WO2019087630A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019087630A1
WO2019087630A1 PCT/JP2018/036016 JP2018036016W WO2019087630A1 WO 2019087630 A1 WO2019087630 A1 WO 2019087630A1 JP 2018036016 W JP2018036016 W JP 2018036016W WO 2019087630 A1 WO2019087630 A1 WO 2019087630A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
protection control
operating frequency
target frequency
Prior art date
Application number
PCT/JP2018/036016
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 裕
貴裕 仲田
誠司 岡
智春 芦澤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP18873146.7A priority Critical patent/EP3705808B1/en
Priority to CN201880069422.0A priority patent/CN111279138B/en
Publication of WO2019087630A1 publication Critical patent/WO2019087630A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/07Remote controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present disclosure relates to an air conditioner.
  • start-up operation is performed to lower the operating frequency of the compressor for a predetermined time after the compressor is started.
  • liquid return to the compressor does not always occur at the start of the cooling or heating operation. That is, depending on the surrounding environment of the compressor at the start of the cooling or heating operation, the possibility of liquid return to the compressor may be small. Even in such a case, if startup operation is performed to lower the operating frequency of the compressor, the time from when the compressor is started to when the indoor temperature reaches the set temperature becomes longer, and the startup of the cooling or heating operation is made faster. It was difficult.
  • An object of the present disclosure is to provide an air conditioner that can speed up startup of cooling or heating operation.
  • An air conditioner that solves this problem controls a compressor capable of changing the operating frequency and a compressor protection control that raises the operating frequency of the compressor to the required operating frequency at the start of cooling or heating operation. Department and.
  • the compressor protection control has a first protection control and a second protection control.
  • the first protection control controls the operating frequency of the compressor so that the time from when the compressor is started to when the operating frequency reaches the required operating frequency is relatively long.
  • the second protection control controls the operating frequency of the compressor so that the time from when the compressor is started to when the operating frequency reaches the required operating frequency is relatively short.
  • the control unit executes the second protection control when a predetermined condition is satisfied at the time of execution of the compressor protection control.
  • the time from when the compressor is started until the operating frequency of the compressor reaches the required operating frequency Becomes shorter.
  • the predetermined condition is that, by raising the operating frequency of the compressor sharply at the start of the compressor, rare scale progress due to a decrease in oil level in the compressor or refrigerant return, liquid return to the compressor, In the outdoor heat exchanger and the indoor heat exchanger, it is a condition that the possibility of causing problems of the compressor such as freezing of the heat exchanger functioning as an evaporator and negative pressure on the suction side of the compressor is reduced.
  • the control unit sets a first target frequency and a second target frequency which is larger than the first target frequency and smaller than the necessary operating frequency.
  • the control unit maintains the operating frequency at the first target frequency for the first period, and maintains the operating frequency at the second target frequency for the second period to thereby operate the operating frequency of the compressor. Raise gradually.
  • the first target frequency in the second protection control is larger than the first target frequency in the first protection control.
  • the second target frequency in the second protection control is larger than the second target frequency in the first protection control.
  • the time from when the compressor is started by the second protection control to when the operating frequency of the compressor reaches the required operating frequency is shortened. Therefore, the startup of the cooling or heating operation can be made faster.
  • the control unit sets a first target frequency and a second target frequency which is larger than the first target frequency and smaller than the necessary operating frequency.
  • the control unit maintains the operating frequency at the first target frequency for the first period, and maintains the operating frequency at the second target frequency for the second period to thereby operate the operating frequency of the compressor. Raise gradually.
  • the first period in the second protection control is shorter than the first period in the first protection control.
  • the second period in the second protection control is shorter than the second period in the second protection control.
  • the time from when the compressor is started by the second protection control to when the operating frequency of the compressor reaches the required operating frequency is shortened. Therefore, the startup of the cooling or heating operation can be made faster.
  • the predetermined condition at the time of the heating operation is different from the predetermined condition at the time of the cooling operation. According to this configuration, it is possible to appropriately execute the second protection control during the cooling or heating operation.
  • the predetermined condition includes the temperature of indoor air, the temperature of outdoor air, and the temperature difference between the temperature of the indoor air and the temperature of the outdoor air.
  • the predetermined condition at the time of the heating operation is that the temperature of the indoor air is equal to or lower than a room temperature threshold, the temperature of the outdoor air is equal to or higher than an outdoor temperature threshold, and the temperature of the indoor air and the temperature of the outdoor air The temperature difference of is less than or equal to the temperature difference threshold.
  • the temperature of the indoor air and the outdoor air that can be easily acquired as the information of the air conditioner can be a condition that can suppress the occurrence of problems of the compressor such as liquid return to the compressor in the compressor protection control. It can be set using temperature.
  • the predetermined condition includes the temperature of the discharge pipe of the compressor and the temperature of the outdoor air. According to this configuration, it is possible to more appropriately execute the second protection control during the cooling or heating operation.
  • the air conditioner 1 includes a refrigerant circuit 40.
  • the refrigerant circuit 40 includes a refrigerant pipe 30 that circulates the refrigerant between the outdoor unit 10 and the indoor unit 20.
  • the air conditioner 1 of the present embodiment has a refrigerant circuit 40 formed by connecting an outdoor unit 10 installed outdoors and a wall mounted indoor unit 20 mounted on a wall surface etc. of the room by a refrigerant pipe 30. Prepare.
  • the outdoor unit 10 includes a compressor 11 capable of changing the operating frequency, a four-way switching valve 12, an outdoor heat exchanger 13, an expansion valve 14, an outdoor blower 15, an outdoor control device 16, and the like.
  • the outdoor blower 15 has a motor 15a capable of changing the rotational speed as a drive source, and an impeller 15b connected to the output shaft of the motor 15a.
  • An example of the impeller 15b is a propeller fan.
  • the compressor 11 is, for example, a rocking piston type compressor, and includes a compression mechanism, a motor, a crankshaft (both not shown) for transmitting the driving force of the motor to the compression mechanism, and the like.
  • the compressor 11 includes an accumulator 11 a for separating the refrigerant into gas and liquid.
  • An example of the motor is a three-phase brushless motor.
  • the expansion valve 14 is, for example, an electronic expansion valve.
  • the outdoor fan 15 rotates the impeller 15b by the motor 15a in order to promote heat exchange between the refrigerant flowing through the heat transfer pipe of the outdoor heat exchanger 13 and the outdoor air. Thus, the outdoor fan 15 generates an air flow of the outdoor air passing through the outdoor heat exchanger 13.
  • the outdoor control device 16 is electrically connected to the motor of the compressor 11, the four-way switching valve 12, the expansion valve 14, and the motor 15a of the outdoor blower 15.
  • the indoor unit 20 includes an indoor heat exchanger 21, an indoor blower 22, an indoor control device 23, and the like.
  • the indoor blower 22 has a motor 22a capable of changing the rotational speed as a drive source, and an impeller (not shown) connected to the output shaft of the motor 22a.
  • An example of an impeller is a cross flow fan.
  • the indoor blower 22 rotates the impeller with the motor 22a to promote heat exchange between the refrigerant flowing through the heat transfer pipe of the indoor heat exchanger 21 and the indoor air. Thereby, the indoor blower 22 generates an air flow of indoor air passing through the indoor heat exchanger 21.
  • the indoor control device 23 is electrically connected to the motor 22 a of the indoor blower 22.
  • the indoor control device 23 is configured to be capable of wireless communication with, for example, the remote controller 51 (see FIG. 2) of the air conditioner 1 by means of infrared rays or the like.
  • the indoor control device 23 is configured to be able to perform wired communication with the outdoor control device 16 by a signal line. Thereby, the indoor control device 23 controls the indoor unit 20 based on the operation instruction from the remote controller 51, and the outdoor control device 16 controls the outdoor unit 10.
  • the refrigerant circuit 40 is one in which the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the expansion valve 14, and the indoor heat exchanger 21 are annularly connected by a refrigerant pipe 30.
  • the refrigerant circuit 40 can execute a vapor compression refrigeration cycle in which the refrigerant is reversibly circulated by switching the four-way switching valve 12.
  • the four-way switching valve 12 by switching the four-way switching valve 12 to the cooling mode connection state (the state shown by the solid line in the drawing), in the refrigerant circuit 40, the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the expansion valve 14, the room A cooling cycle is formed in which the refrigerant circulates in the order of the heat exchanger 21, the four-way switching valve 12, and the compressor 11.
  • the outdoor heat exchanger 13 is used as a condenser, and the cooling operation is performed in which the indoor heat exchanger 21 functions as an evaporator.
  • the four-way switching valve 12 is switched to the heating mode connection state (state shown by the broken line), whereby the compressor 11, the four-way switching valve 12, the indoor heat exchanger 21, the expansion valve 14, and the outdoor A heating cycle in which the refrigerant circulates in the order of the heat exchanger 13, the four-way switching valve 12, and the compressor 11 is formed.
  • the heating operation is performed in which the indoor heat exchanger 21 functions as a condenser and the outdoor heat exchanger 13 functions as an evaporator.
  • the control unit 50 that controls the air conditioner 1 includes an outdoor control device 16 and an indoor control device 23.
  • Each of the outdoor control device 16 and the indoor control device 23 includes, for example, a processing unit that executes a predetermined control program and a storage unit.
  • the arithmetic processing unit includes, for example, a central processing unit (CPU) or a micro processing unit (MPU).
  • the storage unit stores various control programs and information used for various control processes.
  • the storage unit includes, for example, non-volatile memory and volatile memory.
  • a remote controller 51, an indoor temperature sensor 52, an outdoor temperature sensor 53, and a discharge pipe temperature sensor 54 are communicably connected to the control unit 50. More specifically, the control unit 50 is configured to be capable of wireless communication with the remote controller 51 (see FIG. 3), for example, with infrared rays. That is, signals of the operation instruction of the remote controller 51 (instructions of the cooling operation, the heating operation, etc.) and the operation stop instruction are output to the control unit 50.
  • the indoor temperature sensor 52, the outdoor temperature sensor 53, and the discharge pipe temperature sensor 54 are electrically connected to the control unit 50.
  • the indoor temperature sensor 52 is a sensor for measuring the temperature of the indoor air (indoor temperature), and is provided, for example, in the vicinity of the suction port of the indoor unit 20.
  • the indoor temperature sensor 52 outputs a signal corresponding to the indoor temperature to the control unit 50.
  • the outdoor temperature sensor 53 is a sensor for measuring the temperature of the outdoor air (outdoor temperature), and is provided, for example, near the suction port of the outdoor unit 10.
  • the outdoor temperature sensor 53 outputs a signal corresponding to the outdoor temperature to the control unit 50.
  • the discharge pipe temperature sensor 54 is a sensor for measuring the temperature of the discharge pipe of the compressor 11, that is, the temperature of the discharge gas refrigerant discharged from the compressor 11.
  • the discharge pipe temperature sensor 54 is attached to the discharge pipe of the compressor 11.
  • the discharge pipe temperature sensor 54 outputs a signal corresponding to the temperature of the discharge gas refrigerant of the compressor 11 to the control unit 50.
  • various signals are input to the control unit 50 from the remote controller 51, the indoor temperature sensor 52, the outdoor temperature sensor 53, and the discharge pipe temperature sensor 54. Then, the control unit 50 acquires the indoor temperature (hereinafter, "indoor temperature DA") based on the measurement information of the indoor temperature sensor 52, and the outdoor temperature (hereinafter, “outside air temperature DOA” based on the measurement information of the outdoor temperature sensor 53. And the temperature DF (the temperature of the discharge gas refrigerant) of the discharge pipe of the compressor 11 based on the measurement information of the discharge pipe temperature sensor 54.
  • the indoor control device 23 and the outdoor control device 16 are electrically connected, the operation instruction and the indoor temperature DA received by the indoor control device 23 can be output to the outdoor control device 16. Further, the outside air temperature DOA received by the outdoor control device 16 and the temperature DF of the discharge pipe of the compressor 11 can be output to the indoor control device 23.
  • the indoor control device 23 controls the rotational speed of the motor 22 a of the indoor blower 22 based on the operation instruction of the remote controller 51 and the measurement information.
  • the outdoor control device 16 switches the operating frequency of the compressor 11, switching between the cooling mode connection state and the heating mode connection state of the four-way switching valve 12, and the opening degree of the expansion valve 14 based on the operation instruction and measurement information of the remote controller 51. And the rotational speed of the motor 15a of the outdoor blower 15 is controlled.
  • the control unit 50 performs the cooling operation and the heating operation through the indoor control device 23 and the outdoor control device 16 based on the operation instruction of the remote controller 51 and the measurement information.
  • the control unit 50 controls the compressor 11, the expansion valve 14, the outdoor blower 15, and the indoor blower 22 so that the indoor temperature becomes the temperature set by the remote controller 51 in the cooling operation and the heating operation.
  • the control unit 50 increases the rising speed and the decreasing speed so that the rising speed when raising the operating frequency of the compressor 11 and the decreasing speed when lowering the operating frequency become equal to each other in the cooling operation and the heating operation. It is set.
  • One example of the change speed of the operating frequency of the compressor 11 in the cooling operation and the heating operation, such as the rising speed and the decreasing speed, is 2 Hz per second.
  • the control unit 50 sets the low operating frequency of the compressor 11 to the operating frequency required for the cooling or heating operation (hereinafter referred to as “required operating frequency FN Raise to reach ').
  • the control unit 50 executes compressor protection control at startup of the compressor 11.
  • the operation frequency of the compressor 11 is started at a low operation frequency for the purpose of avoiding the failure of the compressor 11, and the necessary operation frequency necessary for stable operation of the compressor 11 with the passage of time. It is gradually raised until it reaches FN.
  • a graph GX indicated by a broken line in FIG. 3 is a schematic graph for explaining general compressor protection control.
  • the target frequency of the plurality of stages is changed to be maintained for a predetermined time until the operating frequency of the compressor 11 reaches the required operating frequency FN.
  • the controller 50 controls the first target frequency FX1, the second target frequency FX2 higher than the first target frequency FX1, the third target frequency FX3 higher than the second target frequency FX2, and A fourth target frequency FX4 higher than the third target frequency FX3 is stored.
  • the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 becomes the first target frequency FX1 at time t1, and the operating frequency of the compressor 11 is the first target in the period from time t1 to time t3.
  • the compressor 11 is driven to maintain the frequency FX1.
  • the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the first target frequency FX1 to the second target frequency FX2 at time t3, and during the period from time t3 to time t5, The compressor 11 is driven such that the operating frequency maintains the second target frequency FX2.
  • the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the second target frequency FX2 to the third target frequency FX3 at time t5, and the controller 11 operates during the period from time t5 to time t6.
  • the compressor 11 is driven so that the operating frequency maintains the third target frequency FX3.
  • the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the third target frequency FX3 to the fourth target frequency FX4 at time t6, and during the period from time t6 to time t7,
  • the compressor 11 is driven such that the operating frequency maintains the fourth target frequency FX4.
  • the control unit 50 drives the compressor so that the operating frequency of the compressor 11 changes from the fourth target frequency FX4 to the necessary operating frequency FN at time t7.
  • a difference (FX2-FX1) between the second target frequency FX2 and the first target frequency FX1 and a difference (FX3-FX2) between the third target frequency FX3 and the second target frequency FX2 , And the difference (FX4-FX3) between the fourth target frequency FX4 and the third target frequency FX3 are equal to one another.
  • the first period TX1 in which the operating frequency of the compressor 11 maintains the first target frequency FX1 the second period TX2 in which the second target frequency FX2 is maintained, and the third period TX3 in which the third target frequency FX3 is maintained.
  • the fourth period TX4 maintaining the fourth target frequency FX4 are equal to one another.
  • the compressor protection control when the compressor protection control is performed at the start of the cooling or heating operation, the malfunction of the compressor 11 can be avoided, while the operating frequency of the compressor 11 is gradually increased as shown by the graph GX in FIG. Since the user instructs the remote control 51 to perform the cooling or heating operation, it takes a long time for the temperature of the room air to reach the set temperature. That is, startup of the cooling or heating operation at the start of the cooling or heating operation is difficult, and as a result, the cooling capacity or the heating capacity at the start of the cooling or heating operation decreases.
  • the possibility that the malfunction of the compressor 11 may occur may be low depending on the surrounding environment of the compressor 11 (the temperature of the outdoor air or the temperature of the indoor air). Even when the possibility of the occurrence of a failure of the compressor 11 is low, if the compressor protection control shown in the graph GX of FIG. 3 is executed, the cooling ability or the heating ability is low even though the failure of the compressor 11 hardly occurs. The operation of the compressor 11 which is decreasing will be performed.
  • the control unit 50 executes the first start control that changes the control mode of the compressor protection control based on whether the possibility of the occurrence of a failure of the compressor 11 is high or low. Do. Specifically, when there is a high possibility that a malfunction of the compressor 11 will occur, the control unit 50 executes a first protection control that is a compressor protection control as shown in the graph GX of FIG. 3. On the other hand, when there is a low possibility that a malfunction of the compressor 11 will occur, the control unit 50 needs the operating frequency of the compressor 11 more than the compressor protection control (first protection control) shown in the graph GX of FIG. Execute a second protection control that raises FN quickly.
  • the second protection control has a first target frequency FA1 and a second target frequency FA2. That is, the number of target frequencies of the second protection control is smaller than the number of target frequencies of the first protection control.
  • the first target frequency FA1 is larger than the first target frequency FX1 of the first protection control.
  • the first target frequency FA1 of the present embodiment is equal to the second target frequency FX2 of the graph GX.
  • the second target frequency FA2 is larger than the second target frequency FX2 of the first protection control.
  • the second target frequency FA2 of the present embodiment is larger than the fourth target frequency FX4 of the graph GX and smaller than the required operating frequency FN.
  • the first target frequency FA1 and the difference (FA2-FA1) between the second target frequency FA2 and the first target frequency FA1 are equal to one another.
  • the difference (FA2-FA1) between the second target frequency FA2 and the first target frequency FA1 is larger than the difference (FN-FA2) between the required operating frequency FN and the second target frequency FA2.
  • the first period TA1 in which the operating frequency of the compressor 11 maintains the first target frequency FA1 and the second period TA2 in which the operating frequency of the compressor 11 maintains the second target frequency FA2 are equal to each other.
  • the controller 50 After controlling the operating frequency of the compressor 11 to be the first target frequency FA1 in the second protection control, the controller 50 maintains the first target frequency FA1 for a predetermined period of time. To control. Then, the control unit 50 controls the operating frequency of the compressor 11 from the first target frequency FA1 to the second target frequency FA2, and maintains the second target frequency FA2 for a predetermined time. After the control, the operating frequency of the compressor 11 is controlled from the second target frequency FA2 to the required operating frequency FN. In the second protection control, in the first period TA1 in which the operating frequency of the compressor 11 is controlled to maintain the first target frequency FA1, the operating frequency of the compressor 11 in the first protection control maintains the first target frequency FX1. To be controlled to be shorter than the first period TX1. Further, in the second period TA2 in which the operating frequency of the compressor 11 is controlled to maintain the second target frequency FA2, the operating frequency of the compressor 11 in the first protection control is controlled to maintain the second target frequency FX2. It is shorter than the second period TX2.
  • the graph GA of FIG. 3 shows the transition of the operating frequency of the compressor 11 by the second protection control.
  • the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 becomes the first target frequency FA1 at time t1, and during a period from time t1 to time t2 (period TA1)
  • the compressor 11 is driven so that the operating frequency of the compressor 11 maintains the first target frequency FA1.
  • the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the first target frequency FA1 to the second target frequency FA2 at time t2, and a period from time t2 to time t4 (period TA2)
  • the compressor 11 is driven such that the operating frequency of the compressor 11 maintains the second target frequency FA2.
  • the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the second target frequency FA2 to the necessary operating frequency FN at time t4.
  • the period TA (period from time t1 to time t4) from when the compressor 11 is started until the operating frequency of the compressor 11 reaches the required operating frequency FN is the first protection control.
  • the period of time from when the compressor 11 starts up to when the operating frequency of the compressor 11 reaches the required operating frequency FN is shorter than the period TX (period from time t1 to time t8).
  • the possibility that the malfunction of the compressor 11 occurs can be estimated using the temperature of the indoor air (indoor temperature) and the temperature of the outdoor air (outdoor temperature). More specifically, the possibility that the failure of the compressor 11 occurs can be estimated based on the indoor temperature DA, the outdoor air temperature DOA, and the temperature difference between the indoor temperature DA and the outdoor air temperature DOA.
  • the temperature conditions in which the possibility of the malfunction of the compressor 11 at the start of the heating operation is low is low and the temperature at which the malfunction of the compressor 11 at the start of the cooling operation is low is low. I found the condition.
  • the room temperature DA when the room temperature DA is high at the start of the heating operation, it is less necessary to increase the room temperature DA promptly, that is, it is less necessary to increase the heating capacity.
  • the room temperature DA when the room temperature DA is low at the start of the cooling operation, it is less necessary to lower the room temperature DA promptly, that is, it is less necessary to increase the cooling capacity.
  • the failure of the compressor 11 when it is not necessary to increase the heating capacity or the cooling capacity, by executing the first protection control as the compressor protection control, the failure of the compressor 11 can be more reliably avoided.
  • FIG. 4 shows the second protection control of the compressor protection control at the start of the heating operation when the present inventors change the room temperature DA, the outside air temperature DOA, and the temperature difference between the room temperature DA and the outside air temperature DOA. It is an example of the result of having tested whether a failure generate
  • the vertical axis in FIG. 4 indicates the room temperature DA, and the horizontal axis indicates the outside air temperature DOA.
  • the diagonal lines in this temperature map indicate the temperature difference between inside and outside that is the temperature difference (DA-DOA) between the room temperature DA and the outside air temperature DOA.
  • the temperature region RL is a temperature region (hereinafter, “temperature region RL”) in which the possibility of occurrence of a failure of the compressor 11 at the start of the heating operation is low and the heating capability needs to be high.
  • the temperature range RL is a temperature range surrounded by the room temperature DA of 20 ° C. or less, the outside air temperature DOA of 0 ° C. or more, and the inside / outside temperature difference X5 or less.
  • An example of the inside and outside temperature difference X5 is 10 ° C. In detail, if the outside air temperature DOA is 0 ° C. or more and the temperature difference between the inside and outside is 10 ° C.
  • the second protection control of the compressor protection control at the start of the heating operation has a defect in the compressor 11 It is unlikely to occur.
  • the outside air temperature DOA is less than 0 ° C., or the temperature difference between inside and outside is more than 10 ° C.
  • a problem occurs in the compressor 11 when the second protection control of the compressor protection control at the start of the heating operation is performed.
  • the room temperature DA is greater than 20 ° C. and the temperature difference between the inside and the outside is 10 ° C. or less
  • the second protection control of the compressor protection control at the start of the heating operation is defective. It is unlikely to occur, but there is no need to increase heating capacity.
  • the inventors of the present invention have a cooling operation in the case of changing the room temperature DA, the outside air temperature DOA, and the temperature difference between the room temperature DA and the outside air temperature DOA as in the heating operation. It was tested whether or not a failure occurred in the compressor 11 when the second protection control of the compressor protection control was performed at the start of the test. Based on such a test, there is a low possibility that a malfunction of the compressor 11 will occur at the start of the cooling or heating operation, and the temperature conditions for which the necessity for increasing the cooling or heating capability is high are as follows.
  • Such temperature conditions in the cooling or heating operation are stored in the control unit 50 as, for example, the map MP1 in the heating operation in FIG. 5 and the map MP2 in the cooling operation in FIG.
  • the indoor temperature DA is equal to or lower than the first judgment temperature (room temperature threshold) DAX1 (DA ⁇ DAX1).
  • the outside air temperature DOA is within the first temperature range (DOAL1 ⁇ DOA ⁇ DOAH1). Note that DOAL1 indicates the lower limit value of the first temperature range, and DOAH1 indicates the upper limit value of the first temperature range.
  • the temperature difference between the room temperature DA and the outside air temperature DOA is equal to or less than the first judgment temperature difference (temperature difference threshold) DDX1 (DA-DOA ⁇ DDX).
  • the first determination temperature DAX1 is a determination value of the indoor temperature that determines whether it is necessary to increase the heating capacity.
  • An example of the first determination temperature DAX1 is 13 ° C.
  • the lower limit value DOAL1 of the first temperature range is a determination value of the outside air temperature that determines whether the possibility of the occurrence of a failure of the compressor 11 at the start of the heating operation is low.
  • One example of the lower limit value DOAL1 is 0 ° C.
  • the upper limit value DOAH1 of the first temperature range is a determination value of the outside air temperature that determines whether it is necessary to increase the heating capacity.
  • An example of the upper limit value DOAH1 is 24 ° C.
  • the first determination temperature difference DDX1 is a determination value of the inside / outside temperature difference which determines whether the possibility of the occurrence of the failure of the compressor 11 at the start of the heating operation is low.
  • An example of the first judgment temperature difference DDX1 is 10 ° C.
  • the indoor temperature DA is equal to or higher than the second judgment temperature (room temperature threshold) DAX2 (DA ⁇ DAX2).
  • the outside air temperature DOA is within the second temperature range (DOAL2 ⁇ DOA ⁇ DOAH2). Note that DOAL2 indicates the lower limit value of the second temperature range, and DOAH2 indicates the upper limit value of the second temperature range.
  • the temperature difference between the indoor temperature DA and the outside air temperature DOA is less than or equal to the second judgment temperature difference (temperature difference threshold) DDX2 (DA-DOA ⁇ DDX2).
  • the second determination temperature DAX2 is a determination value of the indoor temperature that determines whether the cooling capacity needs to be increased.
  • An example of the second determination temperature DAX2 is 25.degree.
  • the lower limit value DOAL2 of the second temperature range is a determination value of the outside air temperature that determines whether the cooling capacity needs to be increased.
  • One example of the lower limit value DOAL2 is 25 ° C.
  • the upper limit value DOAH2 of the second temperature range is a determination value of the outside air temperature that determines whether the possibility of the occurrence of a failure of the compressor 11 at the start of the cooling operation is low.
  • An example of the upper limit value DOAH2 is 45 ° C.
  • the second determination temperature difference DDX2 is a determination value of the inside / outside temperature difference which determines whether the possibility of the occurrence of the failure of the compressor 11 at the start of the cooling operation is low.
  • An example of the second judgment temperature difference DDX2 is -10.degree.
  • the control unit 50 uses the map MP1 to select the first protection control and the second protection control at the start of the heating operation based on the temperature conditions a1, a2 and a3 of the heating operation.
  • the control unit 50 uses the map MP2 to select the first protection control and the second protection control at the start of the cooling operation based on the temperature conditions b1, b2, b3 of the cooling operation.
  • the vertical axis of the map MP1 indicates the room temperature DA, and the horizontal axis indicates the outside air temperature DOA.
  • the inclined line in the map MP1 indicates the boundary condition of the temperature difference between inside and outside.
  • the temperature region R1 satisfying all the temperature conditions a1, a2, and a3 is indicated by hatching. That is, the temperature area R1 is an area for selecting the second protection control, and the area other than the temperature area R1 is an area for selecting the first protection control.
  • the temperature region R1 of the map MP1 may be the same as the temperature region RL of FIG. 4. That is, the first determination temperature DAX1 at temperature conditions a1, a2 and a3 of the heating operation is 20 ° C., the lower limit DOAL1 of the first temperature range is 0 ° C., the upper limit DOAH1 is 30 ° C., and the first determination temperature difference DDX1 is It may be 10 ° C.
  • the vertical axis of the map MP2 indicates the room temperature DA, and the horizontal axis indicates the outside air temperature DOA.
  • the inclined line in the map MP2 indicates the boundary condition of the temperature difference between inside and outside.
  • the temperature region R2 satisfying all the temperature conditions b1, b2, b3 is shown by hatching. That is, the temperature area R2 is an area for selecting the second protection control, and the area other than the temperature area R2 is an area for selecting the first protection control.
  • control unit 50 selects one of the first protection control and the second protection control using the map MP1 at the start of the heating operation, and uses the map MP2 at the start of the cooling operation. And one of the second protection control.
  • Control unit 50 determines whether a heating operation has been instructed in step S11. The determination in step S11 is performed based on, for example, whether or not the control unit 50 has received a heating operation command from the remote controller 51. When it is determined that the heating operation is instructed in step S11 (step S11: YES), the control unit 50 selects the map MP1 in step S12. Then, in step S13, the control unit 50 determines whether the coordinates defined by the room temperature DA and the outside air temperature DOA are within the range of the temperature range R1 in the map MP1.
  • step S14 the second protection control is selected.
  • step S13: NO the controller 50 determines that the coordinates defined by the room temperature DA and the outside air temperature DOA are out of the range of the temperature range R1 (step S13: NO), that is, at least one of the temperature conditions a1 to a3 is satisfied. If it is determined that there is not, the first protection control is selected in step S15.
  • step S11 determines whether the heating operation is not instructed.
  • step S16 determines whether the cooling operation is instructed in step S16.
  • the determination in step S16 is performed based on, for example, whether or not the control unit 50 has received a cooling operation command from the remote controller 51.
  • step S16: YES the control unit 50 selects the map MP2 in step S17.
  • step S18 the control unit 50 determines whether the coordinates defined by the room temperature DA and the outside air temperature DOA are within the range of the temperature region R2 in the map MP2.
  • step S18 determines that the coordinates defined by the room temperature DA and the outside air temperature DOA fall within the range of the temperature range R2 (step S18: YES), that is, if it determines that all the temperature conditions b1 to b3 are satisfied, It transfers to step S14. That is, the control unit 50 selects the second protection control.
  • step S18: NO determines that the coordinates defined by the room temperature DA and the outside air temperature DOA are out of the range of the temperature range R2 (step S18: NO), that is, at least one of the temperature conditions b1 to b3 is satisfied. If it is determined that there is not, the first protection control is selected in step S19.
  • the control unit 50 ends the first start control.
  • the dehumidifying operation may be mentioned as an operation other than the heating operation and the cooling operation.
  • the control unit 50 executes either the first protection control or the second protection control using the map MP1 or the map MP2 during the cooling or heating operation.
  • the compressor 11 in the first protection control starts after the start of the compressor 11.
  • the time required for the operating frequency to reach the required operating frequency FN is shorter.
  • the second protection control by executing the second protection control, the time from when the compressor 11 is started to when the operating frequency of the compressor 11 reaches the required operating frequency FN is shortened.
  • the startup of the cooling or heating operation can be made faster.
  • the time from when the cooling or heating operation is started to when the indoor temperature DA reaches the set temperature can be shortened, the heating capacity or the cooling capacity can be enhanced.
  • the first target frequency FA1 in the second protection control is larger than the first target frequency FX1 in the first protection control
  • the second target frequency FA2 in the second protection control is the second in the first protection control. Greater than the target frequency FX2.
  • the number of target frequencies set until the operating frequency of the compressor 11 reaches the required operating frequency FN after the start of the compressor 11 is the compressor 11 in the first protection control.
  • the operating frequency of the compressor 11 becomes smaller than the number of target frequencies set until the required operating frequency FN is reached after the start of the engine. Therefore, since the time until the operating frequency of the compressor 11 reaches the required operating frequency FN after the compressor 11 is started by the second protection control becomes short, the startup of the cooling or heating operation can be made faster.
  • the operating frequency of the compressor 11 in the first protection control is the first target It is shorter than the first period TX1 controlled to maintain the frequency FX1.
  • the operating frequency of the compressor 11 in the first protection control maintains the second target frequency FX2
  • the second control period is shorter than the second period TX2.
  • the operating frequency of the compressor 11 becomes smaller than the number of target frequencies set until the required operating frequency FN is reached after the start of the engine. Therefore, since the time until the operating frequency of the compressor 11 reaches the required operating frequency FN after the compressor 11 is started by the second protection control becomes short, the startup of the cooling or heating operation can be made faster.
  • the control unit 50 selects one of the first protection control and the second protection control using the map MP1 during the cooling operation, and uses the map MP2 during the heating operation to perform the first protection control and the second protection control. Select one of the protection controls.
  • the condition for executing the second protection control during the cooling operation and the condition for executing the second protection control during the heating operation are different from each other. That is, these conditions are individually set during the cooling operation and the heating operation. Therefore, the control unit 50 can appropriately execute the second protection control during the cooling operation or the heating operation.
  • the conditions for executing the second protection control in the maps MP1 and MP2 are determined by the room temperature DA, the outside air temperature DOA, and the temperature difference between inside and outside. As described above, the conditions for executing the second protection control are set using the indoor temperature sensor 52 and the outdoor temperature sensor 53 provided in the air conditioner 1 as a standard. Therefore, since the indoor temperature DA and the outside air temperature DOA which are easily obtained as information of the air conditioner 1 are used, it is not necessary to provide a dedicated sensor for setting the conditions for executing the second protection control. Therefore, the increase in the cost of the air conditioner 1 can be suppressed.
  • the air conditioner 1 of the present embodiment differs from the air conditioner 1 of the first embodiment in the content of the first activation control.
  • the components of the air conditioner 1 indicate the components of the air conditioner 1 of FIG. 1.
  • the refrigerant When the operation of the air conditioner 1 is stopped, the refrigerant may be condensed and accumulated in the lower one of the temperature of the indoor air and the temperature of the outdoor air.
  • the liquid refrigerant dissolves and accumulates in the lubricating oil in the compressor 11, or the liquid refrigerant accumulates in the outdoor heat exchanger 13, a so-called stagnation phenomenon Will occur.
  • the compressor 11 is started by the heating operation in a state where this stagnation phenomenon occurs, if the rate of increase of the operating frequency of the compressor 11 is increased, oil forming is easily generated in the compressor 11, and the cause of the failure of the compressor 11 It becomes.
  • the compressor 11 when the compressor 11 is started by the cooling operation in the state where the stagnation phenomenon occurs, oil forming is easily generated in the compressor 11 if the speed of increase of the operating frequency of the compressor 11 is increased as in the heating operation.
  • the control unit 50 executes the refrigerant discharge start operation in order to prevent the failure of the compressor 11 at the start of the cooling or heating operation due to the sleeping phenomenon.
  • the control unit 50 reverse cycles the four-way switching valve 12 for a predetermined time (for example, one minute) at the start of the compressor 11 at the start of the heating operation.
  • the compressor 11 is operated while switching to the mode connection state). Thereby, the liquid refrigerant accumulated in the outdoor heat exchanger 13 is caused to flow through the indoor heat exchanger 21.
  • the liquid refrigerant in the indoor heat exchanger 21 is vaporized by the indoor heat exchanger 21 at the time of refrigerant discharge start operation to be a gas refrigerant, and is sucked into the compressor 11. Thereby, the occurrence of oil forming of the compressor 11 can be suppressed. Further, in the refrigerant discharge start operation at the start of the cooling operation, the control unit 50 reverse cycles the four-way switching valve 12 at the start of the compressor 11 at the start of the cooling operation for a predetermined time (for example, one minute) The compressor 11 is operated in the state switched to the heating mode connection state). Thereby, the liquid refrigerant accumulated in the indoor heat exchanger 21 is allowed to flow through the outdoor heat exchanger 13.
  • the liquid refrigerant in the outdoor heat exchanger 13 is evaporated by the outdoor heat exchanger 13 at the time of refrigerant discharge start operation to be a gas refrigerant and sucked into the compressor 11. Thereby, the occurrence of oil forming of the compressor 11 can be suppressed. As described above, when the refrigerant discharge start operation is performed at the start of the cooling or heating operation, the possibility that the malfunction of the compressor 11 occurs is reduced.
  • the control unit 50 executes the second start control of selecting the second protection control after the refrigerant discharge start operation.
  • the processing procedure of the second activation control will be described with reference to FIG.
  • Control unit 50 determines whether or not the refrigerant discharge start operation has been performed in step S21. If the control unit 50 determines that the refrigerant discharge start operation has been performed in step S21 (step S21: YES), the control unit 50 determines whether the refrigerant discharge start operation has been completed in step S22. When it is determined in step S22 that the refrigerant discharge start operation has ended (step S22: YES), the control unit 50 selects the second protection control in step S23. On the other hand, when the control unit 50 determines that the refrigerant discharge start operation has not ended in step S22 (step S22: NO), the control unit 50 shifts to the determination of step S22 again.
  • step S21 when the control unit 50 determines that the refrigerant discharge start operation is not performed in step S21 (step S21: NO), the control unit 50 shifts to the first start control in step S24. Then, the control unit 50 selects one of the first protection control and the second protection control based on the first activation control.
  • the control unit 50 executes the refrigerant discharge start operation
  • the control unit 50 executes the second protection control. After the completion of the refrigerant discharge start operation, the possibility of the occurrence of a failure of the compressor 11 is reduced. Therefore, by executing the second protection control after the refrigerant discharge start operation, the operating frequency of the compressor 11 can be quickly reached to the required operation frequency FN after the refrigerant discharge start operation. Therefore, the startup of the cooling or heating operation can be made faster.
  • each embodiment is an example of a form that the air conditioner according to the present disclosure may take, and is not intended to limit the form.
  • the air conditioning system according to the present disclosure may take a form in which, for example, the following modifications, as well as at least two modifications consistent with each other, are combined, in addition to the above-described embodiments.
  • the control of the compressor 11 when the operating frequency of the compressor 11 in the second protection control is increased to the required operating frequency FN can be arbitrarily changed. That is, in the control, the time until the operating frequency of the compressor 11 in the second protection control reaches the required operating frequency FN, and the time until the operating frequency of the compressor 11 in the first protection control reaches the required operating frequency FN It can be arbitrarily changed under the condition of becoming shorter than the above.
  • the second protection control can be changed, for example, as in the following (A) to (F).
  • the first target frequency FA1 and the second target frequency FA2 can be arbitrarily changed. For example, the first target frequency FA1 may be different from the second target frequency FX2.
  • the first target frequency FA1 may be larger than the second target frequency FX2 and smaller than the third target frequency FX3.
  • the second target frequency FA2 may be equal to the fourth target frequency FX4.
  • the first period TA1 in which the compressor 11 maintains the first target frequency FA1 and the second period TA2 in which the second target frequency FA2 is maintained are equal to the first to fourth periods TX1 to TX4 of the first protection control. Or, it may be longer than the first to fourth periods TX1 to TX4.
  • C The first period TA1 in which the compressor 11 maintains the first target frequency FA1 and the second period TA2 in which the second target frequency FA2 is maintained can be arbitrarily changed.
  • the first period TA1 and the second period TA2 may be different from each other. That is, the first period TA1 and the second period TA2 can be set individually.
  • the number of target frequencies in the second protection control is not limited to two, and can be arbitrarily changed. That is, the number of target frequencies in the second protection control may be one or three or more.
  • the contents of the above (A) to (D) may be combined with each other.
  • the operation frequency of the compressor 11 may be set to the required operation frequency FN at the start of the second protection control. That is, the first target frequency FA1 or the like may be omitted.
  • the control of the compressor 11 may be changed as follows, for example, when raising the operating frequency of the compressor 11 to the required operating frequency FN in the first protection control.
  • Each of the first to fourth target frequencies FX1 to FX4 can be arbitrarily changed.
  • the difference between the second target frequency FX2 and the first target frequency FX1 may be different from the difference between the third target frequency FX3 and the second target frequency FX2.
  • the difference between the fourth target frequency FX4 and the third target frequency FX3 may be different from the difference between the third target frequency FX3 and the second target frequency FX2.
  • Each of the first to fourth periods TX1 to TX4, which is a period in which the compressor 11 maintains each of the first to fourth target frequencies FX1 to FX4, can be arbitrarily changed. For example, some of the first to fourth periods TX1 to TX4 may be different from the rest of the first to fourth periods TX1 to TX4.
  • the number of target frequencies in the first protection control is not limited to four, and can be arbitrarily changed. That is, the number of target frequencies in the first protection control may be three or five or more.
  • the temperature DF of the discharge pipe of the compressor 11 and the outside air temperature DOA may be added to the conditions for selecting the first protection control and the second protection control.
  • the temperature DF of the discharge pipe is equal to or higher than the temperature threshold DFX (DF ⁇ DFX).
  • the outside air temperature DOA is equal to or higher than the determination temperature threshold DOAY (DOA DO DOAY).
  • DOA DO DOAY determination temperature threshold DOAY
  • the temperature difference between the temperature DF of the discharge pipe and the outside air temperature DOA is equal to or greater than the temperature difference threshold DDY (DF-DOAADDY).
  • the temperature threshold DFX is a threshold that limits the conditions for shifting to the maps MP1 and MP2, and is preset by a test or the like.
  • An example of the temperature threshold DFX is -3 ° C.
  • the determination temperature threshold value DOAY is a determination value limiting the conditions for shifting to the maps MP1 and MP2, and is set in advance by a test or the like.
  • An example of the judgment temperature threshold value DOAY is -15.degree.
  • the temperature difference threshold value DDY is a threshold value that limits the conditions for shifting to the maps MP1 and MP2, and is preset by a test or the like.
  • the control unit 50 stores a map MP3 indicating the relationship between the temperature DF of the discharge pipe of the compressor 11 for selecting the first protection control and the second protection control and the outside air temperature DOA.
  • FIG. 9 shows an example of the map MP3.
  • the vertical axis of the map MP3 indicates the temperature DF of the discharge pipe of the compressor 11, and the horizontal axis indicates the outside air temperature DOA.
  • the inclined line in the map MP3 indicates the boundary condition of the temperature difference between the temperature DF of the discharge pipe and the outside air temperature DOA.
  • a temperature region R3 satisfying all of the temperature conditions c1, c2 and c3 is shown in white.
  • control unit 50 determines that the temperature DF of the discharge pipe and the outside air temperature DOA are within temperature range R3 when it is determined that the cooling or heating operation is instructed. It is determined whether or not Specifically, the control unit 50 determines whether the temperature DF of the discharge pipe of the compressor 11 and the outside air temperature DOA are within the temperature range R3.
  • the control unit 50 uses the map MP1 to perform the first protection control and One of the second protection controls is selected, and at the start of the cooling operation, one of the first protection control and the second protection control is selected using the map MP2.
  • the control unit 50 determines that the temperature DF of the discharge pipe and the outside air temperature DOA are in the range other than the temperature range R3, that is, when at least one of the temperature conditions c1, c2, c3 is not satisfied, the first Execute protection control.
  • the second protection control is more appropriate during the cooling or heating operation. Can be performed.
  • the third protection control different from the first protection control and the second protection control is executed as compressor protection control. It is also good.
  • the control unit 50 controls the time until the operating frequency of the compressor 11 reaches the required operating frequency FN, and the operating frequency of the compressor 11 in the first protective control reaches the required operating frequency FN
  • the compressor 11 is controlled so as to be longer than the time period (period TX).
  • the outside air temperature DOA is higher than the determination temperature threshold DOAY and lower than the determination temperature threshold DOAZ (DOAZ> DOAY) higher than the determination temperature threshold DOAY, and the temperature DF of the discharge pipe of the compressor 11 is the temperature threshold DFX.
  • a fourth protection control different from the first protection control and the second protection control may be executed as the compressor protection control.
  • the control unit 50 controls the time until the operating frequency of the compressor 11 reaches the required operating frequency FN, and the operating frequency of the compressor 11 in the first protective control reaches the required operating frequency FN
  • the compressor 11 is controlled such that the operation frequency of the compressor 11 in the third protection control is shorter than the time required to reach the required operation frequency FN, which is longer than the time period (period TX).
  • the compressor protection control is performed in the temperature range R6 where the outside air temperature DOA is equal to or higher than the determination temperature threshold DOAZ and the temperature difference between the discharge pipe temperature DF and the outside air temperature DOA is less than the temperature difference threshold DDY.
  • a fifth protection control different from the first protection control and the second protection control may be executed.
  • the control unit 50 controls the time until the operating frequency of the compressor 11 reaches the required operating frequency FN, and the operating frequency of the compressor 11 in the first protective control reaches the required operating frequency FN.
  • the compressor 11 is controlled such that the operation frequency of the compressor 11 in the fourth protection control is shorter than the time required to reach the required operation frequency FN, which is longer than the time period (period TX).
  • At least one of the temperature condition a1 during the heating operation and the temperature condition b1 during the cooling operation in the first start control may be omitted.
  • either the outdoor control device 16 or the indoor control device 23 may be omitted.
  • the indoor temperature sensor 52 is connected to the outdoor control device 16 by wire or wirelessly.
  • the indoor blower 22 is connected to the outdoor control device 16 by wire.
  • the outdoor control device 16 corresponds to a control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner includes a compressor, the operation frequency of which is variable, and a controller for executing compressor protection control to raise the operation frequency of the compressor to a required operation frequency at the start of the cooling or heating operation. The compressor protection control includes a first protection control and a second protection control. In the first protection control, the operation frequency of the compressor is controlled such that the time period from the activation of the compressor to the time at which the operation frequency reaches the required operation frequency should become relatively long. In the second protection control, the operation frequency of the compressor is controlled such that the time period from the activation of the compressor to the time at which the operation frequency reaches the required operation frequency should be relatively short. The control unit executes the second protection control when the predetermined condition is satisfied at the time of executing the compressor protection control.

Description

空調装置Air conditioner
 本開示は、空調装置に関する。 The present disclosure relates to an air conditioner.
 従来から空調装置では、冷房又は暖房運転の開始時に、圧縮機への液戻りを防止するために、圧縮機が起動してから所定時間に亘り圧縮機の運転周波数を低くする起動運転が行われている(例えば特許文献1参照)。 Conventionally, in an air conditioner, at the start of cooling or heating operation, in order to prevent liquid return to the compressor, start-up operation is performed to lower the operating frequency of the compressor for a predetermined time after the compressor is started. (See, for example, Patent Document 1).
特開平6-341720号公報Unexamined-Japanese-Patent No. 6-341720
 ところで、冷房又は暖房運転の開始時に、圧縮機への液戻りが必ず発生するとは限らない。すなわち、冷房又は暖房運転の開始時の圧縮機の周囲環境によっては、圧縮機への液戻りの生じる可能性が小さい場合がある。このような場合でも圧縮機の運転周波数を低くする起動運転を行うと、圧縮機を起動してから室内温度が設定温度になるまでの時間が長くなり、冷房又は暖房運転の立ち上げを速くすることが困難であった。 By the way, liquid return to the compressor does not always occur at the start of the cooling or heating operation. That is, depending on the surrounding environment of the compressor at the start of the cooling or heating operation, the possibility of liquid return to the compressor may be small. Even in such a case, if startup operation is performed to lower the operating frequency of the compressor, the time from when the compressor is started to when the indoor temperature reaches the set temperature becomes longer, and the startup of the cooling or heating operation is made faster. It was difficult.
 本開示は、冷房又は暖房運転の立ち上げを速くすることができる空調装置を提供することを目的とする。 An object of the present disclosure is to provide an air conditioner that can speed up startup of cooling or heating operation.
 この課題を解決する空調装置は、運転周波数の変更が可能な圧縮機と、冷房又は暖房運転の開始時に前記圧縮機の運転周波数を必要運転周波数になるまで上昇させる圧縮機保護制御を実行する制御部と、を含む。前記圧縮機保護制御は第1保護制御と第2保護制御とを有する。前記第1保護制御は、前記圧縮機の起動から前記運転周波数が前記必要運転周波数に達するまでの時間が相対的に長くなるように前記圧縮機の運転周波数を制御する。前記第2保護制御は、前記圧縮機の起動から前記運転周波数が前記必要運転周波数に達するまでの時間が相対的に短くなるように前記圧縮機の運転周波数を制御する。前記制御部は、前記圧縮機保護制御の実行時に所定条件を満たす場合に前記第2保護制御を実行する。 An air conditioner that solves this problem controls a compressor capable of changing the operating frequency and a compressor protection control that raises the operating frequency of the compressor to the required operating frequency at the start of cooling or heating operation. Department and. The compressor protection control has a first protection control and a second protection control. The first protection control controls the operating frequency of the compressor so that the time from when the compressor is started to when the operating frequency reaches the required operating frequency is relatively long. The second protection control controls the operating frequency of the compressor so that the time from when the compressor is started to when the operating frequency reaches the required operating frequency is relatively short. The control unit executes the second protection control when a predetermined condition is satisfied at the time of execution of the compressor protection control.
 この構成によれば、圧縮機保護制御の実行時に所定条件を満たす場合に第2保護制御を実行することにより、圧縮機が起動してから圧縮機の運転周波数が必要運転周波数に達するまでの時間が短くなる。これにより、冷房又は暖房運転を開始してから室内温度が設定温度に達するまでの時間を短くすることができ、冷房又は暖房運転の立ち上げを速くすることができる。 According to this configuration, by executing the second protection control when the predetermined condition is satisfied at the time of execution of the compressor protection control, the time from when the compressor is started until the operating frequency of the compressor reaches the required operating frequency Becomes shorter. As a result, it is possible to shorten the time until the room temperature reaches the set temperature after the cooling or heating operation is started, and the startup of the cooling or heating operation can be made faster.
 ここで、所定条件とは、圧縮機の起動時において圧縮機の運転周波数を急峻に上げることによって、圧縮機内の油面の低下や冷媒戻りに起因する希尺度進行、圧縮機への液戻り、室外熱交換器及び室内熱交換器において蒸発器として機能する熱交換器の氷結、圧縮機の吸入側が負圧になる等の圧縮機の不具合が発生する可能性が低くなる条件である。 Here, the predetermined condition is that, by raising the operating frequency of the compressor sharply at the start of the compressor, rare scale progress due to a decrease in oil level in the compressor or refrigerant return, liquid return to the compressor, In the outdoor heat exchanger and the indoor heat exchanger, it is a condition that the possibility of causing problems of the compressor such as freezing of the heat exchanger functioning as an evaporator and negative pressure on the suction side of the compressor is reduced.
 好ましくは、前記制御部は、前記圧縮機保護制御において、第1目標周波数と、前記第1目標周波数よりも大きく前記必要運転周波数よりも小さい第2目標周波数とを設定する。前記制御部は、前記運転周波数を前記第1目標周波数に第1期間に亘り維持し、前記運転周波数を前記第2目標周波数に第2期間に亘り維持することにより、前記圧縮機の運転周波数を段階的に上昇させる。前記第2保護制御における前記第1目標周波数は、前記第1保護制御における前記第1目標周波数よりも大きい。前記第2保護制御における前記第2目標周波数は、前記第1保護制御における前記第2目標周波数よりも大きい。 Preferably, in the compressor protection control, the control unit sets a first target frequency and a second target frequency which is larger than the first target frequency and smaller than the necessary operating frequency. The control unit maintains the operating frequency at the first target frequency for the first period, and maintains the operating frequency at the second target frequency for the second period to thereby operate the operating frequency of the compressor. Raise gradually. The first target frequency in the second protection control is larger than the first target frequency in the first protection control. The second target frequency in the second protection control is larger than the second target frequency in the first protection control.
 この構成によれば、第2保護制御によって圧縮機が起動してから圧縮機の運転周波数が必要運転周波数に達するまでの時間が短くなる。したがって、冷房又は暖房運転の立ち上げを速くすることができる。 According to this configuration, the time from when the compressor is started by the second protection control to when the operating frequency of the compressor reaches the required operating frequency is shortened. Therefore, the startup of the cooling or heating operation can be made faster.
 好ましくは、前記制御部は、前記圧縮機保護制御において、第1目標周波数と、前記第1目標周波数よりも大きく前記必要運転周波数よりも小さい第2目標周波数とを設定する。前記制御部は、前記運転周波数を前記第1目標周波数に第1期間に亘り維持し、前記運転周波数を前記第2目標周波数に第2期間に亘り維持することにより、前記圧縮機の運転周波数を段階的に上昇させる。前記第2保護制御における前記第1期間は、前記第1保護制御における前記第1期間よりも短い。前記第2保護制御における前記第2期間は、前記第2保護制御における前記第2期間よりも短い。 Preferably, in the compressor protection control, the control unit sets a first target frequency and a second target frequency which is larger than the first target frequency and smaller than the necessary operating frequency. The control unit maintains the operating frequency at the first target frequency for the first period, and maintains the operating frequency at the second target frequency for the second period to thereby operate the operating frequency of the compressor. Raise gradually. The first period in the second protection control is shorter than the first period in the first protection control. The second period in the second protection control is shorter than the second period in the second protection control.
 この構成によれば、第2保護制御によって圧縮機が起動してから圧縮機の運転周波数が必要運転周波数に達するまでの時間が短くなる。したがって、冷房又は暖房運転の立ち上げを速くすることができる。 According to this configuration, the time from when the compressor is started by the second protection control to when the operating frequency of the compressor reaches the required operating frequency is shortened. Therefore, the startup of the cooling or heating operation can be made faster.
 好ましくは、前記暖房運転時における前記所定条件と、前記冷房運転時における前記所定条件とが異なる。
 この構成によれば、冷房又は暖房運転時において第2保護制御を適切に実行することができる。
Preferably, the predetermined condition at the time of the heating operation is different from the predetermined condition at the time of the cooling operation.
According to this configuration, it is possible to appropriately execute the second protection control during the cooling or heating operation.
 好ましくは、前記所定条件は、室内空気の温度、室外空気の温度、及び前記室内空気の温度と前記室外空気の温度との温度差を含む。
 好ましくは、前記暖房運転時における前記所定条件は、前記室内空気の温度が室温閾値以下であり、前記室外空気の温度が外気温度閾値以上であり、前記室内空気の温度と前記室外空気の温度との温度差が温度差閾値以下である。
Preferably, the predetermined condition includes the temperature of indoor air, the temperature of outdoor air, and the temperature difference between the temperature of the indoor air and the temperature of the outdoor air.
Preferably, the predetermined condition at the time of the heating operation is that the temperature of the indoor air is equal to or lower than a room temperature threshold, the temperature of the outdoor air is equal to or higher than an outdoor temperature threshold, and the temperature of the indoor air and the temperature of the outdoor air The temperature difference of is less than or equal to the temperature difference threshold.
 この構成によれば、圧縮機保護制御において圧縮機への液戻り等の圧縮機の不具合の発生を抑制することができる条件を、空調装置の情報として取得し易い室内空気の温度及び室外空気の温度を用いて設定することができる。 According to this configuration, the temperature of the indoor air and the outdoor air that can be easily acquired as the information of the air conditioner can be a condition that can suppress the occurrence of problems of the compressor such as liquid return to the compressor in the compressor protection control. It can be set using temperature.
 好ましくは、前記所定条件は、前記圧縮機の吐出管の温度及び室外空気の温度を含む。
 この構成によれば、冷房又は暖房運転時において第2保護制御をより適切に実行することができる。
Preferably, the predetermined condition includes the temperature of the discharge pipe of the compressor and the temperature of the outdoor air.
According to this configuration, it is possible to more appropriately execute the second protection control during the cooling or heating operation.
第1実施形態の空調装置を概念的に示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows the air conditioner of 1st Embodiment notionally. 空調装置の電気的構成を示すブロック図。The block diagram which shows the electric constitution of an air conditioner. 圧縮機保護制御における圧縮機の運転周波数の推移を示すグラフ。The graph which shows transition of the operating frequency of the compressor in compressor protection control. 室内温度、外気温度、及び室内温度と外気温度との温度差と、圧縮機の不具合の可能性との関係を示すグラフ。The graph which shows the relationship between room temperature, outside temperature, and the temperature difference of room temperature and outside temperature, and the possibility of failure of a compressor. 暖房運転時における第1保護制御と第2保護制御を選択するためのマップ。The map for selecting the 1st protection control and the 2nd protection control at the time of heating operation. 冷房運転時における第1保護制御と第2保護制御を選択するためのマップ。The map for selecting the 1st protection control and the 2nd protection control at the time of air conditioning operation. 空調装置が実行する第1起動制御の処理手順を示すフローチャート。The flowchart which shows the process sequence of the 1st starting control which an air-conditioning system performs. 第2実施形態の空調装置における第2起動制御の処理手順を示すフローチャート。The flowchart which shows the process sequence of 2nd starting control in the air conditioner of 2nd Embodiment. 変形例の空調装置における圧縮機の吐出管の温度と外気温度との関係を示すマップ。The map which shows the relationship between the temperature of the discharge pipe of the compressor in the air conditioner of a modification, and open air temperature.
 (第1実施形態)
 以下、図面を参照して、空調装置1について説明する。
 図1に示すように、空調装置1は、冷媒回路40を備える。冷媒回路40は、室外機10と室内機20との間で冷媒を循環させる冷媒配管30を含む。本実施形態の空調装置1は、屋外に設置される室外機10と、屋内の壁面等に取り付けられる壁掛け型の室内機20とが冷媒配管30によって接続されることにより形成された冷媒回路40を備える。
First Embodiment
The air conditioner 1 will be described below with reference to the drawings.
As shown in FIG. 1, the air conditioner 1 includes a refrigerant circuit 40. The refrigerant circuit 40 includes a refrigerant pipe 30 that circulates the refrigerant between the outdoor unit 10 and the indoor unit 20. The air conditioner 1 of the present embodiment has a refrigerant circuit 40 formed by connecting an outdoor unit 10 installed outdoors and a wall mounted indoor unit 20 mounted on a wall surface etc. of the room by a refrigerant pipe 30. Prepare.
 室外機10は、運転周波数の変更が可能な圧縮機11、四路切換弁12、室外熱交換器13、膨張弁14、室外送風機15、室外制御装置16等を備える。室外送風機15は、駆動源として回転速度を変更可能なモータ15aと、モータ15aの出力軸に接続された羽根車15bとを有する。羽根車15bの一例はプロペラファンである。 The outdoor unit 10 includes a compressor 11 capable of changing the operating frequency, a four-way switching valve 12, an outdoor heat exchanger 13, an expansion valve 14, an outdoor blower 15, an outdoor control device 16, and the like. The outdoor blower 15 has a motor 15a capable of changing the rotational speed as a drive source, and an impeller 15b connected to the output shaft of the motor 15a. An example of the impeller 15b is a propeller fan.
 圧縮機11は、例えば揺動ピストン型の圧縮機であり、圧縮機構、モータ、モータの駆動力を圧縮機構に伝達するクランク軸(ともに図示略)等を備える。圧縮機11は、冷媒を気液分離するためのアキュームレータ11aを備える。モータの一例は、3相ブラシレスモータである。膨張弁14は、例えば電子膨張弁である。室外送風機15は、室外熱交換器13の伝熱管を流れる冷媒と室外空気との熱交換を促進させるため、モータ15aにより羽根車15bを回転させる。これにより、室外送風機15は、室外熱交換器13を通過する室外空気の気流を発生させる。室外制御装置16は、圧縮機11のモータ、四路切換弁12、膨張弁14、及び室外送風機15のモータ15aと電気的に接続されている。 The compressor 11 is, for example, a rocking piston type compressor, and includes a compression mechanism, a motor, a crankshaft (both not shown) for transmitting the driving force of the motor to the compression mechanism, and the like. The compressor 11 includes an accumulator 11 a for separating the refrigerant into gas and liquid. An example of the motor is a three-phase brushless motor. The expansion valve 14 is, for example, an electronic expansion valve. The outdoor fan 15 rotates the impeller 15b by the motor 15a in order to promote heat exchange between the refrigerant flowing through the heat transfer pipe of the outdoor heat exchanger 13 and the outdoor air. Thus, the outdoor fan 15 generates an air flow of the outdoor air passing through the outdoor heat exchanger 13. The outdoor control device 16 is electrically connected to the motor of the compressor 11, the four-way switching valve 12, the expansion valve 14, and the motor 15a of the outdoor blower 15.
 室内機20は、室内熱交換器21、室内送風機22、室内制御装置23等を備える。室内送風機22は、駆動源として回転速度を変更可能なモータ22aと、モータ22aの出力軸に接続された羽根車(図示略)とを有する。羽根車の一例は、横流ファンである。室内送風機22は、室内熱交換器21の伝熱管を流れる冷媒と室内空気との熱交換を促進するため、モータ22aにより羽根車を回転させる。これにより、室内送風機22は、室内熱交換器21を通過する室内空気の気流を発生させる。室内制御装置23は、室内送風機22のモータ22aと電気的に接続されている。室内制御装置23は、例えば空調装置1のリモートコントローラ51(図2参照)と赤外線等により無線通信が可能なように構成されている。室内制御装置23は、室外制御装置16と信号線により有線通信が可能なように構成されている。これにより、リモートコントローラ51による運転指示に基づいて室内制御装置23が室内機20を制御し、室外制御装置16が室外機10を制御する。 The indoor unit 20 includes an indoor heat exchanger 21, an indoor blower 22, an indoor control device 23, and the like. The indoor blower 22 has a motor 22a capable of changing the rotational speed as a drive source, and an impeller (not shown) connected to the output shaft of the motor 22a. An example of an impeller is a cross flow fan. The indoor blower 22 rotates the impeller with the motor 22a to promote heat exchange between the refrigerant flowing through the heat transfer pipe of the indoor heat exchanger 21 and the indoor air. Thereby, the indoor blower 22 generates an air flow of indoor air passing through the indoor heat exchanger 21. The indoor control device 23 is electrically connected to the motor 22 a of the indoor blower 22. The indoor control device 23 is configured to be capable of wireless communication with, for example, the remote controller 51 (see FIG. 2) of the air conditioner 1 by means of infrared rays or the like. The indoor control device 23 is configured to be able to perform wired communication with the outdoor control device 16 by a signal line. Thereby, the indoor control device 23 controls the indoor unit 20 based on the operation instruction from the remote controller 51, and the outdoor control device 16 controls the outdoor unit 10.
 冷媒回路40は、圧縮機11、四路切換弁12、室外熱交換器13、膨張弁14、及び室内熱交換器21を冷媒配管30によって環状に接続したものである。冷媒回路40は、四路切換弁12を切り換えることにより、冷媒を可逆的に循環させるようにした蒸気圧縮式冷凍サイクルを実行することができる。 The refrigerant circuit 40 is one in which the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the expansion valve 14, and the indoor heat exchanger 21 are annularly connected by a refrigerant pipe 30. The refrigerant circuit 40 can execute a vapor compression refrigeration cycle in which the refrigerant is reversibly circulated by switching the four-way switching valve 12.
 すなわち、四路切換弁12が冷房モード接続状態(図示実線の状態)に切り換えられることにより、冷媒回路40において、圧縮機11、四路切換弁12、室外熱交換器13、膨張弁14、室内熱交換器21、四路切換弁12、及び圧縮機11の順に冷媒が循環する冷房サイクルが形成される。これにより、空調装置1では、室外熱交換器13を凝縮器とし、室内熱交換器21を蒸発器として作用させる冷房運転が行われる。また、四路切換弁12が暖房モード接続状態(図示破線の状態)に切り換えられることにより、冷媒回路40において、圧縮機11、四路切換弁12、室内熱交換器21、膨張弁14、室外熱交換器13、四路切換弁12、及び圧縮機11の順に冷媒が循環する暖房サイクルが形成される。これにより、空調装置1では、室内熱交換器21を凝縮器とし、室外熱交換器13を蒸発器として作用させる暖房運転が行われる。 That is, by switching the four-way switching valve 12 to the cooling mode connection state (the state shown by the solid line in the drawing), in the refrigerant circuit 40, the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the expansion valve 14, the room A cooling cycle is formed in which the refrigerant circulates in the order of the heat exchanger 21, the four-way switching valve 12, and the compressor 11. Thereby, in the air conditioner 1, the outdoor heat exchanger 13 is used as a condenser, and the cooling operation is performed in which the indoor heat exchanger 21 functions as an evaporator. In the refrigerant circuit 40, the four-way switching valve 12 is switched to the heating mode connection state (state shown by the broken line), whereby the compressor 11, the four-way switching valve 12, the indoor heat exchanger 21, the expansion valve 14, and the outdoor A heating cycle in which the refrigerant circulates in the order of the heat exchanger 13, the four-way switching valve 12, and the compressor 11 is formed. Thereby, in the air conditioner 1, the heating operation is performed in which the indoor heat exchanger 21 functions as a condenser and the outdoor heat exchanger 13 functions as an evaporator.
 図2に示すように、空調装置1を制御する制御部50は、室外制御装置16及び室内制御装置23を含んで構成されている。室外制御装置16及び室内制御装置23のそれぞれは、例えば予め定められる制御プログラムを実行する演算処理装置及び記憶部を含む。演算処理装置は、例えばCPU(Central Processing Unit)またはMPU(Micro Processing Unit)を含む。記憶部には、各種の制御プログラムおよび各種の制御処理に用いられる情報が記憶される。記憶部は、例えば不揮発性メモリおよび揮発性メモリを含む。 As shown in FIG. 2, the control unit 50 that controls the air conditioner 1 includes an outdoor control device 16 and an indoor control device 23. Each of the outdoor control device 16 and the indoor control device 23 includes, for example, a processing unit that executes a predetermined control program and a storage unit. The arithmetic processing unit includes, for example, a central processing unit (CPU) or a micro processing unit (MPU). The storage unit stores various control programs and information used for various control processes. The storage unit includes, for example, non-volatile memory and volatile memory.
 制御部50には、リモートコントローラ51、室内温度センサ52、室外温度センサ53、及び吐出管温度センサ54が通信可能に接続されている。
 より詳細には、制御部50は、リモートコントローラ51(図3参照)と例えば赤外線等により無線通信が可能なように構成されている。すなわちリモートコントローラ51の運転指示(冷房運転、暖房運転等の指示)や運転停止指示の信号は制御部50に出力される。室内温度センサ52、室外温度センサ53、及び吐出管温度センサ54は、制御部50と電気的に接続されている。室内温度センサ52は、室内空気の温度(室内温度)を測定するためのセンサであり、例えば室内機20の吸い込み口付近に設けられている。室内温度センサ52は、室内温度に応じた信号を制御部50に出力する。室外温度センサ53は、室外空気の温度(室外温度)を測定するためのセンサであり、例えば室外機10の吸い込み口付近に設けられている。室外温度センサ53は、室外温度に応じた信号を制御部50に出力する。吐出管温度センサ54は、圧縮機11の吐出管の温度、すなわち圧縮機11から吐出された吐出ガス冷媒の温度を測定するためのセンサである。吐出管温度センサ54は、圧縮機11の吐出管に取り付けられている。吐出管温度センサ54は、圧縮機11の吐出ガス冷媒の温度に応じた信号を制御部50に出力する。このように、制御部50には、リモートコントローラ51、室内温度センサ52、室外温度センサ53、及び吐出管温度センサ54から各種の信号(運転指示や測定情報)が入力される。そして制御部50は、室内温度センサ52の測定情報に基づいて室内温度(以下、「室内温度DA」)を取得し、室外温度センサ53の測定情報に基づいて室外温度(以下、「外気温度DOA」)を取得し、吐出管温度センサ54の測定情報に基づいて圧縮機11の吐出管の温度DF(吐出ガス冷媒の温度)を取得する。
A remote controller 51, an indoor temperature sensor 52, an outdoor temperature sensor 53, and a discharge pipe temperature sensor 54 are communicably connected to the control unit 50.
More specifically, the control unit 50 is configured to be capable of wireless communication with the remote controller 51 (see FIG. 3), for example, with infrared rays. That is, signals of the operation instruction of the remote controller 51 (instructions of the cooling operation, the heating operation, etc.) and the operation stop instruction are output to the control unit 50. The indoor temperature sensor 52, the outdoor temperature sensor 53, and the discharge pipe temperature sensor 54 are electrically connected to the control unit 50. The indoor temperature sensor 52 is a sensor for measuring the temperature of the indoor air (indoor temperature), and is provided, for example, in the vicinity of the suction port of the indoor unit 20. The indoor temperature sensor 52 outputs a signal corresponding to the indoor temperature to the control unit 50. The outdoor temperature sensor 53 is a sensor for measuring the temperature of the outdoor air (outdoor temperature), and is provided, for example, near the suction port of the outdoor unit 10. The outdoor temperature sensor 53 outputs a signal corresponding to the outdoor temperature to the control unit 50. The discharge pipe temperature sensor 54 is a sensor for measuring the temperature of the discharge pipe of the compressor 11, that is, the temperature of the discharge gas refrigerant discharged from the compressor 11. The discharge pipe temperature sensor 54 is attached to the discharge pipe of the compressor 11. The discharge pipe temperature sensor 54 outputs a signal corresponding to the temperature of the discharge gas refrigerant of the compressor 11 to the control unit 50. As described above, various signals (driving instruction and measurement information) are input to the control unit 50 from the remote controller 51, the indoor temperature sensor 52, the outdoor temperature sensor 53, and the discharge pipe temperature sensor 54. Then, the control unit 50 acquires the indoor temperature (hereinafter, "indoor temperature DA") based on the measurement information of the indoor temperature sensor 52, and the outdoor temperature (hereinafter, "outside air temperature DOA" based on the measurement information of the outdoor temperature sensor 53. And the temperature DF (the temperature of the discharge gas refrigerant) of the discharge pipe of the compressor 11 based on the measurement information of the discharge pipe temperature sensor 54.
 また室内制御装置23と室外制御装置16とが電気的に接続されているため、室内制御装置23が受信した運転指示及び室内温度DAを室外制御装置16に出力することができる。また、室外制御装置16が受信した外気温度DOA及び圧縮機11の吐出管の温度DFを室内制御装置23に出力することができる。 Further, since the indoor control device 23 and the outdoor control device 16 are electrically connected, the operation instruction and the indoor temperature DA received by the indoor control device 23 can be output to the outdoor control device 16. Further, the outside air temperature DOA received by the outdoor control device 16 and the temperature DF of the discharge pipe of the compressor 11 can be output to the indoor control device 23.
 室内制御装置23は、リモートコントローラ51の運転指示や測定情報に基づいて室内送風機22のモータ22aの回転速度を制御する。
 室外制御装置16は、リモートコントローラ51の運転指示や測定情報に基づいて圧縮機11の運転周波数、四路切換弁12の冷房モード接続状態と暖房モード接続状態との切り換え、膨張弁14の開度、及び室外送風機15のモータ15aの回転速度を制御する。
The indoor control device 23 controls the rotational speed of the motor 22 a of the indoor blower 22 based on the operation instruction of the remote controller 51 and the measurement information.
The outdoor control device 16 switches the operating frequency of the compressor 11, switching between the cooling mode connection state and the heating mode connection state of the four-way switching valve 12, and the opening degree of the expansion valve 14 based on the operation instruction and measurement information of the remote controller 51. And the rotational speed of the motor 15a of the outdoor blower 15 is controlled.
 制御部50は、室内制御装置23及び室外制御装置16を通じて、リモートコントローラ51の運転指示及び測定情報に基づいて、冷房運転及び暖房運転を実行する。制御部50は、冷房運転及び暖房運転において、リモートコントローラ51によって設定された室内温度になるように、圧縮機11、膨張弁14、室外送風機15、及び室内送風機22を制御する。 The control unit 50 performs the cooling operation and the heating operation through the indoor control device 23 and the outdoor control device 16 based on the operation instruction of the remote controller 51 and the measurement information. The control unit 50 controls the compressor 11, the expansion valve 14, the outdoor blower 15, and the indoor blower 22 so that the indoor temperature becomes the temperature set by the remote controller 51 in the cooling operation and the heating operation.
 制御部50は、冷房運転及び暖房運転において、圧縮機11の運転周波数を上昇させるときの上昇速度、及び運転周波数を低下させるときの低下速度が互いに等しくなるように同上昇速度及び同低下速度を設定している。これら上昇速度及び低下速度といった冷房運転及び暖房運転における圧縮機11の運転周波数の変更速度の一例は、毎秒2Hzである。 The control unit 50 increases the rising speed and the decreasing speed so that the rising speed when raising the operating frequency of the compressor 11 and the decreasing speed when lowering the operating frequency become equal to each other in the cooling operation and the heating operation. It is set. One example of the change speed of the operating frequency of the compressor 11 in the cooling operation and the heating operation, such as the rising speed and the decreasing speed, is 2 Hz per second.
 また、制御部50は、冷房又は暖房運転の運転開始時における圧縮機11の起動時において、圧縮機11の低い運転周波数を、冷房又は暖房運転に必要な運転周波数(以下、「必要運転周波数FN」)に達するように上昇させる。この場合、制御部50は、圧縮機11の起動時において圧縮機保護制御を実行する。圧縮機保護制御において、圧縮機11の不具合を回避することを目的として、圧縮機11の運転周波数は、低い運転周波数で開始され、時間の経過とともに圧縮機11の安定運転に必要な必要運転周波数FNに達するまで段階的に上昇される。なお、圧縮機11の不具合としては、圧縮機11の起動時において圧縮機11の運転周波数を急峻に上げることによって、圧縮機11内の油面の低下や冷媒戻りに起因する希尺度進行が生じること、圧縮機11への液戻りが生じること、室外熱交換器13及び室内熱交換器21において蒸発器として機能する熱交換器の氷結が生じること、圧縮機11の吸入側が負圧になることが挙げられる。 In addition, at the start of the compressor 11 at the start of the cooling or heating operation, the control unit 50 sets the low operating frequency of the compressor 11 to the operating frequency required for the cooling or heating operation (hereinafter referred to as “required operating frequency FN Raise to reach '). In this case, the control unit 50 executes compressor protection control at startup of the compressor 11. In the compressor protection control, the operation frequency of the compressor 11 is started at a low operation frequency for the purpose of avoiding the failure of the compressor 11, and the necessary operation frequency necessary for stable operation of the compressor 11 with the passage of time. It is gradually raised until it reaches FN. In addition, as a malfunction of the compressor 11, when the operating frequency of the compressor 11 is sharply raised at the time of starting of the compressor 11, a reduction in oil level in the compressor 11 or rare scale progress due to refrigerant return occurs. That liquid return to the compressor 11 occurs, icing of the heat exchanger functioning as an evaporator in the outdoor heat exchanger 13 and the indoor heat exchanger 21 occurs, and the suction side of the compressor 11 becomes negative pressure Can be mentioned.
 図3の破線により示すグラフGXは、一般的な圧縮機保護制御を説明するための模式的なグラフである。
 図3のグラフGXに示すとおり、圧縮機保護制御では、圧縮機11の運転周波数が必要運転周波数FNに達するまでに複数段の目標周波数を所定時間に亘り維持するように変更される。詳述すると、制御部50は、圧縮機保護制御において、第1目標周波数FX1、第1目標周波数FX1よりも高い第2目標周波数FX2、第2目標周波数FX2よりも高い第3目標周波数FX3、及び第3目標周波数FX3よりも高い第4目標周波数FX4を記憶している。制御部50は、時刻t1において圧縮機11の運転周波数が第1目標周波数FX1となるように圧縮機11を駆動させ、時刻t1から時刻t3までの期間において圧縮機11の運転周波数が第1目標周波数FX1を維持するように圧縮機11を駆動させる。制御部50は、時刻t3において圧縮機11の運転周波数が第1目標周波数FX1から第2目標周波数FX2となるように圧縮機11を駆動させ、時刻t3から時刻t5までの期間において圧縮機11の運転周波数が第2目標周波数FX2を維持するように圧縮機11を駆動させる。制御部50は、時刻t5において圧縮機11の運転周波数が第2目標周波数FX2から第3目標周波数FX3となるように圧縮機11を駆動させ、時刻t5から時刻t6までの期間において圧縮機11の運転周波数が第3目標周波数FX3を維持するように圧縮機11を駆動させる。制御部50は、時刻t6において圧縮機11の運転周波数が第3目標周波数FX3から第4目標周波数FX4となるように圧縮機11を駆動させ、時刻t6から時刻t7までの期間において圧縮機11の運転周波数が第4目標周波数FX4を維持するように圧縮機11を駆動させる。制御部50は、時刻t7において圧縮機11の運転周波数が第4目標周波数FX4から必要運転周波数FNとなるように圧縮機を駆動させる。
A graph GX indicated by a broken line in FIG. 3 is a schematic graph for explaining general compressor protection control.
As shown in the graph GX of FIG. 3, in the compressor protection control, the target frequency of the plurality of stages is changed to be maintained for a predetermined time until the operating frequency of the compressor 11 reaches the required operating frequency FN. More specifically, in the compressor protection control, the controller 50 controls the first target frequency FX1, the second target frequency FX2 higher than the first target frequency FX1, the third target frequency FX3 higher than the second target frequency FX2, and A fourth target frequency FX4 higher than the third target frequency FX3 is stored. The control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 becomes the first target frequency FX1 at time t1, and the operating frequency of the compressor 11 is the first target in the period from time t1 to time t3. The compressor 11 is driven to maintain the frequency FX1. The control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the first target frequency FX1 to the second target frequency FX2 at time t3, and during the period from time t3 to time t5, The compressor 11 is driven such that the operating frequency maintains the second target frequency FX2. The control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the second target frequency FX2 to the third target frequency FX3 at time t5, and the controller 11 operates during the period from time t5 to time t6. The compressor 11 is driven so that the operating frequency maintains the third target frequency FX3. The control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the third target frequency FX3 to the fourth target frequency FX4 at time t6, and during the period from time t6 to time t7, The compressor 11 is driven such that the operating frequency maintains the fourth target frequency FX4. The control unit 50 drives the compressor so that the operating frequency of the compressor 11 changes from the fourth target frequency FX4 to the necessary operating frequency FN at time t7.
 なお、図3のグラフGXにおいて、第2目標周波数FX2と第1目標周波数FX1との差(FX2-FX1)と、第3目標周波数FX3と第2目標周波数FX2との差(FX3-FX2)と、第4目標周波数FX4と第3目標周波数FX3との差(FX4-FX3)とは互いに等しい。また、圧縮機11の運転周波数が第1目標周波数FX1を維持する第1期間TX1と、第2目標周波数FX2を維持する第2期間TX2と、第3目標周波数FX3を維持する第3期間TX3と、第4目標周波数FX4を維持する第4期間TX4とは互いに等しい。 In the graph GX of FIG. 3, a difference (FX2-FX1) between the second target frequency FX2 and the first target frequency FX1 and a difference (FX3-FX2) between the third target frequency FX3 and the second target frequency FX2 , And the difference (FX4-FX3) between the fourth target frequency FX4 and the third target frequency FX3 are equal to one another. In addition, the first period TX1 in which the operating frequency of the compressor 11 maintains the first target frequency FX1, the second period TX2 in which the second target frequency FX2 is maintained, and the third period TX3 in which the third target frequency FX3 is maintained. , And the fourth period TX4 maintaining the fourth target frequency FX4 are equal to one another.
 ところで、冷房又は暖房運転の運転開始時に圧縮機保護制御を実行する場合、圧縮機11の不具合を回避することができる一方、図3のグラフGXのように圧縮機11の運転周波数を徐々に上昇させるため、ユーザがリモートコントローラ51により冷房又は暖房運転を指示してから室内空気の温度が設定温度になるまでの時間が長くなってしまう。すなわち、冷房又は暖房運転の運転開始時における冷房又は暖房運転の立ち上げが困難であり、その結果、冷房又は暖房運転の運転開始時における冷房能力又は暖房能力が低下してしまう。 By the way, when the compressor protection control is performed at the start of the cooling or heating operation, the malfunction of the compressor 11 can be avoided, while the operating frequency of the compressor 11 is gradually increased as shown by the graph GX in FIG. Since the user instructs the remote control 51 to perform the cooling or heating operation, it takes a long time for the temperature of the room air to reach the set temperature. That is, startup of the cooling or heating operation at the start of the cooling or heating operation is difficult, and as a result, the cooling capacity or the heating capacity at the start of the cooling or heating operation decreases.
 一方、圧縮機11の周囲環境(室外空気の温度や室内空気の温度)によっては圧縮機11の不具合が発生する可能性が低い場合がある。圧縮機11の不具合が発生する可能性が低い場合でも、図3のグラフGXに示す圧縮機保護制御を実行すると、圧縮機11の不具合が発生し難いにもかかわらず、冷房能力又は暖房能力が低下する圧縮機11の運転を実行することになる。 On the other hand, depending on the surrounding environment of the compressor 11 (the temperature of the outdoor air or the temperature of the indoor air), the possibility that the malfunction of the compressor 11 may occur may be low. Even when the possibility of the occurrence of a failure of the compressor 11 is low, if the compressor protection control shown in the graph GX of FIG. 3 is executed, the cooling ability or the heating ability is low even though the failure of the compressor 11 hardly occurs. The operation of the compressor 11 which is decreasing will be performed.
 この点に鑑みて、本実施形態では、制御部50は、圧縮機11の不具合が発生する可能性が高いか低いかに基づいて、圧縮機保護制御の制御態様を変更する第1起動制御を実行する。具体的には、制御部50は、圧縮機11の不具合が発生する可能性が高い場合、図3のグラフGXに示すような圧縮機保護制御である第1保護制御を実行する。一方、制御部50は、圧縮機11の不具合が発生する可能性が低い場合、図3のグラフGXに示す圧縮機保護制御(第1保護制御)よりも圧縮機11の運転周波数を必要運転周波数FNに速やかに上昇させる第2保護制御を実行する。 In view of this point, in the present embodiment, the control unit 50 executes the first start control that changes the control mode of the compressor protection control based on whether the possibility of the occurrence of a failure of the compressor 11 is high or low. Do. Specifically, when there is a high possibility that a malfunction of the compressor 11 will occur, the control unit 50 executes a first protection control that is a compressor protection control as shown in the graph GX of FIG. 3. On the other hand, when there is a low possibility that a malfunction of the compressor 11 will occur, the control unit 50 needs the operating frequency of the compressor 11 more than the compressor protection control (first protection control) shown in the graph GX of FIG. Execute a second protection control that raises FN quickly.
 第2保護制御の詳細について説明する。
 第2保護制御は、第1目標周波数FA1及び第2目標周波数FA2を有する。すなわち、第2保護制御の目標周波数の数は、第1保護制御の目標周波数の数よりも少ない。第1目標周波数FA1は、第1保護制御の第1目標周波数FX1よりも大きい。本実施形態の第1目標周波数FA1は、グラフGXの第2目標周波数FX2と等しい。第2目標周波数FA2は、第1保護制御の第2目標周波数FX2よりも大きい。本実施形態の第2目標周波数FA2は、グラフGXの第4目標周波数FX4よりも大きく、かつ必要運転周波数FNよりも小さい。第1目標周波数FA1と、第2目標周波数FA2と第1目標周波数FA1との差(FA2-FA1)とは互いに等しい。第2目標周波数FA2と第1目標周波数FA1との差(FA2-FA1)は、必要運転周波数FNと第2目標周波数FA2との差(FN-FA2)よりも大きい。圧縮機11の運転周波数が第1目標周波数FA1を維持する第1期間TA1と、圧縮機11の運転周波数が第2目標周波数FA2を維持する第2期間TA2とは互いに等しい。
The details of the second protection control will be described.
The second protection control has a first target frequency FA1 and a second target frequency FA2. That is, the number of target frequencies of the second protection control is smaller than the number of target frequencies of the first protection control. The first target frequency FA1 is larger than the first target frequency FX1 of the first protection control. The first target frequency FA1 of the present embodiment is equal to the second target frequency FX2 of the graph GX. The second target frequency FA2 is larger than the second target frequency FX2 of the first protection control. The second target frequency FA2 of the present embodiment is larger than the fourth target frequency FX4 of the graph GX and smaller than the required operating frequency FN. The first target frequency FA1 and the difference (FA2-FA1) between the second target frequency FA2 and the first target frequency FA1 are equal to one another. The difference (FA2-FA1) between the second target frequency FA2 and the first target frequency FA1 is larger than the difference (FN-FA2) between the required operating frequency FN and the second target frequency FA2. The first period TA1 in which the operating frequency of the compressor 11 maintains the first target frequency FA1 and the second period TA2 in which the operating frequency of the compressor 11 maintains the second target frequency FA2 are equal to each other.
 制御部50は、第2保護制御において、圧縮機11の運転周波数を第1目標周波数FA1となるように制御した後、圧縮機11の運転周波数が所定時間に亘り第1目標周波数FA1を維持するように制御する。そして制御部50は、圧縮機11の運転周波数が第1目標周波数FA1から第2目標周波数FA2となるように制御し、圧縮機11の運転周波数が所定時間に亘り第2目標周波数FA2を維持するように制御した後、圧縮機11の運転周波数が第2目標周波数FA2から必要運転周波数FNになるように制御する。第2保護制御では、圧縮機11の運転周波数が第1目標周波数FA1を維持するように制御する第1期間TA1は、第1保護制御における圧縮機11の運転周波数が第1目標周波数FX1を維持するように制御する第1期間TX1よりも短い。また圧縮機11の運転周波数が第2目標周波数FA2を維持するように制御する第2期間TA2は、第1保護制御における圧縮機11の運転周波数が第2目標周波数FX2を維持するように制御する第2期間TX2よりも短い。 After controlling the operating frequency of the compressor 11 to be the first target frequency FA1 in the second protection control, the controller 50 maintains the first target frequency FA1 for a predetermined period of time. To control. Then, the control unit 50 controls the operating frequency of the compressor 11 from the first target frequency FA1 to the second target frequency FA2, and maintains the second target frequency FA2 for a predetermined time. After the control, the operating frequency of the compressor 11 is controlled from the second target frequency FA2 to the required operating frequency FN. In the second protection control, in the first period TA1 in which the operating frequency of the compressor 11 is controlled to maintain the first target frequency FA1, the operating frequency of the compressor 11 in the first protection control maintains the first target frequency FX1. To be controlled to be shorter than the first period TX1. Further, in the second period TA2 in which the operating frequency of the compressor 11 is controlled to maintain the second target frequency FA2, the operating frequency of the compressor 11 in the first protection control is controlled to maintain the second target frequency FX2. It is shorter than the second period TX2.
 図3のグラフGAは、第2保護制御による圧縮機11の運転周波数の推移を示している。グラフGAに示すとおり、制御部50は、時刻t1において圧縮機11の運転周波数が第1目標周波数FA1となるように圧縮機11を駆動させ、時刻t1から時刻t2までの期間(期間TA1)に亘り圧縮機11の運転周波数が第1目標周波数FA1を維持するように圧縮機11を駆動させる。そして制御部50は、時刻t2において圧縮機11の運転周波数が第1目標周波数FA1から第2目標周波数FA2となるように圧縮機11を駆動させ、時刻t2から時刻t4までの期間(期間TA2)に亘り圧縮機11の運転周波数が第2目標周波数FA2を維持するように圧縮機11を駆動させる。そして制御部50は、時刻t4において圧縮機11の運転周波数を第2目標周波数FA2から必要運転周波数FNとなるように圧縮機11を駆動させる。このように、第2保護制御において圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでの期間TA(時刻t1から時刻t4までの期間)が、第1保護制御において圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでの期間TX(時刻t1から時刻t8までの期間)よりも短くなる。 The graph GA of FIG. 3 shows the transition of the operating frequency of the compressor 11 by the second protection control. As shown in the graph GA, the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 becomes the first target frequency FA1 at time t1, and during a period from time t1 to time t2 (period TA1) The compressor 11 is driven so that the operating frequency of the compressor 11 maintains the first target frequency FA1. Then, the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the first target frequency FA1 to the second target frequency FA2 at time t2, and a period from time t2 to time t4 (period TA2) The compressor 11 is driven such that the operating frequency of the compressor 11 maintains the second target frequency FA2. Then, the control unit 50 drives the compressor 11 so that the operating frequency of the compressor 11 changes from the second target frequency FA2 to the necessary operating frequency FN at time t4. Thus, in the second protection control, the period TA (period from time t1 to time t4) from when the compressor 11 is started until the operating frequency of the compressor 11 reaches the required operating frequency FN is the first protection control. The period of time from when the compressor 11 starts up to when the operating frequency of the compressor 11 reaches the required operating frequency FN is shorter than the period TX (period from time t1 to time t8).
 次に、圧縮機11の不具合が発生する可能性について説明する。
 圧縮機11の不具合が発生する可能性は、室内空気の温度(室内温度)及び室外空気の温度(室外温度)を用いて推定することができる。より詳細には、圧縮機11の不具合が発生する可能性は、室内温度DA、外気温度DOA、及び室内温度DAと外気温度DOAとの温度差に基づいて推定することができる。本願発明者らが試験等を通じて、暖房運転の開始時における圧縮機11の不具合が発生する可能性が低い温度条件と、冷房運転の開始時における圧縮機11の不具合が発生する可能性が低い温度条件とを見出した。
Next, the possibility of the occurrence of a failure of the compressor 11 will be described.
The possibility that the malfunction of the compressor 11 occurs can be estimated using the temperature of the indoor air (indoor temperature) and the temperature of the outdoor air (outdoor temperature). More specifically, the possibility that the failure of the compressor 11 occurs can be estimated based on the indoor temperature DA, the outdoor air temperature DOA, and the temperature difference between the indoor temperature DA and the outdoor air temperature DOA. The temperature conditions in which the possibility of the malfunction of the compressor 11 at the start of the heating operation is low is low and the temperature at which the malfunction of the compressor 11 at the start of the cooling operation is low is low. I found the condition.
 ところで、暖房運転の開始時において、室内温度DAが高い場合には速やかに室内温度DAを上げる必要性が低い、すなわち暖房能力を高くする必要性が低い。また冷房運転の開始時において、室内温度DAが低い場合には速やかに室内温度DAを下げる必要性が低い、すなわち冷房能力を高くする必要性が低い。このように暖房能力又は冷房能力を高くする必要性が低い場合、圧縮機保護制御として第1保護制御を実行することにより、圧縮機11の不具合をより確実に回避することができる。 By the way, when the room temperature DA is high at the start of the heating operation, it is less necessary to increase the room temperature DA promptly, that is, it is less necessary to increase the heating capacity. In addition, when the room temperature DA is low at the start of the cooling operation, it is less necessary to lower the room temperature DA promptly, that is, it is less necessary to increase the cooling capacity. As described above, when it is not necessary to increase the heating capacity or the cooling capacity, by executing the first protection control as the compressor protection control, the failure of the compressor 11 can be more reliably avoided.
 図4は、本願発明者らが、室内温度DA、外気温度DOA、及び室内温度DAと外気温度DOAとの温度差を変更した場合における暖房運転の開始時における圧縮機保護制御の第2保護制御を実行したときに圧縮機11に不具合が発生するか否かを試験した結果の一例である。図4の縦軸は室内温度DAを示し、横軸は外気温度DOAを示している。この温度マップにおける斜線は室内温度DAと外気温度DOAとの温度差(DA-DOA)である内外温度差を示している。図4の温度マップにおける網掛け部分は、暖房運転の開始時における圧縮機11の不具合が発生する可能性が低く、暖房能力を高くする必要性が高い温度領域(以下、「温度領域RL」)の一例を示している。温度領域RLは、室内温度DAが20℃以下、外気温度DOAが0℃以上、内外温度差X5以下の条件で囲まれた温度領域である。内外温度差X5の一例は、10℃である。詳細には、外気温度DOAが0℃以上、かつ内外温度差が10℃以下であれば、暖房運転の開始時における圧縮機保護制御の第2保護制御を実行したときに圧縮機11に不具合が発生する可能性が低い。言い換えれば、外気温度DOAが0℃未満、又は内外温度差が10℃よりも大きい場合、暖房運転の開始時における圧縮機保護制御の第2保護制御を実行したときに圧縮機11に不具合が発生する可能性が高い。一方、室内温度DAが20℃よりも大きく、内外温度差が10℃以下の場合には、暖房運転の開始時における圧縮機保護制御の第2保護制御を実行したときに圧縮機11に不具合が発生する可能性が低いが、暖房能力を高くする必要がない。 FIG. 4 shows the second protection control of the compressor protection control at the start of the heating operation when the present inventors change the room temperature DA, the outside air temperature DOA, and the temperature difference between the room temperature DA and the outside air temperature DOA. It is an example of the result of having tested whether a failure generate | occur | produces in the compressor 11 when performing. The vertical axis in FIG. 4 indicates the room temperature DA, and the horizontal axis indicates the outside air temperature DOA. The diagonal lines in this temperature map indicate the temperature difference between inside and outside that is the temperature difference (DA-DOA) between the room temperature DA and the outside air temperature DOA. The shaded portion in the temperature map of FIG. 4 is a temperature region (hereinafter, “temperature region RL”) in which the possibility of occurrence of a failure of the compressor 11 at the start of the heating operation is low and the heating capability needs to be high. An example is shown. The temperature range RL is a temperature range surrounded by the room temperature DA of 20 ° C. or less, the outside air temperature DOA of 0 ° C. or more, and the inside / outside temperature difference X5 or less. An example of the inside and outside temperature difference X5 is 10 ° C. In detail, if the outside air temperature DOA is 0 ° C. or more and the temperature difference between the inside and outside is 10 ° C. or less, the second protection control of the compressor protection control at the start of the heating operation has a defect in the compressor 11 It is unlikely to occur. In other words, when the outside air temperature DOA is less than 0 ° C., or the temperature difference between inside and outside is more than 10 ° C., a problem occurs in the compressor 11 when the second protection control of the compressor protection control at the start of the heating operation is performed. There is a high possibility of doing. On the other hand, when the room temperature DA is greater than 20 ° C. and the temperature difference between the inside and the outside is 10 ° C. or less, the second protection control of the compressor protection control at the start of the heating operation is defective. It is unlikely to occur, but there is no need to increase heating capacity.
 また、本願発明者らは、図示はしないが、冷房運転についても暖房運転と同様に、室内温度DA、外気温度DOA、及び室内温度DAと外気温度DOAとの温度差を変更した場合における冷房運転の開始時における圧縮機保護制御の第2保護制御を実行したときに圧縮機11に不具合が発生するか否かを試験した。このような試験に基づいて、冷房又は暖房運転の開始時における圧縮機11の不具合が発生する可能性が低く、冷房又は暖房能力を高くする必要性が高い温度条件は以下のとおりである。このような冷房又は暖房運転における温度条件は、例えば図5における暖房運転におけるマップMP1及び図6における冷房運転におけるマップMP2として制御部50に記憶されている。 Also, although not shown, the inventors of the present invention have a cooling operation in the case of changing the room temperature DA, the outside air temperature DOA, and the temperature difference between the room temperature DA and the outside air temperature DOA as in the heating operation. It was tested whether or not a failure occurred in the compressor 11 when the second protection control of the compressor protection control was performed at the start of the test. Based on such a test, there is a low possibility that a malfunction of the compressor 11 will occur at the start of the cooling or heating operation, and the temperature conditions for which the necessity for increasing the cooling or heating capability is high are as follows. Such temperature conditions in the cooling or heating operation are stored in the control unit 50 as, for example, the map MP1 in the heating operation in FIG. 5 and the map MP2 in the cooling operation in FIG.
 〔暖房運転〕(a1)室内温度DAが第1判定温度(室温閾値)DAX1以下であること(DA≦DAX1)。(a2)外気温度DOAが第1温度範囲内であること(DOAL1≦DOA≦DOAH1)。なお、DOAL1は第1温度範囲の下限値を示し、DOAH1は第1温度範囲の上限値を示す。(a3)室内温度DAと外気温度DOAとの温度差が第1判定温度差(温度差閾値)DDX1以下であること(DA-DOA≦DDX)。 [Heating operation] (a1) The indoor temperature DA is equal to or lower than the first judgment temperature (room temperature threshold) DAX1 (DA ≦ DAX1). (A2) The outside air temperature DOA is within the first temperature range (DOAL1 ≦ DOA ≦ DOAH1). Note that DOAL1 indicates the lower limit value of the first temperature range, and DOAH1 indicates the upper limit value of the first temperature range. (A3) The temperature difference between the room temperature DA and the outside air temperature DOA is equal to or less than the first judgment temperature difference (temperature difference threshold) DDX1 (DA-DOA ≦ DDX).
 ここで、第1判定温度DAX1は、暖房能力を高くする必要があるか否かを判定する室内温度の判定値である。第1判定温度DAX1の一例は、13℃である。第1温度範囲の下限値DOAL1は、暖房運転の運転開始時における圧縮機11の不具合の発生の可能性が低いか否かを判定する外気温度の判定値である。下限値DOAL1の一例は、0℃である。第1温度範囲の上限値DOAH1は、暖房能力を高くする必要があるか否かを判定する外気温度の判定値である。上限値DOAH1の一例は、24℃である。第1判定温度差DDX1は、暖房運転の運転開始時における圧縮機11の不具合の発生の可能性が低いか否かを判定する内外温度差の判定値である。第1判定温度差DDX1の一例は、10℃である。 Here, the first determination temperature DAX1 is a determination value of the indoor temperature that determines whether it is necessary to increase the heating capacity. An example of the first determination temperature DAX1 is 13 ° C. The lower limit value DOAL1 of the first temperature range is a determination value of the outside air temperature that determines whether the possibility of the occurrence of a failure of the compressor 11 at the start of the heating operation is low. One example of the lower limit value DOAL1 is 0 ° C. The upper limit value DOAH1 of the first temperature range is a determination value of the outside air temperature that determines whether it is necessary to increase the heating capacity. An example of the upper limit value DOAH1 is 24 ° C. The first determination temperature difference DDX1 is a determination value of the inside / outside temperature difference which determines whether the possibility of the occurrence of the failure of the compressor 11 at the start of the heating operation is low. An example of the first judgment temperature difference DDX1 is 10 ° C.
 〔冷房運転〕(b1)室内温度DAが第2判定温度(室温閾値)DAX2以上であること(DA≧DAX2)。(b2)外気温度DOAが第2温度範囲内であること(DOAL2≦DOA≦DOAH2)。なお、DOAL2は第2温度範囲の下限値を示し、DOAH2は第2温度範囲の上限値を示す。(b3)室内温度DAと外気温度DOAとの温度差が第2判定温度差(温度差閾値)DDX2以下であること(DA-DOA≦DDX2)。 [Cooling operation] (b1) The indoor temperature DA is equal to or higher than the second judgment temperature (room temperature threshold) DAX2 (DA ≧ DAX2). (B2) The outside air temperature DOA is within the second temperature range (DOAL2 ≦ DOA ≦ DOAH2). Note that DOAL2 indicates the lower limit value of the second temperature range, and DOAH2 indicates the upper limit value of the second temperature range. (B3) The temperature difference between the indoor temperature DA and the outside air temperature DOA is less than or equal to the second judgment temperature difference (temperature difference threshold) DDX2 (DA-DOA ≦ DDX2).
 ここで、第2判定温度DAX2は、冷房能力を高くする必要があるか否かを判定する室内温度の判定値である。第2判定温度DAX2の一例は、25℃である。第2温度範囲の下限値DOAL2は、冷房能力を高くする必要があるか否かを判定する外気温度の判定値である。下限値DOAL2の一例は、25℃である。第2温度範囲の上限値DOAH2は、冷房運転の運転開始時における圧縮機11の不具合の発生の可能性が低いか否かを判定する外気温度の判定値である。上限値DOAH2の一例は、45℃である。第2判定温度差DDX2は、冷房運転の運転開始時における圧縮機11の不具合の発生の可能性が低いか否かを判定する内外温度差の判定値である。第2判定温度差DDX2の一例は、-10℃である。 Here, the second determination temperature DAX2 is a determination value of the indoor temperature that determines whether the cooling capacity needs to be increased. An example of the second determination temperature DAX2 is 25.degree. The lower limit value DOAL2 of the second temperature range is a determination value of the outside air temperature that determines whether the cooling capacity needs to be increased. One example of the lower limit value DOAL2 is 25 ° C. The upper limit value DOAH2 of the second temperature range is a determination value of the outside air temperature that determines whether the possibility of the occurrence of a failure of the compressor 11 at the start of the cooling operation is low. An example of the upper limit value DOAH2 is 45 ° C. The second determination temperature difference DDX2 is a determination value of the inside / outside temperature difference which determines whether the possibility of the occurrence of the failure of the compressor 11 at the start of the cooling operation is low. An example of the second judgment temperature difference DDX2 is -10.degree.
 制御部50は、暖房運転の温度条件a1,a2,a3に基づいて、暖房運転の開始時における第1保護制御及び第2保護制御を選択するためにマップMP1を用いる。制御部50は、冷房運転の温度条件b1,b2,b3に基づいて、冷房運転の開始時における第1保護制御及び第2保護制御を選択するためにマップMP2を用いる。 The control unit 50 uses the map MP1 to select the first protection control and the second protection control at the start of the heating operation based on the temperature conditions a1, a2 and a3 of the heating operation. The control unit 50 uses the map MP2 to select the first protection control and the second protection control at the start of the cooling operation based on the temperature conditions b1, b2, b3 of the cooling operation.
 マップMP1の縦軸は室内温度DAを示し、横軸は外気温度DOAを示す。またマップMP1において傾斜した線は、内外温度差の境界条件を示している。マップMP1において、温度条件a1,a2,a3の全てを満たす温度領域R1を網掛けにより示している。すなわち、温度領域R1が第2保護制御を選択する領域であり、温度領域R1以外の領域が第1保護制御を選択する領域である。 The vertical axis of the map MP1 indicates the room temperature DA, and the horizontal axis indicates the outside air temperature DOA. The inclined line in the map MP1 indicates the boundary condition of the temperature difference between inside and outside. In the map MP1, the temperature region R1 satisfying all the temperature conditions a1, a2, and a3 is indicated by hatching. That is, the temperature area R1 is an area for selecting the second protection control, and the area other than the temperature area R1 is an area for selecting the first protection control.
 なお、マップMP1の温度領域R1は、図4の温度領域RLと同じ領域であってもよい。すなわち暖房運転の温度条件a1,a2,a3における第1判定温度DAX1を20℃とし、第1温度範囲の下限値DOAL1を0℃とし、上限値DOAH1を30℃とし、第1判定温度差DDX1を10℃としてもよい。 Note that the temperature region R1 of the map MP1 may be the same as the temperature region RL of FIG. 4. That is, the first determination temperature DAX1 at temperature conditions a1, a2 and a3 of the heating operation is 20 ° C., the lower limit DOAL1 of the first temperature range is 0 ° C., the upper limit DOAH1 is 30 ° C., and the first determination temperature difference DDX1 is It may be 10 ° C.
 マップMP2の縦軸は室内温度DAを示し、横軸は外気温度DOAを示す。またマップMP2において傾斜した線は、内外温度差の境界条件を示している。マップMP2において、温度条件b1,b2,b3の全てを満たす温度領域R2を網掛けにより示している。すなわち、温度領域R2が第2保護制御を選択する領域であり、温度領域R2以外の領域が第1保護制御を選択する領域である。 The vertical axis of the map MP2 indicates the room temperature DA, and the horizontal axis indicates the outside air temperature DOA. The inclined line in the map MP2 indicates the boundary condition of the temperature difference between inside and outside. In the map MP2, the temperature region R2 satisfying all the temperature conditions b1, b2, b3 is shown by hatching. That is, the temperature area R2 is an area for selecting the second protection control, and the area other than the temperature area R2 is an area for selecting the first protection control.
 制御部50は、第1起動制御において、暖房運転の開始時にマップMP1を用いて第1保護制御及び第2保護制御の一方を選択し、冷房運転の開始時にマップMP2を用いて第1保護制御及び第2保護制御の一方を選択する。 In the first activation control, the control unit 50 selects one of the first protection control and the second protection control using the map MP1 at the start of the heating operation, and uses the map MP2 at the start of the cooling operation. And one of the second protection control.
 図7を用いて、第1起動制御の処理手順について説明する。
 制御部50は、ステップS11において暖房運転が指示されたか否かを判定する。ステップS11の判定は、例えばリモートコントローラ51からの暖房運転の指令を制御部50が受信したか否かに基づいて行われる。制御部50は、ステップS11において暖房運転が指令されたと判定した場合(ステップS11:YES)、ステップS12においてマップMP1を選択する。そして制御部50は、ステップS13において室内温度DA及び外気温度DOAにより規定される座標がマップMP1における温度領域R1の範囲内か否かを判定する。制御部50は、室内温度DA及び外気温度DOAにより規定される座標が温度領域R1の範囲内と判定した場合(ステップS13:YES)、すなわち温度条件a1~a3の全てを満たしたと判定した場合、ステップS14において第2保護制御を選択する。一方、制御部50は、室内温度DA及び外気温度DOAにより規定される座標が温度領域R1の範囲外と判定した場合(ステップS13:NO)、すなわち温度条件a1~a3の少なくとも1つを満たしていないと判定した場合、ステップS15において第1保護制御を選択する。
The processing procedure of the first activation control will be described with reference to FIG.
Control unit 50 determines whether a heating operation has been instructed in step S11. The determination in step S11 is performed based on, for example, whether or not the control unit 50 has received a heating operation command from the remote controller 51. When it is determined that the heating operation is instructed in step S11 (step S11: YES), the control unit 50 selects the map MP1 in step S12. Then, in step S13, the control unit 50 determines whether the coordinates defined by the room temperature DA and the outside air temperature DOA are within the range of the temperature range R1 in the map MP1. If the controller 50 determines that the coordinates defined by the room temperature DA and the outside air temperature DOA fall within the range of the temperature range R1 (step S13: YES), that is, if all the temperature conditions a1 to a3 are satisfied, In step S14, the second protection control is selected. On the other hand, when the controller 50 determines that the coordinates defined by the room temperature DA and the outside air temperature DOA are out of the range of the temperature range R1 (step S13: NO), that is, at least one of the temperature conditions a1 to a3 is satisfied. If it is determined that there is not, the first protection control is selected in step S15.
 また制御部50は、ステップS11において暖房運転が指令されていないと判定した場合(ステップS11:NO)、ステップS16において冷房運転が指令されたか否かを判定する。ステップS16の判定は、例えばリモートコントローラ51からの冷房運転の指令を制御部50が受信したか否かに基づいて行われる。制御部50は、ステップS16において冷房運転が指令されたと判定した場合(ステップS16:YES)、ステップS17においてマップMP2を選択する。そして制御部50は、ステップS18において室内温度DA及び外気温度DOAにより規定される座標がマップMP2における温度領域R2の範囲内か否かを判定する。制御部50は、室内温度DA及び外気温度DOAにより規定される座標が温度領域R2の範囲内と判定した場合(ステップS18:YES)、すなわち温度条件b1~b3の全てを満たしたと判定した場合、ステップS14に移行する。すなわち制御部50は、第2保護制御を選択する。一方、制御部50は、室内温度DA及び外気温度DOAにより規定される座標が温度領域R2の範囲外と判定した場合(ステップS18:NO)、すなわち温度条件b1~b3の少なくとも1つを満たしていないと判定した場合、ステップS19において第1保護制御を選択する。 When it is determined in step S11 that the heating operation is not instructed (step S11: NO), the control unit 50 determines whether the cooling operation is instructed in step S16. The determination in step S16 is performed based on, for example, whether or not the control unit 50 has received a cooling operation command from the remote controller 51. When it is determined that the cooling operation is instructed in step S16 (step S16: YES), the control unit 50 selects the map MP2 in step S17. Then, in step S18, the control unit 50 determines whether the coordinates defined by the room temperature DA and the outside air temperature DOA are within the range of the temperature region R2 in the map MP2. If the controller 50 determines that the coordinates defined by the room temperature DA and the outside air temperature DOA fall within the range of the temperature range R2 (step S18: YES), that is, if it determines that all the temperature conditions b1 to b3 are satisfied, It transfers to step S14. That is, the control unit 50 selects the second protection control. On the other hand, when the controller 50 determines that the coordinates defined by the room temperature DA and the outside air temperature DOA are out of the range of the temperature range R2 (step S18: NO), that is, at least one of the temperature conditions b1 to b3 is satisfied. If it is determined that there is not, the first protection control is selected in step S19.
 なお、制御部50は、ステップS16において冷房運転が指令されていないと判定した場合、第1起動制御を終了する。この場合、暖房運転及び冷房運転以外の運転として例えば除湿運転が挙げられる。 When it is determined at step S16 that the cooling operation is not instructed, the control unit 50 ends the first start control. In this case, the dehumidifying operation may be mentioned as an operation other than the heating operation and the cooling operation.
 本実施形態によれば、以下の有利な効果が得られる。
 (1-1)制御部50は、冷房又は暖房運転時においてマップMP1又はマップMP2を用いて第1保護制御及び第2保護制御のいずれかを実行する。第2保護制御における圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間は、第1保護制御においける圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間よりも短い。この構成によれば、第2保護制御を実行することにより、圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間が短くなる。これにより、冷房又は暖房運転の立ち上げを速くすることができる。その結果、冷房又は暖房運転を開始してから室内温度DAが設定温度に達するまでの時間が短くすることができるため、暖房能力又は冷房能力を高めることができる。
According to the present embodiment, the following advantageous effects can be obtained.
(1-1) The control unit 50 executes either the first protection control or the second protection control using the map MP1 or the map MP2 during the cooling or heating operation. In the time period from the start of the compressor 11 in the second protection control to the time the operating frequency of the compressor 11 reaches the required operating frequency FN, the compressor 11 in the first protection control starts after the start of the compressor 11. The time required for the operating frequency to reach the required operating frequency FN is shorter. According to this configuration, by executing the second protection control, the time from when the compressor 11 is started to when the operating frequency of the compressor 11 reaches the required operating frequency FN is shortened. Thereby, the startup of the cooling or heating operation can be made faster. As a result, since the time from when the cooling or heating operation is started to when the indoor temperature DA reaches the set temperature can be shortened, the heating capacity or the cooling capacity can be enhanced.
 (1-2)第2保護制御における第1目標周波数FA1は、第1保護制御における第1目標周波数FX1よりも大きく、第2保護制御における第2目標周波数FA2は、第1保護制御における第2目標周波数FX2よりも大きい。この構成によれば、第2保護制御において圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでに設定される目標周波数の数が第1保護制御において圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでに設定される目標周波数の数よりも少なくなる。したがって、第2保護制御によって圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間が短くなるため、冷房又は暖房運転の立ち上げを速くすることができる。 (1-2) The first target frequency FA1 in the second protection control is larger than the first target frequency FX1 in the first protection control, and the second target frequency FA2 in the second protection control is the second in the first protection control. Greater than the target frequency FX2. According to this configuration, in the second protection control, the number of target frequencies set until the operating frequency of the compressor 11 reaches the required operating frequency FN after the start of the compressor 11 is the compressor 11 in the first protection control. The operating frequency of the compressor 11 becomes smaller than the number of target frequencies set until the required operating frequency FN is reached after the start of the engine. Therefore, since the time until the operating frequency of the compressor 11 reaches the required operating frequency FN after the compressor 11 is started by the second protection control becomes short, the startup of the cooling or heating operation can be made faster.
 (1-3)第2保護制御における圧縮機11の運転周波数が第1目標周波数FA1を維持するように制御する第1期間TA1は、第1保護制御における圧縮機11の運転周波数が第1目標周波数FX1を維持するように制御する第1期間TX1よりも短い。第2保護制御における圧縮機11の運転周波数が第2目標周波数FA2を維持するように制御する第2期間TA2は、第1保護制御における圧縮機11の運転周波数が第2目標周波数FX2を維持するように制御する第2期間TX2よりも短い。この構成によれば、第2保護制御において圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでに設定される目標周波数の数が第1保護制御において圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでに設定される目標周波数の数よりも少なくなる。したがって、第2保護制御によって圧縮機11が起動してから圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間が短くなるため、冷房又は暖房運転の立ち上げを速くすることができる。 (1-3) In the first period TA1 in which the operating frequency of the compressor 11 in the second protection control is maintained to maintain the first target frequency FA1, the operating frequency of the compressor 11 in the first protection control is the first target It is shorter than the first period TX1 controlled to maintain the frequency FX1. In a second period TA2 in which the operating frequency of the compressor 11 in the second protection control is maintained to maintain the second target frequency FA2, the operating frequency of the compressor 11 in the first protection control maintains the second target frequency FX2 The second control period is shorter than the second period TX2. According to this configuration, in the second protection control, the number of target frequencies set until the operating frequency of the compressor 11 reaches the required operating frequency FN after the start of the compressor 11 is the compressor 11 in the first protection control. The operating frequency of the compressor 11 becomes smaller than the number of target frequencies set until the required operating frequency FN is reached after the start of the engine. Therefore, since the time until the operating frequency of the compressor 11 reaches the required operating frequency FN after the compressor 11 is started by the second protection control becomes short, the startup of the cooling or heating operation can be made faster.
 (1-4)制御部50は、冷房運転時においてマップMP1を用いて第1保護制御及び第2保護制御の一方を選択し、暖房運転時においてマップMP2を用いて第1保護制御及び第2保護制御の一方を選択する。このように、冷房運転時における第2保護制御を実行する条件と、暖房運転時における第2保護制御を実行する条件とが互いに異なる。すなわち、これらの条件が冷房運転時及び暖房運転時において個別に設定される。このため、制御部50は、冷房運転時又は暖房運転時において第2保護制御を適切に実行することができる。 (1-4) The control unit 50 selects one of the first protection control and the second protection control using the map MP1 during the cooling operation, and uses the map MP2 during the heating operation to perform the first protection control and the second protection control. Select one of the protection controls. As described above, the condition for executing the second protection control during the cooling operation and the condition for executing the second protection control during the heating operation are different from each other. That is, these conditions are individually set during the cooling operation and the heating operation. Therefore, the control unit 50 can appropriately execute the second protection control during the cooling operation or the heating operation.
 (1-5)マップMP1及びマップMP2における第2保護制御を実行するための条件は、室内温度DA、外気温度DOA、及び内外温度差によって決められる。このように、空調装置1に標準的に備えられている室内温度センサ52及び室外温度センサ53を用いて、第2保護制御を実行するための条件が設定される。したがって、空調装置1の情報として取得し易い室内温度DA及び外気温度DOAを用いるため、第2保護制御を実行するための条件の設定のために専用のセンサを備える必要がない。そのため、空調装置1のコストの増加を抑制することができる。 (1-5) The conditions for executing the second protection control in the maps MP1 and MP2 are determined by the room temperature DA, the outside air temperature DOA, and the temperature difference between inside and outside. As described above, the conditions for executing the second protection control are set using the indoor temperature sensor 52 and the outdoor temperature sensor 53 provided in the air conditioner 1 as a standard. Therefore, since the indoor temperature DA and the outside air temperature DOA which are easily obtained as information of the air conditioner 1 are used, it is not necessary to provide a dedicated sensor for setting the conditions for executing the second protection control. Therefore, the increase in the cost of the air conditioner 1 can be suppressed.
 (第2実施形態)
 図1及び図8を参照して、第2実施形態の空調装置1について説明する。本実施形態の空調装置1は、第1実施形態の空調装置1と比較して、第1起動制御の内容が異なる。なお、以下の説明において、空調装置1の構成要素は図1の空調装置1の構成要素を示す。
Second Embodiment
An air conditioner 1 of a second embodiment will be described with reference to FIGS. 1 and 8. The air conditioner 1 of the present embodiment differs from the air conditioner 1 of the first embodiment in the content of the first activation control. In the following description, the components of the air conditioner 1 indicate the components of the air conditioner 1 of FIG. 1.
 空調装置1の運転が停止している場合、室内空気の温度及び室外空気の温度のうちの温度の低いほうに冷媒が凝縮して溜まり込む場合がある。室内空気の温度よりも室外空気の温度が低い場合、圧縮機11内の潤滑油中に液冷媒が溶解して溜まり込んだり、室外熱交換器13に液冷媒が溜まり込んだりする、所謂寝込み現象が生じる。この寝込み現象が発生した状態で暖房運転によって圧縮機11を起動させる場合、圧縮機11の運転周波数の上昇速度を速めると圧縮機11にオイルフォーミングが発生し易くなり、圧縮機11の故障の原因となる。また寝込み現象が発生した状態で冷房運転によって圧縮機11を起動させる場合も暖房運転時と同様に圧縮機11の運転周波数の上昇速度を速めると圧縮機11にオイルフォーミングが発生し易くなる。 When the operation of the air conditioner 1 is stopped, the refrigerant may be condensed and accumulated in the lower one of the temperature of the indoor air and the temperature of the outdoor air. When the temperature of outdoor air is lower than the temperature of indoor air, the liquid refrigerant dissolves and accumulates in the lubricating oil in the compressor 11, or the liquid refrigerant accumulates in the outdoor heat exchanger 13, a so-called stagnation phenomenon Will occur. In the case where the compressor 11 is started by the heating operation in a state where this stagnation phenomenon occurs, if the rate of increase of the operating frequency of the compressor 11 is increased, oil forming is easily generated in the compressor 11, and the cause of the failure of the compressor 11 It becomes. Also, when the compressor 11 is started by the cooling operation in the state where the stagnation phenomenon occurs, oil forming is easily generated in the compressor 11 if the speed of increase of the operating frequency of the compressor 11 is increased as in the heating operation.
 そこで、制御部50は、寝込み現象に起因して冷房又は暖房運転の開始時に圧縮機11が故障することを回避するため、冷媒排出起動運転を実行する。暖房運転の開始時における冷媒排出起動運転において、制御部50は、暖房運転の運転開始に伴う圧縮機11の起動時において四路切換弁12を所定時間(例えば1分間)に亘り逆サイクル(冷房モード接続状態)に切り換えた状態で圧縮機11を運転させる。これにより、室外熱交換器13に溜まり込んだ液冷媒を室内熱交換器21に流通させる。室内熱交換器21の液冷媒は、冷媒排出起動運転時に室内熱交換器21によって蒸発してガス冷媒となり、圧縮機11に吸い込まれる。これにより、圧縮機11のオイルフォーミングの発生を抑制できる。また冷房運転の開始時における冷媒排出起動運転において、制御部50は、冷房運転の運転開始に伴う圧縮機11の起動時における四路切換弁12を所定時間(例えば1分間)に亘り逆サイクル(暖房モード接続状態)に切り換えた状態で圧縮機11を運転させる。これにより、室内熱交換器21に溜まり込んだ液冷媒を室外熱交換器13に流通させる。室外熱交換器13の液冷媒は、冷媒排出起動運転時に室外熱交換器13によって蒸発してガス冷媒となり、圧縮機11に吸い込まれる。これにより、圧縮機11のオイルフォーミングの発生を抑制できる。このように、冷房又は暖房運転の開始時に冷媒排出起動運転が実行されると、圧縮機11の不具合が発生する可能性が低くなる。 Therefore, the control unit 50 executes the refrigerant discharge start operation in order to prevent the failure of the compressor 11 at the start of the cooling or heating operation due to the sleeping phenomenon. In the refrigerant discharge start operation at the start of the heating operation, the control unit 50 reverse cycles the four-way switching valve 12 for a predetermined time (for example, one minute) at the start of the compressor 11 at the start of the heating operation. The compressor 11 is operated while switching to the mode connection state). Thereby, the liquid refrigerant accumulated in the outdoor heat exchanger 13 is caused to flow through the indoor heat exchanger 21. The liquid refrigerant in the indoor heat exchanger 21 is vaporized by the indoor heat exchanger 21 at the time of refrigerant discharge start operation to be a gas refrigerant, and is sucked into the compressor 11. Thereby, the occurrence of oil forming of the compressor 11 can be suppressed. Further, in the refrigerant discharge start operation at the start of the cooling operation, the control unit 50 reverse cycles the four-way switching valve 12 at the start of the compressor 11 at the start of the cooling operation for a predetermined time (for example, one minute) The compressor 11 is operated in the state switched to the heating mode connection state). Thereby, the liquid refrigerant accumulated in the indoor heat exchanger 21 is allowed to flow through the outdoor heat exchanger 13. The liquid refrigerant in the outdoor heat exchanger 13 is evaporated by the outdoor heat exchanger 13 at the time of refrigerant discharge start operation to be a gas refrigerant and sucked into the compressor 11. Thereby, the occurrence of oil forming of the compressor 11 can be suppressed. As described above, when the refrigerant discharge start operation is performed at the start of the cooling or heating operation, the possibility that the malfunction of the compressor 11 occurs is reduced.
 この点に鑑みて、本実施形態では、制御部50は、冷媒排出起動運転が行われた場合、冷媒排出起動運転後に第2保護制御を選択する第2起動制御を実行する。その第2起動制御の処理手順について図8を用いて説明する。 In view of this point, in the present embodiment, when the refrigerant discharge start operation is performed, the control unit 50 executes the second start control of selecting the second protection control after the refrigerant discharge start operation. The processing procedure of the second activation control will be described with reference to FIG.
 制御部50は、ステップS21において冷媒排出起動運転が実行されたか否かを判定する。制御部50は、ステップS21において冷媒排出起動運転が実行されたと判定した場合(ステップS21:YES)、ステップS22において冷媒排出起動運転が修了したか否かを判定する。制御部50は、ステップS22において冷媒排出起動運転が終了したと判定した場合(ステップS22:YES)、ステップS23において第2保護制御を選択する。一方、制御部50は、ステップS22において冷媒排出起動運転が終了していないと判定した場合(ステップS22:NO)、再びステップS22の判定に移行する。 Control unit 50 determines whether or not the refrigerant discharge start operation has been performed in step S21. If the control unit 50 determines that the refrigerant discharge start operation has been performed in step S21 (step S21: YES), the control unit 50 determines whether the refrigerant discharge start operation has been completed in step S22. When it is determined in step S22 that the refrigerant discharge start operation has ended (step S22: YES), the control unit 50 selects the second protection control in step S23. On the other hand, when the control unit 50 determines that the refrigerant discharge start operation has not ended in step S22 (step S22: NO), the control unit 50 shifts to the determination of step S22 again.
 一方、制御部50は、ステップS21において冷媒排出起動運転が実行されていないと判定した場合(ステップS21:NO)、ステップS24において第1起動制御に移行する。そして制御部50は、第1起動制御に基づいて第1保護制御及び第2保護制御の一方を選択する。 On the other hand, when the control unit 50 determines that the refrigerant discharge start operation is not performed in step S21 (step S21: NO), the control unit 50 shifts to the first start control in step S24. Then, the control unit 50 selects one of the first protection control and the second protection control based on the first activation control.
 本実施形態によれば、以下の有利な効果が得られる。
 (2-1)制御部50は、冷媒排出起動運転を実行した場合、第2保護制御を実行する。冷媒排出起動運転終了後では、圧縮機11の不具合が発生する可能性が低くなる。このため、冷媒排出起動運転後に第2保護制御を実行することにより、冷媒排出起動運転後、速やかに圧縮機11の運転周波数を必要運転周波数FNに達することができる。したがって、冷房又は暖房運転の立ち上げを速くすることができる。
According to the present embodiment, the following advantageous effects can be obtained.
(2-1) When the control unit 50 executes the refrigerant discharge start operation, the control unit 50 executes the second protection control. After the completion of the refrigerant discharge start operation, the possibility of the occurrence of a failure of the compressor 11 is reduced. Therefore, by executing the second protection control after the refrigerant discharge start operation, the operating frequency of the compressor 11 can be quickly reached to the required operation frequency FN after the refrigerant discharge start operation. Therefore, the startup of the cooling or heating operation can be made faster.
 (変形例)
 上記各実施形態に関する説明は、本開示に従う空調装置が取り得る形態の例示であり、その形態を制限することを意図していない。本開示に従う空調装置は、上記各実施形態以外に例えば以下に示される変形例、及び相互に矛盾しない少なくとも2つの変形例が組み合せられた形態を取り得る。
(Modification)
The above description of each embodiment is an example of a form that the air conditioner according to the present disclosure may take, and is not intended to limit the form. The air conditioning system according to the present disclosure may take a form in which, for example, the following modifications, as well as at least two modifications consistent with each other, are combined, in addition to the above-described embodiments.
 ・上記各実施形態において、第2保護制御における圧縮機11の運転周波数を必要運転周波数FNに上昇させるときの圧縮機11の制御は、任意に変更可能である。つまり、当該制御は、第2保護制御における圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間が、第1保護制御における圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間よりも短くなる条件のもと、任意に変更可能である。第2保護制御は例えば次の(A)~(F)のように変更することができる。(A)第1目標周波数FA1及び第2目標周波数FA2は任意に変更可能である。例えば第1目標周波数FA1は第2目標周波数FX2と異なる値であってもよい。一例では、第1目標周波数FA1が第2目標周波数FX2よりも大きく、かつ第3目標周波数FX3よりも小さい値であってもよい。また例えば第2目標周波数FA2は第4目標周波数FX4と等しくてもよい。(B)圧縮機11が第1目標周波数FA1を維持する第1期間TA1及び第2目標周波数FA2を維持する第2期間TA2は、第1保護制御の第1~第4期間TX1~TX4と等しい、もしくは第1~第4期間TX1~TX4よりも長くてもよい。(C)圧縮機11が第1目標周波数FA1を維持する第1期間TA1及び第2目標周波数FA2を維持する第2期間TA2は任意に変更可能である。例えば第1期間TA1と第2期間TA2とは互いに異なってもよい。すなわち、第1期間TA1及び第2期間TA2は個別に設定可能である。(D)第2保護制御における目標周波数の数は2つに限られず、任意に変更可能である。すなわち、第2保護制御における目標周波数の数は1つ又は3つ以上であってもよい。(E)上記(A)~(D)の内容を互いに組み合せてもよい。(F)第2保護制御の開始時において圧縮機11の運転周波数を必要運転周波数FNに設定してもよい。すなわち第1目標周波数FA1等を省略してもよい。 In each of the above embodiments, the control of the compressor 11 when the operating frequency of the compressor 11 in the second protection control is increased to the required operating frequency FN can be arbitrarily changed. That is, in the control, the time until the operating frequency of the compressor 11 in the second protection control reaches the required operating frequency FN, and the time until the operating frequency of the compressor 11 in the first protection control reaches the required operating frequency FN It can be arbitrarily changed under the condition of becoming shorter than the above. The second protection control can be changed, for example, as in the following (A) to (F). (A) The first target frequency FA1 and the second target frequency FA2 can be arbitrarily changed. For example, the first target frequency FA1 may be different from the second target frequency FX2. In one example, the first target frequency FA1 may be larger than the second target frequency FX2 and smaller than the third target frequency FX3. Also, for example, the second target frequency FA2 may be equal to the fourth target frequency FX4. (B) The first period TA1 in which the compressor 11 maintains the first target frequency FA1 and the second period TA2 in which the second target frequency FA2 is maintained are equal to the first to fourth periods TX1 to TX4 of the first protection control. Or, it may be longer than the first to fourth periods TX1 to TX4. (C) The first period TA1 in which the compressor 11 maintains the first target frequency FA1 and the second period TA2 in which the second target frequency FA2 is maintained can be arbitrarily changed. For example, the first period TA1 and the second period TA2 may be different from each other. That is, the first period TA1 and the second period TA2 can be set individually. (D) The number of target frequencies in the second protection control is not limited to two, and can be arbitrarily changed. That is, the number of target frequencies in the second protection control may be one or three or more. (E) The contents of the above (A) to (D) may be combined with each other. (F) The operation frequency of the compressor 11 may be set to the required operation frequency FN at the start of the second protection control. That is, the first target frequency FA1 or the like may be omitted.
 ・上記各実施形態において、第1保護制御における圧縮機11の運転周波数を必要運転周波数FNに上昇させるときの圧縮機11の制御を例えば次のように変更してもよい。(G)第1~第4目標周波数FX1~FX4のそれぞれは任意に変更可能である。例えば第2目標周波数FX2と第1目標周波数FX1との差と、第3目標周波数FX3と第2目標周波数FX2との差とは互いに異なってもよい。第4目標周波数FX4と第3目標周波数FX3との差と、第3目標周波数FX3と第2目標周波数FX2との差とは互いに異なってもよい。(H)圧縮機11が第1~第4目標周波数FX1~FX4のそれぞれを維持する期間である第1~第4期間TX1~TX4のそれぞれは任意に変更可能である。例えば、第1~第4期間TX1~TX4のうちの一部が第1~第4期間TX1~TX4のうちの残りと異なってもよい。(I)第1保護制御における目標周波数の数は4つに限られず、任意に変更可能である。すなわち、第1保護制御における目標周波数の数は、3つ又は5つ以上であってもよい。 In each of the above-described embodiments, the control of the compressor 11 may be changed as follows, for example, when raising the operating frequency of the compressor 11 to the required operating frequency FN in the first protection control. (G) Each of the first to fourth target frequencies FX1 to FX4 can be arbitrarily changed. For example, the difference between the second target frequency FX2 and the first target frequency FX1 may be different from the difference between the third target frequency FX3 and the second target frequency FX2. The difference between the fourth target frequency FX4 and the third target frequency FX3 may be different from the difference between the third target frequency FX3 and the second target frequency FX2. (H) Each of the first to fourth periods TX1 to TX4, which is a period in which the compressor 11 maintains each of the first to fourth target frequencies FX1 to FX4, can be arbitrarily changed. For example, some of the first to fourth periods TX1 to TX4 may be different from the rest of the first to fourth periods TX1 to TX4. (I) The number of target frequencies in the first protection control is not limited to four, and can be arbitrarily changed. That is, the number of target frequencies in the first protection control may be three or five or more.
 ・上記各実施形態において、圧縮機11の吐出管の温度DFと外気温度DOAとを第1保護制御及び第2保護制御を選択するための条件に追加してもよい。(c1)吐出管の温度DFが温度閾値DFX以上であること(DF≧DFX)。(c2)外気温度DOAが判定温度閾値DOAY以上であること(DOA≧DOAY)。(c3)吐出管の温度DFと外気温度DOAとの温度差が温度差閾値DDY以上であること(DF-DOA≧DDY)。 In the above embodiments, the temperature DF of the discharge pipe of the compressor 11 and the outside air temperature DOA may be added to the conditions for selecting the first protection control and the second protection control. (C1) The temperature DF of the discharge pipe is equal to or higher than the temperature threshold DFX (DF ≧ DFX). (C2) The outside air temperature DOA is equal to or higher than the determination temperature threshold DOAY (DOA DO DOAY). (C3) The temperature difference between the temperature DF of the discharge pipe and the outside air temperature DOA is equal to or greater than the temperature difference threshold DDY (DF-DOAADDY).
 なお、温度閾値DFXは、マップMP1,MP2に移行するための条件を制限した閾値であり、試験等により予め設定される。温度閾値DFXの一例は、-3℃である。判定温度閾値DOAYは、マップMP1,MP2に移行するための条件を制限した判定値であり、試験等により予め設定される。判定温度閾値DOAYの一例は、-15℃である。温度差閾値DDYは、マップMP1,MP2に移行するための条件を制限した閾値であり、試験等により予め設定される。 The temperature threshold DFX is a threshold that limits the conditions for shifting to the maps MP1 and MP2, and is preset by a test or the like. An example of the temperature threshold DFX is -3 ° C. The determination temperature threshold value DOAY is a determination value limiting the conditions for shifting to the maps MP1 and MP2, and is set in advance by a test or the like. An example of the judgment temperature threshold value DOAY is -15.degree. The temperature difference threshold value DDY is a threshold value that limits the conditions for shifting to the maps MP1 and MP2, and is preset by a test or the like.
 制御部50には、第1保護制御及び第2保護制御を選択するための圧縮機11の吐出管の温度DFと外気温度DOAとの関係を示すマップMP3が記憶されている。図9は、マップMP3の一例を示している。マップMP3の縦軸は圧縮機11の吐出管の温度DFを示し、横軸は外気温度DOAを示す。またマップMP3において傾斜した線は、吐出管の温度DFと外気温度DOAとの温度差の境界条件を示している。マップMP3において、温度条件c1,c2,c3の全てを満たす温度領域R3を白抜きにより示している。 The control unit 50 stores a map MP3 indicating the relationship between the temperature DF of the discharge pipe of the compressor 11 for selecting the first protection control and the second protection control and the outside air temperature DOA. FIG. 9 shows an example of the map MP3. The vertical axis of the map MP3 indicates the temperature DF of the discharge pipe of the compressor 11, and the horizontal axis indicates the outside air temperature DOA. The inclined line in the map MP3 indicates the boundary condition of the temperature difference between the temperature DF of the discharge pipe and the outside air temperature DOA. In the map MP3, a temperature region R3 satisfying all of the temperature conditions c1, c2 and c3 is shown in white.
 制御部50は、第1起動制御において、ステップS11の判定又はステップS16の判定の後、冷房又は暖房運転の指示があったと判定した場合に吐出管の温度DF及び外気温度DOAが温度領域R3内となるか否かの判定を行う。詳述すると、制御部50は、圧縮機11の吐出管の温度DFと外気温度DOAとが温度領域R3内にあるか否かを判定する。温度領域R3内にあると判定した場合、すなわち温度条件c1,c2,c3を満たすと判定した場合、制御部50は、暖房運転の運転開始時の場合、マップMP1を用いて第1保護制御及び第2保護制御の一方を選択し、冷房運転の運転開始時の場合、マップMP2を用いて第1保護制御及び第2保護制御の一方を選択する。一方、制御部50は、吐出管の温度DF及び外気温度DOAが温度領域R3以外の領域であると判定した場合、すなわち温度条件c1,c2,c3の少なくとも1つを満たさなかった場合、第1保護制御を実行する。このように、第2保護制御を実行するための条件として圧縮機11の吐出管の温度DFと外気温度DOAとの関係を追加することにより、冷房又は暖房運転時において第2保護制御をより適切に実行することができる。 After the determination of step S11 or the determination of step S16 in the first activation control, control unit 50 determines that the temperature DF of the discharge pipe and the outside air temperature DOA are within temperature range R3 when it is determined that the cooling or heating operation is instructed. It is determined whether or not Specifically, the control unit 50 determines whether the temperature DF of the discharge pipe of the compressor 11 and the outside air temperature DOA are within the temperature range R3. If it is determined that the temperature condition is within the temperature range R3, that is, if it is determined that the temperature conditions c1, c2 and c3 are satisfied, the control unit 50 uses the map MP1 to perform the first protection control and One of the second protection controls is selected, and at the start of the cooling operation, one of the first protection control and the second protection control is selected using the map MP2. On the other hand, when the control unit 50 determines that the temperature DF of the discharge pipe and the outside air temperature DOA are in the range other than the temperature range R3, that is, when at least one of the temperature conditions c1, c2, c3 is not satisfied, the first Execute protection control. Thus, by adding the relationship between the temperature DF of the discharge pipe of the compressor 11 and the outside air temperature DOA as a condition for executing the second protection control, the second protection control is more appropriate during the cooling or heating operation. Can be performed.
 ・図9のマップMP3において、外気温度DOAが判定温度閾値DOAY未満の温度領域R4の場合に、圧縮機保護制御として第1保護制御及び第2保護制御とは異なる第3保護制御を実行してもよい。第3保護制御の一例として、制御部50は、圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間を、第1保護制御における圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間(期間TX)よりも長くするように圧縮機11を制御する。 In the map MP3 of FIG. 9, when the outside air temperature DOA is in the temperature range R4 below the determination temperature threshold DOAY, the third protection control different from the first protection control and the second protection control is executed as compressor protection control. It is also good. As an example of the third protection control, the control unit 50 controls the time until the operating frequency of the compressor 11 reaches the required operating frequency FN, and the operating frequency of the compressor 11 in the first protective control reaches the required operating frequency FN The compressor 11 is controlled so as to be longer than the time period (period TX).
 ・図9のマップMP3において、外気温度DOAが判定温度閾値DOAY以上かつ判定温度閾値DOAYよりも高い判定温度閾値DOAZ(DOAZ>DOAY)未満、かつ圧縮機11の吐出管の温度DFが温度閾値DFX未満の温度領域R5において、圧縮機保護制御として第1保護制御及び第2保護制御とは異なる第4保護制御を実行してもよい。第4保護制御の一例として、制御部50は、圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間を、第1保護制御における圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間(期間TX)よりも長く、第3保護制御における圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間よりも短くするように圧縮機11を制御する。 In the map MP3 of FIG. 9, the outside air temperature DOA is higher than the determination temperature threshold DOAY and lower than the determination temperature threshold DOAZ (DOAZ> DOAY) higher than the determination temperature threshold DOAY, and the temperature DF of the discharge pipe of the compressor 11 is the temperature threshold DFX. In the temperature range R5 below, a fourth protection control different from the first protection control and the second protection control may be executed as the compressor protection control. As an example of the fourth protection control, the control unit 50 controls the time until the operating frequency of the compressor 11 reaches the required operating frequency FN, and the operating frequency of the compressor 11 in the first protective control reaches the required operating frequency FN The compressor 11 is controlled such that the operation frequency of the compressor 11 in the third protection control is shorter than the time required to reach the required operation frequency FN, which is longer than the time period (period TX).
 ・図9のマップMP3において、外気温度DOAが判定温度閾値DOAZ以上、かつ吐出管の温度DFと外気温度DOAとの温度差が温度差閾値DDY未満の温度領域R6において、圧縮機保護制御として第1保護制御及び第2保護制御とは異なる第5保護制御を実行してもよい。第5保護制御の一例として、制御部50は、圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間を、第1保護制御における圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間(期間TX)よりも長く、第4保護制御における圧縮機11の運転周波数が必要運転周波数FNに達するまでの時間よりも短くするように圧縮機11を制御する。 In the map MP3 of FIG. 9, the compressor protection control is performed in the temperature range R6 where the outside air temperature DOA is equal to or higher than the determination temperature threshold DOAZ and the temperature difference between the discharge pipe temperature DF and the outside air temperature DOA is less than the temperature difference threshold DDY. A fifth protection control different from the first protection control and the second protection control may be executed. As an example of the fifth protection control, the control unit 50 controls the time until the operating frequency of the compressor 11 reaches the required operating frequency FN, and the operating frequency of the compressor 11 in the first protective control reaches the required operating frequency FN. The compressor 11 is controlled such that the operation frequency of the compressor 11 in the fourth protection control is shorter than the time required to reach the required operation frequency FN, which is longer than the time period (period TX).
 ・上記各実施形態において、第1起動制御における暖房運転時の温度条件a1及び冷房運転時の温度条件b1の少なくとも一方を省略してもよい。
 ・上記各実施形態において、室外制御装置16及び室内制御装置23のいずれかを省略してもよい。例えば室内制御装置23を省略した場合、室内温度センサ52は室外制御装置16と有線又は無線により接続される。また室内送風機22は室外制御装置16と有線により接続される。この場合、室外制御装置16が制御部に相当する。
In each of the above embodiments, at least one of the temperature condition a1 during the heating operation and the temperature condition b1 during the cooling operation in the first start control may be omitted.
In each of the above embodiments, either the outdoor control device 16 or the indoor control device 23 may be omitted. For example, when the indoor control device 23 is omitted, the indoor temperature sensor 52 is connected to the outdoor control device 16 by wire or wirelessly. The indoor blower 22 is connected to the outdoor control device 16 by wire. In this case, the outdoor control device 16 corresponds to a control unit.

Claims (7)

  1.  運転周波数の変更が可能な圧縮機(11)と、
     冷房又は暖房運転の開始時に前記圧縮機(11)の運転周波数を必要運転周波数(FN)になるまで上昇させる圧縮機保護制御を実行する制御部(50)と、を備え、
     前記圧縮機保護制御は第1保護制御と第2保護制御とを有し、
     前記第1保護制御は、前記圧縮機(11)の起動から前記運転周波数が前記必要運転周波数(FN)に達するまでの時間が相対的に長くなるように前記運転周波数を制御し、
     前記第2保護制御は、前記圧縮機(11)の起動から前記運転周波数が前記必要運転周波数(FN)に達するまでの時間が相対的に短くなるように前記運転周波数を制御し、
     前記制御部(50)は、前記圧縮機保護制御の実行時に所定条件を満たす場合に前記第2保護制御を実行する
     空調装置。
    A compressor (11) capable of changing the operating frequency,
    A control unit (50) that executes compressor protection control that raises the operating frequency of the compressor (11) to the required operating frequency (FN) at the start of cooling or heating operation;
    The compressor protection control comprises a first protection control and a second protection control,
    The first protection control controls the operating frequency so that the time from when the compressor (11) starts up to when the operating frequency reaches the required operating frequency (FN) becomes relatively long.
    The second protection control controls the operating frequency so that the time from when the compressor (11) starts up to when the operating frequency reaches the required operating frequency (FN) becomes relatively short.
    The control unit (50) executes the second protection control when a predetermined condition is satisfied at the time of execution of the compressor protection control.
  2.  前記制御部(50)は、前記圧縮機保護制御において、第1目標周波数(FA1,FX1)と、前記第1目標周波数(FA1,FX1)よりも大きく前記必要運転周波数(FN)よりも小さい第2目標周波数(FA2,FX2)とを設定し、
     前記制御部(50)は、前記運転周波数を前記第1目標周波数(FA1,FX1)に第1期間(TA1,TX1)に亘り維持し、前記運転周波数を前記第2目標周波数(FA2,FX2)に第2期間(TA2,TX2)に亘り維持することにより、前記運転周波数を段階的に上昇させ、
     前記第2保護制御における前記第1目標周波数(FA1)は、前記第1保護制御における前記第1目標周波数(FX1)よりも大きく、
     前記第2保護制御における前記第2目標周波数(FA2)は、前記第1保護制御における前記第2目標周波数(FX2)よりも大きい
     請求項1に記載の空調装置。
    In the compressor protection control, the control unit (50) is larger than the first target frequency (FA1, FX1) and the first target frequency (FA1, FX1) and smaller than the necessary operating frequency (FN). 2 Set the target frequency (FA2, FX2),
    The control unit (50) maintains the operating frequency at the first target frequency (FA1, FX1) for a first period (TA1, TX1), and the operating frequency is maintained at the second target frequency (FA2, FX2). Step-by-step increasing the operating frequency by maintaining the second period (TA2, TX2)
    The first target frequency (FA1) in the second protection control is larger than the first target frequency (FX1) in the first protection control,
    The air conditioner according to claim 1, wherein the second target frequency (FA2) in the second protection control is larger than the second target frequency (FX2) in the first protection control.
  3.  前記制御部(50)は、前記圧縮機保護制御において、第1目標周波数(FA1,FX1)と、前記第1目標周波数(FA1,FX1)よりも大きく前記必要運転周波数(FN)よりも小さい第2目標周波数(FA2,FX2)とを設定し、
     前記制御部(50)は、前記運転周波数を前記第1目標周波数(FA1,FX1)に第1期間(TA1,TX1)に亘り維持し、前記運転周波数を前記第2目標周波数(FA2,FX2)に第2期間(TA2,TX2)に亘り維持することにより、前記運転周波数を段階的に上昇させ、
     前記第2保護制御における前記第1期間(TA1)は、前記第1保護制御における前記第1期間(TX1)よりも短く、
     前記第2保護制御における前記第2期間(TA2)は、前記第2保護制御における前記第2期間(TX2)よりも短い
     請求項1又は2に記載の空調装置。
    In the compressor protection control, the control unit (50) is larger than the first target frequency (FA1, FX1) and the first target frequency (FA1, FX1) and smaller than the necessary operating frequency (FN). 2 Set the target frequency (FA2, FX2),
    The control unit (50) maintains the operating frequency at the first target frequency (FA1, FX1) for a first period (TA1, TX1), and the operating frequency is maintained at the second target frequency (FA2, FX2). Step-by-step increasing the operating frequency by maintaining the second period (TA2, TX2)
    The first period (TA1) in the second protection control is shorter than the first period (TX1) in the first protection control,
    The air conditioner according to claim 1 or 2, wherein the second period (TA2) in the second protection control is shorter than the second period (TX2) in the second protection control.
  4.  前記暖房運転時における前記所定条件と、前記冷房運転時における前記所定条件とが異なる
     請求項1~3のいずれか一項に記載の空調装置。
    The air conditioner according to any one of claims 1 to 3, wherein the predetermined condition at the time of the heating operation is different from the predetermined condition at the time of the cooling operation.
  5.  前記所定条件は、室内空気の温度(DA)、室外空気の温度(DOA)、及び前記室内空気の温度と前記室外空気の温度との温度差(DA-DOA)を含む
     請求項1~4のいずれか一項に記載の空調装置。
    The predetermined conditions include a temperature of indoor air (DA), a temperature of outdoor air (DOA), and a temperature difference between the temperature of the indoor air and the temperature of the outdoor air (DA-DOA). An air conditioner according to any one of the preceding claims.
  6.  前記暖房運転時における前記所定条件は、前記室内空気の温度(DA)が室温閾値(DAX1,DAX2)以下であり、前記室外空気の温度(DOA)が外気温度閾値(DOAX1,DOAX2)以上であり、前記室内空気の温度(DA)と前記室外空気の温度(DOA)との温度差(DA-DOA)が温度差閾値(DDX1,DDX2)以下である
     請求項5に記載の空調装置。
    The predetermined condition at the time of the heating operation is that the temperature (DA) of the indoor air is equal to or lower than the room temperature threshold (DAX1, DAX2) and the temperature (DOA) of the outdoor air is equal to or higher than the outdoor temperature threshold (DOAX1, DOAX2). The air conditioner according to claim 5, wherein a temperature difference (DA-DOA) between the temperature (DA) of the indoor air and the temperature (DOA) of the outdoor air is equal to or less than a temperature difference threshold (DDX1, DDX2).
  7.  前記所定条件は、前記圧縮機の吐出管の温度(DF)及び室外空気の温度(DOA)を含む
     請求項1~6のいずれか一項に記載の空調装置。
    The air conditioner according to any one of claims 1 to 6, wherein the predetermined condition includes a temperature (DF) of a discharge pipe of the compressor and a temperature (DOA) of outdoor air.
PCT/JP2018/036016 2017-10-30 2018-09-27 Air conditioner WO2019087630A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18873146.7A EP3705808B1 (en) 2017-10-30 2018-09-27 Air conditioner
CN201880069422.0A CN111279138B (en) 2017-10-30 2018-09-27 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209494A JP6601472B2 (en) 2017-10-30 2017-10-30 Air conditioner
JP2017-209494 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019087630A1 true WO2019087630A1 (en) 2019-05-09

Family

ID=66331685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036016 WO2019087630A1 (en) 2017-10-30 2018-09-27 Air conditioner

Country Status (4)

Country Link
EP (1) EP3705808B1 (en)
JP (1) JP6601472B2 (en)
CN (1) CN111279138B (en)
WO (1) WO2019087630A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014988B1 (en) 2020-12-02 2022-02-02 ダイキン工業株式会社 Refrigeration equipment
CN113587373A (en) * 2021-07-12 2021-11-02 重庆海尔空调器有限公司 Method and device for improving shutdown fault of air conditioner and air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150258U (en) * 1986-10-29 1988-10-03
JPH01305267A (en) * 1988-05-31 1989-12-08 Daikin Ind Ltd Refrigerator
JPH04268164A (en) * 1991-02-22 1992-09-24 Sharp Corp Air conditioner
JPH06101925A (en) * 1992-06-18 1994-04-12 Samsung Electronics Co Ltd Method of controlling start of compressor for air conditioner
JPH06341720A (en) 1993-05-31 1994-12-13 Daikin Ind Ltd Refrigerator
JPH07310959A (en) * 1994-05-17 1995-11-28 Matsushita Refrig Co Ltd Air conditioner
JPH09119693A (en) * 1995-10-27 1997-05-06 Matsushita Electric Ind Co Ltd Air conditioner
US20110113797A1 (en) * 2008-07-23 2011-05-19 Carrier Corporation Methods and systems for compressor operation
JP2012149834A (en) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd Heat pump
WO2015140871A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623879Y2 (en) * 1987-05-21 1994-06-22 株式会社東芝 Air conditioner
JP3199527B2 (en) * 1993-08-25 2001-08-20 三菱電機株式会社 Refrigeration cycle equipment
JP2005061738A (en) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2005274035A (en) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd Operation control device for air-conditioner
JP2005300056A (en) * 2004-04-14 2005-10-27 Matsushita Electric Ind Co Ltd Refrigeration cycle system
JP2006118731A (en) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd Air conditioner
JP4734161B2 (en) * 2006-04-19 2011-07-27 日立アプライアンス株式会社 Refrigeration cycle apparatus and air conditioner
WO2007126018A1 (en) * 2006-04-26 2007-11-08 Toshiba Carrier Corporation Air conditioner
JP4916383B2 (en) * 2007-06-01 2012-04-11 サンデン株式会社 Start-up control device for electric scroll compressor and start-up control method thereof
CN102798184B (en) * 2012-08-13 2015-08-12 北京德能恒信科技有限公司 A kind of heat pipe hot pump hybrid system
JP5959373B2 (en) * 2012-08-29 2016-08-02 三菱電機株式会社 Refrigeration equipment
JP6079707B2 (en) * 2014-06-27 2017-02-15 ダイキン工業株式会社 air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150258U (en) * 1986-10-29 1988-10-03
JPH01305267A (en) * 1988-05-31 1989-12-08 Daikin Ind Ltd Refrigerator
JPH04268164A (en) * 1991-02-22 1992-09-24 Sharp Corp Air conditioner
JPH06101925A (en) * 1992-06-18 1994-04-12 Samsung Electronics Co Ltd Method of controlling start of compressor for air conditioner
JPH06341720A (en) 1993-05-31 1994-12-13 Daikin Ind Ltd Refrigerator
JPH07310959A (en) * 1994-05-17 1995-11-28 Matsushita Refrig Co Ltd Air conditioner
JPH09119693A (en) * 1995-10-27 1997-05-06 Matsushita Electric Ind Co Ltd Air conditioner
US20110113797A1 (en) * 2008-07-23 2011-05-19 Carrier Corporation Methods and systems for compressor operation
JP2012149834A (en) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd Heat pump
WO2015140871A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705808A4

Also Published As

Publication number Publication date
CN111279138A (en) 2020-06-12
JP6601472B2 (en) 2019-11-06
EP3705808B1 (en) 2022-08-03
EP3705808A4 (en) 2020-11-18
EP3705808A1 (en) 2020-09-09
JP2019082279A (en) 2019-05-30
CN111279138B (en) 2021-06-11

Similar Documents

Publication Publication Date Title
EP2458306A1 (en) Air conditioner
CN111279139B (en) Air conditioner
CN107289575B (en) Anti-condensation control method and system
AU2016346536A1 (en) Air conditioner
JP2014190600A (en) Air conditioner
JP2019143950A (en) Air conditioner
US10139144B2 (en) Air conditioning apparatus
WO2019087630A1 (en) Air conditioner
JP2011252639A (en) Air conditioner
WO2016016918A1 (en) Air conditioning device
WO2013082306A2 (en) System and method for reducing noise within a refrigeration system
JP5900463B2 (en) Air conditioning system
JP6578695B2 (en) Air conditioner
AU2017428640B9 (en) Air conditioner
US20160320099A1 (en) Indoor unit of air conditioner
JP5131185B2 (en) Equipment control system
JP5366768B2 (en) Air conditioner outdoor unit
US20170102160A1 (en) System and method of operating a variable speed hvac system
US20160320117A1 (en) Air conditioner
JP2006207983A (en) Air conditioner
JP2006194552A (en) Air conditioner
JP6353355B2 (en) Air conditioner
JP5871040B2 (en) Air conditioning system
KR20070077638A (en) Inverter air conditioner and control method thereof
KR20100079406A (en) Air conditioner and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018873146

Country of ref document: EP

Effective date: 20200602