WO2019082329A1 - Wind power generation device - Google Patents

Wind power generation device

Info

Publication number
WO2019082329A1
WO2019082329A1 PCT/JP2017/038666 JP2017038666W WO2019082329A1 WO 2019082329 A1 WO2019082329 A1 WO 2019082329A1 JP 2017038666 W JP2017038666 W JP 2017038666W WO 2019082329 A1 WO2019082329 A1 WO 2019082329A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
hydraulic
wind turbine
generator
hydraulic motor
Prior art date
Application number
PCT/JP2017/038666
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 白石
Original Assignee
株式会社サン設計事務所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サン設計事務所 filed Critical 株式会社サン設計事務所
Priority to PCT/JP2017/038666 priority Critical patent/WO2019082329A1/en
Publication of WO2019082329A1 publication Critical patent/WO2019082329A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a wind turbine.
  • the applicant has proposed a wind turbine generator using a cylindrical wind tunnel extending in the vertical direction (see Patent Document 1).
  • the wind turbine generator described in Patent Document 1 includes an open / close window for air intake provided on a circumferential wall of a wind tunnel, a wind turbine provided on an upper portion of the wind tunnel, and rotated by an air flow taken in from the open window, And a generator which is directly connected to the rotation shaft and driven by rotation of the wind turbine to generate electric power.
  • This invention is made in view of the said situation, and it aims at raising the freedom degree of the installation position of a generator in the wind power generator using a wind tunnel.
  • a cylindrical wind tunnel tube having a wind inlet provided on a peripheral wall, a closed lower end, and a wind outlet provided on an upper end
  • a windmill arranged on the upper side of the wind tunnel and rotated by the wind blown out from the outlet, a hydraulic pump driven by rotation of the windmill, and pressurized oil discharged by the hydraulic pump are supplied, and the oil is supplied by the oil.
  • a hydraulic motor to be driven and a generator that generates electric power using the hydraulic motor as a drive source are provided.
  • the hydraulic pump is driven by the wind turbine
  • the hydraulic motor is driven by the pressurized oil supplied by the hydraulic pump, and the hydraulic motor is used as a drive source to generate electric power by the generator. It is connected via a hydraulic system. For this reason, the degree of freedom of the installation height of the generator can be enhanced with respect to the installation height of the wind turbine.
  • the wind turbine generator may include a hydraulic system including hydraulic piping for supplying the oil from the hydraulic pump to the hydraulic motor, and at least one accumulator provided in the middle of the hydraulic piping.
  • At least a part of the hydraulic system connecting the hydraulic pump and the hydraulic motor may be provided in a space surrounded by a heat insulating material.
  • the oil in the hydraulic system can be kept warm even under a low temperature environment, so that the increase in viscosity due to the temperature decrease of the oil can be suppressed, and the decrease in efficiency due to the increase in viscosity can be suppressed.
  • a wind turbine generating apparatus capable of sending a wind at a sufficient wind speed to a wind turbine through a wind tunnel extending in the vertical direction, and obtaining a sufficient amount of power generation.
  • FIG. 3 is an elevational cross sectional view (2-2 cross sectional view of FIG. 3) showing the wind turbine generator 10 of the present embodiment.
  • FIG. 3 is a cross-sectional view taken along line 3-3 in FIG.
  • FIG. 5 is a cross-sectional view (flat cross-sectional view) of FIG. 1 taken along line 4-4. It is an elevation view which expands and shows a wind taking-in part.
  • FIG. 6 is a cross-sectional view (vertical cross-sectional view) of FIG. 5 taken along line 6-6.
  • FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 5 (flat cross-sectional view).
  • FIG. 10 It is an elevation sectional view expanding and showing a pair of windmills. It is 9-9 sectional drawing of FIG. It is a system configuration figure of wind power generator 10 concerning this embodiment. It is an elevation sectional view showing an operation of a wind turbine generator concerning this embodiment. It is an elevation sectional view showing an operation of a wind turbine generator concerning this embodiment. It is an elevation sectional view showing the upper part of the wind power generator concerning another embodiment.
  • FIG. 1 is a perspective view showing a schematic configuration of a wind turbine 10 according to an embodiment
  • FIG. 2 is an elevation sectional view of the wind turbine 10 (a sectional view taken along line 2-2 of FIG. 3).
  • 2 is a cross-sectional view taken along line 3-3 in FIG.
  • an accumulator 64 b described in FIG. 10 described later and a system (pipes 64 d and 64 e, oil tank unit 64 c) for supplying oil discharged from the hydraulic pump 62 to the hydraulic motor 66 are illustrated. It is omitted.
  • the wind turbine 10 is driven by a tower 20 extending vertically upward from the ground, a pair of windmills 60 installed at the top of the tower 20, and a pair of windmills 60.
  • a hydraulic motor 66 connected via a system 64 and a generator 70 connected to the hydraulic motor 66 and driven by the hydraulic motor 66 are provided.
  • FIGS. 1 to 3 show the case where the pair of hydraulic pumps 62 are disposed on both sides of the wind turbine 60, the present invention is not limited to this, and the hydraulic pumps 62 may be disposed on one side of the wind turbine 60.
  • the tower body 20 includes a square tube-shaped wind tunnel cylinder 30, a wind guiding portion 40 provided around the wind tunnel cylinder 30, and a wind intake portion 50 provided vertically on each of the four surfaces of the wind tunnel cylinder 30. Is equipped.
  • the total height of the tower 20 is about 100 m.
  • An air outlet 32 is provided at the top of the wind tunnel cylinder 30, a pair of windmills 60 are disposed facing the air outlet 32, and the wind taken into the wind tunnel 30 from the wind intake unit 50 is It blows off from the blower outlet 32 toward a pair of windmills 60. Further, the top of the tower body 20 is opened so that the wind blown from the air outlet 32 blows upward.
  • the wind guiding portion 40 is a multi-story structure configured by combining a frame and a panel, and on each floor of the wind guiding portion 40, a wind guiding opening 42 for guiding the wind to the wind tunnel cylinder 30 is formed.
  • each wind intake unit 50 is disposed on the peripheral wall surface of the wind tunnel cylinder 30 so as to face the air guide openings 42 of each floor.
  • Each wind intake unit 50 is configured to be openable and closable, and is opened by the wind guided (collected) from the air introduction port 42 to the peripheral wall surface of the wind tunnel cylinder 30, and depending on the wind taken into the wind tunnel cylinder 30 It is configured not to open.
  • the wind intake unit 50 is disposed from the first floor to the top floor, that is, from the lower portion to the upper portion of the wind tunnel cylinder 30.
  • FIG. 34 is a cross-sectional view taken along line 4-4 of FIG. 2 (flat cross-sectional view).
  • the tower body 20 is the structure by which the wind tunnel pipe
  • the air guide part 40 is provided with the partition plate 46 which divides each floor into the circumferential direction.
  • the partition plate 46 is a rectangular panel disposed on the extension of the diagonal of the wind tunnel cylinder 30, and the vertical side on the inner peripheral side is joined to the corner of the wind tunnel cylinder 30.
  • the air guide opening 42 is configured such that the width in the lateral direction decreases from the outer peripheral side to the inner peripheral side, and guides the air to the air intake unit 50 (air collection).
  • FIG. 5 is an elevation view showing the wind intake unit 50 in an enlarged manner.
  • the wind intake unit 50 is provided with a rectangular opening / closing window 52 of 4 rows and 4 columns.
  • the opening of the opening and closing window 52 enables the wind to flow into the wind tunnel cylinder 30, and the closing of the opening and closing window 52 prevents the flow of wind into the wind tunnel cylinder 30 and the flow of wind out of the wind tunnel cylinder 30. Ru.
  • FIG. 6 is a sectional view taken along line 6-6 in FIG. 5 (vertical sectional view)
  • FIG. 7 is a sectional view taken along line 7-7 in FIG. 4 (flat sectional view).
  • a quadrangular opening 34 of 4 rows and 4 columns is formed for each air guide port 42, and an opening / closing window 52 is disposed in each opening 34 .
  • each spindle 54 is disposed to overlap with the four openings 34 in each row. Further, each support shaft 54 is disposed below the opening 34, and a bearing 55 is attached to the lower surface of the back surface of the opening / closing window 52, and the support shaft 54 is inserted through the bearing 55.
  • the open / close window 52 is rotatably supported by the peripheral wall of the wind tunnel tube 30 via the bearing 55 and the support shaft 54 about the horizontal axis.
  • a weight 56 is attached to the lower part of the opening and closing window 52.
  • the lower end of the weight 56 is disposed below the lower end of the opening / closing window 52, and when the opening / closing window 52 is pivoted in the closing direction by the weight of the weight 56 or the wind force received on the back surface, the lower portion of the weight 56 is below the opening 34 Abuts the edge. Thereby, the opening and closing window 52 is maintained in the upright posture.
  • each shaft 58 is attached horizontally and in parallel with each other for each air guide opening.
  • Each shaft 58 is disposed to overlap with the four openings 34 in each row, and both ends thereof are supported on the inner wall surface of the wind tunnel cylinder 30 via the brackets 59.
  • Each shaft 58 is disposed at the center in the height direction of the opening 34 and on the inner side of the tunnel tube 30 than the support shaft 54.
  • the open / close window 52 is maintained in the closed state by the force in the closing direction by the weight of the weight 56 when the wind is not received from the air guide opening 42. Further, when the open / close window 52 receives the wind from the inside of the wind tunnel tube 30 to the back surface, the open / close window 52 is maintained in a closed state by the wind power. On the other hand, when the open / close window 52 receives the wind from the air guide opening 42, the open / close window 52 is opened by the wind power. In this state, the back surface of the opening and closing window 52 abuts on the shaft 58, and the opening and closing window 52 is maintained in a posture in which the upper side falls inside the wind tunnel cylinder 30.
  • FIG. 8 is an enlarged sectional view showing a pair of wind turbines 60
  • FIG. 9 is a sectional view taken along line 9-9 of FIG.
  • the pair of windmills 60 are arranged side by side on the air outlet 32 of the wind tunnel cylinder 30.
  • the rotation axes of the pair of wind turbines 60 are arranged at the same height, and the centers between the rotation axes of the pair of wind turbines 60 are arranged to coincide with the axis of the wind tunnel cylinder 30.
  • the wind turbine 60 includes a plurality of blades 61 extending outward from the rotation axis.
  • the tip of the wing 61 is refracted to the side opposite to the rotational direction.
  • an opening 65 which extends from one end side to the other end side in the width direction (direction parallel to the rotation axis) is formed.
  • the distance between the rotation axes of the pair of wind turbines 60 is set such that the rotation radii do not overlap each other. That is, between the rotation shafts of the pair of wind turbines 60, a space which can be ventilated is formed between the tip of the wing 61 of one of the wind turbines 60 and the tip of the wing 61 of the other wind turbine 60.
  • FIG. 10 is a system configuration diagram of the wind turbine generator 10 of the present embodiment including the hydraulic pump 62, the hydraulic system 64, the hydraulic motor 66, the generator 70 and the like.
  • the rotation shaft of each wind turbine 60 is connected to each hydraulic pump 62, and the hydraulic pump 62 is driven by the rotational force of the wind turbine 60.
  • the hydraulic system 64 includes a discharge pipe 64a, one or more accumulators 64b provided in the middle of the discharge pipe 64a, an oil tank unit 64c, an oil discharge pipe 64d connecting the oil discharge port of the hydraulic motor 66 and the oil tank unit 64c, And a suction pipe 64 e connecting the oil tank unit 64 c and the suction port of the hydraulic motor 66.
  • the hydraulic pump 62 When driven by the windmill 60, the hydraulic pump 62 pumps up and pressurizes the oil stored in the oil tank unit 64c, and discharges it to the discharge pipe 64a.
  • the pressurized oil discharged to the discharge pipe 64a is accumulated in the accumulator 64b and supplied to the hydraulic motor 66 via the discharge pipe 64a, whereby the hydraulic motor 66 is driven.
  • the output shaft of the hydraulic motor 66 is connected to the generator 70, and when the hydraulic motor 66 is driven to rotate the output shaft, the generator 70 generates power.
  • the electric power generated by the generator 70 is supplied to the load 84 via the inverter 80, the transformer 81, and the like.
  • the discharge piping 64a and the suction piping 64e are branched to the discharge port and the suction port of the pair of hydraulic pumps 62, respectively. Is connected.
  • a hydraulic system including a discharge pipe 64 a, an accumulator 64 b, and a suction pipe 64 d may be provided corresponding to each hydraulic pump 62, in which case one hydraulic motor 66 is provided.
  • the oil from the discharge piping 64a of the system may be merged and supplied, or a pair of hydraulic motors 66 may be provided, and hydraulic pressure may be supplied to each hydraulic motor 66 from each hydraulic system.
  • one generator 70 may be connected to each hydraulic motor 66, or one common generator 70 may be connected to a pair of hydraulic motors 66. .
  • At least a portion of the discharge piping 64a, the accumulator 64b, the oil drainage piping 64d, and the suction piping 64e preferably includes the position of the generator 70 from the wind turbine 30 at the top in the space covered by the heat insulating material 72.
  • the oil tank unit 64c and the hydraulic motor 66 are also preferably installed in the heat retention space. In this way, even when the wind turbine is installed in a low temperature area, it is possible to suppress the increase in viscosity due to the temperature decrease of the oil, thereby suppressing the decrease in efficiency accompanying the increase in viscosity.
  • the heat insulating material 72 is drawn to wrap the pipe in FIGS. 1 to 3, the accumulator 64b is also wrapped at the installation position of the accumulator 64b.
  • the form of the heat insulating material 72 is not limited to that shown in the drawings, and any known heat retaining technology can be used.
  • the installation position of the oil tank unit 64c is not limited, and the oil tank unit 64c can be provided at the top of the tower 20, in the middle of the tower 20, or on the ground, but in consideration of the pumping capacity of the hydraulic pump 62, the tower Preferably, it is provided near the hydraulic pump 62 at the top of 20.
  • FIG. 11 and 12 are elevation sectional views showing the operation of the wind turbine generator 10 according to this embodiment.
  • the wind blows toward the wind turbine 10 from a certain direction
  • the wind is directed to the wind intake unit 50 from the air guide opening 42 opened on the windward side, and the wind intake unit 50 is opened and closed.
  • the window 52 is opened by wind power, and the wind is taken into the wind tunnel cylinder 30.
  • the open / close windows 52 of the other three wind intake sections 50 receive the wind power on the back, but in the upright posture, that is, in the closed state with the weight 56 in contact with the lower edge of the opening 34 Maintained.
  • the lower end of the wind tunnel cylinder 30 is closed and the outlet 32 at the upper end is open, so the wind tunnel cylinder 30 is taken in from the wind intake portion 50 from the first floor to the top floor.
  • the accumulated wind rises, rises and blows from the blowout port 32.
  • the wind which blew off from the blower outlet 32 passes through the opening 65 (refer FIG.7 and FIG.8) of the base end side of the wing 61 between the tips of the wings 61 of a pair of windmills 60, and the wing 61 (refer FIG.7 and FIG.8) Blow up from the top.
  • the windmill 60 rotates with the wind force which the wing
  • the wind turbine generator 10 flows into the interior of the wind tunnel cylinder 30 through the opening and closing window 52, rotates the wind turbine 60 by the wind blown upward, and is connected to the rotary shaft of the hydraulic pump
  • the hydraulic pressure generated at 62 is supplied to the hydraulic motor 66 via the hydraulic system 64, and the generator 70 is driven by the hydraulic motor 66. That is, in the wind turbine 10, since the hydraulic pump 62, the hydraulic system 64 and the hydraulic motor 66 are interposed between the wind turbine 60 and the generator 70, the generator 70 is independent of the installation height of the wind turbine 60.
  • the wind tunnel tube 30 can be installed at an intermediate position in the height direction or at any position such as near the ground surface, and the degree of freedom of the installation position of the generator 70 is increased. For this reason, even when the wind tunnel tube 30 becomes high, the wind turbine 60 and the relatively lightweight hydraulic pump 62 may be installed at the top, and the heavy generator 70 can be installed at a low place.
  • the device 10 can be prevented from becoming an unstable structure.
  • an accumulator 64b is provided in the middle of a discharge pipe 64a connecting the discharge port of the hydraulic pump 62 and the hydraulic motor 66, and high pressure oil discharged by the hydraulic pump 62 is stored in the accumulator 64b. Therefore, even if the wind is weak and the wind turbine 60 does not rotate sufficiently, the high pressure oil accumulated in the accumulator 64a can be supplied to the hydraulic motor 66, so that the power generation by the generator 70 can be continued, which is more stable. Power can be supplied.
  • FIG. 13 is an elevation cross-sectional view showing an upper portion of a wind turbine 100 according to another embodiment.
  • the rain avoidance 110 is provided on the pair of wind turbines 60.
  • the rain protection 110 is attached to the top of the tower 20 and is disposed facing the opening 82A of the roof 82 to prevent rain from falling into the wind tunnel 30 from the opening 82A.
  • the rain protection 110 is a member whose cross sectional shape seen in the axial direction of the wind turbine 60 is an inverted triangle, and the slopes 110A on both sides are curved, and the wind having blown through the opening 82A is blown obliquely upward
  • the wind tunnel cylinder 30 has a rectangular cross section and the air guide portion 40 has an octagonal cross section, but these shapes may be changed as appropriate.
  • the arrangement 34 of the opening 34 and the opening and closing window 52 in the peripheral wall of the wind tunnel cylinder 30 may be changed as appropriate, but the opening guided by the wind guided to the peripheral wall surface of the wind tunnel cylinder 30 from the air guide opening 42 It is preferable that it is the structure comprised so that it may not open by the wind which has been.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

[Problem] To increase the degree of freedom in terms of where to install a generator of a wind power generation device that generates electricity by sending wind to a wind turbine through a wind channel extending in the vertical direction. [Solution] A wind power generation device 10 comprises: a cylindrical wind channel 2, the peripheral wall of which is provided with an air intake opening, the bottom end of which is closed, and the top end of which is provided with an air discharge opening 32; a wind turbine 60 that is disposed on the top side of the wind channel, and that is rotated by wind blown from the discharge opening; a hydraulic pump 62 that is driven by rotation of the wind turbine 60; a hydraulic motor 66 to which pressurized oil discharged by the hydraulic pump 62 is supplied and which is driven by the oil; and a generator 70 that generates electricity with the hydraulic motor 66 as the drive source.

Description

風力発電装置Wind power generator
 本発明は、風力発電装置に関する。 The present invention relates to a wind turbine.
 本出願人は、鉛直方向に延びる筒状の風洞を用いた風力発電装置を提案している(特許文献1参照)。特許文献1に記載の風力発電装置は、風洞の周壁に設けられた空気取込用の開閉窓と、風洞の上部に設けられ、開閉窓から取り入れられた空気流により回転する風車と、風車の回転軸に直結され、風車の回転により駆動されて発電する発電機とを備えるものである。 The applicant has proposed a wind turbine generator using a cylindrical wind tunnel extending in the vertical direction (see Patent Document 1). The wind turbine generator described in Patent Document 1 includes an open / close window for air intake provided on a circumferential wall of a wind tunnel, a wind turbine provided on an upper portion of the wind tunnel, and rotated by an air flow taken in from the open window, And a generator which is directly connected to the rotation shaft and driven by rotation of the wind turbine to generate electric power.
国際公開WO2014/057789International Publication WO2014 / 057789
 上記の風力発電機では、発電機が風車の回転軸に直結されることから、風洞が高くなると、その上部に設置される風車及び発電機の位置も必然的に高くなる。このため、風洞上部の重量が大きくなって構造的に不安定になり易く、この点で改良の余地があった。 In the above-mentioned wind power generator, since the power generator is directly connected to the rotating shaft of the wind turbine, when the wind tunnel becomes high, the positions of the wind turbine and the power generator installed on the upper portion thereof inevitably become high. For this reason, the weight of the upper part of the wind tunnel becomes large and the structural instability tends to occur, and there is room for improvement in this respect.
 本発明は、上記事情に鑑みてなされたものであり、風洞を用いた風力発電機において発電機の設置位置の自由度を高めることを目的とする。 This invention is made in view of the said situation, and it aims at raising the freedom degree of the installation position of a generator in the wind power generator using a wind tunnel.
 上記課題を解決するために、本発明に係る風力発電装置は、周壁に風の取込口が設けられ、下端が閉塞され、上端に風の吹出口が設けられた筒状の風洞筒と、前記風洞筒の上側に配され前記吹出口から吹き出す風により回転する風車と、前記風車の回転により駆動される油圧ポンプと、前記油圧ポンプが吐出する加圧されたオイルが供給され、そのオイルにより駆動される油圧モータと、前記油圧モータを駆動源として発電する発電機と、を備える。 In order to solve the above problems, in a wind turbine generator according to the present invention, a cylindrical wind tunnel tube having a wind inlet provided on a peripheral wall, a closed lower end, and a wind outlet provided on an upper end, A windmill arranged on the upper side of the wind tunnel and rotated by the wind blown out from the outlet, a hydraulic pump driven by rotation of the windmill, and pressurized oil discharged by the hydraulic pump are supplied, and the oil is supplied by the oil. A hydraulic motor to be driven and a generator that generates electric power using the hydraulic motor as a drive source are provided.
 本発明によれば、風車により油圧ポンプを駆動し、油圧ポンプにより供給された加圧オイルで油圧モータを駆動し、この油圧モータを駆動源として発電機により発電させるため、風車と発電機とは油圧系統を介して接続される。このため、風車の設置高さに対して、発電機の設置高さの自由度を高めることができる。 According to the present invention, since the hydraulic pump is driven by the wind turbine, the hydraulic motor is driven by the pressurized oil supplied by the hydraulic pump, and the hydraulic motor is used as a drive source to generate electric power by the generator. It is connected via a hydraulic system. For this reason, the degree of freedom of the installation height of the generator can be enhanced with respect to the installation height of the wind turbine.
 上記風力発電装置は、前記油圧ポンプから前記油圧モータに前記オイルを供給する油圧配管と、該油圧配管の途中に設けられた少なくとも一つのアキュムレータとを含む油圧系統を備えてもよい。 The wind turbine generator may include a hydraulic system including hydraulic piping for supplying the oil from the hydraulic pump to the hydraulic motor, and at least one accumulator provided in the middle of the hydraulic piping.
 このようにすれば、油圧ポンプから吐出された加圧オイルがアキュムレータに貯留されるため、風が無く風車が十分に回転しない状態でも、アキュムレータに貯留されたオイルを油圧モータに供給することができ、これにより、発電機による発電を継続することができる。 In this way, since the pressurized oil discharged from the hydraulic pump is stored in the accumulator, the oil stored in the accumulator can be supplied to the hydraulic motor even when there is no wind and the wind turbine does not rotate sufficiently. Thus, power generation by the generator can be continued.
 前記風力発電装置において、前記油圧ポンプと前記油圧モータとを接続する前記油圧系統の少なくとも一部は保温材で囲われた空間に設けられていてもよい。
 このようにすれば、低温環境下であっても、油圧系統内のオイルを保温できるので、オイルの温度低下による粘度上昇を抑えて、粘度上昇に伴う効率の低下を抑制することができる。
In the wind turbine generator, at least a part of the hydraulic system connecting the hydraulic pump and the hydraulic motor may be provided in a space surrounded by a heat insulating material.
In this way, the oil in the hydraulic system can be kept warm even under a low temperature environment, so that the increase in viscosity due to the temperature decrease of the oil can be suppressed, and the decrease in efficiency due to the increase in viscosity can be suppressed.
 本発明によれば、鉛直方向に延びる風洞筒を通して風車に十分な風速で風を送り、十分な発電量を得ることができる風力発電装置を提供できる。 According to the present invention, it is possible to provide a wind turbine generating apparatus capable of sending a wind at a sufficient wind speed to a wind turbine through a wind tunnel extending in the vertical direction, and obtaining a sufficient amount of power generation.
一実施形態に係る風力発電装置10の概略構成を示す斜視図である。It is a perspective view showing a schematic structure of wind power generator 10 concerning one embodiment. 本実施形態の風力発電装置10を示す立断面図(図3の2-2断面図)である。FIG. 3 is an elevational cross sectional view (2-2 cross sectional view of FIG. 3) showing the wind turbine generator 10 of the present embodiment. 図2の3-3断面図(立断面図)である。FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 図1の4-4断面図(平断面図)である。FIG. 5 is a cross-sectional view (flat cross-sectional view) of FIG. 1 taken along line 4-4. 風取込部を拡大して示す立面図である。It is an elevation view which expands and shows a wind taking-in part. 図5の6-6断面図(立断面図)である。FIG. 6 is a cross-sectional view (vertical cross-sectional view) of FIG. 5 taken along line 6-6. 図5の7-7断面図(平断面図)である。FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 5 (flat cross-sectional view). 一対の風車を拡大して示す立断面図である。It is an elevation sectional view expanding and showing a pair of windmills. 図8の9-9断面図である。It is 9-9 sectional drawing of FIG. 本実施形態に係る風力発電装置10のシステム構成図である。It is a system configuration figure of wind power generator 10 concerning this embodiment. 本実施態に係る風力発電装置の作用を示す立面断面図である。It is an elevation sectional view showing an operation of a wind turbine generator concerning this embodiment. 本実施形態に係る風力発電装置の作用を示す立面断面図である。It is an elevation sectional view showing an operation of a wind turbine generator concerning this embodiment. 他の実施形態に係る風力発電装置の上部を示す立断面図である。It is an elevation sectional view showing the upper part of the wind power generator concerning another embodiment.
 以下、本発明の一実施形態を、図面を参照しながら説明する。図1は、一実施形態に係る風力発電装置10の概略構成を示す斜視図であり、図2は、風力発電装置10の立断面図(図3の2-2断面図)であり、図3は、図2の3-3断面図(立断面図)である。なお、図1~図3では、後述する図10に記載したアキュムレータ64b、及び、油圧ポンプ62から吐出されたオイルを油圧モータ66に供給する系統(配管64d,64e、油槽ユニット64c)の図示は省略している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of a wind turbine 10 according to an embodiment, and FIG. 2 is an elevation sectional view of the wind turbine 10 (a sectional view taken along line 2-2 of FIG. 3). 2 is a cross-sectional view taken along line 3-3 in FIG. In FIGS. 1 to 3, an accumulator 64 b described in FIG. 10 described later and a system ( pipes 64 d and 64 e, oil tank unit 64 c) for supplying oil discharged from the hydraulic pump 62 to the hydraulic motor 66 are illustrated. It is omitted.
 図1~図3に示すように、風力発電装置10は、地面から鉛直上方に延びる塔体20と、塔体20の頂上部に設置された一対の風車60と、一対の風車60によりそれぞれ駆動される一対の油圧ポンプ62と、各塔体20の頂部、高さ方向中間部あるいは地上付近(図1~3の例では塔体20の地上部)に設けられ、一対の油圧ポンプ62に油圧系統64を介して接続された油圧モータ66と、油圧モータ66に連結されて油圧モータ66により駆動される発電機70とを備えている。なお、図1~図3では、一対の油圧ポンプ62を、風車60を挟んで両側に配置した場合を示しているが、これに限らず、風車60の片側に配置してもよい。 As shown in FIGS. 1 to 3, the wind turbine 10 is driven by a tower 20 extending vertically upward from the ground, a pair of windmills 60 installed at the top of the tower 20, and a pair of windmills 60. Provided on the top of each tower body 20, in the middle in the height direction, or near the ground (in the example of FIGS. 1 to 3 above the tower body of tower body 20) A hydraulic motor 66 connected via a system 64 and a generator 70 connected to the hydraulic motor 66 and driven by the hydraulic motor 66 are provided. Although FIGS. 1 to 3 show the case where the pair of hydraulic pumps 62 are disposed on both sides of the wind turbine 60, the present invention is not limited to this, and the hydraulic pumps 62 may be disposed on one side of the wind turbine 60.
 塔体20は、四角筒形状の風洞筒30と、風洞筒30の周囲に設けられた導風部40と、風洞筒30の四面のそれぞれに鉛直方向に並べて設けられた風取込部50とを備えている。塔体20の全高は100m程度である。風洞筒30の頂上部には吹出口32が設けられ、一対の風車60がこの吹出口32に面して配されており、風取込部50から風洞筒30内に取り込まれた風が、吹出口32から一対の風車60に向けて吹出されるようになっている。また、塔体20の頂上部は、吹出口32から吹き出した風が上方に吹き抜けるように開放されている。 The tower body 20 includes a square tube-shaped wind tunnel cylinder 30, a wind guiding portion 40 provided around the wind tunnel cylinder 30, and a wind intake portion 50 provided vertically on each of the four surfaces of the wind tunnel cylinder 30. Is equipped. The total height of the tower 20 is about 100 m. An air outlet 32 is provided at the top of the wind tunnel cylinder 30, a pair of windmills 60 are disposed facing the air outlet 32, and the wind taken into the wind tunnel 30 from the wind intake unit 50 is It blows off from the blower outlet 32 toward a pair of windmills 60. Further, the top of the tower body 20 is opened so that the wind blown from the air outlet 32 blows upward.
 導風部40は、フレームとパネルとが組み合わされて構成された複数階建ての構造体であり、この導風部40の各階には、風洞筒30へ風を導く導風口42が形成されている。また、各風取込部50は、各階の導風口42に面して風洞筒30の周壁面に配されている。各風取込部50は、開閉可能に構成されており、導風口42から風洞筒30の周壁面に導かれた(集められた)風により開き、風洞筒30内に取り込まれた風によっては開かないように構成されている。ここで、風取込部50は、1階から最上階まで、即ち風洞筒30の下部から上部に亘って配されている。 The wind guiding portion 40 is a multi-story structure configured by combining a frame and a panel, and on each floor of the wind guiding portion 40, a wind guiding opening 42 for guiding the wind to the wind tunnel cylinder 30 is formed. There is. In addition, each wind intake unit 50 is disposed on the peripheral wall surface of the wind tunnel cylinder 30 so as to face the air guide openings 42 of each floor. Each wind intake unit 50 is configured to be openable and closable, and is opened by the wind guided (collected) from the air introduction port 42 to the peripheral wall surface of the wind tunnel cylinder 30, and depending on the wind taken into the wind tunnel cylinder 30 It is configured not to open. Here, the wind intake unit 50 is disposed from the first floor to the top floor, that is, from the lower portion to the upper portion of the wind tunnel cylinder 30.
 図34、図2の4-4断面図(平断面図)である。この図に示すように、塔体20は、断面四角形状の風洞筒30が、断面八角形状の導風部40の中央部に配された構成である。導風部40は、各階を周方向に仕切る仕切板46を備えている。この仕切板46は、風洞筒30の対角線の延長線上に配された四角形状のパネルであり、内周側の縦辺が風洞筒30の角部に接合されている。 FIG. 34 is a cross-sectional view taken along line 4-4 of FIG. 2 (flat cross-sectional view). As shown to this figure, the tower body 20 is the structure by which the wind tunnel pipe | tube 30 of cross-sectional square shape was distribute | arranged to the center part of the airflow guidance part 40 of octagonal cross-section shape. The air guide part 40 is provided with the partition plate 46 which divides each floor into the circumferential direction. The partition plate 46 is a rectangular panel disposed on the extension of the diagonal of the wind tunnel cylinder 30, and the vertical side on the inner peripheral side is joined to the corner of the wind tunnel cylinder 30.
 即ち、左右一対の仕切板46により仕切られた空間が導風口42となっている。この導風口42は、外周側から内周側へかけて横方向の幅が減少するように構成されており、風取込部50へ導風(集風)する。 That is, the space divided by the pair of left and right partition plates 46 is the air guide opening 42. The air guide opening 42 is configured such that the width in the lateral direction decreases from the outer peripheral side to the inner peripheral side, and guides the air to the air intake unit 50 (air collection).
 図5は、風取込部50を拡大して示す立面図である。図4及び図5に示すように、風取込部50は、4行4列の四角形状の開閉窓52を備えている。この開閉窓52が開くことにより風が風洞筒30内に流入可能になり、開閉窓52が閉じることにより、風洞筒30内への風の流入及び風洞筒30外への風の流出が阻止される。 FIG. 5 is an elevation view showing the wind intake unit 50 in an enlarged manner. As shown in FIG. 4 and FIG. 5, the wind intake unit 50 is provided with a rectangular opening / closing window 52 of 4 rows and 4 columns. The opening of the opening and closing window 52 enables the wind to flow into the wind tunnel cylinder 30, and the closing of the opening and closing window 52 prevents the flow of wind into the wind tunnel cylinder 30 and the flow of wind out of the wind tunnel cylinder 30. Ru.
 図6は、図5の6-6断面図(立断面図)であり、図7は、図4の7-7断面図(平断面図)である。これらの図に示すように、風洞筒30の壁面には、各導風口42毎に4行4列の四角形状の開口34が形成されており、各開口34に開閉窓52が配されている。 6 is a sectional view taken along line 6-6 in FIG. 5 (vertical sectional view), and FIG. 7 is a sectional view taken along line 7-7 in FIG. 4 (flat sectional view). As shown in these figures, in the wall surface of the wind tunnel cylinder 30, a quadrangular opening 34 of 4 rows and 4 columns is formed for each air guide port 42, and an opening / closing window 52 is disposed in each opening 34 .
 風洞筒30の内壁面には、各導風口52毎に4本の支軸54が水平かつ互いに平行に取り付けられている。各支軸54は、各行の4個の開口34と重なるように配されている。また、各支軸54は、開口34の下寄りに配され、開閉窓52の背面における下寄りに軸受55が取り付けられており、軸受55に支軸54が挿通されている。これにより、開閉窓52が軸受55及び支軸54を介して風洞筒30の周壁に水平軸周りに回動可能に支持されている。 Four spindles 54 are horizontally and parallelly attached to the inner wall surface of the wind tunnel tube 30 for each air guide opening 52. Each spindle 54 is disposed to overlap with the four openings 34 in each row. Further, each support shaft 54 is disposed below the opening 34, and a bearing 55 is attached to the lower surface of the back surface of the opening / closing window 52, and the support shaft 54 is inserted through the bearing 55. Thus, the open / close window 52 is rotatably supported by the peripheral wall of the wind tunnel tube 30 via the bearing 55 and the support shaft 54 about the horizontal axis.
 また、開閉窓52の下部には錘56が取り付けられている。錘56の下端は開閉窓52の下端よりも下側に配されており、開閉窓52が錘56の重量又は背面に受ける風力により閉じる方向へ回動すると、錘56の下部が開口34の下縁に当接する。これにより、開閉窓52は、直立した姿勢に維持される。 A weight 56 is attached to the lower part of the opening and closing window 52. The lower end of the weight 56 is disposed below the lower end of the opening / closing window 52, and when the opening / closing window 52 is pivoted in the closing direction by the weight of the weight 56 or the wind force received on the back surface, the lower portion of the weight 56 is below the opening 34 Abuts the edge. Thereby, the opening and closing window 52 is maintained in the upright posture.
 また、風洞筒30の内壁面には、各導風口42毎に4本の軸58が水平かつ互いに平行に取り付けられている。各軸58は、各行の4個の開口34と重なるように配されており、その両端がブラケット59を介して風洞筒30の内壁面に支持されている。また、各軸58は、開口34の高さ方向中央かつ支軸54よりも風洞筒30の内側に配されている。 Further, on the inner wall surface of the wind tunnel tube 30, four shafts 58 are attached horizontally and in parallel with each other for each air guide opening. Each shaft 58 is disposed to overlap with the four openings 34 in each row, and both ends thereof are supported on the inner wall surface of the wind tunnel cylinder 30 via the brackets 59. Each shaft 58 is disposed at the center in the height direction of the opening 34 and on the inner side of the tunnel tube 30 than the support shaft 54.
 風取込部50では、開閉窓52は、導風口42から風を受けていないときは、錘56の重量による閉まる方向への力によって閉まった状態に維持される。また、開閉窓52は、風洞筒30の内側から背面に風を受けているときは、風力により閉まった状態に維持される。一方、開閉窓52は、導風口42側から風を受けているときは、風力により開いた状態にされる。この状態で、開閉窓52の背面が軸58に当接し、開閉窓52は、上側が風洞筒30の内側へ倒れた姿勢に維持される。 In the wind intake unit 50, the open / close window 52 is maintained in the closed state by the force in the closing direction by the weight of the weight 56 when the wind is not received from the air guide opening 42. Further, when the open / close window 52 receives the wind from the inside of the wind tunnel tube 30 to the back surface, the open / close window 52 is maintained in a closed state by the wind power. On the other hand, when the open / close window 52 receives the wind from the air guide opening 42, the open / close window 52 is opened by the wind power. In this state, the back surface of the opening and closing window 52 abuts on the shaft 58, and the opening and closing window 52 is maintained in a posture in which the upper side falls inside the wind tunnel cylinder 30.
 図8は、一対の風車60を拡大して示す立断面図であり、図9は、図7の9-9断面図である。これらの図に示すように、一対の風車60は、風洞筒30の吹出口32の上に左右に並べて配されている。この一対の風車60の回転軸は同じ高さに配され、一対の風車60の回転軸間の中心が、風洞筒30の軸心と一致するように配されている。 FIG. 8 is an enlarged sectional view showing a pair of wind turbines 60, and FIG. 9 is a sectional view taken along line 9-9 of FIG. As shown in these figures, the pair of windmills 60 are arranged side by side on the air outlet 32 of the wind tunnel cylinder 30. The rotation axes of the pair of wind turbines 60 are arranged at the same height, and the centers between the rotation axes of the pair of wind turbines 60 are arranged to coincide with the axis of the wind tunnel cylinder 30.
 風車60は、回転軸から外径方向へ延びる複数の羽61を備えている。この羽61の先端は、回転方向の逆側に屈折している。また、羽61の基端側には、幅方向(回転軸と平行な方向)の一端側から他端側まで広がる開口65が形成されている。さらに、一対の風車60の回転軸間の距離は、相互に回転半径が重なり合わないように設定されている。即ち、一対の風車60の回転軸間において、一方の風車60の羽61の先端と他方の風車60の羽61の先端との間に通風可能な空間が形成されている。 The wind turbine 60 includes a plurality of blades 61 extending outward from the rotation axis. The tip of the wing 61 is refracted to the side opposite to the rotational direction. Further, on the base end side of the wing 61, an opening 65 which extends from one end side to the other end side in the width direction (direction parallel to the rotation axis) is formed. Furthermore, the distance between the rotation axes of the pair of wind turbines 60 is set such that the rotation radii do not overlap each other. That is, between the rotation shafts of the pair of wind turbines 60, a space which can be ventilated is formed between the tip of the wing 61 of one of the wind turbines 60 and the tip of the wing 61 of the other wind turbine 60.
 図10は、油圧ポンプ62、油圧系統64、油圧モータ66及び発電機70等を含む本実施形態の風力発電装置10のシステム構成図である。 FIG. 10 is a system configuration diagram of the wind turbine generator 10 of the present embodiment including the hydraulic pump 62, the hydraulic system 64, the hydraulic motor 66, the generator 70 and the like.
 各風車60の回転軸は、各油圧ポンプ62に連結されており、風車60の回転力により油圧ポンプ62が駆動される。油圧系統64は、吐出配管64a、吐出配管64aの途中に設けられた一つ又は複数のアキュムレータ64b、油槽ユニット64c、油圧モータ66のオイル排出口と油槽ユニット64cを接続する排油配管64d、及び、油槽ユニット64cと油圧モータ66の吸入口を接続する吸入配管64eを備えている。 The rotation shaft of each wind turbine 60 is connected to each hydraulic pump 62, and the hydraulic pump 62 is driven by the rotational force of the wind turbine 60. The hydraulic system 64 includes a discharge pipe 64a, one or more accumulators 64b provided in the middle of the discharge pipe 64a, an oil tank unit 64c, an oil discharge pipe 64d connecting the oil discharge port of the hydraulic motor 66 and the oil tank unit 64c, And a suction pipe 64 e connecting the oil tank unit 64 c and the suction port of the hydraulic motor 66.
 油圧ポンプ62は風車60により駆動されると、油槽ユニット64cに貯留されたオイルを汲み上げて加圧し、吐出配管64aへ吐出する。吐出配管64aに吐出された加圧オイルはアキュムレータ64bに蓄積されると共に、吐出配管64aを介して油圧モータ66へ供給されることで油圧モータ66が駆動される。油圧モータ66の出力軸は発電機70に連結されており、油圧モータ66が駆動されて出力軸が回転することにより、発電機70が発電する。発電機70により発電された電力は、インバータ80、トランス81等を介して、負荷84へ供給される。 When driven by the windmill 60, the hydraulic pump 62 pumps up and pressurizes the oil stored in the oil tank unit 64c, and discharges it to the discharge pipe 64a. The pressurized oil discharged to the discharge pipe 64a is accumulated in the accumulator 64b and supplied to the hydraulic motor 66 via the discharge pipe 64a, whereby the hydraulic motor 66 is driven. The output shaft of the hydraulic motor 66 is connected to the generator 70, and when the hydraulic motor 66 is driven to rotate the output shaft, the generator 70 generates power. The electric power generated by the generator 70 is supplied to the load 84 via the inverter 80, the transformer 81, and the like.
 なお、図10において、風車60及び油圧ポンプ62は一つずつ図示しているが、実際には、一対の油圧ポンプ62の吐出口及び吸入口に、それぞれ吐出配管64a及び吸入配管64eが分岐されて接続されている。ただし、各油圧ポンプ62に対応して、吐出配管64a、アキュムレータ64b、及び吸入配管64dを含む油圧系統が設けられてもよく、その場合、油圧モータ66を一つ設け、この油圧モータ66に2系統の吐出配管64aからのオイルが合流して供給されるようにしてもよいし、一対の油圧モータ66を設け、各油圧モータ66に各油圧系統から油圧が供給されるようにしてもよい。また、一対の油圧モータ66を設ける場合、油圧モータ66にそれぞれ1台ずつ発電機70を連結してもよいし、一対の油圧モータ66に1台の共通の発電機70を連結してもよい。 In FIG. 10, although the windmill 60 and the hydraulic pump 62 are illustrated one by one, in practice, the discharge piping 64a and the suction piping 64e are branched to the discharge port and the suction port of the pair of hydraulic pumps 62, respectively. Is connected. However, a hydraulic system including a discharge pipe 64 a, an accumulator 64 b, and a suction pipe 64 d may be provided corresponding to each hydraulic pump 62, in which case one hydraulic motor 66 is provided. The oil from the discharge piping 64a of the system may be merged and supplied, or a pair of hydraulic motors 66 may be provided, and hydraulic pressure may be supplied to each hydraulic motor 66 from each hydraulic system. When a pair of hydraulic motors 66 is provided, one generator 70 may be connected to each hydraulic motor 66, or one common generator 70 may be connected to a pair of hydraulic motors 66. .
 本実施形態において吐出配管64a、アキュムレータ64b、排油配管64d、吸入配管64eの少なくとも一部は、好ましくは、保温材72で覆われた空間内を頂部の風車30から下部の発電機70の位置まで延び、また、油槽ユニット64c及び油圧モータ66も好ましくは保温空間内に設置される。このようにすれば、風力発電装置が低温地に設置された場合にも、オイルの温度低下による粘度上昇を抑制し、これにより、粘度上昇に伴う効率の低下を抑えることができる。 In the present embodiment, at least a portion of the discharge piping 64a, the accumulator 64b, the oil drainage piping 64d, and the suction piping 64e preferably includes the position of the generator 70 from the wind turbine 30 at the top in the space covered by the heat insulating material 72. The oil tank unit 64c and the hydraulic motor 66 are also preferably installed in the heat retention space. In this way, even when the wind turbine is installed in a low temperature area, it is possible to suppress the increase in viscosity due to the temperature decrease of the oil, thereby suppressing the decrease in efficiency accompanying the increase in viscosity.
 なお、図1~図3においては、保温材72が配管を包むように描いているが、アキュムレータ64bの設置位置においてはアキュムレータ64bも包むように設けられる。また、保温材72の形態は図示のものに限らず、公知の任意の保温技術を用いることができる。
 また、油槽ユニット64cの設置位置は限定されるものではなく、塔体20の頂部、塔体20の中間部、あるいは地上に設けることができるが、油圧ポンプ62の汲み上げ能力を考慮すると、塔体20の頂部の油圧ポンプ62近傍に設けることが好ましい。
Although the heat insulating material 72 is drawn to wrap the pipe in FIGS. 1 to 3, the accumulator 64b is also wrapped at the installation position of the accumulator 64b. Further, the form of the heat insulating material 72 is not limited to that shown in the drawings, and any known heat retaining technology can be used.
Further, the installation position of the oil tank unit 64c is not limited, and the oil tank unit 64c can be provided at the top of the tower 20, in the middle of the tower 20, or on the ground, but in consideration of the pumping capacity of the hydraulic pump 62, the tower Preferably, it is provided near the hydraulic pump 62 at the top of 20.
 図11及び図12は、本実施形態に係る風力発電装置10の作用を示す立面断面図である。図11に示すように、或る方向から風力発電装置10に向けて風が吹くと、風上側に開口した導風口42から風取込部50に導風され、当該風取込部50の開閉窓52が風力で開かれて、風洞筒30内に風が取り込まれる。この際、他の3面の風取込部50の開閉窓52は、その背面に風力を受けるが、錘56を開口34の下縁に当接させた状態で直立姿勢、即ち閉じた状態に維持される。 11 and 12 are elevation sectional views showing the operation of the wind turbine generator 10 according to this embodiment. As shown in FIG. 11, when the wind blows toward the wind turbine 10 from a certain direction, the wind is directed to the wind intake unit 50 from the air guide opening 42 opened on the windward side, and the wind intake unit 50 is opened and closed. The window 52 is opened by wind power, and the wind is taken into the wind tunnel cylinder 30. At this time, the open / close windows 52 of the other three wind intake sections 50 receive the wind power on the back, but in the upright posture, that is, in the closed state with the weight 56 in contact with the lower edge of the opening 34 Maintained.
 ここで、図12に示すように、風洞筒30の下端は閉じられ、上端の吹出口32は開口しているため、1階から最上階までの風取込部50から風洞筒30内に取り込まれた風は、集積されて上昇して吹出口32から吹き出す。そして、吹出口32から吹き出した風は、一対の風車60の羽61の先端同士の間や羽61の基端側の開口65(図7及び図8参照)を通過して塔体20の頂上部から上方へ吹き抜ける。この際、風車60は、羽61が受ける風力により回転し、その回転力により油圧モータ66が駆動される。 Here, as shown in FIG. 12, the lower end of the wind tunnel cylinder 30 is closed and the outlet 32 at the upper end is open, so the wind tunnel cylinder 30 is taken in from the wind intake portion 50 from the first floor to the top floor. The accumulated wind rises, rises and blows from the blowout port 32. And the wind which blew off from the blower outlet 32 passes through the opening 65 (refer FIG.7 and FIG.8) of the base end side of the wing 61 between the tips of the wings 61 of a pair of windmills 60, and the wing 61 (refer FIG.7 and FIG.8) Blow up from the top. Under the present circumstances, the windmill 60 rotates with the wind force which the wing | blade 61 receives, and the hydraulic motor 66 drives by the rotational force.
 以上説明したように、本実施形態の風力発電装置10は、風洞筒30の内部へ開閉窓52を介して流入し、上方へ吹き抜ける風により風車60を回転させ、その回転軸に連結した油圧ポンプ62で発生した油圧を、油圧系統64を介して油圧モータ66に供給し、この油圧モータ66により発電機70を駆動する構成である。すなわち、風力発電装置10においては、風車60と発電機70との間に油圧ポンプ62、油圧系統64、及び油圧モータ66を介在させているため、発電機70を風車60の設置高さとは独立に、例えば、風洞筒30の高さ方向中間位置あるいは地上面近く等の任意の位置に設置でき、発電機70の設置位置の自由度が高まっている。このため、風洞筒30が高くなった場合にも、その頂部には風車60と比較的軽量な油圧ポンプ62を設置すればよく、重量の大きい発電機70は低所に設置できるので、風力発電装置10が不安定な構造となるのを防止できる。 As described above, the wind turbine generator 10 according to the present embodiment flows into the interior of the wind tunnel cylinder 30 through the opening and closing window 52, rotates the wind turbine 60 by the wind blown upward, and is connected to the rotary shaft of the hydraulic pump The hydraulic pressure generated at 62 is supplied to the hydraulic motor 66 via the hydraulic system 64, and the generator 70 is driven by the hydraulic motor 66. That is, in the wind turbine 10, since the hydraulic pump 62, the hydraulic system 64 and the hydraulic motor 66 are interposed between the wind turbine 60 and the generator 70, the generator 70 is independent of the installation height of the wind turbine 60. For example, the wind tunnel tube 30 can be installed at an intermediate position in the height direction or at any position such as near the ground surface, and the degree of freedom of the installation position of the generator 70 is increased. For this reason, even when the wind tunnel tube 30 becomes high, the wind turbine 60 and the relatively lightweight hydraulic pump 62 may be installed at the top, and the heavy generator 70 can be installed at a low place. The device 10 can be prevented from becoming an unstable structure.
 また、油圧ポンプ62の吐出口と油圧モータ66とを接続する吐出配管64aの途中にアキュムレータ64bが設けられ、このアキュムレータ64bに油圧ポンプ62が吐出した高圧のオイルが貯留される。このため、風が弱く風車60が十分に回転しない状態であっても、アキュムレータ64aに蓄積した高圧のオイルを油圧モータ66に供給できるので、発電機70による発電を継続することができ、より安定した電力供給が可能となる。 Further, an accumulator 64b is provided in the middle of a discharge pipe 64a connecting the discharge port of the hydraulic pump 62 and the hydraulic motor 66, and high pressure oil discharged by the hydraulic pump 62 is stored in the accumulator 64b. Therefore, even if the wind is weak and the wind turbine 60 does not rotate sufficiently, the high pressure oil accumulated in the accumulator 64a can be supplied to the hydraulic motor 66, so that the power generation by the generator 70 can be continued, which is more stable. Power can be supplied.
 更に、上記のように、吐出配管64a、アキュムレータ64b、吸入配管64d等を保温材で覆われた空間に配置することで、低温環境下においてもオイルの粘度上昇による効率低下を抑制することができる。 Furthermore, as described above, by disposing the discharge piping 64a, the accumulator 64b, the suction piping 64d, etc. in the space covered with the heat insulating material, it is possible to suppress the decrease in efficiency due to the viscosity increase of the oil even under a low temperature environment. .
 図13は、他の実施形態に係る風力発電装置100の上部を示す立断面図である。この図に示すように、風力発電装置100では、一対の風車60の上に雨避け110が設けられている。この雨避け110は、塔体20の上部に取り付けられ、屋根82の開口82Aに面して配されており、開口82Aから風洞30内へ雨が降り込むのを防ぐ。ここで、雨除け110は、風車60の軸方向に見た断面形状が逆三角形状の部材であって、その両側の斜面110Aは湾曲しており、開口82Aを吹き抜けた風を斜め上方に吹き抜けさせる。 FIG. 13 is an elevation cross-sectional view showing an upper portion of a wind turbine 100 according to another embodiment. As shown in this figure, in the wind turbine 100, the rain avoidance 110 is provided on the pair of wind turbines 60. The rain protection 110 is attached to the top of the tower 20 and is disposed facing the opening 82A of the roof 82 to prevent rain from falling into the wind tunnel 30 from the opening 82A. Here, the rain protection 110 is a member whose cross sectional shape seen in the axial direction of the wind turbine 60 is an inverted triangle, and the slopes 110A on both sides are curved, and the wind having blown through the opening 82A is blown obliquely upward Let
 以上、本発明を実施するための形態について説明したが、上記実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。例えば、上記実施の形態では、風洞筒30を断面四角形状、導風部40を断面八画形状にしたが、これらの形状は適宜変更してもよい。また、風洞筒30の周壁における開口34や開閉窓52の配置等も適宜変更してもよいが、導風口42から風洞筒30の周壁面に導かれた風により開き、風洞筒30内に取り込まれた風によっては開かないように構成されている構成であることが好ましい。 As mentioned above, although the form for implementing this invention was demonstrated, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention also includes the equivalents thereof. For example, in the above embodiment, the wind tunnel cylinder 30 has a rectangular cross section and the air guide portion 40 has an octagonal cross section, but these shapes may be changed as appropriate. In addition, the arrangement 34 of the opening 34 and the opening and closing window 52 in the peripheral wall of the wind tunnel cylinder 30 may be changed as appropriate, but the opening guided by the wind guided to the peripheral wall surface of the wind tunnel cylinder 30 from the air guide opening 42 It is preferable that it is the structure comprised so that it may not open by the wind which has been.
1 模型、2 扇風機、10 風力発電装置、20 塔体、30 風洞筒、32 吹出口、34 開口、40 導風部、42 導風口、46 仕切板、50 風取込部、52 開閉窓、54 支軸、55 軸受、56 錘、58 軸、59 ブラケット、60 風車、61 羽、62 油圧ポンプ、64 油圧系統、66 油圧モータ 70 発電機、80 インバータ、81 トランス、82 屋根、82A 開口、84 周壁、100 風力発電装置、110 雨避け、110A 斜面 DESCRIPTION OF SYMBOLS 1 model, 2 fans, 10 wind power generators, 20 towers, 30 wind tunnels, 32 air outlets, 34 openings, 40 air guides, 42 air outlets, 46 partitions, 50 air intakes, 52 windows, 54 Support shaft, 55 bearings, 56 weights, 58 shafts, 59 brackets, 60 windmills, 61 blades, 62 hydraulic pumps, 64 hydraulic systems, 66 hydraulic motors 70 generators, 80 inverters, 81 transformers, 82 roofs, 82A openings, 84 peripheral walls , 100 wind turbines, 110 rain, 110A slope

Claims (3)

  1.  周壁に風の取込口が設けられ、下端が閉塞され、上端に風の吹出口が設けられた筒状の風洞筒と、
     前記風洞筒の上側に配され前記吹出口から吹き出す風により回転する風車と、
     前記風車の回転により駆動される油圧ポンプと、
     前記油圧ポンプが吐出する加圧されたオイルが供給され、そのオイルにより駆動される油圧モータと、
     前記油圧モータを駆動源として発電する発電機と、
     を備えることを特徴とする風力発電装置。
    A cylindrical wind tunnel tube having a wind inlet provided on the peripheral wall, a closed lower end, and a wind outlet provided on the upper end,
    A wind turbine which is disposed on the upper side of the wind tunnel and rotated by the wind blown out from the outlet;
    A hydraulic pump driven by rotation of the wind turbine;
    A hydraulic motor supplied with pressurized oil discharged by the hydraulic pump and driven by the oil;
    A generator that generates electricity using the hydraulic motor as a drive source;
    A wind turbine generator comprising:
  2.  前記油圧ポンプから前記油圧モータに前記オイルを供給する油圧配管と、該油圧配管の途中に設けられた少なくとも一つのアキュムレータとを含む油圧系統を備えることを特徴とする請求項1に記載の風力発電装置。 The wind turbine according to claim 1, further comprising: a hydraulic system including hydraulic piping for supplying the oil from the hydraulic pump to the hydraulic motor; and at least one accumulator provided in the middle of the hydraulic piping. apparatus.
  3.  前記油圧ポンプと前記油圧モータとを接続する前記油圧系統の少なくとも一部は保温材で囲われた空間に設けられていることを特徴とする請求項1又は2に記載の風力発電装置。 The wind turbine generator according to claim 1 or 2, wherein at least a part of the hydraulic system connecting the hydraulic pump and the hydraulic motor is provided in a space surrounded by a heat insulating material.
PCT/JP2017/038666 2017-10-26 2017-10-26 Wind power generation device WO2019082329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038666 WO2019082329A1 (en) 2017-10-26 2017-10-26 Wind power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038666 WO2019082329A1 (en) 2017-10-26 2017-10-26 Wind power generation device

Publications (1)

Publication Number Publication Date
WO2019082329A1 true WO2019082329A1 (en) 2019-05-02

Family

ID=66247348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038666 WO2019082329A1 (en) 2017-10-26 2017-10-26 Wind power generation device

Country Status (1)

Country Link
WO (1) WO2019082329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022171980A1 (en) 2021-02-09 2022-08-18 Warren Greenwood Vertical axis wind turbine and method of use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638179U (en) * 1979-08-30 1981-04-10
JP2014037843A (en) * 2012-08-10 2014-02-27 Chugoku Electric Power Co Inc:The Heat insulation structure of pipeline
WO2014057789A1 (en) * 2012-10-10 2014-04-17 株式会社サン設計事務所 Wind-power generation device
JP2014145258A (en) * 2013-01-26 2014-08-14 Yuto Sangyo Kk Wind force power generator
JP2015222024A (en) * 2014-05-22 2015-12-10 新日鉄住金エンジニアリング株式会社 Floating power generation device and floating wind power generation device
JP2017020545A (en) * 2015-07-08 2017-01-26 三菱重工業株式会社 Fluid pressure gear transmission, regeneration energy type power generation device, and operational method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638179U (en) * 1979-08-30 1981-04-10
JP2014037843A (en) * 2012-08-10 2014-02-27 Chugoku Electric Power Co Inc:The Heat insulation structure of pipeline
WO2014057789A1 (en) * 2012-10-10 2014-04-17 株式会社サン設計事務所 Wind-power generation device
JP2014145258A (en) * 2013-01-26 2014-08-14 Yuto Sangyo Kk Wind force power generator
JP2015222024A (en) * 2014-05-22 2015-12-10 新日鉄住金エンジニアリング株式会社 Floating power generation device and floating wind power generation device
JP2017020545A (en) * 2015-07-08 2017-01-26 三菱重工業株式会社 Fluid pressure gear transmission, regeneration energy type power generation device, and operational method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022171980A1 (en) 2021-02-09 2022-08-18 Warren Greenwood Vertical axis wind turbine and method of use thereof

Similar Documents

Publication Publication Date Title
AU2013313164B2 (en) Buildings with wind-energy-conversion systems
US20100257795A1 (en) Building-integrated system for capturing and harvesting the energy from environmental wind
JP4128146B2 (en) Wind turbine generator with integrated roof
KR101849052B1 (en) Ventilator using wind power induced by direction key and non-powered fan driving system
US20190242359A1 (en) Wind-tunnel turbine vacuum air flow generator
US8754541B2 (en) Linear wind powered electrical generator
WO2019082329A1 (en) Wind power generation device
WO2015192102A1 (en) Horizontally channeled vertical axis wind turbine
US7611325B2 (en) Wind collector
JP3173171U (en) Wind power generator
WO2014057789A1 (en) Wind-power generation device
BR102017003156A2 (en) METHOD AND SYSTEM FOR GENERATING ELECTRICITY.
US20170175707A1 (en) Wind driven electricity generator having a tower with no nacelle or blades
CN202811192U (en) Laminar-flow rotary-wing wind power generator
CN105156279A (en) Eight-angular prism vertical-shaft turbine wind generating set
WO2017160825A1 (en) Wind energy harvesting utilizing air shaft and centrifugal impellor wheels
JP2015052271A (en) Wind-power generation device
KR102474643B1 (en) Vertical-axis wind turbine of enhanced efficiency
CN109026537A (en) Elevator piston blast power generation system
CN206221157U (en) A kind of wind generator system
RU2663928C1 (en) "potok" turbogenerator
RU2157920C2 (en) Windmill electric generating plant
WO2023195854A1 (en) System for generating electricity
CN203285624U (en) Direct-axis wind driven generator with framework
KR20150087498A (en) Cylindrical Wind Turbine Generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17929955

Country of ref document: EP

Kind code of ref document: A1