WO2019083009A1 - Inspection system and inspection method - Google Patents

Inspection system and inspection method

Info

Publication number
WO2019083009A1
WO2019083009A1 PCT/JP2018/039845 JP2018039845W WO2019083009A1 WO 2019083009 A1 WO2019083009 A1 WO 2019083009A1 JP 2018039845 W JP2018039845 W JP 2018039845W WO 2019083009 A1 WO2019083009 A1 WO 2019083009A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
central axis
angle
degrees
head
Prior art date
Application number
PCT/JP2018/039845
Other languages
French (fr)
Japanese (ja)
Inventor
信悟 佐藤
大知 長谷川
研弥 山浦
Original Assignee
長野オートメーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長野オートメーション株式会社 filed Critical 長野オートメーション株式会社
Priority to JP2019550316A priority Critical patent/JPWO2019083009A1/en
Publication of WO2019083009A1 publication Critical patent/WO2019083009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an inspection system and method for inspecting a surface by irradiating a laser beam for inspection from an inspection head to an object to be inspected.
  • the inner peripheral surface can also be inspected easily, and when the surface of the object to be inspected is flat, it can be moved by one movement.
  • a surface inspection apparatus is disclosed that can widen the area that can be inspected.
  • the armature shaft of the electric motor is formed into a hollow cylinder, and a fiber holding cylinder for binding and holding the light emitting fiber and the light receiving fiber is loosely inserted therein, and the rotating cylinder is integrated with the tip of the armature shaft.
  • an optical path changing means for changing the optical path, for example, at right angles to the inspection light and the reflected light with respect to the axial center of the fiber holding cylinder, condensing the inspection light onto the inspection object, and the reflected light And focusing means for focusing the light onto the light receiving fiber.
  • the inspection device which inspects the surface by irradiating the inspection light in the direction orthogonal to the axis from the rotating cylinder.
  • the inspection device which inspects the surface by irradiating the inspection light in the direction orthogonal to the axis from the rotating cylinder.
  • means for changing the angle of the light path of the inspection light for example, a reflecting mirror at the tip of the rotating cylinder. Therefore, since the installation space of the reflecting mirror is required, when inspecting the bottomed cylindrical inner surface, the portion close to the bottom surface of the cylindrical inner surface, and further, the boundary between the cylindrical inner surface and the bottom surface should be inspected. Was impossible.
  • One aspect of the present invention is a hollow inspection head extending in a rod shape along a central axis, the inspection head being rotated about the central axis, and a laser for inspection along the central axis through the inside of the inspection head. It has an optical system for supplying light and receiving reflected light from the inspection surface (surface) of the inspection object returned along the central axis, and an optical element disposed near or at the tip of the inspection head It is an inspection system.
  • the optical element is an optical element that emits a laser beam for inspection toward the inspection object and guides the reflected light in the central axis direction, and for inspection in a state where the normal is inclined at an angle ⁇ with respect to the central axis Of the laser beam can be emitted, and the angle ⁇ satisfies the following condition (1). 46 degrees ⁇ ⁇ ⁇ 55 degrees (1)
  • the inspection system includes a hollow inspection head rod-shaped along a central axis, a rotation unit that rotates the inspection head around the central axis, and laser light for inspection along the central axis through the inspection head.
  • the optical device includes an optical system for supplying light and receiving reflected light from the inspection surface of the inspection object returned along the central axis, and an optical element disposed in the vicinity of the tip of the inspection head or at the tip.
  • the laser light for inspection may be emitted toward the surface to be inspected at an angle ⁇ with respect to the central axis and the reflected light may be guided in the central axial direction.
  • the angle ⁇ satisfies the following condition (2). 92 degrees ⁇ ⁇ ⁇ 110 degrees (2)
  • the inventor of the present application emits laser light for inspection in a non-perpendicular direction by the optical element and irradiates the surface of the inspection object non-perpendicularly from the surface of the inspection object. It has been found that although the intensity of the reflected light decreases, it can be captured with sufficient intensity to analyze the surface condition. Therefore, the inspection system can detect the state of the non-inspection surface by emitting the laser light for inspection toward the inspection surface parallel to the central axis at right angles by the optical element.
  • the intensity of the reflected light may decrease to about 1/10 compared to the case where the angle ⁇ is 45 degrees, that is, the angle ⁇ is 90 degrees, but analysis of the surface state It is possible to obtain reflected light that contains the minimum necessary information.
  • the upper limit of the condition (1) may be 53.5 degrees or 52 degrees because the intensity of the reflected light can be secured.
  • the upper limit of the condition (2) may be 107 degrees or 104 degrees.
  • the lower limit of the condition (1) may be 48 degrees or 50 degrees because the boundary of the inspectable side can be brought close to the bottom surface.
  • the lower limit of the condition (2) may be 96 degrees or 100 degrees.
  • the inspection system may include a unit that varies the angle ⁇ , ie, the angle ⁇ . It may have an opening provided from near the tip of the inspection head to the tip. Furthermore, the inspection system may comprise a rotation unit which rotates the inspection head around a central axis. The inspection system may further include a moving unit that moves the inspection head relative to the inspection object including the hollow portion or recess into which the inspection head is inserted, along the central axis.
  • One of the other aspects of the present invention is a hollow inspection head extending in a rod-like manner along a central axis, the inspection system comprising an inspection head rotated about the central axis. It is a method which has inspecting the state of a to-be-inspected surface.
  • the inspection system supplies an inspection laser beam along the central axis through the inspection head, and an optical system that receives reflected light from the surface to be inspected returned along the central axis, and the vicinity of the tip of the inspection head
  • the optical device further includes an optical element disposed at the tip, and emitting an inspection laser beam toward the inspection object and guiding the reflected light in the central axis direction.
  • the inspection includes emitting a laser beam for inspection toward the surface to be inspected in a state in which a normal is inclined at an angle ⁇ with respect to the central axis with respect to the reflective surface of the optical element. Satisfies the above condition (1).
  • the emitting may include changing the angle ⁇ .
  • One of the still another different aspect of the present invention is a method comprising inspecting a state of an inspection surface of an inspection object using an inspection system including an inspection head, the inspection comprising:
  • the method includes emitting laser light for inspection toward the surface to be inspected at an angle ⁇ with respect to the central axis.
  • the angle ⁇ satisfies the above condition (2).
  • emitting may include emitting a laser beam for inspection toward a surface to be inspected which is parallel to the central axis.
  • emitting includes emitting laser light for inspection toward a surface to be inspected (inner surface, surface) parallel to the central axis of the hollow portion or recess extending along the central axis of the object to be inspected. May be.
  • FIG. 5 is a cross-sectional view showing the configuration of the tip of the inspection head shown in FIG. 4 in a further enlarged manner.
  • 6 is a flowchart showing an example of an inspection method using the inspection apparatus.
  • FIG. 1 shows the appearance of the inspection apparatus (inspection system) 1
  • FIG. 2 shows the schematic configuration of the inspection apparatus 1 by using a cross section.
  • the inspection apparatus (surface inspection apparatus) 1 is suitable for inspecting the shape or state of the inner surface (surface, inspection surface) 4 of the hollow portion 3 such as a hole or a recess provided in the inspection object 2.
  • One example of the hollow portion 3 is a bottomed hollow portion 3 having a cylindrical side surface 4a and a bottom surface 4b.
  • the inspection apparatus 1 includes a hollow inspection head (inspection probe) 10 extending in a rod-like shape along the central axis 11, a rotation unit 20 for rotating the inspection head 10 around the central axis 11, and a center through the inspection head 10.
  • An optical system 30 that supplies laser light for inspection along the axis 11 and receives reflected light from the surface (surface to be inspected) 4 of the inspection object 2 returned along the central axis 11, and an inspection head 10
  • An optical element 50 disposed at or near the tip of the lens, a moving unit 25 relatively moving at least one of the inspection head 10 and the inspection object 2 along the central axis 11, a rotation unit 20, an optical system 30, and And a housing 5 in which the moving unit 25 is incorporated.
  • the inspection apparatus 1 includes a moving unit 25 of the inspection head 10 housed in the housing 5 as a moving unit 25 for moving the inspection head (inspection probe) 10 and the inspection object 2 relative to each other.
  • the moving unit 25 includes a carriage 28 on which the inspection head 10, the rotating unit 20 and the optical system 30 are mounted, and a combination of a ball screw 26 and a moving motor 27 for moving the carriage 28 back and forth (left and right in FIG. 2).
  • the inspection head 10 includes a fixing portion 19 serving as a base end and a rotating portion 18 mounted so as to rotate with respect to the fixing portion 19, and the fixing portion 19 is mounted on the carriage 28 via a holder 29.
  • the configuration of the moving unit 25 is an example, and may be a slider, a moving table, or the like.
  • the moving unit 25 moves the inspection head 10 to a position P 1 projecting forward from the housing 5 and a position P 2 at which the inspection head 10 retracts into the housing 5.
  • the inspection object 2 may be moved using a robot or the like instead of the inspection head 10 or together with the inspection head 10.
  • the optical system 30 includes a semiconductor laser (laser diode, LD) 31 that generates a laser beam for inspection, a light receiving element (for example, a photodiode, CCD, CMOS, etc.) 32 that receives reflected light, and a drive of the semiconductor laser 31. And a control unit 33 including a circuit, a circuit for processing a signal received by the light receiving element 32, and the like.
  • a signal received by the optical system 30 is sent to a computer (personal computer) (not shown) via the control unit 33, and is further data processed and used for analysis of the surface 4 of the inspection object 2.
  • the optical system 30 further includes an optical fiber 35 inserted inside the inspection probe 10, and a light control lens 36 for controlling a light flux input to and output from the optical fiber 35. These are further described below.
  • An example of the rotation unit 20 is a motor 21 mounted on a carriage 28.
  • the pulley 22 driven by the motor 21 is connected to the rotating portion 18 of the inspection head 10 by the drive belt 23, and the motor 21 rotates the rotating portion 18 of the inspection head 10 around the central axis 11 via the drive belt 23. It rotates at high speed (with the central axis 11 as the center of rotation).
  • the inspection head (inspection probe) 10 is extracted and shown in FIG.
  • the schematic configuration of the probe 10 is shown in FIG. 4 using a cross section.
  • the inspection head 10 is a hollow cylindrical body generally extending along the rotation axis 11 and coaxially mounted so as to rotate via the bearing 17 with respect to the fixed portion 19 at the proximal end and the fixed portion 19. , And a rotating portion 18 extending in the distal direction (forward) 16.
  • the rotating portion 18 includes a relatively thick drive portion 15 to which a rotational force is transmitted via the drive belt 23, and an insertion portion (needle) 14 extending from the drive portion 15 toward the tip end (forward) 16 .
  • a radially directed opening (notch) 13 is provided at the tip 14 a of the insertion portion 14, and a laser beam (probe light) for inspection is emitted from the inspection head 10 through the opening 13 and the inspection is performed. Reflected light from the surface 4 of the object 2 is returned to the inspection head 10.
  • FIG. 5 shows a state in which the inner surface 4 of the hollow portion 3 which is an inspection object of the inspection object 2 is inspected by the light irradiated from the inspection head 10.
  • Laser light (probe light) 61 for inspection is emitted from the opening 13 of the inspection head 10 toward the inner surface (inspection target surface) 4, and reflected light 62 from the inspection target surface 4 enters the inspection head 10 from the opening 13. Will be returned.
  • optical fiber 35 for guiding the probe light 61 and the reflected light 62 along the central axis 11 is inserted inside the inspection head 10.
  • the optical fiber 35 constituting the optical system 30 is a bundle of a plurality of fibers, and a light emitting optical fiber 35a for guiding the probe light 61 emitted from the LD 31 toward the inspection object 2 and a reflected light 62 from the inspection object 2 are received. And a light receiving fiber 35 b leading to the element 32.
  • the optical system 30 includes, inside the inspection head 10, a holding cylinder 34 for holding the optical fibers 35 in a bundled state, and a light control lens 36 provided at the tip of the holding cylinder 34.
  • the insertion portion 14 at the tip of the inspection head 10 coaxially extends to cover the holding cylinder 34 and the light adjustment lens 36, and the probe light 61 is transmitted to the tip (near the tip) 14 a of the insertion portion 14 at the front 16 of the light adjustment lens 36.
  • An optical element 50 is disposed to control the direction of emission of light.
  • One example of the optical element 50 is a plane mirror, and may be an optical element having a reflecting surface such as a prism that can control the emitting direction and the incident direction of other light.
  • an angle ⁇ of the mirror surface (reflection surface) 51 specifically, an angle (a depression angle, an angle on the acute angle side) ⁇ between the normal axis 55 orthogonal to the reflection surface 51 and the central axis 11 It can be set to 46 degrees or more.
  • the probe light 61 emitted from the optical fiber 35 extending along the central axis 11 with the central axis 11 as the optical axis is forward 16 with respect to the central axis (optical axis) 11, ie, relative to the central axis 11.
  • the light is emitted forward 16 at an angle ⁇ larger than the orthogonal direction.
  • the angle ⁇ of the reflecting surface 51 may be fixed, and can be varied from 45 degrees or less than 45 degrees to 45 degrees or more using a suitable small-sized, angle-controllable actuator 59 such as a micromotor or a piezo element It is also good.
  • the optical element 50 in which the angle ⁇ of the reflecting surface 51 is inclined at 46 degrees or more is such that the reflected light 62 of the front surface 4 to be inspected irradiated by the probe light 61 emitted toward the front 16 is directed toward the central axis 11 It includes the function of reflecting and leading to the optical fiber 35.
  • the light adjustment lens 36 is an objective lens having a focal length suitable for condensing the probe light 61 output from the tip 35 c of the optical fiber 35 on the inspection target surface 4 via the reflection surface 51.
  • the light adjustment lens 36 also includes a function of condensing the reflected light 62 introduced to the inspection head 10 via the reflection surface 51 on the tip 35 c of the optical fiber 35.
  • the optical system 30 which emits the probe light 61 along the central axis 11 of the inspection head 10 and detects the reflected light 62 is not limited to the one using the optical fiber 35, but as an optical pickup etc. provided with a dichroic prism etc. It may be another known optical system. When the diameter of the hollow portion 3 to be inspected is several cm or less or several mm or less, the optical system 30 using the optical fiber 35 is preferable.
  • FIG. 6 shows some examples of the opening (notch) 13 provided at the tip 14 a of the insertion portion 14 at the front 16 of the inspection head 10.
  • the opening 13 provided at the tip (near the tip) 14a of the insertion portion 14 of the inspection head 10 shown in FIG. 6A has a U-shape in which the direction of the edge 14e of the tip (leading end) of the insertion portion 14 is open.
  • the opening 13 includes at least a point (center) 51c at which the reflecting surface 51 intersects the central axis (optical axis) 11 and reaches the edge 14e toward the front 16 It has become.
  • the probe light 61 reflected to the front 16 by the reflection surface 51 and the reflected light 62 from the front 16 enter the inside of the inspection head 10 without interfering with the wall surface (housing, sheath) of the insertion portion 14. It is output.
  • the opening 13 provided at the tip 14a of the insertion portion 14 of the inspection head 10 shown in FIG. 6C is U-shaped in which the direction of the edge 14e of the insertion portion 14 is open, and is shown in FIG. Thus, the opening reaches the edge 14 e of the insertion portion 14 including the intersection point 51 c of the reflection surface 51 and the central axis 11.
  • the shape of the opening 13 is not limited to these, and may be configured such that an optical element 50 such as a mirror is mounted so as to protrude forward 16 from the tip of the insertion portion 14.
  • the optical element 50 In the inspection head 10, in order to irradiate the probe light 61 in a circumferential shape continuously on the cylindrical inspection object surface 4, the optical element 50 is centered on the central axis 11 at a high speed and around the central axis 11. , Need to rotate in a stable state. Therefore, the optical element 50 is fixed in a state of being inserted into the tip 14 a of the cylindrical insertion portion 14, and a configuration for handling the probe light 61 and the reflected light 62 with the tip 14 a partially open (notched) 13 is an inspection head 10 is one of the preferable configurations.
  • the optical element 50 is installed at the tip or near the tip 14 a to convert the emission direction of the probe light 61 from the direction of the central axis 11 to the radial direction. Therefore, in the case where the hollow portion 3 having the bottom surface 4 b as shown in FIG. 5 is to be inspected, in addition to the clearance for avoiding the interference between the inspection head 10 and the inspection object 2, the optical element 50 is installed.
  • the space required for is the dead space DS.
  • the angle ⁇ of the reflecting surface 51 is set (arranged) to 46 degrees or more, and the irradiation angle ⁇ of the probe light 61 with respect to the central axis 11 is 92
  • the dead space DS which can not be inspected in the circumferential surface 4a can be reduced or eliminated by irradiating the front side 16 with a degree or more.
  • the inspection object surface (inspection surface) 4 a parallel to the central axis 11, for example, the center
  • the intensity of the reflected light 62 is sufficient, it is possible to inspect the state including the unevenness of the surface 4a to be inspected.
  • the average density value of the reflected light 62 is less than about 1/10 of that when the highest intensity probe light 61 is emitted orthogonal to the central axis 11, the amount of data for image processing is increased. It was found that there was a shortage and it was difficult to obtain the information necessary for surface inspection.
  • FIG. 7 shows a change in the ratio (average density ratio) of the average density values of the reflected light 62 when the angle ⁇ of the reflective surface 51 is changed.
  • the angle (tilt angle) ⁇ of the surface 4 to be inspected can be changed to obtain the reflection
  • the average density value of the light 62 is measured, and the inclination angle ⁇ is shown in% assuming that the value of 0 is 100.
  • the laser power used for the measurement is 300 ⁇ W, and the spot diameter is about 50 ⁇ m.
  • the angle ⁇ of the reflective surface 51 be 55 degrees or less (the irradiation angle ⁇ be 110 degrees or less). In particular, when the inclination angle ⁇ exceeds 20 degrees, the attenuation rate of the average density ratio becomes large. Furthermore, it is desirable that the angle ⁇ be 46 degrees or more from the viewpoint of reducing the dead space DS. Therefore, it is desirable that the angle ⁇ of the reflecting surface 51 be 46 degrees or more and 55 degrees or less, as shown in the equation (1).
  • the irradiation angle ⁇ of the probe light 61 is preferably 92 degrees or more and 110 degrees or less, as shown in the equation (2). Under this condition, if Lc / Lr is 0.36, the inside diameter of the hollow portion 3 to be inspected is about 30 mm, the diameter of the inspection head 10 is about 14 mm, and the dead space DS is 5 mm, the hollow portion 3 to be inspected is The circumferential surface 4a can be inspected up to the boundary 4c of the bottom surface 4b.
  • the inspection head 10 and the inspection head 10 which are more suitable for surface inspection, which have a wide inspection range and high intensity of the reflected light 62.
  • Lc / Lr at this time is 0.31, and under the above conditions, the circumferential surface 4a can be inspected sufficiently to reach the boundary of the bottom surface 4b.
  • the inspection head 10 and the inspection head 10 that are more suitable for surface inspection, in which the inspection range is wide and the intensity of the reflected light 62 is higher.
  • Lc / Lr at this time is 0.25, and under the above conditions, the circumferential surface 4a can be sufficiently inspected up to the boundary 4c of the bottom surface 4b.
  • the angle ⁇ of the reflective surface 51 is 50 degrees or less, the irradiation angle ⁇ is 100 degrees or less, and the average density ratio exceeds 65%. Therefore, the reflected light 62 with higher intensity can be obtained, and the inspection head 10 and the inspection head 10 more suitable for surface inspection can be provided.
  • Lc / Lr at this time is 0.18, and under the above conditions, the circumferential surface 4a can be inspected sufficiently to reach the boundary 4c of the bottom surface 4b.
  • the lower limit of the angle ⁇ of the reflecting surface 51 may be non-90 degrees (non-right angle) as long as the probe light 61 can be irradiated, the angle ⁇ may be more than 45 degrees, and the irradiation angle ⁇ may be more than 90 degrees .
  • the angle ⁇ is preferably 46 degrees (the irradiation angle ⁇ is 92 degrees) or more, and the angle ⁇ is 48 degrees (the irradiation angle ⁇ is 96 degrees) or more Is desirable.
  • the angle ⁇ is preferably 49 degrees (the irradiation angle ⁇ is 98 degrees) or more, and the angle ⁇ is 50 degrees (irradiation More preferably, the angle ⁇ is 100 degrees or more.
  • the surface to be inspected is a bottom surface parallel to the central axis by irradiating the probe light 61 non-perpendicularly to the surface 4 to be inspected. Even if it continues, it is possible to expand the inspection range.
  • the angle (tilt angle) ⁇ between the surface 4 to be inspected and the probe light 61 is preferably 20 degrees or less, more preferably 17 degrees or less, and 14 degrees or less. Is more preferred.
  • the inclination angle ⁇ is preferably 2 degrees or more, more preferably 6 degrees or more, and it is also effective that it is 10 degrees or more.
  • FIG. 8 shows an example of a method of inspecting the surface (inspection surface) of an inspection object (inspection object) using the inspection device 1.
  • An example of the surface to be inspected (surface to be inspected) 4 is a hollow cylindrical surface with a bottom, for example, the inner surface (side surface) of a cylinder.
  • the angle ⁇ of the reflecting surface 51 is set to 45 degrees, and the irradiation angle ⁇ of the probe light 61 is set to 90 degrees.
  • the angle ⁇ of the reflecting surface 51 may not be 45 degrees, it is preferable to adopt the high angle ⁇ of the average density ratio in a normal inspection.
  • step 112 the inspection head 10 is inserted into the hollow portion to be inspected, and inspection of the side surface (inner surface, inspection surface) 4a of the hollow portion 3 is started.
  • step 113 when the inspection head 10 reaches a deepest portion, that is, a position where a predetermined clearance can be secured with respect to the bottom surface 4b of the hollow portion 3, in step 114, the angle ⁇ of the reflection surface 51 is 46 using the actuator 59.
  • the irradiation angle ⁇ of the probe light 61 is changed to 92 degrees or more, continuously or intermittently, and inspection of the side surface 4a of the hollow portion 3 is continued.
  • step 115 when the boundary 4c between the side surface 4a and the bottom surface 4b is detected, the inspection is ended.
  • the angle ⁇ of the reflection surface 51 is set in advance to an angle at which the boundary 4c can be detected at the deepest portion. Even if the irradiation angle of 61 is set in advance to 92 degrees or more, the side 4a is inspected while inserting the inspection head 10 gradually into the hollow portion 3, and the inspection is ended if the boundary 4c is detected. Good.
  • the side surface 4a is irradiated with the probe light 61 until the boundary 4c is reached. The status of 4a can be checked.
  • the inspection apparatus (inspection system) 1 moves the light (probe light) 61 for inspection forward 16 in the non-90 degrees direction from the tip 14 a of the inspection head (inspection probe) 10 It can be directed towards. Therefore, the dead space of the inspection head 10 can be eliminated or reduced. Therefore, by inspecting the circumferential surface 4a of the hollow space 3 provided with the bottom surface 4b by the inspection system 1, the circumferential surface 4a is inspected up to the bottom surface 4b or a portion closer to the bottom surface 4b. It can be evaluated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

An inspection system (1) having a hollow inspection head (10) which extends in a rod shape along a center axis (11), a rotation unit (20) which rotates the inspection head around the center axis (11), an optical system (30) which supplies a laser beam for inspection along the center axis (11) through the interior of the inspection head (10), and receives reflected light from the surface (4) of an inspection target (2) which is returned along the center axis, and an optical element (50) which is positioned at or near the tip of the inspection head, emits the laser beam for inspection toward the inspection target, and guides the reflected light in the center axis direction, wherein the optical element has a reflection surface capable of tilting in a manner such that the normal line thereof relative to the center axis forms an angle θ, and the angle θ satisfies the condition of 46°≤θ≤55°.

Description

検査システムおよび検査方法Inspection system and inspection method
 本発明は、検査ヘッドから被検査物に検査用のレーザー光を照射して表面を検査する検査システムおよび方法に関するものである。 The present invention relates to an inspection system and method for inspecting a surface by irradiating a laser beam for inspection from an inspection head to an object to be inspected.
 日本国特開平11-281583号公報には、被検査物が円筒状をなす場合、その内周面も容易に検査でき、被検査物の表面が平面である場合には、一回の移動で検査できる領域を広くとることができる表面検査装置が開示されている。この表面検査装置は、電動モータの電機子軸を中空筒形とし、その内部に投光ファイバー及び受光ファイバーを結束保持するファイバー保持筒を遊挿すると共に、電機子軸の先端部に回転円筒を一体に取付ける。この回転円筒の内部に、検査光と反射光をファイバー保持筒の軸心に対して、例えば直角に光路を変更する光路変更手段と、検査光を被検査物へ集光し、かつ、反射光を受光ファイバーへ集光する集光手段とを設置する。電動モータを作動して電機子軸と共に回転円筒を回転させると、その内部に設置された光路変更手段が回転し、検査光を照射して検査する領域を移動させることができる。 In Japanese Patent Laid-Open No. 11-281583, when the object to be inspected has a cylindrical shape, the inner peripheral surface can also be inspected easily, and when the surface of the object to be inspected is flat, it can be moved by one movement. A surface inspection apparatus is disclosed that can widen the area that can be inspected. In this surface inspection apparatus, the armature shaft of the electric motor is formed into a hollow cylinder, and a fiber holding cylinder for binding and holding the light emitting fiber and the light receiving fiber is loosely inserted therein, and the rotating cylinder is integrated with the tip of the armature shaft. Attach to Inside the rotating cylinder, an optical path changing means for changing the optical path, for example, at right angles to the inspection light and the reflected light with respect to the axial center of the fiber holding cylinder, condensing the inspection light onto the inspection object, and the reflected light And focusing means for focusing the light onto the light receiving fiber. When the electric motor is operated to rotate the rotary cylinder together with the armature shaft, the optical path changing means provided therein is rotated and the inspection light can be irradiated to move the area to be inspected.
 回転円筒から軸に直交する方向に検査光を照射して表面を検査する検査装置により、被検査物の円筒状の内部の表面を検査することが可能である。しかしながら、回転円筒の先端に検査光の光路の角度を変更する手段、例えば、反射鏡を設置する必要がある。したがって、反射鏡の設置スペースが必要となるため、有底の円筒状の内部の表面を検査する場合は、円筒内面の底面に近い部分、さらには、円筒内面と底面との境界まで検査することは不可能であった。 It is possible to inspect the cylindrical inner surface of the object to be inspected by the inspection device which inspects the surface by irradiating the inspection light in the direction orthogonal to the axis from the rotating cylinder. However, it is necessary to install means for changing the angle of the light path of the inspection light, for example, a reflecting mirror at the tip of the rotating cylinder. Therefore, since the installation space of the reflecting mirror is required, when inspecting the bottomed cylindrical inner surface, the portion close to the bottom surface of the cylindrical inner surface, and further, the boundary between the cylindrical inner surface and the bottom surface should be inspected. Was impossible.
 本発明の一態様は、中心軸に沿って棒状に延びた中空の検査ヘッドであって、中心軸の周りに回転される検査ヘッドと、検査ヘッド内を通じて、中心軸に沿って検査用のレーザー光を供給し、中心軸に沿って戻された被検査物の被検査面(表面)からの反射光を受光する光学システムと、検査ヘッドの先端近傍または先端に配置された光学素子とを有する検査システムである。光学素子は、検査用のレーザー光を被検査物に向けて出射するとともに反射光を中心軸方向に導く光学素子であり、中心軸に対して、法線が角度θで傾いた状態で検査用のレーザー光を出射可能な反射面を含み、角度θが以下の条件(1)を満たす。
46度 ≦ θ ≦ 55度 ・・・(1)
One aspect of the present invention is a hollow inspection head extending in a rod shape along a central axis, the inspection head being rotated about the central axis, and a laser for inspection along the central axis through the inside of the inspection head. It has an optical system for supplying light and receiving reflected light from the inspection surface (surface) of the inspection object returned along the central axis, and an optical element disposed near or at the tip of the inspection head It is an inspection system. The optical element is an optical element that emits a laser beam for inspection toward the inspection object and guides the reflected light in the central axis direction, and for inspection in a state where the normal is inclined at an angle θ with respect to the central axis Of the laser beam can be emitted, and the angle θ satisfies the following condition (1).
46 degrees ≦ θ ≦ 55 degrees (1)
 この検査システムは、中心軸に沿って棒状に延びた中空の検査ヘッドと、検査ヘッドを中心軸の周りに回転する回転ユニットと、検査ヘッド内を通じて、中心軸に沿って検査用のレーザー光を供給し、中心軸に沿って戻された被検査物の被検査面からの反射光を受光する光学システムと、検査ヘッドの先端近傍または先端に配置された光学素子とを有し、光学素子が、中心軸に対して、検査用のレーザー光を、角度φで被検査面に向けて出射するとともに反射光を中心軸方向に導いてもよい。角度φは以下の条件(2)を満たす。
92度 ≦ φ ≦ 110度 ・・・(2)
The inspection system includes a hollow inspection head rod-shaped along a central axis, a rotation unit that rotates the inspection head around the central axis, and laser light for inspection along the central axis through the inspection head. The optical device includes an optical system for supplying light and receiving reflected light from the inspection surface of the inspection object returned along the central axis, and an optical element disposed in the vicinity of the tip of the inspection head or at the tip. The laser light for inspection may be emitted toward the surface to be inspected at an angle φ with respect to the central axis and the reflected light may be guided in the central axial direction. The angle φ satisfies the following condition (2).
92 degrees ≦ φ ≦ 110 degrees (2)
 本願の発明者は、この検査システムにおいて、光学素子により検査用のレーザー光を非直角方向に出射して、被検査物の表面に対して非直角に照射しても、被検査物の表面からの反射光を、強度は低下するが、表面の状態を解析するためには十分な強度で捉えることができることを見出した。したがって、検査システムは、光学素子により、中心軸に対し平行な被検査面に向けて検査用のレーザー光を、非直角に出射して、非検査面の状態を検出できる。条件(1)の範囲では、角度θが45度、すなわち、角度φが90度の場合と比較し、反射光の強度は1/10程度まで低下する可能性があるが、表面の状態の解析に最小限必要な情報を含む反射光を得ることができる。 In the inspection system, the inventor of the present application emits laser light for inspection in a non-perpendicular direction by the optical element and irradiates the surface of the inspection object non-perpendicularly from the surface of the inspection object. It has been found that although the intensity of the reflected light decreases, it can be captured with sufficient intensity to analyze the surface condition. Therefore, the inspection system can detect the state of the non-inspection surface by emitting the laser light for inspection toward the inspection surface parallel to the central axis at right angles by the optical element. In the range of condition (1), the intensity of the reflected light may decrease to about 1/10 compared to the case where the angle θ is 45 degrees, that is, the angle φ is 90 degrees, but analysis of the surface state It is possible to obtain reflected light that contains the minimum necessary information.
 条件(1)の上限は、反射光の強度を確保できることから、53.5度であってもよく、52度であってもよい。同様に、条件(2)の上限は、107度であってもよく、104度であってもよい。条件(1)の下限は、検査可能な側面の境界を底面に近づけられることから、48度であってもよく、50度であってもよい。同様に、条件(2)の下限は、96度であってもよく、100度であってもよい。 The upper limit of the condition (1) may be 53.5 degrees or 52 degrees because the intensity of the reflected light can be secured. Similarly, the upper limit of the condition (2) may be 107 degrees or 104 degrees. The lower limit of the condition (1) may be 48 degrees or 50 degrees because the boundary of the inspectable side can be brought close to the bottom surface. Similarly, the lower limit of the condition (2) may be 96 degrees or 100 degrees.
 この検査システムは、角度θ、すなわち角度φを可変するユニットを備えていてもよい。検査ヘッドの先端近傍から先端に達するように設けられた開口を有していてもよい。さらに、この検査システムは、検査ヘッドを中心軸の周りに回転する回転ユニットを有していてもよい。検査システムは、検査ヘッドが挿入される中空部分または凹みを含む被検査物と検査ヘッドとを中心軸に沿って相対的に移動する移動ユニットをさらに有していてもよい。 The inspection system may include a unit that varies the angle θ, ie, the angle φ. It may have an opening provided from near the tip of the inspection head to the tip. Furthermore, the inspection system may comprise a rotation unit which rotates the inspection head around a central axis. The inspection system may further include a moving unit that moves the inspection head relative to the inspection object including the hollow portion or recess into which the inspection head is inserted, along the central axis.
 本発明の他の態様の1つは、中心軸に沿って棒状に延びた中空の検査ヘッドであって、中心軸の周りに回転される検査ヘッドを含む検査システムを用いて、被検査物の被検査面の状態を検査することを有する方法である。検査システムは、検査ヘッド内を通じて、中心軸に沿って検査用のレーザー光を供給し、中心軸に沿って戻された被検査面からの反射光を受光する光学システムと、検査ヘッドの先端近傍または先端に配置された光学素子であって、検査用のレーザー光を被検査物に向けて出射するとともに反射光を中心軸方向に導く光学素子とをさらに有する。さらに、検査することは、光学素子の反射面を、中心軸に対して、法線が角度θで傾いた状態で検査用のレーザー光を被検査面に向けて出射することを含み、角度θは上記の条件(1)を満たす。出射することは、角度θを変えることを含んでもよい。 One of the other aspects of the present invention is a hollow inspection head extending in a rod-like manner along a central axis, the inspection system comprising an inspection head rotated about the central axis. It is a method which has inspecting the state of a to-be-inspected surface. The inspection system supplies an inspection laser beam along the central axis through the inspection head, and an optical system that receives reflected light from the surface to be inspected returned along the central axis, and the vicinity of the tip of the inspection head Alternatively, the optical device further includes an optical element disposed at the tip, and emitting an inspection laser beam toward the inspection object and guiding the reflected light in the central axis direction. Furthermore, the inspection includes emitting a laser beam for inspection toward the surface to be inspected in a state in which a normal is inclined at an angle θ with respect to the central axis with respect to the reflective surface of the optical element. Satisfies the above condition (1). The emitting may include changing the angle θ.
 本発明のさらに異なる他の態様の1つは、検査ヘッドを含む検査システムを用いて、被検査物の被検査面の状態を検査することを有する方法であって、検査することが、光学素子により、中心軸に対して、検査用のレーザー光を、角度φで被検査面に向けて出射することを含む、方法である。角度φは上記の条件(2)を満たす。 One of the still another different aspect of the present invention is a method comprising inspecting a state of an inspection surface of an inspection object using an inspection system including an inspection head, the inspection comprising: Thus, the method includes emitting laser light for inspection toward the surface to be inspected at an angle φ with respect to the central axis. The angle φ satisfies the above condition (2).
 これらの検査方法において、出射することは、中心軸に対し平行な被検査面に向けて検査用のレーザー光を出射することを含んでもよい。また、出射することは、被検査物の中心軸に沿って延びた中空部分または凹みの中心軸に平行な被検査面(内面、表面)に向けて検査用のレーザー光を出射することを含んでもよい。 In these inspection methods, emitting may include emitting a laser beam for inspection toward a surface to be inspected which is parallel to the central axis. In addition, emitting includes emitting laser light for inspection toward a surface to be inspected (inner surface, surface) parallel to the central axis of the hollow portion or recess extending along the central axis of the object to be inspected. May be.
検査装置の概要を示す斜視図。The perspective view which shows the outline | summary of a test | inspection apparatus. 検査装置の概略構成を示す断面図(II-II断面図)。Sectional drawing which shows schematic structure of a test | inspection apparatus (II-II sectional drawing). 検査ヘッドの概要を示す斜視図。The perspective view which shows the outline | summary of a test | inspection head. 検査ヘッドの概略構成を示す断面図(IV-IV断面図)。Sectional drawing (IV-IV sectional drawing) which shows schematic structure of a test | inspection head. 図4に示す検査ヘッドの先端の構成をさらに拡大して示す断面図。FIG. 5 is a cross-sectional view showing the configuration of the tip of the inspection head shown in FIG. 4 in a further enlarged manner. 検査ヘッドの先端の開口の形状の幾つかの例を示す図。The figure which shows the several example of the shape of opening of the front-end | tip of a test | inspection head. 反射光の平均濃度比の測定結果を示す図。The figure which shows the measurement result of the average density ratio of reflected light. 検査装置を用いた検査方法の一例を示すフローチャート。6 is a flowchart showing an example of an inspection method using the inspection apparatus.
発明の実施の形態Embodiment of the Invention
 図1に、検査装置(検査システム)1の外観を示し、図2に、検査装置1の概略の構成を、断面を用いて示している。この検査装置(表面検査装置)1は、被検査物2に設けられた孔、凹みなどの中空部分3の内面(表面、被検査面)4の形状または状態を検査するために適している。中空部分3の一例は、円筒状の側面4aと、底面4bとを備えた有底の中空部分3である。 FIG. 1 shows the appearance of the inspection apparatus (inspection system) 1, and FIG. 2 shows the schematic configuration of the inspection apparatus 1 by using a cross section. The inspection apparatus (surface inspection apparatus) 1 is suitable for inspecting the shape or state of the inner surface (surface, inspection surface) 4 of the hollow portion 3 such as a hole or a recess provided in the inspection object 2. One example of the hollow portion 3 is a bottomed hollow portion 3 having a cylindrical side surface 4a and a bottom surface 4b.
 検査装置1は、中心軸11に沿って棒状に延びた中空の検査ヘッド(検査プローブ)10と、検査ヘッド10を中心軸11の周りに回転させる回転ユニット20と、検査ヘッド10内を通じて、中心軸11に沿って検査用のレーザー光を供給し、中心軸11に沿って戻された被検査物2の表面(被検査面)4からの反射光を受光する光学システム30と、検査ヘッド10の先端またはその近傍に配置された光学素子50と、検査ヘッド10および被検査物2の少なくとも一方を中心軸11に沿って相対的に移動する移動ユニット25と、回転ユニット20、光学システム30および移動ユニット25を内蔵するハウジング5とを含む。 The inspection apparatus 1 includes a hollow inspection head (inspection probe) 10 extending in a rod-like shape along the central axis 11, a rotation unit 20 for rotating the inspection head 10 around the central axis 11, and a center through the inspection head 10. An optical system 30 that supplies laser light for inspection along the axis 11 and receives reflected light from the surface (surface to be inspected) 4 of the inspection object 2 returned along the central axis 11, and an inspection head 10 An optical element 50 disposed at or near the tip of the lens, a moving unit 25 relatively moving at least one of the inspection head 10 and the inspection object 2 along the central axis 11, a rotation unit 20, an optical system 30, and And a housing 5 in which the moving unit 25 is incorporated.
 この検査装置1は、検査ヘッド(検査プローブ)10と被検査物2とを相対的に移動する移動ユニット25としてハウジング5に収納された検査ヘッド10の移動ユニット25を含む。移動ユニット25は、検査ヘッド10、回転ユニット20および光学システム30を搭載したキャリッジ28と、キャリッジ28を前後(図2の左右)に動かすボールねじ26および移動用のモータ27の組み合わせとを含む。検査ヘッド10は、基端となる固定部19と、固定部19に対して回転するように装着された回転部18とを含み、固定部19がホルダー29を介してキャリッジ28に搭載されている。移動ユニット25の構成は一例であり、スライダー、移動テーブルなどであってもよい。移動ユニット25により、検査ヘッド10はハウジング5から前方に突き出た位置P1と、検査ヘッド10がハウジング5の内部に退避する位置P2とに移動する。検査ヘッド10の代わりに、あるいは検査ヘッド10とともに被検査物2を、ロボット等を用いて動かしてもよい。 The inspection apparatus 1 includes a moving unit 25 of the inspection head 10 housed in the housing 5 as a moving unit 25 for moving the inspection head (inspection probe) 10 and the inspection object 2 relative to each other. The moving unit 25 includes a carriage 28 on which the inspection head 10, the rotating unit 20 and the optical system 30 are mounted, and a combination of a ball screw 26 and a moving motor 27 for moving the carriage 28 back and forth (left and right in FIG. 2). The inspection head 10 includes a fixing portion 19 serving as a base end and a rotating portion 18 mounted so as to rotate with respect to the fixing portion 19, and the fixing portion 19 is mounted on the carriage 28 via a holder 29. . The configuration of the moving unit 25 is an example, and may be a slider, a moving table, or the like. The moving unit 25 moves the inspection head 10 to a position P 1 projecting forward from the housing 5 and a position P 2 at which the inspection head 10 retracts into the housing 5. The inspection object 2 may be moved using a robot or the like instead of the inspection head 10 or together with the inspection head 10.
 光学システム30は、検査用のレーザー光を生成する半導体レーザー(レーザーダイオード、LD)31と、反射光を受光する受光素子(例えば、フォトダイオード、CCD、CMOSなど)32と、半導体レーザー31の駆動回路、受光素子32で受信した信号を処理する回路などを含む制御ユニット33とを含む。光学システム30で受信した信号は制御ユニット33を介して不図示のコンピュータ(パーソナルコンピュータ)に送られて、さらにデータ処理され、被検査物2の表面4の解析に用いられる。光学システム30は、さらに、検査プローブ10の内部に挿入された光ファイバー35と、光ファイバー35に対して入出力する光束を制御する調光レンズ36とを含む。これらについてはさらに以下で説明する。 The optical system 30 includes a semiconductor laser (laser diode, LD) 31 that generates a laser beam for inspection, a light receiving element (for example, a photodiode, CCD, CMOS, etc.) 32 that receives reflected light, and a drive of the semiconductor laser 31. And a control unit 33 including a circuit, a circuit for processing a signal received by the light receiving element 32, and the like. A signal received by the optical system 30 is sent to a computer (personal computer) (not shown) via the control unit 33, and is further data processed and used for analysis of the surface 4 of the inspection object 2. The optical system 30 further includes an optical fiber 35 inserted inside the inspection probe 10, and a light control lens 36 for controlling a light flux input to and output from the optical fiber 35. These are further described below.
 回転ユニット20の一例は、キャリッジ28に搭載されたモータ21である。モータ21により駆動されるプーリ22が、検査ヘッド10の回転部18と駆動ベルト23で接続されており、モータ21が駆動ベルト23を介して検査ヘッド10の回転部18を中心軸11の周りに(中心軸11を回転の中心として)高速で回転する。 An example of the rotation unit 20 is a motor 21 mounted on a carriage 28. The pulley 22 driven by the motor 21 is connected to the rotating portion 18 of the inspection head 10 by the drive belt 23, and the motor 21 rotates the rotating portion 18 of the inspection head 10 around the central axis 11 via the drive belt 23. It rotates at high speed (with the central axis 11 as the center of rotation).
 図3に検査ヘッド(検査プローブ)10を抜き出して示している。図4にプローブ10の概略構成を、断面を用いて示している。検査ヘッド10は、全体として回転軸11に沿って延びた中空の円筒体であり、基端の固定部19と、固定部19に対してベアリング17を介して回転するように同軸上に取り付けられ、先端方向(前方)16に向かって延びた回転部18とを含む。回転部18は、駆動ベルト23を介して回転力が伝達される、比較的太い駆動部15と、駆動部15から細く先端(前方)16に向かって延びた挿入部(ニードル)14とを含む。挿入部14の先端14aには、半径方向に向いた開口(切り欠き)13が設けられており、開口13を介して検査用のレーザー光(プローブ光)が検査ヘッド10から出射され、被検査物2の表面4からの反射光が検査ヘッド10に戻されるようになっている。 The inspection head (inspection probe) 10 is extracted and shown in FIG. The schematic configuration of the probe 10 is shown in FIG. 4 using a cross section. The inspection head 10 is a hollow cylindrical body generally extending along the rotation axis 11 and coaxially mounted so as to rotate via the bearing 17 with respect to the fixed portion 19 at the proximal end and the fixed portion 19. , And a rotating portion 18 extending in the distal direction (forward) 16. The rotating portion 18 includes a relatively thick drive portion 15 to which a rotational force is transmitted via the drive belt 23, and an insertion portion (needle) 14 extending from the drive portion 15 toward the tip end (forward) 16 . A radially directed opening (notch) 13 is provided at the tip 14 a of the insertion portion 14, and a laser beam (probe light) for inspection is emitted from the inspection head 10 through the opening 13 and the inspection is performed. Reflected light from the surface 4 of the object 2 is returned to the inspection head 10.
 図5に、被検査物2の検査対象である中空部分3の内面4を検査ヘッド10から照射される光により検査する様子を示している。検査ヘッド10の開口13から検査用のレーザー光(プローブ光)61が内面(検査対象面)4に向けて照射され、検査対象面4からの反射光62が開口13から検査ヘッド10の内部に戻される。 FIG. 5 shows a state in which the inner surface 4 of the hollow portion 3 which is an inspection object of the inspection object 2 is inspected by the light irradiated from the inspection head 10. Laser light (probe light) 61 for inspection is emitted from the opening 13 of the inspection head 10 toward the inner surface (inspection target surface) 4, and reflected light 62 from the inspection target surface 4 enters the inspection head 10 from the opening 13. Will be returned.
 検査ヘッド10の内部には、中心軸11に沿ってプローブ光61と反射光62とを導く光ファイバー35が挿入されている。光学システム30を構成する光ファイバー35は複数のファイバーのバンドルであり、LD31から射出されるプローブ光61を被検査物2に向かって導く投光ファイバー35aと、被検査物2からの反射光62を受光素子32へ導く受光ファイバー35bとを含む。さらに、光学システム30は、検査ヘッド10の内部に、光ファイバー35を束ねた状態で保持する保持筒34と、その保持筒34の先端に設けられた調光レンズ36とを含む。 An optical fiber 35 for guiding the probe light 61 and the reflected light 62 along the central axis 11 is inserted inside the inspection head 10. The optical fiber 35 constituting the optical system 30 is a bundle of a plurality of fibers, and a light emitting optical fiber 35a for guiding the probe light 61 emitted from the LD 31 toward the inspection object 2 and a reflected light 62 from the inspection object 2 are received. And a light receiving fiber 35 b leading to the element 32. Furthermore, the optical system 30 includes, inside the inspection head 10, a holding cylinder 34 for holding the optical fibers 35 in a bundled state, and a light control lens 36 provided at the tip of the holding cylinder 34.
 検査ヘッド10の先端の挿入部14は、同軸状に保持筒34および調光レンズ36を覆うように延び、調光レンズ36の前方16の挿入部14の先端(先端近傍)14aにプローブ光61の出射方向を制御する光学素子50が配置されている。光学素子50の一例は平面鏡であり、プリズムなどの他の光の出射方向および入射方向を制御できる反射面を有する光学素子であってもよい。本例の検査装置1においては、鏡面(反射面)51の角度θ、具体的には、反射面51に直交する法線55が中心軸11となす角度(夾角、鋭角側の角度)θを46度以上に設定可能としている。これにより、中心軸11に沿って延びた光ファイバー35から中心軸11を光軸として出射されるプローブ光61を、中心軸(光軸)11に対して前方16、すなわち、中心軸11に対して直交する方向よりも大きな角度φで前方16に向けて出射するようにしている。反射面51の角度θは固定されていてもよく、マイクロモーター、ピエゾ素子などの小型で角度制御が可能な適当なアクチュエータ59を用いて45度あるいは45度未満から45度以上まで可変であってもよい。 The insertion portion 14 at the tip of the inspection head 10 coaxially extends to cover the holding cylinder 34 and the light adjustment lens 36, and the probe light 61 is transmitted to the tip (near the tip) 14 a of the insertion portion 14 at the front 16 of the light adjustment lens 36. An optical element 50 is disposed to control the direction of emission of light. One example of the optical element 50 is a plane mirror, and may be an optical element having a reflecting surface such as a prism that can control the emitting direction and the incident direction of other light. In the inspection apparatus 1 of this example, an angle θ of the mirror surface (reflection surface) 51, specifically, an angle (a depression angle, an angle on the acute angle side) θ between the normal axis 55 orthogonal to the reflection surface 51 and the central axis 11 It can be set to 46 degrees or more. As a result, the probe light 61 emitted from the optical fiber 35 extending along the central axis 11 with the central axis 11 as the optical axis is forward 16 with respect to the central axis (optical axis) 11, ie, relative to the central axis 11. The light is emitted forward 16 at an angle φ larger than the orthogonal direction. The angle θ of the reflecting surface 51 may be fixed, and can be varied from 45 degrees or less than 45 degrees to 45 degrees or more using a suitable small-sized, angle-controllable actuator 59 such as a micromotor or a piezo element It is also good.
 反射面51の角度θが46度以上に傾いた光学素子50は、前方16に向けて出射されたプローブ光61により照射された前方の検査対象面4の反射光62を中心軸11の方向に反射し、光ファイバー35に導く機能を含む。調光レンズ36は、光ファイバー35の先端35cから出力されたプローブ光61を、反射面51を介して検査対象面4に集光するために適した焦点距離を有する対物レンズである。調光レンズ36は、反射面51を介して検査ヘッド10に導入された反射光62を光ファイバー35の先端35cに集光する機能も含む。検査ヘッド10の中心軸11に沿ってプローブ光61を出射し、反射光62を検出する光学システム30は、光ファイバー35を使用したものに限定されず、ダイクロイックプリズムなどを備えた、光ピックアップなどとして公知の他の光学系であってもよい。検査対象の中空部分3の径が数cm以下あるいは数mm以下のような場合は、光ファイバー35を用いた光学システム30が好適である。 The optical element 50 in which the angle θ of the reflecting surface 51 is inclined at 46 degrees or more is such that the reflected light 62 of the front surface 4 to be inspected irradiated by the probe light 61 emitted toward the front 16 is directed toward the central axis 11 It includes the function of reflecting and leading to the optical fiber 35. The light adjustment lens 36 is an objective lens having a focal length suitable for condensing the probe light 61 output from the tip 35 c of the optical fiber 35 on the inspection target surface 4 via the reflection surface 51. The light adjustment lens 36 also includes a function of condensing the reflected light 62 introduced to the inspection head 10 via the reflection surface 51 on the tip 35 c of the optical fiber 35. The optical system 30 which emits the probe light 61 along the central axis 11 of the inspection head 10 and detects the reflected light 62 is not limited to the one using the optical fiber 35, but as an optical pickup etc. provided with a dichroic prism etc. It may be another known optical system. When the diameter of the hollow portion 3 to be inspected is several cm or less or several mm or less, the optical system 30 using the optical fiber 35 is preferable.
 図6に、検査ヘッド10の前方16の挿入部14の先端14aに設けられた開口(切り欠き)13の幾つかの例を示している。図6(a)に示す検査ヘッド10の、挿入部14の先端(先端近傍)14aに設けられた開口13は、挿入部14の先端(最先端)のエッジ14eの方向が開いたコ字型である。図6(b)に断面で示すように、開口13は、反射面51が中心軸(光軸)11と交差する点(中央)51cを少なくとも含み、前方16に向けてエッジ14eに達する開口となっている。このため、反射面51により前方16に反射されるプローブ光61および前方16からの反射光62が、挿入部14の壁面(ハウジング、シース)と干渉せずに検査ヘッド10の内部に対して入出力される。 FIG. 6 shows some examples of the opening (notch) 13 provided at the tip 14 a of the insertion portion 14 at the front 16 of the inspection head 10. The opening 13 provided at the tip (near the tip) 14a of the insertion portion 14 of the inspection head 10 shown in FIG. 6A has a U-shape in which the direction of the edge 14e of the tip (leading end) of the insertion portion 14 is open. It is. 6B, the opening 13 includes at least a point (center) 51c at which the reflecting surface 51 intersects the central axis (optical axis) 11 and reaches the edge 14e toward the front 16 It has become. Therefore, the probe light 61 reflected to the front 16 by the reflection surface 51 and the reflected light 62 from the front 16 enter the inside of the inspection head 10 without interfering with the wall surface (housing, sheath) of the insertion portion 14. It is output.
 図6(c)に示す検査ヘッド10の、挿入部14の先端14aに設けられた開口13は、挿入部14のエッジ14eの方向が開いたU字型であり、図6(d)に示すように、反射面51と中心軸11との交点51cを含めて挿入部14のエッジ14eに達する開口となっている。開口13の形状はこれらに限定されず、挿入部14の先端から前方16に突き出るようにミラーなどの光学素子50が装着された構成であってもよい。検査ヘッド10においては、プローブ光61を円周状に、円筒状の検査対象面4に連続して照射するために、光学素子50を高速で中心軸11を中心として、中心軸11の周りに、安定した状態で回転する必要がある。したがって、光学素子50を円筒状の挿入部14の先端14aに挿入した状態で固定し、先端14aの一部を開口(切り欠き)13としてプローブ光61および反射光62をハンドリングする構成は検査ヘッド10として好適な構成の1つである。 The opening 13 provided at the tip 14a of the insertion portion 14 of the inspection head 10 shown in FIG. 6C is U-shaped in which the direction of the edge 14e of the insertion portion 14 is open, and is shown in FIG. Thus, the opening reaches the edge 14 e of the insertion portion 14 including the intersection point 51 c of the reflection surface 51 and the central axis 11. The shape of the opening 13 is not limited to these, and may be configured such that an optical element 50 such as a mirror is mounted so as to protrude forward 16 from the tip of the insertion portion 14. In the inspection head 10, in order to irradiate the probe light 61 in a circumferential shape continuously on the cylindrical inspection object surface 4, the optical element 50 is centered on the central axis 11 at a high speed and around the central axis 11. , Need to rotate in a stable state. Therefore, the optical element 50 is fixed in a state of being inserted into the tip 14 a of the cylindrical insertion portion 14, and a configuration for handling the probe light 61 and the reflected light 62 with the tip 14 a partially open (notched) 13 is an inspection head 10 is one of the preferable configurations.
 検査装置1に用いられている検査ヘッド10においては、先端または先端近傍14aに光学素子50を配置してプローブ光61の出射方向を中心軸11の方向から半径方向に変換する必要がある。したがって、図5に示すような、底面4bを有する中空部分3を検査対象とする場合は、検査ヘッド10と被検査対象物2との干渉を避けるためのクリアランスに加えて、光学素子50の設置のために必要なスペースがデッドスペースDSとなる。このため、従来の検査ヘッド10のように、反射面51を中心軸11に対して45度に配置し、プローブ光61を中心軸11に対して90度方向に出射するタイプでは、検査対象の周面4aのうち、底面4bに近いデッドスペースDSの部分の面は検査できないという問題がある。 In the inspection head 10 used in the inspection apparatus 1, it is necessary to dispose the optical element 50 at the tip or near the tip 14 a to convert the emission direction of the probe light 61 from the direction of the central axis 11 to the radial direction. Therefore, in the case where the hollow portion 3 having the bottom surface 4 b as shown in FIG. 5 is to be inspected, in addition to the clearance for avoiding the interference between the inspection head 10 and the inspection object 2, the optical element 50 is installed. The space required for is the dead space DS. Therefore, in the type in which the reflection surface 51 is disposed at 45 degrees with respect to the central axis 11 and the probe light 61 is emitted in the 90 degree direction with respect to the central axis 11 as in the conventional inspection head 10 There is a problem that the surface of the portion of the dead space DS near the bottom surface 4b can not be inspected among the circumferential surfaces 4a.
 これに対し、検査ヘッド10においては、図5に拡大して示すように、反射面51の角度θを46度以上に設定(配置)し、プローブ光61の中心軸11に対する照射角φを92度以上とし、前方16に向けて照射することにより、周面4aのうち、検査ができないデッドスペースDSを縮小し、または、なくすようにしている。 On the other hand, in the inspection head 10, as shown enlarged in FIG. 5, the angle θ of the reflecting surface 51 is set (arranged) to 46 degrees or more, and the irradiation angle φ of the probe light 61 with respect to the central axis 11 is 92 The dead space DS which can not be inspected in the circumferential surface 4a can be reduced or eliminated by irradiating the front side 16 with a degree or more.
 本願の発明者は、プローブ光61を中心軸11に対して直交する方向ではなく、前方16に照射しても、中心軸11に対し平行な検査対象面(被検査面)4a、例えば、中心軸11を中心とする円筒状の内面4aからの反射光62が得られることを見出した。さらに、反射光62の強度が十分であれば、検査対象面4aの凹凸を含めた状態を検査できることを見出した。さらに、反射光62の平均濃度値が、最も強度が高いプローブ光61が中心軸11に対して直交するように出射されたときの約1/10未満になると、画像処理のためのデータ量が不足し、表面検査に必要な情報が得られにくいことを見出した。 Even if the inventor of the present application irradiates the probe light 61 not in the direction orthogonal to the central axis 11 but in the forward direction 16, the inspection object surface (inspection surface) 4 a parallel to the central axis 11, for example, the center It has been found that the reflected light 62 from the cylindrical inner surface 4a centered on the axis 11 is obtained. Furthermore, it has been found that if the intensity of the reflected light 62 is sufficient, it is possible to inspect the state including the unevenness of the surface 4a to be inspected. Furthermore, when the average density value of the reflected light 62 is less than about 1/10 of that when the highest intensity probe light 61 is emitted orthogonal to the central axis 11, the amount of data for image processing is increased. It was found that there was a shortage and it was difficult to obtain the information necessary for surface inspection.
 図7に、反射面51の角度θを変化させたときの反射光62の平均濃度値の比(平均濃度比)の変化を示している。この測定においては、検査ヘッド10に装着されている反射面51の角度θを直に変える代わりに、検査対象(測定対象)である面4の角度(傾斜角度)βを変えて、取得できる反射光62の平均濃度値を測定し、傾斜角度βが0の値を100として%で示している。測定に使用したレーザー出力は300μW、スポット径は約50μmである。 FIG. 7 shows a change in the ratio (average density ratio) of the average density values of the reflected light 62 when the angle θ of the reflective surface 51 is changed. In this measurement, instead of changing the angle θ of the reflection surface 51 mounted on the inspection head 10 directly, the angle (tilt angle) β of the surface 4 to be inspected (measurement object) can be changed to obtain the reflection The average density value of the light 62 is measured, and the inclination angle β is shown in% assuming that the value of 0 is 100. The laser power used for the measurement is 300 μW, and the spot diameter is about 50 μm.
 反射面51の角度θ、プローブ光61の照射角度φおよび傾斜角度βとの関係は以下の式(3)および(4)で表される。
φ=2×θ    ・・・(3)
β=2×θ-90 ・・・(4)
The relationship between the angle θ of the reflecting surface 51, the irradiation angle φ of the probe light 61, and the inclination angle β is expressed by the following equations (3) and (4).
φ = 2 × θ (3)
β = 2 × θ-90 (4)
 さらに、反射面51の中心軸11との交点51cとプローブ光61により照射可能な点の中心軸方向の距離Lcと、中心軸11からの半径方向との距離Lrとは以下の式(6)で表される。
Lc/Lr=tan(2×θ-90)・・・(5)
Furthermore, the distance Lc between the intersection 51c of the reflecting surface 51 with the central axis 11, the distance Lc in the central axis direction of the point that can be irradiated by the probe light 61, and the distance Lr between the central axis 11 and the radial direction is the following formula (6) Is represented by
Lc / Lr = tan (2 × θ-90) (5)
 図7の測定結果より、傾斜角βが20度を超えると平均濃度比は約9%を下回ることが分かる。したがって、反射面51の角度θは55度以下(照射角度φは110度以下)であることが望ましい。特に、傾斜角βが20度を超えると平均濃度比の減衰率が大きくなる。さらに、デッドスペースDSを削減するという観点から角度θは46度以上であることが望ましい。したがって、反射面51の角度θは、式(1)で示したように、46度以上、55度以下であることが望ましい。また、プローブ光61の照射角度φは、式(2)で示したように、92度以上、110度以下であることが望ましい。この条件で、Lc/Lrは0.36であり、検査対象の中空部3の内径が30mm、検査ヘッド10の径が14mm程度、デッドスペースDSが5mmであれば、検査対象の中空部3の周面4aを底面4bの境界4cに至るまで検査することができる。 From the measurement results of FIG. 7, it is understood that the average concentration ratio falls below about 9% when the inclination angle β exceeds 20 degrees. Therefore, it is desirable that the angle θ of the reflective surface 51 be 55 degrees or less (the irradiation angle φ be 110 degrees or less). In particular, when the inclination angle β exceeds 20 degrees, the attenuation rate of the average density ratio becomes large. Furthermore, it is desirable that the angle θ be 46 degrees or more from the viewpoint of reducing the dead space DS. Therefore, it is desirable that the angle θ of the reflecting surface 51 be 46 degrees or more and 55 degrees or less, as shown in the equation (1). The irradiation angle φ of the probe light 61 is preferably 92 degrees or more and 110 degrees or less, as shown in the equation (2). Under this condition, if Lc / Lr is 0.36, the inside diameter of the hollow portion 3 to be inspected is about 30 mm, the diameter of the inspection head 10 is about 14 mm, and the dead space DS is 5 mm, the hollow portion 3 to be inspected is The circumferential surface 4a can be inspected up to the boundary 4c of the bottom surface 4b.
 図7の測定結果に示すように、反射面51の角度θが53.5度以下であれば、照射角度φは107度以下となり、平均濃度比は33%を超え、反射光62の強度として最大強度の1/3以上を確保できる。このため、検査範囲が広く、かつ、反射光62の強度も高い、表面検査にさらに適した検査ヘッド10および検査ヘッド10を提供できる。このときのLc/Lrは0.31であり、上記条件であれば、十分に周面4aを底面4bの境界に至るまで検査できる。 As shown in the measurement results of FIG. 7, if the angle θ of the reflecting surface 51 is 53.5 degrees or less, the irradiation angle φ is 107 degrees or less, and the average density ratio exceeds 33%, and the intensity of the reflected light 62 It can secure 1/3 or more of the maximum strength. Therefore, it is possible to provide the inspection head 10 and the inspection head 10 which are more suitable for surface inspection, which have a wide inspection range and high intensity of the reflected light 62. Lc / Lr at this time is 0.31, and under the above conditions, the circumferential surface 4a can be inspected sufficiently to reach the boundary of the bottom surface 4b.
 さらに、反射面51の角度θが52度以下であれば、照射角度φは104度以下となり、平均濃度比は50%を超え、反射光62の強度として最大強度の1/2以上を確保できる。このため、検査範囲が広く、反射光62の強度がさらに高い、表面検査にさらに適した検査ヘッド10および検査ヘッド10を提供できる。このときのLc/Lrは0.25であり、上記条件であれば、十分に周面4aを底面4bの境界4cに至るまで検査できる。 Furthermore, if the angle θ of the reflecting surface 51 is 52 degrees or less, the irradiation angle φ is 104 degrees or less, the average density ratio exceeds 50%, and the intensity of the reflected light 62 can secure 1/2 or more of the maximum intensity. . Therefore, it is possible to provide the inspection head 10 and the inspection head 10 that are more suitable for surface inspection, in which the inspection range is wide and the intensity of the reflected light 62 is higher. Lc / Lr at this time is 0.25, and under the above conditions, the circumferential surface 4a can be sufficiently inspected up to the boundary 4c of the bottom surface 4b.
 さらに、反射面51の角度θが50度以下であれば、照射角度φは100度以下となり、平均濃度比は65%を超える。このため、強度のさらに高い反射光62を得ることができ、表面検査にさらに適した検査ヘッド10および検査ヘッド10を提供できる。このときのLc/Lrは0.18であり、上記条件であれば、十分に周面4aを底面4bの境界4cに至るまで検査できる。 Furthermore, if the angle θ of the reflective surface 51 is 50 degrees or less, the irradiation angle φ is 100 degrees or less, and the average density ratio exceeds 65%. Therefore, the reflected light 62 with higher intensity can be obtained, and the inspection head 10 and the inspection head 10 more suitable for surface inspection can be provided. Lc / Lr at this time is 0.18, and under the above conditions, the circumferential surface 4a can be inspected sufficiently to reach the boundary 4c of the bottom surface 4b.
 反射面51の角度θの下限は、非90度(非直角)でプローブ光61を照射できればよく、角度θは45度を超えていればよく、照射角度φも90度を超えていればよい。しかしながら、デッドスペースDSを削減することを考えると、角度θは46度(照射角度φは92度)以上であることが望ましく、角度θは48度(照射角度φは96度)以上であることが望ましい。さらに、上記のような中空部3の周面4aの全域を検査することを考慮すると、角度θは49度(照射角度φは98度)以上であることが好ましく、角度θは50度(照射角度φは100度)以上であることがさらに好ましい。 The lower limit of the angle θ of the reflecting surface 51 may be non-90 degrees (non-right angle) as long as the probe light 61 can be irradiated, the angle θ may be more than 45 degrees, and the irradiation angle φ may be more than 90 degrees . However, in consideration of reducing the dead space DS, the angle θ is preferably 46 degrees (the irradiation angle φ is 92 degrees) or more, and the angle θ is 48 degrees (the irradiation angle φ is 96 degrees) or more Is desirable. Furthermore, in consideration of inspecting the entire area of the circumferential surface 4a of the hollow portion 3 as described above, the angle θ is preferably 49 degrees (the irradiation angle φ is 98 degrees) or more, and the angle θ is 50 degrees (irradiation More preferably, the angle φ is 100 degrees or more.
 また、この検査装置1および検査ヘッド10、およびそれらを用いた検査方法においては、検査対象の面4に対しプローブ光61を非直角に照射することにより、検査対象面が中心軸に平行に底面まで続いていても、検査可能な範囲を拡大することができる。検査対象の面4とプローブ光61との成す角(傾斜角)βは、上述したように、20度以下であることが好ましく、17度以下であることがさらに好ましく、14度以下であることがいっそう好ましい。また、検査範囲を拡張することを考えると、傾斜角βは、2度以上であることが好ましく、6度以上であることがさらに好ましく、10度以上であることも有効である。 Further, in the inspection apparatus 1 and the inspection head 10 and the inspection method using them, the surface to be inspected is a bottom surface parallel to the central axis by irradiating the probe light 61 non-perpendicularly to the surface 4 to be inspected. Even if it continues, it is possible to expand the inspection range. As described above, the angle (tilt angle) β between the surface 4 to be inspected and the probe light 61 is preferably 20 degrees or less, more preferably 17 degrees or less, and 14 degrees or less. Is more preferred. Further, in consideration of expanding the inspection range, the inclination angle β is preferably 2 degrees or more, more preferably 6 degrees or more, and it is also effective that it is 10 degrees or more.
 図8に、検査装置1を用いて検査対象物(被検査物)の表面(被検査面)を検査する方法の一例を示している。被検査面(検査対象面)4の一例は、有底で中空の円筒状の面、例えば、シリンダーの内面(側面)である。ステップ111において、反射面51の角度θを45度にセットし、プローブ光61の照射角φを90度に設定する。反射面51の角度θは45度でなくてもよいが、通常の検査では平均濃度比の高い角度θを採用することが好ましい。ステップ112において、検査ヘッド10を検査対象の中空部に挿入して、中空部3の側面(内面、被検査面)4aの検査を開始する。ステップ113において、検査ヘッド10が最深部、すなわち、中空部3の底面4bに対して所定のクリアランスが確保できる位置に到達すると、ステップ114において、アクチュエータ59を用いて反射面51の角度θを46度以上に、連続的にまたは断続的に変更し、プローブ光61の照射角φを92度以上に変更して、中空部3の側面4aの検査を継続する。ステップ115において、側面4aと底面4bとの境界4cを検出すると検査を終了する。 FIG. 8 shows an example of a method of inspecting the surface (inspection surface) of an inspection object (inspection object) using the inspection device 1. An example of the surface to be inspected (surface to be inspected) 4 is a hollow cylindrical surface with a bottom, for example, the inner surface (side surface) of a cylinder. In step 111, the angle θ of the reflecting surface 51 is set to 45 degrees, and the irradiation angle φ of the probe light 61 is set to 90 degrees. Although the angle θ of the reflecting surface 51 may not be 45 degrees, it is preferable to adopt the high angle θ of the average density ratio in a normal inspection. In step 112, the inspection head 10 is inserted into the hollow portion to be inspected, and inspection of the side surface (inner surface, inspection surface) 4a of the hollow portion 3 is started. In step 113, when the inspection head 10 reaches a deepest portion, that is, a position where a predetermined clearance can be secured with respect to the bottom surface 4b of the hollow portion 3, in step 114, the angle θ of the reflection surface 51 is 46 using the actuator 59. The irradiation angle φ of the probe light 61 is changed to 92 degrees or more, continuously or intermittently, and inspection of the side surface 4a of the hollow portion 3 is continued. In step 115, when the boundary 4c between the side surface 4a and the bottom surface 4b is detected, the inspection is ended.
 検査装置1を用いた検査方法は、反射面51の角度θを可変にする代わりに、ステップ111において、最深部において境界4cが検出できる角度に反射面51の角度θを予め設定し、プローブ光61の照射角を92度以上に予めセットしてから、検査ヘッド10を徐々に中空部3に挿入しながら側面4aの検査を行い、境界4cを検出したら検査を終了するという方法であってもよい。このような方法により、底面4bとの境界4cまで中心軸11に平行な側面4aが続くような中空部3であっても、側面4aを境界4cに至るまでプローブ光61を照射して、側面4aの状態を検査することができる。 In the inspection method using the inspection apparatus 1, instead of making the angle θ of the reflection surface 51 variable, in step 111, the angle θ of the reflection surface 51 is set in advance to an angle at which the boundary 4c can be detected at the deepest portion. Even if the irradiation angle of 61 is set in advance to 92 degrees or more, the side 4a is inspected while inserting the inspection head 10 gradually into the hollow portion 3, and the inspection is ended if the boundary 4c is detected. Good. By such a method, even in the hollow portion 3 in which the side surface 4a parallel to the central axis 11 continues to the boundary 4c with the bottom surface 4b, the side surface 4a is irradiated with the probe light 61 until the boundary 4c is reached. The status of 4a can be checked.
 以上に説明したように、本発明に係る検査装置(検査システム)1は、検査ヘッド(検査プローブ)10の先端14aより、検査用の光(プローブ光)61を非90度方向に前方16へ向けて照射することができる。このため、検査ヘッド10のデッドスペースをなくす、あるいは小さくすることが可能である。したがって、検査システム1により、底面4bを備えた中空の空間3の周面4aを検査することにより、底面4bまで、あるいは底面4bにさらに近い部分まで周面4aを検査し、その表面の状態を評価することができる。 As described above, the inspection apparatus (inspection system) 1 according to the present invention moves the light (probe light) 61 for inspection forward 16 in the non-90 degrees direction from the tip 14 a of the inspection head (inspection probe) 10 It can be directed towards. Therefore, the dead space of the inspection head 10 can be eliminated or reduced. Therefore, by inspecting the circumferential surface 4a of the hollow space 3 provided with the bottom surface 4b by the inspection system 1, the circumferential surface 4a is inspected up to the bottom surface 4b or a portion closer to the bottom surface 4b. It can be evaluated.

Claims (15)

  1.  中心軸に沿って棒状に延びた中空の検査ヘッドであって、前記中心軸の周りに回転される検査ヘッドと、
     前記検査ヘッド内を通じて、前記中心軸に沿って検査用のレーザー光を供給し、前記中心軸に沿って戻された被検査物の被検査面からの反射光を受光する光学システムと、
     前記検査ヘッドの先端近傍または先端に配置された光学素子であって、前記検査用のレーザー光を前記被検査物に向けて出射するとともに前記反射光を前記中心軸方向に導く光学素子とを有し、
     前記光学素子は、前記中心軸に対して、法線が角度θで傾いた状態で前記検査用のレーザー光を前記被検査面に向けて出射可能な反射面を含み、前記角度θが以下の条件を満たす、検査システム。
     46度≦θ≦55度
    A hollow inspection head rod-shaped along a central axis, wherein the inspection head is rotated about said central axis;
    An optical system for supplying a laser beam for inspection along the central axis through the inside of the inspection head and receiving reflected light from an inspection surface of the inspection object returned along the central axis;
    An optical element disposed near or at the tip of the inspection head, the optical element emitting the laser light for inspection toward the object to be inspected and guiding the reflected light in the central axis direction; And
    The optical element includes a reflection surface capable of emitting the inspection laser light toward the inspection surface in a state where the normal is inclined at an angle θ with respect to the central axis, and the angle θ is An inspection system that meets the requirements.
    46 degrees ≦ θ ≦ 55 degrees
  2.  請求項1において、
    前記角度θが以下の条件を満たす、検査システム。
     48度≦θ≦53.5度
    In claim 1,
    An inspection system in which the angle θ satisfies the following condition.
    48 degrees ≦ θ ≦ 53.5 degrees
  3.  請求項2において、
    前記角度θが以下の条件を満たす、検査システム。
     50度≦θ≦52度
    In claim 2,
    An inspection system in which the angle θ satisfies the following condition.
    50 degrees ≦ θ ≦ 52 degrees
  4.  請求項1ないし3のいずれかにおいて、
     前記角度θを可変するユニットを有する、検査システム。
    In any one of claims 1 to 3,
    An inspection system having a unit that varies the angle θ.
  5.  中心軸に沿って棒状に延びた中空の検査ヘッドと、
     前記検査ヘッドを前記中心軸の周りに回転する回転ユニットと、
     前記検査ヘッド内を通じて、前記中心軸に沿って検査用のレーザー光を供給し、前記中心軸に沿って戻された被検査物の被検査面からの反射光を受光する光学システムと、
     前記検査ヘッドの先端近傍または先端に配置された光学素子であって、前記中心軸に対して、前記検査用のレーザー光を、角度φで前記被検査面に向けて出射するとともに前記反射光を前記中心軸方向に導く光学素子とを有し、前記角度φが以下の条件を満たす、検査システム。
     92度≦φ≦110度
    A hollow inspection head extending in a rod-like manner along the central axis;
    A rotating unit that rotates the inspection head around the central axis;
    An optical system for supplying a laser beam for inspection along the central axis through the inside of the inspection head and receiving reflected light from an inspection surface of the inspection object returned along the central axis;
    An optical element disposed near or at the tip of the inspection head, wherein the laser beam for inspection is emitted toward the surface to be inspected at an angle φ with respect to the central axis and the reflected light is emitted. An inspection system, comprising: an optical element that leads in the central axis direction, and the angle φ satisfies the following condition.
    92 degrees ≦ φ ≦ 110 degrees
  6.  請求項5において、
     前記角度φを可変するユニットを有する、検査システム。
    In claim 5,
    The inspection system which has a unit which changes the said angle (phi).
  7.  請求項1ないし6のいずれかにおいて、
     前記検査ヘッドの先端近傍から先端に達するように設けられた開口を有する、検査システム。
    In any one of claims 1 to 6,
    An inspection system having an opening provided from near the tip of the inspection head to the tip.
  8.  請求項1ないし7のいずれかにおいて、さらに、
     前記検査ヘッドを前記中心軸の周りに回転する回転ユニットを有する検査システム。
    In any one of claims 1 to 7, further,
    An inspection system comprising a rotation unit for rotating the inspection head around the central axis.
  9.  請求項1ないし8のいずれかにおいて、
     前記被検査物は、前記検査ヘッドが挿入される中空部分または凹みを含み、
     前記検査ヘッドと前記被検査物とを前記中心軸に沿って相対的に移動する移動ユニットをさらに有する、検査システム。
    In any one of claims 1 to 8,
    The inspection object includes a hollow portion or a recess into which the inspection head is inserted,
    An inspection system, further comprising: a moving unit relatively moving the inspection head and the inspection object along the central axis.
  10.  請求項1ないし9のいずれかにおいて、
     前記光学素子は、前記中心軸に対し平行な前記被検査面に向けて前記検査用のレーザー光を出射する、検査システム。
    In any one of claims 1 to 9,
    The inspection system, wherein the optical element emits the inspection laser light toward the inspection surface parallel to the central axis.
  11.  中心軸に沿って棒状に延びた中空の検査ヘッドであって、前記中心軸の周りに回転される検査ヘッドを含む検査システムを用いて、被検査物の被検査面の状態を検査することを有する方法であって、
     前記検査システムは、前記検査ヘッド内を通じて、前記中心軸に沿って検査用のレーザー光を供給し、前記中心軸に沿って戻された被検査面からの反射光を受光する光学システムと、前記検査ヘッドの先端近傍または先端に配置された光学素子であって、前記検査用のレーザー光を前記被検査物に向けて出射するとともに前記反射光を前記中心軸方向に導く光学素子とをさらに有し、
     前記検査することは、
     前記光学素子の反射面を、前記中心軸に対して、法線が角度θで傾いた状態で前記検査用のレーザー光を前記被検査面に向けて出射することを含み、前記角度θが以下の条件を満たす、方法。
     46度≦θ≦55度
    A hollow inspection head rod-shaped extending along a central axis, the inspection system comprising an inspection head rotated about said central axis to inspect the condition of the surface to be inspected of the inspection object A method of having
    The inspection system supplies laser light for inspection along the central axis through the inspection head, and an optical system that receives reflected light from the surface to be inspected returned along the central axis, and An optical element disposed near or at the tip of the inspection head, further comprising an optical element that emits the inspection laser light toward the inspection object and guides the reflected light in the central axis direction. And
    The inspection is
    The laser light for inspection is emitted toward the inspection surface in a state where the normal is inclined at an angle θ with respect to the central axis, and the angle θ is How to meet the requirements of
    46 degrees ≦ θ ≦ 55 degrees
  12.  請求項11において、
     前記出射することは、前記角度θを変えることを含む、方法。
    In claim 11,
    The emitting comprises changing the angle θ.
  13.  中心軸に沿って棒状に延びた中空の検査ヘッドであって、前記中心軸の周りに回転される検査ヘッドを含む検査システムを用いて、被検査物の被検査面の状態を検査することを有する方法であって、
     前記検査システムは、前記検査ヘッド内を通じて、前記中心軸に沿って検査用のレーザー光を供給し、前記中心軸に沿って戻された前記被検査面からの反射光を受光する光学システムと、前記検査用のレーザー光を前記被検査物に向けて出射するとともに前記反射光を前記中心軸方向に導く光学素子とを有し、
     前記検査することは、
     前記光学素子により、前記中心軸に対して、前記検査用のレーザー光を、角度φで前記被検査面に向けて出射することを含み、前記角度φが以下の条件を満たす、方法。
     92度≦φ≦110度
    A hollow inspection head rod-shaped extending along a central axis, the inspection system comprising an inspection head rotated about said central axis to inspect the condition of the surface to be inspected of the inspection object A method of having
    The inspection system supplies laser light for inspection along the central axis through the inspection head, and receives an optical beam reflected from the surface to be inspected returned along the central axis; And an optical element for emitting the inspection laser light toward the inspection object and guiding the reflected light in the central axis direction.
    The inspection is
    A method comprising emitting the inspection laser light toward the inspection surface at an angle φ with respect to the central axis by the optical element, wherein the angle φ satisfies the following condition.
    92 degrees ≦ φ ≦ 110 degrees
  14.  請求項11ないし13のいずれかにおいて、
     前記出射することは、前記中心軸に対し平行な前記被検査面に向けて前記検査用のレーザー光を出射することを含む、方法。
    In any one of claims 11 to 13,
    The emitting includes emitting the inspection laser light toward the inspection surface parallel to the central axis.
  15.  請求項11ないし13のいずれかにおいて、
     前記出射することは、前記被検査物の前記中心軸に沿って延びた中空部分または凹みの前記中心軸に平行な前記被検査面に向けて前記検査用のレーザー光を出射することを含む、方法。
    In any one of claims 11 to 13,
    The emitting includes emitting the inspection laser light toward the inspection surface parallel to the central axis of the hollow portion or recess extending along the central axis of the inspection object. Method.
PCT/JP2018/039845 2017-10-26 2018-10-26 Inspection system and inspection method WO2019083009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550316A JPWO2019083009A1 (en) 2017-10-26 2018-10-26 Inspection system and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017206824 2017-10-26
JP2017-206824 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019083009A1 true WO2019083009A1 (en) 2019-05-02

Family

ID=66246474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039845 WO2019083009A1 (en) 2017-10-26 2018-10-26 Inspection system and inspection method

Country Status (2)

Country Link
JP (1) JPWO2019083009A1 (en)
WO (1) WO2019083009A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235578A1 (en) * 2019-05-23 2020-11-26 長野オートメーション株式会社 Inspection system
JP2021110674A (en) * 2020-01-14 2021-08-02 トヨタ自動車株式会社 Inspection method and inspection device of inner surface of bore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088667B (en) * 2021-12-22 2022-09-20 中国科学院半导体研究所 Wave vector resolution Brillouin spectrum measurement system in low-temperature magnetic field environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965708A (en) * 1982-09-04 1984-04-14 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sonde for automatic surface inspection
JPH11281331A (en) * 1998-03-26 1999-10-15 Toyota Central Res & Dev Lab Inc Device for measuring inner wall
JP2001519026A (en) * 1997-04-07 2001-10-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical surface inspection equipment
JP2005128527A (en) * 2003-10-16 2005-05-19 Snecma Moteurs Endoscope with uv illumination
JP2005164398A (en) * 2003-12-02 2005-06-23 Kirin Techno-System Corp Surface inspection device
US20110080588A1 (en) * 2009-10-02 2011-04-07 Industrial Optical Measurement Systems Non-contact laser inspection system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887482B2 (en) * 1998-03-26 2007-02-28 株式会社キリンテクノシステム Surface inspection device
JP3887481B2 (en) * 1998-03-26 2007-02-28 株式会社キリンテクノシステム Surface inspection device
JP2002022089A (en) * 2000-07-10 2002-01-23 Toshiba Corp Pipe inside inspection and repair device
JP2008128730A (en) * 2006-11-17 2008-06-05 Aisin Seiki Co Ltd Inspection device of inspection target
JP2012184963A (en) * 2011-03-03 2012-09-27 Sigma Kk Surface inspecting device
JP6233627B2 (en) * 2013-03-08 2017-11-22 アイシン精機株式会社 Sensor unit and inner surface shape inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965708A (en) * 1982-09-04 1984-04-14 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sonde for automatic surface inspection
JP2001519026A (en) * 1997-04-07 2001-10-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical surface inspection equipment
JPH11281331A (en) * 1998-03-26 1999-10-15 Toyota Central Res & Dev Lab Inc Device for measuring inner wall
JP2005128527A (en) * 2003-10-16 2005-05-19 Snecma Moteurs Endoscope with uv illumination
JP2005164398A (en) * 2003-12-02 2005-06-23 Kirin Techno-System Corp Surface inspection device
US20110080588A1 (en) * 2009-10-02 2011-04-07 Industrial Optical Measurement Systems Non-contact laser inspection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235578A1 (en) * 2019-05-23 2020-11-26 長野オートメーション株式会社 Inspection system
JPWO2020235578A1 (en) * 2019-05-23 2021-10-21 長野オートメーション株式会社 Inspection system
CN113785189A (en) * 2019-05-23 2021-12-10 长野自动机械株式会社 Inspection system
EP3974768A4 (en) * 2019-05-23 2023-06-14 Nagano Automation Co., Ltd. Inspection system
US11971366B2 (en) 2019-05-23 2024-04-30 Nagano Automation Co., Ltd. Inspection system
JP2021110674A (en) * 2020-01-14 2021-08-02 トヨタ自動車株式会社 Inspection method and inspection device of inner surface of bore
JP7093066B2 (en) 2020-01-14 2022-06-29 トヨタ自動車株式会社 Inspection method and inspection equipment for the inner surface of the bore

Also Published As

Publication number Publication date
JPWO2019083009A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US7602487B2 (en) Surface inspection apparatus and surface inspection head apparatus
KR101013005B1 (en) Inspection head supporting structure in surface inspecting apparatus, and surface inspecting apparatus
WO2019083009A1 (en) Inspection system and inspection method
JP2010117442A (en) Fiber-optic scanning endoscope, fiber-optic scanning endoscope processor, and fiber-optic scanning endoscope device
WO2013118913A1 (en) Inside-diameter measurement device
JP2011002439A (en) Inspection apparatus
JP6840747B2 (en) Sensor devices and methods for inspecting the surface of cylindrical hollow enclosures
JP4923208B2 (en) Support structure of inspection head in surface inspection equipment
JP2007309696A (en) Surface inspection head device
JP2007198883A (en) Spectral measuring instrument by optical fiber probe
KR102400976B1 (en) Solid immersion lens holder and image acquisition device
JP2008128730A (en) Inspection device of inspection target
KR102290609B1 (en) Apparatus and method for vision measuring using laser scanning
JP2004279342A (en) Apparatus for measuring depth
JP2007244527A (en) Light source device for endoscope
JP2010139432A (en) Surface inspection device
JP2001259877A (en) Optical system for laser beam emission and method of laser machining
CN112764184A (en) Optical device and optical measuring machine
JP2014190899A (en) X-ray diffraction measurement equipment and x-ray diffraction measurement system
JP2017189801A (en) Laser processing machine, and laser processing method
JP6944192B2 (en) Inspection system and method
JP5638195B2 (en) Inspection head of surface inspection equipment
JP6555472B2 (en) Non-contact inner surface shape measuring device
JP7131792B2 (en) inspection system
JP6948747B2 (en) Inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871478

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019550316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871478

Country of ref document: EP

Kind code of ref document: A1