WO2019085744A1 - 显示基板、显示面板和显示装置 - Google Patents

显示基板、显示面板和显示装置 Download PDF

Info

Publication number
WO2019085744A1
WO2019085744A1 PCT/CN2018/110491 CN2018110491W WO2019085744A1 WO 2019085744 A1 WO2019085744 A1 WO 2019085744A1 CN 2018110491 W CN2018110491 W CN 2018110491W WO 2019085744 A1 WO2019085744 A1 WO 2019085744A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrostrictive
layer
sub
display substrate
Prior art date
Application number
PCT/CN2018/110491
Other languages
English (en)
French (fr)
Inventor
孙树萌
张明辉
朴仁镐
陈维涛
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18872551.9A priority Critical patent/EP3706174A4/en
Priority to US16/472,341 priority patent/US10797104B2/en
Publication of WO2019085744A1 publication Critical patent/WO2019085744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • Embodiments of the present disclosure relate to a display substrate, a display panel, and a display device.
  • the surface display technology refers to the display technology with the curvature of the display panel, which can enhance the user's visual experience. Because the curved display substrate can be closer to the user to the user's curved edge, the same viewing angle can be realized with the central position of the screen. Provides a broader view and at the same time allows users to experience better viewing.
  • Flexible display technology refers to display technology in which the display panel is made of a soft material and is variable in flexibility.
  • At least one embodiment of the present disclosure provides a display substrate including: a plurality of pixel units arranged in an array, wherein each of the pixel units includes: a first electrode including a first electrode body and connected to the first electrode body a first electrostrictive layer, and a first driving electrode electrically connected to the first electrostrictive layer, the first electrostrictive layer being configured to elongate under an electrical signal of the first driving electrode Or shortening and driving the first electrode body to be elongated or shortened.
  • the first driving electrode includes at least one first sub driving electrode pair, and two of the first sub driving electrode pairs are respectively disposed on the first electrophoretic The opposite ends of the stretchable layer in the first direction, the first electrostrictive layer being configured to elongate or shorten in the first direction under an electrical signal of the first drive electrode.
  • the first electrostrictive layer includes a plurality of first sub-electrostrictive strips spaced apart on a surface of one side of the first electrode body.
  • the first electrode body includes a plurality of first sub-electrode strips
  • the first electrostrictive layer includes a plurality of first sub-electrostrictive strips, the plurality of first sub-electrode strips And a plurality of first sub-electrostrictive strips are alternately and disposed in the same layer.
  • the first electrode body comprises a flexible electrode material.
  • the first electrode body comprises a transparent electrode material and the first electrostrictive layer comprises a transparent electrostrictive material.
  • the transparent electrostrictive material comprises a lead zirconate titanate material.
  • the first driving electrode and the first electrode body are insulated from each other, and the first electrostrictive layer and the first electrode body are insulated from each other.
  • each pixel unit further includes: a second electrode; and a light emitting layer disposed between the first electrode and the second electrode, the second electrode including a second electrode body, a second electrostrictive layer to which the second electrode body is connected, and a second driving electrode electrically connected to the second electrostrictive layer, the second electrostrictive layer being configured to be at the second driving electrode
  • the electrical signal is elongated or shortened and drives the second electrode body to elongate or shorten.
  • the second driving electrode includes at least one second sub-driving electrode pair, and two of the second sub-driving electrode pairs are respectively disposed on the second electro-electrode The opposite ends of the stretchable layer in the second direction, the second electrostrictive layer being configured to elongate or shorten in a second direction under an electrical signal of the second drive electrode.
  • the first direction is the same as the second direction.
  • the second electrode body includes a plurality of second sub-electrode strips
  • the second electrostrictive layer includes a plurality of second sub-electrostrictive strips, the plurality of second sub-electrode strips And a plurality of second sub-electrostrictive strips are alternately and disposed in the same layer.
  • each of the pixel units further includes: a hole injection layer disposed on a side of the first electrode adjacent to the light emitting layer; and a hole transport layer disposed adjacent to the hole injection layer One side of the light-emitting layer; an electron injection layer disposed on a side of the second electrode adjacent to the light-emitting layer; and an electron transport layer disposed on a side of the electron injection layer adjacent to the light-emitting layer.
  • the second electrode body comprises a flexible electrode material.
  • the second electrode body comprises a transparent electrode material and the second electrostrictive layer comprises a transparent electrostrictive material.
  • At least one embodiment of the present disclosure further provides a display panel, comprising the display substrate according to any one of the above, further comprising: a first substrate; a second substrate; and the first substrate a relative arrangement; and a support structure disposed between the first substrate and the second substrate, the plurality of pixel units being disposed on the first substrate and the second substrate
  • the support structure is disposed around the pixel unit, and the support structure is connected to the light emitting layer of each of the pixel units to support each of the pixel units, the pixel unit and the first substrate and the substrate
  • the second substrate substrates are respectively spaced apart.
  • the support structure includes a pixel defining structure.
  • At least one embodiment of the present disclosure also provides a display device comprising the display substrate of any of the above.
  • FIG. 1 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of a first electrode according to an embodiment of the present disclosure
  • 3A is a cross-sectional view of a first electrode taken along line AA' of FIG. 2 according to an embodiment of the present disclosure
  • 3B is a cross-sectional view of another first electrode along the AA' direction of FIG. 2 according to an embodiment of the present disclosure
  • 3C is a cross-sectional view of another first electrode along the AA' direction of FIG. 2 according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of another display substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic plan view of another second electrode according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of operation of a pixel unit bending according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of another operation of bending a pixel unit according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic view showing the operation of bending a display panel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic view showing a bending of a display panel according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic view showing another display panel according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic view showing the bending of another display panel according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic plan view of an electrode structure according to an embodiment of the present disclosure.
  • FIG. 15 is a cross-sectional view of the electrode structure taken along line BB' of FIG. 14 according to an embodiment of the present disclosure.
  • the inventor of the present application noticed that the curvature of the usual curved display panel is fixed, that is, the optimal viewing position of the curved display panel is relatively fixed, and when the user is in other viewing positions, the viewing is observed.
  • the experience will drop dramatically.
  • the flexible display panel can be completely, stretched, or even folded under the action of an external force.
  • the bending curvature of the flexible display panel is often uncontrollable, resulting in poor experience. Therefore, the inventors of the present application have thought of combining the curved display technology with the flexible display technology to adjust the curvature of the curved display panel so that the optimal bending curvature can be adjusted according to the position of the user to achieve an optimal viewing experience.
  • Embodiments of the present disclosure provide a display substrate, a display panel, and a display device.
  • the display substrate includes: a plurality of pixel units arranged in an array, each pixel unit includes: a first electrode, including a first electrode body, a first electrostrictive layer connected to the first electrode body, and the first electrostriction
  • the first electrically driven layer of the layer is electrically connected, and the first electrostrictive layer is configured to elongate or shorten under the electrical signal of the first driving electrode and to drive the first electrode body to elongate or shorten.
  • the display substrate can cause the first electrode body to elongate or contract at least by controlling the first driving electrode to apply an electrical signal to the first electrostrictive layer, so that the curvature of the display substrate can be changed overall or locally to achieve Surface display and control of the curvature of the display substrate.
  • FIG. 1 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • the display substrate includes a plurality of pixel units arranged in an array.
  • FIG. 1 shows only one pixel unit 200, which includes a first electrode 210 as shown in FIG.
  • FIG. 2 is a schematic plan view showing a first electrode according to an embodiment of the present disclosure.
  • the first electrode 210 includes a first electrode body 211, a first electrostrictive layer 212 connected to the first electrode body 211, and a first driving electrode 213 connected to the first electrostrictive layer 212.
  • An electrostrictive layer 212 can be elongated or shortened under the electrical signal of the first driving electrode 213 and drives the first electrode body 211 to be elongated or shortened. It should be noted that, as described in the foregoing embodiment, the first electrode body 211 and the first electrostrictive layer 212 may be disposed in the same layer or in different layers. In addition, when the first driving electrode does not apply an electrical signal, the display substrate may be a flat display substrate, so that a planar display can be performed.
  • the first electrode body may be elongated or contracted by controlling the first driving electrode to apply an electrical signal to the first electrostrictive layer. Therefore, the elongation or contraction of the first electrode body can drive each pixel unit to bend, thereby causing the curvature of the display substrate to be changed integrally or locally to realize the curved surface display. Since the extent to which the first electrostrictive layer is elongated or contracted can be controlled by the voltage or current on the first drive electrode, the curvature of the curved curvature of the display substrate can also be controlled by the voltage or current on the first drive electrode. Thereby, the display substrate can adjust the bending curvature of the display substrate according to the viewing position of the user and other needs, thereby optimizing the display effect.
  • the display substrate since the respective first electrodes can be individually controlled and bent, the local curvature of the display substrate can be finely adjusted to achieve various display effects such as a wave effect. Moreover, the display substrate does not need to additionally increase the curvature curvature adjustment structure, and has the advantages of being light and thin, and having low process difficulty.
  • the first drive electrode 213 includes at least one first sub-drive electrode pair 2130, including first sub-drive electrodes 2131, 2132, two of each first sub-drive electrode pair 2130
  • the first sub-drive electrodes 2131 and 2132 may be respectively disposed at opposite ends of the first electrostrictive layer 211 in the first direction.
  • the first electrostrictive layer 212 may be elongated or shortened in the first direction under the electrical signal of the first driving electrode 213.
  • the first electrostrictive layer 212 includes a plurality of first sub-electrostrictive strips 2125; and a plurality of first sub-electrostrictive strips 2125 are spaced apart from the first electrode body 211.
  • FIG. 3A is a cross-sectional view of the first electrode taken along the line AA' in FIG. 2 according to an embodiment of the present disclosure. As shown in FIG. 3A, a plurality of first sub-electrostrictive strips 2125 are spaced apart from each other on a surface of one side of the first electrode body 211.
  • the first sub-electrostrictive strip 2125 extends in a first direction, and the plurality of first sub-electrostrictive strips 2125 are spaced apart in a direction perpendicular to the first direction.
  • the first electrode body 211 includes a plurality of first sub-electrode strips 2115
  • the first electrostrictive layer 212 includes a plurality of first sub-electrostrictive strips 2125.
  • 3B is a cross-sectional view of another first electrode along the AA' direction of FIG. 2 according to an embodiment of the present disclosure.
  • a plurality of first sub-electrode strips 2115 and a plurality of The first sub-electrostrictive strips 2125 are alternately and disposed in the same layer.
  • the additionally provided first electrostrictive layer does not increase the thickness of the first electrode, which facilitates the thinning of the display substrate.
  • FIG. 3C illustrates a cross-sectional view of another first electrode along the AA' direction of FIG. 2 according to an embodiment of the present disclosure.
  • an insulating layer 190 may be disposed between the first electrode body 211 and the first electrostrictive layer 212 to insulate the first electrode body 211 from the first electrostrictive layer 212 .
  • the insulating layer 190 disposed between the first electrode body 211 and the first electrostrictive layer 212 may also insulate the first electrode body 211 from the first driving electrode 213.
  • the embodiments of the present disclosure include, but are not limited to, the first driving electrode and the first electrode body are insulated from each other by using other methods, and the first electrostrictive layer and the first electrode body are insulated from each other.
  • the electrical signal on the first driving electrode and the electrical signal on the first electrode body can be prevented from interfering with each other.
  • the first driving electrode 213 may be disposed at both ends of the first electrostrictive layer 212, that is, the first driving electrode 213 and the first electrostrictive layer 212 may be in the same layer. Settings. Therefore, the additionally provided first driving electrode does not increase the thickness of the first electrode, which facilitates the thinning of the display substrate.
  • the first electrode body comprises a flexible electrode material. That is, the first electrode body is a flexible electrode so that it can be easily elongated or shortened when the first electrostrictive layer is elongated or shortened.
  • the first electrode body may comprise a carbon-based flexible material such as graphene.
  • a carbon-based flexible material such as graphene.
  • embodiments of the present disclosure include, but are not limited to, the first electrode body may also employ other flexible electrode materials.
  • the first electrode body includes a transparent electrode material
  • the first electrostrictive layer includes a transparent electrostrictive material, that is, the first electrode body and the first electrostrictive layer may be transparent Therefore, it is possible to avoid affecting the aperture ratio or light transmittance of the display substrate.
  • the first electrode body may be an Indium Tin Oxide (ITO) material.
  • ITO Indium Tin Oxide
  • the transparent electrostrictive material comprises a lead zirconate titanate (PLZT) material.
  • PZT lead zirconate titanate
  • FIG. 4 is a schematic structural diagram of another display substrate according to an embodiment of the present disclosure.
  • each pixel unit 200 further includes a second electrode 220 and a light emitting layer 230 disposed between the first electrode 210 and the second electrode 220 .
  • the second electrode 220 may adopt a structure similar to that of the first electrode 210. For details, refer to the related description of the first electrode.
  • each pixel unit 200 further includes a hole injection layer 240 disposed on a side of the first electrode 210 adjacent to the light emitting layer 230, and a hole transport layer 250 disposed in the hole.
  • the injection layer 240 is adjacent to one side of the light-emitting layer 230; the electron injection layer 270 is disposed on a side of the second electrode 220 adjacent to the light-emitting layer 230; and the electron transport layer 260 is disposed on a side of the electron injection layer 270 adjacent to the light-emitting layer 230.
  • FIG. 5 is a schematic plan view showing a second electrode according to an embodiment of the present disclosure.
  • the second electrode 220 includes a second electrode body 221, a second electrostrictive layer 222 connected to the second electrode body 221, and a second driving electrode 223 connected to the second electrostrictive layer 222.
  • the second electrostrictive layer 222 can be elongated or shortened under the electrical signal of the second driving electrode 223 and drives the second electrode body 221 to be elongated or shortened.
  • the display substrate can extend the first electrode body and the second electrode body by controlling the first driving electrode and the second driving electrode to respectively apply electrical signals to the first electrostrictive layer and the second electrostrictive layer. Or shrink.
  • the elongation or contraction of the first electrode body and the second electrode body can drive the display substrate to bend and control the curvature of the curved surface for surface display, and can also adjust the bending of the display substrate according to the viewing position of the user and other needs. Curvature to optimize the display.
  • the second electrode body 221 and the second electrostrictive layer 222 may be disposed in the same layer or in different layers.
  • the display substrate may be a flat display substrate so that planar display can be performed.
  • the second electrostrictive layer 222 may be elongated or shortened in the second direction under the electrical signal of the second driving electrode 223, and the second driving electrode 223 includes at least one second.
  • the sub-drive electrode pair 2230, including the second sub-drive electrodes 2231, 2232, are respectively disposed at opposite ends of the second electrostrictive layer 222 in the second direction.
  • the first direction and the second direction can be the same direction.
  • the second electrode body 221 includes a plurality of second sub-electrode strips 2215
  • the second electrostrictive layer 222 includes a plurality of second sub-electrostrictive strips 2225, a plurality of The two sub-electrode strips 2215 are alternately disposed with the plurality of second sub-electrostrictive strips 2225.
  • the disclosure includes, but is not limited to, the second electrode body and the second electrostrictive layer may be disposed in different layers. For details, refer to the related description of the first electrode.
  • the alternately disposed first sub-electrode strips are connected to adjacent sides of the first sub-electrostrictive strip to achieve connection of the first electrode body and the first electrostrictive layer, thereby When the electrostrictive layer is elongated or shortened, it is convenient to drive the first electrode body to be elongated or shortened.
  • the alternately disposed second sub-electrode strips are connected to adjacent side faces of the second sub-electrostrictive strips, thereby achieving connection of the second electrode body and the second electrostrictive layer, thereby forming the second electrostrictive layer When extending or shortening, it is convenient to drive the second electrode body to elongate or shorten.
  • FIG. 6 and FIG. 7 are schematic diagrams showing the operation of a pixel unit bending according to an embodiment of the present disclosure.
  • the pixel unit can be driven to bend toward the side where the first electrode 210 is located.
  • the pixel unit can be driven to bend to the side where the second electrode 220 is located.
  • FIG. 8 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • the display panel includes the display substrate described in any of the above. As shown in FIG. 8 , the display panel further includes a first substrate 310 , a second substrate 320 disposed opposite to the first substrate 310 , and a first substrate 310 and a second substrate 320 .
  • the support structure 330 is disposed between and around each of the pixel units 200.
  • the pixel unit 200 is disposed between the first substrate 310 and the second substrate 320.
  • the light emitting layer 230 of each pixel unit 200 is connected to the support structure 330, and the pixel unit 200 and the first substrate 310 and the second substrate are connected.
  • the substrates 320 are spaced apart from each other.
  • the pixel unit 200 is not in contact with the first base substrate 310 and the second base substrate 320, so that the pixel unit can be bent by the elongation or shortening of the first electrode and the second electrode.
  • the present disclosure includes but is not limited thereto, and the pixel unit may also be disposed in contact with the first substrate and the second substrate.
  • FIG. 8 and FIG. 9 are schematic diagrams showing another operation of bending a display panel according to an embodiment of the present disclosure.
  • the display substrate As shown in FIG. 8, when the first electrode 210 is shortened by controlling the first driving electrode, and the second driving electrode is controlled to extend the second electrode 220, the display substrate can be driven to the first electrode 210. One side is curved. As shown in FIG. 9, when the first electrode 210 that controls the first driving electrode is elongated, and the second electrode 220 that controls the second driving electrode is shortened, the display substrate can be driven to bend to the side where the second electrode 220 is located. .
  • support structure 330 can be a pixel-defining structure to define individual pixel units or sub-pixel units of the display substrate.
  • the first substrate substrate comprises a flexible substrate material and the second substrate substrate comprises a flexible substrate material.
  • flexible substrate material flexibility includes plastics, ultra-thin glass, paper materials, biocomposite films.
  • the support structure includes a flexible support material.
  • FIG. 10 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 10 shows three pixel units 200.
  • the display substrate can be entirely or locally changed to realize curved surface display.
  • FIG. 11 is a schematic view showing a bending of a display panel according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of bending of another display panel according to an embodiment of the present disclosure.
  • the pixel unit when the first electrode is shortened by controlling the first driving electrode in each pixel unit 200, and the second driving electrode is controlled such that the second electrode is elongated, the pixel unit can be driven to the first electrode. Side bending.
  • the first electrode is elongated by controlling the first driving electrode in each pixel unit 200, and the second driving electrode is controlled to shorten the second electrode, the pixel unit can be driven to the second electrode.
  • Side bending By having each pixel unit 200 have a different degree of curvature, the display substrate is caused to achieve an overall curvature change, and the user is provided with an optimal viewing experience.
  • the overall curvature of the display panel can be adjusted, so that the overall curvature of the display panel is large, so that the user has the best viewing experience; when the user is far away from the display substrate
  • the overall curvature of the display panel can be adjusted such that the overall curvature of the display panel is small, so that the user has the best viewing experience.
  • FIG. 13 is a schematic view showing the bending of another display panel according to an embodiment of the present disclosure.
  • FIG. 13 shows nine pixel units 200.
  • the first electrode in each pixel unit 200 can be individually controlled to be elongated or shortened, and the second electrode is elongated or shortened, so that the display panel is subjected to local curvature change, thereby performing finer adjustment to realize each.
  • Display effects such as wave effects.
  • the present disclosure includes, but is not limited to, a wave effect, and the display panel can perform various partial bending according to actual needs to provide a user with more visual experience.
  • At least one embodiment of the present disclosure also provides a display device comprising the display panel of any of the above. Therefore, the display device has the technical effect corresponding to the technical effect of the display panel included in the display device. For details, refer to the related description, and details are not described herein again.
  • the display device may be an electric device having a display function such as a television, a computer, a mobile phone, a navigator or the like.
  • FIG. 14 is a schematic plan view of an electrode structure in accordance with an embodiment of the present disclosure.
  • the electrode structure includes an electrode body 110, an electrostrictive layer 120 connected to the electrode body 110, and a driving electrode 130 connected to the electrostrictive layer 120. Since the electrostrictive layer 120 is made of an electrostrictive material, the electrostrictive layer 120 can elongate or shorten under the electrical signal of the driving electrode 130 and drive the electrode body 110 to elongate or contract. It should be noted that the first electrode 210 can adopt the electrode structure.
  • the electrode body can be elongated or contracted by controlling the driving electrode to apply an electric signal to the electrostrictive layer, so that the curvature of the display substrate adopting the electrode structure can be driven to change overall or locally.
  • the curvature of the display substrate adopting the electrode structure can be driven to change overall or locally.
  • the bending curvature of the display substrate using the electrode structure can be adjusted according to the viewing position of the user and other needs, so that the display effect can be optimized.
  • the display substrate using the electrode structure since the electrodes of the respective sub-pixels can be individually controlled and bent, the local curvature of the display substrate can be finely adjusted to achieve various display effects such as a wave effect.
  • the display substrate adopting the electrode structure does not need to additionally increase the bending curvature adjusting structure, and has the advantages of being light and thin, and having low process difficulty.
  • the electrostrictive layer 120 may be elongated or shortened in a first direction under an electrical signal of the drive electrode 130, and the drive electrode 130 includes at least one pair of sub-drive electrodes 1300, including sub- The driving electrode 1301 and the sub driving electrode 1302 are respectively disposed at opposite ends of the electrostrictive layer 120 in the first direction.
  • the electrostrictive layer 120 can be driven to elongate or shorten in the first direction by applying a voltage difference or current to the sub-drive electrodes 1301, 1302.
  • the amount of elongation or shortening of the electrostrictive layer can be controlled by controlling the magnitude of the voltage or current applied to the drive electrodes 1301, 1302.
  • the electrostrictive layer 120 includes a plurality of sub-electrostrictive strips 125; a plurality of sub-electrostrictive strips 125 may be spaced apart on the electrode body 110; the drive electrodes 130 include pairs of pairs The electrodes 1300 are driven to be connected to the plurality of sub-electrostrictive strips 125, respectively. It should be noted that the plurality of pairs of sub-drive electrodes 1300 in the above-mentioned driving electrodes 130 may apply the same electrical signal, or may apply different electrical signals.
  • the sub-electrostrictive strips extend in a first direction, and the plurality of sub-electrostrictive strips are spaced apart in a direction perpendicular to the first direction.
  • FIG. 15 is a schematic plan view of another electrode structure taken along line BB' of FIG. 14 according to an embodiment of the present disclosure.
  • the electrode body 110 includes a plurality of sub-electrode strips 115
  • the electrostrictive layer 120 includes a plurality of sub-electrostrictive strips 125
  • a plurality of sub-electrode strips 115 and a plurality of sub-electrostrictive strips 125 are alternately disposed. That is, the plurality of sub-electrode strips 115 and the plurality of sub-electrostrictive strips 125 are disposed in the same layer.
  • the alternately disposed sub-electrode strips and the adjacent sides of the sub-electrostrictive strips are connected to achieve connection of the electrode body and the electrostrictive layer, thereby facilitating the elongation or shortening of the electrostrictive layer. Drive the electrode body to lengthen or shorten.
  • the electrode body includes a flexible electrode material. That is, the electrode body is a flexible electrode so that it can be easily elongated or shortened when the electrostrictive layer is elongated or shortened.
  • the electrode body can include a carbon-based flexible material such as graphene.
  • a carbon-based flexible material such as graphene.
  • embodiments of the present disclosure include, but are not limited to, the electrode body may also employ other flexible electrode materials.
  • the electrode body comprises a transparent electrode material, such as an Indium Tin Oxide (ITO) material.
  • ITO Indium Tin Oxide
  • the electrostrictive layer comprises a transparent electrostrictive material. That is, the electrostrictive layer can be transparent, so that the aperture ratio or light transmittance of the display substrate using the electrode structure can be avoided.
  • the electrostrictive material may include a lead zirconate titanate (PLZT) material to achieve transparency.
  • PZT lead zirconate titanate
  • the drive electrodes are insulated from the electrode body to prevent electrical signals on the drive electrodes from interfering with electrical signals on the electrode body.

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板、显示面板和显示装置。该显示基板包括:多个阵列排布的像素单元(200),各像素单元(200)包括:第一电极(210),包括第一电极本体(211)、与第一电极本体(211)相连的第一电致伸缩层(212)、以及与第一电致伸缩层(212)电连接的第一驱动电极(213),第一电致伸缩层(212)被配置为在第一驱动电极(213)的电信号下伸长或缩短并带动第一电极本体(211)伸长或缩短。由此,该显示基板至少可实现曲面显示,并可控制显示基板弯曲的曲率。

Description

显示基板、显示面板和显示装置
本申请要求于2017年11月01日递交的第201711058089.7号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种显示基板、显示面板和显示装置。
背景技术
随着显示技术的不断发展,曲面显示、柔性显示等显示技术成为了研究的热点。曲面显示技术是指显示面板带有弧度的显示技术,可提升用户视觉体验;因为带有弧度的显示基板向用户弯曲的边缘能够更贴近用户,与屏幕中央位置实现基本相同的观赏角度,从而可提供更广阔的视野,并且同时可让用户体验到更好观影效果。柔性显示技术是指显示面板由柔软的材料制成并且可变型可弯曲的显示技术。
发明内容
本公开至少一个实施例提供一种显示基板,包括:阵列排布的多个像素单元,其中,各所述像素单元包括:第一电极,包括第一电极本体、与所述第一电极本体相连的第一电致伸缩层、以及与所述第一电致伸缩层电连接的第一驱动电极,所述第一电致伸缩层被配置为在所述第一驱动电极的电信号下伸长或缩短并带动所述第一电极本体伸长或缩短。
例如,在一些示例中,所述第一驱动电极包括至少一个第一子驱动电极对,各所述第一子驱动电极对中的两个第一子驱动电极分别设置在所述第一电致伸缩层的沿第一方向的相对的两端,所述第一电致伸缩层被配置为在所述第一驱动电极的电信号下沿所述第一方向伸长或缩短。
例如,在一些示例中,所述第一电致伸缩层包括:多个第一子电致伸缩条,间隔设置在所述第一电极本体的一侧的表面上。
例如,在一些示例中,所述第一电极本体包括多个第一子电极条,所述第一电致伸缩层包括多个第一子电致伸缩条,所述多个第一子电极条与所述多个 第一子电致伸缩条交替且同层设置。
例如,在一些示例中,所述第一电极本体包括柔性电极材料。
例如,在一些示例中,所述第一电极本体包括透明电极材料,所述第一电致伸缩层包括透明电致伸缩材料。
例如,在一些示例中,所述透明电致伸缩材料包括锆钛酸铅镧材料。
例如,在一些示例中,所述第一驱动电极与所述第一电极本体相互绝缘,所述第一电致伸缩层与所述第一电极本体相互绝缘。
例如,在一些示例中,各像素单元还包括:第二电极;以及设置在所述第一电极和所述第二电极之间的发光层,所述第二电极包括第二电极本体、与所述第二电极本体相连的第二电致伸缩层、以及与所述第二电致伸缩层电连接的第二驱动电极,所述第二电致伸缩层被配置为在所述第二驱动电极的电信号下伸长或缩短并带动所述第二电极本体伸长或缩短。
例如,在一些示例中,所述第二驱动电极包括至少一个第二子驱动电极对,各所述第二子驱动电极对中的两个第二子驱动电极分别设置在所述第二电致伸缩层的沿第二方向的相对的两端,所述第二电致伸缩层被配置为在所述第二驱动电极的电信号下沿第二方向伸长或缩短。
例如,在一些示例中,所述第一方向与所述第二方向相同。
例如,在一些示例中,所述第二电极本体包括多个第二子电极条,所述第二电致伸缩层包括多个第二子电致伸缩条,所述多个第二子电极条与所述多个第二子电致伸缩条交替且同层设置。
例如,在一些示例中,各所述像素单元还包括:空穴注入层,设置在所述第一电极靠近所述发光层的一侧;空穴传输层,设置在所述空穴注入层靠近所述发光层的一侧;电子注入层,设置在所述第二电极靠近所述发光层的一侧;以及电子传输层,设置在所述电子注入层靠近所述发光层的一侧。
例如,在一些示例中,所述第二电极本体包括柔性电极材料。
例如,在一些示例中,所述第二电极本体包括透明电极材料,所述第二电致伸缩层包括透明电致伸缩材料。
本公开至少一个实施例还提供一种显示面板,包括上述任一项所述的显示基板,该显示面板还包括:第一衬底基板;第二衬底基板,与所述第一衬底基板相对设置;以及支撑结构,设置在所述第一衬底基板和所述第二衬底基板之间,所述多个像素单元设置在所述第一衬底基板和所述第二衬底基板之间,所 述支撑结构围绕所述像素单元设置,所述支撑结构与各所述像素单元的发光层相连以支撑各所述像素单元,所述像素单元与所述第一衬底基板和所述第二衬底基板分别间隔设置。
例如,在一些示例中,所述支撑结构包括像素限定结构。
本公开至少一个实施例还提供一种显示装置,包括上述任一项的显示基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例提供的一种显示基板的结构示意图;
图2为根据本公开一实施例提供的一种第一电极的平面示意图;
图3A为根据本公开一实施例提供的一种第一电极沿图2中AA’方向的剖面示意图;
图3B为根据本公开一实施例提供的另一种第一电极沿图2中AA’方向的剖面示意图;
图3C为根据本公开一实施例提供的另一种第一电极沿图2中AA’方向的剖面示意图;
图4为根据本公开一实施例提供的另一种显示基板的结构示意图;
图5为根据本公开一实施例提供的另一种第二电极的平面示意图;
图6为根据本公开一实施例提供的一种像素单元弯曲的工作示意图;
图7为根据本公开一实施例提供的另一种像素单元弯曲的工作示意图;
图8为根据本公开一实施例提供的另一种显示面板的结构示意图;
图9为根据本公开一实施例提供的一种显示面板弯曲的工作示意图;
图10为根据本公开一实施例提供的另一种显示面板的结构示意图;
图11为根据本公开一实施例提供的一种显示面板的弯曲示意图;
图12为根据本公开一实施例提供的另一种显示面板的弯曲示意图;
图13为根据本公开一实施例提供的另一种显示面板的弯曲示意图;
图14为根据本公开一实施例提供的一种电极结构的平面示意图;以及
图15为根据本公开一实施例提供的一种电极结构沿图14中BB’方向的剖 面示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在研究中,本申请的发明人注意到:通常的曲面显示面板的曲率是固定的,也就是说,该曲面显示面板的最佳观看位置是相对固定的,当用户位于其他观看位置时,观赏体验将大幅下降。另一方面,柔性显示面板可在外力的作用下完全、拉伸、甚至折叠,然而,柔性显示面板的弯曲曲率往往不可控,导致体验不佳。因此,本申请的发明人想到将曲面显示技术与柔性显示技术结合,实现调节显示面板弯曲的曲率,从而可根据用户的位置调节最佳的弯曲曲率,以达到最佳的观赏体验。
本公开实施例提供一种显示基板、显示面板和显示装置。该显示基板包括:多个阵列排布的像素单元,各像素单元包括:第一电极,包括第一电极本体、与第一电极本体相连的第一电致伸缩层、以及与第一电致伸缩层电连接的第一驱动电极,第一电致伸缩层被配置为在第一驱动电极的电信号下伸长或缩短并带动第一电极本体伸长或缩短。由此,该显示基板至少可通过控制第一驱动电极对第一电致伸缩层施加电信号来使得第一电极本体伸长或收缩,从而可带动该显示基板的曲率发生整体或局部变化以实现曲面显示,并可控制显示基板弯曲的曲率。
下面,结合附图对本公开实施例提供的显示基板、显示面板和显示装置进 行详细的说明。
图1为根据本公开一实施例提供的一种显示基板的结构示意图。该显示基板包括阵列排布的多个像素单元。为了更清楚、更简要地描述该显示基板,图1仅示出了一个像素单元200,如图1所示,该像素单元200包括第一电极210。图2示出了根据本公开一实施例提供的一种第一电极的平面示意图。如图2所示,第一电极210包括第一电极本体211、与第一电极本体211相连的第一电致伸缩层212、与第一电致伸缩层212相连的第一驱动电极213;第一电致伸缩层212可在第一驱动电极213的电信号下伸长或缩短并带动第一电极本体211伸长或缩短。需要说明的是,如上述实施例所述,第一电极本体211和第一电致伸缩层212可同层设置也可异层设置。另外,当第一驱动电极未施加电信号时,该显示基板可为平面显示基板,从而可进行平面显示。
在本实施例提供的显示基板中,可通过控制第一驱动电极对第一电致伸缩层施加电信号来使得第一电极本体伸长或收缩。从而第一电极本体的伸长或收缩可带动各像素单元弯曲,进而可使显示基板的曲率发生整体或局部变化以实现曲面显示。由于第一电致伸缩层伸长或收缩的程度可通过第一驱动电极上的电压或电流来控制,因此该显示基板弯曲的曲率也可通过第一驱动电极上的电压或电流来控制。由此,该显示基板可根据用户的观看位置以及其他需要来调节该显示基板的弯曲曲率,从而可优化显示效果。另外,在该显示基板中,由于各第一电极可单独控制并弯曲,从而可对该显示基板的局部曲率进行更细致的调节,以实现各种显示效果,例如,波浪效果。并且,该显示基板不用额外增加弯曲曲率调节结构,具有轻薄、工艺难度低等优点。
例如,在一些示例中,如图2所示,第一驱动电极213包括至少一个第一子驱动电极对2130,包括第一子驱动电极2131、2132,各第一子驱动电极对2130中的两个第一子驱动电极2131和2132可分别设置在第一电致伸缩层211的沿第一方向的相对的两端。第一电致伸缩层212可在第一驱动电极213的电信号下沿第一方向伸长或缩短。
例如,在一些示例中,如图2所示,第一电致伸缩层212包括多个第一子电致伸缩条2125;多个第一子电致伸缩条2125间隔设置在第一电极本体211的一侧的表面上。图3A示出了根据本公开一实施例提供的一种第一电极沿图2中AA’方向的剖面示意图。如图3A所示,多个第一子电致伸缩条2125间隔设置在第一电极本体211的一侧的表面上。
例如,在一些示例中,如图2所示,第一子电致伸缩条2125沿第一方向延伸,多个第一子电致伸缩条2125沿与第一方向垂直的方向间隔排列。
例如,在一些示例中,如图2所示,第一电极本体211包括多个第一子电极条2115,第一电致伸缩层212包括多个第一子电致伸缩条2125。图3B示出了根据本公开一实施例提供的另一种第一电极沿图2中AA’方向的剖面示意图,如图2和图3B所示,多个第一子电极条2115与多个第一子电致伸缩条2125交替且同层设置。由此,额外设置的第一电致伸缩层不会增加第一电极的厚度,利于该显示基板的轻薄化。
例如,在一些示例中,第一驱动电极与第一电极本体相互绝缘,第一电致伸缩层与第一电极本体相互绝缘。例如,图3C示出了根据本公开一实施例提供的另一种第一电极沿图2中AA’方向的剖面示意图。如图3C所示,第一电极本体211与第一电致伸缩层212之间可设置绝缘层190以将第一电极本体211与第一电致伸缩层212绝缘。同时,设置在第一电极本体211与第一电致伸缩层212之间的绝缘层190还可将第一电极本体211与第一驱动电极213绝缘。需要说明的是,本公开实施例包括但不限于此,还可采用其他方式来实现第一驱动电极与第一电极本体相互绝缘,第一电致伸缩层与第一电极本体相互绝缘。另外,由于第一驱动电极与第一电极本体相互绝缘,可防止第一驱动电极上的电信号与第一电极本体上的电信号相互干扰。
例如,在一些示例中,如图3C所示,第一驱动电极213可设置在第一电致伸缩层212的两端,即,第一驱动电极213和第一电致伸缩层212可同层设置。由此,额外设置的第一驱动电极不会增加第一电极的厚度,利于该显示基板的轻薄化。
例如,在一些示例中,所述第一电极本体包括柔性电极材料。也就是说,第一电极本体为柔性电极,从而可在第一电致伸缩层伸长或缩短时易于伸长或缩短。
例如,第一电极本体可包括碳基柔性材料,例如石墨烯。当然,本公开实施例包括但不限于此,第一电极本体也可采用其他柔性电极材料。
例如,在一些示例中,第一电极本体包括透明电极材料,所述第一电致伸缩层包括透明电致伸缩材料,也就是说,第一电极本体和第一电致伸缩层可为透明的,从而可避免影响显示基板的开口率或光透过率。
例如,第一电极本体可为氧化铟锡(Indium Tin Oxide,ITO)材料。
例如,在一些示例中,透明电致伸缩材料包括锆钛酸铅镧(PLZT)材料。
图4示出了根据本公开一实施例提供的另一种显示基板的结构示意图。如图4所示,各像素单元200还包括第二电极220以及设置在第一电极210和第二电极220之间的发光层230。在该显示基板中,第二电极220可采用与第一电极210类似的结构,具体可参见第一电极的相关描述。
例如,在一些示例中,如图4所示,各像素单元200还包括:空穴注入层240,设置在第一电极210靠近发光层230的一侧;空穴传输层250,设置在空穴注入层240靠近发光层230的一侧;电子注入层270,设置在第二电极220靠近发光层230的一侧;以及电子传输层260,设置在电子注入层270靠近发光层230的一侧。
图5为示出了根据本公开一实施例提供的一种第二电极的平面示意图。如图5所示,第二电极220包括第二电极本体221、与第二电极本体221相连的第二电致伸缩层222、与第二电致伸缩层222相连的第二驱动电极223;第二电致伸缩层222可在第二驱动电极223的电信号下伸长或缩短并带动第二电极本体221伸长或缩短。由此,该显示基板可通过可控制第一驱动电极和第二驱动电极分别对第一电致伸缩层和第二电致伸缩层施加电信号来使得第一电极本体和第二电极本体伸长或收缩。从而第一电极本体和第二电极本体的伸长或收缩可带动该显示基板弯曲并可控制弯曲的曲率以进行曲面显示,并且还可根据用户的观看位置以及其他需要来调节该显示基板的弯曲曲率,从而可优化显示效果。需要说明的是,如上述实施例所述,第二电极本体221和第二电致伸缩层222可同层设置也可异层设置。另外,当第一驱动电极和第二驱动电极未施加电信号时,该显示基板可为平面显示基板,从而可进行平面显示。
例如,在一些示例中,如图5所示,第二电致伸缩层222可在第二驱动电极223的电信号下沿第二方向伸长或缩短,第二驱动电极223包括至少一个第二子驱动电极对2230,包括第二子驱动电极2231、2232,分别设置在第二电致伸缩层222的沿第二方向的相对的两端。
例如,在一些示例中,第一方向和第二方向可为同一方向。
例如,在一些示例中,如图5所示,第二电极本体221包括多个第二子电极条2215,第二电致伸缩层222包括多个第二子电致伸缩条2225,多个第二子电极条2215与多个第二子电致伸缩条2225交替设置。当然,本公开包括但不限于此,第二电极本体和第二电致伸缩层可异层设置,具体可参见第一电极 的相关描述。
例如,在一些示例中,交替设置的第一子电极条和第一子电致伸缩条的相邻的侧面相连,从而实现第一电极本体和第一电致伸缩层的连接,从而在第一电致伸缩层伸长或缩短时,便于带动第一电极本体伸长或缩短。同样地,交替设置的第二子电极条和第二子电致伸缩条的相邻的侧面相连,从而实现第二电极本体和第二电致伸缩层的连接,从而在第二电致伸缩层伸长或缩短时,便于带动第二电极本体伸长或缩短。
图6和图7示出了根据本公开一实施例提供的一种像素单元弯曲的工作示意图。如图6所示,当通过控制第一驱动电极使得第一电极210缩短,控制第二驱动电极使得第二电极220伸长时,可带动像素单元向第一电极210所在的一侧弯曲。如图7所示,当通过控制第一驱动电极是的第一电极210伸长,控制第二驱动电极是的第二电极220缩短时,可带动像素单元向第二电极220所在的一侧弯曲。
图8为根据本公开一实施例提供的一种显示面板的结构示意图。该显示面板包括上述任一项所描述的显示基板。如图8所示,该显示面板还包括第一衬底基板310、与第一衬底基板310相对设置的第二衬底基板320以及设置在第一衬底基板310、第二衬底基板320之间并且围绕各像素单元200设置的支撑结构330。像素单元200设置在第一衬底基板310和第二衬底基板320之间,各像素单元200的发光层230与支撑结构330相连,像素单元200与第一衬底基板310和第二衬底基板320分别间隔设置。由此,像素单元200不与第一衬底基板310和第二衬底基板320接触,从而可便于通过第一电极和第二电极的伸长或缩短来使得像素单元弯曲。当然,本公开包括但不限于此,像素单元也可与第一衬底基板和第二衬底基板接触设置。
图8和图9示出了根据本公开一实施例提供的另一种显示面板弯曲的工作示意图。在该显示基板中,如图8所示,当通过控制第一驱动电极使得第一电极210缩短,控制第二驱动电极使得第二电极220伸长时,可带动显示基板向第一电极210所在的一侧弯曲。如图9所示,当通过控制第一驱动电极是的第一电极210伸长,控制第二驱动电极是的第二电极220缩短时,可带动显示基板向第二电极220所在的一侧弯曲。
例如,在一些示例中,支撑结构330可为像素限定结构,以限定出该显示基板的各个像素单元或子像素单元。
例如,在一些示例中,第一衬底基板包括柔性基板材料,第二衬底基板包括柔性基板材料。
例如,柔性基板材料柔性包括塑料、超薄玻璃、纸质材料、生物复合薄膜。
例如,在一些示例中,支撑结构包括柔性支撑材料。
图10为根据本公开一实施例提供的另一种显示面板的结构示意图。图10示出了三个像素单元200。各像素单元200的具体结构可参见上述描述,在此不再赘述。通过分别控制各像素单元200的弯曲程度,即弯曲的曲率,可使得显示基板发生整体或局部变化以实现曲面显示。
例如,图11为根据本公开一实施例提供的一种显示面板的弯曲示意图。图12为根据本公开一实施例提供的另一种显示面板的弯曲示意图。如图11所示,当通过控制各像素单元200中的第一驱动电极使得第一电极缩短,控制第二驱动电极使得第二电极伸长时,可带动各像素单元向第一电极所在的一侧弯曲。如图12所示,当通过控制各像素单元200中的第一驱动电极使得第一电极伸长,控制第二驱动电极使得第二电极缩短时,可带动各像素单元向第二电极所在的一侧弯曲。通过使各像素单元200具有不同的弯曲程度,从而使得该显示基板发生实现整体曲率变化,并使用户获得最佳的观赏体验。
例如,当用户距离显示基板距离较近时,可调整该显示面板的整体曲率,使得该显示面板的整体曲率较大,从而使得用户具有最佳的观赏体验;当用户距离显示基板距离较远时,可调整该显示面板的整体曲率,使得该显示面板的整体曲率较小,从而使得用户具有最佳的观赏体验。
图13为根据本公开一实施例提供的另一种显示面板的弯曲示意图。图13示出了九个像素单元200。如图13所示,可单独控制各像素单元200中第一电极伸长或缩短,第二电极伸长或缩短,使得该显示面板发生实现局部曲率变化,从而进行更细致的调节,以实现各种显示效果,例如,波浪效果。当然,本公开包括但不限于波浪效果,该显示面板可根据实际需要进行各种局部弯曲,以给用户提供更多视觉体验。
本公开至少一个实施例还提供一种显示装置,包括上述任一项的显示面板。因此,该显示装置具有与其包括的显示面板的技术效果对应的技术效果,具体可参见相关描述,在此不再赘述。
例如,该显示装置可为电视、电脑、手机、导航仪等具有显示功能的电器设备。
本公开至少一个实施例还提供一种电极结构。图14为根据本公开一实施例的一种电极结构的平面示意图。如图14所示,该电极结构包括电极本体110、与电极本体110相连的电致伸缩层120、以及与电致伸缩层120相连的驱动电极130。由于电致伸缩层120采用电致伸缩材料制作,因此电致伸缩层120可在驱动电极130的电信号下伸长或缩短并带动电极本体110伸长或收缩。需要说明的是,第一电极210可采用该电极结构。
在本实施例提供的电极结构中,可通过控制驱动电极对电致伸缩层施加电信号来使得电极本体伸长或收缩,从而可带动采用该电极结构的显示基板的曲率发生整体或局部变化以实现曲面显示,并可控制显示基板弯曲的曲率。由此,可根据用户的观看位置以及其他需要来调节采用该电极结构的显示基板的弯曲曲率,从而可优化显示效果。另外,在采用该电极结构的显示基板中,由于各子像素的电极可单独控制并弯曲,从而可对该显示基板的局部曲率进行更细致的调节,以实现各种显示效果,例如波浪效果。并且,采用该电极结构的显示基板不用额外增加弯曲曲率调节结构,具有轻薄、工艺难度低等优点。
例如,在一些示例中,如图14所示,电致伸缩层120可在驱动电极130的电信号下沿第一方向伸长或缩短,驱动电极130包括至少一对子驱动电极1300,包括子驱动电极1301和子驱动电极1302,分别设置在电致伸缩层120的沿第一方向的相对的两端。由此,可通过对子驱动电极1301、1302施加电压差或电流,从而驱动电致伸缩层120沿第一方向伸长或缩短。并且,可通过控制施加在驱动电极1301、1302上电压或电流的大小来控制电致伸缩层伸长或缩短的量。
例如,在一些示例中,如图14所示,电致伸缩层120包括多个子电致伸缩条125;多个子电致伸缩条125可间隔设置在电极本体110上;驱动电极130包括多对子驱动电极1300,以分别与多个子电致伸缩条125相连。需要说明的是,上述的驱动电极130中的多对子驱动电极1300可施加同样的电信号,也可施加不同的电信号。
在一些示例中,子电致伸缩条沿第一方向延伸,多个子电致伸缩条沿与第一方向垂直的方向间隔排列。
图15为根据本公开一实施例提供的另一种电极结构沿图14中BB’方向的平面示意图。如图15所示,电极本体110包括多个子电极条115,电致伸缩层120包括多个子电致伸缩条125,多个子电极条115和多个子电致伸缩条125 交替设置。也就是说,多个子电极条115和多个子电致伸缩条125同层设置。例如,在一些示例中,交替设置的子电极条和子电致伸缩条的相邻的侧面相连,从而实现电极本体和电致伸缩层的连接,从而在电致伸缩层伸长或缩短时,便于带动电极本体伸长或缩短。
例如,在一些示例中,电极本体包括柔性电极材料。也就是说,电极本体为柔性电极,从而可在电致伸缩层伸长或缩短时易于伸长或缩短。
例如,电极本体可包括碳基柔性材料,例如石墨烯。当然,本公开实施例包括但不限于此,电极本体也可采用其他柔性电极材料。
例如,在一些示例中,电极本体包括透明电极材料,例如,氧化铟锡(Indium Tin Oxide,ITO)材料。
例如,在一些示例中,电致伸缩层包括透明电致伸缩材料。也就是说,电致伸缩层可为透明的,从而可避免影响采用该电极结构的显示基板的开口率或光透过率。
例如,电致伸缩材料可包括锆钛酸铅镧(PLZT)材料,从而可实现透明。
例如,在一些示例中,驱动电极与电极本体相互绝缘,从而防止驱动电极上的电信号与电极本体上的电信号相互干扰。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种显示基板,包括:阵列排布的多个像素单元,其中,各所述像素单元包括:
    第一电极,包括第一电极本体、与所述第一电极本体相连的第一电致伸缩层、以及与所述第一电致伸缩层电连接的第一驱动电极,
    其中,所述第一电致伸缩层被配置为在所述第一驱动电极的电信号下伸长或缩短并带动所述第一电极本体伸长或缩短。
  2. 根据权利要求1所述的显示基板,其中,所述第一驱动电极包括至少一个第一子驱动电极对,各所述第一子驱动电极对中的两个第一子驱动电极分别设置在所述第一电致伸缩层的沿第一方向的相对的两端,所述第一电致伸缩层被配置为在所述第一驱动电极的电信号下沿所述第一方向伸长或缩短。
  3. 根据权利要求1或2所述的显示基板,其中,所述第一电致伸缩层包括:
    多个第一子电致伸缩条,间隔设置在所述第一电极本体的一侧的表面上。
  4. 根据权利要求1或2所述的显示基板,其中,所述第一电极本体包括多个第一子电极条,所述第一电致伸缩层包括多个第一子电致伸缩条,所述多个第一子电极条与所述多个第一子电致伸缩条交替且同层设置。
  5. 根据权利要求1-4中任一项所述的显示基板,其中,所述第一电极本体包括柔性电极材料。
  6. 根据权利要求1-5中任一项所述的显示基板,其中,所述第一电极本体包括透明电极材料,所述第一电致伸缩层包括透明电致伸缩材料。
  7. 根据权利要求6所述的显示基板,其中,所述透明电致伸缩材料包括锆钛酸铅镧材料。
  8. 根据权利要求1-7中任一项所述的显示基板,其中,所述第一驱动电极与所述第一电极本体相互绝缘,所述第一电致伸缩层与所述第一电极本体相互绝缘。
  9. 根据权利要求2所述的显示基板,其中,各所述像素单元还包括:
    第二电极;以及
    设置在所述第一电极和所述第二电极之间的发光层,
    其中,所述第二电极包括第二电极本体、与所述第二电极本体相连的第二 电致伸缩层、以及与所述第二电致伸缩层电连接的第二驱动电极,所述第二电致伸缩层被配置为在所述第二驱动电极的电信号下伸长或缩短并带动所述第二电极本体伸长或缩短。
  10. 根据权利要求9所述的显示基板,其中,所述第二驱动电极包括至少一个第二子驱动电极对,各所述第二子驱动电极对中的两个第二子驱动电极分别设置在所述第二电致伸缩层的沿第二方向的相对的两端,所述第二电致伸缩层被配置为在所述第二驱动电极的电信号下沿第二方向伸长或缩短。
  11. 根据权利要求10所述的显示基板,其中,所述第一方向与所述第二方向相同。
  12. 根据权利要求9所述的显示基板,其中,所述第二电极本体包括多个第二子电极条,所述第二电致伸缩层包括多个第二子电致伸缩条,所述多个第二子电极条与所述多个第二子电致伸缩条交替且同层设置。
  13. 根据权利要求9所述的显示基板,其中,各所述像素单元还包括:
    空穴注入层,设置在所述第一电极靠近所述发光层的一侧;
    空穴传输层,设置在所述空穴注入层靠近所述发光层的一侧;
    电子注入层,设置在所述第二电极靠近所述发光层的一侧;以及
    电子传输层,设置在所述电子注入层靠近所述发光层的一侧。
  14. 根据权利要求9所述的显示基板,其中,所述第二电极本体包括柔性电极材料。
  15. 根据权利要求9所述的显示基板,其中,所述第二电极本体包括透明电极材料,所述第二电致伸缩层包括透明电致伸缩材料。
  16. 一种显示面板,包括如根据权利要求1-15中任一项所述的显示基板,还包括:
    第一衬底基板;
    第二衬底基板,与所述第一衬底基板相对设置;以及
    支撑结构,设置在所述第一衬底基板和所述第二衬底基板之间,
    其中,所述多个像素单元设置在所述第一衬底基板和所述第二衬底基板之间,所述支撑结构围绕所述像素单元设置,所述支撑结构与各所述像素单元的发光层相连以支撑各所述像素单元,所述像素单元与所述第一衬底基板和所述第二衬底基板分别间隔设置。
  17. 根据权利要求16所述的显示面板,其中,所述支撑结构包括像素限 定结构。
  18. 一种显示装置,包括根据权利要求16或17所述的显示面板。
PCT/CN2018/110491 2017-11-01 2018-10-16 显示基板、显示面板和显示装置 WO2019085744A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18872551.9A EP3706174A4 (en) 2017-11-01 2018-10-16 DISPLAY SUBSTRATE, DISPLAY PANEL AND DISPLAY DEVICE
US16/472,341 US10797104B2 (en) 2017-11-01 2018-10-16 Display substrate, display panel, and display device having electrostriction layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711058089.7 2017-11-01
CN201711058089.7A CN109755271B (zh) 2017-11-01 2017-11-01 显示基板、显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2019085744A1 true WO2019085744A1 (zh) 2019-05-09

Family

ID=66332438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110491 WO2019085744A1 (zh) 2017-11-01 2018-10-16 显示基板、显示面板和显示装置

Country Status (4)

Country Link
US (1) US10797104B2 (zh)
EP (1) EP3706174A4 (zh)
CN (1) CN109755271B (zh)
WO (1) WO2019085744A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092107B (zh) * 2019-12-25 2022-08-05 厦门天马微电子有限公司 一种显示面板及显示装置
CN111785166A (zh) * 2020-06-30 2020-10-16 联想(北京)有限公司 一种电子设备及其制作方法
CN111987128B (zh) * 2020-08-26 2022-06-24 武汉天马微电子有限公司 一种显示面板及显示装置
CN113031300A (zh) * 2021-03-11 2021-06-25 合肥鑫晟光电科技有限公司 显示装置及其控制方法
CN113142760B (zh) * 2021-04-02 2023-03-17 维沃移动通信有限公司 带体及可穿戴设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270917A1 (en) * 2009-04-22 2010-10-28 Prime View International Co., Ltd. Flexible Electrode Array Substrate and Flexible Display Device
CN104620154A (zh) * 2012-09-14 2015-05-13 夏普株式会社 显示面板、显示装置和制造方法
CN107240600A (zh) * 2017-06-26 2017-10-10 京东方科技集团股份有限公司 一种柔性显示装置
CN207409493U (zh) * 2017-11-01 2018-05-25 北京京东方显示技术有限公司 显示基板、显示面板和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879753B2 (en) * 2001-06-15 2005-04-12 Ngk Insulators, Ltd. Display device
CN102473058B (zh) * 2009-08-11 2015-07-15 皇家飞利浦电子股份有限公司 混合显示装置
KR20140044227A (ko) * 2012-10-04 2014-04-14 삼성전자주식회사 플렉서블 디스플레이 장치 및 그의 제어 방법
KR102404723B1 (ko) * 2015-10-30 2022-06-02 삼성디스플레이 주식회사 표시 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270917A1 (en) * 2009-04-22 2010-10-28 Prime View International Co., Ltd. Flexible Electrode Array Substrate and Flexible Display Device
CN104620154A (zh) * 2012-09-14 2015-05-13 夏普株式会社 显示面板、显示装置和制造方法
CN107240600A (zh) * 2017-06-26 2017-10-10 京东方科技集团股份有限公司 一种柔性显示装置
CN207409493U (zh) * 2017-11-01 2018-05-25 北京京东方显示技术有限公司 显示基板、显示面板和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706174A4 *

Also Published As

Publication number Publication date
CN109755271B (zh) 2024-01-26
CN109755271A (zh) 2019-05-14
EP3706174A1 (en) 2020-09-09
EP3706174A4 (en) 2021-08-04
US10797104B2 (en) 2020-10-06
US20190378875A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2019085744A1 (zh) 显示基板、显示面板和显示装置
US20190109184A1 (en) Display panel and display device
US10755661B2 (en) Display panel with compensation capacitors
WO2019001313A1 (zh) 柔性显示装置
US11086431B2 (en) Display device and method for providing haptic feedback by display device
KR20150121383A (ko) 표시 장치 및 표시 장치 제어 방법
KR102404723B1 (ko) 표시 장치
CN108897151B (zh) 视角可切换的液晶显示装置
US20170133407A1 (en) Flexible Substrate And Manufacturing Method Thereof, Flexible Display Panel And Flexible Display Device
US9818327B2 (en) Display device
WO2017121009A1 (zh) Ips型tft-lcd阵列基板的制作方法及ips型tft-lcd阵列基板
US20150220120A1 (en) Display device having a touch panel
TWI567464B (zh) 液晶顯示面板
US20200235130A1 (en) Display panel and display device including the same
CN102937764B (zh) 阵列基板及其制造方法、显示装置及其驱动方法
US11391972B2 (en) Curved panel and display device
CN207409493U (zh) 显示基板、显示面板和显示装置
KR20210076657A (ko) 표시장치
US20220030339A1 (en) Display apparatus
US10073307B1 (en) Liquid crystal display panel comprising first, second, and third sub-pixels and first and second control electrodes having different polarities
US8982308B2 (en) Active liquid crystal array device and the fabrication method thereof
WO2015149420A1 (zh) 一种可切换视角的lcd显示装置
US10860130B2 (en) Touch sensitive element and display device including the same
WO2017156883A1 (zh) 显示装置和用于曲面显示的驱动方法
US20240256044A1 (en) Vibration apparatus and display apparatus including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872551

Country of ref document: EP

Effective date: 20200602