WO2019084735A1 - 上行控制信道传输方法及终端和基站 - Google Patents

上行控制信道传输方法及终端和基站 Download PDF

Info

Publication number
WO2019084735A1
WO2019084735A1 PCT/CN2017/108422 CN2017108422W WO2019084735A1 WO 2019084735 A1 WO2019084735 A1 WO 2019084735A1 CN 2017108422 W CN2017108422 W CN 2017108422W WO 2019084735 A1 WO2019084735 A1 WO 2019084735A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
control channel
scheduling request
symbol
time
Prior art date
Application number
PCT/CN2017/108422
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201780094283.2A priority Critical patent/CN111201817B/zh
Priority to JP2020514236A priority patent/JP2021510239A/ja
Priority to EP17930816.8A priority patent/EP3661288A4/en
Priority to US16/757,154 priority patent/US20200344787A1/en
Priority to KR1020207006420A priority patent/KR20200077505A/ko
Priority to PCT/CN2017/108422 priority patent/WO2019084735A1/zh
Priority to US16/757,165 priority patent/US20200367273A1/en
Priority to JP2020514689A priority patent/JP2021501485A/ja
Priority to PCT/CN2018/078181 priority patent/WO2019085364A1/zh
Priority to KR1020207007161A priority patent/KR20200083434A/ko
Priority to AU2018362203A priority patent/AU2018362203A1/en
Priority to EP18873629.2A priority patent/EP3664336A4/en
Priority to SG11202001027PA priority patent/SG11202001027PA/en
Priority to MX2020002199A priority patent/MX2020002199A/es
Priority to CN201880055999.6A priority patent/CN111052649A/zh
Priority to RU2020107924A priority patent/RU2752236C9/ru
Publication of WO2019084735A1 publication Critical patent/WO2019084735A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to wireless communication technologies, and more particularly to uplink control channel transmission techniques.
  • the current 5G NR (new radio) system supports two time length physical uplink control channel PUCCHs, that is, short PUCCH (short-PUCCH) and long PUCCH (long-PUCCH).
  • the short PUCCH includes 1 or 2 time domain symbols
  • the long PUCCH includes 4-14 time domain symbols.
  • the uplink control channel parameters for transmitting the uplink scheduling request SR are typically semi-statically configured (eg, period, offset, PUCCH resources, etc.).
  • the scheduling request adopts an on-off transmission mechanism, that is, when the terminal has a scheduling request, the PUCCH is transmitted on the corresponding resource; when the terminal has no scheduling request, no information is sent on the corresponding resource.
  • the transmission period of one SR is at least equal to X OFDM symbols (at least for SRs transmitted using short PUCCH), and the current working assumption for the value of X is 1.
  • the other uplink control information uses the PUCCH for a transmission time longer than the short PUCCH of the transmitting SR (as shown in Figure 1).
  • the purpose of the present application is to provide an uplink control channel transmission method, a terminal, and a base station, to solve the problem that the SR transmission delay may increase and the delay sensitive service needs cannot be met.
  • an uplink control channel transmission method including:
  • the terminal determines a period and a physical resource for sending an uplink scheduling request
  • the terminal determines to use the target uplink control channel to transmit other uplink control information
  • the terminal determines a multiplexing transmission manner of the uplink scheduling request and the other uplink control information according to the relationship between the period and the target uplink control channel transmission time length.
  • the terminal determines a multiplexing transmission manner of the uplink scheduling request and the other uplink control information according to the relationship between the period and the target uplink control channel transmission time length, including:
  • the terminal determines that the first agreement relationship is satisfied between the period and the target uplink control channel transmission time length
  • the terminal determines that the uplink scheduling request and the other uplink control information are multiplexed and transmitted through the target uplink control channel.
  • the terminal determines that the uplink scheduling request and the other uplink control information are multiplexed and transmitted through the target uplink control channel, including:
  • the uplink scheduling request and the other uplink control information are processed and mapped to the target uplink control channel for transmission, where the processing includes at least one of the following processes:
  • the first agreed relationship includes:
  • the target uplink control channel transmission time length is less than or equal to the product of K and the period of the uplink scheduling request, where K>0; and/or,
  • the frequency domain resource size of the target uplink control channel is smaller than the size of the frequency domain resource corresponding to the physical resource.
  • the terminal determines a multiplexing transmission manner of the uplink scheduling request and the other uplink control information according to the relationship between the period and the target uplink control channel transmission time length, including:
  • the terminal determines that the second agreement relationship is satisfied between the period and the target uplink control channel transmission time length
  • the terminal determines to transmit the other uplink control information using a first type of time symbol in the target uplink control channel.
  • the terminal transmits an uplink scheduling request on the physical resource
  • the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except for the time domain symbol used for actually transmitting the uplink scheduling request.
  • the terminal transmits an uplink scheduling request on the physical resource
  • the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except for a time domain symbol that coincides with the physical resource.
  • the terminal transmits the uplink scheduling request on a second type of time symbol in the frequency domain resource where the target uplink control channel is located, and the second type of time symbol is the same as the physical resource occupation time symbol.
  • the first type of time domain symbol is all time domains in the target uplink control channel.
  • the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except the time domain symbol that coincides with the physical resource.
  • the second agreed relationship includes:
  • the target uplink control channel transmission time length is greater than a product of S and an uplink scheduling request period, where S>0; and/or,
  • the frequency domain resource size of the target uplink control channel is greater than or equal to the size of the frequency domain resource corresponding to the physical resource.
  • the other uplink control information is number-matched according to the number of the first type of time symbols and then mapped to the first type of time symbol for transmission;
  • the other uplink control information is mapped to the first type of time symbol for transmission by puncturing.
  • the application also discloses an uplink control channel transmission method, including:
  • the base station determines a period and a physical resource for receiving an uplink scheduling request
  • the base station determines to receive other uplink control information by using the target uplink control channel
  • the base station determines, according to the relationship between the period and the transmission length of the target uplink control channel, the multiplex transmission mode of the uplink scheduling request and the other uplink control information.
  • the base station determines, according to the relationship between the period and the target uplink control channel transmission time length, the multiplex transmission mode of the uplink scheduling request and the other uplink control information, including:
  • the base station determines that the first agreement relationship is satisfied between the period and the length of the target uplink control channel transmission
  • the base station determines that the uplink scheduling request and the other uplink control information are multiplexed and transmitted through the target uplink control channel.
  • the base station determines that the uplink scheduling request and the other uplink control information are multiplexed and transmitted through the target uplink control channel, including:
  • Processing a signal received from the target uplink control channel comprising one of the following:
  • the first agreed relationship includes:
  • the target uplink control channel transmission time length is less than or equal to the product of K and the period of the uplink scheduling request, where K>0; and/or,
  • the frequency domain resource size of the target uplink control channel is smaller than the size of the frequency domain resource corresponding to the physical resource.
  • the base station determines, according to the relationship between the period and the target uplink control channel transmission time length, the multiplex transmission mode of the uplink scheduling request and the other uplink control information, including:
  • the base station determines that the second agreement relationship is satisfied between the period and the target uplink control channel transmission time length
  • the base station determines to receive the other uplink control information using a first type of time symbol in the target uplink control channel.
  • the base station receives an uplink scheduling request on the physical resource
  • the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except for the time domain symbol used for actually transmitting the uplink scheduling request.
  • the base station receives an uplink scheduling request on the physical resource
  • the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except for a time domain symbol that coincides with the physical resource.
  • the base station is second in the frequency domain resource where the target uplink control channel is located.
  • the uplink scheduling request is received on the class time symbol, and the second type of time symbol is the same as the physical resource occupation time symbol.
  • the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except the second type of time symbol, or
  • the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except for a time domain symbol that coincides with the physical resource.
  • the second agreed relationship includes:
  • the target uplink control channel transmission time length is greater than a product of S and an uplink scheduling request period, where S>0; and/or,
  • the frequency domain resource size of the target uplink control channel is greater than or equal to the size of the frequency domain resource corresponding to the physical resource.
  • the other uplink control information is number-matched according to the number of the first type of time symbols and then mapped to the first type of time symbol for transmission;
  • the other uplink control information is mapped to the first type of time symbol for transmission by puncturing.
  • the application also discloses a terminal, including:
  • a first module configured to determine a period and a physical resource for sending an uplink scheduling request
  • a second module configured to determine to use the target uplink control channel to transmit other uplink control information
  • the third module is configured to determine, according to the relationship between the period and the target uplink control channel transmission time length, a multiplexing transmission manner of the uplink scheduling request and the other uplink control information.
  • the third module comprises:
  • a first submodule configured to determine that the first agreement relationship is satisfied between the period and the target uplink control channel transmission time length
  • a second submodule configured to determine that the uplink scheduling request and the other uplink control information are multiplexed and transmitted through the target uplink control channel
  • the first agreed relationship includes:
  • the target uplink control channel transmission time length is less than or equal to the product of K and the period of the uplink scheduling request, where K>0; and/or,
  • the frequency domain resource size of the target uplink control channel is smaller than the size of the frequency domain resource corresponding to the physical resource.
  • the third module comprises:
  • a third submodule configured to determine that the period and the target uplink control channel transmission time length meet a second contract relationship
  • a fourth submodule configured to determine to transmit the other uplink control information by using a first type of time symbol in the target uplink control channel
  • the second agreed relationship includes:
  • the target uplink control channel transmission time length is greater than a product of S and an uplink scheduling request period, where S>0; and/or,
  • the frequency domain resource size of the target uplink control channel is greater than or equal to the size of the frequency domain resource corresponding to the physical resource.
  • the terminal transmits an uplink scheduling request on the physical resource;
  • the first type of time domain symbol is a time domain symbol used by all time domain symbols in the target uplink control channel except for actually transmitting an uplink scheduling request. Outer time domain symbol; or,
  • the terminal transmits an uplink scheduling request on the physical resource;
  • the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except the time domain symbol that coincides with the physical resource;
  • the terminal is on the second type of time symbol in the frequency domain resource where the target uplink control channel is located. Transmitting the uplink scheduling request, the second type of time symbol is the same as the physical resource occupation time symbol.
  • the application also discloses a base station, including:
  • a fourth module configured to determine a period and a physical resource for receiving an uplink scheduling request
  • a fifth module configured to determine to receive other uplink control information by using a target uplink control channel
  • the sixth module is configured to determine, according to the relationship between the period and the target uplink control channel transmission time length, a multiplexing transmission manner of the uplink scheduling request and the other uplink control information.
  • the sixth module comprises:
  • a fifth submodule configured to determine that the first agreement relationship is satisfied between the period and the uplink transmission channel transmission time length of the target
  • a sixth submodule configured to determine that the uplink scheduling request and the other uplink control information are multiplexed and transmitted through the target uplink control channel
  • the first agreed relationship includes:
  • the target uplink control channel transmission time length is less than or equal to the product of K and the period of the uplink scheduling request, where K>0; and/or,
  • the frequency domain resource size of the target uplink control channel is smaller than the size of the frequency domain resource corresponding to the physical resource.
  • the sixth module comprises:
  • a seventh sub-module configured to determine that the second contract relationship is satisfied between the period and the target uplink control channel transmission time length
  • An eighth submodule configured to determine, by using a first type of time symbol in the target uplink control channel, to receive the other uplink control information
  • the second agreed relationship includes:
  • the target uplink control channel transmission time length is greater than a product of S and an uplink scheduling request period, where S>0; and/or,
  • the frequency domain resource size of the target uplink control channel is greater than or equal to the size of the frequency domain resource corresponding to the physical resource.
  • the base station receives an uplink scheduling request on the physical resource, where the first type of time domain symbol is a time domain symbol used by all time domain symbols in the target uplink control channel except for actually transmitting an uplink scheduling request. Outer time domain symbol; or,
  • the base station receives an uplink scheduling request on the physical resource, where the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except the time domain symbol that coincides with the physical resource; or
  • the base station receives the uplink scheduling request on a second type of time symbol in the frequency domain resource where the target uplink control channel is located, where the second type of time symbol is the same as the physical resource occupation time symbol.
  • the embodiment of the present application does not increase the delay sensitive service SR transmission delay for a terminal that cannot support multiple uplink control channels simultaneously.
  • feature A+B+C is disclosed in one example
  • feature A+B+D+E is disclosed in another example
  • features C and D are equivalent technical means that perform the same function, technically only Once used, it is impossible to use at the same time, feature E technology It can be combined with feature C. Then, the scheme of A+B+C+D should not be regarded as already recorded because the technology is not feasible, and the scheme of A+B+C+E should be regarded as already recorded.
  • FIG. 1 is a schematic diagram of a short PUCCH in which other uplink control information uses a PUCCH with a transmission time length greater than a transmission SR in the prior art;
  • FIG. 2 is a schematic diagram of a partial overlap of an SR transport channel and other uplink control information transmission channels in the time domain in the prior art
  • FIG. 3 is a schematic flowchart of a terminal side of an uplink control channel transmission method according to a first embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a base station side of an uplink control channel transmission method according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a time-frequency resource used for uplink control channel transmission according to an embodiment of the present invention (method A);
  • FIG. 6 is a schematic diagram of a time-frequency resource used for uplink control channel transmission according to an embodiment of the present invention (method B);
  • method C is a schematic diagram of a time-frequency resource used for uplink control channel transmission in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a time-frequency resource used for uplink control channel transmission according to an embodiment of the present invention (method D); FIG.
  • FIG. 9 is a schematic diagram of a transmission method of an SR in an embodiment of the present invention.
  • 5G 5th generation mobile communication technology
  • NR Wireless access part of 5G (5th generation mobile communication technology), abbreviation of New Radio
  • PUCCH physical uplink control channel, abbreviation of Physical Uplink Control CHannel
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • T the period during which the uplink scheduling request is sent
  • a first embodiment of the present invention relates to an uplink control channel transmission method.
  • 3 is a schematic flow chart of the uplink control channel transmission method.
  • step 301 the terminal determines a period T and a physical resource for transmitting an uplink scheduling request.
  • step 302 the terminal determines to transmit other uplink control information using the target uplink control channel.
  • step 303 the terminal determines a multiplexing transmission mode of the SR and other uplink control information according to the relationship between the T and the target uplink control channel transmission time length P.
  • the delay-sensitive service SR transmission delay is not increased for a terminal that cannot support simultaneous transmission of multiple uplink control channels.
  • step 303 may further include the following sub-steps:
  • the terminal determines that the first agreement relationship is satisfied between T and P.
  • the terminal determines that the SR and other uplink control information are multiplexed and transmitted through the target uplink control channel.
  • the SR and other uplink control information are processed and mapped to the target uplink control channel for transmission, including but not limited to cascading, joint coding, interleaving, modulation, and the like.
  • the first contractual relationship has multiple implementations.
  • the first agreement relationship includes: P is less than or equal to K*T, where K>0, and/or, the frequency domain resource size of the target uplink control channel is smaller than the size of the frequency domain resource corresponding to the physical resource.
  • K 1.
  • step 303 may further include the following sub-steps:
  • the terminal determines that the second contract relationship is satisfied between T and P.
  • the terminal determines to transmit other uplink control information using the first type of time symbol in the target uplink control channel.
  • Solution A The terminal transmits the SR on the physical resource.
  • the first type of time domain symbols are time domain symbols other than the time domain symbols used by the actual transmission SR among all time domain symbols in the target uplink control channel.
  • Solution B The terminal transmits the SR on the physical resource.
  • the first type of time domain symbol is the target uplink control A time domain symbol other than the time domain symbol that coincides with the physical resource in all time domain symbols in the channel.
  • Solution C The terminal transmits the SR on the second type of time symbol in the frequency domain resource where the target uplink control channel is located, and the first type of time domain symbol is other than the second type of time symbol in all time domain symbols in the target uplink control channel. Time domain symbol.
  • Solution D The terminal transmits the SR on the second type of time symbol in the frequency domain resource where the target uplink control channel is located, and the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except the physical resource. Time domain symbols outside.
  • the second agreed relationship includes: P is greater than S*T, where S>0, and/or, the frequency domain resource size of the target uplink control channel is greater than or equal to the size of the frequency domain resource corresponding to the physical resource.
  • S K.
  • the other uplink control information is quantity-matched according to the number of the first type of time symbols and then mapped to the first type of time symbol for transmission.
  • other uplink control information is mapped to the first type of time symbol for transmission by puncturing.
  • a second embodiment of the present invention relates to an uplink control channel transmission method.
  • the first embodiment is processing on the terminal side, and the second embodiment is processing on the base station side corresponding to the first embodiment.
  • 4 is a schematic flow chart of the uplink control channel transmission method.
  • step 401 the base station determines a period T of the uplink scheduling request and physical resources.
  • step 402 the base station determines to transmit other uplink control information using the target uplink control channel.
  • the base station determines a multiplex transmission mode of the SR and other uplink control information according to the relationship between the T and the target uplink control channel transmission time length P.
  • the station does not increase the delay sensitivity of the service SR transmission delay.
  • step 403 may further include the following sub-steps:
  • the base station determines that the first contractual relationship is satisfied between T and P.
  • the base station determines that the SR and other uplink control information are multiplexed and transmitted through the target uplink control channel.
  • the base station processes signals received from the target uplink control channel, including but not limited to de-cascade, joint decoding, de-interleaving, demodulation, and the like.
  • the first contract relationship has multiple implementation manners.
  • the first contract relationship includes: P is less than or equal to K*T, where K>0, and/or, the frequency domain resource size of the target uplink control channel is smaller than the physical size.
  • step 403 may further include the following sub-steps:
  • the base station determines that the second contractual relationship is satisfied between T and P.
  • the base station determines to receive other uplink control information using the first type of time symbol in the target uplink control channel.
  • the base station receives the SR on the physical resource.
  • the first type of time domain symbols are time domain symbols of all time domain symbols in the target uplink control channel except for the time domain symbols used to actually receive the SR.
  • the base station receives the SR on the physical resource.
  • the first type of time domain symbol is a time domain symbol other than the time domain symbol of all time domain symbols in the target uplink control channel except for the physical resource coincidence.
  • Solution C The base station receives the SR on the second type of time symbol in the frequency domain resource where the target uplink control channel is located, where the first type of time domain symbol is other than the second type of time symbol in all time domain symbols in the target uplink control channel. Time domain symbol.
  • Solution D The base station receives the SR on the second type of time symbol in the frequency domain resource where the target uplink control channel is located, and the first type of time domain symbol is a time domain symbol in all time domain symbols in the target uplink control channel except the physical resource. Time domain symbols outside.
  • the second agreed relationship includes: P is greater than S*T, where S>0, and/or, the frequency domain resource size of the target uplink control channel is greater than or equal to the size of the frequency domain resource corresponding to the physical resource.
  • S K.
  • a third embodiment of the present invention relates to a terminal.
  • the terminal includes:
  • the first module is configured to determine a period and a physical resource for sending an uplink scheduling request.
  • the second module is configured to determine to use the target uplink control channel to transmit other uplink control information.
  • the third module is configured to determine, according to a relationship between the period and the time length of the target uplink control channel, a multiplexing transmission manner of the uplink scheduling request and other uplink control information.
  • the third module includes:
  • the first submodule is configured to determine a first agreement relationship between the period and the target uplink control channel transmission time length.
  • the second submodule is configured to determine that the uplink scheduling request and other uplink control information are multiplexed and transmitted through the target uplink control channel.
  • the first agreed relationship includes:
  • the target uplink control channel transmission time length is less than or equal to the product of K and the period of the uplink scheduling request, where K>0. and / or,
  • the frequency domain resource size of the target uplink control channel is smaller than the size of the frequency domain resource corresponding to the physical resource.
  • the third module includes:
  • the third submodule is configured to determine that the second appointment relationship is satisfied between the period and the target uplink control channel transmission time length.
  • a fourth submodule configured to determine to transmit other uplink control information by using a first type of time symbol in the target uplink control channel.
  • the second agreed relationship includes:
  • the target uplink control channel transmission time length is greater than the product of S and the uplink scheduling request period, where S>0. and / or,
  • the frequency domain resource size of the target uplink control channel is greater than or equal to the size of the frequency domain resource corresponding to the physical resource.
  • the terminal transmits an uplink scheduling request on the physical resource.
  • the first type of time domain symbols are time domain symbols of all time domain symbols in the target uplink control channel except for the time domain symbols used for actually transmitting the uplink scheduling request. or,
  • the terminal transmits an uplink scheduling request on the physical resource.
  • the first type of time domain symbol is a time domain symbol other than the time domain symbol of all time domain symbols in the target uplink control channel except for the physical resource coincidence. or,
  • the terminal transmits an uplink scheduling request on the second type of time symbol in the frequency domain resource where the target uplink control channel is located, and the second type of time symbol is the same as the physical resource occupation time symbol.
  • the first embodiment is a method embodiment corresponding to the present embodiment, and the present embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still effective in the present embodiment, and are not described herein again in order to reduce repetition. Accordingly, the related art details mentioned in the present embodiment can also be applied to the first embodiment.
  • a fourth embodiment of the present invention relates to a base station.
  • the base station includes:
  • the fourth module is configured to determine a period and a physical resource for receiving an uplink scheduling request.
  • the fifth module is configured to determine to receive other uplink control information by using the target uplink control channel.
  • the sixth module is configured to determine, according to a relationship between a period and a time length of the target uplink control channel, a multiplexing transmission manner of the uplink scheduling request and other uplink control information.
  • the sixth module includes:
  • the fifth submodule is configured to determine that the first agreement relationship is satisfied between the period and the target uplink control channel transmission time length.
  • the sixth submodule is configured to determine that the uplink scheduling request and other uplink control information are multiplexed and transmitted through the target uplink control channel.
  • the first agreed relationship includes:
  • the target uplink control channel transmission time length is less than or equal to the product of K and the period of the uplink scheduling request, where K>0. and / or,
  • the frequency domain resource size of the target uplink control channel is smaller than the size of the frequency domain resource corresponding to the physical resource.
  • the sixth module includes:
  • the seventh submodule is configured to determine that the second agreement relationship is satisfied between the period and the target uplink control channel transmission time length.
  • the eighth submodule is configured to determine to receive other uplink control information by using the first type of time symbol in the target uplink control channel.
  • the second agreed relationship includes:
  • the target uplink control channel transmission time length is greater than the product of S and the uplink scheduling request period, where S>0. and / or,
  • the frequency domain resource size of the target uplink control channel is greater than or equal to the size of the frequency domain resource corresponding to the physical resource.
  • the base station receives an uplink scheduling request on the physical resource, and the first type of time domain symbol is a time domain symbol of all time domain symbols in the target uplink control channel except the time domain symbol used for actually transmitting the uplink scheduling request. or,
  • the base station receives the uplink scheduling request on the physical resource, and the first type of time domain symbol is a time domain symbol except for the time domain symbol that coincides with the physical resource in all the time domain symbols in the target uplink control channel. or,
  • the base station receives the uplink scheduling request on the second type of time symbol in the frequency domain resource where the target uplink control channel is located, and the second type of time symbol is the same as the physical resource occupation time symbol.
  • the second embodiment is a method embodiment corresponding to the present embodiment, and the present embodiment can be implemented in cooperation with the second embodiment.
  • the related technical details mentioned in the second embodiment are still effective in the present embodiment, and are not described herein again in order to reduce repetition. Accordingly, the related art details mentioned in the present embodiment can also be applied to the second embodiment.
  • the terminal determines whether T and P satisfy the first contractual relationship.
  • the terminal simultaneously transmits the SR and other uplink control information in the target uplink control channel.
  • the SR is jointly encoded with other uplink control information and then mapped to the target uplink control channel for transmission.
  • the terminal uses the first type of time domain symbol in the target uplink control channel to transmit other uplink control information. Specifically, there are four methods of transmission.
  • Terminal side behavior The terminal sends an SR on the frequency domain resource corresponding to the SR.
  • the first type of time domain symbol is a time domain symbol except for the time domain symbol used by the actual transmission SR in all time domain symbols in the target uplink control channel. As shown in Figure 5.
  • Base station side behavior The base station first detects whether there is an SR on the SR corresponding resource. If there is an SR, the corresponding time domain symbol does not receive the target uplink control channel. If there is no SR, the target uplink control channel is received on the corresponding time domain symbol.
  • Terminal side behavior The terminal sends an SR on the frequency domain resource corresponding to the SR.
  • the first type of time domain symbol is a time domain symbol other than the SR time domain resource in all time domain symbols in the target uplink control channel, as shown in FIG. 6 . Shown.
  • Base station side behavior The base station does not receive the first uplink control channel in the SR corresponding time domain symbol.
  • Terminal side behavior The terminal sends an SR on the frequency domain resource where the target uplink control channel is located.
  • the first type of time domain symbol is a time domain other than the actual transmission SR time domain resource in all the time domain symbols in the target uplink control channel. symbol. As shown in Figure 7.
  • Base station side behavior The base station first detects whether there is an SR on the resource where the target uplink control channel is located. If there is an SR, the corresponding time domain symbol does not receive the target uplink control channel. If there is no SR, the target uplink control channel is received on the corresponding time domain symbol.
  • Terminal side behavior The terminal sends an SR on the frequency domain resource where the target uplink control channel is located.
  • the first type of time domain symbol is a time domain symbol other than the SR time domain resource in all time domain symbols in the target uplink control channel. As shown in Figure 8.
  • Base station side behavior The base station does not receive the first uplink control channel in the SR corresponding time domain symbol.
  • the terminal determines whether the frequency domain resource size of the target uplink control channel is not It is smaller than the frequency domain resource size corresponding to the SR. If yes, use method C or method D, otherwise use method A or method B.
  • On-off mode When the SR is positive, the terminal uses the agreed sequence for transmission; when the SR is negative, the terminal does not transmit any information.
  • Corresponding base station side behavior the base station first detects whether there is an SR on the SR corresponding resource; if there is an SR, the corresponding time domain symbol does not receive the first uplink control channel; if there is no SR, the corresponding time domain symbol receives the same The first uplink control box channel.
  • Sequence selection mode (applicable only to method d): When SR is positive, the terminal transmits the first agreed sequence; when SR is negative, the terminal transmits the second agreed sequence.
  • Corresponding base station side behavior the base station does not receive the first uplink control channel in the SR corresponding time domain symbol.
  • the method embodiments of the present invention can all be implemented in software, hardware, firmware, and the like. Regardless of whether the invention is implemented in software, hardware, or firmware, the instruction code can be stored in any type of computer-accessible memory (eg, permanent or modifiable, volatile or non-volatile, solid state Or non-solid, fixed or replaceable media, etc.). Similarly, the memory may be, for example, Programmable Array Logic ("PAL"), Random Access Memory (RAM), or Programmable Read Only Memory (PROM). "), Read-Only Memory (“ROM”), Electrically Erasable Programmable ROM (“EEPROM”), Disk, CD, Digital Versatile Disc , referred to as "DVD”) and so on.
  • PAL Programmable Array Logic
  • RAM Random Access Memory
  • PROM Programmable Read Only Memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable Programmable ROM
  • Disk CD
  • DVD Digital Versatile Disc
  • each unit mentioned in the implementation manner of each device of the present invention is a logical unit. Physically, one logical unit may be a physical unit or a physical single. A part of the element can also be implemented by a combination of multiple physical units. The physical implementation of these logical units is not the most important. The combination of the functions implemented by these logical units is the key to solving the technical problem raised by the present invention. .
  • the above-mentioned various device embodiments of the present invention do not introduce a unit that is not closely related to solving the technical problem proposed by the present invention, which does not indicate that the above device implementation does not have other unit.
  • an action is performed according to an element, it means the meaning of performing the action at least according to the element, and includes two cases: the action is performed only according to the element, and according to the element and Other elements perform this behavior.
  • the expressions of plural, multiple, multiple, etc. include two, two, two, two or more, two or more, two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术,公开了一种上行控制信道传输方法及终端和基站,解决了上行调度请求传输时延有可能无法满足时延敏感性业务需要的问题。本发明中,终端确定发送上行调度请求的周期和物理资源;终端确定使用目标上行控制信道传输其他上行控制信息;终端根据周期与目标上行控制信道传输时间长度之间的关系,确定上行调度请求与其他上行控制信息的复用传输方式。

Description

上行控制信道传输方法及终端和基站 技术领域
本申请涉及无线通信技术,特别涉及上行控制信道传输技术。
背景技术
目前的5G的NR(new radio)***中支持两种时间长度的物理上行控制信道PUCCH,即短PUCCH(short-PUCCH)和长PUCCH(long-PUCCH)。其中,短PUCCH包括1或2个时域符号,长PUCCH包括4-14个时域符号。传输上行调度请求SR的上行控制信道参数通常是半静态配置的(例如:周期、偏移、PUCCH资源等)。调度请求采用on-off传输机制,即当终端有调度请求时,在相应的资源上传输PUCCH;当终端无调度请求时,相应资源上不发送任何信息。对于调度请求SR传输由如下结论:一个SR的传输周期最小等于X个OFDM符号(至少针对使用短PUCCH传输的SR),对于X的取值目前的工作假设为1。
当SR周期非常短时,在一个时隙slot内(包含14个符号)会有多个SR传输资源。当使用长PUCCH传输的其他上行控制信息同时在该slot内传输时,由于时域上存在多个SR传输资源,因此基站无法很好的依靠调度避免其他上行控制信息域SR碰撞,可能会出现如下情况:
1.其他上行控制信息使用PUCCH的传输时间长度大于传输SR的短PUCCH(如图1所示)
2.两个信道在时域上部分重叠(如图2所示)
此时若将SR信息嵌入到传输其他上行控制信息的信道中传输,将会增加SR的传输时延,对于时延敏感性业务是不可接受的。因此,对于不 能支持同时发送多个上行控制信道的终端,此时如何工作尚无明确方案。
发明内容
本申请的目的在于提供一种上行控制信道传输方法及终端和基站,以解决SR传输时延有可能增加而无法满足时延敏感性业务需要的问题。
为了解决上述问题,本申请公开了一种上行控制信道传输方法,包括:
终端确定发送上行调度请求的周期和物理资源;
该终端确定使用目标上行控制信道传输其他上行控制信息;
该终端根据该周期与该目标上行控制信道传输时间长度之间的关系,确定该上行调度请求与该其他上行控制信息的复用传输方式。
在一优选例中,该终端根据该周期与该目标上行控制信道传输时间长度之间的关系,确定该上行调度请求与该其他上行控制信息的复用传输方式,包括:
该终端确定该周期与该目标上行控制信道传输时间长度之间满足第一约定关系;
该终端确定该上行调度请求与该其他上行控制信息通过该目标上行控制信道复用传输。
在一优选例中,该终端确定该上行调度请求与该其他上行控制信息通过该目标上行控制信道复用传输,包括:
该上行调度请求与该其他上行控制信息经处理后,映射到该目标上行控制信道中进行传输,该处理包括至少一种如下处理:
级联;
联合编码;
交织;
调制。
在一优选例中,该第一约定关系包括:
该目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0;和/或,
该目标上行控制信道的频域资源大小小于该物理资源所对应的频域资源的大小。
在一优选例中,该终端根据该周期与该目标上行控制信道传输时间长度之间的关系,确定该上行调度请求与该其他上行控制信息的复用传输方式,包括:
该终端确定该周期与该目标上行控制信道传输时间长度之间满足第二约定关系;
该终端确定使用该目标上行控制信道中的第一类时间符号传输该其他上行控制信息。
在一优选例中,该终端在该物理资源上传输上行调度请求;
该第一类时域符号为该目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号。
在一优选例中,该终端在该物理资源上传输上行调度请求;
该第一类时域符号为该目标上行控制信道中所有时域符号中除与该物理资源重合的时域符号之外的时域符号。
在一优选例中,该终端在该目标上行控制信道所在频域资源内的第二类时间符号上传输该上行调度请求,该第二类时间符号与该物理资源占用时间符号相同。
在一优选例中,该第一类时域符号为该目标上行控制信道中所有时域 符号中除该第二类时间符号之外的时域符号。
在一优选例中,该第一类时域符号为该目标上行控制信道中所有时域符号中除与该物理资源重合的时域符号之外的时域符号。
在一优选例中,该第二约定关系包括:
该目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0;和/或,
该目标上行控制信道的频域资源大小大于或等于该物理资源所对应的频域资源的大小。
在一优选例中,该其他上行控制信息根据该第一类时间符号的数量进行数量匹配后映射到该第一类时间符号上进行传输;或,
该其他上行控制信息通过打孔的方式映射到该第一类时间符号上进行传输。
本申请还公开了一种上行控制信道传输方法,包括:
基站确定接收上行调度请求的周期和物理资源;
该基站确定使用目标上行控制信道接收其他上行控制信息;
该基站根据该周期与该目标上行控制信道传输时间长度之间的关系,确定该上行调度请求与该其他上行控制信息的复用传输方式。
在一优选例中,该基站根据该周期与该目标上行控制信道传输时间长度之间的关系,确定该上行调度请求与该其他上行控制信息的复用传输方式,包括:
该基站确定该周期与该目标上行控制信道传输时间长度之间满足第一约定关系;
该基站确定该上行调度请求与该其他上行控制信息通过该目标上行控制信道复用传输。
在一优选例中,该基站确定该上行调度请求与该其他上行控制信息通过该目标上行控制信道复用传输,包括:
对从该目标上行控制信道接收的信号进行处理,该处理包括以下之一:
解级联,联合解码,解交织,解调制。
在一优选例中,该第一约定关系包括:
该目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0;和/或,
该目标上行控制信道的频域资源大小小于该物理资源所对应的频域资源的大小。
在一优选例中,该基站根据该周期与该目标上行控制信道传输时间长度之间的关系,确定该上行调度请求与该其他上行控制信息的复用传输方式,包括:
该基站确定该周期与该目标上行控制信道传输时间长度之间满足第二约定关系;
该基站确定使用该目标上行控制信道中的第一类时间符号接收该其他上行控制信息。
在一优选例中,该基站在该物理资源上接收上行调度请求;
该第一类时域符号为该目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号。
在一优选例中,该基站在该物理资源上接收上行调度请求;
该第一类时域符号为该目标上行控制信道中所有时域符号中除与该物理资源重合的时域符号之外的时域符号。
在一优选例中,该基站在该目标上行控制信道所在频域资源内的第二 类时间符号上接收该上行调度请求,该第二类时间符号与该物理资源占用时间符号相同。
在一优选例中,该第一类时域符号为该目标上行控制信道中所有时域符号中除该第二类时间符号之外的时域符号,或者,
该第一类时域符号为该目标上行控制信道中所有时域符号中除与该物理资源重合的时域符号之外的时域符号。
在一优选例中,该第二约定关系包括:
该目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0;和/或,
该目标上行控制信道的频域资源大小大于或等于该物理资源所对应的频域资源的大小。
在一优选例中,该其他上行控制信息根据该第一类时间符号的数量进行数量匹配后映射到该第一类时间符号上进行传输;或,
该其他上行控制信息通过打孔的方式映射到该第一类时间符号上进行传输。
本申请还公开了一种终端,包括:
第一模块,用于确定发送上行调度请求的周期和物理资源;
第二模块,用于确定使用目标上行控制信道传输其他上行控制信息;
第三模块,用于根据该周期与该目标上行控制信道传输时间长度之间的关系,确定该上行调度请求与该其他上行控制信息的复用传输方式。
在一优选例中,该第三模块包括:
第一子模块,用于确定该周期与该目标上行控制信道传输时间长度之间满足第一约定关系;
第二子模块,用于确定该上行调度请求与该其他上行控制信息通过该目标上行控制信道复用传输;
该第一约定关系包括:
该目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0;和/或,
该目标上行控制信道的频域资源大小小于该物理资源所对应的频域资源的大小。
在一优选例中,该第三模块包括:
第三子模块,用于确定该周期与该目标上行控制信道传输时间长度之间满足第二约定关系;
第四子模块,用于确定使用该目标上行控制信道中的第一类时间符号传输该其他上行控制信息;
该第二约定关系包括:
该目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0;和/或,
该目标上行控制信道的频域资源大小大于或等于该物理资源所对应的频域资源的大小。
在一优选例中,该终端在该物理资源上传输上行调度请求;该第一类时域符号为该目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号;或者,
该终端在该物理资源上传输上行调度请求;该第一类时域符号为该目标上行控制信道中所有时域符号中除与该物理资源重合的时域符号之外的时域符号;或者,
该终端在该目标上行控制信道所在频域资源内的第二类时间符号上 传输该上行调度请求,该第二类时间符号与该物理资源占用时间符号相同。
本申请还公开了一种基站,包括:
第四模块,用于确定接收上行调度请求的周期和物理资源;
第五模块,用于确定使用目标上行控制信道接收其他上行控制信息;
第六模块,用于根据该周期与该目标上行控制信道传输时间长度之间的关系,确定该上行调度请求与该其他上行控制信息的复用传输方式。
在一优选例中,该第六模块包括:
第五子模块,用于确定该周期与该目标上行控制信道传输时间长度之间满足第一约定关系;
第六子模块,用于确定该上行调度请求与该其他上行控制信息通过该目标上行控制信道复用传输;
该第一约定关系包括:
该目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0;和/或,
该目标上行控制信道的频域资源大小小于该物理资源所对应的频域资源的大小。
在一优选例中,该第六模块包括:
第七子模块,用于确定该周期与该目标上行控制信道传输时间长度之间满足第二约定关系;
第八子模块,用于确定使用该目标上行控制信道中的第一类时间符号接收该其他上行控制信息;
该第二约定关系包括:
该目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0;和/或,
该目标上行控制信道的频域资源大小大于或等于该物理资源所对应的频域资源的大小。
在一优选例中,该基站在该物理资源上接收上行调度请求,该第一类时域符号为该目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号;或者,
该基站在该物理资源上接收上行调度请求,该第一类时域符号为该目标上行控制信道中所有时域符号中除与该物理资源重合的时域符号之外的时域符号;或者,
该基站在该目标上行控制信道所在频域资源内的第二类时间符号上接收该上行调度请求,该第二类时间符号与该物理资源占用时间符号相同。
本申请实施方式与现有技术相比,对于不能支持同时发送多个上行控制信道的终端,不会增加时延敏感性业务SR传输时延。
本申请的说明书中记载了大量的技术特征,分布在各个技术方案中,如果要罗列出本申请所有可能的技术特征的组合(即技术方案)的话,会使得说明书过于冗长。为了避免这个问题,本申请上述发明内容中公开的各个技术特征、在下文各个实施方式和例子中公开的各技术特征、以及附图中公开的各个技术特征,都可以自由地互相组合,从而构成各种新的技术方案(这些技术方案均因视为在本说明书中已经记载),除非这种技术特征的组合在技术上是不可行的。例如,在一个例子中公开了特征A+B+C,在另一个例子中公开了特征A+B+D+E,而特征C和D是起到相同作用的等同技术手段,技术上只要择一使用即可,不可能同时采用,特征E技术上 可以与特征C相组合,则,A+B+C+D的方案因技术不可行而应当不被视为已经记载,而A+B+C+E的方案应当视为已经被记载。
附图说明
图1是现有技术中其他上行控制信息使用PUCCH的传输时间长度大于传输SR的短PUCCH的示意图;
图2是现有技术中SR传输信道与其它上行控制信息传输信道在时域上部分重叠的示意图;
图3是本发明第一实施方式中一种上行控制信道传输方法的终端侧流程示意图;
图4是本发明第二实施方式中一种上行控制信道传输方法的基站侧流程示意图;
图5是本发明一个实施例中上行控制信道传输所使用时频资源的示意图(方法A);
图6是本发明一个实施例中上行控制信道传输所使用时频资源的示意图(方法B);
图7是本发明一个实施例中上行控制信道传输所使用时频资源的示意图(方法C);
图8是本发明一个实施例中上行控制信道传输所使用时频资源的示意图(方法D);
图9是本发明一个实施例中SR的传输方法示意图;
具体实施方式
在以下的叙述中,为了使读者更好地理解本申请而提出了许多技术细节。但是,本领域的普通技术人员可以理解,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请中部分概念和缩写的说明:
5G:第5代移动通信技术
NR:5G(第5代移动通信技术)的无线接入部分,New Radio的缩写
PUCCH:物理上行控制信道,Physical Uplink Control CHannel的缩写
SR:上行调度请求,Scheduling Request的缩写
OFDM:正交频分复用,Orthogonal Frequency Division Multiplexing的缩写
T:发送上行调度请求的周期
P:目标上行控制信道传输时间长度
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
本发明第一实施方式涉及一种上行控制信道传输方法。图3是该上行控制信道传输方法的流程示意图。
在步骤301中,终端确定发送上行调度请求的周期T和物理资源。
在步骤302中,终端确定使用目标上行控制信道传输其他上行控制信息。
在步骤303中,终端根据T与目标上行控制信道传输时间长度P之间的关系,确定SR与其他上行控制信息的复用传输方式。
通过上述技术方案,对于不能支持同时发送多个上行控制信道的终端,不会增加时延敏感性业务SR传输时延。
上述步骤301和步骤302的执行顺序可以互换,或并行地执行。
可选的,步骤303可以进一步包括以下子步骤:
终端确定T与P之间满足第一约定关系。
终端确定SR与其他上行控制信息通过目标上行控制信道复用传输。可选地,SR与其他上行控制信息经处理后,映射到目标上行控制信道中进行传输,处理包括但不限于级联、联合编码、交织、调制等。
所述第一约定关系有多种实现方式。可选的,第一约定关系包括:P小于或等于K*T,其中K>0,和/或,目标上行控制信道的频域资源大小小于物理资源所对应的频域资源的大小。优选地,K=1。
可选地,步骤303可以进一步包括以下子步骤:
终端确定T与P之间满足第二约定关系。
终端确定使用目标上行控制信道中的第一类时间符号传输其他上行控制信息。
在上述第二约定关系被满足时,有多种方案可以传输SR和其他上行控制信息。例如:
方案A:终端在物理资源上传输SR。第一类时域符号为目标上行控制信道中所有时域符号中除实际传输SR所使用的时域符号之外的时域符号。
方案B:终端在物理资源上传输SR。第一类时域符号为目标上行控制 信道中所有时域符号中除与物理资源重合的时域符号之外的时域符号。
方案C:终端在目标上行控制信道所在频域资源内的第二类时间符号上传输SR,第一类时域符号为目标上行控制信道中所有时域符号中除第二类时间符号之外的时域符号。
方案D:终端在目标上行控制信道所在频域资源内的第二类时间符号上传输SR,第一类时域符号为目标上行控制信道中所有时域符号中除与物理资源重合的时域符号之外的时域符号。
第二约定关系有多种实现方式。可选地,第二约定关系包括:P大于S*T,其中S>0,和/或,目标上行控制信道的频域资源大小大于或等于物理资源所对应的频域资源的大小。优选地,S=1。可选地,S=K。
其他上行控制信息的传输方式有多种。可选地,其他上行控制信息根据第一类时间符号的数量进行数量匹配后映射到第一类时间符号上进行传输。可选地,其他上行控制信息通过打孔的方式映射到第一类时间符号上进行传输。
本发明第二实施方式涉及一种上行控制信道传输方法。第一实施方式是终端侧的处理,第二实施方式是对应于第一实施方式的基站侧的处理。图4是该上行控制信道传输方法的流程示意图。
在步骤401中,基站确定上行调度请求的周期T和物理资源。
在步骤402中,基站确定使用目标上行控制信道传输其他上行控制信息。
在步骤403中,基站根据T与目标上行控制信道传输时间长度P之间的关系,确定SR与其他上行控制信息的复用传输方式。
通过上述技术方案,对于不能支持同时接收多个上行控制信道的基 站,不会增加时延敏感性业务SR传输时延。
上述步骤401和步骤402的执行顺序可以互换,或并行地执行。
可选的,步骤403可以进一步包括以下子步骤:
基站确定T与P之间满足第一约定关系。
基站确定SR与其他上行控制信息通过目标上行控制信道复用传输。可选地,基站对从该目标上行控制信道接收的信号进行处理,处理包括但不限于解级联,联合解码,解交织,解调制等。
所述第一约定关系有多种实现方式,可选的,第一约定关系包括:P小于或等于K*T,其中K>0,和/或,目标上行控制信道的频域资源大小小于物理资源所对应的频域资源的大小。优选地,K=1。
可选地,步骤403可以进一步包括以下子步骤:
基站确定T与P之间满足第二约定关系。
基站确定使用目标上行控制信道中的第一类时间符号接收其他上行控制信息。
在上述第二约定关系被满足时,有多种方案可以传输SR和其他上行控制信息。例如:
方案A:基站在物理资源上接收SR。第一类时域符号为目标上行控制信道中所有时域符号中除实际接收SR所使用的时域符号之外的时域符号。
方案B:基站在物理资源上接收SR。第一类时域符号为目标上行控制信道中所有时域符号中除与物理资源重合的时域符号之外的时域符号。
方案C:基站在目标上行控制信道所在频域资源内的第二类时间符号上接收SR,第一类时域符号为目标上行控制信道中所有时域符号中除第二类时间符号之外的时域符号。
方案D:基站在目标上行控制信道所在频域资源内的第二类时间符号上接收SR,第一类时域符号为目标上行控制信道中所有时域符号中除与物理资源重合的时域符号之外的时域符号。
第二约定关系有多种实现方式。可选地,第二约定关系包括:P大于S*T,其中S>0,和/或,目标上行控制信道的频域资源大小大于或等于物理资源所对应的频域资源的大小。优选地,S=1。可选地,S=K。
本发明第三实施方式涉及一种终端。该终端包括:
第一模块,用于确定发送上行调度请求的周期和物理资源。
第二模块,用于确定使用目标上行控制信道传输其他上行控制信息。
第三模块,用于根据周期与目标上行控制信道时间长度之间的关系,确定上行调度请求与其他上行控制信息的复用传输方式。
具体地说:
第三模块包括:
第一子模块,用于确定周期与目标上行控制信道传输时间长度之间满足第一约定关系。
第二子模块,用于确定上行调度请求与其他上行控制信息通过目标上行控制信道复用传输。
第一约定关系包括:
目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0。和/或,
目标上行控制信道的频域资源大小小于物理资源所对应的频域资源的大小。
第三模块包括:
第三子模块,用于确定周期与目标上行控制信道传输时间长度之间满足第二约定关系。
第四子模块,用于确定使用目标上行控制信道中的第一类时间符号传输其他上行控制信息。
第二约定关系包括:
目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0。和/或,
目标上行控制信道的频域资源大小大于或等于物理资源所对应的频域资源的大小。
终端在物理资源上传输上行调度请求。第一类时域符号为目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号。或者,
终端在物理资源上传输上行调度请求。第一类时域符号为目标上行控制信道中所有时域符号中除与物理资源重合的时域符号之外的时域符号。或者,
终端在目标上行控制信道所在频域资源内的第二类时间符号上传输上行调度请求,第二类时间符号与物理资源占用时间符号相同。
第一实施方式是与本实施方式相对应的方法实施方式,本实施方式可与第一实施方式互相配合实施。第一实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一实施方式中。
本发明第四实施方式涉及一种基站。该基站包括:
第四模块,用于确定接收上行调度请求的周期和物理资源。
第五模块,用于确定使用目标上行控制信道接收其他上行控制信息。
第六模块,用于根据周期与目标上行控制信道时间长度之间的关系,确定上行调度请求与其他上行控制信息的复用传输方式。
具体地说:
第六模块包括:
第五子模块,用于确定周期与目标上行控制信道传输时间长度之间满足第一约定关系。
第六子模块,用于确定上行调度请求与其他上行控制信息通过目标上行控制信道复用传输。
第一约定关系包括:
目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0。和/或,
目标上行控制信道的频域资源大小小于物理资源所对应的频域资源的大小。
第六模块包括:
第七子模块,用于确定周期与目标上行控制信道传输时间长度之间满足第二约定关系。
第八子模块,用于确定使用目标上行控制信道中的第一类时间符号接收其他上行控制信息。
第二约定关系包括:
目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0。和/或,
目标上行控制信道的频域资源大小大于或等于物理资源所对应的频域资源的大小。
基站在物理资源上接收上行调度请求,第一类时域符号为目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号。或者,
基站在物理资源上接收上行调度请求,第一类时域符号为目标上行控制信道中所有时域符号中除与物理资源重合的时域符号之外的时域符号。或者,
基站在目标上行控制信道所在频域资源内的第二类时间符号上接收上行调度请求,第二类时间符号与物理资源占用时间符号相同。
第二实施方式是与本实施方式相对应的方法实施方式,本实施方式可与第二实施方式互相配合实施。第二实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第二实施方式中。
为了更清楚地说明本发明的技术方案,接下来举一个典型的例子:
终端判断T与P是否满足第一约定关系。
如果满足第一约定关系,则终端在目标上行控制信道中同时传输SR和其他上行控制信息。例如P小于或等于K*T,其中K>0,K为恒定常数或由基站配置,较优的,K=1。优选地,SR与其他上行控制信息进行联合编码后映射到目标上行控制信道中传输
如果不满足第一约定关系,则终端使用目标上行控制信道中第一类时域符号传输其他上行控制信息。具体而言有4种方法传输。
方法A:
终端侧行为:终端在SR对应的频域资源上发送SR,第一类时域符号为目标上行控制信道中所有时域符号中除实际传输SR所使用的时域符号之外的时域符号,如图5所示。
基站侧行为:基站首先在SR对应资源上检测是否有SR。若有SR,则对应时域符号不接收目标上行控制信道。若无SR,则对应时域符号上接收目标上行控制信道。
方法B:
终端侧行为:终端在SR对应的频域资源上发送SR,第一类时域符号为目标上行控制信道中所有时域符号中除SR时域资源外的之外的时域符号,如图6所示。
基站侧行为:基站在SR对应时域符号不接收所述第一上行控制信道。
方法C:
终端侧行为:终端在目标上行控制信道所在的频域资源上发送SR,第一类时域符号为目标上行控制信道中所有时域符号中除实际传输SR时域资源外的之外的时域符号。如图7所示。
基站侧行为:基站首先在目标上行控制信道所在的资源上检测是否有SR。若有SR,则对应时域符号不接收目标上行控制信道。若无SR,则对应时域符号上接收目标上行控制信道。
方法D:
终端侧行为:终端在目标上行控制信道所在的频域资源上发送SR,第一类时域符号为目标上行控制信道中所有时域符号中除SR时域资源外的之外的时域符号。如图8所示。
基站侧行为:基站在SR对应时域符号不接收所述第一上行控制信道。
在一个优选例中,终端判断目标上行控制信道的频域资源大小是否不 小于SR对应的频域资源大小。如果是,则使用方法C或方法D,否则使用方法A或方法B。
SR的传输方法有两种,一种是on-off方式(适用于方法A、B、C、D),另一种是序列选择方式(只适用于方法D)。如图9所示。
on-off方式:当SR为正时,终端使用约定序列进行传输;SR为负时,终端不传输任何信息。相应的基站侧行为:基站首先在SR对应资源上检测是否有SR;若有SR,则对应时域符号不接收所述第一上行控制信道;若无SR,则对应时域符号上接收所述第一上行控制箱信道。
序列选择方式(只适用于方法d):当SR为正时,终端传输第一约定序列;SR为负时,终端传输第二约定序列。相应的基站侧行为:基站在SR对应时域符号不接收所述第一上行控制信道。
本发明的各方法实施方式均可以以软件、硬件、固件等方式实现。不管本发明是以软件、硬件、还是固件方式实现,指令代码都可以存储在任何类型的计算机可访问的存储器中(例如永久的或者可修改的,易失性的或者非易失性的,固态的或者非固态的,固定的或者可更换的介质等等)。同样,存储器可以例如是可编程阵列逻辑(Programmable Array Logic,简称“PAL”)、随机存取存储器(Random Access Memory,简称“RAM”)、可编程只读存储器(Programmable Read Only Memory,简称“PROM”)、只读存储器(Read-Only Memory,简称“ROM”)、电可擦除可编程只读存储器(Electrically Erasable Programmable ROM,简称“EEPROM”)、磁盘、光盘、数字通用光盘(Digital Versatile Disc,简称“DVD”)等等。
需要说明的是,本发明各设备实施方式中提到的各单元都是逻辑单元,在物理上,一个逻辑单元可以是一个物理单元,也可以是一个物理单 元的一部分,还可以以多个物理单元的组合实现,这些逻辑单元本身的物理实现方式并不是最重要的,这些逻辑单元所实现的功能的组合才是解决本发明所提出的技术问题的关键。此外,为了突出本发明的创新部分,本发明上述各设备实施方式并没有将与解决本发明所提出的技术问题关系不太密切的单元引入,这并不表明上述设备实施方式并不存在其它的单元。
需要说明的是,在本专利的申请文件中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。本专利的申请文件中,如果提到根据某要素执行某行为,则是指至少根据该要素执行该行为的意思,其中包括了两种情况:仅根据该要素执行该行为、和根据该要素和其它要素执行该行为。多个、多次、多种等表达包括2个、2次、2种以及2个以上、2次以上、2种以上。
在本申请提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本申请的上述讲授内容之后,本领域技术人员可以对本申请作各种改动或修改,这些等价形式同样落于本申请所要求保护的范围。

Claims (31)

  1. 一种上行控制信道传输方法,其特征在于,包括:
    终端确定发送上行调度请求的周期和物理资源;
    所述终端确定使用目标上行控制信道传输其他上行控制信息;
    所述终端根据所述周期与所述目标上行控制信道传输时间长度之间的关系,确定所述上行调度请求与所述其他上行控制信息的复用传输方式。
  2. 根据权利要求1所述的上行控制信道传输方法,其特征在于,所述终端根据所述周期与所述目标上行控制信道传输时间长度之间的关系,确定所述上行调度请求与所述其他上行控制信息的复用传输方式,包括:
    所述终端确定所述周期与所述目标上行控制信道传输时间长度之间满足第一约定关系;
    所述终端确定所述上行调度请求与所述其他上行控制信息通过所述目标上行控制信道复用传输。
  3. 根据权利要求2所述的上行控制信道传输方法,其特征在于,所述终端确定所述上行调度请求与所述其他上行控制信息通过所述目标上行控制信道复用传输,包括:
    所述上行调度请求与所述其他上行控制信息经处理后,映射到所述目标上行控制信道中进行传输,所述处理包括至少一种如下处理:
    级联;
    联合编码;
    交织;
    调制。
  4. 根据权利要求2所述的上行控制信道传输方法,其特征在于,所述第一约定关系包括:
    所述目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0;和/或,
    所述目标上行控制信道的频域资源大小小于所述物理资源所对应的频域资源的大小。
  5. 根据权利要求1至4中任一项所述的上行控制信道传输方法,其特征在于,所述终端根据所述周期与所述目标上行控制信道传输时间长度之间的关系,确定所述上行调度请求与所述其他上行控制信息的复用传输方式,包括:
    所述终端确定所述周期与所述目标上行控制信道传输时间长度之间满足第二约定关系;
    所述终端确定使用所述目标上行控制信道中的第一类时间符号传输所述其他上行控制信息。
  6. 根据权利要求5所述的上行控制信道传输方法,其特征在于,所述终端在所述物理资源上传输上行调度请求;
    所述第一类时域符号为所述目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号。
  7. 根据权利要求5所述的上行控制信道传输方法,其特征在于,所述终端在所述物理资源上传输上行调度请求;
    所述第一类时域符号为所述目标上行控制信道中所有时域符号中除与所述物理资源重合的时域符号之外的时域符号。
  8. 根据权利要求5所述的上行控制信道传输方法,其特征在于,所述终端在所述目标上行控制信道所在频域资源内的第二类时间符号上传输所述上行调度请求,所述第二类时间符号与所述物理资源占用时间符号相同。
  9. 根据权利要求8所述的上行控制信道传输方法,其特征在于,所述第一类时域符号为所述目标上行控制信道中所有时域符号中除所述第二类时间符号之外的时域符号。
  10. 根据权利要求8所述的上行控制信道传输方法,其特征在于,所述第一类时域符号为所述目标上行控制信道中所有时域符号中除与所述物理资源重合的时域符号之外的时域符号。
  11. 根据权利要求5所述的上行控制信道传输方法,其特征在于,所述第二约定关系包括:
    所述目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0;和/或,
    所述目标上行控制信道的频域资源大小大于或等于所述物理资源所对应的频域资源的大小。
  12. 根据权利要求5所述的上行控制信道传输方法,其特征在于,所述其他上行控制信息根据所述第一类时间符号的数量进行数量匹配后映射到所述第一类时间符号上进行传输;或,
    所述其他上行控制信息通过打孔的方式映射到所述第一类时间符号上进行传 输。
  13. 一种上行控制信道传输方法,其特征在于,包括:
    基站确定接收上行调度请求的周期和物理资源;
    所述基站确定使用目标上行控制信道接收其他上行控制信息;
    所述基站根据所述周期与所述目标上行控制信道传输时间长度之间的关系,确定所述上行调度请求与所述其他上行控制信息的复用传输方式。
  14. 根据权利要求13所述的上行控制信道传输方法,其特征在于,所述基站根据所述周期与所述目标上行控制信道传输时间长度之间的关系,确定所述上行调度请求与所述其他上行控制信息的复用传输方式,包括:
    所述基站确定所述周期与所述目标上行控制信道传输时间长度之间满足第一约定关系;
    所述基站确定所述上行调度请求与所述其他上行控制信息通过所述目标上行控制信道复用传输。
  15. 根据权利要求14所述的上行控制信道传输方法,其特征在于,所述基站确定所述上行调度请求与所述其他上行控制信息通过所述目标上行控制信道复用传输,包括:
    对从所述目标上行控制信道接收的信号进行处理,所述处理包括以下之一或其任意组合:
    解级联,联合解码,解交织,解调制。
  16. 根据权利要求14所述的上行控制信道传输方法,其特征在于,所述第一约定关系包括:
    所述目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0;和/或,
    所述目标上行控制信道的频域资源大小小于所述物理资源所对应的频域资源的大小。
  17. 根据权利要求13至16中任一项所述的上行控制信道传输方法,其特征在于,所述基站根据所述周期与所述目标上行控制信道传输时间长度之间的关系,确定所述上行调度请求与所述其他上行控制信息的复用传输方式,包括:
    所述基站确定所述周期与所述目标上行控制信道传输时间长度之间满足第二约定关系;
    所述基站确定使用所述目标上行控制信道中的第一类时间符号接收所述其他 上行控制信息。
  18. 根据权利要求17所述的上行控制信道传输方法,其特征在于,所述基站在所述物理资源上接收上行调度请求;
    所述第一类时域符号为所述目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号。
  19. 根据权利要求17所述的上行控制信道传输方法,其特征在于,所述基站在所述物理资源上接收上行调度请求;
    所述第一类时域符号为所述目标上行控制信道中所有时域符号中除与所述物理资源重合的时域符号之外的时域符号。
  20. 根据权利要求17所述的上行控制信道传输方法,其特征在于,所述基站在所述目标上行控制信道所在频域资源内的第二类时间符号上接收所述上行调度请求,所述第二类时间符号与所述物理资源占用时间符号相同。
  21. 根据权利要求18所述的上行控制信道传输方法,其特征在于,所述第一类时域符号为所述目标上行控制信道中所有时域符号中除所述第二类时间符号之外的时域符号,或者,
    所述第一类时域符号为所述目标上行控制信道中所有时域符号中除与所述物理资源重合的时域符号之外的时域符号。
  22. 根据权利要求17所述的上行控制信道传输方法,其特征在于,所述第二约定关系包括:
    所述目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0;和/或,
    所述目标上行控制信道的频域资源大小大于或等于所述物理资源所对应的频域资源的大小。
  23. 根据权利要求17所述的上行控制信道传输方法,其特征在于,所述其他上行控制信息根据所述第一类时间符号的数量进行数量匹配后映射到所述第一类时间符号上进行传输;或,
    所述其他上行控制信息通过打孔的方式映射到所述第一类时间符号上进行传输。
  24. 一种终端,其特征在于,包括:
    第一模块,用于确定发送上行调度请求的周期和物理资源;
    第二模块,用于确定使用目标上行控制信道传输其他上行控制信息;
    第三模块,用于根据所述周期与所述目标上行控制信道传输时间长度之间的关系,确定所述上行调度请求与所述其他上行控制信息的复用传输方式。
  25. 根据权利要求24所述的终端,其特征在于,所述第三模块包括:
    第一子模块,用于确定所述周期与所述目标上行控制信道传输时间长度之间满足第一约定关系;
    第二子模块,用于确定所述上行调度请求与所述其他上行控制信息通过所述目标上行控制信道复用传输;
    所述第一约定关系包括:
    所述目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0;和/或,
    所述目标上行控制信道的频域资源大小小于所述物理资源所对应的频域资源的大小。
  26. 根据权利要求24所述的终端,其特征在于,所述第三模块包括:
    第三子模块,用于确定所述周期与所述目标上行控制信道传输时间长度之间满足第二约定关系;
    第四子模块,用于确定使用所述目标上行控制信道中的第一类时间符号传输所述其他上行控制信息;
    所述第二约定关系包括:
    所述目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0;和/或,
    所述目标上行控制信道的频域资源大小大于或等于所述物理资源所对应的频域资源的大小。
  27. 根据权利要求26所述的终端,其特征在于,所述终端在所述物理资源上传输上行调度请求;所述第一类时域符号为所述目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号;或者,
    所述终端在所述物理资源上传输上行调度请求;所述第一类时域符号为所述目标上行控制信道中所有时域符号中除与所述物理资源重合的时域符号之外的时域符号;或者,
    所述终端在所述目标上行控制信道所在频域资源内的第二类时间符号上传输所述上行调度请求,所述第二类时间符号与所述物理资源占用时间符号相同。
  28. 一种基站,其特征在于,包括:
    第四模块,用于确定接收上行调度请求的周期和物理资源;
    第五模块,用于确定使用目标上行控制信道接收其他上行控制信息;
    第六模块,用于根据所述周期与所述目标上行控制信道传输时间长度之间的关系,确定所述上行调度请求与所述其他上行控制信息的复用传输方式。
  29. 根据权利要求28所述的基站,其特征在于,所述第六模块包括:
    第五子模块,用于确定所述周期与所述目标上行控制信道传输时间长度之间满足第一约定关系;
    第六子模块,用于确定所述上行调度请求与所述其他上行控制信息通过所述目标上行控制信道复用传输;
    所述第一约定关系包括:
    所述目标上行控制信道传输时间长度小于或等于K与上行调度请求的周期的乘积,其中K>0;和/或,
    所述目标上行控制信道的频域资源大小小于所述物理资源所对应的频域资源的大小。
  30. 根据权利要求28所述的基站,其特征在于,所述第六模块包括:
    第七子模块,用于确定所述周期与所述目标上行控制信道传输时间长度之间满足第二约定关系;
    第八子模块,用于确定使用所述目标上行控制信道中的第一类时间符号接收所述其他上行控制信息;
    所述第二约定关系包括:
    所述目标上行控制信道传输时间长度大于S与上行调度请求的周期的乘积,其中S>0;和/或,
    所述目标上行控制信道的频域资源大小大于或等于所述物理资源所对应的频域资源的大小。
  31. 根据权利要求28所述的基站,其特征在于,所述基站在所述物理资源上接收上行调度请求,所述第一类时域符号为所述目标上行控制信道中所有时域符号中除实际传输上行调度请求所使用的时域符号之外的时域符号;或者,
    所述基站在所述物理资源上接收上行调度请求,所述第一类时域符号为所述目标上行控制信道中所有时域符号中除与所述物理资源重合的时域符号之外的时域符号;或者,
    所述基站在所述目标上行控制信道所在频域资源内的第二类时间符号上接收 所述上行调度请求,所述第二类时间符号与所述物理资源占用时间符号相同。
PCT/CN2017/108422 2017-10-30 2017-10-30 上行控制信道传输方法及终端和基站 WO2019084735A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
CN201780094283.2A CN111201817B (zh) 2017-10-30 上行控制信道传输方法及终端和基站
JP2020514236A JP2021510239A (ja) 2017-10-30 2017-10-30 アップリンク制御チャネル伝送方法、及び端末と基地局
EP17930816.8A EP3661288A4 (en) 2017-10-30 2017-10-30 UPLINK CONTROL CHANNEL TRANSMISSION PROCEDURE, TERMINAL AND BASE STATION
US16/757,154 US20200344787A1 (en) 2017-10-30 2017-10-30 Uplink Control Channel Transmission Method, Terminal and Base Station
KR1020207006420A KR20200077505A (ko) 2017-10-30 2017-10-30 업링크 제어 채널 전송 방법 및 단말과 기지국
PCT/CN2017/108422 WO2019084735A1 (zh) 2017-10-30 2017-10-30 上行控制信道传输方法及终端和基站
US16/757,165 US20200367273A1 (en) 2017-10-30 2018-03-06 Method for Transmitting Uplink Control Channel, Terminal, and Base Station
JP2020514689A JP2021501485A (ja) 2017-10-30 2018-03-06 アップリンク制御チャネル伝送方法、端末及び基地局
PCT/CN2018/078181 WO2019085364A1 (zh) 2017-10-30 2018-03-06 上行控制信道传输方法及终端和基站
KR1020207007161A KR20200083434A (ko) 2017-10-30 2018-03-06 업링크 제어 채널 전송 방법 및 단말과 기지국
AU2018362203A AU2018362203A1 (en) 2017-10-30 2018-03-06 Method for transmitting uplink control channel, terminal, and base station
EP18873629.2A EP3664336A4 (en) 2017-10-30 2018-03-06 PROCEDURE FOR TRANSMISSION OF UPLINK CONTROL INFORMATION, TERMINAL AND BASE STATION
SG11202001027PA SG11202001027PA (en) 2017-10-30 2018-03-06 Method for transmitting uplink control channel, terminal, and base station
MX2020002199A MX2020002199A (es) 2017-10-30 2018-03-06 Procedimiento de transmision de canal de control de enlace ascendente, terminal, y estacion base.
CN201880055999.6A CN111052649A (zh) 2017-10-30 2018-03-06 上行控制信道传输方法及终端和基站
RU2020107924A RU2752236C9 (ru) 2017-10-30 2018-03-06 Способ передачи канала управления восходящей линии связи, терминал и базовая станция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108422 WO2019084735A1 (zh) 2017-10-30 2017-10-30 上行控制信道传输方法及终端和基站

Publications (1)

Publication Number Publication Date
WO2019084735A1 true WO2019084735A1 (zh) 2019-05-09

Family

ID=66331106

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/108422 WO2019084735A1 (zh) 2017-10-30 2017-10-30 上行控制信道传输方法及终端和基站
PCT/CN2018/078181 WO2019085364A1 (zh) 2017-10-30 2018-03-06 上行控制信道传输方法及终端和基站

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078181 WO2019085364A1 (zh) 2017-10-30 2018-03-06 上行控制信道传输方法及终端和基站

Country Status (10)

Country Link
US (2) US20200344787A1 (zh)
EP (2) EP3661288A4 (zh)
JP (2) JP2021510239A (zh)
KR (2) KR20200077505A (zh)
CN (1) CN111052649A (zh)
AU (1) AU2018362203A1 (zh)
MX (1) MX2020002199A (zh)
RU (1) RU2752236C9 (zh)
SG (1) SG11202001027PA (zh)
WO (2) WO2019084735A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101919196A (zh) * 2007-10-30 2010-12-15 诺基亚西门子通信公司 提供与ack/nack或cqi一起的改进调度请求信令
CN104025689A (zh) * 2011-09-30 2014-09-03 诺基亚公司 随机接入与专用调度请求资源之间的选择

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8422429B2 (en) * 2010-05-04 2013-04-16 Samsung Electronics Co., Ltd. Method and system for indicating the transmission mode for uplink control information
US9060360B2 (en) * 2010-07-26 2015-06-16 Lg Electronics Inc. Method and device for transmitting control information
WO2013028113A1 (en) * 2011-08-22 2013-02-28 Telefonaktiebolaget L M Ericsson (Publ) Collision resolution for pucch scheduling requests

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101919196A (zh) * 2007-10-30 2010-12-15 诺基亚西门子通信公司 提供与ack/nack或cqi一起的改进调度请求信令
CN104025689A (zh) * 2011-09-30 2014-09-03 诺基亚公司 随机接入与专用调度请求资源之间的选择

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "On UL transmission procedures", 3GPP TSG RAN WG1 MEETING #90BIS , R1-1717836,, vol. RAN WG1, 13 October 2017 (2017-10-13), Prague, Czechia, pages 1 - 5, XP051352791 *
HUAWEI: "R1-1707033:Discussion on SR in shortened TTI scenario", 3GPP TSG RAN WG1 MEETING #89, 19 May 2017 (2017-05-19), XP051272263 *
See also references of EP3661288A4 *

Also Published As

Publication number Publication date
RU2752236C1 (ru) 2021-07-23
US20200367273A1 (en) 2020-11-19
WO2019085364A1 (zh) 2019-05-09
JP2021501485A (ja) 2021-01-14
CN111052649A (zh) 2020-04-21
CN111201817A (zh) 2020-05-26
KR20200077505A (ko) 2020-06-30
EP3664336A1 (en) 2020-06-10
EP3661288A1 (en) 2020-06-03
EP3664336A4 (en) 2020-08-12
AU2018362203A1 (en) 2020-02-27
KR20200083434A (ko) 2020-07-08
SG11202001027PA (en) 2020-05-28
EP3661288A4 (en) 2020-09-02
RU2752236C9 (ru) 2021-11-19
JP2021510239A (ja) 2021-04-15
MX2020002199A (es) 2020-07-20
US20200344787A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
ES2927975T3 (es) Canal de control del enlace descendente para comunicaciones ultra confiables y de baja latencia del enlace ascendente
TWI420851B (zh) 用於控制通道和廣播多播信號之輔助確認通道回饋
WO2019154185A1 (zh) 下行控制信息dci的传输方法、装置及网络设备
CN107371270B (zh) 一种传输方法、设备和***
US11147049B2 (en) Uplink control channel resource determining method, terminal, and network side device
CN113196852A (zh) 侧链路重传超额预订
WO2019169542A1 (zh) 一种应答信息处理方法、设备及存储介质
WO2019084735A1 (zh) 上行控制信道传输方法及终端和基站
WO2022257576A1 (zh) 通信控制方法及装置、基站、计算机可读介质
CN111201817B (zh) 上行控制信道传输方法及终端和基站
CN113287365B (zh) 上行重传指示
TWI842705B (zh) 用於無線通訊的方法,及其裝置和電腦可讀取媒體
WO2013023686A1 (en) Scheduling in a communication system capable of using muted or almost blank subframes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514236

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017930816

Country of ref document: EP

Effective date: 20200227

NENP Non-entry into the national phase

Ref country code: DE