコニウムを提供するものである。 Further, the present invention (6) is characterized in that the average particle diameter of the zirconium phosphate tungstate particles is 0.02 to 50 μm, wherein any one of the modified phosphoric acid tungspic acids (1) to (5) is characterized. It provides zirconium.
 また、本発明(7)は、前記リン酸タングステン酸ジルコニウム粒子は、更に、副成分元素を含有することを特徴とする(1)~(6)いずれかの改質リン酸タングステン酸ジルコニウムを提供するものである。 Further, according to the invention (7), the zirconium phosphate tungstate particles further contain a subcomponent element, and any one of (1) to (6) modified zirconium phosphate tungstates is provided. It is
 また、本発明(8)は、下記イオン溶出試験におけるZrイオン溶出濃度が20ppm以下、Wイオン溶出濃度が400ppm以下、Pイオン超出濃度が100ppm以下であることを特徴とする(1)~(7)いずれかの改質リン酸タングステン酸ジルコニウムを提供するものである。
<イオン溶出試験>
 改質リン酸タングステン酸ジルコニウム1gを試験水70ml中で、1時間、沸騰処理し、次いで、沸騰処理後の試験水中のZrイオン濃度、Wオン濃度及びPイオン濃度を測定し、該沸騰処理後の試験水中の各イオン濃度を、各イオンの溶出濃度とする。
The present invention (8) is characterized in that the Zr ion elution concentration in the following ion elution test is 20 ppm or less, the W ion elution concentration is 400 ppm or less, and the P ion excess concentration is 100 ppm or less (1) to (7) 2.) any modified zirconium tungstate phosphate is provided.
<Ion elution test>
1 g of the modified zirconium phosphate tungstate is subjected to boiling treatment in 70 ml of test water for 1 hour, and then the Zr ion concentration, W on concentration and P ion concentration in the test water after boiling treatment are measured, and after the boiling treatment Let each ion concentration in the test water of be the elution concentration of each ion.
 また、本発明(9)は、(1)~(8)いずれかの改質リン酸タングステン酸ジルコニウムからなることを特徴とする負熱膨張フィラーを提供するものである。 Further, the present invention (9) provides a negative thermal expansion filler comprising the modified zirconium phosphate tungstate according to any one of (1) to (8).
 また、本発明(10)は、(9)の負熱膨張フィラーと、高分子化合物と、を含有することを特徴とする高分子組成物を提供するものである。 Further, the present invention (10) provides a polymer composition comprising the negative thermal expansion filler of (9) and a polymer compound.
 本発明によれば、リン酸タングステン酸ジルコニウムのZrイオン、Wイオン及びPイオンが溶出し難く、高分子化合物に含有させる負熱膨張フィラーとして好適に使用される改質リン酸タングステン酸ジルコニウム、それを用いる負熱膨張フィラー及び高分子組成物を提供することができる。 According to the present invention, it is difficult to elute the Zr ion, W ion and P ion of zirconium phosphate tungstate, and modified zirconium phosphate tungstate which is suitably used as a negative thermal expansion filler contained in a polymer compound, A negative thermal expansion filler and a polymer composition can be provided.
リン酸タングステン酸ジルコニウム試料1の走査型電子顕微鏡写真である。It is a scanning electron micrograph of zirconium phosphate tungstate sample 1. リン酸タングステン酸ジルコニウム試料2の走査型電子顕微鏡写真である。7 is a scanning electron micrograph of a zirconium phosphate tungstate sample 2;
 本発明の第一の形態の改質リン酸タングステン酸ジルコニウムは、下記一般式(1):
   R-Si(OR   (1)
(式中、Rは、炭素数3以上のアルキル基を示す。Rは、炭素数1~4のアルキル基を示す。)
で表されるシランカップリング剤によるリン酸タングステン酸ジルコニウム粒子の表面被覆処理物であることを特徴とする改質リン酸タングステン酸ジルコニウムである。
The modified zirconium phosphate tungstate according to the first aspect of the present invention has the following general formula (1):
R 1 -Si (OR 2 ) 3 (1)
(Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.)
It is a modified zirconium phosphate tungstate characterized in that it is a surface coating treatment of zirconium phosphate tungstate particles with a silane coupling agent represented by
 本発明の第二の形態の改質リン酸タングステン酸ジルコニウムは、リン酸タングステン酸ジルコニウム粒子の表面を、下記一般式(1):
   R-Si(OR   (1)
(式中、Rは、炭素数3以上のアルキル基を示す。Rは、炭素数1~4のアルキル基を示す。)
で表されるシランカップリング剤で表面被覆処理して得られたものであることを特徴とする改質リン酸タングステン酸ジルコニウムである。
The modified zirconium phosphate tungstate according to the second aspect of the present invention has a surface of zirconium phosphate tungstate particles represented by the following general formula (1):
R 1 -Si (OR 2 ) 3 (1)
(Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.)
It is obtained by surface-coating treatment with a silane coupling agent represented by
 本発明の第一の形態の改質リン酸タングステン酸ジルコニウムは、シランカップリング剤を用いてリン酸タングステン酸ジルコニウム粒子の表面を被覆処理することにより得られる「シランカップリング剤によるリン酸タングステン酸ジルコニウム粒子の表面被覆処理物」である。また、本発明の第二の形態の改質リン酸タングステン酸ジルコニウムは、リン酸タングステン酸ジルコニウム粒子の表面を、シランカップリング剤で表面被覆処理して得られたものである。 The modified zirconium phosphate tungstate according to the first embodiment of the present invention is obtained by coating the surface of zirconium phosphate tungstate particles with a silane coupling agent. It is a surface coating treatment of zirconium particles. In addition, the modified zirconium phosphate tungstate according to the second embodiment of the present invention is obtained by surface-coating the surface of the zirconium phosphate tungstate particles with a silane coupling agent.
 本発明に係るリン酸タングステン酸ジルコニウムは、下記一般式(2):
   ZrWO(PO   (2)
(式中、xは、1.7≦x≦2.3、好ましくは1.8≦x≦2.2であり、yは、0.85≦y≦1.15、好ましくは0.90≦y≦1.10であり、zは、1.7≦z≦2.3、好ましくは1.8≦z≦2.2である。)
で表される。
The zirconium phosphate tungstate according to the present invention has the following general formula (2):
Zr x WO y (PO 4 ) z (2)
(Wherein, x is 1.7 ≦ x ≦ 2.3, preferably 1.8 ≦ x ≦ 2.2, and y is 0.85 ≦ y ≦ 1.15, preferably 0.90 ≦ y ≦ 1.10, z is 1.7 ≦ z ≦ 2.3, preferably 1.8 ≦ z ≦ 2.2)
Is represented by
 本発明に係るリン酸タングステン酸ジルコニウム粒子は、表面被覆処理される前の粒子である。本発明に係るリン酸タングステン酸ジルコニウム粒子の製造履歴は、特に制限されず、本発明に係るリン酸タングステン酸ジルコニウム粒子の製造方法としては、例えば、1)リン酸ジルコニウム、酸化タングステン及びMgO等の反応促進剤を湿式ボールミルで混合し、得られる混合物を焼成する方法(例えば、特開2005-35840号公報参照)、2)リン酸アンモニウム等のリン源と、タングステン酸アンモニウム等のタングステン源及び塩化ジルコニウム等のジルコニウム源を湿式混合した後、焼成する方法(例えば、特開2015-10006号公報参照)、3)酸化ジルコニウム、酸化タングステンとリン酸二水素アンモニウムを含む混合物を焼成する方法(例えば、Materials Research Bulletin、44(2009)、p2045-2049参照)、4)タングステン化合物と、リンとジルコニウムを含む無定形の化合物との混合物を反応前駆体として、該反応前駆体を焼成する方法(国際公開第2017/061402号パンフレット参照)等が挙げられる。そして、本発明に係るリン酸タングステン酸ジルコニウム粒子では、前記4)の方法で得られたリン酸タングステン酸ジルコニウム粒子が、工業的に有利な方法で粒子径や粒子形状等の粉体特性を制御し易く、また、負熱特性に優れたものが得られ易い点で好ましい。 The zirconium phosphate tungstate particles according to the present invention are particles before being surface-coated. The production history of the zirconium phosphate tungstate particles according to the present invention is not particularly limited, and the method for producing the zirconium phosphate tungstate particles according to the present invention includes, for example, 1) zirconium phosphate, tungsten oxide, MgO, etc. A method of mixing reaction accelerators in a wet ball mill and calcining the obtained mixture (for example, see JP-A-2005-35840), 2) a phosphorus source such as ammonium phosphate, a tungsten source such as ammonium tungstate and chloride A method of wet mixing a zirconium source such as zirconium and then firing (see, for example, JP-A-2015-10006), 3) a method of firing a mixture containing zirconium oxide, tungsten oxide and ammonium dihydrogen phosphate (eg, Materials Research Bulletin n, 44 (2009), p 2045-2049), 4) A method of firing the reaction precursor using a mixture of a tungsten compound and an amorphous compound containing phosphorus and zirconium as a reaction precursor (WO 2017) (See pamphlet No. 0/061402) and the like. And, in the zirconium phosphate tungstate particles according to the present invention, the zirconium phosphate tungstate particles obtained by the method of the above 4) control powder properties such as particle diameter and particle shape by an industrially advantageous method. It is preferable from the point that it is easy to do and that the thing excellent in negative thermal characteristics is easy to be obtained.
 本発明に係るリン酸タングステン酸ジルコニウム粒子のBET比表面積は、特に制限されないが、好ましくは0.1~50m/g、特に好ましくは0.1~20m/gである。リン酸タングステン酸ジルコニウム粒子のBET比表面積が、上記範囲にあることにより、改質リン酸タングステン酸ジルコニウムを樹脂やガラス等のフィラーとして用いる際に、取扱いが容易になる。 The BET specific surface area of the zirconium phosphate tungstate particles according to the present invention is not particularly limited, but is preferably 0.1 to 50 m 2 / g, and particularly preferably 0.1 to 20 m 2 / g. When the BET specific surface area of the zirconium phosphate tungstate particles is in the above range, the handling becomes easy when using the modified zirconium phosphate tungstate as a filler such as a resin or glass.
 本発明に係るリン酸タングステン酸ジルコニウム粒子の平均粒子径は、特に制限されないが、走査型電子顕微鏡観察法により求められる平均粒子径で、好ましくは0.02~50μm、特に好ましくは0.5~30μmである。リン酸タングステン酸ジルコニウム粒子の平均粒子径が、上記範囲にあることにより、改質リン酸タングステン酸ジルコニウムを樹脂やガラス等のフィラーとして用いる際に、取扱いが容易になる。 The average particle size of the zirconium phosphate tungstate particles according to the present invention is not particularly limited, but is preferably 0.02 to 50 μm, particularly preferably 0.5 to 50 as the average particle size obtained by scanning electron microscopy. It is 30 μm. When the average particle diameter of the zirconium phosphate tungstate particles is in the above range, when using the modified zirconium phosphate tungstate as a filler such as a resin or glass, handling becomes easy.
 本発明に係るリン酸タングステン酸ジルコニウムは、正熱膨張材に対する分散性や充填特性の向上を目的として、副成分元素を含有することができる。本発明に係るリン酸タングステン酸ジルコニウムの副成分元素としては、例えば、Mg、V、Zn、Cu、Fe、Cr、Mn、Ni、Li、Al、B、Na、K、F、Cl、Br、I、Ca、Sr、Ba、Ti、Hf、Nb、Ta、Y、Yb、Si、S、Mo、Co、Bi、Te、Pb、Ag、Cd、In、Sn、Sb、Ga、Ge、La、Ce、Nd、Sm、Eu、Tb、Dy及びHo等が挙げられる。これらの副成分元素は、1種であっても、2種以上であってもよい。これらの副成分元素うち、Mg及び/又はVが、正熱膨張材に対する分散性や充填特性が高くなる点で、好ましい。なお、副生分元素とは、リン酸タングステン酸ジルコニウムに500ppm以上含有されているZr、W、P及びO以外の全ての元素を指す。 The zirconium phosphate tungstate according to the present invention can contain subcomponent elements for the purpose of improving the dispersibility with respect to the positive thermal expansion material and the packing characteristics. Subcomponents of zirconium phosphate tungstate according to the present invention include, for example, Mg, V, Zn, Cu, Fe, Cr, Mn, Ni, Li, Al, B, Na, K, F, Cl, Br, I, Ca, Sr, Ba, Ti, Hf, Nb, Ta, Y, Yb, Si, Mo, Co, Bi, Te, Pb, Ag, Cd, In, Sn, Sb, Ga, Ge, La, Ce, Nd, Sm, Eu, Tb, Dy, Ho and the like can be mentioned. These subcomponent elements may be of one type or of two or more types. Among these subcomponent elements, Mg and / or V are preferable in that the dispersibility to the positive thermal expansion material and the filling property become high. The byproduct element refers to all elements other than Zr, W, P and O which are contained in 500 ppm or more of zirconium tungstate.
 本発明に係るリン酸タングステン酸ジルコニウム粒子中の副成分元素の合計含有量は、リン酸タングステン酸ジルコニウム粒子全体に対して、好ましくは0.1~3質量%、特に好ましくは0.2~2質量%である。リン酸タングステン酸ジルコニウム粒子中の副成分元素の合計含有量が、上記範囲にあることにより、優れた負熱膨張性を有し、分散性及び充填特性に優れたものになる。なお、リン酸タングステン酸ジルコニウム粒子が、1種のみの副生分元素を含有する場合は、上記のリン酸タングステン酸ジルコニウム粒子中の副成分元素の合計含有量は、その1種の副生分元素の含有量を指し、また、リン酸タングステン酸ジルコニウム粒子が、2種以上の副生分元素を含有する場合は、上記のリン酸タングステン酸ジルコニウム粒子中の副成分元素の合計含有量は、それら2種以上の副生分元素の含有量の合計を指す。 The total content of the subcomponent elements in the zirconium phosphate tungstate particles according to the present invention is preferably 0.1 to 3% by mass, particularly preferably 0.2 to 2% with respect to the entire zirconium phosphate tungstate particles. It is mass%. When the total content of the subcomponent elements in the zirconium phosphate tungstate particles is in the above range, it has excellent negative thermal expansion and is excellent in dispersibility and packing characteristics. In the case where the zirconium phosphate tungstate particles contain only one by-product element, the total content of the subcomponent elements in the above-mentioned zirconium phosphate tungstate particles is the same as the by-product content The content of the element is referred to, and when the zirconium phosphate tungstate particles contain two or more types of byproduct elements, the total content of the subcomponent elements in the above-mentioned zirconium phosphate tungstate particles is It refers to the total of the content of the two or more types of byproduct elements.
 本発明に係るリン酸タングステン酸ジルコニウム粒子の形状は、特に制限されず、例えば、球状、粒状、板状、鱗片状、ウィスカー状、棒状、フィラメント状、破砕状であってもよい。 The shape of the zirconium phosphate tungstate particles according to the present invention is not particularly limited, and may be, for example, spherical, granular, plate-like, scaly, whisker-like, rod-like, filamentous or crushed.
 本発明に係るシランカップリング剤は、下記一般式(1):
   R-Si(OR   (1)
(式中、Rは、炭素数3以上のアルキル基を示す。Rは、炭素数1~4のアルキル基を示す。)
で表されるシランカップリング剤である。
The silane coupling agent according to the present invention has the following general formula (1):
R 1 -Si (OR 2 ) 3 (1)
(Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.)
It is a silane coupling agent represented by
 本発明の第一の形態の改質リン酸タングステン酸ジルコニウム及び本発明の第二の形態の改質リン酸タングステン酸ジルコニウムでは、一般式(1)で表されるシランカップリング剤により、リン酸タングステン酸ジルコニウム粒子の表面が被覆処理されていることにより、水に接触した場合においても、Zrイオン、Wイオン及びPイオンの溶出が効果的に抑制され、また、樹脂等の高分子化合物に均一に分散し、負熱膨張フィラーを含有する低熱膨張性材料が得られる。 In the modified zirconium phosphate tungstate according to the first embodiment of the present invention and the modified zirconium phosphate tungstate according to the second embodiment of the present invention, phosphoric acid is generated by the silane coupling agent represented by the general formula (1) By covering the surface of the zirconium tungstate particles, elution of Zr ions, W ions and P ions is effectively suppressed even when in contact with water, and it is uniform to a polymer compound such as a resin. And a low thermal expansion material containing a negative thermal expansion filler.
 一般式(1)中、Rは、炭素数が3以上、好ましくは4~12、特に好ましくは6~12のアルキル基であり、好ましくは直鎖状のアルキル基である。一般式(1)中のRの炭素数が、上記範囲であることにより、Zrイオン、Wイオン及びPイオンの溶出が効果的に抑制され、また、負熱膨張フィラーとして用いたときに、樹脂への分散性が良好となる。一般式(1)中のRは、炭素数が1~4、好ましくは1~2のアルキル基である。 In the general formula (1), R 1 is an alkyl group having 3 or more carbon atoms, preferably 4 to 12, particularly preferably 6 to 12, and is preferably a linear alkyl group. When the carbon number of R 1 in the general formula (1) is in the above range, the elution of Zr ions, W ions and P ions is effectively suppressed, and when used as a negative thermal expansion filler, The dispersibility to resin becomes favorable. R 2 in the general formula (1) is an alkyl group having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms.
 本発明の第一の形態の改質リン酸タングステン酸ジルコニウムでは、一般式(1)で表されるシランカップリング剤による被覆物の被覆量が、改質リン酸タングスデン酸ジルコニウム中のリン酸タングスデン酸ジルコニウムに対し、好ましくは0.05~30質量%、特に好ましくは0.1~10質量%、更に好ましくは0.2~5.0質量%である。一般式(1)で表されるシランカップリング剤による被覆物の被覆量が、上記範囲にあることより、Zrイオン、Wイオン及びPイオンの溶出が効果的に抑制され、また、カップリング剤による粒子同士の凝集が抑制され、更に疎水性も良好となり、負熱膨張フィラーとして用いたときに、樹脂分散性が良好となる。 In the modified zirconium phosphate tungstate according to the first embodiment of the present invention, the coated amount of the coating by the silane coupling agent represented by the general formula (1) can be determined by modifying the amount of tungsten phosphate in the modified phosphate zirconium phosphate. The amount is preferably 0.05 to 30% by mass, particularly preferably 0.1 to 10% by mass, and more preferably 0.2 to 5.0% by mass, based on zirconium acid. When the coating amount of the coating with the silane coupling agent represented by the general formula (1) is in the above range, the elution of Zr ions, W ions and P ions is effectively suppressed, and the coupling agent The aggregation of the particles due to each other is suppressed, the hydrophobicity is also improved, and when used as a negative thermal expansion filler, the resin dispersibility is improved.
 本発明の第二の形態の改質リン酸タングステン酸ジルコニウムでは、一般式(1)で表されるシランカップリング剤量が、リン酸タングスデン酸ジルコニウム粒子に対し、好ましくは0.05~30質量%、特に好ましくは0.1~10質量%、更に好ましくは0.2~5.0質量%である。一般式(1)で表されるシランカップリング剤量が、上記範囲にあることより、Zrイオン、Wイオン及びPイオンの溶出が効果的に抑制され、また、カップリング剤による粒子同士の凝集が抑制され、更に疎水性も良好となり、負熱膨張フィラーとして用いたときに、樹脂分散性が良好となる。なお、リン酸タングスデン酸ジルコニウムに対する一般式(1)で表されるシランカップリング剤量とは、表面被覆処理が行われる前のリン酸タングスデン酸ジルコニウム粒子の質量に対する表面被覆処理に用いられる一般式(1)で表されるシランカップリング剤の質量割合を指す。 In the modified zirconium phosphate tungstate according to the second aspect of the present invention, the amount of the silane coupling agent represented by the general formula (1) is preferably 0.05 to 30% by mass with respect to zirconium phosphate tungstate particles. %, Particularly preferably 0.1 to 10% by mass, and further preferably 0.2 to 5.0% by mass. When the amount of the silane coupling agent represented by the general formula (1) is in the above range, elution of Zr ions, W ions and P ions is effectively suppressed, and aggregation of particles by the coupling agent is achieved. And the hydrophobicity is also improved, and when used as a negative thermal expansion filler, the resin dispersibility is improved. The amount of the silane coupling agent represented by the general formula (1) with respect to zirconium phosphate tansdenate is a general formula used for the surface coating treatment with respect to the mass of zirconium phosphate tanzdenate particles before the surface coating treatment is performed. It refers to the mass ratio of the silane coupling agent represented by (1).
 一般式(1)で表されるカップリング剤によるリン酸タングステン酸ジルコニウムの粒子の表面処理方法は、湿式であっても又は乾式であってもよい。 The surface treatment method of the particles of zirconium phosphate tungstate with the coupling agent represented by the general formula (1) may be wet or dry.
 一般式(1)で表されるカップリング剤によるリン酸タングステン酸ジルコニウムの粒子の表面処理を湿式法により行う場合は、表面処理方法としては、一般式(1)で表されるカップリング剤を所望の濃度で含む溶媒に、リン酸タングステン酸ジルコニウム粒子を浸漬し、溶媒ごと噴霧乾燥するか、あるいは、固液分離後、乾燥することにより、リン酸タングステン酸ジルコニウム粒子を、一般式(1)で表されるカップリング剤で表面処理し、リン酸タングステン酸ジルコニウム粒子を、一般式(1)で表されるカップリング剤で被覆する方法が挙げられる。 When surface treatment of particles of zirconium phosphate tungstate with the coupling agent represented by the general formula (1) is performed by a wet method, the coupling agent represented by the general formula (1) is used as the surface treatment method. Zirconium phosphate tungstate particles can be prepared by immersing zirconium phosphate tungstate particles in a solvent containing the desired concentration, spray drying together with the solvent, or drying after solid-liquid separation to obtain zirconium phosphate tungstate particles represented by the general formula (1) The surface treatment is performed with the coupling agent represented by these, and the method of coat | covering the zirconium tungstate tungstate particle | grains with the coupling agent represented by General formula (1) is mentioned.
 一般式(1)で表されるカップリング剤によるリン酸タングステン酸ジルコニウムの粒子の表面処理を乾式法により行う場合は、表面処理方法としては、一般式(1)で表されるカップリング剤とリン酸タングステン酸ジルコニウム粒子を、ヘンシェルミキサー、気流式粉砕機等の機械的手段を用いて、乾式で混合する方法、あるいは、一般式(1)で表されるカップリング剤を溶剤で希釈し、希釈液とリン酸タングステン酸ジルコニウムとを混合し、得られる混合物を加熱乾燥する方法が挙げられる。 When surface treatment of particles of zirconium phosphate tungstate with the coupling agent represented by the general formula (1) is performed by a dry method, the surface treatment method may be the coupling agent represented by the general formula (1) and Method in which zirconium phosphate tungstate particles are mixed by dry method using mechanical means such as a Henschel mixer, air flow crusher or the like, or the coupling agent represented by the general formula (1) is diluted with a solvent, The method of mixing a dilution liquid and zirconium tungstate tungstate and heat-drying the obtained mixture is mentioned.
 本発明の第一の形態の改質リン酸タングステン酸ジルコニウム及び本発明の第二の形態の改質リン酸タングステン酸ジルコニウムは、水に接触した場合においても、Zrイオン及びWイオンの溶出が抑制されたものであるので、本発明の第一の形態の改質リン酸タングステン酸ジルコニウム及び本発明の第二の形態の改質リン酸タングステン酸ジルコニウムのイオン溶出試験におけるZrイオン溶出濃度は、20ppm以下、好ましくは10ppm以下であり、Wイオン溶出濃度は、400ppm以下、好ましくは300ppm以下であり、Pイオン超出濃度は、100ppm以下、好ましくは50ppm以下である。なお、本発明において、イオン溶出試験は、改質リン酸タングステン酸ジルコニウム1gを試験水70ml中で、1時間、沸騰処理し、次いで、沸騰処理後の試験水中のZrイオン濃度、Wオン濃度及びPイオン濃度を測定することにより求められ、沸騰処理後の試験水中の各イオン濃度を、各イオンの溶出濃度とする。 The modified zirconium phosphate tungstate of the first embodiment of the present invention and the modified zirconium phosphate tungstate of the second embodiment of the present invention suppress the elution of Zr ions and W ions even when contacted with water. The Zr ion elution concentration in the ion elution test of the modified zirconium tungstate phosphate of the first embodiment of the present invention and the modified zirconium tungstate phosphate of the second embodiment of the present invention is 20 ppm. The W ion elution concentration is 400 ppm or less, preferably 300 ppm or less, and the P ion excess concentration is 100 ppm or less, preferably 50 ppm or less. In the present invention, in the ion elution test, 1 g of modified zirconium phosphate tungstate is subjected to boiling treatment in 70 ml of test water for 1 hour, and then the Zr ion concentration in the test water after boiling treatment, W on concentration and The concentration of each ion in the test water after boiling is determined by measuring the concentration of P ions, and is taken as the elution concentration of each ion.
 本発明の第一の形態の改質リン酸タングステン酸ジルコニウム及び本発明の第二の形態の改質リン酸タングステン酸ジルコニウムは、粉末又は溶媒に分散させた形態で用いられる。 The modified zirconium tungstate phosphate of the first embodiment of the present invention and the modified zirconium tungstate phosphate of the second embodiment of the present invention are used in the form of powder or solvent dispersed.
 本発明の第一の形態の改質リン酸タングステン酸ジルコニウム及び本発明の第二の形態の改質リン酸タングステン酸ジルコニウムは、正熱膨張材と併用されて、低熱膨張の材料を提供することができる。特に、本発明の第一の形態の改質リン酸タングステン酸ジルコニウム及び本発明の第二の形態の改質リン酸タングステン酸ジルコニウムは、高分子化合物に配合され、低熱膨張性材料を製造するための負熱膨張フィラーとして、好適に用いられる。 The modified zirconium tungstate phosphate of the first aspect of the invention and the modified zirconium tungstate phosphate of the second aspect of the invention are used in combination with a positive thermal expansion material to provide a low thermal expansion material Can. In particular, the first modified zirconium tungstate of the present invention and the second modified zirconium tungstate of the present invention are incorporated into a polymer compound to produce a low thermal expansion material. Is preferably used as a negative thermal expansion filler.
 本発明の負熱膨張フィラーは、本発明の第一の形態の改質リン酸タングステン酸ジルコニウム又は本発明の第二の形態の改質リン酸タングステン酸ジルコニウムからなることを特徴とする負熱膨張フィラーである。 The negative thermal expansion filler of the present invention comprises the modified zirconium tungstate phosphate of the first embodiment of the present invention or the modified zirconium phosphate tungstate of the second embodiment of the present invention. It is a filler.
 本発明の高分子組成物は、本発明の負熱膨張フィラーと、高分子化合物と、を含有することを特徴とする高分子組成物である。つまり、本発明の高分子組成物では、高分子組成物の負熱膨張フィラーとして、本発明の第一の形態の改質リン酸タングステン酸ジルコニウム又は本発明の第二の形態の改質リン酸タングステン酸ジルコニウムが用いられている。 The polymer composition of the present invention is a polymer composition comprising the negative thermal expansion filler of the present invention and a polymer compound. That is, in the polymer composition of the present invention, as the negative thermal expansion filler of the polymer composition, the modified zirconium tungstate phosphate of the first form of the present invention or the modified phosphoric acid of the second form of the present invention Zirconium tungstate is used.
 本発明の高分子組成物に係る高分子化合物としては、特に制限されないが、例えば、ゴム、ポリオレフィン、ポリシクロオレフィン、ポリスチレン、ABS、ポリアクリレート、ポリフェニレンスルファイド、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂(PET樹脂)及びポリ塩化ビニル樹脂等が挙げられる。 The polymer compound according to the polymer composition of the present invention is not particularly limited, and examples thereof include rubber, polyolefin, polycycloolefin, polystyrene, ABS, polyacrylate, polyphenylene sulfide, phenol resin, polyamide resin, polyimide resin, Epoxy resin, silicone resin, polycarbonate resin, polyethylene resin, polypropylene resin, polyethylene terephthalate resin (PET resin), polyvinyl chloride resin and the like can be mentioned.
 本発明の高分子組成物では、負熱膨張フィラーの含有量により、高分子組成物の熱膨張率が制御される。本発明の高分子組成物において、本発明の負熱膨張フィラーの含有量は、用途や目的に応じて適宜好適な含有量が選択されるが、多くの場合、本発明の高分子組成物中の本発明の負熱膨張フィラーの含有量は、本発明の高分子組成物全量に対し、1~90体積%である。 In the polymer composition of the present invention, the thermal expansion coefficient of the polymer composition is controlled by the content of the negative thermal expansion filler. In the polymer composition of the present invention, the content of the negative thermal expansion filler of the present invention is appropriately selected depending on the application and purpose, but in many cases, it is in the polymer composition of the present invention The content of the negative thermal expansion filler of the present invention is 1 to 90% by volume with respect to the total amount of the polymer composition of the present invention.
 また、本発明の高分子組成物は、必要に応じて、本発明の負熱膨張フィラー以外に、その他の配合物として、酸化防止剤、熱安定剤、紫外線吸収剤、滑剤、離剤、染料、顔料を含む着色剤、難燃剤、架橋剤、軟化剤、分散剤、硬化剤、重合開始剤、無機充填剤等の通常の添加剤を含有することができる。 Further, the polymer composition of the present invention may optionally contain, in addition to the negative thermal expansion filler of the present invention, other components such as an antioxidant, a heat stabilizer, an ultraviolet light absorber, a lubricant, a release agent, and a dye. And additives such as colorants containing pigments, flame retardants, crosslinking agents, softeners, dispersing agents, curing agents, polymerization initiators, inorganic fillers and the like.
 本発明の高分子組成物は、公知の方法によって製造される。例えば、高分子化合物が硬化性樹脂の場合、硬化性樹脂(あるいはプレポリマー)、本発明の負熱膨張フィラー及び必要に応じて配合されるその他の配合物を、同時に混入する方法、樹脂成分の一種にあらかじめ本発明の負熱膨張フィラー及び必要に応じて配合されるその他の配合物と混合しておき、これを硬化性樹脂(あるいはプレポリマー)と混合する方法が挙げられ、また、高分子化合物が熱可塑性樹脂の場合、本発明の負熱膨張フィラー及び必要に応じて配合されるその他の配合物を、エクストルーダーで溶融混合する方法、あるいは、本発明の負熱膨張フィラー及び必要に応じて配合される配合物の粒子状物を、均一に機械的に混合した後、射出成形機で混合と同時に成形する方法等が挙げられる。 The polymer composition of the present invention is produced by a known method. For example, in the case where the polymer compound is a curable resin, a method of simultaneously mixing the curable resin (or prepolymer), the negative thermal expansion filler of the present invention, and other compounds optionally compounded, resin components There is a method of mixing the negative thermal expansion filler of the present invention and the other compound optionally mixed, and mixing it with a curable resin (or prepolymer). When the compound is a thermoplastic resin, a method of melt-mixing the negative thermal expansion filler of the present invention and other compound optionally blended with an extruder, or the negative thermal expansion filler of the present invention and optionally After mixing uniformly and mechanically the particulate matter of the compounding | blended and mixed, and the method of shape | molding simultaneously with mixing by an injection molding machine etc. are mentioned.
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
<リン酸タングステン酸ジルコニウム試料の調製>
(製造例1)(ZWP試料1)
 市販の三酸化タングステン(WO;平均粒子径1.2μm)15質量部をビーカーに入れ、更に純水84質量部を添加し、分散剤としてポリカルボン酸アンモニウム塩を1質量部、仕込んだ。
 室温(25℃)で(スリーワンモーター撹拌機)を用いて120分間撹拌して、三酸化タングステンを含む15質量%スラリーを調製した。スラリー中の固形分の平均粒子径は1.2μmであった。
 次いで、このスラリーに水酸化ジルコニウムと、85質量%リン酸水溶液とを、スラリー中のZr:W:Pのモル比が2.00:1.00:2.00となるように室温(25℃)で添加し、2時間撹拌下に反応を行った。
 反応終了後、スラリーの全量を200℃で大気下に24時間乾燥を行って、反応前駆体を得た。得られた反応前駆体についてX線回折を行った結果、三酸化タングステンの回折ピークのみが観察された。
 次いで、得られた反応前駆体を950℃で2時間大気中で焼成反応を行い、白色の焼成品を得た。
 得られた焼成品をX線回折分析したところ、焼成品は単相のZr(WO)(POであった。また、得られたリン酸タングステン酸ジルコニウム試料の平均粒子径、BET比表面積を測定し、その結果を表1に示す。また、得られたリン酸タングステン酸ジルコニウム試料の走査型電子顕微鏡観察を行った結果、その粒子形状は破砕状であった(図1)。
Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
<Preparation of zirconium phosphate tungstate sample>
(Production Example 1) (ZWP Sample 1)
15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle diameter 1.2 μm) was placed in a beaker, 84 parts by mass of pure water was further added, and 1 part by mass of polycarboxylic acid ammonium salt was charged as a dispersant.
The mixture was stirred for 120 minutes at room temperature (25 ° C.) using a (three-one motor stirrer) to prepare a 15 wt% slurry containing tungsten trioxide. The average particle size of solid content in the slurry was 1.2 μm.
Next, to this slurry, zirconium hydroxide and an 85% by mass aqueous phosphoric acid solution were added at room temperature (25 ° C.) such that the molar ratio of Zr: W: P in the slurry was 2.00: 1.00: 2.00. The reaction was carried out with stirring for 2 hours.
After completion of the reaction, the whole amount of the slurry was dried at 200 ° C. in the atmosphere for 24 hours to obtain a reaction precursor. As a result of X-ray diffraction of the obtained reaction precursor, only a diffraction peak of tungsten trioxide was observed.
Next, the obtained reaction precursor was subjected to a baking reaction in the air at 950 ° C. for 2 hours to obtain a white baked product.
As a result of X-ray diffraction analysis of the obtained fired product, the fired product was single phase Zr 2 (WO 4 ) (PO 4 ) 2 . Further, the average particle size and BET specific surface area of the obtained zirconium phosphate tungstate sample were measured, and the results are shown in Table 1. Moreover, as a result of performing scanning electron microscope observation of the obtained zirconium phosphate tungstate sample, the particle shape was fractured (FIG. 1).
<平均粒子径の測定方法>
 測定資料を走査型電子顕微鏡観察し、SEM画像を得、次いで、該SEM画像中から、任意に100個の粒子を抽出し、各粒子の粒子径を測定し、それらの平均値を、平均粒子径として求めた。
<Method of measuring average particle size>
The material to be measured is observed with a scanning electron microscope to obtain an SEM image, and then 100 particles are arbitrarily extracted from the SEM image, the particle size of each particle is measured, and their average value is used as an average particle. It calculated as a diameter.
(製造例2)(ZWP試料2)
 市販の三酸化タングステン(WO;平均粒子径1.2μm)15質量部をビーカーに入れ、更に純水84質量部を添加した。
 室温(25℃)で120分間撹拌して、三酸化タングステンを含む15質量%スラリーを調製した。スラリー中の固形分の平均粒子径は1.2μmであった。
 次いで、このスラリーに水酸化ジルコニウムと、85質量%リン酸水溶液と水酸化マグネシウムとを、スラリー中のZr:W:P:Mgのモル比が2.00:1.00:2.00:0.1となるように室温(25℃)で添加した後、80℃に昇温して4時間撹拌下に反応を行った。
 反応終了後、分散剤としてポリカルボン酸アンモニウム塩を1重量部、仕込み、スラリーを攪拌しながら、直径0.5mmのジルコニアビーズを仕込んだメディア攪拌型ビーズミルに供給し、15分間混合して湿式粉砕を行った。湿式粉砕後のスラリー中の固形分の平均粒子径は0.3μmであった。
 次いで、220℃に設定したスプレードライヤーに、2.4L/hの供給速度でスラリーを供給し、反応前駆体を得た。得られた反応前駆体についてX線回折を行った結果、三酸化タングステンの回折ピークのみが観察された。
 次いで、得られた反応前駆体を960℃で2時間大気中で焼成反応を行い、白色の焼成品を得た。
 得られた焼成品をX線回折分析したところ、焼成品は単相のZr(WO)(POであった。また、得られたリン酸タングステン酸ジルコニウム試料の平均粒子径、BET比表面積を測定し、その結果を表1に示す。得られたリン酸タングステン酸ジルコニウム試料の走査型電子顕微鏡観察を行った結果、その粒子形状は球状であった(図2)。
(Production Example 2) (ZWP Sample 2)
15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle diameter 1.2 μm) was placed in a beaker, and 84 parts by mass of pure water was further added.
The mixture was stirred at room temperature (25 ° C.) for 120 minutes to prepare a 15 wt% slurry containing tungsten trioxide. The average particle size of solid content in the slurry was 1.2 μm.
Next, to this slurry, zirconium hydroxide, an 85% by mass aqueous phosphoric acid solution and magnesium hydroxide, and the molar ratio of Zr: W: P: Mg in the slurry is 2.00: 1.00: 2.00: 0. After adding at room temperature (25 ° C.) so as to be 0.1, the temperature was raised to 80 ° C. and the reaction was carried out with stirring for 4 hours.
After completion of the reaction, 1 part by weight of polycarboxylic acid ammonium salt as a dispersant is added, and while stirring the slurry, it is supplied to a media stirring type bead mill charged with zirconia beads of 0.5 mm in diameter, mixed for 15 minutes and wet ground Did. The average particle size of the solid content in the slurry after wet grinding was 0.3 μm.
Next, the slurry was supplied to a spray dryer set at 220 ° C. at a supply rate of 2.4 L / h to obtain a reaction precursor. As a result of X-ray diffraction of the obtained reaction precursor, only a diffraction peak of tungsten trioxide was observed.
Next, the obtained reaction precursor was subjected to a baking reaction in the air at 960 ° C. for 2 hours to obtain a white baked product.
As a result of X-ray diffraction analysis of the obtained fired product, the fired product was single phase Zr 2 (WO 4 ) (PO 4 ) 2 . Further, the average particle size and BET specific surface area of the obtained zirconium phosphate tungstate sample were measured, and the results are shown in Table 1. As a result of scanning electron microscope observation of the obtained zirconium phosphate tungstate sample, the particle shape was spherical (FIG. 2).
Figure JPOXMLDOC01-appb-T000001
注)ZWPはリン酸タングステン酸ジルコニウムを表す。
Figure JPOXMLDOC01-appb-T000001
Note) ZWP represents zirconium phosphate tungstate.
(実施例1)
 50gのZWP試料1に対して、0.25g(0.5質量%)のシランカップリング剤(デシルメトキシシラン)を加えて、気流式粉砕機(セイシン企業製、A-Oジェットミル)で粉砕混合して、破砕状のリン酸タングステン酸ジルコニウムを、表面被覆処理した改質リン酸タングステン酸ジルコニウム試料Aを得た。なお、気流式粉砕機の条件は下記のとおりである。
・粉体供給速度:3g/分
・プッシャー圧:0.6MPa
・ジェット圧:0.6MPa
Example 1
0.25 g (0.5 mass%) of a silane coupling agent (decyl methoxysilane) is added to 50 g of ZWP sample 1 and crushed by an air flow crusher (AO jet mill manufactured by Seishin Enterprise Co., Ltd.) By mixing, crushed zirconium tungstate in the form of crushed, surface-coated treated modified zirconium tungstate sample A was obtained. In addition, the conditions of an airflow crusher are as follows.
Powder feeding rate: 3 g / minute Pusher pressure: 0.6 MPa
・ Jet pressure: 0.6MPa
(実施例2)
 50gのZWP試料2に対して、0.25g(0.5質量%)のシランカップリング剤(デシルメトキシシラン)を加えて、20000rpmで1分間、混合機(ラボ用ミキサー:Labo Milser)で混合して、球状のリン酸タングステン酸ジルコニウムを
表面被覆処理した球状の改質リン酸タングステン酸ジルコニウム試料Bを得た。
(Example 2)
0.25 g (0.5 mass%) of silane coupling agent (decylmethoxysilane) is added to 50 g of ZWP sample 2 and mixed in a mixer (lab mixer: Labo Milser) at 20000 rpm for 1 minute Then, spherical modified zirconium phosphate tungstate Sample B in which spherical zirconium phosphate tungstate was surface-coated was obtained.
(比較例1~2)
 表面被覆処理していないリン酸タングステン酸ジルコニウム試料であるZWP試料1を比較例1の試料と、ZWP試料2を比較例2の試料とした。
(Comparative Examples 1 and 2)
The sample of Comparative Example 1 and the sample of Comparative Example 2 were used as the sample of Comparative Example 1 and the sample of Comparative Example 2 as ZWP sample 1 which is a zirconium phosphate tungstate sample not subjected to surface coating treatment.
(比較例3)エポキシカップリング剤
 50gのZWP試料1に対して、0.25g(0.5質量%)のシランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)を加えて、気流式粉砕機(セイシン企業製、A-Oジェットミル)で粉砕混合して、破砕状のリン酸タングステン酸ジルコニウムを表面被覆処理した改質リン酸タングステン酸ジルコニウム試料cを得た。なお、気流式粉砕機の条件は下記のとおりである。
・粉体供給速度:3g/分
・プッシャー圧:0.6MPa
・ジェット圧:0.6MPa
(Comparative Example 3) Epoxy coupling agent 0.25 g (0.5 mass%) of silane coupling agent (3-glycidoxypropyltrimethoxysilane) was added to 50 g of ZWP sample 1 to give an air flow type. The mixture was pulverized and mixed by a pulverizer (manufactured by Seishin Enterprise, AO jet mill) to obtain a modified zirconium phosphate tungstate sample c which was surface-coated with crushed zirconium phosphate tungstate. In addition, the conditions of an airflow crusher are as follows.
Powder feeding rate: 3 g / minute Pusher pressure: 0.6 MPa
・ Jet pressure: 0.6MPa
<物性の評価>
(粉体の熱膨張係数の評価)
 実施例及び比較例のリン酸タングステン酸ジルコニウム又は改質リン酸タングステン酸ジルコニウム試料について、昇温機能が付いたXRD装置(リガク社 Ultima IV)にて、昇温速度20℃/分で、目標温度まで昇温し、更に目標温度に到達してから10分後に、試料のa軸、b軸、c軸に対する格子定数を測定し、格子体積変化(直方体)を線換算して、熱膨張係数を求めた(J. Mat. Sci.,35(2000)2451-2454参照)。その結果を表2に示す。
<Evaluation of physical properties>
(Evaluation of thermal expansion coefficient of powder)
With regard to the zirconium phosphate tungstate or modified zirconium phosphate tungstate samples of Examples and Comparative Examples, the target temperature is obtained at a temperature rising rate of 20 ° C./minute in an XRD apparatus (Rigaku's Ultima IV) equipped with a temperature rising function. 10 minutes after reaching the target temperature, measure the lattice constant for the a-axis, b-axis, and c-axis of the sample, convert the lattice volume change (rectangular solid) into a line, and calculate the thermal expansion coefficient See, J. Mat. Sci., 35 (2000) 2451-2454. The results are shown in Table 2.
(溶出試験)
 試験試料1.0gを、水70mlに加え、試料を100℃の沸騰水中で、1時間沸騰処理した。
 次いで、ろ過分離し、ろ液中のZrイオン、Wイオン、Pイオン濃度をICP発光分光装置で測定し、Zrイオン濃度及びWイオン濃度、Pイオン濃度を試料からの溶出濃度として求めた。その結果を表2に示す。
(Dissolution test)
1.0 g of a test sample was added to 70 ml of water, and the sample was boiled in boiling water at 100 ° C. for 1 hour.
Next, filtration separation was performed, and the Zr ion, W ion, and P ion concentrations in the filtrate were measured by an ICP emission spectrometer, and the Zr ion concentration, W ion concentration, and P ion concentration were determined as elution concentration from the sample. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例3~4)
 実施例1で得られた改質リン酸タングステン酸ジルコニウム試料A又は実施例2で得られた改質リン酸タングステン酸ジルコニウム試料Bを5.8gと、エポキシ樹脂(三菱化学 jER807、エポキシ当量160~175)4.2gを計量し、真空ミキサー(シンキー製 あわとり練太郎ARV-310)にて、回転速度2000rpmで混合して、30体積%のペーストを作製した。
 次いで、ペーストに硬化剤(四国化成製 キュアゾール)を100μL加えて、真空ミキサー(シンキー製 あわとり練太郎ARV-310)にて、回転速度1500rpmで混合して、150℃で1時間にわたり硬化させて、高分子組成物試料を得た。
 次いで、この高分子組成物試料を5mm角×10mmに切り出して、熱機械分析装置(TMA)を用いて、昇温速度1℃/分で30~120℃の線膨張係数を測定した。その結果を表3に示す。また、得られた高分子組成物試料の断面を走査型電子顕微鏡像で観察したところ、実施例3及び4のいずれも、改質リン酸タングステン酸ジルコニウムが、高分子組成物中に均一に分散していることが確認できた。
(Examples 3 to 4)
5.8 g of the modified zirconium phosphate tungstate sample A obtained in Example 1 or the modified zirconium phosphate tungstate sample B obtained in Example 2 and an epoxy resin (Mitsubishi Chemical jER 807, epoxy equivalent 160 ̃ 175) Weighed 4.2 g and mixed at a rotational speed of 2000 rpm with a vacuum mixer (Awatori Neritaro ARV-310 manufactured by Shinky Co., Ltd.) to prepare a 30 vol% paste.
Next, 100 μL of a curing agent (Shikoku Kasei Cuasol) is added to the paste, mixed with a vacuum mixer (Shinky Awatori Neritaro ARV-310) at a rotational speed of 1500 rpm, and cured at 150 ° C. for 1 hour , A sample of the polymer composition was obtained.
Next, this polymer composition sample was cut into 5 mm square × 10 mm, and a linear expansion coefficient of 30 to 120 ° C. was measured at a temperature rising rate of 1 ° C./min using a thermomechanical analyzer (TMA). The results are shown in Table 3. Moreover, when the cross section of the obtained polymer composition sample was observed with a scanning electron microscope image, in any of Examples 3 and 4, the modified zirconium zirconium tungstate phosphate was uniformly dispersed in the polymer composition. I was able to confirm that I was doing.
(参考例1)
 平均粒子径10μmの球状溶融シリカ(線膨張係数5×10-7/℃)と3.3gとエポキシ樹脂(三菱化学 jER807、エポキシ当量160~175)4.2gを計量し、真空ミキサー(シンキー製 あわとり練太郎ARV-310)にて、回転速度2000rpmで混合して30体積%のペーストを作製した。
 次いで、ペーストに硬化剤(四国化成製 キュアゾール)を100μL加えて、真空ミキサー(シンキー製 あわとり練太郎ARV-310)にて、回転速度1500rpmで混合して、150℃で1時間にわたり硬化させて高分子組成物試料を得た。この高分子組成物試料を5mm角×10mmに切り出して熱機械分析装置(TMA)を用いて昇温速度1℃/分で30~120℃の線膨張係数を測定した。その結果を表3に示す。また、得られた高分子組成物試料の断面を走査型電子顕微鏡像で観察したところ、球状溶融シリカ粒子が高分子組成物中に均一に分散していることが確認できた。
(Reference Example 1)
Weigh spherical fused silica (linear expansion coefficient 5 × 10 -7 / ° C) with an average particle size of 10 μm and 3.3 g and epoxy resin (Mitsubishi Chemical jER 807, epoxy equivalent 160 to 175) 4.2 g, and use a vacuum mixer (Sinky) Awatori Neritaro ARV-310) was mixed at a rotational speed of 2000 rpm to prepare a 30 vol% paste.
Next, 100 μL of a curing agent (Shikoku Kasei Cuasol) is added to the paste, mixed with a vacuum mixer (Shinky Awatori Neritaro ARV-310) at a rotational speed of 1500 rpm, and cured at 150 ° C. for 1 hour Polymer composition samples were obtained. This polymer composition sample was cut into 5 mm square × 10 mm, and a linear expansion coefficient of 30 to 120 ° C. was measured at a temperature rising rate of 1 ° C./min using a thermomechanical analyzer (TMA). The results are shown in Table 3. Moreover, when the cross section of the obtained polymer composition sample was observed with a scanning electron microscope image, it could be confirmed that the spherical fused silica particles were uniformly dispersed in the polymer composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  下記一般式(1):
       R-Si(OR   (1)
    (式中、Rは、炭素数3以上のアルキル基を示す。Rは、炭素数1~4のアルキル基を示す。)
    で表されるシランカップリング剤によるリン酸タングステン酸ジルコニウム粒子の表面被覆処理物であることを特徴とする改質リン酸タングステン酸ジルコニウム。
    The following general formula (1):
    R 1 -Si (OR 2 ) 3 (1)
    (Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.)
    A modified zirconium phosphate tungstate characterized in that it is a surface coating treatment of zirconium phosphate tungstate particles with a silane coupling agent represented by
  2.  前記一般式(1)で表されるシランカップリング剤による被覆物の被覆量が、改質リン酸タングスデン酸ジルコニウム中のリン酸タングスデン酸ジルコニウムに対し、0.05~30質量%であることを特徴とする請求項1記載の改質リン酸タングスデン酸ジルコニウム。 The coated amount of the coating by the silane coupling agent represented by the general formula (1) is 0.05 to 30% by mass with respect to the zirconium phosphate tungsdenate in the modified phosphate zirconium tungstate The modified zirconium phosphate according to claim 1, characterized in that
  3.  リン酸タングステン酸ジルコニウム粒子の表面を、下記一般式(1):
       R-Si(OR   (1)
    (式中、Rは、炭素数3以上のアルキル基を示す。Rは、炭素数1~4のアルキル基を示す。)
    で表されるシランカップリング剤で表面被覆処理して得られたものであることを特徴とする改質リン酸タングステン酸ジルコニウム。
    The surface of the zirconium phosphate tungstate particles is represented by the following general formula (1):
    R 1 -Si (OR 2 ) 3 (1)
    (Wherein, R 1 represents an alkyl group having 3 or more carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms.)
    Modified zirconium tungstate which is obtained by surface coating treatment with a silane coupling agent represented by
  4.  前記一般式(1)で表されるシランカップリング剤量が、前記リン酸タングスデン酸ジルコニウム粒子に対し0.05~30質量%であることを特徴とする請求項3記載の改質リン酸タングスデン酸ジルコニウム。 4. The modified phosphoric acid tansden according to claim 3, wherein the amount of the silane coupling agent represented by the general formula (1) is 0.05 to 30% by mass with respect to the zirconium phosphate tansdenate particles. Acid zirconium.
  5.  前記リン酸タングステン酸ジルコニウム粒子のBET比表面積が、0.1~50m/gであることを特徴とする請求項1~4いずれか1項記載の改質リン酸タングステン酸ジルコニウム。 The modified zirconium phosphate tungstate according to any one of claims 1 to 4, wherein a BET specific surface area of the zirconium phosphate tungstate particle is 0.1 to 50 m 2 / g.
  6.  前記リン酸タングステン酸ジルコニウム粒子の平均粒子径が、0.02~50μmであることを特徴とする請求項1~5いずれか1項記載の改質リン酸タングスデン酸ジルコニウム。 The modified zirconium phosphate as claimed in any one of claims 1 to 5, wherein an average particle diameter of the zirconium phosphate tungstate particles is 0.02 to 50 μm.
  7.  前記リン酸タングステン酸ジルコニウム粒子は、更に、副成分元素を含有することを特徴とする請求項1~6いずれか1項記載の改質リン酸タングステン酸ジルコニウム。 The modified zirconium phosphate tungstate according to any one of claims 1 to 6, wherein the zirconium phosphate tungstate particles further contain a subcomponent element.
  8.  下記イオン溶出試験におけるZrイオン溶出濃度が20ppm以下、Wイオン溶出濃度が400ppm以下、Pイオン超出濃度が100ppm以下であることを特徴とする請求項1~7いずれか1項記載の改質リン酸タングステン酸ジルコニウム。
    <イオン溶出試験>
     改質リン酸タングステン酸ジルコニウム1gを試験水70ml中で、1時間、沸騰処理し、次いで、沸騰処理後の試験水中のZrイオン濃度、Wオン濃度及びPイオン濃度を測定し、該沸騰処理後の試験水中の各イオン濃度を、各イオンの溶出濃度とする。
    The modified phosphoric acid according to any one of claims 1 to 7, wherein the Zr ion elution concentration in the following ion elution test is 20 ppm or less, the W ion elution concentration is 400 ppm or less, and the P ion excess concentration is 100 ppm or less. Zirconium tungstate.
    <Ion elution test>
    1 g of the modified zirconium phosphate tungstate is subjected to boiling treatment in 70 ml of test water for 1 hour, and then the Zr ion concentration, W on concentration and P ion concentration in the test water after boiling treatment are measured, and after the boiling treatment Let each ion concentration in the test water of be the elution concentration of each ion.
  9.  請求項1~8いずれか1項記載の改質リン酸タングステン酸ジルコニウムからなることを特徴とする負熱膨張フィラー。 A negative thermal expansion filler comprising the modified zirconium phosphate tungstate according to any one of claims 1 to 8.
  10.  請求項9記載の負熱膨張フィラーと、高分子化合物と、を含有することを特徴とする高分子組成物。 A polymer composition comprising the negative thermal expansion filler according to claim 9 and a polymer compound.
PCT/JP2018/037768 2017-10-31 2018-10-10 Modified zirconium phosphate tungstate, negative thermal expansion filler, and polymeric composition WO2019087722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507963A JP6553831B1 (en) 2017-10-31 2018-10-10 Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209975 2017-10-31
JP2017-209975 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019087722A1 true WO2019087722A1 (en) 2019-05-09

Family

ID=66332579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037768 WO2019087722A1 (en) 2017-10-31 2018-10-10 Modified zirconium phosphate tungstate, negative thermal expansion filler, and polymeric composition

Country Status (3)

Country Link
JP (1) JP6553831B1 (en)
TW (1) TW201922612A (en)
WO (1) WO2019087722A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454574A (en) * 2020-06-05 2020-07-28 郑州大学 Method for improving polyimide performance by coupling agent surface modification treatment negative thermal expansion material
WO2020261976A1 (en) * 2019-06-24 2020-12-30 日本化学工業株式会社 Modified zirconium phosphate tungstate, filler having negative thermal expansion, and polymer composition
WO2021015192A1 (en) * 2019-07-23 2021-01-28 キヤノン株式会社 Resin composition and resin molded product thereof
WO2023037930A1 (en) * 2021-09-07 2023-03-16 日本化学工業株式会社 Negative thermal expansion material, method for producing same, and paste
EP4007688A4 (en) * 2019-08-02 2023-08-30 Airtech International, Inc. Adjustable cte polymer compositions for extrusion and additive manufacturing processes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116093333B (en) * 2023-04-07 2023-06-16 河南锂动电源有限公司 Battery anode material, preparation method thereof and semisolid lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131945A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2015038197A (en) * 2013-07-19 2015-02-26 味の素株式会社 Resin composition
JP2016113608A (en) * 2014-12-12 2016-06-23 太陽インキ製造株式会社 Curable resin composition, dry film, cured article and printed wiring board
JP2017063155A (en) * 2015-09-25 2017-03-30 富士フイルム株式会社 Organic thin film transistor, material for organic thin film transistor, material set for organic thin film transistor, manufacturing method for organic thin film transistor
WO2017061403A1 (en) * 2015-10-07 2017-04-13 日本化学工業株式会社 Negative thermal expansion material and composite material including same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131945A (en) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2015038197A (en) * 2013-07-19 2015-02-26 味の素株式会社 Resin composition
JP2016113608A (en) * 2014-12-12 2016-06-23 太陽インキ製造株式会社 Curable resin composition, dry film, cured article and printed wiring board
JP2017063155A (en) * 2015-09-25 2017-03-30 富士フイルム株式会社 Organic thin film transistor, material for organic thin film transistor, material set for organic thin film transistor, manufacturing method for organic thin film transistor
WO2017061403A1 (en) * 2015-10-07 2017-04-13 日本化学工業株式会社 Negative thermal expansion material and composite material including same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO XIAODONG: "Surface Modification of ZrW2O8 and ZrW2O7(OH) · 2H2O by In Situ Polymerization : Enhanced Filler Particles for Use in Composites", POLYMER COMPOSITES, vol. 37, no. 5, 2016, pages 1359 - 1368, XP055614088 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261976A1 (en) * 2019-06-24 2020-12-30 日本化学工業株式会社 Modified zirconium phosphate tungstate, filler having negative thermal expansion, and polymer composition
JP7472129B2 (en) 2019-06-24 2024-04-22 日本化学工業株式会社 Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
WO2021015192A1 (en) * 2019-07-23 2021-01-28 キヤノン株式会社 Resin composition and resin molded product thereof
JP2021017514A (en) * 2019-07-23 2021-02-15 国立大学法人東京工業大学 Resin composition and resin molding thereof
JP7351477B2 (en) 2019-07-23 2023-09-27 国立大学法人東京工業大学 Resin composition and resin molding thereof
EP4007688A4 (en) * 2019-08-02 2023-08-30 Airtech International, Inc. Adjustable cte polymer compositions for extrusion and additive manufacturing processes
CN111454574A (en) * 2020-06-05 2020-07-28 郑州大学 Method for improving polyimide performance by coupling agent surface modification treatment negative thermal expansion material
WO2023037930A1 (en) * 2021-09-07 2023-03-16 日本化学工業株式会社 Negative thermal expansion material, method for producing same, and paste

Also Published As

Publication number Publication date
JP6553831B1 (en) 2019-07-31
JPWO2019087722A1 (en) 2019-11-14
TW201922612A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
WO2019087722A1 (en) Modified zirconium phosphate tungstate, negative thermal expansion filler, and polymeric composition
CN108137325B (en) Method for preparing zirconium phosphotungstate
TWI803653B (en) Negative thermal expansion material, method of manufacturing the same and composite material
TWI755366B (en) Negative thermal expansion material and composite material and paste containing the same
TWI750137B (en) Method for manufacturing zirconium tungstate phosphate
TWI593629B (en) Magnesium hydroxide particle and resin composition comprising the same
WO2020179703A1 (en) Modified zirconium phosphate tungstate, negative thermal expansion filler and polymer composition
CN112752732B (en) Spherical magnesium oxide, method for producing same, thermally conductive filler, and resin composition
CN113544089A (en) Modified zirconium phosphotungstate, negative thermal expansion filler and polymer composition
WO2020004072A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JP7472129B2 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
JP7239608B2 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
WO2019235532A1 (en) Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these
WO2019235525A1 (en) Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these
JP2022550984A (en) Composite particles and method for producing the composite particles
WO2023181781A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JP7468790B2 (en) Composite particles and method for producing the same
TWI836228B (en) Compound and method for manufacturing the same, and composite material
JP2023034831A (en) Alumina particles, resin composition, molded product and method for producing alumina particles
TW202340097A (en) Negative thermal expansion material and composite material
JP2024072854A (en) Method for producing composite particles
JP2022171034A (en) Composite particles and manufacturing method of the composite particles
JP2021062994A (en) Thermal expansion suppressing filler, method for producing the same and composite material comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019507963

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874510

Country of ref document: EP

Kind code of ref document: A1