WO2019084807A1 - 电机的机械位置获取方法和装置 - Google Patents

电机的机械位置获取方法和装置 Download PDF

Info

Publication number
WO2019084807A1
WO2019084807A1 PCT/CN2017/108692 CN2017108692W WO2019084807A1 WO 2019084807 A1 WO2019084807 A1 WO 2019084807A1 CN 2017108692 W CN2017108692 W CN 2017108692W WO 2019084807 A1 WO2019084807 A1 WO 2019084807A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall sensors
magnetic field
motor
field strength
mechanical position
Prior art date
Application number
PCT/CN2017/108692
Other languages
English (en)
French (fr)
Inventor
周震昊
陈子寒
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/108692 priority Critical patent/WO2019084807A1/zh
Priority to CN201780017983.1A priority patent/CN108886332A/zh
Publication of WO2019084807A1 publication Critical patent/WO2019084807A1/zh
Priority to US16/832,166 priority patent/US11264870B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/022Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation having an ideal characteristic, map or correction data stored in a digital memory
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Definitions

  • Embodiments of the present invention relate to electronic technologies, and in particular, to a method and apparatus for acquiring a mechanical position of a motor.
  • Servo motor refers to the engine that controls the operation of mechanical components in the servo system.
  • the servo motor can control the speed and position accuracy very accurately. It can convert the voltage signal into torque and speed to drive the control object.
  • the servo motor rotor speed is controlled by the input signal and can be quickly reacted. It is used as an actuator in the automatic control system and has characteristics such as small electromechanical time constant, high linearity, and starting voltage.
  • the servo motor may comprise a permanent magnet servo motor, the rotor of the permanent magnet servo motor is a permanent magnet, and the U/V/W three-phase electric motor controlled by the driver forms an electromagnetic field, and the rotor rotates under the action of the magnetic field.
  • Permanent magnet servo motors can be used in consumer drones, for example, in camera-stabilized three-axis heads.
  • the mechanical position of the permanent magnet servo motor is usually obtained by additionally adding a position sensor, such as an optical encoder, a grating incremental encoder, a magnetic encoder, a reluctance resolver, and the like.
  • the position sensor is disposed separately from the electromagnetic part of the motor and has high reliability.
  • the position sensor is provided, so that the system for setting the permanent magnet servo motor is costly, and the volume and weight of the system for setting the permanent magnet servo motor are increased. .
  • the embodiment of the invention provides a method and a device for acquiring the mechanical position of the motor, so that the mechanical position of the motor is determined according to the magnetic flux leakage of the magnet inside the detecting motor, and the servo performance of the motor can be improved.
  • an embodiment of the present invention provides a method for acquiring a mechanical position of a motor, the motor including at least two Hall sensors and at least two pairs of magnetic poles, and a phase difference between the at least two Hall sensors is preset An angle, the arrangement between the pair of magnetic poles and the Hall sensor is different, the motor is connected to an electrical tone, and the method is applied to the electrical tones, the method comprising:
  • a mechanical position of the motor is determined based on magnetic field strengths of the at least two Hall sensors.
  • the determining a mechanical position of the motor according to a magnetic field strength of the at least two Hall sensors includes:
  • the preset mapping relationship includes a value of a plurality of magnetic field strengths and a mechanical position corresponding to each magnetic field strength, and the value of each magnetic field strength includes values of a plurality of dimensions, and the plurality of dimensions The number of dimensions of the value is the same as the number of the at least two Hall sensors.
  • the preset mapping relationship further includes a state corresponding to the values of the multiple magnetic field strengths information.
  • the magnetic field strength and the preset mapping relationship according to the at least two Hall sensors Determining the mechanical position of the motor, including:
  • the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is a unique value
  • the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is taken as the mechanical position of the motor
  • the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is more than one, the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors, and the at least two The state information corresponding to the magnetic field strength of the sensor determines the mechanical position of the motor.
  • the state information corresponding to the multiple magnetic field strengths is determined according to a preset state position,
  • the number of the preset state positions is the same as the number of pairs of the at least two pairs of magnetic poles.
  • the preset mapping relationship includes a two-dimensional preset waveform diagram, and the horizontal of each point in the two-dimensional preset waveform diagram The coordinates and the ordinate respectively represent values of a magnetic field strength, each point in the two-dimensional preset waveform diagram corresponds to a mechanical position, the two-dimensional preset waveform diagram includes at least two turns of the curve, and the at least two The circle curve has a coincidence point, wherein the number of turns of the at least two turns of the curve is the same as the number of pairs of the at least two pairs of magnetic poles;
  • Determining a mechanical position of the motor according to a magnetic field strength of the at least two Hall sensors including:
  • the preset mapping relationship further includes at least two calibration points, the at least two The number of calibration points is the same as the number of pairs of the at least two pairs of magnetic poles, the at least two calibration points are respectively located on different circle curves of the two-dimensional preset waveform diagram, the at least two calibration points and the The distance between the coincident points is greater than the first preset value, and the distance between the at least two calibration points is greater than the second preset value;
  • the coincidence point and the at least two calibration points satisfy the following condition:
  • the coincidence point is in the fourth quadrant, the at least two calibration points are located in the second quadrant;
  • the coincidence point is in the third quadrant, the at least two calibration points are located in the first quadrant;
  • the at least two calibration points are located in the fourth quadrant;
  • the at least two calibration points are located in the third quadrant.
  • the magnetic field strength corresponding points according to the two Hall sensors are in the second
  • the position in the dimension preset waveform determines the mechanical position of the motor, including:
  • the mechanical position corresponding to the point corresponding to the magnetic field strength of the two Hall sensors is taken as the mechanical position of the motor.
  • the magnetic field strength corresponding points according to the two Hall sensors are in the second
  • the position in the dimension preset waveform determines the mechanical position of the motor, including:
  • the point corresponding to the magnetic field strength of the two Hall sensors, and the phase Determining the state information of the point corresponding to the magnetic field strength of the two Hall sensors at the adjacent moment, determining the mechanical position of the motor including:
  • State information of a point corresponding to a magnetic field strength of the two Hall sensors at an adjacent time is used as state information of a point corresponding to a magnetic field strength of the two Hall sensors at a current time;
  • the mechanical position of the motor is determined according to the point information corresponding to the magnetic field strength of the two Hall sensors at the current time and the state information of the point corresponding to the magnetic field strengths of the two Hall sensors at the current time.
  • the state information includes one bit information, where the one bit information is 0 or 1.
  • an embodiment of the present invention provides a method for acquiring a mechanical position of a motor, the motor including at least two Hall sensors and at least two pairs of magnetic poles, and a phase difference between the at least two Hall sensors is preset An angle, a different arrangement between the pair of magnetic poles and the Hall sensor, the method being applied to the motor, the method comprising:
  • a magnetic field strength of the at least two Hall sensors is sent to an ESC, and a magnetic field strength of the at least two Hall sensors is used for the ESC to determine a mechanical position of the motor.
  • the magnets of the pair of the magnetic poles have different lengths.
  • the at least two Hall sensors are different in height in the axial direction.
  • an embodiment of the present invention provides an ESC, the ESC being coupled to a motor, the motor including at least two Hall sensors and at least two pairs of magnetic poles, a phase between the at least two Hall sensors The difference is a preset angle, and the arrangement between the pair of magnetic poles and the Hall sensor is different, and the electrical modulation includes a processor, and the processor is configured to perform the method of any of the above first aspects.
  • an embodiment of the present invention provides a motor, the motor being connected to an ESC, the motor including at least two Hall sensors and at least two pairs of magnetic poles, and a phase difference between the at least two Hall sensors For a preset angle, the arrangement between each pair of the magnetic poles and the Hall sensor is different, and the at least two Hall sensors are used for:
  • a magnetic field strength of the at least two Hall sensors is sent to an ESC, and a magnetic field strength of the at least two Hall sensors is used for the ESC to determine a mechanical position of the motor.
  • the magnets corresponding to the pair of magnetic poles have different lengths.
  • the height of the at least two Hall sensors in the axial direction is different.
  • the magnets corresponding to each pair of the magnetic poles have different magnetic strengths.
  • the magnets corresponding to the pair of magnetic poles adopt different magnetic media.
  • an embodiment of the present invention provides a power system, comprising the electric machine according to the above third aspect, and the electric machine according to any of the above fourth aspects.
  • an embodiment of the present invention provides a cloud platform, wherein the cloud platform includes a fixing mechanism, a shaft arm, and the electric machine according to the above third aspect, and the motor according to any one of the above fourth aspects.
  • an embodiment of the present invention provides a UAV aircraft, the UAV aircraft comprising a fuselage, the electric machine according to the above third aspect, and the electric machine according to any of the above fourth aspects.
  • the method and device for acquiring a mechanical position of a motor respectively, by acquiring magnetic field strengths of at least two Hall sensors, wherein the magnetic field strength is performed by the at least two Hall sensors on magnetic flux leakage of the at least two pairs of magnetic poles Measured, determining the mechanical position of the motor according to the magnetic field strength of the at least two Hall sensors, thereby determining the motor according to the magnetic flux leakage of the magnet inside the detecting motor
  • the mechanical position can improve the servo performance of the motor.
  • FIG. 1 is a schematic diagram of an application scenario of a method for acquiring a mechanical position of a motor according to the present invention
  • 2A is a waveform diagram of magnetic field strength of a Hall sensor inside a motor of two pairs of poles according to an embodiment of the present invention
  • 2B is a map of magnetic field strength of a Hall sensor inside the motor
  • Embodiment 3 is a flow chart of Embodiment 1 of a method for acquiring a mechanical position of a motor according to the present invention
  • FIG. 4 is a flow chart of a second embodiment of a method for acquiring a mechanical position of a motor according to the present invention
  • FIG. 5 is a flow chart of a third embodiment of a method for acquiring a mechanical position of a motor according to the present invention.
  • 6A is a magnetic field intensity waveform diagram of a Hall sensor inside a motor of a four-pole embodiment of the present invention
  • 6B is a map of magnetic field strength of a Hall sensor inside the motor
  • Figure 7A is a two-pole two-dimensional preset waveform diagram
  • 7B is a four-pole two-dimensional preset waveform diagram
  • FIG. 8 is a flow chart of a fourth embodiment of a method for acquiring a mechanical position of a motor according to the present invention.
  • FIG. 9 is a schematic structural diagram of an ESC according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a motor according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of a method for acquiring a mechanical position of a motor according to the present invention.
  • the application scenario includes a motor 1 and an ESC 2, wherein the motor 1 is connected to the ESC 2.
  • the motor may include at least two Hall sensors and at least two pairs of magnetic poles, the phase difference between the at least two Hall sensors being a preset angle, between each pair of magnetic poles and the at least two Hall sensors
  • the motor 1 measures the magnetic flux leakage of the at least two pairs of magnetic poles by the at least two Hall sensors, respectively acquiring the magnetic field strengths of the at least two Hall sensors, and the at least two The magnetic field strength of the sensor is sent to the ESC 2, and the ESC 2 determines the mechanical position of the motor 1 according to the magnetic field strength of the at least two Hall sensors, thereby determining the mechanical position of the motor according to the magnetic flux leakage of the magnet inside the detecting motor.
  • the different implementations of the arrangement between each pair of magnetic poles and the at least two Hall sensors may include different distances between each pair of magnetic poles and the at least two Hall sensors.
  • the specific implementation may be: the magnets corresponding to the pair of magnetic poles have different lengths, or the heights of the at least two Hall sensors are different in the axial direction, or the pairs of the magnetic poles correspond to each other.
  • the magnets have different magnetic strengths, or the magnets corresponding to the respective pairs of magnetic poles use different magnetic media.
  • the arrangement characteristics between each pair of magnetic poles and the at least two Hall sensors provide a physical basis for the mechanical position acquisition method of the motor of the embodiment of the present invention.
  • the basic principle of determining the mechanical angle of the motor according to the magnetic flux leakage of the magnet inside the detecting motor is: detecting at least two Hall sensors having a phase difference, respectively detecting the magnetic flux leakage of the at least two pairs of magnetic poles at the same time
  • the intensity of the magnetic field detected by the at least two Hall sensors is different, and because the arrangement between the pair of magnetic poles and the at least two Hall sensors is different, the motor detects the Hall sensor in different electrical cycles.
  • the magnitude of the magnetic field strength waveform of the magnetic flux leakage is different, so that the mechanical position can be determined according to the magnetic field strength detected by at least two Hall sensors, and the determination efficiency of the mechanical position can be improved, thereby effectively improving the servo performance of the motor.
  • FIG. 2A is a waveform diagram of magnetic field strength of a Hall sensor inside a motor of two pairs of poles according to an embodiment of the present invention
  • FIG. 2B is a map of magnetic field strength of a Hall sensor inside the motor, as shown in FIG. 2A, two curves respectively indicate The magnetic field strength waveform diagram of the Hall sensor 11 and the Hall sensor 12, wherein the horizontal axis is the mechanical position and the vertical axis is the magnetic field strength, as shown in FIG. 2A, due to the relationship between the Hall sensor 11 and the Hall sensor 12 inside the motor.
  • There is a phase difference here is an example of 90 degrees.
  • the magnetic field intensity read by the Hall sensor 11 When the mechanical position is 0, the magnetic field intensity read by the Hall sensor 11 is 1, Hall pass The magnetic field intensity read by the sensor 12 is 0. When the mechanical position is 10, the magnetic field intensity read by the Hall sensor 11 is 0, and the magnetic field intensity read by the Hall sensor 12 is -2, that is, due to the Hall inside the motor. There is a 90 degree phase difference between the sensor 11 and the Hall sensor 12, and the magnetic field strength waveform of the magnetic flux leakage read by the two also has a phase difference of 90 degrees, and due to the pair of magnetic poles and the Hall sensor 11 and the Hall sensor 12 The arrangement is different, as shown in FIG.
  • the amplitude of the magnetic field strength waveform of the Hall sensor 11 and the Hall sensor 12 that is, the maximum value of the magnetic field strength
  • the second electrical The amplitudes of the magnetic field strength waveforms of the Hall sensor 11 and the Hall sensor 12 are different in the cycle.
  • the amplitude of the magnetic field strength waveform is 2, in the second electrical cycle.
  • the amplitude of the magnetic field strength waveform is 1, and by mapping the magnetic field intensity shown in FIG. 2A, a waveform diagram as shown in FIG.
  • the mechanical position acquisition method of the motor of the embodiment of the invention can also reduce the system cost, volume and weight.
  • FIG. 3 is a flow chart of a first embodiment of a method for acquiring a mechanical position of a motor according to the present invention.
  • the motor of the present embodiment adopts a motor as shown in FIG. 1.
  • the method of this embodiment may specifically be a mechanical position acquiring device applied to the motor.
  • the mechanical position acquisition device of the motor can be disposed in the ESC.
  • the method in this embodiment may include:
  • Step 301 Acquire magnetic field strengths of at least two Hall sensors respectively, wherein the magnetic field strengths are obtained by measuring, by the at least two Hall sensors, magnetic flux leakage of the at least two pairs of magnetic poles.
  • the at least two Hall sensors may be two, three, four, etc., and each of the Hall sensors detects the magnetic flux leakage and the acquired magnetic field strength.
  • the magnetic field strengths of the two Hall sensors are respectively obtained, for example, x1 and x2.
  • the ESC can receive the magnetic field strength of at least two Hall sensors transmitted by the motor.
  • Step 302 Determine a mechanical position of the motor according to a magnetic field strength of the at least two Hall sensors.
  • the mechanical position of the motor can also be referred to as a mechanical angle or an absolute angle.
  • step 302 determining a mechanical position of the motor according to a magnetic field strength of the at least two Hall sensors and a preset mapping relationship, wherein the preset mapping relationship includes taking a plurality of magnetic field strengths a value corresponding to the value of each magnetic field strength, the value of each magnetic field strength includes a value of a plurality of dimensions, the number of dimensions of the plurality of dimensions and the at least two Hall sensors The number is the same.
  • the preset mapping relationship may be a mapping table.
  • the two Hall sensors are further illustrated as an example.
  • Each row of the mapping table includes two values.
  • the mapping table may include multiple rows, and each row of the mapping table.
  • the number of rows in the map is related to the accuracy of the mechanical position measurement.
  • the preset mapping relationship may also be a mapping function, and the mechanical position may be determined according to the magnetic field strength and the mapping function of the at least two Hall sensors.
  • the preset mapping relationship may also be a preset waveform diagram, where each point in the preset waveform diagram corresponds to a mechanical position, and the two Hall sensors are further exemplified as an example, and the preset waveform diagram is as shown in FIG. 2B. It is shown that when the magnetic field strengths of the two Hall sensors are respectively acquired, for example, x1 and x2, the mechanical position corresponding to the coordinate point of the horizontal axis x1 and the vertical axis x2 is determined in the preset waveform diagram.
  • the magnetic field strengths of the at least two Hall sensors are obtained by measuring the magnetic flux leakage of the at least two pairs of magnetic poles, according to the at least two The magnetic field strength of the Hall sensors determines the mechanical position of the motor, thereby determining the mechanical position of the motor based on the magnetic flux leakage of the magnet inside the motor, and the servo performance of the motor can be improved.
  • the method in this embodiment may include:
  • Step 401 Acquire magnetic field strengths of the at least two Hall sensors respectively, where the magnetic field is strong The degree is measured by the at least two Hall sensors measuring the leakage flux of the at least two pairs of magnetic poles.
  • Step 402 Determine a mechanical position corresponding to a magnetic field strength of the at least two Hall sensors according to a magnetic field strength of the at least two Hall sensors and a preset mapping relationship.
  • FIG. 2B there is an intersection point, that is, a coincidence point, and all points except the coincidence point correspond to a single mechanical position, and the coincidence point corresponds to a mechanical position more than One, when the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is located at the coincidence point, since it is not unique, the state information needs to be used for further determination.
  • Step 403 Determine whether the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is unique.
  • step 404 performs step 404, according to
  • step 405 is performed.
  • Step 404 Taking a mechanical position corresponding to a magnetic field strength of the at least two Hall sensors as a mechanical position of the motor;
  • Step 405 Determine a mechanical position of the motor according to a mechanical position corresponding to a magnetic field strength of the at least two Hall sensors and state information corresponding to a magnetic field strength of the at least two Hall sensors at an adjacent time.
  • the state information corresponding to the plurality of magnetic field strengths is determined according to a preset state position, and the number of the preset state positions is the same as the number of pairs of the at least two pairs of magnetic poles.
  • the magnetic field strengths of the at least two Hall sensors are respectively obtained by measuring the magnetic flux leakage of the at least two pairs of magnetic poles by the at least two Hall sensors, according to the Determining a mechanical position corresponding to a magnetic field strength of the at least two Hall sensors by determining a magnetic field strength of the at least two Hall sensors and a predetermined mapping relationship, and determining whether a mechanical position corresponding to a magnetic field strength of the at least two Hall sensors is unique,
  • the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is taken as the mechanical position of the motor, according to the a mechanical position corresponding to a magnetic field strength of the at least two Hall sensors and a magnetic field of the at least two Hall sensors at an adjacent time when the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is more than one
  • the state information corresponding to the intensity determines the mechanical position of the motor, thereby determining the leakage flux of the
  • the magnetic field strength of the two Hall sensors is circumvented Should be a problem with multiple mechanical locations.
  • FIG. 5 is a flowchart of Embodiment 3 of a method for acquiring a mechanical position of a motor according to the present invention.
  • the motor includes two Hall sensors, and the preset mapping relationship is a two-dimensional preset waveform diagram.
  • the method of this embodiment may include:
  • Step 501 Acquire magnetic field strengths of two Hall sensors respectively, where the magnetic field strengths are measured by the two Hall sensors measuring magnetic flux leakage of the at least two pairs of magnetic poles.
  • Step 502 Map magnetic field strengths of the two Hall sensors to the two-dimensional preset waveform diagram, and determine points corresponding to magnetic field strengths of the two Hall sensors.
  • the abscissa and the ordinate of each point in the two-dimensional preset waveform diagram respectively represent values of a magnetic field strength, and each point in the two-dimensional preset waveform diagram corresponds to a mechanical position
  • the second The dimension preset waveform diagram includes at least two turns of the curve, and the at least two turns of the curve have a coincidence point, wherein the number of turns of the at least two turns of the curve is the same as the number of pairs of the at least two pairs of magnetic poles.
  • the two-dimensional preset waveform diagram is a waveform diagram as shown in FIG. 2B.
  • the two-dimensional preset waveform diagram is as shown in FIG. 6B.
  • FIG. 6A is a magnetic field intensity waveform diagram of a Hall sensor inside the motor of the four-pole embodiment of the present invention
  • FIG. 6B is a map of the magnetic field strength of the Hall sensor inside the motor.
  • the two curves in FIG. 6A respectively represent the magnetic field strength waveforms of the Hall sensor 11 and the Hall sensor 12, wherein the horizontal axis is the mechanical position.
  • the vertical axis is the magnetic field strength.
  • the magnetic field strength waveform of the magnetic flux leakage read by the two also has a phase difference
  • the pair of magnetic poles are different from the arrangement between the Hall sensor 11 and the Hall sensor 12, as shown in FIG. 6A, in the first electrical cycle, the magnitudes of the magnetic field strength waveforms of the Hall sensor 11 and the Hall sensor 12 , that is, the maximum value of the magnetic field strength, and the magnitudes of the magnetic field strength waveforms of the Hall sensor 11 and the Hall sensor 12 in the second electrical cycle, the third electrical cycle, and the fourth electrical cycle, which will be shown in FIG. 6A.
  • the magnetic field strength is mapped to obtain a waveform diagram as shown in FIG.
  • the mechanical position can be used to uniquely determine a mechanical position based on the magnetic field strength detected by the two Hall sensors, thereby improving the determination efficiency of the mechanical position, thereby effectively improving the servo performance of the motor.
  • Step 503 Determine a mechanical position of the motor according to a position of a corresponding point of the magnetic field strength of the two Hall sensors in the two-dimensional preset waveform.
  • the preset mapping relationship may further include at least two calibration points, that is, the two-dimensional preset waveform diagram includes at least two calibration points, the number of the at least two calibration points and the at least two pairs of magnetic poles
  • the logarithm is the same, the at least two calibration points are respectively located on different circle curves of the two-dimensional preset waveform, and the distance between the at least two calibration points and the coincidence point is greater than the first preset value, And the distance between the at least two calibration points is greater than the second preset value.
  • the first preset value and the second preset value may be flexibly selected according to requirements.
  • the number of the at least two calibration points is two, and when the motor includes four pairs of magnetic poles, the number of the at least two pairs of calibration points is four.
  • FIG. 7A is a two-pole two-dimensional preset waveform diagram
  • FIG. 7B is a four-pole two-dimensional preset waveform diagram.
  • the two-dimensional preset waveform diagram when the motor includes two pairs of magnetic poles, the two-dimensional preset waveform diagram includes two calibration points a1 and a2, and the two-dimensional preset waveforms are divided into two segments, namely S0 and S1, wherein Each point included in the S0 segment has the same state information, and each point included in the S1 segment has the same state information, and the state information of the S0 segment is different from the S1 segment.
  • the state information includes one bit information as an example.
  • the state information of each point included in the S0 segment may be 0, and the state information of each point included in the S1 segment may be 1.
  • the two-dimensional preset waveform diagram includes four calibration points b1, b2, b3, and b4, and the two-dimensional preset waveforms are divided into four segments. , respectively, S0, S1, S2, and S3, wherein each point included in the S0 segment has the same state information, each point included in the S1 segment has the same state information, and each point included in the S2 segment has the same state information.
  • the points included in the S3 segment have the same state information, and the state information of the adjacent segments is different.
  • the coincidence point and the at least two calibration points satisfy a condition that when the coincidence point is in the fourth quadrant, the at least two calibration points are located in the second quadrant; when the coincidence point is located at the The third quadrant, the at least two calibration points are located in the first quadrant; when the coincidence point is in the second quadrant, the at least two calibration points are located in the fourth quadrant; when the coincidence point is in the first quadrant, The at least two calibration points are located in the third quadrant.
  • determining the two Hall passes The magnetic field strength of the sensor corresponds to whether the point coincides with the coincidence point.
  • the mechanical position corresponding to the point corresponding to the magnetic field strength of the two Hall sensors is taken as the mechanical position of the motor.
  • a point corresponding to a magnetic field strength of the two Hall sensors coincides with the coincidence point
  • a point corresponding to a magnetic field strength of the two Hall sensors and a magnetic field of the two Hall sensors at an adjacent time
  • the state information of the point corresponding to the intensity determines the mechanical position of the motor.
  • the mechanical position of the motor is determined according to a point corresponding to a magnetic field strength of the two Hall sensors and a state information of a point corresponding to a magnetic field strength of the two Hall sensors at an adjacent moment.
  • the method includes: state information of a point corresponding to a magnetic field strength of the two Hall sensors at an adjacent time, as state information of a point corresponding to a magnetic field strength of the two Hall sensors at a current time; The state information of the point corresponding to the magnetic field strength of the Hall sensor and the point corresponding to the magnetic field strength of the two Hall sensors at the current time determine the mechanical position of the motor.
  • the magnetic field strengths of the two Hall sensors are respectively obtained, and the magnetic field strength is obtained by measuring the magnetic flux leakage of the at least two pairs of magnetic poles by the two Hall sensors, and the two Hall sensors are The magnetic field strength is mapped to the two-dimensional preset waveform, and the points corresponding to the magnetic field strengths of the two Hall sensors are determined, and the corresponding points according to the magnetic field strengths of the two Hall sensors are in the two-dimensional preset
  • the position in the waveform diagram determines the mechanical position of the motor, thereby determining the mechanical position of the motor based on the magnetic flux leakage of the magnet inside the motor, which can improve the servo performance of the motor.
  • FIG. 8 is a flow chart of a fourth embodiment of a method for acquiring a mechanical position of a motor according to the present invention.
  • a motor is connected to the electrical switch, and the motor is a motor as shown in FIG. 1.
  • the method of the embodiment is applied to the motor, such as As shown in FIG. 8, the method in this embodiment may include:
  • Step 801 measuring magnetic flux leakage of the at least two pairs of magnetic poles by the at least two Hall sensors, respectively acquiring magnetic field strengths of the at least two Hall sensors.
  • Step 802 Send the magnetic field strengths of the at least two Hall sensors to the ESC, and the magnetic field strengths of the at least two Hall sensors are used for the ESC to determine the mechanical position of the motor.
  • the magnetic flux leakage of the at least two pairs of magnetic poles is measured by the at least two Hall sensors, and the magnetic field strengths of the at least two Hall sensors are respectively acquired, and the at least two The magnetic field strength of the sensor is sent to the ESC, and the magnetic field strength of the at least two Hall sensors is used for the ESC to determine the mechanical position of the motor, thereby determining the mechanical position of the motor according to the magnetic flux leakage of the magnet inside the detecting motor. Can improve the servo performance of the motor.
  • FIG. 9 is a schematic structural diagram of an ESC according to an embodiment of the present invention.
  • the ESC of the embodiment is coupled to a motor, the motor includes at least two Hall sensors and at least two pairs of magnetic poles, and the at least two Hall sensors The phase difference between the two is different from that of the Hall sensor.
  • the ESC of the embodiment may include: a processor 91, the processor 91 for respectively acquiring magnetic field strengths of the at least two Hall sensors, wherein the magnetic field strength is obtained by measuring, by the at least two Hall sensors, magnetic flux leakage of the at least two pairs of magnetic poles, according to the at least two The magnetic field strength of the Hall sensors determines the mechanical position of the motor.
  • the ESC can also include a motor port 92 coupled to the motor for outputting a drive signal to control rotor rotation of the motor.
  • the processor 91 may be configured to: determine a mechanical position of the motor according to a magnetic field strength of the at least two Hall sensors and a preset mapping relationship, where the preset mapping relationship The mechanical position including the value of the plurality of magnetic field strengths and the value of each magnetic field strength, and the value of each magnetic field strength includes the values of the plurality of dimensions, and the number of dimensions of the plurality of dimensions The number of at least two Hall sensors is the same.
  • the preset mapping relationship further includes status information corresponding to the values of the multiple magnetic field strengths.
  • the processor 91 may be configured to: determine a mechanical position corresponding to a magnetic field strength of the at least two Hall sensors according to a magnetic field strength of the at least two Hall sensors and a preset mapping relationship When the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is a unique value, the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is taken as the mechanical position of the motor; When the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors is more than one, the mechanical position corresponding to the magnetic field strength of the at least two Hall sensors, and the at least two Hall sensors of the adjacent time The state information corresponding to the magnetic field strength determines the mechanical position of the motor.
  • the state information corresponding to the plurality of magnetic field strengths is determined according to a preset state position, and the number of the preset state positions is the same as the number of pairs of the at least two pairs of magnetic poles.
  • the preset mapping is off.
  • the system includes a two-dimensional preset waveform diagram, and the abscissa and the ordinate of each point in the two-dimensional preset waveform diagram respectively represent values of a magnetic field strength, and each point in the two-dimensional preset waveform diagram Corresponding to a mechanical position, the two-dimensional preset waveform diagram includes at least two turns of a curve, and the at least two turns of the curve have a coincidence point, wherein the number of turns of the at least two turns of the curve and the at least two pairs of magnetic poles The number is the same.
  • the processor 91 is specifically configured to: map magnetic field strengths of the two Hall sensors into the two-dimensional preset waveform, and determine points corresponding to magnetic field strengths of the two Hall sensors; The position of the magnetic field strength corresponding point of the sensor in the two-dimensional preset waveform diagram determines the mechanical position of the motor.
  • the preset mapping relationship further includes at least two calibration points, the number of the at least two calibration points being the same as the number of pairs of the at least two pairs of magnetic poles, where the at least two calibration points are respectively located On the different loop curves of the two-dimensional preset waveform diagram, the distance between the at least two calibration points and the coincidence point is greater than the first preset value, and the distance between the at least two calibration points is greater than the first Two preset values; any point on the curve between the calibration points of the adjacent two-turn curves has the same state information.
  • the processor 91 is specifically configured to: when the points corresponding to the magnetic field strengths of the two Hall sensors are not coincident with the coincidence point, corresponding to the points corresponding to the magnetic field strengths of the two Hall sensors
  • the mechanical position is the mechanical position of the motor.
  • Determining a mechanical position of the motor according to a point corresponding to a magnetic field strength of the two Hall sensors and a state information of a point corresponding to a magnetic field strength of the two Hall sensors at an adjacent time may include: The state information of the point corresponding to the magnetic field strengths of the two Hall sensors at the adjacent time is used as the state information of the point corresponding to the magnetic field strengths of the two Hall sensors at the current time; the two Halls according to the current time The mechanical position of the motor is determined by the point information corresponding to the magnetic field strength of the sensor and the state information of the point corresponding to the magnetic field strength of the two Hall sensors at the current time.
  • the status information includes one bit information, where the one bit information is 0 or 1.
  • the electrical adjustment of the embodiment may be used to implement the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural view of a motor according to an embodiment of the present invention.
  • the motor is connected to an electrical switch.
  • the motor includes at least two Hall sensors (101, 102, ... 10n) and at least two.
  • the at least two Hall sensors are configured to: measure magnetic flux leakage of the at least two pairs of magnetic poles, respectively acquire magnetic field strengths of the at least two Hall sensors; The magnetic field strength of the sensor is sent to the ESC, and the magnetic field strength of the at least two Hall sensors is used for the ESC to determine the mechanical position of the motor.
  • the magnets corresponding to the pair of magnetic poles have different lengths.
  • the at least two Hall sensors have different heights in the axial direction.
  • the magnets corresponding to the pair of magnetic poles have different magnetic strengths.
  • each pair of magnets corresponding to the magnetic poles uses different magnetic media.
  • the motor of this embodiment can be used to implement the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the embodiment of the present invention further provides a power system, and the power system of the embodiment includes: an electric adjustment and an electric motor, wherein the electric adjustment can adopt the structure of the device embodiment of FIG. 9 , and correspondingly, the technical solution of the foregoing method embodiment can be executed.
  • the implementation principle and technical effect are similar, and will not be described here.
  • the motor can adopt the structure of the device embodiment of FIG. 10, and correspondingly, the technical solution of the foregoing method embodiment can be executed, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the embodiment of the invention further provides a cloud platform, which comprises a fixing mechanism, a shaft arm, an electric adjustment as shown in FIG. 9, and a motor as shown in FIG.
  • a cloud platform which comprises a fixing mechanism, a shaft arm, an electric adjustment as shown in FIG. 9, and a motor as shown in FIG.
  • An embodiment of the present invention further provides an unmanned aerial vehicle including a fuselage, an electric switch as shown in FIG. 9, and a motor as shown in FIG.
  • an unmanned aerial vehicle including a fuselage, an electric switch as shown in FIG. 9, and a motor as shown in FIG.
  • the technical solution of the foregoing method embodiment may be implemented, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium, including several fingers
  • the steps used to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Technology Law (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种电机(1)的机械位置获取方法和装置,电机(1)包括至少两个霍尔传感器(101、102)和至少两对磁极(111、112),至少两个霍尔传感器(101、102)之间的相位差为预设角度,各对磁极(111、112)与霍尔传感器(101、102)之间的排布不同,电机(1)与电调(2)连接,该方法应用于电调(2)中,该方法包括:分别获取至少两个霍尔传感器(101、102)的磁场强度,磁场强度为至少两个霍尔传感器(101、102)对至少两对磁极(111、112)的漏磁进行测量得到的;根据至少两个霍尔传感器(101、102)的磁场强度确定电机(1)的机械位置。本技术方案可以提升电机(1)的伺服性能。

Description

电机的机械位置获取方法和装置 技术领域
本发明实施例涉及电子技术,尤其涉及一种电机的机械位置获取方法和装置。
背景技术
伺服电机(servo motor)是指在伺服***中控制机械元件运转的发动机,伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制***中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性。其中,伺服电机可以包括永磁伺服电机,该永磁伺服电机的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动。永磁伺服电机可以应用于消费类无人机中,例如,用于相机稳定的三轴云台中。
永磁伺服电机的机械位置的获取,通常采用额外增加位置传感器的方式,例如增加光电编码器、光栅增量式编码器、磁编码器、磁阻式旋转变压器等。该位置传感器是与电机电磁部分分离设置的,可靠性高,然而设置该位置传感器,使得设置该永磁伺服电机的***成本较高,并且会增加设置该永磁伺服电机的***的体积和重量。
发明内容
本发明实施例提供一种电机的机械位置获取方法和装置,从而根据检测电机内部的磁铁的漏磁确定电机的机械位置,可以提升电机的伺服性能。
第一方面,本发明实施例提供一种电机的机械位置获取方法,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述电机与电调连接,所述方法应用于所述电调中,所述方法包括:
分别获取所述至少两个霍尔传感器的磁场强度,所述磁场强度为所述至 少两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的;
根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置。
结合第一方面,在第一方面的一种可能的实现方式中,所述根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置,包括:
根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述电机的机械位置;
其中,所述预设映射关系包括多个磁场强度的取值和每个磁场强度的取值对应的机械位置,每个磁场强度的取值包括多个维度的取值,所述多个维度的取值的维度个数与所述至少两个霍尔传感器的个数相同。
结合第一方面或者第一方面的一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述预设映射关系还包括所述多个磁场强度的取值对应的状态信息。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述电机的机械位置,包括:
根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述至少两个霍尔传感器的磁场强度对应的机械位置;
当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为唯一值时,将所述至少两个霍尔传感器的磁场强度对应的机械位置作为所述电机的机械位置;
当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为多于一个时,根据所述至少两个霍尔传感器的磁场强度对应的机械位置,以及相邻时刻所述至少两个霍尔传感器的磁场强度对应的状态信息,确定所述电机的机械位置。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述多个磁场强度对应的状态信息为根据预设状态位置确定的,所述预设状态位置的个数与所述至少两对磁极的对数相同。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,当所述至少两个霍尔传感器的个数为两个时,所述预设映射关系包括二维预设波形图,所述二维预设波形图中的每一个点的横 坐标和纵坐标分别表示一个磁场强度的取值,所述二维预设波形图中的每一个点对应一个机械位置,所述二维预设波形图包括至少两圈曲线,且所述至少两圈曲线具有一重合点,其中,所述至少两圈曲线的圈数与所述至少两对磁极的对数相同;
所述根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置,包括:
将两个霍尔传感器的磁场强度映射至所述二维预设波形图中,确定所述两个霍尔传感器的磁场强度对应的点;
根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述预设映射关系还包括至少两个标定点,所述至少两个标定点的个数与所述至少两对磁极的对数相同,所述至少两个标定点分别位于所述二维预设波形图的不同圈曲线上,所述至少两个标定点与所述重合点之间的距离大于第一预设值,且所述至少两个标定点之间的距离大于第二预设值;
位于相邻的两圈曲线的标定点之间的曲线上任意点具有相同的状态信息。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述重合点与所述至少两个标定点满足以下条件:
当所述重合点位于第四象限时,所述至少两个标定点位于第二象限;
当所述重合点位于第三象限时,所述至少两个标定点位于第一象限;
当所述重合点位于第二象限时,所述至少两个标定点位于第四象限;
当所述重合点位于第一象限时,所述至少两个标定点位于第三象限。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置,包括:
当所述两个霍尔传感器的磁场强度对应的点未与所述重合点重合时,将所述两个霍尔传感器的磁场强度对应的点对应的机械位置作为所述电机的机械位置。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置,包括:
当所述两个霍尔传感器的磁场强度对应的点与所述重合点重合时,根据所述两个霍尔传感器的磁场强度对应的点,以及相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述根据所述两个霍尔传感器的磁场强度对应的点,以及相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置,包括:
将相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,作为当前时刻所述两个霍尔传感器的磁场强度对应的点的状态信息;
根据当前时刻所述两个霍尔传感器的磁场强度对应的点和所述当前时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置。
结合第一方面或者第一方面的任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述状态信息包括一比特位信息,所述一比特位信息为0或1。
第二方面,本发明实施例提供一种电机的机械位置获取方法,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述方法应用于所述电机中,所述方法包括:
通过所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量,分别获取所述至少两个霍尔传感器的磁场强度;
将所述至少两个霍尔传感器的磁场强度发送给电调,所述至少两个霍尔传感器的磁场强度用于所述电调确定所述电机的机械位置。
结合第二方面,在第二方面的一种可能的实现方式中,所述各对所述磁极对应的磁铁具有不同的长度。
结合第二方面或者第二方面的一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述至少两个霍尔传感器沿轴向的高度不同。
第三方面,本发明实施例提供一种电调,所述电调与电机连接,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述电调包括处理器,所述处理器用于执行上述第一方面任一项所述的方法。
第四方面,本发明实施例提供一种电机,所述电机与电调连接,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述至少两个霍尔传感器用于:
对所述至少两对磁极的漏磁进行测量,分别获取所述至少两个霍尔传感器的磁场强度;
将所述至少两个霍尔传感器的磁场强度发送给电调,所述至少两个霍尔传感器的磁场强度用于所述电调确定所述电机的机械位置。
结合第四方面,在第四方面的一种可能的实现方式中,所述各对所述磁极对应的磁铁具有不同的长度。
结合第四方面或者第四方面的一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述至少两个霍尔传感器沿轴向的高度不同。
结合第四方面或者第四方面的任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述各对所述磁极对应的磁铁具有不同的磁性强度。
结合第四方面或者第四方面的任一种可能的实现方式,在第四方面的另一种可能的实现方式中,所述各对所述磁极对应的磁铁采用不同的磁性介质。
第五方面,本发明实施例提供一种动力***,所述动力***包括如上述第三方面所述的电调和如上述第四方面任一项所述的电机。
第六方面,本发明实施例提供一种云台,所述云台包括固定机构、轴臂、如上述第三方面所述的电调和如上述第四方面任一项所述的电机。
第七方面,本发明实施例提供一种无人机飞行器,所述无人机飞行器包括机身、如上述第三方面所述的电调和如上述第四方面任一项所述的电机。
本发明实施例电机的机械位置获取方法和装置,通过分别获取至少两个霍尔传感器的磁场强度,所述磁场强度为所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的,根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置,从而根据检测电机内部的磁铁的漏磁确定电机 的机械位置,可以提升电机的伺服性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明电机的机械位置获取方法的一种应用场景示意图;
图2A为两对极本发明实施例的电机内部的霍尔传感器的磁场强度波形图;
图2B为电机内部的霍尔传感器的磁场强度的映射图;
图3为本发明电机的机械位置获取方法实施例一的流程图;
图4为本发明电机的机械位置获取方法实施例二的流程图;
图5为本发明电机的机械位置获取方法实施例三的流程图;
图6A为四对极本发明实施例的电机内部的霍尔传感器的磁场强度波形图;
图6B为电机内部的霍尔传感器的磁场强度的映射图;
图7A为两对极二维预设波形图;
图7B为四对极二维预设波形图;
图8为本发明电机的机械位置获取方法实施例四的流程图;
图9为本发明实施例的一种电调的结构示意图;
图10为本发明实施例的一种电机的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明电机的机械位置获取方法的一种应用场景示意图,如图1所示,该应用场景包括电机1和电调2,其中,电机1与电调2连接。具体的,该电机可以包括至少两个霍尔传感器和至少两对磁极,该至少两个霍尔传感器之间的相位差为预设角度,各对磁极与所述至少两个霍尔传感器之间的排布不同,电机1通过所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量,分别获取所述至少两个霍尔传感器的磁场强度,将所述至少两个霍尔传感器的磁场强度发送给电调2,电调2根据所述至少两个霍尔传感器的磁场强度确定电机1的机械位置,从而根据检测电机内部的磁铁的漏磁确定电机的机械位置,可以提升电机的伺服性能。
其中,各对磁极与所述至少两个霍尔传感器之间的排布不同实现方式可以包括,各对磁极与所述至少两个霍尔传感器之间的距离不同。具体的实现方式可以为:所述各对所述磁极对应的磁铁具有不同的长度,或者,所述至少两个霍尔传感器沿轴向的高度不同,或者,所述各对所述磁极对应的磁铁具有不同的磁性强度,或者,所述各对所述磁极对应的磁铁采用不同的磁性介质。各对磁极与所述至少两个霍尔传感器之间的排布特性为本发明实施例的电机的机械位置获取方法提供了物理基础。
其中,根据检测电机内部的磁铁的漏磁确定电机的机械角度的实现基本原理为:由于设置具有相位差的至少两个霍尔传感器,分别检测所述至少两对磁极的漏磁,在相同时刻,至少两个霍尔传感器检测到的磁场强度不同,并且由于各对磁极与所述至少两个霍尔传感器之间的排布不同,所以电机在不同的电气周期中,霍尔传感器检测到的漏磁的磁场强度波形幅值不同,从而可以根据至少两个霍尔传感器检测到的磁场强度确定机械位置,提升机械位置的确定效率,进而有效提升电机的伺服性能。
为了清楚的解释上述实现基本原理,以两对磁极、两个霍尔传感器为例进行举例说明。图2A为两对极本发明实施例的电机内部的霍尔传感器的磁场强度波形图,图2B为电机内部的霍尔传感器的磁场强度的映射图,如图2A所示,两条曲线分别表示霍尔传感器11和霍尔传感器12的磁场强度波形图,其中,横轴为机械位置,纵轴为磁场强度,如图2A所示,由于电机内部的霍尔传感器11和霍尔传感器12之间的有相位差,这里以90度为例进行举例说明,在机械位置为0时,霍尔传感器11读取的磁场强度为1,霍尔传 感器12读取的磁场强度为0,在机械位置为10时,霍尔传感器11读取的磁场强度为0,霍尔传感器12读取的磁场强度为-2,即由于电机内部的霍尔传感器11和霍尔传感器12之间的有90度相位差,二者读取的漏磁的磁场强度波形也具有90度相位差,并且由于各对磁极与霍尔传感器11和霍尔传感器12之间的排布不同,如图2A所示,在第一个电气周期中,霍尔传感器11和霍尔传感器12的磁场强度波形的幅值,即磁场强度的最大值,与在第二个电气周期中霍尔传感器11和霍尔传感器12的磁场强度波形的幅值不同,例如,如图2A所示,在第一个电气周期中,磁场强度波形的幅值为2,在第二电气周期中,磁场强度波形的幅值为1,将图2A所示的磁场强度进行映射,便可以获取到如图2B所示的波形图,其中,横轴为霍尔传感器11的读数,纵轴为霍尔传感器12的读数,图2B中每个点均对应不同的机械位置,从而可以根据至少两个霍尔传感器检测到的磁场强度确定机械位置,提升机械位置的确定效率,进而有效提升电机的伺服性能。
需要说明的是,本发明实施例的电机的机械位置获取方法还可以降低***成本、体积和重量。
下面采用几个具体的实施例对本发明的电机的机械位置获取方法进行解释说明。
图3为本发明电机的机械位置获取方法实施例一的流程图,本实施例的电机采用如图1所示的电机,本实施例的方法具体可以为应用于电机的机械位置获取装置,该电机的机械位置获取装置可以设置在电调中,如图3所示,本实施例的方法可以包括:
步骤301、分别获取至少两个霍尔传感器的磁场强度,所述磁场强度为所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的。
其中,该至少两个霍尔传感器可以是两个、三个、四个等等,获取每个霍尔传感器检测漏磁,获取的磁场强度。以两个霍尔传感器为例进行举例说明,分别获取两个霍尔传感器的磁场强度,例如为x1和x2。
具体的,电调可以接收电机发送的至少两个霍尔传感器的磁场强度。
步骤302、根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置。
其中,该电机的机械位置也可以称之为机械角度、或者绝对角度。
上述步骤302的一种可实现方式,根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述电机的机械位置,其中,所述预设映射关系包括多个磁场强度的取值和每个磁场强度的取值对应的机械位置,每个磁场强度的取值包括多个维度的取值,所述多个维度的取值的维度个数与所述至少两个霍尔传感器的个数相同。
该预设映射关系可以为一个映射表,以上述两个霍尔传感器为例进一步举例说明,该映射表的每一行包括两个取值,该映射表可以包括多行,该映射表的每一行对应一个机械位置,该映射表的行数与机械位置测量精度有关。当分别获取两个霍尔传感器的磁场强度,例如为x1和x2,则在该映射表中匹配确定x1和x2对应的机械位置。
该预设映射关系还可以为一个映射函数,可以根据所述至少两个霍尔传感器的磁场强度和映射函数确定机械位置,以上述两个霍尔传感器为例进一步举例说明,该映射函数可以表示y=f(x1,x2),当分别获取两个霍尔传感器的磁场强度,例如为x1和x2,则根据y=f(x1,x2),确定对应的机械位置y。
该预设映射关系还可以为预设波形图,该预设波形图中的每一点对应一个机械位置,以上述两个霍尔传感器为例进一步举例说明,该预设波形图即如图2B所示,当分别获取两个霍尔传感器的磁场强度,例如为x1和x2,则在该预设波形图中确定横轴为x1和纵轴为x2的坐标点对应的机械位置。
本实施例,通过分别获取至少两个霍尔传感器的磁场强度,所述磁场强度为所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的,根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置,从而根据检测电机内部的磁铁的漏磁确定电机的机械位置,可以提升电机的伺服性能。
下面采用几个具体的实施例,对图3所示方法实施例的技术方案进行详细说明。
图4为本发明电机的机械位置获取方法实施例二的流程图,本实施例在图3所示实施例的基础上,所述预设映射关系还包括所述多个磁场强度的取值对应的状态信息,如图4所示,本实施例的方法可以包括:
步骤401、分别获取所述至少两个霍尔传感器的磁场强度,所述磁场强 度为所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的。
步骤402、根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述至少两个霍尔传感器的磁场强度对应的机械位置。
以图2B为例做进一步举例说明,如图2B所示,存在一个交叉点,即重合点,除该重合点之外的所有点均对应唯一一个机械位置,而该重合点对应机械位置多于一个,当所述至少两个霍尔传感器的磁场强度对应的机械位置位于该重合点时,由于其不唯一性,则需要使用该状态信息做进一步确定。
步骤403、判断所述至少两个霍尔传感器的磁场强度对应的机械位置是否唯一,当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为唯一值时,执行步骤404,当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为多于一个时,执行步骤405。
步骤404、将所述至少两个霍尔传感器的磁场强度对应的机械位置作为所述电机的机械位置;
步骤405、根据所述至少两个霍尔传感器的磁场强度对应的机械位置,以及相邻时刻所述至少两个霍尔传感器的磁场强度对应的状态信息,确定所述电机的机械位置。
可选的,所述多个磁场强度对应的状态信息为根据预设状态位置确定的,所述预设状态位置的个数与所述至少两对磁极的对数相同。
本实施例,通过分别获取所述至少两个霍尔传感器的磁场强度,所述磁场强度为所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的,根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述至少两个霍尔传感器的磁场强度对应的机械位置,判断所述至少两个霍尔传感器的磁场强度对应的机械位置是否唯一,当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为唯一值时,将所述至少两个霍尔传感器的磁场强度对应的机械位置作为所述电机的机械位置,当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为多于一个时,根据所述至少两个霍尔传感器的磁场强度对应的机械位置,以及相邻时刻所述至少两个霍尔传感器的磁场强度对应的状态信息,确定所述电机的机械位置,从而根据检测电机内部的磁铁的漏磁确定电机的机械位置,可以提升电机的伺服性能。
并且通过设置状态信息,从而规避了所述两个霍尔传感器的磁场强度对 应多个机械位置的问题。
图5为本发明电机的机械位置获取方法实施例三的流程图,如图5所示,本实施例以电机包括两个霍尔传感器,预设映射关系为二维预设波形图为例进行说明,本实施例的方法可以包括:
步骤501、分别获取两个霍尔传感器的磁场强度,所述磁场强度为所述两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的。
步骤502、将所述两个霍尔传感器的磁场强度映射至所述二维预设波形图中,确定所述两个霍尔传感器的磁场强度对应的点。
其中,该二维预设波形图中的每一个点的横坐标和纵坐标分别表示一个磁场强度的取值,所述二维预设波形图中的每一个点对应一个机械位置,所述二维预设波形图包括至少两圈曲线,且所述至少两圈曲线具有一重合点,其中,所述至少两圈曲线的圈数与所述至少两对磁极的对数相同。
其中,电机包括两对磁极时,该二维预设波形图为如图2B所示的波形图。电机包括四对磁极时,该二维预设波形图为如图6B所示。
其中,图6A为四对极本发明实施例的电机内部的霍尔传感器的磁场强度波形图,图6B为电机内部的霍尔传感器的磁场强度的映射图。以上述霍尔传感器11和霍尔传感器12为例做进一步举例说明,图6A中的两条曲线分别表示霍尔传感器11和霍尔传感器12的磁场强度波形图,其中,横轴为机械位置,纵轴为磁场强度,如图6A所示,由于电机内部的霍尔传感器11和霍尔传感器12之间的有相位差,二者读取的漏磁的磁场强度波形也具有相位差,并且由于各对磁极与霍尔传感器11和霍尔传感器12之间的排布不同,如图6A所示,在第一个电气周期中,霍尔传感器11和霍尔传感器12的磁场强度波形的幅值,即磁场强度的最大值,与在第二个电气周期、第三个电气周期和第四个电气周期中霍尔传感器11和霍尔传感器12的磁场强度波形的幅值不同,将图6A所示的磁场强度进行映射,便可以获取到如图6B所示的波形图,其中,横轴为霍尔传感器11的读数,纵轴为霍尔传感器12的读数,图6B中每个点均对应不同的机械位置,从而可以根据两个霍尔传感器检测到的磁场强度唯一确定一个机械位置,提升机械位置的确定效率,进而有效提升电机的伺服性能。
需要说明的是,依据上述两对磁极和四对磁极的二维预设波形图所揭示 的原理,其他更多对磁极的二维预设波形图具有相同的设计原理,此处不一一举例说明。
步骤503、根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置。
可选的,预设映射关系还可以包括至少两个标定点,即上述二维预设波形图包括至少两个标定点,所述至少两个标定点的个数与所述至少两对磁极的对数相同,所述至少两个标定点分别位于所述二维预设波形图的不同圈曲线上,所述至少两个标定点与所述重合点之间的距离大于第一预设值,且所述至少两个标定点之间的距离大于第二预设值。其中,该第一预设值和第二预设值可以根据需求进行灵活选取。
例如,电机包括两对磁极时,该至少两个标定点的个数为两个,电机包括四对磁极时,该至少两对标定点的个数为四个。
其中,位于相邻的两圈曲线的标定点之间的曲线上任意点具有相同的状态信息。图7A为两对极二维预设波形图,图7B为四对极二维预设波形图。如图7A所示,电机包括两对磁极时,二维预设波形图包括两个标定点a1和a2,a1和a2将该二维预设波形分为两段,分别为S0和S1,其中S0段所包括各个点的具有相同的状态信息,S1段所包括各个点的具有相同的状态信息,S0段与S1段的状态信息不同。以状态信息包括一比特位信息为例进行举例说明,S0段所包括各个点的状态信息可以为0,S1段所包括各个点的状态信息可以为1。如图7B所示,电机包括四对磁极时,二维预设波形图包括四个标定点b1、b2、b3和b4,b1、b2、b3和b4将该二维预设波形分为四段,分别为S0、S1、S2和S3,其中S0段所包括各个点的具有相同的状态信息,S1段所包括各个点的具有相同的状态信息,S2段所包括各个点的具有相同的状态信息,S3段所包括各个点的具有相同的状态信息,相邻段的状态信息不同。
可选的,所述重合点与所述至少两个标定点满足以下条件:当所述重合点位于第四象限时,所述至少两个标定点位于第二象限;当所述重合点位于第三象限时,所述至少两个标定点位于第一象限;当所述重合点位于第二象限时,所述至少两个标定点位于第四象限;当所述重合点位于第一象限时,所述至少两个标定点位于第三象限。
可选的,上述步骤503的一种具体的可实现方式,判断所述两个霍尔传 感器的磁场强度对应点是否与重合点重合。当所述两个霍尔传感器的磁场强度对应的点未与所述重合点重合时,将所述两个霍尔传感器的磁场强度对应的点对应的机械位置作为所述电机的机械位置。当所述两个霍尔传感器的磁场强度对应的点与所述重合点重合时,根据所述两个霍尔传感器的磁场强度对应的点,以及相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置。
其中,所述根据所述两个霍尔传感器的磁场强度对应的点,以及相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置,具体可以包括:将相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,作为当前时刻所述两个霍尔传感器的磁场强度对应的点的状态信息;根据当前时刻所述两个霍尔传感器的磁场强度对应的点和所述当前时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置。
本实施例,分别获取两个霍尔传感器的磁场强度,所述磁场强度为所述两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的,将所述两个霍尔传感器的磁场强度映射至所述二维预设波形图中,确定所述两个霍尔传感器的磁场强度对应的点,根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置,从而根据检测电机内部的磁铁的漏磁确定电机的机械位置,可以提升电机的伺服性能。
并且通过设置状态信息,从而规避了所述两个霍尔传感器的磁场强度对应的点对应多个机械位置的问题。
图8为本发明电机的机械位置获取方法实施例四的流程图,本实施例电机与所述电调连接,电机采用如图1所述的电机,本实施例的方法应用于电机中,如图8所示,本实施例的方法可以包括:
步骤801、通过所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量,分别获取所述至少两个霍尔传感器的磁场强度。
步骤802、将所述至少两个霍尔传感器的磁场强度发送给电调,所述至少两个霍尔传感器的磁场强度用于所述电调确定所述电机的机械位置。
本实施例,通过所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量,分别获取所述至少两个霍尔传感器的磁场强度,将所述至少两个霍 尔传感器的磁场强度发送给电调,所述至少两个霍尔传感器的磁场强度用于所述电调确定所述电机的机械位置,从而根据检测电机内部的磁铁的漏磁确定电机的机械位置,可以提升电机的伺服性能。
图9为本发明实施例的一种电调的结构示意图,本实施例的电调与电机连接,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,如图9所示,本实施例的电调可以包括:处理器91,该处理器91用于分别获取所述至少两个霍尔传感器的磁场强度,所述磁场强度为所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的,根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置。
可以理解的,该电调还可以包括电机端口92,该电机端口与所述电机连接,用于输出驱动信号控制所述电机的转子转动。
在一种可能的实现方式中,处理器91具体可以用于:根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述电机的机械位置,其中,所述预设映射关系包括多个磁场强度的取值和每个磁场强度的取值对应的机械位置,每个磁场强度的取值包括多个维度的取值,所述多个维度的取值的维度个数与所述至少两个霍尔传感器的个数相同。
可选的,所述预设映射关系还包括所述多个磁场强度的取值对应的状态信息。
在一种可能的实现方式中,处理器91具体可以用于:根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述至少两个霍尔传感器的磁场强度对应的机械位置;当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为唯一值时,将所述至少两个霍尔传感器的磁场强度对应的机械位置作为所述电机的机械位置;当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为多于一个时,根据所述至少两个霍尔传感器的磁场强度对应的机械位置,以及相邻时刻所述至少两个霍尔传感器的磁场强度对应的状态信息,确定所述电机的机械位置。
可选的,所述多个磁场强度对应的状态信息为根据预设状态位置确定的,所述预设状态位置的个数与所述至少两对磁极的对数相同。
可选的,当所述至少两个霍尔传感器的个数为两个时,所述预设映射关 系包括二维预设波形图,所述二维预设波形图中的每一个点的横坐标和纵坐标分别表示一个磁场强度的取值,所述二维预设波形图中的每一个点对应一个机械位置,所述二维预设波形图包括至少两圈曲线,且所述至少两圈曲线具有一重合点,其中,所述至少两圈曲线的圈数与所述至少两对磁极的对数相同。处理器91具体可以用于:将两个霍尔传感器的磁场强度映射至所述二维预设波形图中,确定所述两个霍尔传感器的磁场强度对应的点;根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置。
可选的,所述预设映射关系还包括至少两个标定点,所述至少两个标定点的个数与所述至少两对磁极的对数相同,所述至少两个标定点分别位于所述二维预设波形图的不同圈曲线上,所述至少两个标定点与所述重合点之间的距离大于第一预设值,且所述至少两个标定点之间的距离大于第二预设值;位于相邻的两圈曲线的标定点之间的曲线上任意点具有相同的状态信息。
可选的,所述重合点与所述至少两个标定点满足以下条件:当所述重合点位于第四象限时,所述至少两个标定点位于第二象限;当所述重合点位于第三象限时,所述至少两个标定点位于第一象限;当所述重合点位于第二象限时,所述至少两个标定点位于第四象限;当所述重合点位于第一象限时,所述至少两个标定点位于第三象限。
可选的,处理器91具体可以用于:当所述两个霍尔传感器的磁场强度对应的点未与所述重合点重合时,将所述两个霍尔传感器的磁场强度对应的点对应的机械位置作为所述电机的机械位置。当所述两个霍尔传感器的磁场强度对应的点与所述重合点重合时,根据所述两个霍尔传感器的磁场强度对应的点,以及相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置。
所述根据所述两个霍尔传感器的磁场强度对应的点,以及相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置,具有可以包括:将相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,作为当前时刻所述两个霍尔传感器的磁场强度对应的点的状态信息;根据当前时刻所述两个霍尔传感器的磁场强度对应的点和所述当前时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置。
可选的,所述状态信息包括一比特位信息,所述一比特位信息为0或1。
本实施例的电调,可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图10为本发明实施例的一种电机的结构示意图,所述电机与电调连接,如图10所示,所述电机包括至少两个霍尔传感器(101、102……10n)和至少两对磁极(111、112……11n),所述至少两个霍尔传感器(101、102……10n)之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述至少两个霍尔传感器用于:对所述至少两对磁极的漏磁进行测量,分别获取所述至少两个霍尔传感器的磁场强度;将所述至少两个霍尔传感器的磁场强度发送给电调,所述至少两个霍尔传感器的磁场强度用于所述电调确定所述电机的机械位置。
可选的,所述各对所述磁极对应的磁铁具有不同的长度。
可选的,所述至少两个霍尔传感器沿轴向的高度不同。
可选的,所述各对所述磁极对应的磁铁具有不同的磁性强度。
可选的,所述各对所述磁极对应的磁铁采用不同的磁性介质。
本实施例的电机,可以用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本发明实施例还提供一种动力***,本实施例的动力***包括:电调和电机,其中,电调可以采用图9装置实施例的结构,其对应地,可以执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。电机可以采用图10装置实施例的结构,其对应地,可以执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本发明实施例还提供一种云台,所述云台包括固定机构、轴臂、如图9所示的电调和如图11所示的电机。其对应地,可以执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本发明实施例还提供一种无人机飞行器,所述无人机飞行器包括机身、如图9所示的电调和如图11所示的电机。其对应地,可以执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指 令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (24)

  1. 一种电机的机械位置获取方法,其特征在于,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述电机与电调连接,所述方法应用于所述电调中,所述方法包括:
    分别获取所述至少两个霍尔传感器的磁场强度,所述磁场强度为所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量得到的;
    根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置,包括:
    根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述电机的机械位置;
    其中,所述预设映射关系包括多个磁场强度的取值和每个磁场强度的取值对应的机械位置,每个磁场强度的取值包括多个维度的取值,所述多个维度的取值的维度个数与所述至少两个霍尔传感器的个数相同。
  3. 根据权利要求2所述的方法,其特征在于,所述预设映射关系还包括所述多个磁场强度的取值对应的状态信息。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述电机的机械位置,包括:
    根据所述至少两个霍尔传感器的磁场强度和预设映射关系确定所述至少两个霍尔传感器的磁场强度对应的机械位置;
    当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为唯一值时,将所述至少两个霍尔传感器的磁场强度对应的机械位置作为所述电机的机械位置;
    当根据所述至少两个霍尔传感器的磁场强度对应的机械位置为多于一个时,根据所述至少两个霍尔传感器的磁场强度对应的机械位置,以及相邻时刻所述至少两个霍尔传感器的磁场强度对应的状态信息,确定所述电机的机械位置。
  5. 根据权利要求3或4所述的方法,其特征在于,所述多个磁场强度对应的状态信息为根据预设状态位置确定的,所述预设状态位置的个数与所述 至少两对磁极的对数相同。
  6. 根据权利要求2所述的方法,其特征在于,当所述至少两个霍尔传感器的个数为两个时,所述预设映射关系包括二维预设波形图,所述二维预设波形图中的每一个点的横坐标和纵坐标分别表示一个磁场强度的取值,所述二维预设波形图中的每一个点对应一个机械位置,所述二维预设波形图包括至少两圈曲线,且所述至少两圈曲线具有一重合点,其中,所述至少两圈曲线的圈数与所述至少两对磁极的对数相同;
    所述根据所述至少两个霍尔传感器的磁场强度确定所述电机的机械位置,包括:
    将两个霍尔传感器的磁场强度映射至所述二维预设波形图中,确定所述两个霍尔传感器的磁场强度对应的点;
    根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置。
  7. 根据权利要求6所述的方法,其特征在于,所述预设映射关系还包括至少两个标定点,所述至少两个标定点的个数与所述至少两对磁极的对数相同,所述至少两个标定点分别位于所述二维预设波形图的不同圈曲线上,所述至少两个标定点与所述重合点之间的距离大于第一预设值,且所述至少两个标定点之间的距离大于第二预设值;
    位于相邻的两圈曲线的标定点之间的曲线上任意点具有相同的状态信息。
  8. 根据权利要求7所述的方法,其特征在于,所述重合点与所述至少两个标定点满足以下条件:
    当所述重合点位于第四象限时,所述至少两个标定点位于第二象限;
    当所述重合点位于第三象限时,所述至少两个标定点位于第一象限;
    当所述重合点位于第二象限时,所述至少两个标定点位于第四象限;
    当所述重合点位于第一象限时,所述至少两个标定点位于第三象限。
  9. 根据权利要求7或8所述的方法,其特征在于,所述根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置,包括:
    当所述两个霍尔传感器的磁场强度对应的点未与所述重合点重合时,将 所述两个霍尔传感器的磁场强度对应的点对应的机械位置作为所述电机的机械位置。
  10. 根据权利要求7或8所述的方法,其特征在于,所述根据所述两个霍尔传感器的磁场强度对应点在所述二维预设波形图中的位置确定所述电机的机械位置,包括:
    当所述两个霍尔传感器的磁场强度对应的点与所述重合点重合时,根据所述两个霍尔传感器的磁场强度对应的点,以及相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述两个霍尔传感器的磁场强度对应的点,以及相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置,包括:
    将相邻时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,作为当前时刻所述两个霍尔传感器的磁场强度对应的点的状态信息;
    根据当前时刻所述两个霍尔传感器的磁场强度对应的点和所述当前时刻所述两个霍尔传感器的磁场强度对应的点的状态信息,确定所述电机的机械位置。
  12. 根据权利要求7至10任一项所述的方法,其特征在于,所述状态信息包括一比特位信息,所述一比特位信息为0或1。
  13. 一种电机的机械位置获取方法,其特征在于,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述方法应用于所述电机中,所述方法包括:
    通过所述至少两个霍尔传感器对所述至少两对磁极的漏磁进行测量,分别获取所述至少两个霍尔传感器的磁场强度;
    将所述至少两个霍尔传感器的磁场强度发送给电调,所述至少两个霍尔传感器的磁场强度用于所述电调确定所述电机的机械位置。
  14. 根据权利要求13所述的方法,其特征在于,所述各对所述磁极对应的磁铁具有不同的长度。
  15. 根据权利要求13所述的方法,其特征在于,所述至少两个霍尔传感器沿轴向的高度不同。
  16. 一种电调,所述电调与电机连接,其特征在于,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述电调包括处理器,所述处理器用于执行如权利要求1至11任一项所述的方法。
  17. 一种电机,所述电机与电调连接,其特征在于,所述电机包括至少两个霍尔传感器和至少两对磁极,所述至少两个霍尔传感器之间的相位差为预设角度,各对所述磁极与所述霍尔传感器之间的排布不同,所述至少两个霍尔传感器用于:
    对所述至少两对磁极的漏磁进行测量,分别获取所述至少两个霍尔传感器的磁场强度;
    将所述至少两个霍尔传感器的磁场强度发送给电调,所述至少两个霍尔传感器的磁场强度用于所述电调确定所述电机的机械位置。
  18. 根据权利要求17所述的电机,其特征在于,所述各对所述磁极对应的磁铁具有不同的长度。
  19. 根据权利要求17所述的电机,其特征在于,所述至少两个霍尔传感器沿轴向的高度不同。
  20. 根据权利要求17所述的电机,其特征在于,所述各对所述磁极对应的磁铁具有不同的磁性强度。
  21. 根据权利要求17所述的电机,其特征在于,所述各对所述磁极对应的磁铁采用不同的磁性介质。
  22. 一种动力***,其特征在于,所述动力***包括如权利要求16所述的电调和如权利要求17至21任一项所述的电机。
  23. 一种云台,其特征在于,所述云台包括固定机构、轴臂、如权利要求16所述的电调和如权利要求17至21任一项所述的电机。
  24. 一种无人机飞行器,其特征在于,所述无人机飞行器包括机身、如权利要求16所述的电调和如权利要求17至21任一项所述的电机。
PCT/CN2017/108692 2017-10-31 2017-10-31 电机的机械位置获取方法和装置 WO2019084807A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/108692 WO2019084807A1 (zh) 2017-10-31 2017-10-31 电机的机械位置获取方法和装置
CN201780017983.1A CN108886332A (zh) 2017-10-31 2017-10-31 电机的机械位置获取方法和装置
US16/832,166 US11264870B2 (en) 2017-10-31 2020-03-27 Method and device for acquiring mechanical position of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108692 WO2019084807A1 (zh) 2017-10-31 2017-10-31 电机的机械位置获取方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/832,166 Continuation US11264870B2 (en) 2017-10-31 2020-03-27 Method and device for acquiring mechanical position of electric motor

Publications (1)

Publication Number Publication Date
WO2019084807A1 true WO2019084807A1 (zh) 2019-05-09

Family

ID=64325684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108692 WO2019084807A1 (zh) 2017-10-31 2017-10-31 电机的机械位置获取方法和装置

Country Status (3)

Country Link
US (1) US11264870B2 (zh)
CN (1) CN108886332A (zh)
WO (1) WO2019084807A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417191B (zh) * 2019-07-24 2024-06-18 桂林智神信息技术股份有限公司 获取辅助拍摄设备用电机的机械位置的方法及装置
WO2022041007A1 (zh) * 2020-08-26 2022-03-03 深圳市大疆创新科技有限公司 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器
CN114643593A (zh) * 2022-03-31 2022-06-21 深圳市普渡怒放科技有限公司 关节模组、其多圈值获取方法和装置、机器人及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046122A1 (en) * 2005-08-25 2007-03-01 Sanyo Denki Co., Ltd. Rotary electric machine equipped with one or more magnetic sensors
CN101071122A (zh) * 2007-06-08 2007-11-14 北京工业大学 基于漏磁测量来确定应力的方法及其装置
CN201113744Y (zh) * 2007-07-09 2008-09-10 范安成 永磁无刷直流电动机
CN105452554A (zh) * 2013-08-08 2016-03-30 三星电子株式会社 电机以及具有该电机的洗衣机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59914554D1 (de) * 1998-12-21 2007-12-27 Nti Ag System mit einem Linearmotor und einer Elektronikeinheit
WO2000064036A1 (fr) * 1999-04-20 2000-10-26 Mitsuba Corporation Moteur sans balais
JP2001119914A (ja) * 1999-10-15 2001-04-27 Yamaha Motor Co Ltd 電動機の回転子位置検出装置
JP2007252097A (ja) * 2006-03-16 2007-09-27 Mitsuba Corp ブラシレスモータ
JP5209707B2 (ja) * 2007-06-06 2013-06-12 ハイドロ エアー インコーポレイテッド 角度位置センサ
CN101820190A (zh) * 2010-01-22 2010-09-01 王铂仕 强弱气隙磁场相间分布的电机
US9239345B2 (en) * 2013-11-20 2016-01-19 Woodward, Inc. Controlling a motor with two or more Hall sensors
JP2015105844A (ja) * 2013-11-29 2015-06-08 株式会社リコー 回転角度検出装置、画像処理装置及び回転角度検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046122A1 (en) * 2005-08-25 2007-03-01 Sanyo Denki Co., Ltd. Rotary electric machine equipped with one or more magnetic sensors
CN101071122A (zh) * 2007-06-08 2007-11-14 北京工业大学 基于漏磁测量来确定应力的方法及其装置
CN201113744Y (zh) * 2007-07-09 2008-09-10 范安成 永磁无刷直流电动机
CN105452554A (zh) * 2013-08-08 2016-03-30 三星电子株式会社 电机以及具有该电机的洗衣机

Also Published As

Publication number Publication date
US11264870B2 (en) 2022-03-01
CN108886332A (zh) 2018-11-23
US20200227983A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
CN103098366B (zh) 相位偏移检测装置、马达驱动装置、无刷马达以及相位偏移检测方法
US11264870B2 (en) Method and device for acquiring mechanical position of electric motor
CN102498367B (zh) 换向式电驱动装置和用于控制换向式电动机的方法
US10312839B2 (en) Brushless DC motor with control electronics motor assembly
CN1719719B (zh) 电机转子位置检测方法和装置
KR102477526B1 (ko) 지터 극을 갖는 자석 링
KR101655548B1 (ko) 모터 위치 검출용 홀 센서의 위치 오차 보정 방법
CN104079215B (zh) 车用永磁同步电机转子初始位置的精确检测与调整方法
CN103222168B (zh) 一种伺服电机和伺服控制***
CN103444059A (zh) 包括具有干扰场补偿的转子位置检测的电子换向电动机
CN101799337B (zh) 永磁同步电动机齿槽转矩的自动检测方法
CN107797488B (zh) 一种位移控制***及其控制方法、移动终端
CN109655083A (zh) 磁编码器及其校准方法和校准装置、电机以及无人飞行器
CN105915139A (zh) 一种矢量控制永磁同步伺服电机初始磁极位置搜索方法
EP3254369B1 (en) Reliable control of high rotor pole switched reluctance machine
CN104065319B (zh) 永磁同步电机零位初始角的标定方法
US9304502B2 (en) Method and device for calibrating a positioner system having an electronically commutated servomotor
CN107529384B (zh) 基于线性霍尔元件的微飞轮测速方法及装置
CN103822576A (zh) 用线性霍尔传感器组检测永磁平面电机动子线圈相位方法
US8922200B2 (en) Method and device for determining a current angular position of a rotatable magnetic component in an electric drive
CN109995277A (zh) 永磁同步电机转子零位初始角度标定***及其标定方法
US20130207588A1 (en) Initial driving apparatus and method of two-phase srm
CN106526333B (zh) 一种获得永磁同步电机交轴和直轴电感的方法
CN108450052B (zh) 用于控制具有永磁体的同步机的方法和相应装置
EP2955823A1 (en) Method and system for determining an offset between a detector and a point on a motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930355

Country of ref document: EP

Kind code of ref document: A1