WO2019087530A1 - Method for producing copper nanoparticles - Google Patents

Method for producing copper nanoparticles Download PDF

Info

Publication number
WO2019087530A1
WO2019087530A1 PCT/JP2018/030738 JP2018030738W WO2019087530A1 WO 2019087530 A1 WO2019087530 A1 WO 2019087530A1 JP 2018030738 W JP2018030738 W JP 2018030738W WO 2019087530 A1 WO2019087530 A1 WO 2019087530A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper nanoparticles
nanoparticles
liquid
natural sedimentation
Prior art date
Application number
PCT/JP2018/030738
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 覚道
岡田 一誠
元彦 杉浦
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019549885A priority Critical patent/JP7136117B2/en
Publication of WO2019087530A1 publication Critical patent/WO2019087530A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the present disclosure relates to a method of producing copper nanoparticles.
  • This application claims priority based on Japanese Patent Application No. 2017-209519 filed on Oct. 30, 2017, and incorporates all the contents described in the aforementioned Japanese application.
  • Liquid phase reduction methods are known in which metal nanoparticles are precipitated in solution.
  • metal nanoparticles are reduced in solution by reducing metal ions with a reducing agent in a solution containing a complexing agent and a dispersing agent.
  • the metal nanoparticles precipitated in the solution by the liquid phase reduction method are used as metal nanoinks by removing the impurities in the solution and then adding a solvent such as pure water to adjust the concentration.
  • the method for producing copper nanoparticles comprises a preparation step of preparing a copper nanoparticle dispersion having an average particle diameter of 50 nm or less by a liquid phase reduction method, and aggregation in the copper nanoparticle dispersion after the preparation step.
  • Method of producing copper nanoparticles comprising: an addition step of adding an agent and a separation step of centrifuging a liquid phase from the copper nanoparticle dispersion after the addition step, wherein the copper contained in the copper nanoparticle dispersion
  • the method further comprises a natural sedimentation step of naturally settling the nanoparticles.
  • the manufacturing method described in the above publication has a problem in that it improves the recovery efficiency of metal nanoparticles. That is, the metal nanoparticles deposited in the solution by the liquid phase reduction method have a constant particle size distribution. Therefore, when the metal nanoparticle dispersion liquid in which the metal nanoparticles are dispersed is centrifuged, it is difficult to separate metal nanoparticles having a relatively small particle size from the liquid phase. As a result, depending on this manufacturing method, it is difficult to sufficiently increase the recovery rate of metal nanoparticles having a relatively small particle size.
  • the method of producing copper nanoparticles of the present disclosure can sufficiently enhance the recovery rate of copper nanoparticles.
  • the method for producing copper nanoparticles comprises a preparation step of preparing a copper nanoparticle dispersion having an average particle diameter of 50 nm or less by a liquid phase reduction method, and aggregation in the copper nanoparticle dispersion after the preparation step.
  • Method of producing copper nanoparticles comprising: an addition step of adding an agent and a separation step of centrifuging a liquid phase from the copper nanoparticle dispersion after the addition step, wherein the copper contained in the copper nanoparticle dispersion
  • the method further comprises a natural sedimentation step of naturally settling the nanoparticles.
  • the method for producing copper nanoparticles includes a natural sedimentation step of spontaneously settling copper nanoparticles contained in the copper nanoparticle dispersion, so that copper nanoparticles having a relatively large particle size can be sedimented.
  • the method for producing copper nanoparticles includes an addition step of adding an aggregating agent to the copper nanoparticle dispersion after the preparation step, copper nanoparticles having a relatively small particle size can be coagulated, and the copper The secondary particle diameter of the nanoparticles can be made sufficiently large. Therefore, in the method of producing copper nanoparticles, copper nanoparticles having a relatively large particle diameter may be centrifuged in the separation step, and therefore the recovery rate of copper nanoparticles can be sufficiently increased.
  • the natural sedimentation step may be performed immediately after the preparation step.
  • the natural sedimentation step may be performed immediately after the preparation step.
  • copper nanoparticles having a relatively small primary particle diameter contained in the supernatant liquid after natural sedimentation can be efficiently aggregated by the addition step. it can.
  • the method for producing copper nanoparticles further comprises a supernatant liquid recovery step of recovering the supernatant liquid of the copper nanoparticle dispersion liquid after the natural sedimentation step, and after the supernatant liquid recovery step, the supernatant liquid is added in the addition step.
  • the coagulant may be added.
  • the method further comprises a supernatant liquid collecting step of collecting the supernatant liquid of the copper nanoparticle dispersion liquid after the natural sedimentation step, and adding the coagulant to the supernatant liquid in the adding step after the supernatant liquid collecting step.
  • copper nanoparticles having a relatively small primary particle size which are contained in the supernatant liquid that has conventionally been discarded, can be separated from other copper nanoparticles and efficiently centrifuged. Therefore, the recovery rate of copper nanoparticles can be further enhanced. Moreover, equalization of the particle diameter of the copper nanoparticle re-dispersed after centrifugation can be achieved.
  • An organic acid salt is preferable as the coagulant.
  • the coagulant is an organic acid salt, the copper nanoparticles can be easily and reliably aggregated.
  • natural sedimentation time in the above-mentioned natural sedimentation process 10 hours or more are preferred.
  • copper nanoparticles having a relatively large particle size can be sufficiently sedimented.
  • flocculant in the said addition process 1.0 mass% or more and 7.5 mass% or less are preferable.
  • flocculant in the said addition process is in the said range, copper nanoparticles can be aggregated appropriately.
  • the “average particle diameter” of the copper nanoparticles in the copper nanoparticle dispersion refers to a median diameter calculated from a volume-based cumulative distribution measured by a laser diffraction method.
  • the method for producing the copper nanoparticles comprises a preparation step (S01) of preparing a copper nanoparticle dispersion having an average particle diameter of 50 nm or less by a liquid phase reduction method, and the copper nanoparticle dispersion Natural sedimentation step (S02) for naturally settling copper nanoparticles, and an addition step (S04) for adding an aggregating agent to the copper nanoparticle dispersion after the preparation step (S01), and copper nano particles after the addition step (S04) And a separation step (S05) of centrifuging the liquid phase from the particle dispersion.
  • the copper nanoparticle obtained by the manufacturing method of the said copper nanoparticle is used, for example for forming the sintered compact layer of copper nanoparticle on the base film of a printed wiring board.
  • the method for producing copper nanoparticles includes a natural sedimentation step (S02) for naturally settling copper nanoparticles contained in the copper nanoparticle dispersion, so that copper nanoparticles having a relatively large particle size can be sedimented. Moreover, since the manufacturing method of the said copper nanoparticle is provided with the addition process (S04) which adds a coagulant
  • the manufacturing method of the said copper nanoparticle performs a natural sedimentation process (S02) immediately after a preparation process (S01).
  • the manufacturing method of the said copper nanoparticle is provided with the supernatant liquid collection process (S03) which collect
  • the manufacturing method of the said copper nanoparticle adds the said coagulant
  • the method for producing copper nanoparticles first, the relatively large particle size copper nanoparticles contained in the copper nanoparticle dispersion prepared in the preparation step (S01) were naturally precipitated in the natural sedimentation step (S02) Thereafter, the supernatant liquid containing copper nanoparticles with a relatively small particle size not precipitated in the natural sedimentation step (S02) is collected in the supernatant liquid collection step (S03). Subsequently, in the method for producing copper nanoparticles, a flocculant is added to the supernatant recovered in the supernatant recovery step (S03) in the addition step (S04), and the supernatant after addition of the flocculant is separated. Centrifuge in step (S05).
  • the manufacturing method of the said copper nanoparticle performs the natural sedimentation process (S02) immediately after the preparation process (S01), thereby adding the relatively small primary particle size copper nanoparticles contained in the supernatant liquid after natural sedimentation. It can be made to aggregate efficiently by (S04).
  • the copper nanoparticles having a relatively small primary particle diameter are selectively aggregated in the addition step (S04) to enhance redispersion of copper nanoparticles after centrifugation in the separation step (S05) described later. Can.
  • the method for producing the copper nanoparticles comprises a supernatant liquid collecting step (S03) for collecting the supernatant liquid of the copper nanoparticle dispersion liquid after the natural sedimentation step (S02), and an adding step after the supernatant liquid collecting step (S03) Since the flocculant is added to the supernatant in (S04), copper nanoparticles having a relatively small primary particle size contained in the supernatant, which was conventionally discarded, can be separated from other copper nanoparticles for efficiency. Can be centrifuged. That is, the copper nanoparticles contained in the above-mentioned supernatant liquid are small in particle diameter and thus difficult to be centrifugally separated, and conventionally they were often discarded.
  • the method for producing copper nanoparticles by selectively aggregating the copper nanoparticles contained in the supernatant liquid, the secondary particle diameter of the copper nanoparticles is increased to such an extent that it is easy to centrifugally separate. Can. Therefore, the method of producing copper nanoparticles can further enhance the recovery rate of copper nanoparticles.
  • copper nanoparticles having a relatively small primary particle size can be selectively centrifuged by the separation step (S05), so that the particles of copper nanoparticles are redispersed after centrifugation. The diameter can be made uniform.
  • the quality of the printed wiring board which has this sintered compact layer Can be enhanced.
  • a water-soluble copper compound which is a source of copper ions forming copper nanoparticles in water, a dispersing agent and a complexing agent are dissolved, and a reducing agent is added to reduce copper ions for a certain period of time
  • a reducing agent is added to reduce copper ions for a certain period of time
  • water-soluble copper compounds that are the basis of the above copper ions include copper nitrate trihydrate (II) (Cu (NO 3 ) 2 ⁇ 3H 2 O), copper sulfate (II) pentahydrate (CuSO 4 ) ⁇ 5H 2 O) etc. may be mentioned.
  • various reducing agents capable of reducing and precipitating copper ions can be used in the reaction system of liquid phase (aqueous solution).
  • the reducing agent include ions of transition metals such as sodium borohydride, sodium hypophosphite, hydrazine, trivalent titanium ion and divalent cobalt ion, ascorbic acid, reducing saccharides such as glucose and fructose, Examples thereof include polyhydric alcohols such as ethylene glycol and glycerin.
  • trivalent titanium ions are preferable as the reducing agent.
  • the liquid phase reduction method using a trivalent titanium ion as a reducing agent is referred to as a titanium redox method.
  • titanium redox method copper ions are reduced by the redox action when trivalent titanium ions are oxidized to tetravalent ions, to precipitate copper nanoparticles. According to this titanium redox method, copper nanoparticles having a fine and uniform particle size can be easily formed.
  • the dispersant preferably contains no sulfur, phosphorus, boron, halogen and alkali from the viewpoint of preventing the deterioration of peripheral members.
  • Preferred dispersants include nitrogen-containing polymeric dispersants such as polyethylenimine and polyvinylpyrrolidone, hydrocarbon-based polymeric dispersants having a carboxy group in the molecule such as polyacrylic acid and carboxymethylcellulose, Poval (polyvinyl alcohol), Examples thereof include polymer dispersants having a polar group such as styrene-maleic acid copolymer, olefin-maleic acid copolymer, and copolymers having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule.
  • the complexing agent examples include sodium citrate, sodium tartrate, sodium acetate, gluconic acid, sodium thiosulfate, ammonia, ethylenediaminetetraacetic acid and the like, and one or more of these may be used.
  • sodium citrate is preferable as the complexing agent.
  • the lower limit of the pH of the reaction system is preferably 7, and the upper limit of the pH of the reaction system is preferably 13.
  • this pH adjuster general acids or alkalis such as hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, sodium carbonate, ammonia and the like can be used, but in particular, alkali metals and alkaline earths to prevent deterioration of peripheral members.
  • Nitric acid and sodium carbonate which do not contain impurities such as metalloids, halogen elements, sulfur, phosphorus and boron are preferred.
  • a content rate of the copper nanoparticle in a copper nanoparticle dispersion liquid 0.1 mass% or more and 5.0 mass% or less are preferable, for example.
  • the average particle size of the copper nanoparticles in the copper nanoparticle dispersion is 50 nm or less as described above.
  • the copper nanoparticles in the copper nanoparticle dispersion liquid have a particle size distribution peak, for example, in the range of 5 nm or more and 35 nm or less.
  • the peak of the particle size distribution of the copper nanoparticles may be one or two or more.
  • first precipitation liquid P1 a precipitation liquid
  • first supernatant L1 copper nanoparticles having a relatively small particle size of about 20 nm or less in particle size are not sedimented and dispersed in the supernatant (hereinafter, referred to as “first supernatant L1”).
  • the first supernatant liquid L1 after spontaneous sedimentation in S02 contains, for example, about 50% by mass or more and 80% by mass or less of copper nanoparticles with respect to the total amount of copper nanoparticles prepared in S01. That is, as a sedimentation ratio in S02 with respect to all the copper nanoparticles prepared by S01, it can be set as 20 mass% or more and 50 mass% or less, for example.
  • the volume ratio of the first supernatant L1 to the total amount of the copper nanoparticle dispersion prepared in S01 is about 85% by volume or more and 97% by volume or less.
  • the upper limit of the natural sedimentation time can be, for example, 72 hours, in order to prevent the natural sedimentation time from becoming unnecessarily long.
  • an aggregating agent F is added to the first supernatant L1 recovered in S03.
  • an organic acid salt is preferable.
  • citrate is preferred, and sodium citrate is particularly preferred.
  • the flocculant F being an organic acid salt, copper nanoparticles can be easily and reliably flocculated.
  • the organic acid salt, particularly citrate is preferable is not necessarily clear, but is considered to be because the zeta potential of the copper nanoparticle surface is lowered by the increase of the ion concentration of the copper nanoparticle dispersion.
  • the organic acid salt does not promote aggregation of copper nanoparticles by, for example, adjusting the redox potential.
  • flocculant F may exert a bad influence on the sintering property of this copper nanoparticle, etc. by adhering to the copper nanoparticle after centrifugation.
  • sodium citrate is generally used as a complexing agent when using a titanium redox method as a liquid phase reduction method. Therefore, by using this sodium citrate as the coagulant F, the amount of addition of the coagulant F can be suppressed, and the possibility of contamination of copper nanoparticles obtained after centrifugation can be suppressed.
  • sodium citrate as the coagulant F, redispersion of copper nanoparticles after centrifugal separation in the separation step (S05) can be improved, which facilitates formation of a dense sintered body layer. .
  • the lower limit of the addition amount of coagulant F in S04 is preferably 1.0 mass%, 3.0 mass % Is more preferable.
  • a maximum of addition amount of flocculant F in S04 7.5 mass% is preferred, and 5.0 mass% is more preferred. If the addition amount of the aggregating agent F is less than the above lower limit, there is a possibility that the copper nanoparticles can not be sufficiently aggregated.
  • S05 has a supernatant fluid removal step (S11) and a centrifugation step (S12).
  • the first supernatant liquid L1 after addition of the aggregating agent F in S04 is allowed to stand for a predetermined time, whereby the copper nanoparticles contained in the first supernatant liquid L1 are naturally precipitated.
  • the first supernatant L1 is a precipitate obtained by depositing copper nanoparticles (hereinafter referred to as "the second precipitate P2"), and a supernatant on the second precipitate P2 (the second precipitate P2).
  • the second supernatant liquid L2 after spontaneous precipitation of copper nanoparticles is removed.
  • Spontaneous sedimentation in S11 can be performed, for example, at room temperature (25 ° C.) in an air atmosphere. Moreover, as a minimum of the natural sedimentation time in S11, 3 hours are preferable and 15 hours are more preferable. If the above-mentioned natural sedimentation time is less than the above-mentioned minimum, there is a possibility that copper nanoparticles can not fully be settled.
  • the upper limit of the natural sedimentation time can be, for example, 72 hours, in order to prevent the natural sedimentation time from becoming unnecessarily long.
  • the liquid phase is centrifuged from the second precipitated liquid P2 after removing the second supernatant liquid L2 in S11.
  • the second precipitation liquid P2 is a copper nanoparticle concentrated liquid containing copper nanoparticles (hereinafter referred to as “first copper nanoparticle concentrated liquid C1”) and a liquid phase (hereinafter referred to as “first liquid phase” S12 can be carried out using a known centrifugal separator
  • the method for producing the copper nanoparticles can efficiently use copper nanoparticles having a relatively small primary particle size by S12. Can be collected.
  • centrifugal acceleration in S12 As a lower limit of the centrifugal acceleration in S12, 20000 G is preferable, and 50000 G is more preferable. If the centrifugal acceleration is less than the lower limit, copper nanoparticles may not be sufficiently centrifuged.
  • the upper limit of the above-mentioned centrifugal acceleration is not particularly limited, but can be, for example, 120000 G. If the centrifugal acceleration exceeds the upper limit, the concentration of the first concentrated copper nanoparticle solution C1 after centrifugation may be too high, and the first concentrated copper nanoparticle solution C1 may be fixed to a container or the like to reduce the yield. There is.
  • the solid content concentration of the 1st copper nanoparticle concentrate C1 after centrifugation in S12 80 mass% is preferred and 85 mass% is more preferred. If the solid content concentration is less than the above-mentioned lower limit, there is a possibility that the impurities in the copper nanoink obtained by using this first copper nanoparticle concentrate C1 can not be sufficiently removed.
  • the upper limit of the solid content concentration is not particularly limited, and can be, for example, 95% by mass.
  • the method for producing copper nanoparticles may further include a re-centrifugation step (S06), a hydrogenation step (S07) and a stirring step (S08) after S12.
  • S06 to S08 constitute a copper nanoparticle cleaning step of the method for producing the copper nanoparticles.
  • the method for producing the copper nanoparticles may include only a part of the steps of S06 to S08, and a specific step such as S07 may be performed multiple times.
  • the first copper nanoparticle concentrate C1 separated at S12 is ultracentrifuged by an ultracentrifuge.
  • water typically pure water, is added to the copper nanoparticle concentrate separated in S06.
  • the copper nanoparticle concentrate to which water has been added in S07 is irradiated with ultrasonic waves, or the copper nanoparticle concentrate is treated with a known apparatus such as a high-pressure homogenizer, mixer, etc.
  • the aggregated copper nanoparticles are re-dispersed in the liquid by the addition of As an upper limit of the average particle diameter of the copper nanoparticle after re-dispersion by S08, 25 nm is preferable and 20 nm is more preferable.
  • the average particle size is larger than the above upper limit, copper nanoparticles may be aggregated starting from particles having a large size, and there may be generated aggregates having no dispersibility.
  • the lower limit of the average particle size of the copper nanoparticles after redispersion by S08 is, for example, preferably 5 nm, and more preferably 10 nm, from the viewpoint of ease of production.
  • the manufacturing method of the said copper nanoparticle may use the dispersion liquid which the copper nanoparticle re-dispersed in the liquid by S08 after adjusting particle concentration, and also using it as copper nano ink, and one or more dispersion liquid after S08 After centrifugation several times, the dispersion after centrifugation may be used as a copper nanoink after adjusting the particle concentration.
  • the method for producing the copper nanoparticles also relates to the second copper nanoparticle concentrate C2 and the second precipitate P1 that remains after the first supernatant L1 is recovered in S03. It may be centrifuged to the liquid phase D2.
  • the above-described copper nanoparticle washing step may be performed on the copper nanoparticle concentrate after the centrifugal separation to produce a copper nanoink.
  • the method for producing copper nanoparticles of FIG. 5 is included in the preparation step (S21) of preparing a copper nanoparticle dispersion having an average particle diameter of 50 nm or less by a liquid phase reduction method, and the copper nanoparticle dispersion prepared in S21.
  • Spontaneous sedimentation step (S22) for naturally settling copper nanoparticles addition step (S23) for adding an aggregating agent to the copper nanoparticle dispersion after natural sedimentation step (S22), copper nano particles after the addition step (S23)
  • a separation step (S24) of centrifuging the liquid phase from the particle dispersion a separation step (S24) of centrifuging the liquid phase from the particle dispersion.
  • the copper nano-particles production method in FIG. 1 is the same as the copper nano-particles shown in FIG. 1 except that the aggregating agent is directly added to the copper nanoparticle dispersion without recovering the supernatant liquid from the copper nanoparticle dispersion after the natural sedimentation step (S22). It can carry out by the method similar to the manufacturing method of particle
  • the manufacturing method of the said copper nanoparticle adds an coagulant
  • copper nanoparticles having a relatively small particle size can be aggregated and then centrifuged after this configuration, so that the recovery rate of copper nanoparticles can be sufficiently increased. .
  • the natural sedimentation step does not necessarily have to be performed before the addition step. That is, in the method for producing copper nanoparticles, the copper nanoparticles contained in the copper nanoparticle dispersion may be naturally precipitated after the coagulant is added to the copper nanoparticle dispersion. However, from the viewpoint of enhancing the redispersibility of copper nanoparticles after aggregation, it is preferable to add an aggregating agent to the copper nanoparticle dispersion liquid after naturally settling the copper nanoparticles.
  • the copper nanoparticle dispersion was allowed to stand at room temperature (25 ° C.) for 18 hours to naturally precipitate relatively large particles.
  • the average particle size and particle size distribution of the naturally precipitated copper nanoparticles are measured using “NanoTrac Wave” manufactured by Microtrac Bell, and the average particle size is 25 nm, The particle size distribution was 10 nm or more and 35 nm or less.
  • the ratio of copper nanoparticles contained in the supernatant liquid to the total amount of copper nanoparticles contained in the copper nanoparticle dispersion was 60% by mass.
  • the supernatant liquid of the copper nanoparticle dispersion liquid after the above-mentioned natural sedimentation process was separated and collected.
  • the volume ratio of the supernatant liquid to the total amount of the copper nanoparticle dispersion liquid prepared in the above preparation step was 85% by volume or more and 95% by volume or less.
  • Table 1 shows the natural sedimentation time in the natural sedimentation process, the type and amount of the coagulant added in the addition process, and the natural sedimentation time and centrifugal acceleration in the separation process as shown in Table 1.
  • the copper nano ink was manufactured by the procedure similar to 1. No. 2 to No.
  • the average particle size and particle size distribution of the naturally precipitated particles, the separation ratio, and the unrecovered rate at 24 are shown in Table 1.
  • Recovery rate of copper nanoparticles The recovery rate of copper nanoparticles contained in the copper nanoink obtained using this supernatant liquid with respect to the total amount of copper nanoparticles contained in the supernatant liquid collected in the supernatant liquid recovery step is shown in Table 2. No. Since the supernatant fluid separated and recovered in the supernatant fluid recovery step is discarded in No. 25, the copper nano-ink contained in the copper nano ink obtained by centrifuging the precipitation solution with respect to the total amount of copper nanoparticles obtained in the preparation step The percentage of particles was taken as the recovery rate.
  • ⁇ Quality of copper nanoparticles> The quality of the copper nanoparticles was visually evaluated on the basis of the following criteria in the state which added the pure water to the copper nanoparticle concentrate after the said ultracentrifugation. The evaluation results are shown in Table 2. A: Aggregates of copper nanoparticles were not visible. B: Aggregates of copper nanoparticles were visually recognized. C: Deterioration of copper nanoparticles was confirmed.
  • the presence or absence of impurities derived from the flocculant is measured for the copper nanoink obtained by No. 39 using an ion chromatography system “ICS-2100” manufactured by Thermo Fisher Scientific Co., Ltd. and an ICP emission analyzer “iCAP6300” manufactured by the same company. The following criteria were evaluated. The evaluation results are shown in Table 2. A: Impurity was not detected. B: Slight impurities were detected. C: A large amount of impurities were detected. No. 34 and no. As for No. 38, the impurities could not be measured because the copper nanoparticles were altered.
  • No. 8 although aggregates were partially generated, it is considered that aggregates having no redispersibility were generated due to insufficient natural sedimentation time in the natural sedimentation process.
  • No. No. 15 is a coagulant that is citrate, the addition amount of the coagulant is 4% by mass or more, and the natural sedimentation time in the separation step is more than 3 hours, but the centrifugal acceleration is insufficient; The small diameter copper nanoparticles can not be recovered sufficiently, and the recovery rate is less than 90%.
  • No. 1 was centrifuged without adding a coagulant to the whole amount of the supernatant fluid separated and recovered in the supernatant fluid recovery step. 26 to No. In No. 28, it is difficult to sufficiently centrifuge small-diameter copper nanoparticles, and the recovery rate is low. No. 27 and No. In No. 28, although copper nanoparticles having a relatively small particle diameter could be recovered by increasing the centrifugal acceleration, the centrifugal treatment time was too long to sufficiently increase the treatment efficiency.

Abstract

This method for producing copper nanoparticles comprises: a preparation step for preparing a dispersion liquid of copper nanoparticles having an average particle diameter of 50 nm or less by means of a liquid-phase reduction method; an addition step for adding a flocculant into the dispersion liquid of copper nanoparticles after the preparation step; and a separation step for centrifugally separating the liquid phase from the dispersion liquid of copper nanoparticles after the addition step. This method for producing copper nanoparticles additionally comprises a spontaneous sedimentation step for having copper nanoparticles contained in the dispersion liquid of copper nanoparticles spontaneously sediment.

Description

銅ナノ粒子の製造方法Method of manufacturing copper nanoparticles
 本開示は、銅ナノ粒子の製造方法に関する。本出願は、2017年10月30日出願の日本出願第2017-209519号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to a method of producing copper nanoparticles. This application claims priority based on Japanese Patent Application No. 2017-209519 filed on Oct. 30, 2017, and incorporates all the contents described in the aforementioned Japanese application.
 金属ナノ粒子を溶液中に析出させる液相還元法が知られている。この液相還元法は、例えば錯化剤及び分散剤を含む溶液中で金属イオンを還元剤によって還元させることで金属ナノ粒子を溶液中に析出させるものである。液相還元法によって溶液中に析出した金属ナノ粒子は、溶液中の不純物を除去した後、純水等の溶媒が加えられ、濃度が調整されることで金属ナノインクとして用いられる。 Liquid phase reduction methods are known in which metal nanoparticles are precipitated in solution. In this liquid phase reduction method, for example, metal nanoparticles are reduced in solution by reducing metal ions with a reducing agent in a solution containing a complexing agent and a dispersing agent. The metal nanoparticles precipitated in the solution by the liquid phase reduction method are used as metal nanoinks by removing the impurities in the solution and then adding a solvent such as pure water to adjust the concentration.
 上記溶液中から金属ナノ粒子以外の不純物を除去する方法として、例えば遠心分離機を用いて金属ナノ粒子を遠心分離する方法が発案されている(特開2006-183092号公報参照)。 As a method of removing impurities other than metal nanoparticles from the above-mentioned solution, for example, a method of centrifuging metal nanoparticles using a centrifuge has been proposed (refer to JP-A-2006-183092).
特開2006-183092号公報Unexamined-Japanese-Patent No. 2006-183092
 本開示の一態様に係る銅ナノ粒子の製造方法は、液相還元法によって平均粒子径50nm以下の銅ナノ粒子分散液を調製する調製工程と、上記調製工程後の銅ナノ粒子分散液に凝集剤を添加する添加工程と、上記添加工程後の銅ナノ粒子分散液から液相を遠心分離する分離工程とを備える銅ナノ粒子の製造方法であって、上記銅ナノ粒子分散液に含まれる銅ナノ粒子を自然沈降させる自然沈降工程をさらに備える。 The method for producing copper nanoparticles according to one aspect of the present disclosure comprises a preparation step of preparing a copper nanoparticle dispersion having an average particle diameter of 50 nm or less by a liquid phase reduction method, and aggregation in the copper nanoparticle dispersion after the preparation step. Method of producing copper nanoparticles, comprising: an addition step of adding an agent and a separation step of centrifuging a liquid phase from the copper nanoparticle dispersion after the addition step, wherein the copper contained in the copper nanoparticle dispersion The method further comprises a natural sedimentation step of naturally settling the nanoparticles.
本開示の一実施形態に係る銅ナノ粒子の製造方法を示すフロー図である。It is a flow figure showing a manufacturing method of a copper nanoparticle concerning one embodiment of this indication. 図1の銅ナノ粒子の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the copper nanoparticle of FIG. 図1の銅ナノ粒子の製造方法の分離工程の詳細を示す図である。It is a figure which shows the detail of the isolation | separation process of the manufacturing method of the copper nanoparticle of FIG. 図1の銅ナノ粒子の製造方法の分離工程後の工程を示すフロー図である。It is a flowchart which shows the process after the isolation | separation process of the manufacturing method of the copper nanoparticle of FIG. 図1の銅ナノ粒子の製造方法とは異なる形態に係る銅ナノ粒子の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the copper nanoparticle based on the form different from the manufacturing method of the copper nanoparticle of FIG.
[本開示が解決しようとする課題]
 上記公報に記載の製造方法は、金属ナノ粒子の回収効率を高める点で課題を有する。つまり、液相還元法によって溶液中に析出した金属ナノ粒子は一定の粒子径分布を有している。そのため、この金属ナノ粒子が分散した金属ナノ粒子分散液を遠心分離すると、比較的粒子径の小さい金属ナノ粒子を液相から分離し難い。その結果、この製造方法によっては、比較的粒子径の小さい金属ナノ粒子の回収率を十分に高め難い。
[Problems to be solved by the present disclosure]
The manufacturing method described in the above publication has a problem in that it improves the recovery efficiency of metal nanoparticles. That is, the metal nanoparticles deposited in the solution by the liquid phase reduction method have a constant particle size distribution. Therefore, when the metal nanoparticle dispersion liquid in which the metal nanoparticles are dispersed is centrifuged, it is difficult to separate metal nanoparticles having a relatively small particle size from the liquid phase. As a result, depending on this manufacturing method, it is difficult to sufficiently increase the recovery rate of metal nanoparticles having a relatively small particle size.
 本開示は、このような事情に基づいてなされたものであり、銅ナノ粒子の回収率を十分に高めることができる銅ナノ粒子の製造方法の提供を課題とする。
[本開示の効果]
This indication is made based on such a situation, and makes it a subject to provide the manufacturing method of the copper nanoparticle which can fully raise the recovery of a copper nanoparticle.
[Effect of the present disclosure]
 本開示の銅ナノ粒子の製造方法は、銅ナノ粒子の回収率を十分に高めることができる。 The method of producing copper nanoparticles of the present disclosure can sufficiently enhance the recovery rate of copper nanoparticles.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of the embodiment of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 本開示の一態様に係る銅ナノ粒子の製造方法は、液相還元法によって平均粒子径50nm以下の銅ナノ粒子分散液を調製する調製工程と、上記調製工程後の銅ナノ粒子分散液に凝集剤を添加する添加工程と、上記添加工程後の銅ナノ粒子分散液から液相を遠心分離する分離工程とを備える銅ナノ粒子の製造方法であって、上記銅ナノ粒子分散液に含まれる銅ナノ粒子を自然沈降させる自然沈降工程をさらに備える。 The method for producing copper nanoparticles according to one aspect of the present disclosure comprises a preparation step of preparing a copper nanoparticle dispersion having an average particle diameter of 50 nm or less by a liquid phase reduction method, and aggregation in the copper nanoparticle dispersion after the preparation step. Method of producing copper nanoparticles, comprising: an addition step of adding an agent and a separation step of centrifuging a liquid phase from the copper nanoparticle dispersion after the addition step, wherein the copper contained in the copper nanoparticle dispersion The method further comprises a natural sedimentation step of naturally settling the nanoparticles.
 当該銅ナノ粒子の製造方法は、銅ナノ粒子分散液に含まれる銅ナノ粒子を自然沈降させる自然沈降工程を備えるので、比較的粒子径の大きい銅ナノ粒子を沈降させることができる。また、当該銅ナノ粒子の製造方法は、調製工程後の銅ナノ粒子分散液に凝集剤を添加する添加工程を備えるので、比較的粒子径の小さい銅ナノ粒子を凝集させることができ、この銅ナノ粒子の2次粒子径を十分に大きくすることができる。そのため、当該銅ナノ粒子の製造方法は、上記分離工程で比較的粒子径の大きい銅ナノ粒子を遠心分離すればよいので、銅ナノ粒子の回収率を十分に高めることができる。 The method for producing copper nanoparticles includes a natural sedimentation step of spontaneously settling copper nanoparticles contained in the copper nanoparticle dispersion, so that copper nanoparticles having a relatively large particle size can be sedimented. In addition, since the method for producing copper nanoparticles includes an addition step of adding an aggregating agent to the copper nanoparticle dispersion after the preparation step, copper nanoparticles having a relatively small particle size can be coagulated, and the copper The secondary particle diameter of the nanoparticles can be made sufficiently large. Therefore, in the method of producing copper nanoparticles, copper nanoparticles having a relatively large particle diameter may be centrifuged in the separation step, and therefore the recovery rate of copper nanoparticles can be sufficiently increased.
 当該銅ナノ粒子の製造方法は、上記自然沈降工程を上記調製工程直後に行うとよい。このように、上記自然沈降工程を上記調製工程直後に行うことで、自然沈降後の上澄み液に含まれる比較的1次粒子径の小さい銅ナノ粒子を上記添加工程によって効率的に凝集させることができる。 In the method of producing copper nanoparticles, the natural sedimentation step may be performed immediately after the preparation step. As described above, by performing the natural sedimentation step immediately after the preparation step, copper nanoparticles having a relatively small primary particle diameter contained in the supernatant liquid after natural sedimentation can be efficiently aggregated by the addition step. it can.
 当該銅ナノ粒子の製造方法は、上記自然沈降工程後に、上記銅ナノ粒子分散液の上澄み液を回収する上澄み液回収工程をさらに備え、上記上澄み液回収工程後に、上記添加工程で上記上澄み液に上記凝集剤を添加するとよい。このように、上記自然沈降工程後に、上記銅ナノ粒子分散液の上澄み液を回収する上澄み液回収工程をさらに備え、上記上澄み液回収工程後に、上記添加工程で上記上澄み液に上記凝集剤を添加することによって、従来では廃棄等されていた上澄み液に含まれる比較的1次粒子径の小さい銅ナノ粒子を他の銅ナノ粒子と分離して効率的に遠心分離することができる。従って、銅ナノ粒子の回収率をさらに高めることができる。また、遠心分離後に再分散される銅ナノ粒子の粒子径の均一化を図ることができる。 The method for producing copper nanoparticles further comprises a supernatant liquid recovery step of recovering the supernatant liquid of the copper nanoparticle dispersion liquid after the natural sedimentation step, and after the supernatant liquid recovery step, the supernatant liquid is added in the addition step. The coagulant may be added. Thus, the method further comprises a supernatant liquid collecting step of collecting the supernatant liquid of the copper nanoparticle dispersion liquid after the natural sedimentation step, and adding the coagulant to the supernatant liquid in the adding step after the supernatant liquid collecting step. By doing this, copper nanoparticles having a relatively small primary particle size, which are contained in the supernatant liquid that has conventionally been discarded, can be separated from other copper nanoparticles and efficiently centrifuged. Therefore, the recovery rate of copper nanoparticles can be further enhanced. Moreover, equalization of the particle diameter of the copper nanoparticle re-dispersed after centrifugation can be achieved.
 上記凝集剤としては有機酸塩が好ましい。上記凝集剤が有機酸塩であることによって、上記銅ナノ粒子を容易かつ確実に凝集させることができる。 An organic acid salt is preferable as the coagulant. When the coagulant is an organic acid salt, the copper nanoparticles can be easily and reliably aggregated.
 上記自然沈降工程における自然沈降時間としては、10時間以上が好ましい。このように、上記自然沈降工程における自然沈降時間が上記下限以上であることによって、比較的粒子径の大きい銅ナノ粒子を十分に沈降させることができる。 As natural sedimentation time in the above-mentioned natural sedimentation process, 10 hours or more are preferred. Thus, by setting the natural sedimentation time in the above-mentioned natural sedimentation process to the above-mentioned lower limit or more, copper nanoparticles having a relatively large particle size can be sufficiently sedimented.
 上記添加工程における凝集剤の添加量としては、1.0質量%以上7.5質量%以下が好ましい。このように、上記添加工程における凝集剤の添加量が上記範囲内であることによって、銅ナノ粒子を適切に凝集させることができる。 As addition amount of the coagulant | flocculant in the said addition process, 1.0 mass% or more and 7.5 mass% or less are preferable. Thus, when the addition amount of the coagulant | flocculant in the said addition process is in the said range, copper nanoparticles can be aggregated appropriately.
 なお、本開示において、銅ナノ粒子分散液における銅ナノ粒子の「平均粒子径」とは、レーザ回折法で測定した体積基準の累積分布から算出されるメディアン径をいう。 In the present disclosure, the “average particle diameter” of the copper nanoparticles in the copper nanoparticle dispersion refers to a median diameter calculated from a volume-based cumulative distribution measured by a laser diffraction method.
[本開示の実施形態の詳細]
 以下、本開示に係る銅ナノ粒子の製造方法の各実施形態について図面を参照しつつ詳説する。
Details of Embodiments of the Present Disclosure
Hereinafter, each embodiment of a method for producing copper nanoparticles according to the present disclosure will be described in detail with reference to the drawings.
[第一実施形態]
 図1に示すように、当該銅ナノ粒子の製造方法は、液相還元法によって平均粒子径50nm以下の銅ナノ粒子分散液を調製する調製工程(S01)と、上記銅ナノ粒子分散液に含まれる銅ナノ粒子を自然沈降させる自然沈降工程(S02)と、調製工程(S01)後の銅ナノ粒子分散液に凝集剤を添加する添加工程(S04)と、添加工程(S04)後の銅ナノ粒子分散液から液相を遠心分離する分離工程(S05)とを備える。なお、当該銅ナノ粒子の製造方法によって得られる銅ナノ粒子は、例えばプリント配線板のベースフィルム上に銅ナノ粒子の焼結体層を形成するのに用いられる。
First Embodiment
As shown in FIG. 1, the method for producing the copper nanoparticles comprises a preparation step (S01) of preparing a copper nanoparticle dispersion having an average particle diameter of 50 nm or less by a liquid phase reduction method, and the copper nanoparticle dispersion Natural sedimentation step (S02) for naturally settling copper nanoparticles, and an addition step (S04) for adding an aggregating agent to the copper nanoparticle dispersion after the preparation step (S01), and copper nano particles after the addition step (S04) And a separation step (S05) of centrifuging the liquid phase from the particle dispersion. In addition, the copper nanoparticle obtained by the manufacturing method of the said copper nanoparticle is used, for example for forming the sintered compact layer of copper nanoparticle on the base film of a printed wiring board.
 当該銅ナノ粒子の製造方法は、銅ナノ粒子分散液に含まれる銅ナノ粒子を自然沈降させる自然沈降工程(S02)を備えるので、比較的粒子径の大きい銅ナノ粒子を沈降させることができる。また、当該銅ナノ粒子の製造方法は、調製工程(S01)後の銅ナノ粒子分散液に凝集剤を添加する添加工程(S04)を備えるので、比較的粒子径の小さい銅ナノ粒子を凝集させることができ、この銅ナノ粒子の2次粒子径を十分に大きくすることができる。そのため、当該銅ナノ粒子の製造方法は、分離工程(S05)で比較的粒子径の大きい銅ナノ粒子を遠心分離すればよいので、銅ナノ粒子の回収率を十分に高めることができる。 The method for producing copper nanoparticles includes a natural sedimentation step (S02) for naturally settling copper nanoparticles contained in the copper nanoparticle dispersion, so that copper nanoparticles having a relatively large particle size can be sedimented. Moreover, since the manufacturing method of the said copper nanoparticle is provided with the addition process (S04) which adds a coagulant | flocculant to the copper nanoparticle dispersion liquid after a preparation process (S01), it aggregates the copper nanoparticle of comparatively small particle diameter. The secondary particle diameter of the copper nanoparticles can be made sufficiently large. Therefore, in the method of producing copper nanoparticles, copper nanoparticles having a relatively large particle diameter may be centrifuged in the separation step (S05), so that the recovery rate of copper nanoparticles can be sufficiently increased.
 当該銅ナノ粒子の製造方法は、自然沈降工程(S02)を調製工程(S01)直後に行うことが好ましい。当該銅ナノ粒子の製造方法は、自然沈降工程(S02)後に、上記銅ナノ粒子分散液の上澄み液を回収する上澄み液回収工程(S03)を備える。当該銅ナノ粒子の製造方法は、上澄み液回収工程(S03)後に、添加工程(S04)で上記上澄み液に上記凝集剤を添加する。 It is preferable that the manufacturing method of the said copper nanoparticle performs a natural sedimentation process (S02) immediately after a preparation process (S01). The manufacturing method of the said copper nanoparticle is provided with the supernatant liquid collection process (S03) which collect | recovers the supernatant liquid of the said copper nanoparticle dispersion liquid after a natural sedimentation process (S02). The manufacturing method of the said copper nanoparticle adds the said coagulant | flocculant to the said supernatant liquid at an addition process (S04) after a supernatant liquid collection process (S03).
 つまり、当該銅ナノ粒子の製造方法は、まず調製工程(S01)で調製された銅ナノ粒子分散液に含まれる比較的粒子径の大きい銅ナノ粒子を自然沈降工程(S02)で自然沈降させた後、この自然沈降工程(S02)によって沈降しなかった比較的粒子径の小さい銅ナノ粒子を含む上澄み液を上澄み液回収工程(S03)で回収する。続いて、当該銅ナノ粒子の製造方法は、添加工程(S04)によって、上澄み液回収工程(S03)で回収された上澄み液に凝集剤を添加したうえ、この凝集剤添加後の上澄み液を分離工程(S05)で遠心分離する。 That is, in the method for producing copper nanoparticles, first, the relatively large particle size copper nanoparticles contained in the copper nanoparticle dispersion prepared in the preparation step (S01) were naturally precipitated in the natural sedimentation step (S02) Thereafter, the supernatant liquid containing copper nanoparticles with a relatively small particle size not precipitated in the natural sedimentation step (S02) is collected in the supernatant liquid collection step (S03). Subsequently, in the method for producing copper nanoparticles, a flocculant is added to the supernatant recovered in the supernatant recovery step (S03) in the addition step (S04), and the supernatant after addition of the flocculant is separated. Centrifuge in step (S05).
 当該銅ナノ粒子の製造方法は、自然沈降工程(S02)を調製工程(S01)直後に行うことで、自然沈降後の上澄み液に含まれる比較的1次粒子径の小さい銅ナノ粒子を添加工程(S04)で効率的に凝集させることができる。また、添加工程(S04)で比較的1次粒子径の小さい銅ナノ粒子を選択的に凝集させることで、後述する分離工程(S05)による遠心分離後の銅ナノ粒子の再分散性を高めることができる。 The manufacturing method of the said copper nanoparticle performs the natural sedimentation process (S02) immediately after the preparation process (S01), thereby adding the relatively small primary particle size copper nanoparticles contained in the supernatant liquid after natural sedimentation. It can be made to aggregate efficiently by (S04). In addition, the copper nanoparticles having a relatively small primary particle diameter are selectively aggregated in the addition step (S04) to enhance redispersion of copper nanoparticles after centrifugation in the separation step (S05) described later. Can.
 当該銅ナノ粒子の製造方法は、自然沈降工程(S02)後に、上記銅ナノ粒子分散液の上澄み液を回収する上澄み液回収工程(S03)を備え、上澄み液回収工程(S03)後に、添加工程(S04)で上記上澄み液に上記凝集剤を添加するので、従来では廃棄等されていた上澄み液に含まれる比較的1次粒子径の小さい銅ナノ粒子を他の銅ナノ粒子と分離して効率的に遠心分離することができる。つまり、上記上澄み液に含まれる銅ナノ粒子は粒子径が小さいため、遠心分離し難く、従来では廃棄されることが多かった。これに対し、当該銅ナノ粒子の製造方法は、上記上澄み液に含まれる銅ナノ粒子を選択的に凝集させることで、この銅ナノ粒子の2次粒子径を遠心分離しやすい程度まで大きくすることができる。従って、当該銅ナノ粒子の製造方法は、銅ナノ粒子の回収率をさらに高めることができる。当該銅ナノ粒子の製造方法は、分離工程(S05)によって比較的1次粒子径の小さい銅ナノ粒子を選択的に遠心分離することができるので、遠心分離後に再分散される銅ナノ粒子の粒子径の均一化を図ることができる。また、比較的粒子径の小さい銅ナノ粒子を用いて上記焼結体層を形成する場合、焼結体層の緻密化を図ることができるので、この焼結体層を有するプリント配線板の品質を高めることができる。 The method for producing the copper nanoparticles comprises a supernatant liquid collecting step (S03) for collecting the supernatant liquid of the copper nanoparticle dispersion liquid after the natural sedimentation step (S02), and an adding step after the supernatant liquid collecting step (S03) Since the flocculant is added to the supernatant in (S04), copper nanoparticles having a relatively small primary particle size contained in the supernatant, which was conventionally discarded, can be separated from other copper nanoparticles for efficiency. Can be centrifuged. That is, the copper nanoparticles contained in the above-mentioned supernatant liquid are small in particle diameter and thus difficult to be centrifugally separated, and conventionally they were often discarded. On the other hand, in the method for producing copper nanoparticles, by selectively aggregating the copper nanoparticles contained in the supernatant liquid, the secondary particle diameter of the copper nanoparticles is increased to such an extent that it is easy to centrifugally separate. Can. Therefore, the method of producing copper nanoparticles can further enhance the recovery rate of copper nanoparticles. In the method of producing copper nanoparticles, copper nanoparticles having a relatively small primary particle size can be selectively centrifuged by the separation step (S05), so that the particles of copper nanoparticles are redispersed after centrifugation. The diameter can be made uniform. Moreover, when forming the said sintered compact layer using a comparatively small particle diameter copper nanoparticle, since densification of a sintered compact layer can be achieved, the quality of the printed wiring board which has this sintered compact layer Can be enhanced.
 以下、図2を参照しつつ、当該銅ナノ粒子の製造方法における各工程の詳細について説明する。 Hereinafter, the details of each step in the method for producing copper nanoparticles will be described with reference to FIG.
(調製工程)
 S01では、例えば水に銅ナノ粒子を形成する銅イオンのもとになる水溶性の銅化合物と、分散剤及び錯化剤とを溶解させると共に、還元剤を加えて一定時間銅イオンを還元反応させる。この液相還元法で製造される銅ナノ粒子は、形状が球状又は粒状で揃っており、しかも平均粒子径が50nm以下の微細な粒子とすることができる。上記銅イオンのもとになる水溶性の銅化合物としては、硝酸銅三水和物(II)(Cu(NO・3HO)、硫酸銅(II)五水和物(CuSO・5HO)等が挙げられる。
(Preparation process)
In S01, for example, a water-soluble copper compound which is a source of copper ions forming copper nanoparticles in water, a dispersing agent and a complexing agent are dissolved, and a reducing agent is added to reduce copper ions for a certain period of time Let The copper nanoparticles produced by this liquid phase reduction method can be made into fine particles having a spherical or granular shape and uniform, and having an average particle diameter of 50 nm or less. Examples of water-soluble copper compounds that are the basis of the above copper ions include copper nitrate trihydrate (II) (Cu (NO 3 ) 2 · 3H 2 O), copper sulfate (II) pentahydrate (CuSO 4 )・ 5H 2 O) etc. may be mentioned.
 上記還元剤としては、液相(水溶液)の反応系において、銅イオンを還元及び析出させることができる種々の還元剤を用いることができる。この還元剤としては、例えば水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、3価のチタンイオンや2価のコバルトイオン等の遷移金属のイオン、アスコルビン酸、グルコースやフルクトース等の還元性糖類、エチレングリコールやグリセリン等の多価アルコールなどが挙げられる。中でも、還元剤としては3価のチタンイオンが好ましい。なお、3価のチタンイオンを還元剤とする液相還元法は、チタンレドックス法という。チタンレドックス法では、3価のチタンイオンが4価に酸化される際の酸化還元作用によって銅イオンを還元し、銅ナノ粒子を析出させる。このチタンレドックス法によると、微細かつ均一な粒子径を有する銅ナノ粒子を形成しやすい。 As the above-mentioned reducing agent, various reducing agents capable of reducing and precipitating copper ions can be used in the reaction system of liquid phase (aqueous solution). Examples of the reducing agent include ions of transition metals such as sodium borohydride, sodium hypophosphite, hydrazine, trivalent titanium ion and divalent cobalt ion, ascorbic acid, reducing saccharides such as glucose and fructose, Examples thereof include polyhydric alcohols such as ethylene glycol and glycerin. Among them, trivalent titanium ions are preferable as the reducing agent. The liquid phase reduction method using a trivalent titanium ion as a reducing agent is referred to as a titanium redox method. In the titanium redox method, copper ions are reduced by the redox action when trivalent titanium ions are oxidized to tetravalent ions, to precipitate copper nanoparticles. According to this titanium redox method, copper nanoparticles having a fine and uniform particle size can be easily formed.
 上記分散剤は、周辺部材の劣化防止の観点より、硫黄、リン、ホウ素、ハロゲン及びアルカリを含まないものが好ましい。好ましい分散剤としては、ポリエチレンイミン、ポリビニルピロリドン等の窒素含有高分子分散剤、ポリアクリル酸、カルボキシメチルセルロース等の分子中にカルボキシ基を有する炭化水素系の高分子分散剤、ポバール(ポリビニルアルコール)、スチレン-マレイン酸共重合体、オレフィン-マレイン酸共重合体、1分子中にポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等の極性基を有する高分子分散剤などを挙げることができる。 The dispersant preferably contains no sulfur, phosphorus, boron, halogen and alkali from the viewpoint of preventing the deterioration of peripheral members. Preferred dispersants include nitrogen-containing polymeric dispersants such as polyethylenimine and polyvinylpyrrolidone, hydrocarbon-based polymeric dispersants having a carboxy group in the molecule such as polyacrylic acid and carboxymethylcellulose, Poval (polyvinyl alcohol), Examples thereof include polymer dispersants having a polar group such as styrene-maleic acid copolymer, olefin-maleic acid copolymer, and copolymers having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule.
 上記錯化剤としては、例えばクエン酸ナトリウム、酒石酸ナトリウム、酢酸ナトリウム、グルコン酸、チオ硫酸ナトリウム、アンモニア、エチレンジアミン四酢酸等が挙げられ、これらの1種又は2種以上を用いることができる。中でも、上記錯化剤としてはクエン酸ナトリウムが好ましい。 Examples of the complexing agent include sodium citrate, sodium tartrate, sodium acetate, gluconic acid, sodium thiosulfate, ammonia, ethylenediaminetetraacetic acid and the like, and one or more of these may be used. Among them, sodium citrate is preferable as the complexing agent.
 銅ナノ粒子の粒子径を調整するには、銅化合物、分散剤及び還元剤の種類並びに配合割合を調整すると共に、銅化合物を還元反応させる際に、攪拌速度、温度、時間、pH等を調整すればよい。反応系のpHの下限としては7が好ましく、反応系のpHの上限としては13が好ましい。反応系のpHを上記範囲とすることで、微小な粒子径の銅ナノ粒子を得ることができる。このときpH調整剤を用いることで、反応系のpHを上記範囲に容易に調整することができる。このpH調整剤としては、塩酸、硫酸、硝酸、水酸化ナトリウム、炭酸ナトリウム、アンモニア等の一般的な酸又はアルカリが使用できるが、特に周辺部材の劣化を防止するために、アルカリ金属、アルカリ土類金属、ハロゲン元素、硫黄、リン、ホウ素等の不純物を含まない硝酸及び炭酸ナトリウムが好ましい。 In order to adjust the particle size of the copper nanoparticles, while adjusting the kind and blending ratio of the copper compound, the dispersant and the reducing agent, and adjusting the stirring speed, temperature, time, pH, etc. when reducing the copper compound. do it. The lower limit of the pH of the reaction system is preferably 7, and the upper limit of the pH of the reaction system is preferably 13. By setting the pH of the reaction system to the above-mentioned range, copper nanoparticles with a minute particle diameter can be obtained. At this time, the pH of the reaction system can be easily adjusted to the above range by using a pH adjuster. As this pH adjuster, general acids or alkalis such as hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, sodium carbonate, ammonia and the like can be used, but in particular, alkali metals and alkaline earths to prevent deterioration of peripheral members. Nitric acid and sodium carbonate which do not contain impurities such as metalloids, halogen elements, sulfur, phosphorus and boron are preferred.
 銅ナノ粒子分散液における銅ナノ粒子の含有割合としては、例えば0.1質量%以上5.0質量%以下が好ましい。 As a content rate of the copper nanoparticle in a copper nanoparticle dispersion liquid, 0.1 mass% or more and 5.0 mass% or less are preferable, for example.
 銅ナノ粒子分散液における銅ナノ粒子の平均粒子径は、上述のように50nm以下である。銅ナノ粒子分散液における銅ナノ粒子は、例えば5nm以上35nm以下の範囲に粒子径分布のピークを有する。この銅ナノ粒子の粒子径分布のピークは1つであってもよく2以上であってもよい。 The average particle size of the copper nanoparticles in the copper nanoparticle dispersion is 50 nm or less as described above. The copper nanoparticles in the copper nanoparticle dispersion liquid have a particle size distribution peak, for example, in the range of 5 nm or more and 35 nm or less. The peak of the particle size distribution of the copper nanoparticles may be one or two or more.
(自然沈降工程)
 S02では、S01で調製された銅ナノ粒子分散液を容器中で所定時間放置することによりこの銅ナノ粒子分散液に含まれる銅ナノ粒子の一部を自然沈降させる。S02は、例えば空気雰囲気下において室温(25℃)で行うことができる。S02により、比較的粒子径の大きい銅ナノ粒子が容器の底部に沈降する。これにより、図2に示すように、容器の底部には沈殿液(以下、「第1沈殿液P1」という)が滞留する。一方、S02では、粒子径が20nm以下程度の比較的粒子径の小さい銅ナノ粒子は沈降せず上澄み液(以下、「第1上澄み液L1」という)中に分散される。
(Natural sedimentation process)
In S02, a portion of the copper nanoparticles contained in the copper nanoparticle dispersion is naturally precipitated by leaving the copper nanoparticle dispersion prepared in S01 in a container for a predetermined time. S02 can be performed, for example, at room temperature (25 ° C.) in an air atmosphere. By S02, relatively large particle size copper nanoparticles are sedimented at the bottom of the container. Thereby, as shown in FIG. 2, a precipitation liquid (hereinafter, referred to as "first precipitation liquid P1") is retained at the bottom of the container. On the other hand, in S02, copper nanoparticles having a relatively small particle size of about 20 nm or less in particle size are not sedimented and dispersed in the supernatant (hereinafter, referred to as “first supernatant L1”).
 S02における自然沈降後の第1上澄み液L1には、例えばS01で調製された銅ナノ粒子の全量に対する50質量%以上80質量%以下程度の銅ナノ粒子が含有される。つまり、S01で調製された全銅ナノ粒子に対するS02における沈降割合としては、例えば20質量%以上50質量%以下とすることができる。また、S01で調製された銅ナノ粒子分散液の全量に対する第1上澄み液L1の体積割合は85体積%以上97体積%以下程度である。 The first supernatant liquid L1 after spontaneous sedimentation in S02 contains, for example, about 50% by mass or more and 80% by mass or less of copper nanoparticles with respect to the total amount of copper nanoparticles prepared in S01. That is, as a sedimentation ratio in S02 with respect to all the copper nanoparticles prepared by S01, it can be set as 20 mass% or more and 50 mass% or less, for example. The volume ratio of the first supernatant L1 to the total amount of the copper nanoparticle dispersion prepared in S01 is about 85% by volume or more and 97% by volume or less.
 S02における自然沈降時間の下限としては、10時間が好ましく、12時間がより好ましく、18時間がさらに好ましい。上記自然沈降時間が上記下限に満たないと、比較的粒子径の大きい銅ナノ粒子を十分に沈降させることができないおそれがある。これに対し、上記自然沈降時間が上記下限以上であることで、比較的粒子径の大きい銅ナノ粒子を十分に沈降させることができ、第1上澄み液L1中に比較的粒子径の小さい銅ナノ粒子を集中的に分散させやすい。なお、上記自然沈降時間の上限としては、自然沈降時間が不要に長くなることを防止する点から、例えば72時間とすることができる。 As a minimum of natural sedimentation time in S02, 10 hours are preferred, 12 hours are more preferred, and 18 hours are still more preferred. If the above-mentioned natural sedimentation time is less than the above-mentioned minimum, there is a possibility that copper nanoparticles with a comparatively large particle diameter can not fully be settled. On the other hand, when the above-mentioned natural sedimentation time is more than the above-mentioned lower limit, copper nanoparticles with relatively large particle diameter can be sufficiently precipitated, and copper nano particles with relatively small particle diameter in the first supernatant L1. It is easy to disperse particles intensively. The upper limit of the natural sedimentation time can be, for example, 72 hours, in order to prevent the natural sedimentation time from becoming unnecessarily long.
(上澄み液回収工程)
 S03では、S02後の第1上澄み液L1を別の容器に回収する。
(Supernatant liquid collection process)
In S03, the first supernatant L1 after S02 is collected in another container.
(添加工程)
 S04では、S03で回収した第1上澄み液L1に凝集剤Fを添加する。S04で添加する凝集剤Fとしては、例えば有機酸塩、アルカリ金属塩、多価金属塩等が挙げられ、有機酸塩が好ましい。中でも、クエン酸塩が好ましく、クエン酸ナトリウムが特に好ましい。凝集剤Fが有機酸塩であることによって、銅ナノ粒子を容易かつ確実に凝集させることができる。有機酸塩、中でもクエン酸塩が好ましい理由は、必ずしも明らかではないが、銅ナノ粒子分散液のイオン濃度が上昇することで銅ナノ粒子表面のゼータ電位が低下すためと考えられる。つまり、上記有機酸塩は、例えば酸化還元電位を調整することで銅ナノ粒子の凝集を促進するものではない。なお、凝集剤Fは、遠心分離後の銅ナノ粒子に付着することでこの銅ナノ粒子の焼結性等に悪影響を与える場合がある。一方、クエン酸ナトリウムは、液相還元法としてチタンレドックス法を用いた場合に通常錯化剤として使用されるものである。そのため、このクエン酸ナトリウムを凝集剤Fとして用いることで、凝集剤Fの添加量を抑制することができると共に、遠心分離後に得られる銅ナノ粒子のコンタミネーションのおそれを抑制することができる。また、凝集剤Fとしてクエン酸ナトリウムを用いることで、分離工程(S05)による遠心分離後の銅ナノ粒子の再分散性を向上することができ、これにより緻密な焼結体層を形成しやすい。
(Addition process)
In S04, an aggregating agent F is added to the first supernatant L1 recovered in S03. As the coagulant | flocculant F added by S04, an organic acid salt, an alkali metal salt, a polyvalent metal salt etc. are mentioned, for example, An organic acid salt is preferable. Among them, citrate is preferred, and sodium citrate is particularly preferred. By the flocculant F being an organic acid salt, copper nanoparticles can be easily and reliably flocculated. The reason why the organic acid salt, particularly citrate is preferable is not necessarily clear, but is considered to be because the zeta potential of the copper nanoparticle surface is lowered by the increase of the ion concentration of the copper nanoparticle dispersion. That is, the organic acid salt does not promote aggregation of copper nanoparticles by, for example, adjusting the redox potential. In addition, the coagulant | flocculant F may exert a bad influence on the sintering property of this copper nanoparticle, etc. by adhering to the copper nanoparticle after centrifugation. On the other hand, sodium citrate is generally used as a complexing agent when using a titanium redox method as a liquid phase reduction method. Therefore, by using this sodium citrate as the coagulant F, the amount of addition of the coagulant F can be suppressed, and the possibility of contamination of copper nanoparticles obtained after centrifugation can be suppressed. In addition, by using sodium citrate as the coagulant F, redispersion of copper nanoparticles after centrifugal separation in the separation step (S05) can be improved, which facilitates formation of a dense sintered body layer. .
 S04における凝集剤Fの添加量(凝集剤F添加前の第1上澄み液L1の全量を100質量%とした場合の添加量)の下限としては、1.0質量%が好ましく、3.0質量%がより好ましい。一方、S04における凝集剤Fの添加量の上限としては、7.5質量%が好ましく、5.0質量%がより好ましい。凝集剤Fの添加量が上記下限に満たないと、銅ナノ粒子を十分に凝集させることができないおそれがある。逆に、凝集剤Fの添加量が上記上限を超えると、銅ナノ粒子が凝集しすぎることで、分離工程(S05)による遠心分離後の銅ナノ粒子の再分散性が不十分となるおそれがある。 The lower limit of the addition amount of coagulant F in S04 (addition amount when the total amount of first supernatant L1 before addition of coagulant F is 100 mass%) is preferably 1.0 mass%, 3.0 mass % Is more preferable. On the other hand, as a maximum of addition amount of flocculant F in S04, 7.5 mass% is preferred, and 5.0 mass% is more preferred. If the addition amount of the aggregating agent F is less than the above lower limit, there is a possibility that the copper nanoparticles can not be sufficiently aggregated. On the contrary, when the addition amount of the coagulant F exceeds the above-mentioned upper limit, there is a possibility that the re-dispersibility of the copper nanoparticles after centrifugal separation in the separation step (S05) may be insufficient because the copper nanoparticles aggregate too much. is there.
(分離工程)
 図3に示すように、S05は、上澄み液除去工程(S11)と、遠心分離工程(S12)とを有する。
(Separation process)
As shown in FIG. 3, S05 has a supernatant fluid removal step (S11) and a centrifugation step (S12).
〈上澄み液除去工程〉
 S11では、まずS04による凝集剤F添加後の第1上澄み液L1を所定時間放置することでこの第1上澄み液L1に含まれる銅ナノ粒子を自然沈降させる。これにより、図2に示すように、第1上澄み液L1は、銅ナノ粒子が沈殿した沈殿液(以下、「第2沈殿液P2」という)と、この第2沈殿液P2上の上澄み液(以下、「第2上澄み液L2」という)とに分離される。S11では、銅ナノ粒子が自然沈降した後の第2上澄み液L2を除去する。
<Supernatant fluid removal process>
In S11, first, the first supernatant liquid L1 after addition of the aggregating agent F in S04 is allowed to stand for a predetermined time, whereby the copper nanoparticles contained in the first supernatant liquid L1 are naturally precipitated. Thereby, as shown in FIG. 2, the first supernatant L1 is a precipitate obtained by depositing copper nanoparticles (hereinafter referred to as "the second precipitate P2"), and a supernatant on the second precipitate P2 (the second precipitate P2). Hereinafter, it is separated into "the second supernatant L2". In S11, the second supernatant liquid L2 after spontaneous precipitation of copper nanoparticles is removed.
 S11における自然沈降は、例えば空気雰囲気下において室温(25℃)で行うことができる。また、S11における自然沈降時間の下限としては、3時間が好ましく、15時間がより好ましい。上記自然沈降時間が上記下限に満たないと、銅ナノ粒子を十分に沈降させることができないおそれがある。なお、上記自然沈降時間の上限としては、自然沈降時間が不要に長くなることを防止する点から、例えば72時間とすることができる。 Spontaneous sedimentation in S11 can be performed, for example, at room temperature (25 ° C.) in an air atmosphere. Moreover, as a minimum of the natural sedimentation time in S11, 3 hours are preferable and 15 hours are more preferable. If the above-mentioned natural sedimentation time is less than the above-mentioned minimum, there is a possibility that copper nanoparticles can not fully be settled. The upper limit of the natural sedimentation time can be, for example, 72 hours, in order to prevent the natural sedimentation time from becoming unnecessarily long.
〈遠心分離工程〉
 S12では、S11で第2上澄み液L2を除去した後の第2沈殿液P2から液相を遠心分離する。具体的には、S12では、第2沈殿液P2を銅ナノ粒子を含む銅ナノ粒子濃縮液(以下、「第1銅ナノ粒子濃縮液C1」という)と液相(以下、「第1液相D1という)とに遠心分離する。S12は、公知の遠心分離機を用いて行うことができる。当該銅ナノ粒子の製造方法は、S12によって比較的1次粒子径の小さい銅ナノ粒子を効率的に回収することができる。
Centrifugation process
In S12, the liquid phase is centrifuged from the second precipitated liquid P2 after removing the second supernatant liquid L2 in S11. Specifically, in S12, the second precipitation liquid P2 is a copper nanoparticle concentrated liquid containing copper nanoparticles (hereinafter referred to as “first copper nanoparticle concentrated liquid C1”) and a liquid phase (hereinafter referred to as “first liquid phase” S12 can be carried out using a known centrifugal separator The method for producing the copper nanoparticles can efficiently use copper nanoparticles having a relatively small primary particle size by S12. Can be collected.
 S12における遠心加速度の下限としては、20000Gが好ましく、50000Gがより好ましい。上記遠心加速度が上記下限に満たないと、銅ナノ粒子を十分に遠心分離することができないおそれがある。なお、上記遠心加速度の上限としては、特に限定されないが、例えば120000Gとすることができる。上記遠心加速度が上記上限を超えると、遠心分離後の第1銅ナノ粒子濃縮液C1の濃度が高くなり過ぎて、この第1銅ナノ粒子濃縮液C1が容器等に固着し歩留まりが低下するおそれがある。 As a lower limit of the centrifugal acceleration in S12, 20000 G is preferable, and 50000 G is more preferable. If the centrifugal acceleration is less than the lower limit, copper nanoparticles may not be sufficiently centrifuged. The upper limit of the above-mentioned centrifugal acceleration is not particularly limited, but can be, for example, 120000 G. If the centrifugal acceleration exceeds the upper limit, the concentration of the first concentrated copper nanoparticle solution C1 after centrifugation may be too high, and the first concentrated copper nanoparticle solution C1 may be fixed to a container or the like to reduce the yield. There is.
 S12における遠心分離後の第1銅ナノ粒子濃縮液C1の固形分濃度の下限としては、80質量%が好ましく、85質量%がより好ましい。上記固形分濃度が上記下限に満たないと、この第1銅ナノ粒子濃縮液C1を用いて得られる銅ナノインク中における不純物を十分に除去できないおそれがある。一方、上記固形分濃度の上限としては、特に限定されないが、例えば95質量%とすることができる。 As a minimum of solid content concentration of the 1st copper nanoparticle concentrate C1 after centrifugation in S12, 80 mass% is preferred and 85 mass% is more preferred. If the solid content concentration is less than the above-mentioned lower limit, there is a possibility that the impurities in the copper nanoink obtained by using this first copper nanoparticle concentrate C1 can not be sufficiently removed. On the other hand, the upper limit of the solid content concentration is not particularly limited, and can be, for example, 95% by mass.
 図4に示すように、当該銅ナノ粒子の製造方法は、S12の後に、再遠心分離工程(S06)、水添工程(S07)及び攪拌工程(S08)をさらに備えていてもよい。S06~S08は、当該銅ナノ粒子の製造方法の銅ナノ粒子洗浄工程を構成する。また、当該銅ナノ粒子の製造方法は、S06~S08のうちの一部の工程のみを備えていてもよく、例えばS07等、特定の工程を複数回行ってもよい。S06では、S12で分離された第1銅ナノ粒子濃縮液C1を超遠心分離機によって超遠心分離する。S07では、S06で分離された銅ナノ粒子濃縮液に水、典型的には純水を添加する。当該銅ナノ粒子の製造方法はS07を複数回行う場合、一旦添加された水を除去した後に、再度水を添加する。S08では、S07で水が添加された銅ナノ粒子濃縮液に超音波を照射したり、この銅ナノ粒子濃縮液を高圧ホモジナイザー、ミキサー等の公知の装置で処理することで、S04による凝集剤Fの添加によって凝集した銅ナノ粒子を液中に再分散させる。S08による再分散後の銅ナノ粒子の平均粒子径の上限としては、25nmが好ましく、20nmがより好ましい。上記平均粒子径が上記上限より大きいと、銅ナノ粒子が径の大きな粒子を起点に凝集し、分散性のない凝集物が発生するおそれがある。一方、S08による再分散後の銅ナノ粒子の平均粒子径の下限としては、製造容易性の観点から、例えば5nmが好ましく、10nmがより好ましい。なお、当該銅ナノ粒子の製造方法は、S08によって液中に銅ナノ粒子が再分散した分散液を粒子濃度を調整したうえ銅ナノインクとして用いてもよく、S08後の分散液をさらに1又は複数回遠心分離し、この遠心分離後の分散液を粒子濃度を調整したうえ銅ナノインクとして用いてもよい。 As shown in FIG. 4, the method for producing copper nanoparticles may further include a re-centrifugation step (S06), a hydrogenation step (S07) and a stirring step (S08) after S12. S06 to S08 constitute a copper nanoparticle cleaning step of the method for producing the copper nanoparticles. In addition, the method for producing the copper nanoparticles may include only a part of the steps of S06 to S08, and a specific step such as S07 may be performed multiple times. At S06, the first copper nanoparticle concentrate C1 separated at S12 is ultracentrifuged by an ultracentrifuge. In S07, water, typically pure water, is added to the copper nanoparticle concentrate separated in S06. In the method of producing the copper nanoparticles, when S07 is performed a plurality of times, water is added again after the water once added is removed. In S08, the copper nanoparticle concentrate to which water has been added in S07 is irradiated with ultrasonic waves, or the copper nanoparticle concentrate is treated with a known apparatus such as a high-pressure homogenizer, mixer, etc. The aggregated copper nanoparticles are re-dispersed in the liquid by the addition of As an upper limit of the average particle diameter of the copper nanoparticle after re-dispersion by S08, 25 nm is preferable and 20 nm is more preferable. If the average particle size is larger than the above upper limit, copper nanoparticles may be aggregated starting from particles having a large size, and there may be generated aggregates having no dispersibility. On the other hand, the lower limit of the average particle size of the copper nanoparticles after redispersion by S08 is, for example, preferably 5 nm, and more preferably 10 nm, from the viewpoint of ease of production. In addition, the manufacturing method of the said copper nanoparticle may use the dispersion liquid which the copper nanoparticle re-dispersed in the liquid by S08 after adjusting particle concentration, and also using it as copper nano ink, and one or more dispersion liquid after S08 After centrifugation several times, the dispersion after centrifugation may be used as a copper nanoink after adjusting the particle concentration.
 また、当該銅ナノ粒子の製造方法は、図2に示すように、S03で第1上澄み液L1を回収した後に残った第1沈殿液P1についても、第2銅ナノ粒子濃縮液C2と第2液相D2とに遠心分離してもよい。また、この遠心分離後の銅ナノ粒子濃縮液について、上述の銅ナノ粒子洗浄工程を行い、銅ナノインクを製造してもよい。 In addition, as shown in FIG. 2, the method for producing the copper nanoparticles also relates to the second copper nanoparticle concentrate C2 and the second precipitate P1 that remains after the first supernatant L1 is recovered in S03. It may be centrifuged to the liquid phase D2. In addition, the above-described copper nanoparticle washing step may be performed on the copper nanoparticle concentrate after the centrifugal separation to produce a copper nanoink.
[第二実施形態]
 図5の銅ナノ粒子の製造方法は、液相還元法によって平均粒子径50nm以下の銅ナノ粒子分散液を調製する調製工程(S21)と、S21で調製された銅ナノ粒子分散液に含まれる銅ナノ粒子を自然沈降させる自然沈降工程(S22)と、自然沈降工程(S22)後の銅ナノ粒子分散液に凝集剤を添加する添加工程(S23)と、添加工程(S23)後の銅ナノ粒子分散液から液相を遠心分離する分離工程(S24)とを備える。
Second Embodiment
The method for producing copper nanoparticles of FIG. 5 is included in the preparation step (S21) of preparing a copper nanoparticle dispersion having an average particle diameter of 50 nm or less by a liquid phase reduction method, and the copper nanoparticle dispersion prepared in S21. Spontaneous sedimentation step (S22) for naturally settling copper nanoparticles, addition step (S23) for adding an aggregating agent to the copper nanoparticle dispersion after natural sedimentation step (S22), copper nano particles after the addition step (S23) And a separation step (S24) of centrifuging the liquid phase from the particle dispersion.
 当該銅ナノ粒子の製造方法は、自然沈降工程(S22)後の銅ナノ粒子分散液から上澄み液を回収することなくこの銅ナノ粒子分散液にそのまま凝集剤を添加する以外、図1の銅ナノ粒子の製造方法と同様の方法で実施することができる。 The copper nano-particles production method in FIG. 1 is the same as the copper nano-particles shown in FIG. 1 except that the aggregating agent is directly added to the copper nanoparticle dispersion without recovering the supernatant liquid from the copper nanoparticle dispersion after the natural sedimentation step (S22). It can carry out by the method similar to the manufacturing method of particle | grains.
 当該銅ナノ粒子の製造方法は、S21で調製された銅ナノ粒子分散液が容器中で上澄み液と沈殿液とに分離された状態で凝集剤を添加する。当該銅ナノ粒子の製造方法は、この構成によっても、比較的粒子径の小さい銅ナノ粒子を凝集させたうえで遠心分離することができるので、銅ナノ粒子の回収率を十分に高めることができる。 The manufacturing method of the said copper nanoparticle adds an coagulant | flocculant in the state in which the copper nanoparticle dispersion liquid prepared by S21 was isolate | separated into the supernatant liquid and the precipitation liquid in a container. According to the method for producing copper nanoparticles, copper nanoparticles having a relatively small particle size can be aggregated and then centrifuged after this configuration, so that the recovery rate of copper nanoparticles can be sufficiently increased. .
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
Other Embodiments
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is not limited to the configuration of the above embodiment, but is shown by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 例えば上記自然沈降工程は、必ずしも上記添加工程の前に行う必要はない。つまり、当該銅ナノ粒子の製造方法は、銅ナノ粒子分散液に凝集剤を添加した後に、銅ナノ粒子分散液に含まれる銅ナノ粒子を自然沈降させてもよい。但し、凝集後の銅ナノ粒子の再分散性を高める点からは、銅ナノ粒子を自然沈降させた後に銅ナノ粒子分散液に凝集剤を添加することが好ましい。 For example, the natural sedimentation step does not necessarily have to be performed before the addition step. That is, in the method for producing copper nanoparticles, the copper nanoparticles contained in the copper nanoparticle dispersion may be naturally precipitated after the coagulant is added to the copper nanoparticle dispersion. However, from the viewpoint of enhancing the redispersibility of copper nanoparticles after aggregation, it is preferable to add an aggregating agent to the copper nanoparticle dispersion liquid after naturally settling the copper nanoparticles.
 以下、実施例によって本開示をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail by way of examples, but the present invention is not limited to these examples.
[No.1]
(調製工程)
 反応タンクに還元剤としての三塩化チタン溶液800g(0.1M)、pH調整剤としての炭酸ナトリウム500g、錯化剤としてのクエン酸ナトリウム900g、及び分散剤としてのポリビニルピロリドン(分子量30000)10gを純水10Lに溶解し、この水溶液を35℃に保温した。この水溶液に同温度で保温した硝酸銅三水和物100g(0.04M)の水溶液を撹拌しながら2秒で投入して、銅粒子25gを析出させ銅ナノ粒子分散液を調製した。
[No. 1]
(Preparation process)
In a reaction tank, 800 g (0.1 M) of titanium trichloride solution as a reducing agent, 500 g of sodium carbonate as a pH adjuster, 900 g of sodium citrate as a complexing agent, and 10 g of polyvinylpyrrolidone (molecular weight 30,000) as a dispersing agent It was dissolved in 10 L of pure water, and the aqueous solution was kept at 35 ° C. An aqueous solution of 100 g (0.04 M) of copper nitrate trihydrate kept at the same temperature was added to this aqueous solution in 2 seconds while stirring to precipitate 25 g of copper particles, thereby preparing a copper nanoparticle dispersion.
(自然沈降工程)
 この銅ナノ粒子分散液を室温(25℃)で18時間静置し、比較的粒子径の大きな粒子を自然沈降させた。この自然沈降した銅ナノ粒子(以下「自然沈降粒子」ともいう)の平均粒子径及び粒子径分布をマイクロトラック・ベル社製の「NanoTrac Wave」を用いて測定したところ、平均粒子径は25nm、粒子径分布は10nm以上35nm以下であった。また、銅ナノ粒子分散液に含まれる銅ナノ粒子全量に対する上澄み液に含まれる銅ナノ粒子の割合(以下「分離割合」ともいう)は60質量%であった。
(Natural sedimentation process)
The copper nanoparticle dispersion was allowed to stand at room temperature (25 ° C.) for 18 hours to naturally precipitate relatively large particles. The average particle size and particle size distribution of the naturally precipitated copper nanoparticles (hereinafter also referred to as “naturally precipitated particles”) are measured using “NanoTrac Wave” manufactured by Microtrac Bell, and the average particle size is 25 nm, The particle size distribution was 10 nm or more and 35 nm or less. Further, the ratio of copper nanoparticles contained in the supernatant liquid to the total amount of copper nanoparticles contained in the copper nanoparticle dispersion (hereinafter also referred to as “separation ratio”) was 60% by mass.
(上澄み液回収工程)
 上記自然沈降工程後の銅ナノ粒子分散液の上澄み液を分離回収した。上記調製工程で調製された銅ナノ粒子分散液の全量に対する上澄み液の体積割合は85体積%以上95体積%以下であった。
(Supernatant liquid collection process)
The supernatant liquid of the copper nanoparticle dispersion liquid after the above-mentioned natural sedimentation process was separated and collected. The volume ratio of the supernatant liquid to the total amount of the copper nanoparticle dispersion liquid prepared in the above preparation step was 85% by volume or more and 95% by volume or less.
(添加工程)
 上記上澄み液回収工程で回収した上澄み液に凝集剤としてクエン酸ナトリウムを上澄み液100質量%に対して4.0質量%の割合で添加した。
(Addition process)
As a flocculant, sodium citrate was added at a ratio of 4.0% by mass to 100% by mass of the supernatant to the supernatant recovered in the above-mentioned supernatant recovery step.
(分離工程)
 まず、上記凝集剤添加後の上澄み液を室温(25℃)で15時間静置し、この上澄み液中の銅ナノ粒子を自然沈降させた。この上澄み液中の銅ナノ粒子の全量に対する自然沈降しなかった銅ナノ粒子の割合(未回収率)は10質量%であった。次に、この自然沈降後の上澄み液を分離し廃棄した。さらに、自然沈降した銅ナノ粒子を含む沈殿液を、遠心分離機を用い、銅ナノ粒子を含む銅ナノ粒子濃縮液と液相とに遠心加速度50000Gで遠心分離した。
(Separation process)
First, the supernatant after addition of the flocculant was allowed to stand at room temperature (25 ° C.) for 15 hours to naturally precipitate copper nanoparticles in the supernatant. The ratio (unrecovered rate) of copper nanoparticles which did not spontaneously settle was 10% by mass with respect to the total amount of copper nanoparticles in the supernatant. Next, the supernatant liquid after natural sedimentation was separated and discarded. Furthermore, the precipitate liquid containing the naturally precipitated copper nanoparticles was centrifuged at a centrifugal acceleration of 50000 G into a copper nanoparticle concentrated liquid containing copper nanoparticles and a liquid phase using a centrifuge.
(銅ナノ粒子洗浄工程)
 続いて、上記遠心分離された銅ナノ粒子濃縮液を日立工機株式会社製のロータ「P70AT」を用い、50000rpmの超遠心で1時間、最大遠心加速度70000Gで、銅ナノ粒子濃縮液及び液相に超遠心分離した。さらに、超遠心分離後の銅ナノ粒子濃縮液を純水80gで2回水洗し銅粉末を得た。
(Copper nanoparticle cleaning process)
Subsequently, using the rotor "P70AT" manufactured by Hitachi Koki Co., Ltd., the above-mentioned centrifuged copper nanoparticle concentrate was subjected to ultracentrifugation at 50,000 rpm for 1 hour at a maximum centrifugal acceleration of 70000 G, copper nanoparticle concentrate and liquid phase Ultracentrifugation. Furthermore, the copper nanoparticle concentrate after ultracentrifugation was washed twice with 80 g of pure water to obtain a copper powder.
(銅ナノインクの製造)
 上記銅ナノ粒子洗浄工程後の銅粉末に純水を加えた後、濃度を30質量%に調整して銅ナノインクを製造した。
(Production of copper nano ink)
After adding pure water to the copper powder after the said copper nanoparticle washing | cleaning process, density | concentration was adjusted to 30 mass%, and the copper nano ink was manufactured.
[No.2~No.24]
 上記自然沈降工程における自然沈降時間と、上記添加工程における凝集剤の種類及び添加量と、上記分離工程における自然沈降時間及び遠心加速度を表1の通りとした以外、No.1と同様の手順によって銅ナノインクを製造した。No.2~No.24における自然沈降粒子の平均粒子径及び粒子径分布、分離割合、並びに未回収率を表1に示す。
[No. 2 to No. 24]
Table 1 shows the natural sedimentation time in the natural sedimentation process, the type and amount of the coagulant added in the addition process, and the natural sedimentation time and centrifugal acceleration in the separation process as shown in Table 1. The copper nano ink was manufactured by the procedure similar to 1. No. 2 to No. The average particle size and particle size distribution of the naturally precipitated particles, the separation ratio, and the unrecovered rate at 24 are shown in Table 1.
[No.25]
 No.1と同様の調製工程を行い、自然沈降工程の自然沈降時間を24時間とし、この自然沈降工程後の上澄み液回収工程によって上澄み液と分離された沈殿液について遠心分離を行い、この遠心分離後の銅ナノ粒子を洗浄して得られた銅粉末に純水を加え、濃度を30質量%に調整して銅ナノインクを製造した。No.25における自然沈降粒子の平均粒子径及び粒子径分布、並びに分離割合を表1に示す。
[No. 25]
No. The same preparation step as 1 is carried out, the natural sedimentation time of the natural sedimentation step is 24 hours, and the precipitate separated from the supernatant liquid by the supernatant liquid recovery step after the natural sedimentation step is centrifuged, and after this centrifugal separation The pure water was added to the copper powder obtained by wash | cleaning the copper nanoparticle of 1., the density | concentration was adjusted to 30 mass%, and the copper nano ink was manufactured. No. The average particle size and particle size distribution of the naturally precipitated particles at 25 and the separation ratio are shown in Table 1.
[No.26~No.28]
 No.1と同様の調製工程を行い、自然沈降工程の自然沈降時間を24時間とし、この自然沈降工程後の上澄み液回収工程で分離回収された上澄み液の全量をNo.1と同様の遠心分離機を用い、銅ナノ粒子を含む銅ナノ粒子濃縮液と液相とに表1の遠心加速度で遠心分離した。続いて、上記遠心分離された銅ナノ粒子濃縮液をNo.1と同様に洗浄し、洗浄後の銅粉末に純水を加えた後、濃度を30質量%に調整して銅ナノインクを製造した。No.26~No.28における自然沈降粒子の平均粒子径及び粒子径分布、分離割合、並びに未回収率を表1に示す。
[No. 26 to No. 28]
No. No. 1 was carried out, the natural sedimentation time of the natural sedimentation process was 24 hours, and the total volume of the supernatant liquid separated and collected in the supernatant liquid collection process after the natural sedimentation process was No.1. Using the same centrifugal separator as in 1, the copper nanoparticle concentrate and the liquid phase containing copper nanoparticles were centrifuged at the centrifugal acceleration shown in Table 1. Subsequently, the centrifugally separated copper nanoparticle concentrate was subjected to No. After washing similarly to 1 and adding pure water to the copper powder after washing, concentration was adjusted to 30 mass%, and a copper nano ink was manufactured. No. 26 to No. The average particle size and particle size distribution, separation ratio, and non-recovery rate of the naturally precipitated particles at 28 are shown in Table 1.
[No.29~No.39]
 上記自然沈降工程における自然沈降時間と、上記添加工程における凝集剤の種類及び添加量と、上記分離工程における自然沈降時間とを表1の通りとした以外、No.1と同様の手順によって銅ナノインクを製造した。No.29~No.39における自然沈降粒子の平均粒子径及び粒子径分布、分離割合、並びに未回収率を表1に示す。
[No. 29 to No. 39]
The natural sedimentation time in the natural sedimentation step, the type and amount of addition of the flocculant in the addition step, and the natural sedimentation time in the separation step are as shown in Table 1; The copper nano ink was manufactured by the procedure similar to 1. No. 29 to No. The average particle size and particle size distribution of the naturally precipitated particles at 39, the separation ratio, and the non-recovery rate are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<銅ナノ粒子の回収率>
 上澄み液回収工程で回収した上澄み液に含まれる銅ナノ粒子の全量に対するこの上澄み液を用いて得られた銅ナノインクに含まれる銅ナノ粒子の回収率を表2に示す。なお、No.25では上澄み液回収工程で分離回収された上澄み液は廃棄しているため、調製工程によって得られた銅ナノ粒子の全量に対する沈殿液を遠心分離することで得られた銅ナノインクに含まれる銅ナノ粒子の割合を回収率とした。
Recovery rate of copper nanoparticles
The recovery rate of copper nanoparticles contained in the copper nanoink obtained using this supernatant liquid with respect to the total amount of copper nanoparticles contained in the supernatant liquid collected in the supernatant liquid recovery step is shown in Table 2. No. Since the supernatant fluid separated and recovered in the supernatant fluid recovery step is discarded in No. 25, the copper nano-ink contained in the copper nano ink obtained by centrifuging the precipitation solution with respect to the total amount of copper nanoparticles obtained in the preparation step The percentage of particles was taken as the recovery rate.
<銅ナノ粒子の品質>
 上記超遠心分離後の銅ナノ粒子濃縮液に純水を添加した状態で、銅ナノ粒子の品質を目視によって以下の基準で評価した。この評価結果を表2に示す。
A:銅ナノ粒子の凝集物が視認されなかった。
B:銅ナノ粒子の凝集物が視認された。
C:銅ナノ粒子の変質が確認された。
<Quality of copper nanoparticles>
The quality of the copper nanoparticles was visually evaluated on the basis of the following criteria in the state which added the pure water to the copper nanoparticle concentrate after the said ultracentrifugation. The evaluation results are shown in Table 2.
A: Aggregates of copper nanoparticles were not visible.
B: Aggregates of copper nanoparticles were visually recognized.
C: Deterioration of copper nanoparticles was confirmed.
<不純物>
 No.1~No.39によって得られた銅ナノインクについて凝集剤に由来する不純物の有無をサーモフィッシャーサイエンティフィック社製のイオンクロマトグラフィーシステム「ICS-2100」及び同社のICP発光分析装置「iCAP6300」を用いて測定し、以下の基準で評価した。この評価結果を表2に示す。
A:不純物が検出されなかった。
B:不純物が僅かに検出された。
C:不純物が大量に検出された。
なお、No.34及びNo.38については、銅ナノ粒子が変質したため不純物の測定ができなかった。
<Impurity>
No. 1 to No. The presence or absence of impurities derived from the flocculant is measured for the copper nanoink obtained by No. 39 using an ion chromatography system “ICS-2100” manufactured by Thermo Fisher Scientific Co., Ltd. and an ICP emission analyzer “iCAP6300” manufactured by the same company. The following criteria were evaluated. The evaluation results are shown in Table 2.
A: Impurity was not detected.
B: Slight impurities were detected.
C: A large amount of impurities were detected.
No. 34 and no. As for No. 38, the impurities could not be measured because the copper nanoparticles were altered.
<平均粒子径>
 マイクロトラック・ベル社製の「NanoTrac Wave」を用い、No.1~No.39によって得られた銅ナノインクに含まれる銅ナノ粒子の平均粒子径(D50)を測定した。この測定結果を表2に示す。なお、No.34及びNo.38については、銅ナノ粒子が変質したため銅ナノ粒子の平均粒子径の測定ができなかった。
<Average particle size>
Using "NanoTrac Wave" manufactured by Microtrack Bell Inc., no. 1 to No. The average particle diameter (D50) of the copper nanoparticles contained in the copper nanoink obtained by 39 was measured. The measurement results are shown in Table 2. No. 34 and no. As for No. 38, since the copper nanoparticles were altered, it was not possible to measure the average particle size of the copper nanoparticles.
<粒子径分布>
 マイクロトラック・ベル社製の「NanoTrac Wave」を用い、No.1~No.39によって得られた銅ナノインクに含まれる銅ナノ粒子の粒子径分布を測定した。
この測定結果を表2に示す。なお、No.34及びNo.38については、銅ナノ粒子が変質したため銅ナノ粒子の粒子径分布の測定ができなかった。
<Particle size distribution>
Using "NanoTrac Wave" manufactured by Microtrack Bell Inc., no. 1 to No. The particle size distribution of the copper nanoparticles contained in the copper nanoink obtained by 39 was measured.
The measurement results are shown in Table 2. No. 34 and no. As for No. 38, since the copper nanoparticles were altered, the particle size distribution of the copper nanoparticles could not be measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価結果]
 表1及び表2から分かるように、No.1、No.5~No.10、No.13、No.14、No.16~No.18、No.20、No.21については、凝集剤がクエン酸塩であり、凝集剤の添加量が4質量%以上であり、分離工程における自然沈降時間が3時間超であることから、銅ナノ粒子の回収率が90%以上となっている。中でも、凝集剤の添加量が10.0質量%未満であるNo.1、No.5、No.6、No.8~No.10、No.13、No.14、No.16~No.18、No.20、No.21については、銅ナノインク中に不純物が検出されておらず、コンタミネーションが防止されている。このうち、No.8については、部分的に凝集物が発生しているが、これは自然沈降工程における自然沈降時間が不十分であることで再分散性のない凝集物が発生したためと考えられる。なお、No.15は、凝集剤がクエン酸塩であり、凝集剤の添加量が4質量%以上であり、分離工程における自然沈降時間が3時間超であるが、遠心分離加速度が不十分であるため、粒子径の小さい銅ナノ粒子を十分に回収することができず、回収率が90%未満となっている。
[Evaluation results]
As can be seen from Table 1 and Table 2, no. 1, No. 5 to No. 10, no. 13, No. 14, no. 16 to No. 18, no. 20, no. With regard to No. 21, since the coagulant is citrate, the addition amount of the coagulant is 4% by mass or more, and the natural sedimentation time in the separation step is more than 3 hours, the recovery rate of copper nanoparticles is 90% It is above. Among them, No. 1 in which the addition amount of the coagulant is less than 10.0% by mass. 1, No. 5, no. 6, No. 8 to No. 10, no. 13, No. 14, no. 16 to No. 18, no. 20, no. As for No. 21, no impurities were detected in the copper nanoink, and contamination was prevented. Of these, no. As for No. 8, although aggregates were partially generated, it is considered that aggregates having no redispersibility were generated due to insufficient natural sedimentation time in the natural sedimentation process. No. No. 15 is a coagulant that is citrate, the addition amount of the coagulant is 4% by mass or more, and the natural sedimentation time in the separation step is more than 3 hours, but the centrifugal acceleration is insufficient; The small diameter copper nanoparticles can not be recovered sufficiently, and the recovery rate is less than 90%.
 これに対し、No.25に示すように、凝集剤添加工程を有さず、上澄み液回収工程で分離回収された上澄み液を廃棄する従来の方法を用いた場合、粒子径の小さい銅ナノ粒子を十分に回収し難いため、回収率が低くなると共に、銅ナノインクに含まれる銅ナノ粒子の平均粒子径が比較的大きくなっている。 On the other hand, no. As shown in 25, when using the conventional method of discarding the supernatant fluid separated and recovered in the supernatant fluid recovery step without having the flocculant addition step, it is difficult to sufficiently recover the copper nanoparticles having a small particle diameter. Therefore, the recovery rate is lowered, and the average particle size of the copper nanoparticles contained in the copper nanoink is relatively large.
 また、上澄み液回収工程で分離回収された上澄み液の全量について凝集剤を添加することなく遠心分離を行ったNo.26~No.28は、粒子径の小さい銅ナノ粒子を十分に遠心分離することが困難で回収率が低くなっている。なお、No.27及びNo.28では、遠心分離加速度を大きくすることで比較的粒子径の小さい銅ナノ粒子も回収できているが、遠心分離処理時間が長くなり処理効率を十分に高めることができなかった。 In addition, No. 1 was centrifuged without adding a coagulant to the whole amount of the supernatant fluid separated and recovered in the supernatant fluid recovery step. 26 to No. In No. 28, it is difficult to sufficiently centrifuge small-diameter copper nanoparticles, and the recovery rate is low. No. 27 and No. In No. 28, although copper nanoparticles having a relatively small particle diameter could be recovered by increasing the centrifugal acceleration, the centrifugal treatment time was too long to sufficiently increase the treatment efficiency.
C1 第1銅ナノ粒子濃縮液
C2 第2銅ナノ粒子濃縮液
D1 第1液相
D2 第2液相
F 凝集剤
L1 第1上澄み液
L2 第2上澄み液
P1 第1沈殿液
P2 第2沈殿液
C1 1st copper nanoparticle concentrate C2 2nd copper nanoparticle concentrate D1 1st liquid phase D2 2nd liquid phase F flocculant L1 1st supernatant liquid L2 2nd supernatant liquid P1 1st precipitation liquid P2 2nd precipitation liquid

Claims (6)

  1.  液相還元法によって平均粒子径50nm以下の銅ナノ粒子分散液を調製する調製工程と、
     上記調製工程後の銅ナノ粒子分散液に凝集剤を添加する添加工程と、
     上記添加工程後の銅ナノ粒子分散液から液相を遠心分離する分離工程と
     を備える銅ナノ粒子の製造方法であって、
     上記銅ナノ粒子分散液に含まれる銅ナノ粒子を自然沈降させる自然沈降工程をさらに備える銅ナノ粒子の製造方法。
    Preparing a copper nanoparticle dispersion having an average particle size of 50 nm or less by a liquid phase reduction method;
    An addition step of adding an aggregating agent to the copper nanoparticle dispersion after the preparation step;
    And a separation step of centrifuging the liquid phase from the copper nanoparticle dispersion after the addition step, the method comprising the steps of:
    The manufacturing method of copper nanoparticles further provided with the natural sedimentation process which carries out the natural sedimentation of the copper nanoparticles contained in the said copper nanoparticle dispersion liquid.
  2.  上記自然沈降工程を上記調製工程直後に行う請求項1に記載の銅ナノ粒子の製造方法。 The method for producing copper nanoparticles according to claim 1, wherein the natural sedimentation step is performed immediately after the preparation step.
  3.  上記自然沈降工程後に、上記銅ナノ粒子分散液の上澄み液を回収する上澄み液回収工程をさらに備え、
     上記上澄み液回収工程後に、上記添加工程で上記上澄み液に上記凝集剤を添加する請求項2に記載の銅ナノ粒子の製造方法。
    The method further comprises a supernatant liquid collecting step of collecting the supernatant liquid of the copper nanoparticle dispersion liquid after the natural sedimentation step,
    The method for producing copper nanoparticles according to claim 2, wherein the aggregating agent is added to the supernatant liquid in the adding step after the supernatant liquid collecting step.
  4.  上記凝集剤が有機酸塩である請求項1、請求項2又は請求項3に記載の銅ナノ粒子の製造方法。 The method for producing copper nanoparticles according to claim 1, wherein the flocculant is an organic acid salt.
  5.  上記自然沈降工程における自然沈降時間が10時間以上である請求項1から請求項4のいずれか1項に記載の銅ナノ粒子の製造方法。 The method for producing copper nanoparticles according to any one of claims 1 to 4, wherein the natural sedimentation time in the natural sedimentation step is 10 hours or more.
  6.  上記添加工程における凝集剤の添加量が1.0質量%以上7.5質量%以下である請求項1から請求項5のいずれか1項に記載の銅ナノ粒子の製造方法。 The method for producing copper nanoparticles according to any one of claims 1 to 5, wherein the addition amount of the aggregating agent in the addition step is 1.0% by mass or more and 7.5% by mass or less.
PCT/JP2018/030738 2017-10-30 2018-08-21 Method for producing copper nanoparticles WO2019087530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019549885A JP7136117B2 (en) 2017-10-30 2018-08-21 Method for producing copper nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-209519 2017-10-30
JP2017209519 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019087530A1 true WO2019087530A1 (en) 2019-05-09

Family

ID=66333473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030738 WO2019087530A1 (en) 2017-10-30 2018-08-21 Method for producing copper nanoparticles

Country Status (2)

Country Link
JP (1) JP7136117B2 (en)
WO (1) WO2019087530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697680A (en) * 2019-10-18 2020-01-17 龙岩学院 Heteroatom-doped porous carbon material with high specific surface area and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116711A (en) * 1985-11-14 1987-05-28 Fujikura Ltd Production of metallic powder
JP2008138286A (en) * 2006-11-09 2008-06-19 Furukawa Electric Co Ltd:The Fine particle dispersion, and method for producing fine particle dispersion
WO2013054471A1 (en) * 2011-10-11 2013-04-18 新日鐵住金株式会社 Method for granulation of sintering raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116711A (en) * 1985-11-14 1987-05-28 Fujikura Ltd Production of metallic powder
JP2008138286A (en) * 2006-11-09 2008-06-19 Furukawa Electric Co Ltd:The Fine particle dispersion, and method for producing fine particle dispersion
WO2013054471A1 (en) * 2011-10-11 2013-04-18 新日鐵住金株式会社 Method for granulation of sintering raw material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110697680A (en) * 2019-10-18 2020-01-17 龙岩学院 Heteroatom-doped porous carbon material with high specific surface area and preparation method thereof

Also Published As

Publication number Publication date
JP7136117B2 (en) 2022-09-13
JPWO2019087530A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP4698648B2 (en) Method for producing cubic shaped copper nanoparticles
TWI389751B (en) Silver micro powder, silver ink and silver paint, and the manufacturing method thereof
JP4449676B2 (en) Method for producing copper fine particles
JP5252843B2 (en) Silver ink and its manufacturing method
WO2018062478A1 (en) Epsilon-type iron oxide magnetic particle, method for manufacturing same, magnetic powder formed from magnetic particles, magnetic paint, and magnetic recording medium
JP2013541640A (en) Silver particles and method for producing the same
KR20130103540A (en) Copper powder for conductive paste and method for manufacturing same
JP2009120949A (en) Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
US20170081526A1 (en) Conductive Pastes Using Bimodal Particle Size Distribution
JP3984534B2 (en) Copper powder for conductive paste and method for producing the same
JP2012526191A (en) Silver particles and method for producing the same
JP2007084860A (en) Method for producing flake silver powder and flake silver powder produced by the method
JP2012525506A (en) Silver particles and method for producing the same
JP5857703B2 (en) Silver powder
JP7136117B2 (en) Method for producing copper nanoparticles
JP2018127712A (en) Method for producing copper nanoink
CN114082938B (en) Metal particle and preparation method and application thereof
JP7075262B2 (en) Core-shell particles and their use
JP2008156720A (en) Method for producing silver nanoparticle
JP2020029611A (en) Production method of copper nanoparticle
JP4433743B2 (en) Method for producing copper fine particles
JP2008050661A (en) Method for producing copper powder
JP6659712B2 (en) Powder for conductive material, ink for conductive material, conductive paste, and method for producing powder for conductive material
JP2007284715A (en) Method for producing nickel nanoparticle, and nickel nanoparticle
JP7003668B2 (en) Manufacturing method of copper nano ink and copper nano ink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549885

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873142

Country of ref document: EP

Kind code of ref document: A1