WO2019082262A1 - Aerosol generator, and method and program for actuating same - Google Patents

Aerosol generator, and method and program for actuating same

Info

Publication number
WO2019082262A1
WO2019082262A1 PCT/JP2017/038309 JP2017038309W WO2019082262A1 WO 2019082262 A1 WO2019082262 A1 WO 2019082262A1 JP 2017038309 W JP2017038309 W JP 2017038309W WO 2019082262 A1 WO2019082262 A1 WO 2019082262A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
load
aerosol source
control
control unit
Prior art date
Application number
PCT/JP2017/038309
Other languages
French (fr)
Japanese (ja)
Inventor
将之 辻
創 藤田
拓磨 中野
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66247337&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019082262(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2017/038309 priority Critical patent/WO2019082262A1/en
Priority to KR1020207014243A priority patent/KR102478727B1/en
Priority to JP2019549708A priority patent/JP6812570B2/en
Priority to RU2020116742A priority patent/RU2749257C1/en
Priority to EP17929539.9A priority patent/EP3701813B1/en
Priority to CN201780096249.9A priority patent/CN111511229B/en
Publication of WO2019082262A1 publication Critical patent/WO2019082262A1/en
Priority to US16/856,067 priority patent/US20200245687A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present disclosure relates to an aerosol generating device that generates an aerosol that a user inhales, and a method and program for operating the same.
  • an aerosol generating apparatus for generating an aerosol to be inhaled by the user, such as a general electronic cigarette, a heating type cigarette, or a nebulizer
  • the user generates an aerosol source that becomes an aerosol by atomization, and the user is insufficient.
  • suction is performed, sufficient aerosol can not be supplied to the user.
  • aerosols having an unintended flavor and taste can be released.
  • Patent Document 1 discloses a technique for detecting depletion of an aerosol source based on a change in heater temperature when power is supplied to a heater that heats the aerosol source.
  • Other patent documents 2 to 11 also disclose various techniques for solving the above problems or which may contribute to the solutions of the above problems.
  • a first problem to be solved by the present disclosure is to provide an aerosol generation device that performs appropriate control when an aerosol source runs short, and a method and program for operating the same.
  • a second problem to be solved by the present disclosure is an aerosol generating device that suppresses a temporary shortage of an aerosol source in a holding unit that holds an aerosol source supplied from a reservoir of an aerosol source, and a method of operating the same It is to provide a program.
  • an aerosol generation device which is a power supply and a load that generates heat by receiving power from the power supply and atomizes the aerosol source.
  • An element used to obtain a value related to the temperature of the load a circuit electrically connecting the power supply and the load, a storage unit storing the aerosol source, and the storage unit And the storage unit stores the aerosol source based on a change in a value related to the temperature of the load after the circuit functions, and a holding unit that holds the aerosol source in a state where the load can heat the aerosol source.
  • the aerosol generating device is provided in the first state where the aerosol source runs short, or in the second state where the reservoir can supply the aerosol source but the aerosol source held by the holder runs short Comprising a sea urchin configured controller.
  • the storage unit can supply the aerosol source in the second state because the aerosol source stored in the storage unit is insufficient in the first state, but the holding unit holds the aerosol source. Because of the lack of the aerosol source, the temperature of the load exceeds the boiling point of the aerosol source or the temperature at which aerosol generation occurs due to evaporation of the aerosol source.
  • the circuit comprises a first path and a second path connected in parallel to the power supply and the load, the first path being used for atomizing the aerosol source, the second path Is used to obtain a value related to the temperature of the load, and the control unit is configured to cause the first path and the second path to alternately function.
  • each of the first path and the second path has a switch and functions by switching the switch from the off state to the on state, and the control unit controls the switch of the first path. After switching from the on state to the off state, a predetermined interval is provided until the switch of the second path is switched from the off state to the on state.
  • the first path has a resistance value smaller than that of the second path
  • the control unit is configured to operate after the first path functions or while the second path functions. It is configured to distinguish between the first state and the second state based on a change in value associated with the temperature of the load.
  • control unit is configured to determine whether the first state or the second path has been functioning, and the first state based on a time taken for a value related to the temperature of the load to reach a threshold. It is configured to distinguish the second state.
  • the circuit comprises a first path and a second path connected in parallel to the power supply and the load, the first path being used for atomizing the aerosol source, the second path Is used to obtain a value related to the temperature of the load, and the control unit is configured to cause the second path to function after the operation of the first path is completed.
  • control unit is configured to cause the second path to function after the operation of the first path is completed multiple times.
  • control unit causes the second path to function as the number of times or the amount of movement of the load increases after the storage unit is replaced with a new one or after the storage unit is replenished with the aerosol source. It is configured to reduce the number of times to operate the first path before.
  • the first path has a smaller resistance than the second path
  • the control unit distinguishes between the first state and the second state based on a change in a value related to the temperature of the load after the first path functions or while the second path functions.
  • the first path has a resistance value smaller than that of the second path
  • the control unit is configured to operate after completion of the operation of the first path or while the second path is functioning. It is configured to distinguish between the first state and the second state based on a change in value associated with the temperature of the load.
  • the first path has a resistance value smaller than that of the second path
  • the control unit is configured to calculate a time of a value related to the temperature of the load while the second path is functioning.
  • the first state and the second state are distinguished based on the differential value.
  • the time differential value when it is determined that the second state has occurred is smaller than the time differential value when it is determined that the first state has occurred.
  • the circuit is supplied in series with the load and a single path used for atomizing the aerosol source and obtaining a value related to the temperature of the load And an element for smoothing power.
  • the circuit comprises a single path connected in series to the load and used for atomizing the aerosol source and obtaining the temperature of the load, the aerosol generating device further comprising a low pass filter A value related to the temperature of the load acquired using the element passes through the low pass filter, and the control unit is configured to be able to acquire a value related to the temperature passed through the low pass filter .
  • control unit determines the first state and the second state based on a time taken for the value related to the temperature of the load to reach a threshold after the single path functions. And so on.
  • the time when it is determined that the first state has occurred is shorter than the time when it is determined that the second state has occurred.
  • control unit is configured to correct a condition that distinguishes the first state and the second state based on a heat history of the load when the circuit functions.
  • control unit acquires a time-series change in the request based on a request for generation of an aerosol, and the condition based on the heat history of the load derived from the time-series change in the request. Configured to correct
  • control unit reduces the possibility that the first state is determined to occur as the time interval from the end of the request to the start of the next request is shorter. It is configured to correct the condition.
  • control unit is configured to affect the correction of the condition by an old heat history included in the heat history of the load, and to the correction of the condition by a new heat history included in the heat history of the load. Configured to be smaller than
  • control unit is configured to correct the condition based on a thermal history of the load derived from a temperature of the load when the circuit functions.
  • control unit corrects the condition such that the higher the temperature of the load when the circuit functions, the smaller the possibility that the first state is determined to be generated. Configured
  • a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source; and changing a value associated with a temperature of the load. Based on the above, the aerosol generation device is in a first state in which the aerosol source to be stored is short or the aerosol source to be stored is not short but the aerosol can be kept in a state where heating by the load is possible. And D. determining whether the source is in the second state that is lacking.
  • an aerosol generation device which relates to a power source, a load that generates power by receiving power from the power source, and which atomizes an aerosol source, and a temperature of the load.
  • the load heats an element used to obtain a value, a circuit electrically connecting the power supply and the load, a storage unit storing the aerosol source, and the aerosol source supplied from the storage unit.
  • the aerosol generating device can supply the aerosol source based on the change of the value related to the temperature of the load after the function of the holding part that holds the possible state and the circuit functions, but the storage part can supply the aerosol source.
  • an aerosol generation device comprising: a control unit configured to determine whether the aerosol source held by the holding unit is in a shortage state.
  • the temperature of the load exceeds the boiling point of the aerosol source because the reservoir can supply the aerosol source but the aerosol source held by the holder runs short.
  • a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source; and changing a value associated with a temperature of the load. Determining whether the aerosol generation device is in a state in which the aerosol generation device is in a state in which the aerosol source that is stored is not insufficient but is maintained in a state where heating by the load is possible; Methods are provided, including:
  • an aerosol generation device which relates to a power source, a load that generates power by receiving power from the power source, and which atomizes an aerosol source, and a temperature of the load.
  • the load heats an element used to obtain a value, a circuit electrically connecting the power supply and the load, a storage unit storing the aerosol source, and the aerosol source supplied from the storage unit. Because the aerosol generation device runs out of the aerosol source stored by the storage unit based on the holding unit that holds it in a possible state and the change in the value related to the temperature of the load after the circuit functions.
  • a controller configured to distinguish whether in the first state or in the second state in which the reservoir is capable of supplying the aerosol source but the aerosol source held by the holder runs short.
  • the storage portion can supply the aerosol source in the second state, but the holding portion holds the aerosol source in the second state. Due to the lack of the aerosol source, the temperature of the load is different from the first state and the second state to a predetermined temperature below the boiling point of the aerosol source or the temperature at which aerosol generation occurs due to evaporation of the aerosol source An aerosol generating device is provided that arrives earlier than other conditions.
  • a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source; and changing a value associated with a temperature of the load.
  • the aerosol generation device is in a first state in which the aerosol source to be stored is short or the aerosol source to be stored is not short but the aerosol can be kept in a state where heating by the load is possible.
  • the aerosol source stored in the second state includes a step of determining whether the source is in the second state where the source is insufficient, and in the first state, the aerosol source stored in the second state is insufficient.
  • the temperature of the load is at or above the boiling point of the aerosol source, because there is not a shortage of the aerosol source that is not deficient but is kept heatable by the load. Evaporation of the aerosol source to predetermined temperature below the temperature at which the aerosol generation occurs, arrive earlier than the other different states and the first state and the second state, a method is provided.
  • a power source a load that generates power by receiving power from the power source, and which atomizes an aerosol source, and a temperature of the load
  • the temperature of the load is the boiling point of the aerosol source because the holding portion holds the heatable state, and the storage portion can supply the aerosol source but the aerosol source held by the holding portion runs short.
  • the holding portion is at least one of when the power supply starts supplying power to the load and / or when the power supply completes supplying power to the load when a dry state or a precursor of the dry state is detected.
  • a control unit configured to control or the holding amount to increase the holding amount of the aerosol source executes the control to improve the possibility of increasing the holding, the aerosol generating device is provided.
  • the aerosol generation device includes a notification unit that notifies a user, and the control unit causes the notification unit to function when the dry state or a precursor of the dry state is detected.
  • control unit when the control unit detects the dry state or a precursor of the dry state, an interval from the completion of the generation of the aerosol to the start of the next generation of the aerosol is longer than the previous interval. Configured to perform control.
  • the aerosol generation device includes a notification unit that notifies a user, and the control unit causes the notification unit to function when detecting the dry state or a precursor of the dry state.
  • the notification unit is functioned once or a plurality of times and then the dry state or a precursor of the dry state is further detected, control is performed to make the next interval longer than the previous interval.
  • control unit corrects the length of the interval based on at least one of viscosity of the aerosol source, remaining amount of the aerosol source, electrical resistance value of the load, and temperature of the power source.
  • the aerosol generating device comprises a supply which makes it possible to adjust at least one of the amount or the velocity of the aerosol source supplied from the reservoir to the holding part.
  • the control unit controls the supply unit to increase at least one of the amount or the velocity of the aerosol source supplied from the storage unit to the holding unit when detecting the dry condition or a precursor of the dry condition.
  • control unit is configured to control the circuit to reduce the amount of aerosol generation when detecting the dry state or a precursor of the dry state.
  • the aerosol generating device includes a temperature control unit that enables the temperature of the aerosol source to be adjusted.
  • the control unit is configured to control the temperature control unit to heat the aerosol source when detecting the dry state or a precursor of the dry state.
  • control unit is configured to control the temperature control unit to heat the aerosol source while an aerosol is not generated by the load.
  • control unit is configured to use the load as the temperature control unit.
  • the aerosol generating device comprises a changing unit which makes it possible to change the ventilation resistance in the aerosol generating device.
  • the control unit is configured to control the change unit to increase the ventilation resistance when detecting the dry state or a precursor of the dry state.
  • the aerosol generating device comprises a requester that outputs a request for the generation of the aerosol.
  • the control unit controls the circuit based on the correlation such that the generation amount of the aerosol increases as the demand increases, and the dry state or the precursor of the dry state is detected, the magnitude of the demand is increased.
  • the correlation is configured to be modified to reduce the amount of corresponding aerosol formation.
  • control unit performs a first mode of performing control to make an interval from the completion of the generation of the aerosol to the start of the next generation of the aerosol longer than a previous interval, and the power supply performs the load
  • the control to increase the holding amount without controlling the interval, or the possibility that the holding amount increases, at least when starting power supply to the power supply and / or when the power supply completes power supply to the load It is possible to execute a second mode for performing control to be improved, and to execute the second mode prior to the first mode when the dry state or a precursor of the dry state is detected.
  • control unit is configured to execute the first mode when detecting the dry state or the precursor of the dry state after the execution of the second mode.
  • the aerosol generating device comprises a requester that outputs a request for the generation of the aerosol.
  • the control unit is configured to detect the precursor of the dry state based on a time-series change of the request.
  • a method of operating an aerosol generating device wherein the step of heating a load to atomize an aerosol source, and the aerosol source to be stored is not short If the temperature of the load detects a dry state or a precursor of the dry state exceeding the boiling point of the aerosol source due to a shortage of the aerosol source which is kept in a state where heating by the load is possible, Carrying out control to increase the amount of holding of the aerosol source to be held or control to improve the possibility of increasing the amount of holding at least when power feeding is started and / or when power feeding to the load is completed And a method is provided.
  • a power supply a load that generates electric power from the power supply to generate heat, and is used to obtain a load related to atomizing an aerosol source and a value related to the temperature of the load
  • the load the circuit for electrically connecting the power supply and the load, the storage section storing the aerosol source, and the aerosol source supplied from the storage section in a heatable state.
  • an interval corresponding to a period until the aerosol source of an amount equal to or more than the amount of the aerosol source used to generate the aerosol is supplied from the storage unit to the holding unit after the generation of the aerosol is completed.
  • a control unit configured to execute control to suppress generation of aerosol or control to improve the possibility that generation of aerosol is suppressed; There is provided.
  • the aerosol generation device includes a notification unit that notifies the user.
  • the control unit controls the notification unit in the first mode while generating the aerosol, and controls the notification unit in the second mode different from the first mode during the interval.
  • the aerosol generating device includes a requester that outputs a request for generating an aerosol.
  • the control unit is configured to control the notification unit in a third mode different from the second mode when acquiring the request during the interval.
  • control unit is configured to control the circuit to inhibit the generation of aerosol during the interval.
  • the aerosol generating device includes a requester that outputs a request for generating an aerosol.
  • the control unit is configured to correct the length of the interval based on at least one of the size and the change of the request.
  • a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source to generate an aerosol; and after completion of the generation of the aerosol, The generation of aerosol is suppressed at an interval corresponding to a period until the load is held in a heatable state by an amount of the aerosol source stored in an amount used for generating the aerosol. And performing the control to improve the possibility that the generation of the aerosol is suppressed.
  • a power supply a load that generates electric power from the power supply to generate heat, and is used to obtain a load related to atomizing an aerosol source and a value related to the temperature of the load
  • the load the circuit for electrically connecting the power supply and the load, the storage section storing the aerosol source, and the aerosol source supplied from the storage section in a heatable state.
  • the power supply starts supplying power to the load and the power supply supplies the load to the load.
  • the control unit is configured to execute control to increase the holding amount of the aerosol source held by the holding unit, or control to improve the possibility of the holding amount increasing, at least one of when completing the power feeding.
  • a control unit with the aerosol generating device is provided.
  • a method of operating an aerosol generating device wherein the step of heating a load to atomize an aerosol source, and the aerosol source to be stored is not short
  • the aerosol is held when power supply to the load is started and / or when power supply to the load is completed when the aerosol source is insufficient to be heated by the load. Performing a control to increase the holding amount of the source or a control to improve the possibility that the holding amount increases.
  • a program that, when executed by a processor, causes the processor to perform any of the above methods.
  • an aerosol generating device which is a power supply and a load that generates heat by receiving power from the power supply and atomizes the aerosol source.
  • the aerosol generation device based on a holding unit that holds the aerosol source in a heatable state of the load, and a change in a value related to the temperature of the load after or during which the circuit functions.
  • An aerosol generation device comprising: a control unit.
  • the storage unit can supply the aerosol source in the second state because the aerosol source stored in the storage unit is insufficient in the first state, but the holding unit holds the aerosol source.
  • the temperature of the load exceeds the boiling point of the aerosol source due to the lack of the aerosol source.
  • the second control reduces the number of aerosol sources stored by the reservoir more than the first control.
  • control executed by the control unit in the second control changes the number of variables and / or the amount of algorithm more than the control executed by the control unit in the first control. .
  • the number of operations required of the user to allow the generation of aerosol in the second control is the number of operations required of the user to allow the generation of aerosol in the first control. Less than the number.
  • control unit is configured to prohibit generation of an aerosol for at least a predetermined period in the first control and the second control.
  • the period during which the generation of the aerosol is prohibited in the second control is shorter than the period during which the generation of the aerosol is prohibited in the first control.
  • the first control and the second control each have a return condition for transitioning from a state in which the generation of the aerosol is prohibited to a state in which the generation of the aerosol is permitted.
  • the return condition in the first control is stricter than the return condition in the second control.
  • the number of replacement work of the component of the aerosol generation device included in the return condition in the first control is a component of the aerosol generation device included in the return condition in the second control. More than the number of replacement work.
  • the aerosol generating device comprises one or more notifiers that notify the user.
  • the time during which the notification unit functions in the first control is longer than the time during which the notification unit functions in the second control.
  • the aerosol generating device comprises one or more notifiers that notify the user.
  • the amount of power supplied from the power supply to the notification unit in the first control is larger than the amount of power supplied from the power supply to the notification unit in the second control.
  • the storage unit can supply the aerosol source in the second state because the aerosol source stored in the storage unit is insufficient in the first state, but the holding unit holds the aerosol source.
  • the temperature of the load exceeds the boiling point of the aerosol source due to the lack of the aerosol source.
  • a program that, when executed by a processor, causes the processor to execute the above method.
  • an aerosol generating device that performs appropriate control when an aerosol source runs short, and a method and program for operating the same.
  • an aerosol generation device that suppresses a temporary shortage of an aerosol source in a holding unit that holds an aerosol source supplied from a reservoir of an aerosol source, a method of operating the same, and a program Can be provided.
  • an aerosol generation device that performs appropriate control when an aerosol source runs short, and a method and program for operating the same.
  • FIG. 1 is a schematic block diagram of a configuration of an aerosol generating device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic block diagram of a configuration of an aerosol generating device according to an embodiment of the present disclosure.
  • FIG. 2 illustrates an exemplary circuit configuration for a portion of an aerosol generating device according to a first embodiment of the present disclosure.
  • FIG. 5 illustrates another exemplary circuit configuration for a portion of an aerosol generating device according to the first embodiment of the present disclosure.
  • 3 is a flowchart of an exemplary process of detecting an insufficiency of an aerosol source, according to a first embodiment of the present disclosure. 3 shows an example of the timing of switching of the switches Q1 and Q2 according to the first embodiment of the present disclosure.
  • FIG. 5 is a flow chart illustrating a process of detecting a shortage of an aerosol source in an aerosol generating device according to a first embodiment of the present disclosure.
  • 5 is a flow chart illustrating a process of detecting a shortage of an aerosol source in an aerosol generating device according to a first embodiment of the present disclosure.
  • FIG. 2 illustrates an exemplary circuit configuration for a portion of an aerosol generating device according to a first embodiment of the present disclosure. The timing of atomization of the aerosol source using switch Q1 in the aerosol production
  • FIG. 5 is a flow chart illustrating a process of detecting a shortage of an aerosol source in an aerosol generating device according to a first embodiment of the present disclosure. It is a graph which shows notionally the time-sequential change of the resistance value of load in case a user performs normal attraction
  • embodiments of the present disclosure include, but are not limited to, electronic cigarettes, heated cigarettes, and nebulizers.
  • Embodiments of the present disclosure may include various aerosol generating devices for generating an aerosol that the user inhales.
  • FIG. 1A is a schematic block diagram of the configuration of an aerosol generation device 100A according to an embodiment of the present disclosure.
  • FIG. 1A schematically and conceptually shows components included in the aerosol generating apparatus 100A, and does not show the exact arrangement, shape, size, positional relationship, etc. of the components and the aerosol generating apparatus 100A. Please keep in mind.
  • the components included in the second member 104 may be included in the first member 102.
  • the second member 104 may be configured to be removable from the first member 102.
  • all components included in the first member 102 and the second member 104 may be included in the same housing instead of the first member 102 and the second member 104.
  • the atomization unit 118 is configured to atomize the aerosol source to generate an aerosol.
  • the atomization unit 118 When the aspiration operation is detected by the element 112, the atomization unit 118 generates an aerosol.
  • the holding unit 130 is provided to connect the storage unit 116 and the atomization unit 118. In this case, a part of the holding unit 130 leads to the inside of the storage unit 116 and contacts the aerosol source. The other part of the holding unit 130 extends to the atomizing unit 118. Note that the other part of the holding unit 130 extended to the atomizing unit 118 may be stored in the atomizing unit 118 or may be communicated again to the inside of the storage unit 116 through the atomizing unit 118 .
  • the aerosol source is transported from the reservoir 116 to the atomizer 118 by the capillary effect of the holder 130.
  • the atomization unit 118 includes a heater including a load 132 electrically connected to the power supply 110. The heater is disposed in contact with or in proximity to the holder 130.
  • the control unit 106 controls the heater of the atomizing unit 118, and atomizes the aerosol source by heating the aerosol source conveyed through the holding unit 130.
  • Another example of the atomizing unit 118 may be an ultrasonic atomizer that atomizes an aerosol source by ultrasonic vibration.
  • the air intake flow path 120 is connected to the atomization unit 118, and the air intake flow path 120 communicates with the outside of the aerosol generation device 100A.
  • the aerosol generated in the atomization unit 118 is mixed with the air taken in via the air intake channel 120.
  • the mixed fluid of aerosol and air is delivered to the aerosol flow channel 121 as indicated by the arrows 124.
  • the aerosol flow channel 121 has a tubular structure for transporting the mixed fluid of the aerosol and the air generated in the atomizing unit 118 to the inlet 122.
  • the suction portion 122 is located at the end of the aerosol flow channel 121, and is configured to open the aerosol flow channel 121 to the outside of the aerosol generation device 100A. The user takes in the air containing the aerosol into the oral cavity by holding and sucking the suction portion 122.
  • the notification unit 108 may include a light emitting element such as an LED, a display, a speaker, a vibrator, and the like.
  • the notification unit 108 is configured to perform some kind of notification to the user by light emission, display, vocalization, vibration or the like as necessary.
  • the power supply 110 supplies power to each component of the aerosol generation device 100A such as the notification unit 108, the element 112, the memory 114, the load 132, and the circuit 134.
  • the power source 110 may be charged by connecting to an external power source via a predetermined port (not shown) of the aerosol generating device 100A. Only the power source 110 may be removable from the first member 102 or the aerosol generating device 100A, and may be replaced with a new power source 110. Also, the power supply 110 may be replaced with a new power supply 110 by replacing the entire first member 102 with a new first member 102.
  • Element 112 is a component used to obtain a value related to the temperature of load 132.
  • Element 112 may be configured to be used to obtain values needed to determine the value of the current flowing through load 132, the resistance of load 132, and so forth.
  • Element 112 may also include a pressure sensor to detect pressure fluctuations in air intake channel 120 and / or aerosol channel 121 or a flow sensor to detect flow. Element 112 may also include a weight sensor that detects the weight of a component, such as reservoir 116. Element 112 may also be configured to count the number of puffs by the user using aerosol generating device 100A. The element 112 may also be configured to integrate the energization time to the atomization unit 118. Element 112 may also be configured to detect the level of the fluid level in reservoir 116. The element 112 may also be configured to determine or detect the SOC (State of Charge) of the power supply 110, current integration value, voltage, etc. The SOC may be obtained by a current integration method (coulomb counting method), an SOC-OCV (open circuit voltage) method, or the like. Element 112 may also be a user-operable operation button or the like.
  • SOC State of Charge
  • the control unit 106 may be an electronic circuit module configured as a microprocessor or a microcomputer. Control unit 106 may be configured to control the operation of aerosol generating device 100A in accordance with computer-executable instructions stored in memory 114.
  • the memory 114 is a storage medium such as a ROM, a RAM, and a flash memory. The memory 114 may store setting data and the like necessary for control of the aerosol generation device 100A, in addition to the computer executable instructions as described above.
  • the memory 114 stores various data such as a control method of the notification unit 108 (a mode of light emission, utterance, vibration, etc.), a value acquired and / or detected by the element 112, and a heating history of the atomization unit 118 You may
  • the control unit 106 reads data from the memory 114 as needed, uses it for control of the aerosol generation apparatus 100A, and stores the data in the memory 114 as needed.
  • FIG. 1B is a schematic block diagram of a configuration of an aerosol generating device 100B according to an embodiment of the present disclosure.
  • the aerosol generation device 100B includes a third member 126 in addition to the configuration provided in the aerosol generation device 100A of FIG. 1A.
  • the third member 126 may include a flavor source 128.
  • the flavor source 128 may include a flavor component contained in cigarette.
  • the aerosol flow channel 121 extends across the second member 104 and the third member 126.
  • the suction port 122 is provided to the third member 126.
  • the flavor source 128 is a component for imparting a flavor to the aerosol.
  • the flavor source 128 is disposed in the middle of the aerosol channel 121.
  • a mixed fluid of an aerosol and air generated by the atomization unit 118 (note that the mixed fluid may be simply referred to as an aerosol hereinafter) flows through the aerosol flow channel 121 to the inlet 122.
  • the flavor source 128 is provided downstream of the atomization unit 118 with respect to the flow of the aerosol.
  • the flavor source 128 is located closer to the mouthpiece 122 in the aerosol flow channel 121 than the atomization unit 118. Therefore, the aerosol generated by the atomizing unit 118 passes through the flavor source 128 and then reaches the mouthpiece 122.
  • the user can take in the air including the flavored aerosol into the oral cavity by holding and sucking the mouthpiece portion 122.
  • the control unit 106 is configured to control the aerosol generation devices 100A and 100B (hereinafter also collectively referred to as the “aerosol generation device 100”) according to the embodiments of the present disclosure by various methods.
  • the aerosol generating device if the user performs suction while the aerosol source is insufficient, sufficient aerosol can not be supplied to the user.
  • aerosols having an unintended flavor and taste may be released (hereinafter, such a phenomenon is also referred to as “unintended behavior”).
  • the inventors of the present invention not only have insufficient aerosol sources in the reservoir 116, but also sufficient aerosol sources remain in the reservoir 116, but there is a temporary shortage of aerosol sources in the holder 130. It was recognized as an important issue to be solved that unintended behavior might occur.
  • the inventors of the present invention operate an aerosol generating device that can identify which of the aerosol source in the reservoir 116 and the aerosol source in the holding unit 130 is lacking.
  • Invented a method and program for The inventors of the present invention also invented an aerosol generation device that suppresses a temporary shortage of the aerosol source in the holding unit that holds the aerosol source supplied from the reservoir of the aerosol source, and a method and program for operating the same.
  • the inventors of the present invention have also found that the aerosol generating device 100 is in a state in which the aerosol source stored in the storage section 116 is insufficient, or the aerosol source that the storage section 116 can supply the aerosol source but the holding section 130 holds
  • the present inventors have invented an aerosol generating device capable of performing appropriate control, and a method and program for operating the same, in the case where it is distinguished whether there is another condition that is lacking.
  • each embodiment of the present disclosure will be described in detail, mainly assuming that the aerosol generation device has the configuration illustrated in FIG. 1A. However, it will be apparent to those skilled in the art that the embodiments of the present disclosure can be applied when the aerosol generating device has various configurations such as the configuration shown in FIG. 1B.
  • FIG. 2 is a diagram illustrating an exemplary circuit configuration for a portion of the aerosol generating device 100A according to the first embodiment of the present disclosure.
  • the circuit 200 shown in FIG. 2 includes a power supply 110, a control unit 106, an element 112, a load 132 (also referred to as “heater resistance”), a first path 202, a second path 204, and a first field effect transistor (FET) 206.
  • the switch Q 1, the constant voltage output circuit 208, the switch Q 2 including the second FET 210, and the resistor 212 (also referred to as “shunt resistor”) are provided. It will be apparent to those skilled in the art that various devices such as iGBTs, contactors, as well as FETs can be used as switches Q1 and Q2.
  • the circuit 134 shown in FIG. 1A electrically connects the power supply 110 and the load 132 and may include a first path 202 and a second path 204.
  • the first path 202 and the second path 204 are connected in parallel to the power supply 110 (and the load 132).
  • the first path 202 may include the switch Q1.
  • the second path 204 may include the switch Q 2, the constant voltage output circuit 208, the resistor 212 and the element 112.
  • the first path 202 may have a smaller resistance than the second path 204.
  • element 112 is a voltage sensor and is configured to sense the voltage value across resistor 212.
  • the configuration of the element 112 is not limited to this.
  • element 112 may be a current sensor and may sense the value of the current flowing through resistor 212.
  • the control unit 106 can control the switch Q1, the switch Q2, and the like, and can acquire the value detected by the element 112. Even if the control unit 106 is configured to cause the first path 202 to function by switching the switch Q1 from the off state to the on state, and to cause the second path 204 to function by switching the switch Q2 from the off state to the on state. Good.
  • the control unit 106 may be configured to cause the first path 202 and the second path 204 to alternately function by alternately switching the switches Q1 and Q2.
  • the aerosol generation device 100 is in the first state (storage portion) even after generation of the aerosol (after suction by the user) or during generation of the aerosol (during suction by the user) Distinguish whether it is in a state in which the aerosol source stored in 116 runs short or in a second state (a state in which the storage unit 116 can supply the aerosol source but the aerosol source held by the holding unit 130 runs short), The lack of an aerosol source can be detected.
  • the control unit 106 is configured to provide a predetermined interval until the switch Q2 of the second path 204 is switched from the off state to the on state after switching the switch Q1 of the first path 202 from the on state to the off state. It is also good.
  • the first path 202 is used to atomize the aerosol source.
  • the switch Q1 When the switch Q1 is switched to the on state and the first path 202 functions, power is supplied to the heater (or the load 132 in the heater), and the load 132 is heated. The heating of the load 132 atomizes the aerosol source held by the holding unit 130 in the atomizing unit 118 to generate an aerosol.
  • the second path 204 is used to obtain a value related to the temperature of the load 132.
  • the element 112 included in the second path 204 is a voltage sensor.
  • the switch Q 2 When the switch Q 2 is on and the second path 204 is functioning, current flows through the constant voltage output circuit 208, the switch Q 2, the resistor 212 and the load 132.
  • the value of the voltage applied to resistor 212 acquired by element 112 and the known resistance value R shunt of resistor 212 the value of the current flowing through load 132 can be determined.
  • the resistance value R HTR of the load 132 can be determined. If the load 132 has a positive or negative temperature coefficient characteristic in which the resistance value changes according to the temperature, the relationship between the resistance value of the load 132 and the temperature of the load 132 measured in advance and the above-mentioned The temperature of the load 132 can be estimated on the basis of the resistance value RHTR of the load 132 determined as described above.
  • the value associated with the temperature of load 132 in this example is the voltage applied to resistor 212.
  • element 112 are not limited to voltage sensors, but may include other elements such as current sensors (eg, Hall elements).
  • constant voltage output circuit 208 is shown as a linear drop out (LDO) regulator and may include capacitor 214, FET 216, error amplifier 218, reference voltage source 220, resistors 222 and 224, and capacitor 226.
  • LDO linear drop out
  • the configuration of the constant voltage output circuit 208 shown in FIG. 2 is merely an example, and various configurations are possible.
  • FIG. 3 is a diagram illustrating another exemplary circuit configuration for a portion of an aerosol generating device 100A according to the first embodiment of the present disclosure.
  • the circuit 300 shown in FIG. 3 includes a switch 110 including a power supply 110, a control unit 106, an element 112, a load 132, a first path 302, a second path 304, and a first FET 306, and a second FET 310.
  • Q2 a constant voltage output circuit 308, and a resistor 312 are provided.
  • the constant voltage output circuit 308 is disposed closer to the power supply than the first path 302.
  • the constant voltage output circuit 308 is a switching regulator and includes a capacitor 314, an FET 316, an inductor 318, a diode 320 and a capacitor 322.
  • the circuit shown in FIG. 2 the circuit shown in FIG.
  • the constant voltage output circuit 308 is a step-up switching regulator (so-called boost converter) that boosts and outputs the input voltage, but instead reduces the input voltage by It may be a step-down switching regulator (so-called buck converter) that outputs, or a step-up / step-down switching regulator (buck-boost converter) that can both boost and step down the input voltage.
  • boost converter step-up switching regulator
  • buck converter step-down switching regulator
  • buck-boost converter step-up / step-down switching regulator
  • FIG. 4 is a flowchart of an exemplary process of detecting a shortage of an aerosol source, according to one embodiment of the present disclosure.
  • the control unit 106 will be described as performing all the steps. However, it should be noted that some steps may be performed by other components of the aerosol generating device 100. Although this embodiment will be described using the circuit 200 shown in FIG. 2 as an example, it will be apparent to those skilled in the art that the circuit 300 shown in FIG. 3 or other circuits can be used.
  • step 402 the control unit 106 determines whether suction by a user is detected based on information obtained from a pressure sensor, a flow rate sensor, and the like. For example, when the output values of these sensors change continuously, the control unit 106 may determine that suction by the user has been detected. Alternatively, the control unit 106 may determine that suction by the user is detected based on pressing of a button for starting generation of aerosol, or the like.
  • step 402 If it is determined that suction has been detected (“Yes” in step 402), the process proceeds to step 404.
  • the control unit 106 turns on the switch Q1 to cause the first path 202 to function.
  • step 406 the control unit 106 determines whether suction has ended. If it is determined that the suction has ended ("Yes" in step 406), the process proceeds to step 408.
  • control unit 106 turns off the switch Q1.
  • control unit 106 turns on the switch Q2 to cause the second path 204 to function.
  • step 412 the control unit 106 detects the current value of the second path 204, for example, as described above.
  • the control unit 106 derives the resistance value and the temperature of the load 132, for example, in the manner described above.
  • step 418 the control unit 106 determines whether the temperature of the load 132 exceeds a predetermined threshold. If it is determined that the load temperature exceeds the threshold (“Yes” in step 418), the process proceeds to step 420, and the control unit 106 determines that the aerosol source in the aerosol generation device 100A is insufficient. On the other hand, if it is determined that the load temperature does not exceed the threshold (“No” in step 418), it is not determined that the aerosol source is insufficient.
  • FIG. 4 only shows the general flow to determine whether the aerosol source in the aerosol generating device 100A is deficient, and within the reservoir 116 that is specific to the embodiments of the present disclosure. It should be noted that the process of distinguishing between the lack of an aerosol source and the lack of an aerosol source in the holder 130 is not shown.
  • the shortage of the aerosol source in the reservoir 116 includes a state in which the aerosol source is completely depleted in the reservoir 116 and a state in which the aerosol source can not be sufficiently supplied to the holding unit 130.
  • the shortage of the aerosol source in the holding unit 130 includes a state in which the aerosol source is completely depleted in the entire holding unit 130 and a state in which the aerosol source is depleted in a part of the holding unit 130.
  • FIG. 5 shows an example of switching timings of the switches Q1 and Q2 in the present embodiment.
  • the control unit 106 switches between the switch Q1 and the switch Q2 while the aerosol source is atomized (the user is performing suction). Good.
  • the control unit 106 may turn off the switch Q1 and turn on the switch Q2 after the atomization of the aerosol source is finished (the suction by the user is finished).
  • FIG. 6 is a flowchart showing a process of detecting the shortage of the aerosol source in the aerosol generation device 100A according to the present embodiment.
  • FIG. 5A it is assumed that switching is performed between the switch Q1 and the switch Q2 while suction is being performed by the user.
  • the control unit 106 will be described as performing all steps. However, it should be noted that some steps may be performed by other components of the aerosol generating device 100.
  • step 602 is the same as the process of step 402 in FIG. 4, and when a predetermined condition is satisfied, the control unit 106 determines that suction by the user is started.
  • step 604 the control unit 106 turns on the switch Q1 to cause the first path 202 to function. Therefore, power is supplied to the heater (or the load 132 in the heater), and the aerosol source in the holding unit 130 is heated to generate an aerosol. Furthermore, in step 605, the control unit 106 starts a timer (not shown). As another example, the timer may be started when the switch Q2 is turned on in step 606 described later, not when the switch Q1 is turned on.
  • step 606 the control unit 106 turns off the switch Q1 and turns on the switch Q2.
  • this process is performed while suction is being performed by the user.
  • the processing of step 606 causes the second path 204 to function, and the element 112 obtains a value related to the temperature of the load 132 (eg, a voltage value applied to the resistor 212, a current value flowing through the resistor 212 and the load 132, etc.) Be done.
  • the temperature of the load 132 is derived on the basis of the obtained values.
  • the heat applied to the load 132 in step 604 is used to generate an aerosol by atomization of the aerosol source.
  • the temperature of the load 132 does not significantly exceed the temperature at which the formation of the aerosol occurs (eg, 200 ° C.) due to the boiling point of the aerosol source or evaporation of the aerosol source.
  • the heating to the load 132 causes the aerosol source in the holding unit 130 to be completely or partially exhausted. , The temperature of the load 132 is rising.
  • step 608 the control unit 106 determines whether the temperature (T HTR ) of the load 132 exceeds a predetermined temperature (eg, 350 ° C.).
  • a predetermined temperature eg, 350 ° C.
  • the temperature of load 132 is compared to a temperature threshold.
  • the resistance or current value of the load 132 may be compared to the resistance threshold or current threshold.
  • the threshold value of the resistance value, the threshold value of the current value, and the like are set to appropriate values such that the shortage of the aerosol source can be sufficiently determined.
  • step 610 the control unit 106 determines whether a predetermined time has elapsed based on the time indicated by the timer. If the predetermined time has elapsed (“Yes” in step 610), the process proceeds to step 612. In step 612, the control unit 106 determines that the remaining amount of the aerosol source in the storage unit 116 and the holding unit 130 is sufficient, and the process ends. If the predetermined time has not elapsed (“No” in step 610), the process returns to the front of step 608.
  • step 608 the control unit 106 determines whether the time from the timer activation to the current time is less than a predetermined threshold value ⁇ t thre (for example, 0.5 seconds).
  • the predetermined threshold value ⁇ t thre is set to a first predetermined fixed value (for example, the predetermined switch Q1 is turned on). It may be the sum of the storage time) and a second predetermined fixed value (e.g., a time less than or equal to the time for which the predetermined step Q2 is turned on). Alternatively, the predetermined threshold value ⁇ t thre may be the sum of the actually measured time period during which the switch Q1 has been turned on and the second predetermined fixed value.
  • the predetermined threshold ⁇ t thre may be the second predetermined fixed value described above.
  • the former case is the case.
  • the time for the temperature of the load 132 to reach an unacceptably high temperature is short.
  • the power supplied to the load 132 is used to raise the temperature of the load 132, while in the latter case, the storage unit 116 Because the aerosol source can be supplied to the holding unit 130, the power supplied to the load 132 can also be used for atomizing the aerosol source.
  • step 616 the control unit 106 determines that the aerosol generation device 100 is in the first state. In the first state, the temperature of the load 132 exceeds the temperature at which the generation of the aerosol source occurs due to the boiling point of the aerosol source or the evaporation of the aerosol source because the aerosol source stored in the reservoir 116 runs short. On the other hand, if the time from timer activation to the present time is less than the predetermined threshold (“No” in step 614), the process proceeds to step 624. In step 624, the control unit 106 determines that the aerosol generation device 100 is in the second state.
  • the control unit 106 can set the first state and the second state based on the time taken for the value related to the temperature of the load 132 to reach the threshold after the first path 202 or the second path 204 functions. It can be configured to distinguish between states.
  • the shortage of the aerosol source in the first state means a state in which the aerosol source in the reservoir 116 is completely depleted or an aerosol to the holding unit 130 because there are few aerosol sources in the reservoir 116. It means that the source can not be supplied enough.
  • the shortage of the aerosol source in the second state means that although the reservoir 116 can supply the aerosol source, the aerosol source is completely depleted throughout the entire reservoir 130 or the reservoir 130 Indicates that the aerosol source is depleted in part of In either the first state or the second state, sufficient aerosol can not be generated.
  • step 624 the process proceeds to step 626, where the control unit 106 warns the user that the aerosol generation device 100 is in the second state, such as by using the notification unit 108. Thereafter, the process ends.
  • the aerosol generation device 100A runs out of the aerosol source stored in the reservoir 116 based on the change in the value related to the temperature of the load 132 after the circuit 134 functions. It is possible to distinguish whether in the first state or in the second state in which the reservoir 116 can supply the aerosol source but the aerosol source held by the holder 130 is insufficient. Therefore, it can be determined with high accuracy whether the aerosol source is completely depleted.
  • the timer may be activated when the switch Q1 is turned off, or may be activated when the switch Q2 is turned on.
  • the control unit 106 distinguishes between the first state and the second state based on a change in a value related to the temperature of the load 132 after the first path 202 functions or while the second path 204 functions. be able to. Therefore, in the configuration in which the first path 202 for generating the aerosol and the second path 204 for detecting the shortage of the aerosol source are alternately turned on, the first state and the second state are distinguished. it can.
  • control (steps 618 to 622) executed in the first state in which the aerosol source stored in the storage unit 116 runs short is capable of supplying the aerosol source
  • this control is different from the control (step 626) performed in the second state in which the aerosol source held by the holding unit 130 runs short.
  • FIG. 7 is a flowchart showing another process of detecting the shortage of the aerosol source in the aerosol generation device 100A according to the present embodiment.
  • the switch Q1 is turned off and the switch Q2 is turned on after the end of suction by the user.
  • step 702 is the same as the process of step 602 in FIG.
  • step 704 the control unit 106 turns on the switch Q1 to cause the first path 202 to function. Therefore, power is supplied to the heater (load 132), and the aerosol source in the holding unit 130 is heated to generate an aerosol.
  • step 706 the control unit 106 turns off the switch Q1 and turns on the switch Q2. It should be noted that in the example of FIG. 7, this process is performed after the end of suction by the user.
  • the processing of step 706 causes the second path 204 to function, the element 112 obtains a value related to the temperature of the load 132, and the temperature of the load 132 is derived based on the obtained value.
  • step 708 the control unit 106 starts a timer.
  • step 710 The process of step 710 is similar to the process of step 608.
  • step 712 If the temperature of the load 132 does not exceed the predetermined temperature ("No" in step 710), the process proceeds to step 712.
  • the processing of steps 712 and 714 is similar to the processing of steps 610 and 612.
  • step 710 the control unit 106 determines whether the time derivative of the temperature of the load 132 is larger than a predetermined threshold (for example, a value smaller than 0).
  • the case where the aerosol source of the holding unit 130 runs short during suction by the user the case where the aerosol source of the storage unit 116 runs short and the storage unit 116 can supply the aerosol source but the holding unit 130 holds it.
  • the time derivative value of the temperature of the load 132 after the end of suction by the user is larger.
  • the temperature of the load 132 continues to rise, stagnate, or gradually decrease because the aerosol source is not supplied to the holding unit 130 after the end of suction by the user in the former case, whereas in the latter case the user is Because the aerosol source can be supplied from the storage unit 116 to the holding unit 130 after the end of the suction, the temperature of the load 132 may decrease.
  • step 718 the control unit 106 determines that the aerosol generation device 100A is in the first state in which the aerosol source stored in the storage unit 116 runs short. On the other hand, if the time derivative of the temperature of the load 132 is less than or equal to the threshold (“No” in step 716), the process proceeds to step 726. In step 726, the control unit 106 determines that the aerosol generation device 100A is in the second state in which the storage unit 116 can supply the aerosol source but the aerosol source held by the holding unit 130 is insufficient.
  • control unit 106 causes the second path 204 to function after the operation of the first path 202 is completed. Therefore, in the static state in which the aerosol is not generated, it is possible to accurately distinguish whether the aerosol generation device 100 is in the first state or in the second state.
  • control unit 106 may change the value related to the temperature of the load 132 after the operation of the first path 202 is completed or while the second path 204 is functioning.
  • the first state and the second state can be distinguished. Therefore, in the configuration in which the first path 202 for generating the aerosol and the second path 204 for detecting the shortage of the aerosol source are sequentially turned on, the first state and the second state are distinguished. it can.
  • the control unit 106 may cause the second path 204 to function after the operation of the first path 202 is completed a plurality of times. For example, after the on / off of the switch Q1 is completed five times (the aspiration by the user is completed five times), the switch Q2 may be turned on. In this case, after the storage unit 116 is replaced with a new storage unit 116 or after the storage unit 116 is replenished with the aerosol source, the control unit 106 causes the second path 204 to function as the number of operations of the load 132 or the integrated operation amount increases. The number of operating the first path 202 may be reduced.
  • control (steps 720 to 724) executed in the first state is different from the control (step 728) executed in the second state.
  • FIG. 8 is a diagram illustrating an exemplary circuit configuration regarding a portion of the aerosol generation device 100A according to the first embodiment of the present disclosure.
  • the circuit 800 shown in FIG. 8 includes a power supply 110, a control unit 106, an element 112, a load 132, a single path 802, a switch Q1 including an FET 806, a constant voltage output circuit 808, and a resistor 812.
  • Circuit 134 may be configured to include a single path 802 as shown in FIG. Path 802 is connected in series to load 132. Path 802 may include switch Q 1 and resistor 812. In this example, circuit 134 may further include an element (not shown) that smoothes the power supplied to load 132. Thereby, the influence of noise at the time of transition (turn-on and turn-off of the switch) or noise due to surge current can be reduced, and the first state and the second state can be distinguished with high accuracy.
  • control unit 106 can control the switch Q 1 and can acquire the value detected by the element 112.
  • the control unit 106 causes the path 802 to function by switching the switch Q1 from the off state to the on state.
  • Path 802 is used to atomize the aerosol source.
  • the switch Q1 is switched on and the path 802 is functional, the load 132 is powered and the load 132 is heated. The heating of the load 132 atomizes the aerosol source held by the holding unit 130 in the atomizing unit 118 to generate an aerosol.
  • Path 802 is also used to obtain a value related to the temperature of load 132.
  • the switch Q1 When the switch Q1 is on and the path 802 is functioning, current flows through the constant voltage output circuit 808, the switch Q1, the resistor 812 and the load 132.
  • the voltage value applied to resistor 812 can be used as a value related to the temperature of load 132 to estimate the temperature of load 132 .
  • the example of element 112 is not limited to a voltage sensor, but may include other elements such as a current sensor (eg, a Hall element).
  • the aerosol generation device 100A having the configuration shown in FIG. 8 may further include a low pass filter (not shown).
  • a value (current value, voltage value, etc.) related to the temperature of the load 132 acquired using the element 112 may pass through the low pass filter.
  • the control unit 106 may obtain a value related to the temperature that has passed through the low pass filter, and may use this to derive the temperature of the load 132.
  • constant voltage output circuit 808 is shown as an LDO regulator and may include capacitor 814, FET 816, error amplifier 818, reference voltage source 820, resistors 822 and 824, and capacitor 826.
  • the configuration of the constant voltage output circuit 808 is merely an example, and various configurations are possible.
  • FIG. 9 illustrates the timing of atomization of the aerosol source and estimation of the remaining amount of the aerosol source using the switch Q1 in the aerosol generation device 100A including the circuit 800 of FIG. Since the circuit of FIG. 8 has only a single path 802, the control unit 106 determines whether the aerosol source is insufficient while the aerosol source is atomized (while the user is aspirating). It also detects.
  • FIG. 10 is a flowchart showing a process of detecting the shortage of the aerosol source in the aerosol generation device 100A according to the present embodiment.
  • the aerosol generation device 100A includes the circuit 800 shown in FIG.
  • step 1002 is the same as the process of step 602 in FIG. 6, and when the predetermined condition is satisfied, the control unit 106 determines that suction by the user is started.
  • step 1004 the control unit 106 turns on the switch Q1 to cause the path 802 to function. Therefore, power is supplied to the heater (load 132), and the aerosol source in the holding unit 130 is heated to generate an aerosol.
  • the control unit 106 also obtains a value related to the temperature of the load 132 (eg, a voltage value applied to the resistor 812, a current value flowing through the load 132, etc.) by the element 112. As already described, the temperature of the load 132 is derived on the basis of the obtained values.
  • control unit 106 starts a timer (not shown).
  • steps 1006 to 1024 are similar to the processes of steps 608 to 626.
  • control (steps 1016 to 1020) executed in the first state and the control (step 1024) executed in the second state are the same. It is different.
  • FIG. 11 is a graph conceptually showing a time-series change in resistance value of the load 132 when the user performs normal suction using the aerosol generation device 100A.
  • the resistance value of the load 132 changes with the temperature of the load 132.
  • R R
  • T.B.P the resistance value of the load 132
  • the resistance value of the load 132 also stabilizes.
  • the resistance of the load 132 also decreases.
  • the influence of the change in resistance of the load 132 due to heating with respect to the load 132 at the time of the previous suction exerting on the resistance of the load 132 at the next suction is referred to as “heat history” of the load. Do. In the case of the example of FIG. 11, since such an influence does not occur, no thermal history remains with respect to the resistance value of the load 132.
  • FIG. 12A is a graph conceptually showing a time-series change in resistance value of the load 132 when the interval from the end of suction by the user to the start of the next suction is shorter than the normal interval. .
  • FIG. 12A (a) is a graph showing such a case.
  • the situation from the start to the end of the first suction is the same as in the case of normal suction in FIG.
  • the temperature of the load 132 decreases, and the resistance of the load 132 also decreases accordingly.
  • the temperature of the load 132 is higher than room temperature and thus the resistance of the load 132 is also resistance at room temperature Greater than the value R (T R.T.
  • the temperature of the load 132 is a state in which the load 132 is heated during the second suction and the aerosol is stably generated.
  • the temperature of the load 132 may reach the threshold (for example, 350 ° C.) indicated in the embodiments described in connection with FIGS. 6, 7 and 10.
  • FIG. 12B is a flow chart illustrating a process of modifying conditions to distinguish between the first state and the second state when suction by a user is performed at short intervals according to an embodiment of the present disclosure.
  • step 1202 The process starts in step 1202, and the control unit 106 sets the counter n to 0.
  • step 1204 the control unit 106 measures a suction interval (interval meas ) from the end time of the previous suction to the start time of the current suction.
  • step 1206 the control unit 106 increments the value of the counter n.
  • interval preset a preset interval of values measured in step 1204 from the interval meas the subtracted value ( ⁇ interval (n)).
  • the value of interval preset may be the time (for example, 1 second) for the temperature of load 132 to return to room temperature from the boiling point of the aerosol source in the case of normal suction, or a sufficient amount after the end of the previous suction The time until the aerosol source is supplied from the reservoir 116 to the holder 130 may be used.
  • step 1210 the control unit 106 determines whether ⁇ interval (n) calculated in step 1208 is greater than zero.
  • ⁇ interval (n) is 0 or less (interval meas is interval preset higher) if ( "No" in step 1208), the process is supposed to proceed to step 1216. However, processing may return before step 1204, and steps 1204 through 1210 may be repeated a predetermined number of times.
  • step 1212 the control unit 106 obtains a value ⁇ obtained by integrating ⁇ interval (n) calculated so far.
  • the formula shown in step 1210 is only an example.
  • the effect of the old heat history included in the heat history of the load 132 on the above condition is included in the heat history of the load 132. It can carry out so that heat history may become smaller than the influence on the condition concerned. Thereby, even when a plurality of heat histories are accumulated, it is possible to accurately distinguish the first state and the second state. It will be apparent to one skilled in the art that various calculations may be performed at step 1212.
  • step 1214 the control unit 106 obtains the above condition (for example, ⁇ t thre ) based on the integrated value ⁇ obtained in step 1212 and a predetermined function.
  • ⁇ t thre may be preset so as to be smaller as the integrated value ⁇ ⁇ ⁇ is larger (as the suction interval is smaller). Therefore, it may be determined that the first state occurs as the time interval from the end of the request for generation of aerosol (aspiration by the user, pressing of a predetermined button, etc.) to the start of the next request is shorter.
  • the above condition is corrected so that
  • Derutainterval (n) is 0 or less (interval meas is interval preset higher) if ( "No" in step 1208), the process proceeds to step 1216.
  • the control unit 106 resets the counter n.
  • the process proceeds to step 1218, where ⁇ t thre is set to a predetermined value. That is, if the aspiration interval is large enough, the conditions used to distinguish between the first and second states are not modified.
  • the control unit 106 acquires the time-series change of the request based on the request for generation of the aerosol, and based on the heat history of the load 132 derived from the time-series change of the request, It operates to correct the conditions for distinguishing between the first state and the second state. Therefore, even if the abnormal suction is performed, the first state and the second state can be accurately distinguished.
  • the same problem as the example of FIGS. 12A and 12B may occur. Can be solved. That is, even if the time-series change of the demand for the generation of the aerosol is due to the aspiration performed over a longer time than usual, the first state is determined based on the thermal history of the load 132 derived from the change. The conditions for differentiating from the second state can be modified.
  • FIG. 13A is a graph conceptually showing a time-series change in resistance value of the load 132 when the time required for cooling the load 132 is long due to a cause such as deterioration of the load 132 as compared with the case where the load 132 is normal. It is.
  • the next suction may start before the temperature of the load 132 returns to room temperature.
  • the graph of FIG. 13A shows such a situation.
  • the situation from the start to the end of the first suction is similar to that of the normal suction of FIG.
  • the temperature of the load 132 decreases, and the resistance of the load 132 also decreases accordingly.
  • the inventors of the present invention use the threshold (the threshold used to distinguish between the first state and the second state in the embodiment as described in connection with FIGS. 6, 7 and 10).
  • the threshold used to distinguish between the first state and the second state in the embodiment as described in connection with FIGS. 6, 7 and 10.
  • FIG. 13B is a flowchart illustrating a process of modifying conditions to distinguish between the first state and the second state when the time taken to cool the load 132 is long as compared to the normal case, according to an embodiment of the present disclosure. It is.
  • step 1302 The process starts in step 1302, and the control unit 106 obtains an initial temperature T ini of the load 132 when suction by a user is started and the circuit 134 of the aerosol generation device 100A functions.
  • step 1304 the control unit 106 obtains the above condition (for example, ⁇ t thre ) based on the initial temperature T ini and a predetermined function.
  • a predetermined function F T ini
  • step 1304 processing may be performed such that ⁇ t thre decreases as the temperature of the load 132 when the circuit 134 of the aerosol generation device 100 functions increases. Therefore, according to the present embodiment, as the temperature of the load 132 when the circuit 134 functions is higher, the control unit 106 reduces the possibility that the first state is determined to be generated. Works to fix.
  • the first embodiment of the present disclosure has been described as an aerosol generating device and a method of operating the aerosol generating device.
  • the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or a computer readable storage medium storing the program.
  • a shorter interval for example, than the time required to supply a sufficient amount of aerosol from the reservoir 116 to the holder 130 as compared to the case of normal suction
  • a temporary shortage of the aerosol source in the holding unit 130 may occur.
  • the same problem may occur when the aspiration volume in one aspiration is large compared to the case of normal aspiration.
  • the same problem may occur in the case where the suction time in one suction is long as compared with the case of normal suction.
  • the basic configuration of the aerosol generation device 100 according to the present embodiment is the same as the configuration of the aerosol generation device 100 shown in FIGS. 1A and 1B.
  • the aerosol generation device 100 may include a supply unit that makes it possible to adjust at least one of the amount or the velocity of the aerosol source supplied from the storage unit 116 to the holding unit 130.
  • the supply unit may be controlled by the control unit 106.
  • the supply unit can be realized by various configurations such as a pump disposed between the storage unit 116 and the holding unit 130, a mechanism configured to control an opening of the storage unit 116 to the atomization unit 118, and the like. .
  • generation apparatus 100 by this embodiment may be provided with the heat control part which enables adjusting the temperature of an aerosol source.
  • the temperature control unit may be controlled by the control unit 106.
  • the temperature control unit can be realized by various configurations and arrangements.
  • the aerosol generating device 100 may include a changing unit that enables the air flow resistance in the aerosol generating device 100 to be changed.
  • the change unit may be controlled by the control unit 106.
  • the change unit can be realized by various configurations and arrangements.
  • generation apparatus 100 by this embodiment may be equipped with the request
  • the request unit may be controlled by the control unit 106.
  • the request unit can be realized by various configurations and arrangements.
  • FIG. 14 is a flowchart showing a process of suppressing a temporary shortage of the aerosol source of the holding unit 130 in the aerosol generation device 100 according to the present embodiment.
  • Step 1402. When the process starts, the control unit 106 sets the counter n err to 0.
  • the value of the counter n err may indicate the number of times an unexpected suction is detected.
  • step 1404 the control unit 106 measures the suction interval, the suction volume, the length of suction time, and the like. These are merely examples of parameters that may be measured at step 1404. It should be understood by those skilled in the art that the present embodiment can be realized by measuring various parameters that help detect unexpected suction in step 1404.
  • step 1406 the controller 106 compares the parameters measured in step 1404 with the corresponding parameters in normal aspiration to determine whether the aspiration currently being performed is aspiration with an unexpected feature. Determine if For example, the control unit 106 may determine that the current suction is an unexpected suction when the measured suction interval is shorter than a predetermined threshold. In another example, the control unit 106 may determine that the current suction is an unexpected suction when the measured suction volume exceeds a predetermined threshold. In another example, the control unit 106 may determine that the current suction is an unexpected suction when the length of the measured suction time is longer than a predetermined threshold. Alternatively, the control unit 106 may use the technique described in connection with FIGS.
  • the control unit 106 may make the determination of step 1406 based on the temperature change of the load 132 after the circuit 134 is made to function. Alternatively, as described in the first embodiment, the control unit 106 may perform the determination of step 1406 based on a time-series change of the request from the request unit.
  • the process returns to before step 1404. Alternatively, the process may end.
  • step 1406 When the current suction is unexpected suction (“Yes” in step 1406), a state in which the reservoir 116 can supply the aerosol source but the aerosol source held by the holder 130 may run short (more specifically, In such a case, the shortage of the aerosol source of the holding unit 130 results in detection of a dry state or a precursor of the dry state in which the temperature of the load 132 exceeds the boiling point of the aerosol source.
  • the process proceeds to step 1408, where the control unit 106 increments the value of the counter n err .
  • step 1410 the control unit 106 determines whether the value of the counter n err exceeds a predetermined threshold.
  • step 1414 the control unit 106 holds the amount of aerosol source held by the holding unit 130 at least when the power supply 110 starts supplying power to the load 132 and / or when the power supply 110 completes supplying power to the load 132.
  • the control to increase or the control to improve the possibility of increasing the holding amount may be performed. Thereby, generation
  • the control unit 106 may execute control to make the interval between the completion of the generation of the aerosol and the start of the next generation of the aerosol longer than the previous interval.
  • generation of aerosol is prohibited during the extended interval, and a time for supplying the aerosol source from the reservoir 116 to the holder 130 can be secured. Therefore, the occurrence or recurrence of temporary drying of the holding unit 130 can be suppressed.
  • the control unit 106 may correct the interval length based on at least one of the viscosity of the aerosol source, the remaining amount of the aerosol source, the electrical resistance value of the load 132, and the temperature of the power source 110. This can prevent the interval from becoming excessively long, and can suppress the deterioration of the user experience.
  • control unit 106 may control the above-described supply unit to increase at least one of the amount or the velocity of the aerosol source supplied from the storage unit 116 to the holding unit 130. Thereby, it is possible to suppress the occurrence or recurrence of temporary drying of the holding unit 130 without causing the user to feel inconvenience.
  • control unit 106 may control the circuit to reduce the amount of aerosol generation.
  • the control unit 106 may control the above-described temperature control unit to heat the aerosol source.
  • a common liquid aerosol source has the property of decreasing its viscosity as its temperature rises. That is, if the aerosol source is heated at a temperature at which generation of aerosol does not occur, at least one of the amount or the velocity of the aerosol source supplied from the reservoir 116 to the holder 130 can be increased by capillary effect.
  • the control unit 106 may also control the temperature control unit to heat the aerosol source while the aerosol is not generated by the load 132. As a result, the aerosol source is supplied from the storage unit 116 to the holding unit 130 mainly when suction is not performed, so the effect of heating can be easily obtained.
  • the control unit 106 may also use the load 132 as a temperature control unit. As a result, there is no need to provide another heater for heating, and the configuration can be simplified and the cost can be reduced.
  • control unit 106 may control the above-described changing unit to increase the ventilation resistance in the aerosol generation device 100.
  • control unit 106 controls the circuit 134 based on the correlation such that the larger the request from the above-described request unit (for example, the larger the change in the detected air pressure with respect to suction), the more the aerosol is generated. You may In step 1414, the control unit 106 may correct the correlation so that the amount of aerosol generation corresponding to the size of the request is reduced.
  • control unit 106 performs a first mode in which an interval from the completion of the generation of the aerosol to the start of the next generation of the aerosol is longer than the previous interval, and the power source 110 supplies the load 132 At the time of starting power feeding and / or when power source 110 completes power feeding to load 132, control to increase the amount of holding of the aerosol source in holding unit 130 without controlling the interval or the amount of holding increases It may be configured to be able to execute the second mode of performing control to improve the possibility. In step 1414, the control unit 106 may execute the second mode in preference to the first mode. Thereby, it is possible to suppress the occurrence or recurrence of temporary drying of the holding unit 130 without causing the user to feel inconvenience.
  • the control unit 106 may also execute the first mode when detecting the dry state or the precursor of the dry state of the holding unit 130 after the execution of the second mode.
  • interval control is performed only when temporary drying of the holding unit 130 can not be suppressed by means other than interval control that may impair the user's convenience, ensuring the user's convenience And suppression of the occurrence or recurrence of temporary drying of the holding portion 130 can be achieved.
  • the control unit 106 may select the process to be performed in step 1414 from the various processes as described above each time. For example, among the processing that can be executed in step 1414, processing that imposes less burden on the user may be preferentially executed. If the execution or the recurrence of the temporary drying of the holding unit 130 can not be suppressed even by executing the process, a process that places a greater burden on the user may be performed.
  • step 1412 the control unit 106 warns the user. It is desirable that the warning be able to make it easy for the user to understand that the effect of the current aspiration may make it impossible to generate sufficient aerosol.
  • the control unit 106 may cause the notification unit 108 to function based on the detection of the dry state or the precursor of the dry state described above.
  • the notification unit 108 is a light emitting element such as an LED, a display, a speaker, a vibrator, or the like
  • the control unit 106 may cause the notification unit 108 to perform operations such as light emission, display, vocalization, and vibration. .
  • the user can refrain from suction, and as a result, it is possible to secure a time for supplying the aerosol source from the storage unit 116 to the holding unit 130. Therefore, temporary drying of the holding part 130, relapse of drying, etc. can be suppressed.
  • step 1412 when the control unit 106 causes the notification unit 108 to function once or a plurality of times and further detects a dry state or a precursor of the dry state, the control unit 106 makes the next interval longer than the previous interval. Control may be performed. Thereby, it is possible to suppress the occurrence or recurrence of temporary drying of the holding unit 130 without causing inconvenience to the user from the beginning.
  • the control unit 106 may correct the interval length based on at least one of the viscosity of the aerosol source, the remaining amount of the aerosol source, the electrical resistance value of the load 132, and the temperature of the power source 110.
  • the control unit 106 after completion of the generation of the aerosol, is a period from when the amount of the aerosol source equal to or more than the amount of the aerosol source used to generate the aerosol is supplied from the storage unit 116 to the holding unit 130 In the interval equivalent to the above, control to suppress the generation of aerosol or control to improve the possibility of suppressing the generation of aerosol may be executed. Thereby, generation
  • the control unit 106 controls the notification unit 108 in the first mode while generating the aerosol, and controls the notification unit 108 in the second mode different from the first mode during the interval.
  • the control unit 106 may control the notification unit 108 in a third mode different from the second mode when acquiring a request from the request unit during the interval.
  • the controller 106 may also control the circuit 134 to inhibit the generation of aerosol during the interval. As a result, the amount of the aerosol source held by the holding unit 130 is less likely to be reduced during the interval. As a result, generation or recurrence of temporary drying of the holding unit 130 can be suppressed.
  • the control unit 106 may also modify the length of the interval based on at least one of the size and the change of the request from the request unit. As a result, the length of the interval is corrected according to the suction pattern, so that the occurrence or recurrence of temporary drying of the holding unit 130 can be suppressed by an appropriate suction interval.
  • FIG. 15 illustrates an example of aspiration interval calibration performed in process 1400 of FIG.
  • the control unit 106 can calibrate the current suction interval A using correction coefficients obtained by various methods.
  • the control unit 106 may include a suction volume deriving unit 1510, a suction interval deriving unit 1512, a liquid viscosity deriving unit 1514, and a holding unit contact amount deriving unit 1518, or may be configured to function as these components.
  • the aerosol generating device 100 may comprise at least one of a flow or flow rate sensor 1502, a temperature sensor 1506, a current sensor 1508 and a voltage sensor 1510.
  • the aerosol generating device 100 may also include means for detecting the liquid property 1504 of the aerosol source.
  • the suction volume deriving unit 1510 derives a suction volume based on the flow rate or flow rate value detected by the flow rate or flow rate sensor 1502.
  • the control unit 106 obtains the correction coefficient ⁇ 1 from the derived suction volume based on the predefined relation 1522 between the suction volume and the correction coefficient ⁇ 1.
  • the suction interval deriving unit 1512 derives a suction interval based on the flow rate or flow rate value detected by the flow rate or flow rate sensor 1502.
  • the control unit 106 obtains the correction coefficient ⁇ 2 from the derived suction volume based on the predefined relationship 1524 between the suction interval and the correction coefficient ⁇ 2.
  • the liquid viscosity deriving unit 1514 derives the liquid viscosity based on the liquid physical property of the aerosol source and the temperature detected by the temperature sensor 1506.
  • the control unit 106 obtains the correction coefficient ⁇ 3 from the derived liquid viscosity based on the predefined relationship 1526 between the liquid viscosity and the correction coefficient ⁇ 3.
  • the control unit 106 obtains the correction coefficient ⁇ 4 from the detected outside air temperature based on the predefined relationship 1528 between the outside air temperature 1516 detected by the temperature sensor 1506 and the correction coefficient ⁇ 4.
  • the holding unit contact amount deriving unit 1518 derives the holding unit contact amount based on the current value detected by the current sensor 1508 and the voltage value detected by the voltage sensor 1510.
  • the holding unit contact amount is an amount indicating how much the holding unit 130 contacts the aerosol source stored in the storage unit 116.
  • the amount of the aerosol source supplied from the storage unit 116 to the holding unit 130 fluctuates due to the capillary effect. Since the temperature of the load 132 also changes as a result of the fluctuation of the amount of the aerosol source supplied to the holding unit 130, the holding unit is obtained from the resistance value of the load 132 derived using the current sensor 1508 and the voltage sensor 1510.
  • the amount of contact can be derived.
  • the control unit 106 obtains the correction coefficient ⁇ 5 from the derived holding unit contact amount based on the predefined relationship 1530 between the holding unit contact amount and the correction coefficient ⁇ 5.
  • the control unit 106 obtains the correction coefficient ⁇ 6 based on the predefined relationship 1532 between the heater resistance value 1520 derived from the detected current value and voltage value and the correction coefficient ⁇ 6.
  • the control unit 106 can apply the correction coefficients ⁇ 1 to ⁇ 6 obtained as described above to the current suction interval A by various methods. For example, the control unit 106 may obtain the configured suction interval A ′ by using a value obtained by multiplying A by adding the correction coefficients ⁇ 1 to ⁇ 6 as the entire correction coefficient.
  • the second embodiment of the present disclosure has been described as an aerosol generating device and a method of operating the aerosol generating device.
  • the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or a computer readable storage medium storing the program.
  • the reservoir is in the first state where the aerosol source stored in the reservoir runs short, or the aerosol source that the reservoir can supply the aerosol source but the holder holds It is possible to realize an aerosol generation device that can distinguish whether it is in the second state that is insufficient.
  • the third embodiment of the present disclosure described below makes it possible to appropriately control an aerosol generating device having such features.
  • Configurations eg, the configurations described in connection with FIGS. 1A, 1B, 2, 3, 8 etc.
  • methods of operation eg, such as the aerosol generation devices described in relation to the first embodiment of the present disclosure 6, 7, 10, 12B, 13B etc.
  • the method of operation of the aerosol generating device described with respect to the second embodiment of the present disclosure eg, FIG. 14, FIG.
  • the process described with reference to FIG. 15 and the like can be used as an example of the present embodiment.
  • the aerosol generating apparatus 100 obtains a value related to the power supply 110, a load 132 that generates power by generating power from the power supply 110, and atomizes the aerosol source, and a temperature of the load 132.
  • a holding unit 130 to hold and a control unit 106 are provided.
  • the control unit 106 is configured such that the aerosol generation device 100 runs out of the aerosol source stored in the storage unit 116 based on the change in the value related to the temperature of the load 132 after or while the circuit 134 is functioning.
  • control it distinguishes whether it is in the second state where the storage unit 116 can supply the aerosol source but the aerosol source held by the holding unit 130 runs short, and the first state is detected.
  • the control may be performed, and the second control different from the first control may be performed when the second state is detected.
  • the control when detecting the shortage of the aerosol source of the storage unit 116 and the control when detecting the shortage of the aerosol source of the holding unit 130 are different, it is appropriate according to the event that occurs in the aerosol generating device 100. Control can be performed.
  • the temperature of the load 132 exceeds the boiling point of the aerosol source or the temperature at which the generation of the aerosol source occurs due to evaporation of the aerosol source due to a shortage of the aerosol source that the reservoir 116 stores.
  • the temperature of the load 132 is determined by the evaporation of the boiling point of the aerosol source or the evaporation of the aerosol source because the reservoir 116 can supply the aerosol source but lacks the aerosol source that the holding unit 130 holds. Exceeding the temperature at which generation occurs.
  • the second control described above reduces the number of aerosol sources stored by the storage section 116 more than the first control described above. As a result, the remaining amount of aerosol in the storage unit 116 and the remaining amount of aerosol in the holding unit 130 can be maintained at appropriate values according to the event.
  • the control executed by the control unit 106 in the second control changes the number of variables and / or the amount of algorithm more than the control executed by the control unit 106 in the first control.
  • the first control is executed when the first state (a state in which the aerosol source stored in the storage unit 116 is insufficient) is detected.
  • the first control may only include instructing the user to replace the reservoir 116 or replenish the aerosol.
  • the second control is executed when the second state (a state in which the storage unit 116 can supply the aerosol source but the aerosol source held by the holding unit 130 is insufficient) is detected.
  • the second control may include, for example, various controls that may be included in the process of step 1414 of FIG. 14 described in connection with the second embodiment of the present disclosure.
  • the second control increases the amount of aerosol source held by the holding unit 130 at least when the power supply 110 starts supplying power to the load 132 and / or when the power supply 110 completes supplying power to the load 132.
  • the control may include control to increase the possibility that the holding amount increases.
  • the second control may also include control to make an interval between the completion of the generation of the aerosol and the start of the next generation of the aerosol longer than the previous interval. The length of the interval may be corrected based on at least one of the viscosity of the aerosol source, the remaining amount of the aerosol source, the electrical resistance value of the load 132, and the temperature of the power supply 110.
  • the second control may also include control to increase at least one of the amount or the velocity of the aerosol source supplied from the reservoir 116 to the holder 130.
  • the second control may also include controlling the circuit 134 to reduce the amount of aerosol produced.
  • the second control may also include controlling the temperature control unit to heat the aerosol source.
  • the second control may also include controlling the temperature control unit to warm the aerosol source while the aerosol is not generated by the load 132.
  • the second control may also include controlling the above-described changes to increase the ventilation resistance in the aerosol generating device 100.
  • the second control may also include controlling the circuit 134 based on the correlation such that the larger the demand from the demander is, the more the aerosol is produced.
  • the second control may also include modifying the correlation to reduce the amount of aerosol generation that corresponds to the magnitude of the request. It will be appreciated that, in this embodiment, to perform the second control, as compared to the first control, it is necessary to change the number of variables and / or the amount of algorithm.
  • the number of operations required of the user to allow the generation of the aerosol in the second control is less than the number of operations required of the user to allow the generation of the aerosol in the first control.
  • the user has to perform an operation of replacing the storage unit 116, an operation of replenishing the storage unit 116 with an aerosol source, and the like.
  • the second control may include various controls as described above, these controls are automatically executed by components of the aerosol generating apparatus 100 such as the control unit 106 without requiring the user to perform work. It is possible.
  • the number of operations required of the user to allow the generation of the aerosol in the second control requires the user to allow the generation of the aerosol in the first control. It will be appreciated that it may be less than the number of tasks performed.
  • control unit 106 may prohibit the generation of the aerosol for at least a predetermined period in the first control and the second control.
  • generation apparatus 100 since the aerosol production
  • the period during which the generation of the aerosol is prohibited in the second control may be shorter than the period during which the generation of the aerosol is prohibited in the first control.
  • an operation such as replacing the storage section 116 is necessary, but to return from the second state to a state in which normal control is possible No work is required. Therefore, it is possible to suppress the disabling control from being performed for an unnecessarily long time.
  • the first control and the second control each have a return condition for transitioning from a state in which the generation of the aerosol is prohibited to a state in which the generation of the aerosol is permitted.
  • the return means that the user operates the aerosol generation device 100 to return to a state in which the load 132 can be supplied.
  • the return condition in the first control may be set to be stricter than the return condition in the second control.
  • the return condition in the first control includes a larger number of conditions to be satisfied than the return condition in the second control.
  • the return condition in the first control has more man-hours for the user to work than the return condition in the second control.
  • the return condition in the first control takes longer to execute than the return condition in the second control.
  • the recovery condition in the first control is not completed only by the control by the control unit 106 and requires manual operation by the user, etc., while the recovery condition in the second control is completed only by the control by the control unit . In another example, even if the return condition in the second control is satisfied, the return condition in the first control is not satisfied.
  • the number of replacement operations of the components of the aerosol generation device 100 included in the recovery condition in the first control may be greater than the number of replacement operations of the components of the aerosol generation device 100 included in the recovery condition in the second control. Good.
  • the aerosol generation device 100 may include one or more notification units 108.
  • the number of notification units 108 that function in the first control may be greater than the number of notification units 108 that function in the second control. This makes it easy for the user to recognize the shortage of the aerosol source when the user's work is required to return to the normal state. As a result, early recovery is possible.
  • the time when the notification unit 108 functions in the first control may be longer than the time when the notification unit 108 functions in the second control.
  • the amount of power supplied from the power supply 110 to the notification unit 2 in the first control may be larger than the amount of power supplied from the power supply 110 to the notification unit 2 in the second control.
  • the third embodiment of the present disclosure has been described as an aerosol generating device and a method of operating the aerosol generating device.
  • the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or a computer readable storage medium storing the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Secondary Cells (AREA)
  • Medicinal Preparation (AREA)
  • Catching Or Destruction (AREA)

Abstract

The present invention provides an aerosol generator in which a retention part for retaining an aerosol source supplied from an aerosol-source storage part is prevented from undergoing a temporary shortage of the aerosol source. This aerosol generator 100A is provided with: a power supply 110; a load 132 which generates heat upon receipt of electric power fed from the power supply 110 and which atomizes the aerosol source; a component 112 which is used to acquire a value related to the temperature of the load; a circuit 134 which electrically connects the power supply 110 and the load 132; a storage part 116 which stores the aerosol source; a retention part 130 which retains the aerosol source supplied from the storage part 116 in such a state as to be ready for heating by the load 132; and a control unit 106 which is configured such that, upon detection of a precursor of a dry state or of the dry state itself in which the temperature of the load 132 exceeds the boiling point of the aerosol source because of a shortage of the aerosol source to be held in the retention part 130 even though the aerosol source can be supplied by the storage part 116, the control unit 106 performs a control so as to increase the amount of the aerosol source to be retained by the retention part 130 or a control so as to raise the likelihood of said amount increasing, at a time when the power supply 110 starts feeding electric power to the load 132 and/or at a time when the power supply 110 completes the power feeding to the load 132.

Description

エアロゾル生成装置並びにこれを動作させる方法及びプログラムAerosol generating device and method and program for operating the same
 本開示は、ユーザが吸引するエアロゾルを生成するエアロゾル生成装置並びにこれを動作させる方法及びプログラムに関する。 The present disclosure relates to an aerosol generating device that generates an aerosol that a user inhales, and a method and program for operating the same.
 一般的な電子たばこ,加熱式たばこやネブライザーなどの、ユーザが吸引するエアロゾルを生成するためのエアロゾル生成装置においては、霧化されることでエアロゾルとなるエアロゾル源が不足しているときにユーザが吸引を行うと、ユーザに対して十分なエアロゾルを供給できない。加えて、電子たばこや加熱式たばこの場合、意図しない香喫味を有するエアロゾルが放出され得るという問題が生じる。 In an aerosol generating apparatus for generating an aerosol to be inhaled by the user, such as a general electronic cigarette, a heating type cigarette, or a nebulizer, the user generates an aerosol source that becomes an aerosol by atomization, and the user is insufficient. When suction is performed, sufficient aerosol can not be supplied to the user. In addition, in the case of electronic cigarettes and heated cigarettes, the problem arises that aerosols having an unintended flavor and taste can be released.
 この問題に対する解決策として、特許文献1には、エアロゾル源を加熱するヒータに対して電力を供給する際のヒータ温度の変化に基づいてエアロゾル源の枯渇を検知する技術が開示されている。他の特許文献2から11もまた、上記の問題を解決するための又は上記の問題の解決に寄与する可能性がある種々の技術を開示している。 As a solution to this problem, Patent Document 1 discloses a technique for detecting depletion of an aerosol source based on a change in heater temperature when power is supplied to a heater that heats the aerosol source. Other patent documents 2 to 11 also disclose various techniques for solving the above problems or which may contribute to the solutions of the above problems.
 しかしながら、これらの従来の技術は、エアロゾル生成装置のどの部分においてエアロゾル源の不足が生じているのかを具体的に特定することができない。したがって、エアロゾル源が不足するときに適切な制御を実行するためのエアロゾル生成装置の構成、動作方法等に関して依然として改善の余地がある。 However, these conventional techniques can not specifically identify which part of the aerosol generating device is causing the shortage of the aerosol source. Therefore, there is still room for improvement regarding the configuration, operation method, and the like of the aerosol generation device for performing appropriate control when the aerosol source runs short.
欧州特許出願公開第2654469号明細書European Patent Application Publication No. 2654469 欧州特許出願公開第1412829号明細書European Patent Application Publication No. 1412829 欧州特許出願公開第2471392号明細書European Patent Application Publication No. 2471392 欧州特許出願公開第2257195号明細書European Patent Application Publication No. 2257195 欧州特許出願公開第2493342号明細書European Patent Application Publication No. 2493342 欧州特許出願公開第2895930号明細書European Patent Application Publication No. 2895930 欧州特許出願公開第2797446号明細書European Patent Application Publication No. 2797446 欧州特許出願公開第2654471号明細書European Patent Application Publication No. 2654471 欧州特許出願公開第2870888号明細書European Patent Application Publication No. 2870888 欧州特許出願公開第2654470号明細書European Patent Application Publication No. 2654470 国際公開第2015/100361号WO 2015/100361
 本開示は、上記の点に鑑みてなされたものである。 The present disclosure has been made in view of the above.
 本開示が解決しようとする第1の課題は、エアロゾル源が不足するときに適切な制御を実行するエアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することである。 A first problem to be solved by the present disclosure is to provide an aerosol generation device that performs appropriate control when an aerosol source runs short, and a method and program for operating the same.
 本開示が解決しようとする第2の課題は、エアロゾル源の貯留部から供給されたエアロゾル源を保持する保持部におけるエアロゾル源の一時的な不足を抑制するエアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することである。 A second problem to be solved by the present disclosure is an aerosol generating device that suppresses a temporary shortage of an aerosol source in a holding unit that holds an aerosol source supplied from a reservoir of an aerosol source, and a method of operating the same It is to provide a program.
 上述した第1の課題を解決するため、本開示の第1の実施形態によれば、エアロゾル生成装置であって、電源と、前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、前記負荷の温度に関連する値を取得するために用いられる要素と、前記電源と前記負荷を電気的に接続する回路と、前記エアロゾル源を貯留する貯留部と、前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、前記回路が機能した後の前記負荷の温度に関連する値の変化に基づき、前記エアロゾル生成装置が、前記貯留部が貯留する前記エアロゾル源が不足した第1状態にあるか、前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足した第2状態にあるか、を区別するように構成される制御部と、を備える、エアロゾル生成装置が提供される。 To solve the first problem described above, according to a first embodiment of the present disclosure, there is provided an aerosol generation device, which is a power supply and a load that generates heat by receiving power from the power supply and atomizes the aerosol source. An element used to obtain a value related to the temperature of the load, a circuit electrically connecting the power supply and the load, a storage unit storing the aerosol source, and the storage unit And the storage unit stores the aerosol source based on a change in a value related to the temperature of the load after the circuit functions, and a holding unit that holds the aerosol source in a state where the load can heat the aerosol source. In the first state where the aerosol source runs short, or in the second state where the reservoir can supply the aerosol source but the aerosol source held by the holder runs short Comprising a sea urchin configured controller, the aerosol generating device is provided.
 一実施形態において、前記第1状態においては前記貯留部が貯留する前記エアロゾル源が不足するために、前記第2状態においては前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足するために、前記負荷の温度が前記エアロゾル源の沸点又は前記エアロゾル源の蒸発によりエアロゾル生成が生じる温度を超える。 In one embodiment, the storage unit can supply the aerosol source in the second state because the aerosol source stored in the storage unit is insufficient in the first state, but the holding unit holds the aerosol source. Because of the lack of the aerosol source, the temperature of the load exceeds the boiling point of the aerosol source or the temperature at which aerosol generation occurs due to evaporation of the aerosol source.
 一実施形態において、前記回路は、前記電源及び前記負荷に対して並列接続された第1経路及び第2経路を備え、前記第1経路は前記エアロゾル源の霧化に用いられ、前記第2経路は前記負荷の温度に関連する値の取得に用いられ、前記制御部は、前記第1経路と前記第2経路とを交互に機能させるように構成される。 In one embodiment, the circuit comprises a first path and a second path connected in parallel to the power supply and the load, the first path being used for atomizing the aerosol source, the second path Is used to obtain a value related to the temperature of the load, and the control unit is configured to cause the first path and the second path to alternately function.
 一実施形態において、前記第1経路と前記第2経路は、それぞれスイッチを有し、該スイッチをオフ状態からオン状態に切替えることにより機能し、前記制御部は、前記第1経路の前記スイッチをオン状態からオフ状態に切替えてから、前記第2経路の前記スイッチをオフ状態からオン状態に切替えるまで、既定のインターバルを設けるように構成される。 In one embodiment, each of the first path and the second path has a switch and functions by switching the switch from the off state to the on state, and the control unit controls the switch of the first path. After switching from the on state to the off state, a predetermined interval is provided until the switch of the second path is switched from the off state to the on state.
 一実施形態において、前記第1経路は、前記第2経路よりも小さい抵抗値を有し、前記制御部は、前記第1経路が機能した後又は前記第2経路が機能している間の前記負荷の温度に関連する値の変化に基づき、前記第1状態と前記第2状態とを区別するように構成される。 In one embodiment, the first path has a resistance value smaller than that of the second path, and the control unit is configured to operate after the first path functions or while the second path functions. It is configured to distinguish between the first state and the second state based on a change in value associated with the temperature of the load.
 一実施形態において、前記制御部は、前記第1経路又は前記第2経路が機能してから前記負荷の温度に関連する値が閾値に到達するまでに要した時間に基づき、前記第1状態と前記第2状態とを区別するように構成される。 In one embodiment, the control unit is configured to determine whether the first state or the second path has been functioning, and the first state based on a time taken for a value related to the temperature of the load to reach a threshold. It is configured to distinguish the second state.
 一実施形態において、前記第1状態が発生したと判断されるときの前記時間が、前記第2状態が発生したと判断されるときの前記時間より短い。 In one embodiment, the time when it is determined that the first state has occurred is shorter than the time when it is determined that the second state has occurred.
 一実施形態において、前記回路は、前記電源及び前記負荷に対して並列接続された第1経路及び第2経路を備え、前記第1経路は前記エアロゾル源の霧化に用いられ、前記第2経路は前記負荷の温度に関連する値の取得に用いられ、前記制御部は、前記第1経路の動作が完了した後に前記第2経路を機能させるように構成される。 In one embodiment, the circuit comprises a first path and a second path connected in parallel to the power supply and the load, the first path being used for atomizing the aerosol source, the second path Is used to obtain a value related to the temperature of the load, and the control unit is configured to cause the second path to function after the operation of the first path is completed.
 一実施形態において、前記制御部は、前記第1経路の動作が複数回完了した後に前記第2経路を機能させるように構成される。 In one embodiment, the control unit is configured to cause the second path to function after the operation of the first path is completed multiple times.
 一実施形態において、前記制御部は、前記貯留部を新品に交換した後又は前記貯留部に前記エアロゾル源を補充した後に前記負荷の動作回数又は動作量が増えるほど、前記第2経路を機能させる前に前記第1経路を動作させる回数を減少させるように構成される。 In one embodiment, the control unit causes the second path to function as the number of times or the amount of movement of the load increases after the storage unit is replaced with a new one or after the storage unit is replenished with the aerosol source. It is configured to reduce the number of times to operate the first path before.
 一実施形態において、前記第1経路は、前記第2経路より小さい抵抗値を有し、
 前記制御部は、前記第1経路が機能した後又は前記第2経路が機能している間の前記負荷の温度に関連する値の変化に基づき、前記第1状態と前記第2状態とを区別するように構成される。
In one embodiment, the first path has a smaller resistance than the second path,
The control unit distinguishes between the first state and the second state based on a change in a value related to the temperature of the load after the first path functions or while the second path functions. Configured to
 一実施形態において、前記第1経路は、前記第2経路より小さい抵抗値を有し、前記制御部は、前記第1経路の動作が完了した後又は前記第2経路が機能している間の前記負荷の温度に関連する値の変化に基づき、前記第1状態と前記第2状態とを区別するように構成される。 In one embodiment, the first path has a resistance value smaller than that of the second path, and the control unit is configured to operate after completion of the operation of the first path or while the second path is functioning. It is configured to distinguish between the first state and the second state based on a change in value associated with the temperature of the load.
 一実施形態において、前記第1経路は、前記第2経路よりも小さい抵抗値を有し、前記制御部は、前記第2経路が機能している間の前記負荷の温度に関連する値の時間微分値に基づき、前記第1状態と前記第2状態とを区別するように構成される。 In one embodiment, the first path has a resistance value smaller than that of the second path, and the control unit is configured to calculate a time of a value related to the temperature of the load while the second path is functioning. The first state and the second state are distinguished based on the differential value.
 一実施形態において、前記第2状態が発生したと判断されるときの前記時間微分値が、前記第1状態が発生したと判断されるときの前記時間微分値より小さい。 In one embodiment, the time differential value when it is determined that the second state has occurred is smaller than the time differential value when it is determined that the first state has occurred.
 一実施形態において、前記回路は、前記負荷に対して直列接続され、前記エアロゾル源の霧化と前記負荷の温度に関連する値の取得に用いられる単一の経路と、前記負荷へ供給される電力を平滑化する素子と、を備える。 In one embodiment, the circuit is supplied in series with the load and a single path used for atomizing the aerosol source and obtaining a value related to the temperature of the load And an element for smoothing power.
 一実施形態において、前記回路は、前記負荷に対して直列接続され、前記エアロゾル源の霧化と前記負荷の温度の取得に用いられる単一の経路を備え、前記エアロゾル生成装置はローパスフィルタをさらに備え、前記要素を用いて取得された前記負荷の温度に関連する値は前記ローパスフィルタを通過し、前記制御部は、前記ローパスフィルタを通過した前記温度に関連する値を取得可能に構成される。 In one embodiment, the circuit comprises a single path connected in series to the load and used for atomizing the aerosol source and obtaining the temperature of the load, the aerosol generating device further comprising a low pass filter A value related to the temperature of the load acquired using the element passes through the low pass filter, and the control unit is configured to be able to acquire a value related to the temperature passed through the low pass filter .
 一実施形態において、前記制御部は、前記単一の経路が機能してから前記負荷の温度に関連する値が閾値に到達するまでに要した時間に基づき、前記第1状態と前記第2状態とを区別するように構成される。 In one embodiment, the control unit determines the first state and the second state based on a time taken for the value related to the temperature of the load to reach a threshold after the single path functions. And so on.
 一実施形態において、前記第1状態が発生したと判断されるときの前記時間が、前記第2状態が発生したと判断されるときの前記時間より短い。 In one embodiment, the time when it is determined that the first state has occurred is shorter than the time when it is determined that the second state has occurred.
 一実施形態において、前記制御部は、前記回路が機能した際の前記負荷の熱履歴に基づき、前記第1状態と前記第2状態とを区別する条件を修正するように構成される。 In one embodiment, the control unit is configured to correct a condition that distinguishes the first state and the second state based on a heat history of the load when the circuit functions.
 一実施形態において、前記制御部は、エアロゾルの生成に対する要求に基づき前記要求の時系列的な変化を取得し、前記要求の時系列的な変化に由来する前記負荷の熱履歴に基づき、前記条件を修正するように構成される。 In one embodiment, the control unit acquires a time-series change in the request based on a request for generation of an aerosol, and the condition based on the heat history of the load derived from the time-series change in the request. Configured to correct
 一実施形態において、前記制御部は、前記要求が終了してから次の前記要求が開始するまでの時間間隔が短いほど、前記第1状態が発生したと判断される可能性が小さくなるように前記条件を修正するように構成される。 In one embodiment, the control unit reduces the possibility that the first state is determined to occur as the time interval from the end of the request to the start of the next request is shorter. It is configured to correct the condition.
 一実施形態において、前記制御部は、前記負荷の熱履歴に含まれる古い熱履歴が前記条件の修正に与える影響を、前記負荷の熱履歴に含まれる新しい熱履歴が前記条件の修正に与える影響よりも小さくするように構成される。 In one embodiment, the control unit is configured to affect the correction of the condition by an old heat history included in the heat history of the load, and to the correction of the condition by a new heat history included in the heat history of the load. Configured to be smaller than
 一実施形態において、前記制御部は、前記回路が機能した際の前記負荷の温度に由来する前記負荷の熱履歴に基づき、前記条件を修正するように構成される。 In one embodiment, the control unit is configured to correct the condition based on a thermal history of the load derived from a temperature of the load when the circuit functions.
 一実施形態において、前記制御部は、前記回路が機能した際の前記負荷の温度が高いほど、前記第1状態が発生したと判断される可能性が小さくなるように前記条件を修正するように構成される。 In one embodiment, the control unit corrects the condition such that the higher the temperature of the load when the circuit functions, the smaller the possibility that the first state is determined to be generated. Configured
 また、本開示の第1の実施形態によれば、エアロゾル生成装置を動作させる方法であって、負荷を加熱してエアロゾル源を霧化するステップと、前記負荷の温度に関連する値の変化に基づき、前記エアロゾル生成装置が、貯留される前記エアロゾル源が不足した第1状態にあるか、貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足した第2状態にあるか、を区別するステップとを含む、方法が提供される。 In addition, according to a first embodiment of the present disclosure, there is provided a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source; and changing a value associated with a temperature of the load. Based on the above, the aerosol generation device is in a first state in which the aerosol source to be stored is short or the aerosol source to be stored is not short but the aerosol can be kept in a state where heating by the load is possible. And D. determining whether the source is in the second state that is lacking.
 また、本開示の第1の実施形態によれば、エアロゾル生成装置であって、電源と、前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、前記負荷の温度に関連する値を取得するために用いられる要素と、前記電源と前記負荷を電気的に接続する回路と、前記エアロゾル源を貯留する貯留部と、前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、前記回路が機能した後の前記負荷の温度に関連する値の変化に基づき、前記エアロゾル生成装置が、前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足した状態にあるか否かを判断するように構成される制御部と、を備える、エアロゾル生成装置が提供される。 Further, according to a first embodiment of the present disclosure, there is provided an aerosol generation device, which relates to a power source, a load that generates power by receiving power from the power source, and which atomizes an aerosol source, and a temperature of the load. The load heats an element used to obtain a value, a circuit electrically connecting the power supply and the load, a storage unit storing the aerosol source, and the aerosol source supplied from the storage unit. The aerosol generating device can supply the aerosol source based on the change of the value related to the temperature of the load after the function of the holding part that holds the possible state and the circuit functions, but the storage part can supply the aerosol source. There is provided an aerosol generation device comprising: a control unit configured to determine whether the aerosol source held by the holding unit is in a shortage state.
 一実施形態において、前記状態において、前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足したために前記負荷の温度が前記エアロゾル源の沸点を超える。 In one embodiment, in the state, the temperature of the load exceeds the boiling point of the aerosol source because the reservoir can supply the aerosol source but the aerosol source held by the holder runs short.
 また、本開示の第1の実施形態によれば、エアロゾル生成装置を動作させる方法であって、負荷を加熱してエアロゾル源を霧化するステップと、前記負荷の温度に関連する値の変化に基づき、前記エアロゾル生成装置が、貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足した状態にあるか否かを判断するステップとを含む、方法が提供される。 In addition, according to a first embodiment of the present disclosure, there is provided a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source; and changing a value associated with a temperature of the load. Determining whether the aerosol generation device is in a state in which the aerosol generation device is in a state in which the aerosol source that is stored is not insufficient but is maintained in a state where heating by the load is possible; Methods are provided, including:
 また、本開示の第1の実施形態によれば、エアロゾル生成装置であって、電源と、前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、前記負荷の温度に関連する値を取得するために用いられる要素と、前記電源と前記負荷を電気的に接続する回路と、前記エアロゾル源を貯留する貯留部と、前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、前記回路が機能した後の前記負荷の温度に関連する値の変化に基づき、前記エアロゾル生成装置が、前記貯留部が貯留する前記エアロゾル源が不足するために第1状態にあるか、前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足した第2状態にあるか、を区別するように構成される制御部と、を備え、前記第1状態においては前記貯留部が貯留する前記エアロゾル源が不足するために、前記第2状態においては前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足するために、前記負荷の温度が、前記エアロゾル源の沸点又は前記エアロゾル源の蒸発によりエアロゾル生成が生じる温度未満の既定温度へ、前記第1状態及び前記第2状態とは異なる他の状態より早く到達する、エアロゾル生成装置が提供される。 Further, according to a first embodiment of the present disclosure, there is provided an aerosol generation device, which relates to a power source, a load that generates power by receiving power from the power source, and which atomizes an aerosol source, and a temperature of the load. The load heats an element used to obtain a value, a circuit electrically connecting the power supply and the load, a storage unit storing the aerosol source, and the aerosol source supplied from the storage unit. Because the aerosol generation device runs out of the aerosol source stored by the storage unit based on the holding unit that holds it in a possible state and the change in the value related to the temperature of the load after the circuit functions. A controller configured to distinguish whether in the first state or in the second state in which the reservoir is capable of supplying the aerosol source but the aerosol source held by the holder runs short. In the first state, the storage portion can supply the aerosol source in the second state, but the holding portion holds the aerosol source in the second state. Due to the lack of the aerosol source, the temperature of the load is different from the first state and the second state to a predetermined temperature below the boiling point of the aerosol source or the temperature at which aerosol generation occurs due to evaporation of the aerosol source An aerosol generating device is provided that arrives earlier than other conditions.
 また、本開示の第1の実施形態によれば、エアロゾル生成装置を動作させる方法であって、負荷を加熱してエアロゾル源を霧化するステップと、前記負荷の温度に関連する値の変化に基づき、前記エアロゾル生成装置が、貯留される前記エアロゾル源が不足した第1状態にあるか、貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足した第2状態にあるか、を区別するステップとを含み、前記第1状態においては貯留される前記エアロゾル源が不足するために、前記第2状態においては貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足するために、前記負荷の温度が、前記エアロゾル源の沸点又は前記エアロゾル源の蒸発によりエアロゾル生成が生じる温度未満の既定温度へ、前記第1状態及び前記第2状態とは異なる他の状態より早く到達する、方法が提供される。 In addition, according to a first embodiment of the present disclosure, there is provided a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source; and changing a value associated with a temperature of the load. Based on the above, the aerosol generation device is in a first state in which the aerosol source to be stored is short or the aerosol source to be stored is not short but the aerosol can be kept in a state where heating by the load is possible. And in the second state, the aerosol source stored in the second state includes a step of determining whether the source is in the second state where the source is insufficient, and in the first state, the aerosol source stored in the second state is insufficient. The temperature of the load is at or above the boiling point of the aerosol source, because there is not a shortage of the aerosol source that is not deficient but is kept heatable by the load. Evaporation of the aerosol source to predetermined temperature below the temperature at which the aerosol generation occurs, arrive earlier than the other different states and the first state and the second state, a method is provided.
 また、本開示の第1の実施形態によれば、プロセッサにより実行されると、前記プロセッサに、上述の方法のいずれかを実行させる、プログラムが提供される。 Also according to the first embodiment of the present disclosure there is provided a program which, when executed by a processor, causes the processor to perform any of the methods described above.
 上述した第2の課題を解決するため、本開示の第2の実施形態によれば、電源と、前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、前記負荷の温度に関連する値を取得するために用いられる要素と、前記電源と前記負荷を電気的に接続する回路と、前記エアロゾル源を貯留する貯留部と、前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足するために前記負荷の温度が前記エアロゾル源の沸点を越える乾燥状態又は該乾燥状態の前兆を検知した場合、前記電源が前記負荷への給電を開始する際と前記電源が前記負荷への給電を完了する際の少なくとも一方において、前記保持部が保持する前記エアロゾル源の保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を実行するように構成された制御部と、を備える、エアロゾル生成装置が提供される。 In order to solve the second problem described above, according to the second embodiment of the present disclosure, a power source, a load that generates power by receiving power from the power source, and which atomizes an aerosol source, and a temperature of the load The component used to obtain the associated value, the circuit electrically connecting the power supply and the load, the storage section storing the aerosol source, and the aerosol source supplied from the storage section The temperature of the load is the boiling point of the aerosol source because the holding portion holds the heatable state, and the storage portion can supply the aerosol source but the aerosol source held by the holding portion runs short. The holding portion is at least one of when the power supply starts supplying power to the load and / or when the power supply completes supplying power to the load when a dry state or a precursor of the dry state is detected. And a control unit configured to control or the holding amount to increase the holding amount of the aerosol source executes the control to improve the possibility of increasing the holding, the aerosol generating device is provided.
 一実施形態において、エアロゾル生成装置は、使用者に対して通知を行う通知部を備え、前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記通知部を機能させるように構成される。 In one embodiment, the aerosol generation device includes a notification unit that notifies a user, and the control unit causes the notification unit to function when the dry state or a precursor of the dry state is detected. Configured
 一実施形態において、前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、エアロゾルの生成を完了してから次にエアロゾルの生成を開始するまでのインターバルを前回のインターバルよりも長くする制御を行うように構成される。 In one embodiment, when the control unit detects the dry state or a precursor of the dry state, an interval from the completion of the generation of the aerosol to the start of the next generation of the aerosol is longer than the previous interval. Configured to perform control.
 一実施形態において、エアロゾル生成装置は、使用者に対して通知を行う通知部を備え、前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記通知部を機能させ、前記通知部を1回又は複数回機能させた後さらに前記乾燥状態又は前記乾燥状態の前兆を検知した場合、次の前記インターバルを前回のインターバルよりも長くする制御を行うように構成される。 In one embodiment, the aerosol generation device includes a notification unit that notifies a user, and the control unit causes the notification unit to function when detecting the dry state or a precursor of the dry state. When the notification unit is functioned once or a plurality of times and then the dry state or a precursor of the dry state is further detected, control is performed to make the next interval longer than the previous interval.
 一実施形態において、前記制御部は、前記エアロゾル源の粘性、前記エアロゾル源の残量、前記負荷の電気抵抗値、前記電源の温度の少なくとも1つに基づき、前記インターバルの長さを修正するように構成される。 In one embodiment, the control unit corrects the length of the interval based on at least one of viscosity of the aerosol source, remaining amount of the aerosol source, electrical resistance value of the load, and temperature of the power source. Configured
 一実施形態において、エアロゾル生成装置は、前記貯留部から前記保持部へ供給される前記エアロゾル源の量又は速度の少なくとも一方を調整することを可能にする供給部を備える。前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記貯留部から前記保持部へ供給される前記エアロゾル源の量又は速度の少なくとも一方を増加させるように前記供給部を制御するように構成される。 In one embodiment, the aerosol generating device comprises a supply which makes it possible to adjust at least one of the amount or the velocity of the aerosol source supplied from the reservoir to the holding part. The control unit controls the supply unit to increase at least one of the amount or the velocity of the aerosol source supplied from the storage unit to the holding unit when detecting the dry condition or a precursor of the dry condition. Configured to
 一実施形態において、前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、エアロゾルの生成量を減らすように前記回路を制御するように構成される。 In one embodiment, the control unit is configured to control the circuit to reduce the amount of aerosol generation when detecting the dry state or a precursor of the dry state.
 一実施形態において、エアロゾル生成装置は、前記エアロゾル源の温度を調整することを可能にする温調部を含む。前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記エアロゾル源を加温するように前記温調部を制御するように構成される。 In one embodiment, the aerosol generating device includes a temperature control unit that enables the temperature of the aerosol source to be adjusted. The control unit is configured to control the temperature control unit to heat the aerosol source when detecting the dry state or a precursor of the dry state.
 一実施形態において、前記制御部は、前記負荷によってエアロゾルが生成されていない間に、前記温調部を制御して前記エアロゾル源を加温するように構成される。 In one embodiment, the control unit is configured to control the temperature control unit to heat the aerosol source while an aerosol is not generated by the load.
 一実施形態において、前記制御部は、前記負荷を前記温調部として用いるように構成される。 In one embodiment, the control unit is configured to use the load as the temperature control unit.
 一実施形態において、エアロゾル生成装置は、前記エアロゾル生成装置内の通気抵抗を変更することを可能にする変更部を含む。前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記通気抵抗を増大させるように前記変更部を制御するように構成される。 In one embodiment, the aerosol generating device comprises a changing unit which makes it possible to change the ventilation resistance in the aerosol generating device. The control unit is configured to control the change unit to increase the ventilation resistance when detecting the dry state or a precursor of the dry state.
 一実施形態において、エアロゾル生成装置は、エアロゾルの生成に対する要求を出力する要求部を備える。前記制御部は、前記要求が大きいほどエアロゾルの生成量が多くなるような相関関係に基づき、前記回路を制御し、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記要求の大きさに対応するエアロゾルの生成量が少なくなるように前記相関関係を修正するように構成される。 In one embodiment, the aerosol generating device comprises a requester that outputs a request for the generation of the aerosol. The control unit controls the circuit based on the correlation such that the generation amount of the aerosol increases as the demand increases, and the dry state or the precursor of the dry state is detected, the magnitude of the demand is increased. The correlation is configured to be modified to reduce the amount of corresponding aerosol formation.
 一実施形態において、前記制御部は、エアロゾルの生成を完了してから次にエアロゾルの生成を開始するまでのインターバルを前回のインターバルよりも長くする制御を行う第1モードと、前記電源が前記負荷への給電を開始する際と前記電源が前記負荷への給電を完了する際の少なくとも一方において、前記インターバルの制御を行うことなく前記保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を行う第2モードと、を実行することが可能であり、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記第1モードよりも優先して前記第2モードを実行するように構成される。 In one embodiment, the control unit performs a first mode of performing control to make an interval from the completion of the generation of the aerosol to the start of the next generation of the aerosol longer than a previous interval, and the power supply performs the load The control to increase the holding amount without controlling the interval, or the possibility that the holding amount increases, at least when starting power supply to the power supply and / or when the power supply completes power supply to the load It is possible to execute a second mode for performing control to be improved, and to execute the second mode prior to the first mode when the dry state or a precursor of the dry state is detected. Configured
 一実施形態において、前記制御部は、前記第2モードの実行後さらに前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記第1モードを実行するように構成される。 In one embodiment, the control unit is configured to execute the first mode when detecting the dry state or the precursor of the dry state after the execution of the second mode.
 一実施形態において、前記制御部は、前記回路を機能させてからの前記負荷の温度変化に基づき、前記乾燥状態を検知するように構成される。 In one embodiment, the control unit is configured to detect the dry state based on a temperature change of the load after the circuit is made to function.
 一実施形態において、エアロゾル生成装置は、エアロゾルの生成に対する要求を出力する要求部を備える。前記制御部は、前記要求の時系列的な変化に基づき、前記乾燥状態の前兆を検知するように構成される。 In one embodiment, the aerosol generating device comprises a requester that outputs a request for the generation of the aerosol. The control unit is configured to detect the precursor of the dry state based on a time-series change of the request.
 また、本開示の第2の実施形態によれば、エアロゾル生成装置を動作させる方法であって、負荷を加熱してエアロゾル源を霧化するステップと、貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足するために前記負荷の温度が前記エアロゾル源の沸点を越える乾燥状態又は該乾燥状態の前兆を検知した場合、前記負荷への給電が開始する際と前記負荷への給電が完了する際の少なくとも一方において、保持される前記エアロゾル源の保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を実行するステップとを含む、方法が提供される。 In addition, according to a second embodiment of the present disclosure, there is provided a method of operating an aerosol generating device, wherein the step of heating a load to atomize an aerosol source, and the aerosol source to be stored is not short If the temperature of the load detects a dry state or a precursor of the dry state exceeding the boiling point of the aerosol source due to a shortage of the aerosol source which is kept in a state where heating by the load is possible, Carrying out control to increase the amount of holding of the aerosol source to be held or control to improve the possibility of increasing the amount of holding at least when power feeding is started and / or when power feeding to the load is completed And a method is provided.
 また、本開示の第2の実施形態によれば、電源と、前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、前記負荷の温度に関連する値を取得するために用いられる要素と、前記電源と前記負荷を電気的に接続する回路と、前記エアロゾル源を貯留する貯留部と、前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、エアロゾルの生成の完了後、該エアロゾルの生成に用いられた量の前記エアロゾル源以上の量の前記エアロゾル源が前記貯留部から前記保持部へ供給されるまでの期間に相当するインターバルにおいては、エアロゾルの生成を抑制する制御又はエアロゾルの生成が抑制される可能性を向上させる制御を実行するように構成された制御部と、を備える、エアロゾル生成装置が提供される。 In addition, according to the second embodiment of the present disclosure, a power supply, a load that generates electric power from the power supply to generate heat, and is used to obtain a load related to atomizing an aerosol source and a value related to the temperature of the load The load, the circuit for electrically connecting the power supply and the load, the storage section storing the aerosol source, and the aerosol source supplied from the storage section in a heatable state. And an interval corresponding to a period until the aerosol source of an amount equal to or more than the amount of the aerosol source used to generate the aerosol is supplied from the storage unit to the holding unit after the generation of the aerosol is completed. A control unit configured to execute control to suppress generation of aerosol or control to improve the possibility that generation of aerosol is suppressed; There is provided.
 一実施形態において、エアロゾル生成装置は、使用者に対して通知を行う通知部を備える。前記制御部は、エアロゾルを生成している間は、前記通知部を第1モードで制御し、前記インターバルの間は、前記通知部を前記第1モードとは異なる第2モードで制御するように構成される。 In one embodiment, the aerosol generation device includes a notification unit that notifies the user. The control unit controls the notification unit in the first mode while generating the aerosol, and controls the notification unit in the second mode different from the first mode during the interval. Configured
 一実施形態において、エアロゾル生成装置は、エアロゾルの生成に対する要求を出力する要求部を含む。前記制御部は、前記インターバルの間に前記要求を取得した場合、前記通知部を前記第2モードとは異なる第3モードで制御するように構成される。 In one embodiment, the aerosol generating device includes a requester that outputs a request for generating an aerosol. The control unit is configured to control the notification unit in a third mode different from the second mode when acquiring the request during the interval.
 一実施形態において、前記制御部は、前記インターバルの間は、エアロゾルの生成を禁止するように前記回路を制御するように構成される。 In one embodiment, the control unit is configured to control the circuit to inhibit the generation of aerosol during the interval.
 一実施形態において、エアロゾル生成装置は、エアロゾルの生成に対する要求を出力する要求部を含む。前記制御部は、前記要求の大きさ及び変化の少なくとも一方に基づき、前記インターバルの長さを修正するように構成される。 In one embodiment, the aerosol generating device includes a requester that outputs a request for generating an aerosol. The control unit is configured to correct the length of the interval based on at least one of the size and the change of the request.
 また、本開示の第2の実施形態によれば、エアロゾル生成装置を動作させる方法であって、負荷を加熱してエアロゾル源を霧化し、エアロゾルを生成するステップと、エアロゾルの生成の完了後、該エアロゾルの生成に用いられた量の前記エアロゾル源以上の量の貯留された前記エアロゾル源が前記負荷が加熱可能な状態に保持されるまでの期間に相当するインターバルにおいては、エアロゾルの生成を抑制する制御又はエアロゾルの生成が抑制される可能性を向上させる制御を実行するステップとを含む、方法が提供される。 Also, according to a second embodiment of the present disclosure, there is provided a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source to generate an aerosol; and after completion of the generation of the aerosol, The generation of aerosol is suppressed at an interval corresponding to a period until the load is held in a heatable state by an amount of the aerosol source stored in an amount used for generating the aerosol. And performing the control to improve the possibility that the generation of the aerosol is suppressed.
 また、本開示の第2の実施形態によれば、電源と、前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、前記負荷の温度に関連する値を取得するために用いられる要素と、前記電源と前記負荷を電気的に接続する回路と、前記エアロゾル源を貯留する貯留部と、前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足する場合、前記電源が前記負荷への給電を開始する際と前記電源が前記負荷への給電を完了する際の少なくとも一方において、前記保持部が保持する前記エアロゾル源の保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を実行するように構成された制御部と、を備える、エアロゾル生成装置が提供される。 In addition, according to the second embodiment of the present disclosure, a power supply, a load that generates electric power from the power supply to generate heat, and is used to obtain a load related to atomizing an aerosol source and a value related to the temperature of the load The load, the circuit for electrically connecting the power supply and the load, the storage section storing the aerosol source, and the aerosol source supplied from the storage section in a heatable state. And when the storage unit can supply the aerosol source but the aerosol source held by the holding unit runs short, the power supply starts supplying power to the load and the power supply supplies the load to the load. The control unit is configured to execute control to increase the holding amount of the aerosol source held by the holding unit, or control to improve the possibility of the holding amount increasing, at least one of when completing the power feeding. And a control unit with the aerosol generating device is provided.
 また、本開示の第2の実施形態によれば、エアロゾル生成装置を動作させる方法であって、負荷を加熱してエアロゾル源を霧化するステップと、貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足する場合、前記負荷への給電が開始する際と前記負荷への給電が完了する際の少なくとも一方において、保持される前記エアロゾル源の保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を実行するステップとを含む、方法が提供される。 In addition, according to a second embodiment of the present disclosure, there is provided a method of operating an aerosol generating device, wherein the step of heating a load to atomize an aerosol source, and the aerosol source to be stored is not short The aerosol is held when power supply to the load is started and / or when power supply to the load is completed when the aerosol source is insufficient to be heated by the load. Performing a control to increase the holding amount of the source or a control to improve the possibility that the holding amount increases.
 また、本開示の第2の実施形態によれば、プロセッサにより実行されると、前記プロセッサに、上記の方法のいずれかを実行させる、プログラムが提供される。 Also, according to a second embodiment of the present disclosure, there is provided a program that, when executed by a processor, causes the processor to perform any of the above methods.
 上述した第1の課題を解決するため、本開示の第3の実施形態によれば、エアロゾル生成装置であって、電源と、前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、前記負荷の温度に関連する値を取得するために用いられる要素と、前記電源と前記負荷を電気的に接続する回路と、前記エアロゾル源を貯留する貯留部と、前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、前記回路が機能した後又は機能している間の前記負荷の温度に関連する値の変化に基づき、前記エアロゾル生成装置が、前記貯留部が貯留する前記エアロゾル源不足した第1状態にあるか、前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足した第2状態にあるか、を区別し、前記第1状態が検知された場合は第1制御を実行し、前記第2状態が検知された場合は前記第1制御と異なる第2制御を実行するように構成される制御部と、を備える、エアロゾル生成装置が提供される。 In order to solve the first problem described above, according to a third embodiment of the present disclosure, there is provided an aerosol generating device, which is a power supply and a load that generates heat by receiving power from the power supply and atomizes the aerosol source. An element used to obtain a value related to the temperature of the load, a circuit electrically connecting the power supply and the load, a storage unit storing the aerosol source, and the storage unit The aerosol generation device based on a holding unit that holds the aerosol source in a heatable state of the load, and a change in a value related to the temperature of the load after or during which the circuit functions. In the first state in which the aerosol source stored in the storage unit is short, or in the second state in which the storage unit can supply the aerosol source but the aerosol source held by the holding unit runs out. Is configured to perform first control when the first state is detected, and to execute second control different from the first control when the second state is detected. An aerosol generation device is provided, comprising: a control unit.
 一実施形態において、前記第1状態においては前記貯留部が貯留する前記エアロゾル源が不足するために、前記第2状態においては前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足するために、前記負荷の温度が前記エアロゾル源の沸点を超える。 In one embodiment, the storage unit can supply the aerosol source in the second state because the aerosol source stored in the storage unit is insufficient in the first state, but the holding unit holds the aerosol source. The temperature of the load exceeds the boiling point of the aerosol source due to the lack of the aerosol source.
 一実施形態において、前記第2制御は、前記第1制御に比べて、前記貯留部が貯留する前記エアロゾル源を多く減少させる。 In one embodiment, the second control reduces the number of aerosol sources stored by the reservoir more than the first control.
 一実施形態において、前記第2制御において前記制御部が実行する制御は、前記第1制御において前記制御部が実行する制御よりも、多くの数の変数及び/又は多くの量のアルゴリズムを変更する。 In one embodiment, the control executed by the control unit in the second control changes the number of variables and / or the amount of algorithm more than the control executed by the control unit in the first control. .
 一実施形態において、前記第2制御においてエアロゾルの生成を許可するために使用者に要求される作業の数は、前記第1制御においてエアロゾルの生成を許可するために使用者に要求される作業の数より少ない。 In one embodiment, the number of operations required of the user to allow the generation of aerosol in the second control is the number of operations required of the user to allow the generation of aerosol in the first control. Less than the number.
 一実施形態において、前記制御部は、前記第1制御と前記第2制御において、少なくとも既定期間だけエアロゾルの生成を禁止するように構成される。 In one embodiment, the control unit is configured to prohibit generation of an aerosol for at least a predetermined period in the first control and the second control.
 一実施形態において、前記第2制御においてエアロゾルの生成が禁止される期間は、前記第1制御においてエアロゾルの生成が禁止される期間より短い。 In one embodiment, the period during which the generation of the aerosol is prohibited in the second control is shorter than the period during which the generation of the aerosol is prohibited in the first control.
 一実施形態において、前記第1制御と前記第2制御は、エアロゾルの生成が禁止された状態からエアロゾルの生成が許可される状態へ移行するための復帰条件をそれぞれ有する。前記第1制御における前記復帰条件は、前記第2制御における前記復帰条件より厳しい。 In one embodiment, the first control and the second control each have a return condition for transitioning from a state in which the generation of the aerosol is prohibited to a state in which the generation of the aerosol is permitted. The return condition in the first control is stricter than the return condition in the second control.
 一実施形態において、前記第1制御における前記復帰条件に含まれる、前記エアロゾル生成装置の構成要素の交換作業の数は、前記第2制御における前記復帰条件に含まれる、前記エアロゾル生成装置の構成要素の交換作業の数より多い。 In one embodiment, the number of replacement work of the component of the aerosol generation device included in the return condition in the first control is a component of the aerosol generation device included in the return condition in the second control. More than the number of replacement work.
 一実施形態において、エアロゾル生成装置は、使用者に対して通知を行う1以上の通知部を備える。前記第1制御において機能する前記通知部の数は、前記第2制御において機能する前記通知部の数より多い。 In one embodiment, the aerosol generating device comprises one or more notifiers that notify the user. The number of notification units functioning in the first control is larger than the number of notification units functioning in the second control.
 一実施形態において、エアロゾル生成装置は、使用者に対して通知を行う1以上の通知部を備える。前記第1制御において前記通知部が機能する時間は、前記第2制御において前記通知部が機能する時間より長い。 In one embodiment, the aerosol generating device comprises one or more notifiers that notify the user. The time during which the notification unit functions in the first control is longer than the time during which the notification unit functions in the second control.
 一実施形態において、エアロゾル生成装置は、使用者に対して通知を行う1以上の通知部を備える。前記第1制御において前記電源から前記通知部へ供給される電力量は、第2制御において前記電源から前記通知部へ供給される電力量より多い。 In one embodiment, the aerosol generating device comprises one or more notifiers that notify the user. The amount of power supplied from the power supply to the notification unit in the first control is larger than the amount of power supplied from the power supply to the notification unit in the second control.
 また、本開示の第3の実施形態によれば、エアロゾル生成装置を動作させる方法であって、負荷を加熱してエアロゾル源を霧化するステップと、前記エアロゾル源が霧化された後又は前記エアロゾル源が霧化されている間の前記負荷の温度に関連する値の変化に基づき、前記エアロゾル生成装置が、貯留される前記エアロゾル源が不足した第1状態にあるか、貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足した第2状態にあるか、を区別するステップと、前記第1状態が検知された場合は第1制御を実行し、前記第2状態が検知された場合は前記第1制御と異なる第2制御を実行するステップと、を含む、方法が提供される。 Also, according to a third embodiment of the present disclosure, there is provided a method of operating an aerosol generating device comprising: heating a load to atomize an aerosol source; and after or after the aerosol source is atomized. The aerosol generating device is in a first state in which the aerosol source to be stored is in a deficient state or is stored based on a change in a value related to the temperature of the load while the aerosol source is being atomized. Differentiating whether the source is not insufficient but is in a second state in which the aerosol source is insufficient to be heated by the load, and if the first state is detected, the first step Performing a control, and performing a second control different from the first control if the second condition is detected.
 一実施形態において、前記第1状態においては前記貯留部が貯留する前記エアロゾル源が不足するために、前記第2状態においては前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足するために、前記負荷の温度が前記エアロゾル源の沸点を超える。 In one embodiment, the storage unit can supply the aerosol source in the second state because the aerosol source stored in the storage unit is insufficient in the first state, but the holding unit holds the aerosol source. The temperature of the load exceeds the boiling point of the aerosol source due to the lack of the aerosol source.
 また、本開示の第3の実施形態によれば、プロセッサにより実行されると、前記プロセッサに、上記の方法を実行させる、プログラムが提供される。 Also, according to a third embodiment of the present disclosure, there is provided a program that, when executed by a processor, causes the processor to execute the above method.
 本開示の第1の実施形態によれば、エアロゾル源が不足するときに適切な制御を実行するエアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することができる。 According to the first embodiment of the present disclosure, it is possible to provide an aerosol generating device that performs appropriate control when an aerosol source runs short, and a method and program for operating the same.
 本開示の第2の実施形態によれば、エアロゾル源の貯留部から供給されたエアロゾル源を保持する保持部におけるエアロゾル源の一時的な不足を抑制するエアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することができる。 According to a second embodiment of the present disclosure, an aerosol generation device that suppresses a temporary shortage of an aerosol source in a holding unit that holds an aerosol source supplied from a reservoir of an aerosol source, a method of operating the same, and a program Can be provided.
 本開示の第3の実施形態によれば、エアロゾル源が不足するときに適切な制御を実行するエアロゾル生成装置並びにそれを動作させる方法及びプログラムを提供することができる。 According to the third embodiment of the present disclosure, it is possible to provide an aerosol generation device that performs appropriate control when an aerosol source runs short, and a method and program for operating the same.
本開示の一実施形態によるエアロゾル生成装置の構成の概略的なブロック図である。FIG. 1 is a schematic block diagram of a configuration of an aerosol generating device according to an embodiment of the present disclosure. 本開示の一実施形態によるエアロゾル生成装置の構成の概略的なブロック図である。FIG. 1 is a schematic block diagram of a configuration of an aerosol generating device according to an embodiment of the present disclosure. 本開示の第1の実施形態によるエアロゾル生成装置の一部に関する例示的な回路構成を示す図である。FIG. 2 illustrates an exemplary circuit configuration for a portion of an aerosol generating device according to a first embodiment of the present disclosure. 本開示の第1の実施形態によるエアロゾル生成装置の一部に関する別の例示的な回路構成を示す図である。FIG. 5 illustrates another exemplary circuit configuration for a portion of an aerosol generating device according to the first embodiment of the present disclosure. 本開示の第1の実施形態による、エアロゾル源の不足を検出する例示的な処理のフローチャートである。3 is a flowchart of an exemplary process of detecting an insufficiency of an aerosol source, according to a first embodiment of the present disclosure. 本開示の第1の実施形態による、スイッチQ1及びQ2の切り替えのタイミングの例を示す。3 shows an example of the timing of switching of the switches Q1 and Q2 according to the first embodiment of the present disclosure. 本開示の第1の実施形態による、エアロゾル生成装置内のエアロゾル源の不足を検出する処理を示すフローチャートである。5 is a flow chart illustrating a process of detecting a shortage of an aerosol source in an aerosol generating device according to a first embodiment of the present disclosure. 本開示の第1の実施形態による、エアロゾル生成装置内のエアロゾル源の不足を検出する処理を示すフローチャートである。5 is a flow chart illustrating a process of detecting a shortage of an aerosol source in an aerosol generating device according to a first embodiment of the present disclosure. 本開示の第1の実施形態による、エアロゾル生成装置の一部に関する例示的な回路構成を示す図である。FIG. 2 illustrates an exemplary circuit configuration for a portion of an aerosol generating device according to a first embodiment of the present disclosure. 図8の回路を備えたエアロゾル生成装置における、スイッチQ1を用いたエアロゾル源の霧化及びエアロゾル源の残量推定のタイミングを示す。The timing of atomization of the aerosol source using switch Q1 in the aerosol production | generation apparatus provided with the circuit of FIG. 8 and residual quantity estimation of an aerosol source is shown. 本開示の第1の実施形態による、エアロゾル生成装置内のエアロゾル源の不足を検出する処理を示すフローチャートである。5 is a flow chart illustrating a process of detecting a shortage of an aerosol source in an aerosol generating device according to a first embodiment of the present disclosure. ユーザがエアロゾル生成装置を用いて正常な吸引を行う場合の負荷の抵抗値の時系列的な変化を概念的に示すグラフである。It is a graph which shows notionally the time-sequential change of the resistance value of load in case a user performs normal attraction | suction using an aerosol production | generation apparatus. ユーザによる吸引が終了してから次の吸引が開始するまでのインターバルが正常なインターバルよりも短いときの、負荷の抵抗値の時系列的な変化を概念的に示すグラフである。It is a graph which shows notionally the time series change of the resistance value of load when the interval from the end of suction by a user to the start of the next suction is shorter than a normal interval. 本開示の第1の実施形態による、ユーザによる吸引が短いインターバルで行われる場合において第1状態と第2状態とを区別するための条件を修正する処理を示すフローチャートである。It is a flowchart which shows the processing which corrects the conditions for distinguishing a 1st state and a 2nd state, when suction by a user is performed by a short interval by a 1st embodiment of this indication. 負荷の劣化などの原因により負荷の冷却に要する時間が正常な場合と比較して長くなったときの、負荷の抵抗値の時系列的な変化を概念的に示すグラフである。It is a graph which shows notionally the time-sequential change of the resistance value of load when time required for cooling of load becomes long compared with the case where it is normal because of causes, such as degradation of load. 本開示の第1の実施形態による、負荷の冷却に要する時間が正常な場合と比較して長い場合において第1状態と第2状態とを区別するための条件を修正する処理を示すフローチャートである。It is a flow chart which shows processing which corrects conditions for distinguishing a 1st state and a 2nd state, when time required for cooling of load is long compared with a case where it is normal according to a 1st embodiment of this indication. . 本開示の第2の実施形態による、エアロゾル生成装置において保持部のエアロゾル源の一時的な不足を抑制する処理を示すフローチャートである。It is a flowchart which shows the process which suppresses the temporary lack of the aerosol source of a holding | maintenance part in an aerosol generation apparatus by 2nd Embodiment of this indication. 図14の処理において行われる吸引インターバルの較正の具体例を示す。The example of a calibration of the suction interval performed in the process of FIG. 14 is shown.
 以下、図面を参照しながら本開示の実施形態について詳しく説明する。なお、本開示の実施形態は、電子たばこ,加熱式たばこやネブライザーを含むが、これらに限定されない。本開示の実施形態は、ユーザが吸引するエアロゾルを生成するための様々なエアロゾル生成装置を含み得る。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that embodiments of the present disclosure include, but are not limited to, electronic cigarettes, heated cigarettes, and nebulizers. Embodiments of the present disclosure may include various aerosol generating devices for generating an aerosol that the user inhales.
 図1Aは、本開示の一実施形態に係るエアロゾル生成装置100Aの構成の概略的なブロック図である。図1Aは、エアロゾル生成装置100Aが備える各コンポーネントを概略的且つ概念的に示すものであり、各コンポーネント及びエアロゾル生成装置100Aの厳密な配置、形状、寸法、位置関係等を示すものではないことに留意されたい。 FIG. 1A is a schematic block diagram of the configuration of an aerosol generation device 100A according to an embodiment of the present disclosure. FIG. 1A schematically and conceptually shows components included in the aerosol generating apparatus 100A, and does not show the exact arrangement, shape, size, positional relationship, etc. of the components and the aerosol generating apparatus 100A. Please keep in mind.
 図1Aに示されるように、エアロゾル生成装置100Aは、第1の部材102及び第2の部材104を備える。図示されるように、一例として、第1の部材102は、制御部106、通知部108、電源110、センサなどの要素112及びメモリ114を含んでもよい。第1の部材102はまた、後述する回路134を含んでもよい。一例として、第2の部材104は、貯留部116、霧化部118、空気取込流路120、エアロゾル流路121、吸口部122、保持部130及び負荷132を含んでもよい。第1の部材102内に含まれるコンポーネントの一部が第2の部材104内に含まれてもよい。第2の部材104内に含まれるコンポーネントの一部が第1の部材102内に含まれてもよい。第2の部材104は、第1の部材102に対して着脱可能に構成されてもよい。あるいは、第1の部材102及び第2の部材104内に含まれるすべてのコンポーネントが、第1の部材102及び第2の部材104に代えて、同一の筐体内に含まれてもよい。 As shown in FIG. 1A, the aerosol generating device 100A includes a first member 102 and a second member 104. As illustrated, as an example, the first member 102 may include a control unit 106, a notification unit 108, a power supply 110, an element 112 such as a sensor, and a memory 114. The first member 102 may also include circuitry 134 described below. As an example, the second member 104 may include a reservoir 116, an atomizer 118, an air intake channel 120, an aerosol channel 121, an inlet 122, a holder 130, and a load 132. Some of the components included in the first member 102 may be included in the second member 104. Some of the components included in the second member 104 may be included in the first member 102. The second member 104 may be configured to be removable from the first member 102. Alternatively, all components included in the first member 102 and the second member 104 may be included in the same housing instead of the first member 102 and the second member 104.
 貯留部116は、液体を収容するタンクとして構成されてもよい。エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体である。エアロゾル生成装置100Aが電子たばこである場合、貯留部116内のエアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。保持部130は、エアロゾル源を保持する。例えば、保持部130は、繊維状又は多孔質性の素材から構成され、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持する。前述した繊維状又は多孔質性の素材には、例えばコットンやガラス繊維、またはたばこ原料などを用いることができる。エアロゾル生成装置100Aがネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。別の例として、貯留部116は、消費されたエアロゾル源を補充することができる構成を有してもよい。あるいは、貯留部116は、エアロゾル源が消費された際に貯留部116自体を交換することができるように構成されてもよい。また、エアロゾル源は液体に限られるものではなく、固体でも良い。エアロゾル源が固体の場合の貯留部116は、空洞の容器であっても良い。 Reservoir 116 may be configured as a tank for containing a liquid. The aerosol source is, for example, a liquid such as polyhydric alcohol such as glycerin or propylene glycol, or water. When the aerosol generating device 100A is an electronic cigarette, the aerosol source in the storage section 116 may contain a tobacco raw material which releases a flavor component by heating, or an extract derived from the tobacco raw material. The holding unit 130 holds an aerosol source. For example, the holding unit 130 is made of a fibrous or porous material, and holds an aerosol source as a liquid in the interstices between fibers or the pores of the porous material. For the fibrous or porous material described above, for example, cotton, glass fiber, tobacco raw material or the like can be used. If the aerosol generating device 100A is a medical inhaler such as a nebulizer, the aerosol source may also include medication for the patient to inhale. As another example, the reservoir 116 may have a configuration that can replenish the consumed aerosol source. Alternatively, the reservoir 116 may be configured to be able to replace the reservoir 116 itself when the aerosol source is consumed. Also, the aerosol source is not limited to liquid, and may be solid. When the aerosol source is solid, the reservoir 116 may be a hollow container.
 霧化部118は、エアロゾル源を霧化してエアロゾルを生成するように構成される。要素112によって吸引動作が検知されると、霧化部118はエアロゾルを生成する。例えば、保持部130は、貯留部116と霧化部118とを連結するように設けられる。この場合、保持部130の一部は貯留部116の内部に通じ、エアロゾル源と接触する。保持部130の他の一部は霧化部118へ延びる。なお、霧化部118へ延びた保持部130の他の一部は、霧化部118に収められてもよく、あるいは、霧化部118を通って再び貯留部116の内部に通じてもよい。エアロゾル源は、保持部130の毛細管効果によって貯留部116から霧化部118へと運ばれる。一例として、霧化部118は、電源110に電気的に接続された負荷132を含むヒータを備える。ヒータは、保持部130と接触又は近接するように配置される。吸引動作が検知されると、制御部106は、霧化部118のヒータを制御し、保持部130を通じて運ばれたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118の別の例は、エアロゾル源を超音波振動によって霧化する超音波式霧化器であってもよい。霧化部118には空気取込流路120が接続され、空気取込流路120はエアロゾル生成装置100Aの外部へ通じている。霧化部118において生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118において生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。 The atomization unit 118 is configured to atomize the aerosol source to generate an aerosol. When the aspiration operation is detected by the element 112, the atomization unit 118 generates an aerosol. For example, the holding unit 130 is provided to connect the storage unit 116 and the atomization unit 118. In this case, a part of the holding unit 130 leads to the inside of the storage unit 116 and contacts the aerosol source. The other part of the holding unit 130 extends to the atomizing unit 118. Note that the other part of the holding unit 130 extended to the atomizing unit 118 may be stored in the atomizing unit 118 or may be communicated again to the inside of the storage unit 116 through the atomizing unit 118 . The aerosol source is transported from the reservoir 116 to the atomizer 118 by the capillary effect of the holder 130. As an example, the atomization unit 118 includes a heater including a load 132 electrically connected to the power supply 110. The heater is disposed in contact with or in proximity to the holder 130. When the suction operation is detected, the control unit 106 controls the heater of the atomizing unit 118, and atomizes the aerosol source by heating the aerosol source conveyed through the holding unit 130. Another example of the atomizing unit 118 may be an ultrasonic atomizer that atomizes an aerosol source by ultrasonic vibration. The air intake flow path 120 is connected to the atomization unit 118, and the air intake flow path 120 communicates with the outside of the aerosol generation device 100A. The aerosol generated in the atomization unit 118 is mixed with the air taken in via the air intake channel 120. The mixed fluid of aerosol and air is delivered to the aerosol flow channel 121 as indicated by the arrows 124. The aerosol flow channel 121 has a tubular structure for transporting the mixed fluid of the aerosol and the air generated in the atomizing unit 118 to the inlet 122.
 吸口部122は、エアロゾル流路121の終端に位置し、エアロゾル流路121をエアロゾル生成装置100Aの外部に対して開放するように構成される。ユーザは、吸口部122を咥えて吸引することにより、エアロゾルを含んだ空気を口腔内へ取り込む。 The suction portion 122 is located at the end of the aerosol flow channel 121, and is configured to open the aerosol flow channel 121 to the outside of the aerosol generation device 100A. The user takes in the air containing the aerosol into the oral cavity by holding and sucking the suction portion 122.
 通知部108は、LEDなどの発光素子、ディスプレイ、スピーカ、バイブレータなどを含んでもよい。通知部108は、必要に応じて、発光、表示、発声、振動などによって、ユーザに対して何らかの通知を行うように構成される。 The notification unit 108 may include a light emitting element such as an LED, a display, a speaker, a vibrator, and the like. The notification unit 108 is configured to perform some kind of notification to the user by light emission, display, vocalization, vibration or the like as necessary.
 電源110は、通知部108、要素112、メモリ114、負荷132、回路134などのエアロゾル生成装置100Aの各コンポーネントに電力を供給する。電源110は、エアロゾル生成装置100Aの所定のポート(図示せず)を介して外部電源に接続することにより充電することができてもよい。電源110のみを第1の部材102又はエアロゾル生成装置100Aから取り外すことができてもよく、新しい電源110と交換することができてもよい。また、第1の部材102全体を新しい第1の部材102と交換することによって電源110を新しい電源110と交換することができてもよい。 The power supply 110 supplies power to each component of the aerosol generation device 100A such as the notification unit 108, the element 112, the memory 114, the load 132, and the circuit 134. The power source 110 may be charged by connecting to an external power source via a predetermined port (not shown) of the aerosol generating device 100A. Only the power source 110 may be removable from the first member 102 or the aerosol generating device 100A, and may be replaced with a new power source 110. Also, the power supply 110 may be replaced with a new power supply 110 by replacing the entire first member 102 with a new first member 102.
 要素112は、負荷132の温度に関連する値を取得するために用いられるコンポーネントである。要素112は、負荷132を流れる電流の値、負荷132の抵抗値などを求めるのに必要な値を取得するために用いることができるように構成されてもよい。 Element 112 is a component used to obtain a value related to the temperature of load 132. Element 112 may be configured to be used to obtain values needed to determine the value of the current flowing through load 132, the resistance of load 132, and so forth.
 要素112はまた、空気取込流路120及び/又はエアロゾル流路121内の圧力の変動を検知する圧力センサ又は流量を検知する流量センサを含んでもよい。要素112はまた、貯留部116等のコンポーネントの重量を検知する重量センサを含んでもよい。要素112はまた、エアロゾル生成装置100Aを用いたユーザによるパフの回数を計数するように構成されてもよい。要素112はまた、霧化部118への通電時間を積算するように構成されてもよい。要素112はまた、貯留部116内の液面の高さを検知するように構成されてもよい。要素112はまた、電源110のSOC(State of Charge,充電状態)、電流積算値、電圧などを求める又は検知するように構成されてもよい。SOCは、電流積算法(クーロン・カウンティング法)やSOC-OCV(Open Circuit Voltage,開回路電圧)法等によって求められてもよい。要素112はまた、ユーザが操作可能な操作ボタンなどであってもよい。 Element 112 may also include a pressure sensor to detect pressure fluctuations in air intake channel 120 and / or aerosol channel 121 or a flow sensor to detect flow. Element 112 may also include a weight sensor that detects the weight of a component, such as reservoir 116. Element 112 may also be configured to count the number of puffs by the user using aerosol generating device 100A. The element 112 may also be configured to integrate the energization time to the atomization unit 118. Element 112 may also be configured to detect the level of the fluid level in reservoir 116. The element 112 may also be configured to determine or detect the SOC (State of Charge) of the power supply 110, current integration value, voltage, etc. The SOC may be obtained by a current integration method (coulomb counting method), an SOC-OCV (open circuit voltage) method, or the like. Element 112 may also be a user-operable operation button or the like.
 制御部106は、マイクロプロセッサ又はマイクロコンピュータとして構成された電子回路モジュールであってもよい。制御部106は、メモリ114に格納されたコンピュータ実行可能命令に従ってエアロゾル生成装置100Aの動作を制御するように構成されてもよい。メモリ114は、ROM、RAM、フラッシュメモリなどの記憶媒体である。メモリ114には、上記のようなコンピュータ実行可能命令のほか、エアロゾル生成装置100Aの制御に必要な設定データ等が格納されてもよい。例えば、メモリ114は、通知部108の制御方法(発光、発声、振動等の態様等)、要素112により取得及び/又は検知された値、霧化部118の加熱履歴等の様々なデータを格納してもよい。制御部106は、必要に応じてメモリ114からデータを読み出してエアロゾル生成装置100Aの制御に利用し、必要に応じてデータをメモリ114に格納する。 The control unit 106 may be an electronic circuit module configured as a microprocessor or a microcomputer. Control unit 106 may be configured to control the operation of aerosol generating device 100A in accordance with computer-executable instructions stored in memory 114. The memory 114 is a storage medium such as a ROM, a RAM, and a flash memory. The memory 114 may store setting data and the like necessary for control of the aerosol generation device 100A, in addition to the computer executable instructions as described above. For example, the memory 114 stores various data such as a control method of the notification unit 108 (a mode of light emission, utterance, vibration, etc.), a value acquired and / or detected by the element 112, and a heating history of the atomization unit 118 You may The control unit 106 reads data from the memory 114 as needed, uses it for control of the aerosol generation apparatus 100A, and stores the data in the memory 114 as needed.
 図1Bは、本開示の一実施形態に係るエアロゾル生成装置100Bの構成の概略的なブロック図である。 FIG. 1B is a schematic block diagram of a configuration of an aerosol generating device 100B according to an embodiment of the present disclosure.
 図示されるように、エアロゾル生成装置100Bは、図1Aのエアロゾル生成装置100Aが備える構成に加えて、第3の部材126を備える。第3の部材126は、香味源128を含んでもよい。一例として、エアロゾル生成装置100Bが電子たばこ又は加熱式たばこである場合、香味源128は、たばこに含まれる香喫味成分を含んでもよい。図示されるように、エアロゾル流路121は、第2の部材104及び第3の部材126にわたって延在する。吸口部122は、第3の部材126に備えられる。 As illustrated, the aerosol generation device 100B includes a third member 126 in addition to the configuration provided in the aerosol generation device 100A of FIG. 1A. The third member 126 may include a flavor source 128. As one example, when the aerosol generating device 100B is an electronic cigarette or a heated cigarette, the flavor source 128 may include a flavor component contained in cigarette. As shown, the aerosol flow channel 121 extends across the second member 104 and the third member 126. The suction port 122 is provided to the third member 126.
 香味源128は、エアロゾルに香味を付与するためのコンポーネントである。香味源128は、エアロゾル流路121の途中に配置される。霧化部118によって生成されたエアロゾルと空気との混合流体(以下、混合流体を単にエアロゾルと呼称する場合もあることに留意されたい)は、エアロゾル流路121を通って吸口部122まで流れる。このように、香味源128は、エアロゾルの流れに関して霧化部118よりも下流に設けられている。換言すれば、霧化部118よりも香味源128の方が、エアロゾル流路121の中で吸口部122に近い側に位置する。したがって、霧化部118によって生成されたエアロゾルは、香味源128を通過してから吸口部122へ達する。エアロゾルが香味源128を通過する際、香味源128に含まれる香喫味成分がエアロゾルに付与される。一例として、エアロゾル生成装置100Bが電子たばこ又は加熱式たばこである場合、香味源128は、刻みたばこ、又はたばこ原料を粒状、シート状もしくは粉末状に成形した加工物などの、たばこ由来のものであってもよい。香味源128はまた、たばこ以外の植物(例えばミントやハーブ等)から作られた非たばこ由来のものであってもよい。一例として、香味源128は、ニコチン成分を含む。香味源128は、メントールなどの香料成分を含有してもよい。香味源128に加えて、貯留部116も香喫味成分を含んだ物質を有してもよい。例えば、エアロゾル生成装置100Bは、香味源128にたばこ由来の香味物質を保持し、貯留部116には非たばこ由来の香味物質を含むように構成されてもよい。 The flavor source 128 is a component for imparting a flavor to the aerosol. The flavor source 128 is disposed in the middle of the aerosol channel 121. A mixed fluid of an aerosol and air generated by the atomization unit 118 (note that the mixed fluid may be simply referred to as an aerosol hereinafter) flows through the aerosol flow channel 121 to the inlet 122. Thus, the flavor source 128 is provided downstream of the atomization unit 118 with respect to the flow of the aerosol. In other words, the flavor source 128 is located closer to the mouthpiece 122 in the aerosol flow channel 121 than the atomization unit 118. Therefore, the aerosol generated by the atomizing unit 118 passes through the flavor source 128 and then reaches the mouthpiece 122. As the aerosol passes through the flavor source 128, flavor and taste components contained in the flavor source 128 are applied to the aerosol. As an example, when the aerosol generating device 100B is an electronic cigarette or a heated cigarette, the flavor source 128 is derived from tobacco, such as chopped tobacco or a processed product obtained by forming a tobacco material into particles, sheets or powders. May be The flavor source 128 may also be non-tobacco derived from plants other than tobacco (eg, mint, herbs, etc.). As one example, flavor source 128 includes a nicotine component. Flavor source 128 may contain flavoring ingredients such as menthol. In addition to the flavor source 128, the reservoir 116 may also have a substance that includes flavor and aroma components. For example, the aerosol generation device 100B may be configured to hold a tobacco-derived flavor substance in the flavor source 128, and to include the non-cigarette-derived flavor substance in the reservoir 116.
 ユーザは、吸口部122を咥えて吸引することにより、香味が付与されたエアロゾルを含んだ空気を口腔内へ取り込むことができる。 The user can take in the air including the flavored aerosol into the oral cavity by holding and sucking the mouthpiece portion 122.
 制御部106は、本開示の実施形態に係るエアロゾル生成装置100A及び100B(以下、まとめて「エアロゾル生成装置100」とも呼ぶ)を様々な方法で制御するように構成される。 The control unit 106 is configured to control the aerosol generation devices 100A and 100B (hereinafter also collectively referred to as the “aerosol generation device 100”) according to the embodiments of the present disclosure by various methods.
 エアロゾル生成装置においては、エアロゾル源が不足しているときにユーザが吸引を行うと、ユーザに対して十分なエアロゾルを供給できない。加えて、電子たばこや加熱式たばこの場合、意図しない香喫味を有するエアロゾルが放出され得る(以下、このような現象を「意図しない挙動」とも呼ぶ)。本願発明者らは、貯留部116内のエアロゾル源が不足しているときだけでなく、貯留部116にエアロゾル源が十分に残っているが保持部130内のエアロゾル源が一時的に不足しているときにも、意図しない挙動が生じることを、解決すべき重要な課題として認識した。本願発明者らは、このような課題を解決するため、貯留部116内のエアロゾル源と保持部130内のエアロゾル源のいずれが不足しているかを特定することができるエアロゾル生成装置並びにそれを動作させるための方法及びプログラムを発明した。本願発明者らはまた、エアロゾル源の貯留部から供給されたエアロゾル源を保持する保持部におけるエアロゾル源の一時的な不足を抑制するエアロゾル生成装置並びにそれを動作させる方法及びプログラムを発明した。本願発明者らはまた、エアロゾル生成装置100が、貯留部116が貯留するエアロゾル源が不足した状態にあるか、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足した別の状態にあるか、が区別される場合において、適切な制御を行うことができるエアロゾル生成装置並びにそれを動作させる方法及びプログラムを発明した。以下では、主として、エアロゾル生成装置が図1Aに示す構成を有する場合を想定して、本開示の各実施形態について詳しく説明する。但し、エアロゾル生成装置が図1Bに示す構成などの様々な構成を有する場合にも本開示の実施形態を適用できることは当業者にとって明らかであろう。 In the aerosol generating device, if the user performs suction while the aerosol source is insufficient, sufficient aerosol can not be supplied to the user. In addition, in the case of electronic cigarettes and heated cigarettes, aerosols having an unintended flavor and taste may be released (hereinafter, such a phenomenon is also referred to as “unintended behavior”). The inventors of the present invention not only have insufficient aerosol sources in the reservoir 116, but also sufficient aerosol sources remain in the reservoir 116, but there is a temporary shortage of aerosol sources in the holder 130. It was recognized as an important issue to be solved that unintended behavior might occur. In order to solve such problems, the inventors of the present invention operate an aerosol generating device that can identify which of the aerosol source in the reservoir 116 and the aerosol source in the holding unit 130 is lacking. Invented a method and program for The inventors of the present invention also invented an aerosol generation device that suppresses a temporary shortage of the aerosol source in the holding unit that holds the aerosol source supplied from the reservoir of the aerosol source, and a method and program for operating the same. The inventors of the present invention have also found that the aerosol generating device 100 is in a state in which the aerosol source stored in the storage section 116 is insufficient, or the aerosol source that the storage section 116 can supply the aerosol source but the holding section 130 holds The present inventors have invented an aerosol generating device capable of performing appropriate control, and a method and program for operating the same, in the case where it is distinguished whether there is another condition that is lacking. Hereinafter, each embodiment of the present disclosure will be described in detail, mainly assuming that the aerosol generation device has the configuration illustrated in FIG. 1A. However, it will be apparent to those skilled in the art that the embodiments of the present disclosure can be applied when the aerosol generating device has various configurations such as the configuration shown in FIG. 1B.
<第1の実施形態>
 図2は、本開示の第1の実施形態による、エアロゾル生成装置100Aの一部に関する例示的な回路構成を示す図である。
First Embodiment
FIG. 2 is a diagram illustrating an exemplary circuit configuration for a portion of the aerosol generating device 100A according to the first embodiment of the present disclosure.
 図2に示す回路200は、電源110、制御部106、要素112、負荷132(「ヒータ抵抗」とも呼ぶ)、第1経路202、第2経路204、第1電界効果トランジスタ(FET)206を含むスイッチQ1、定電圧出力回路208、第2FET210を含むスイッチQ2、抵抗212(「シャント抵抗」とも呼ぶ)を備える。FETだけでなく、iGBT、コンタクタなどの様々な素子をスイッチQ1及びQ2として用いることができることは当業者にとって明らかであろう。 The circuit 200 shown in FIG. 2 includes a power supply 110, a control unit 106, an element 112, a load 132 (also referred to as "heater resistance"), a first path 202, a second path 204, and a first field effect transistor (FET) 206. The switch Q 1, the constant voltage output circuit 208, the switch Q 2 including the second FET 210, and the resistor 212 (also referred to as “shunt resistor”) are provided. It will be apparent to those skilled in the art that various devices such as iGBTs, contactors, as well as FETs can be used as switches Q1 and Q2.
 図1Aに示される回路134は、電源110と負荷132とを電気的に接続し、第1経路202及び第2経路204を含み得る。第1経路202及び第2経路204は、電源110(及び負荷132)に対して並列接続される。第1経路202はスイッチQ1を含み得る。第2経路204はスイッチQ2、定電圧出力回路208、抵抗212及び要素112を含み得る。第1経路202は第2経路204よりも小さい抵抗値を有してもよい。この例において、要素112は電圧センサであり、抵抗212の両端の電圧値を検知するように構成される。しかし、要素112の構成はこれに限定されない。例えば、要素112は電流センサであってもよく、抵抗212を流れる電流の値を検知してもよい。 The circuit 134 shown in FIG. 1A electrically connects the power supply 110 and the load 132 and may include a first path 202 and a second path 204. The first path 202 and the second path 204 are connected in parallel to the power supply 110 (and the load 132). The first path 202 may include the switch Q1. The second path 204 may include the switch Q 2, the constant voltage output circuit 208, the resistor 212 and the element 112. The first path 202 may have a smaller resistance than the second path 204. In this example, element 112 is a voltage sensor and is configured to sense the voltage value across resistor 212. However, the configuration of the element 112 is not limited to this. For example, element 112 may be a current sensor and may sense the value of the current flowing through resistor 212.
 図2において点線矢印で示すように、制御部106は、スイッチQ1、スイッチQ2等を制御することができ、要素112により検知された値を取得することができる。制御部106は、スイッチQ1をオフ状態からオン状態に切り替えることにより第1経路202を機能させ、スイッチQ2をオフ状態からオン状態に切り替えることにより第2経路204を機能させるように構成されてもよい。制御部106は、スイッチQ1及びQ2を交互に切り替えることにより、第1経路202及び第2経路204を交互に機能させるように構成されてもよい。この構成により、後述するように、エアロゾルの生成後(ユーザによる吸引後)であっても、エアロゾルの生成中(ユーザによる吸引中)であっても、エアロゾル生成装置100が第1状態(貯留部116が貯留するエアロゾル源が不足した状態)にあるか第2状態(貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足した状態)にあるかを区別し、エアロゾル源の不足を検知することができる。 As indicated by dotted arrows in FIG. 2, the control unit 106 can control the switch Q1, the switch Q2, and the like, and can acquire the value detected by the element 112. Even if the control unit 106 is configured to cause the first path 202 to function by switching the switch Q1 from the off state to the on state, and to cause the second path 204 to function by switching the switch Q2 from the off state to the on state. Good. The control unit 106 may be configured to cause the first path 202 and the second path 204 to alternately function by alternately switching the switches Q1 and Q2. With this configuration, as described later, the aerosol generation device 100 is in the first state (storage portion) even after generation of the aerosol (after suction by the user) or during generation of the aerosol (during suction by the user) Distinguish whether it is in a state in which the aerosol source stored in 116 runs short or in a second state (a state in which the storage unit 116 can supply the aerosol source but the aerosol source held by the holding unit 130 runs short), The lack of an aerosol source can be detected.
 制御部106は、第1経路202のスイッチQ1をオン状態からオフ状態に切り替えた後、第2経路204のスイッチQ2をオフ状態からオン状態に切り替えるまで、既定のインターバルを設けるように構成されてもよい。 The control unit 106 is configured to provide a predetermined interval until the switch Q2 of the second path 204 is switched from the off state to the on state after switching the switch Q1 of the first path 202 from the on state to the off state. It is also good.
 第1経路202はエアロゾル源の霧化に用いられる。スイッチQ1がオン状態に切り替えられて第1経路202が機能するとき、ヒータ(又はヒータ内の負荷132)に電力が供給され、負荷132は加熱される。負荷132の加熱により、霧化部118内の保持部130に保持されているエアロゾル源が霧化されてエアロゾルが生成される。 The first path 202 is used to atomize the aerosol source. When the switch Q1 is switched to the on state and the first path 202 functions, power is supplied to the heater (or the load 132 in the heater), and the load 132 is heated. The heating of the load 132 atomizes the aerosol source held by the holding unit 130 in the atomizing unit 118 to generate an aerosol.
 第2経路204は負荷132の温度に関連する値の取得に用いられる。一例として、図2に示すように第2経路204に含まれる要素112が電圧センサである場合を考える。スイッチQ2がオンであり第2経路204が機能しているとき、電流は定電圧出力回路208、スイッチQ2、抵抗212及び負荷132を流れる。要素112により取得された抵抗212に印加される電圧の値と、抵抗212の既知の抵抗値Rshuntとを用いて、負荷132を流れる電流の値を求めることができる。定電圧出力回路208の出力電圧Voutと当該電流値とに基づいて、抵抗212及び負荷132の抵抗値の合計値を求めることができるので、当該合計値から既知の抵抗値Rshuntを差し引くことにより、負荷132の抵抗値RHTRを求めることができる。負荷132が温度に応じて抵抗値が変わる正又は負の温度係数特性を有している場合、予め測定しておいた負荷132の抵抗値と負荷132の温度との間の関係と、上述のようにして求められたと負荷132の抵抗値RHTRとに基づいて、負荷132の温度を推定することができる。この例における負荷132の温度に関連する値は抵抗212に印加される電圧である。しかし、抵抗212を流れる電流の値を用いて負荷132の温度を推定できることが当業者に理解されよう。したがって、要素112の具体例は電圧センサに限定されず、電流センサ(例えば、ホール素子)などの他の素子を含み得る。 The second path 204 is used to obtain a value related to the temperature of the load 132. As an example, as shown in FIG. 2, consider a case where the element 112 included in the second path 204 is a voltage sensor. When the switch Q 2 is on and the second path 204 is functioning, current flows through the constant voltage output circuit 208, the switch Q 2, the resistor 212 and the load 132. Using the value of the voltage applied to resistor 212 acquired by element 112 and the known resistance value R shunt of resistor 212, the value of the current flowing through load 132 can be determined. Since the total value of the resistance values of the resistor 212 and the load 132 can be obtained based on the output voltage V out of the constant voltage output circuit 208 and the current value, the known resistance value R shunt is subtracted from the total value. Thus, the resistance value R HTR of the load 132 can be determined. If the load 132 has a positive or negative temperature coefficient characteristic in which the resistance value changes according to the temperature, the relationship between the resistance value of the load 132 and the temperature of the load 132 measured in advance and the above-mentioned The temperature of the load 132 can be estimated on the basis of the resistance value RHTR of the load 132 determined as described above. The value associated with the temperature of load 132 in this example is the voltage applied to resistor 212. However, one skilled in the art will appreciate that the value of the current flowing through resistor 212 can be used to estimate the temperature of load 132. Thus, specific examples of element 112 are not limited to voltage sensors, but may include other elements such as current sensors (eg, Hall elements).
 図2において、定電圧出力回路208は、リニア・ドロップアウト(LDO)レギュレータとして示され、キャパシタ214、FET216、誤差増幅器218、基準電圧源220、抵抗222及び224、並びにキャパシタ226を含み得る。基準電圧源220の電圧がVREFであり、抵抗222及び224の抵抗値がそれぞれR1及びR2である場合、定電圧出力回路208の出力電圧VOUTは、VOUT=(R2/(R1+R2))×VREFとなる。図2に示す定電圧出力回路208の構成は一例にすぎず、様々な構成が可能であることが当業者に理解されよう。 In FIG. 2, constant voltage output circuit 208 is shown as a linear drop out (LDO) regulator and may include capacitor 214, FET 216, error amplifier 218, reference voltage source 220, resistors 222 and 224, and capacitor 226. When the voltage of the reference voltage source 220 is V REF and the resistance values of the resistors 222 and 224 are R1 and R2, respectively, the output voltage V OUT of the constant voltage output circuit 208 is V OUT = (R2 / (R1 + R2)) It becomes × V REF . Those skilled in the art will understand that the configuration of the constant voltage output circuit 208 shown in FIG. 2 is merely an example, and various configurations are possible.
 図3は、本開示の第1の実施形態によるエアロゾル生成装置100Aの一部に関する別の例示的な回路構成を示す図である。 FIG. 3 is a diagram illustrating another exemplary circuit configuration for a portion of an aerosol generating device 100A according to the first embodiment of the present disclosure.
 図2の場合と同様、図3に示す回路300は、電源110、制御部106、要素112、負荷132、第1経路302、第2経路304、第1FET306を含むスイッチQ1、第2FET310を含むスイッチQ2、定電圧出力回路308、抵抗312を備える。図2とは異なり、定電圧出力回路308は、第1経路302よりも電源側に配置される。この例において、定電圧出力回路308はスイッチングレギュレータであり、キャパシタ314、FET316、インダクタ318、ダイオード320及びキャパシタ322を含む。図2の場合と同様に、図3に示す回路が、第1経路302が機能するときにエアロゾル源を霧化し、第2経路304が機能するときに負荷132の温度に関連する値を取得するように動作することは、当業者にとって明らかであろう。なお図3に示す回路において、定電圧出力回路308は入力された電圧を昇圧して出力する昇圧型のスイッチングレギュレータ(いわゆるブーストコンバータ)であるが、これに代えて入力された電圧を降圧して出力する降圧型のスイッチングレギュレータ(いわゆるバックコンバータ)や、入力された電圧の昇圧と降圧の双方が可能な昇降圧型のスイッチングレギュレータ(バックブーストコンバータ)であってもよい。 Similar to the case of FIG. 2, the circuit 300 shown in FIG. 3 includes a switch 110 including a power supply 110, a control unit 106, an element 112, a load 132, a first path 302, a second path 304, and a first FET 306, and a second FET 310. Q2, a constant voltage output circuit 308, and a resistor 312 are provided. Unlike FIG. 2, the constant voltage output circuit 308 is disposed closer to the power supply than the first path 302. In this example, the constant voltage output circuit 308 is a switching regulator and includes a capacitor 314, an FET 316, an inductor 318, a diode 320 and a capacitor 322. As in the case of FIG. 2, the circuit shown in FIG. 3 atomizes the aerosol source when the first path 302 functions and obtains a value related to the temperature of the load 132 when the second path 304 functions. It will be apparent to one skilled in the art to operate as such. In the circuit shown in FIG. 3, the constant voltage output circuit 308 is a step-up switching regulator (so-called boost converter) that boosts and outputs the input voltage, but instead reduces the input voltage by It may be a step-down switching regulator (so-called buck converter) that outputs, or a step-up / step-down switching regulator (buck-boost converter) that can both boost and step down the input voltage.
 図4は、本開示の一実施形態による、エアロゾル源の不足を検出する例示的な処理のフローチャートである。ここでは、制御部106がすべてのステップを実行するものとして説明を行う。しかし、一部のステップがエアロゾル生成装置100の別のコンポーネントによって実行されてもよいことに留意されたい。なお、本実施形態では一例として図2に示す回路200を用いて説明するが、図3で示す回路300や他の回路を用いることができることは当業者にとって明らかであろう。 FIG. 4 is a flowchart of an exemplary process of detecting a shortage of an aerosol source, according to one embodiment of the present disclosure. Here, the control unit 106 will be described as performing all the steps. However, it should be noted that some steps may be performed by other components of the aerosol generating device 100. Although this embodiment will be described using the circuit 200 shown in FIG. 2 as an example, it will be apparent to those skilled in the art that the circuit 300 shown in FIG. 3 or other circuits can be used.
 処理はステップ402において開始する。ステップ402において、制御部106は、圧力センサ、流量センサ等から得られた情報に基づいて、ユーザによる吸引が検知されたか否かを判定する。例えば、制御部106は、これらのセンサの出力値が連続的に変化する場合、ユーザによる吸引が検知されたと判断してもよい。あるいは、制御部106は、エアロゾルの生成を開始するためのボタンが押されたことなどに基づいて、ユーザによる吸引が検知されたと判断してもよい。 The process starts at step 402. In step 402, the control unit 106 determines whether suction by a user is detected based on information obtained from a pressure sensor, a flow rate sensor, and the like. For example, when the output values of these sensors change continuously, the control unit 106 may determine that suction by the user has been detected. Alternatively, the control unit 106 may determine that suction by the user is detected based on pressing of a button for starting generation of aerosol, or the like.
 吸引が検知されたと判定されると(ステップ402の「Yes」)、処理はステップ404に進む。ステップ404において、制御部106はスイッチQ1をオン状態にして第1経路202を機能させる。 If it is determined that suction has been detected (“Yes” in step 402), the process proceeds to step 404. In step 404, the control unit 106 turns on the switch Q1 to cause the first path 202 to function.
 処理はステップ406に進み、制御部106は、吸引が終了したか否かを判定する。吸引が終了したと判定されると(ステップ406の「Yes」)、処理はステップ408に進む。 The process proceeds to step 406, where the control unit 106 determines whether suction has ended. If it is determined that the suction has ended ("Yes" in step 406), the process proceeds to step 408.
 ステップ408において、制御部106はスイッチQ1をオフ状態にする。ステップ410において、制御部106は、スイッチQ2をオン状態にして第2経路204を機能させる。 At step 408, the control unit 106 turns off the switch Q1. In step 410, the control unit 106 turns on the switch Q2 to cause the second path 204 to function.
 処理はステップ412に進み、制御部106は、例えば既に述べたようにして、第2経路204の電流値を検出する。ステップ414及び416において、例えば既に述べたような方法により、制御部106は、負荷132の抵抗値及び温度をそれぞれ導出する。 The process proceeds to step 412, and the control unit 106 detects the current value of the second path 204, for example, as described above. At steps 414 and 416, the control unit 106 derives the resistance value and the temperature of the load 132, for example, in the manner described above.
 処理はステップ418に進み、制御部106は、負荷132の温度が予め定められた閾値を超えるか否かを判定する。負荷温度が閾値を超えると判定された場合(ステップ418の「Yes」)、処理はステップ420に進み、制御部106は、エアロゾル生成装置100A内のエアロゾル源が不足していると判断する。他方、負荷温度が閾値を超えないと判定された場合(ステップ418の「No」)、エアロゾル源が不足しているとは判断されない。 The process proceeds to step 418, where the control unit 106 determines whether the temperature of the load 132 exceeds a predetermined threshold. If it is determined that the load temperature exceeds the threshold (“Yes” in step 418), the process proceeds to step 420, and the control unit 106 determines that the aerosol source in the aerosol generation device 100A is insufficient. On the other hand, if it is determined that the load temperature does not exceed the threshold (“No” in step 418), it is not determined that the aerosol source is insufficient.
 図4に示される処理は、エアロゾル生成装置100A内のエアロゾル源が不足しているかどうかを判定する一般的なフローを示しているにすぎず、本開示の実施形態に特有の、貯留部116内のエアロゾル源の不足と保持部130内のエアロゾル源の不足とを区別する処理を示していないことに留意されたい。 The process shown in FIG. 4 only shows the general flow to determine whether the aerosol source in the aerosol generating device 100A is deficient, and within the reservoir 116 that is specific to the embodiments of the present disclosure. It should be noted that the process of distinguishing between the lack of an aerosol source and the lack of an aerosol source in the holder 130 is not shown.
 本開示において、貯留部116におけるエアロゾル源の不足とは、貯留部116においてエアロゾル源が完全に枯渇した状態のほか、保持部130にエアロゾル源を十分に供給できない状態も含む。本開示において、保持部130におけるエアロゾル源の不足とは、保持部130全体にわたってエアロゾル源が完全に枯渇した状態のほか、保持部130の一部においてエアロゾル源が枯渇した状態も含む。 In the present disclosure, the shortage of the aerosol source in the reservoir 116 includes a state in which the aerosol source is completely depleted in the reservoir 116 and a state in which the aerosol source can not be sufficiently supplied to the holding unit 130. In the present disclosure, the shortage of the aerosol source in the holding unit 130 includes a state in which the aerosol source is completely depleted in the entire holding unit 130 and a state in which the aerosol source is depleted in a part of the holding unit 130.
 図5は、本実施形態における、スイッチQ1及びQ2の切り替えのタイミングの例を示す。図5(A)に示すように、制御部106は、エアロゾル源が霧化されている(ユーザによる吸引が行われている)間に、スイッチQ1とスイッチQ2との間で切り替えを行ってもよい。図5(B)に示すように、制御部106は、エアロゾル源の霧化が終了した(ユーザによる吸引が終了した)後に、スイッチQ1をオフ状態にし、スイッチQ2をオン状態にしてもよい。 FIG. 5 shows an example of switching timings of the switches Q1 and Q2 in the present embodiment. As shown in FIG. 5A, the control unit 106 switches between the switch Q1 and the switch Q2 while the aerosol source is atomized (the user is performing suction). Good. As shown in FIG. 5B, the control unit 106 may turn off the switch Q1 and turn on the switch Q2 after the atomization of the aerosol source is finished (the suction by the user is finished).
 図6は、本実施形態による、エアロゾル生成装置100A内のエアロゾル源の不足を検出する処理を示すフローチャートである。この例では、図5(A)に示したように、ユーザによる吸引が行われている間にスイッチQ1とスイッチQ2との間で切り替えが行われることを想定する。また、制御部106がすべてのステップを実行するものとして説明を行う。しかし、一部のステップがエアロゾル生成装置100の別のコンポーネントによって実行されてもよいことに留意されたい。 FIG. 6 is a flowchart showing a process of detecting the shortage of the aerosol source in the aerosol generation device 100A according to the present embodiment. In this example, as shown in FIG. 5A, it is assumed that switching is performed between the switch Q1 and the switch Q2 while suction is being performed by the user. Further, the control unit 106 will be described as performing all steps. However, it should be noted that some steps may be performed by other components of the aerosol generating device 100.
 ステップ602の処理は図4のステップ402の処理と同様であり、所定の条件が満たされる場合、制御部106は、ユーザによる吸引が開始されたと判断する。 The process of step 602 is the same as the process of step 402 in FIG. 4, and when a predetermined condition is satisfied, the control unit 106 determines that suction by the user is started.
 処理はステップ604に進み、制御部106は、スイッチQ1をオン状態にして第1経路202を機能させる。したがって、ヒータ(又はヒータ内の負荷132)に電力が供給され、保持部130内のエアロゾル源が加熱されてエアロゾルが生成される。さらに、ステップ605において、制御部106はタイマ(図示せず)を起動させる。別の例として、タイマは、スイッチQ1がオン状態にされたときではなく、後述するステップ606においてスイッチQ2がオン状態にされたときに起動されてもよい。 The process proceeds to step 604, where the control unit 106 turns on the switch Q1 to cause the first path 202 to function. Therefore, power is supplied to the heater (or the load 132 in the heater), and the aerosol source in the holding unit 130 is heated to generate an aerosol. Furthermore, in step 605, the control unit 106 starts a timer (not shown). As another example, the timer may be started when the switch Q2 is turned on in step 606 described later, not when the switch Q1 is turned on.
 処理はステップ606に進み、制御部106は、スイッチQ1をオフ状態にしてスイッチQ2をオン状態にする。図6の例において、この処理は、ユーザによる吸引が行われている間に行われることに留意されたい。ステップ606の処理により第2経路204が機能し、要素112によって、負荷132の温度に関連する値(例えば、抵抗212に印加される電圧値、抵抗212及び負荷132を流れる電流値など)が取得される。既に説明したようにして、取得された値に基づいて負荷132の温度が導出される。 The process proceeds to step 606, where the control unit 106 turns off the switch Q1 and turns on the switch Q2. It should be noted that, in the example of FIG. 6, this process is performed while suction is being performed by the user. The processing of step 606 causes the second path 204 to function, and the element 112 obtains a value related to the temperature of the load 132 (eg, a voltage value applied to the resistor 212, a current value flowing through the resistor 212 and the load 132, etc.) Be done. As already described, the temperature of the load 132 is derived on the basis of the obtained values.
 エアロゾル源の残量が十分であれば、ステップ604において負荷132に加えられた熱はエアロゾル源の霧化によるエアロゾルの生成に用いられる。したがって、負荷132の温度は、エアロゾル源の沸点やエアロゾル源の蒸発によりエアロゾルの生成が生じる温度(例えば、200℃)を大きく超えることはない。他方、貯留部116内のエアロゾル源及び/又は保持部130内のエアロゾル源が不足している場合には、負荷132への加熱によって保持部130内のエアロゾル源が完全に又は部分的に枯渇し、負荷132の温度が上昇していく。 If the remaining amount of aerosol source is sufficient, the heat applied to the load 132 in step 604 is used to generate an aerosol by atomization of the aerosol source. Thus, the temperature of the load 132 does not significantly exceed the temperature at which the formation of the aerosol occurs (eg, 200 ° C.) due to the boiling point of the aerosol source or evaporation of the aerosol source. On the other hand, when the aerosol source in the reservoir 116 and / or the aerosol source in the holding unit 130 is insufficient, the heating to the load 132 causes the aerosol source in the holding unit 130 to be completely or partially exhausted. , The temperature of the load 132 is rising.
 処理はステップ608に進み、制御部106は、負荷132の温度(THTR)が所定の温度(例えば、350℃)を超えているか否かを判定する。この例では、負荷132の温度が温度の閾値と比較される。別の実施形態において、負荷132の抵抗値又は電流値が抵抗値の閾値又は電流値の閾値と比較されてもよい。この場合、抵抗値の閾値、電流値の閾値等は、エアロゾル源が不足していることが十分に判断できるような適切な値に設定される。 The process proceeds to step 608, where the control unit 106 determines whether the temperature (T HTR ) of the load 132 exceeds a predetermined temperature (eg, 350 ° C.). In this example, the temperature of load 132 is compared to a temperature threshold. In another embodiment, the resistance or current value of the load 132 may be compared to the resistance threshold or current threshold. In this case, the threshold value of the resistance value, the threshold value of the current value, and the like are set to appropriate values such that the shortage of the aerosol source can be sufficiently determined.
 負荷132の温度が所定の温度を超えていない場合(ステップ608の「No」)、処理はステップ610に進む。ステップ610において、制御部106は、タイマが示す時間に基づいて、所定時間が経過したか否かを判定する。所定時間が経過した場合(ステップ610の「Yes」)、処理はステップ612に進む。ステップ612において、制御部106は、貯留部116及び保持部130におけるエアロゾル源の残量が十分であると判断し、処理は終了する。所定時間が経過していない場合(ステップ610の「No」)、処理はステップ608の前に戻る。 If the temperature of the load 132 does not exceed the predetermined temperature (“No” at step 608), the process proceeds to step 610. In step 610, the control unit 106 determines whether a predetermined time has elapsed based on the time indicated by the timer. If the predetermined time has elapsed (“Yes” in step 610), the process proceeds to step 612. In step 612, the control unit 106 determines that the remaining amount of the aerosol source in the storage unit 116 and the holding unit 130 is sufficient, and the process ends. If the predetermined time has not elapsed (“No” in step 610), the process returns to the front of step 608.
 負荷132の温度が所定の温度を超えている場合(ステップ608の「Yes」)、処理はステップ614に進む。ステップ614において、制御部106は、タイマ起動から現在までの時間が所定の閾値Δtthre(例えば、0.5秒)未満であるか否かを判定する。 If the temperature of the load 132 exceeds the predetermined temperature (“Yes” in step 608), the process proceeds to step 614. In step 614, the control unit 106 determines whether the time from the timer activation to the current time is less than a predetermined threshold value Δt thre (for example, 0.5 seconds).
 ステップ605に示すようにスイッチQ1がオン状態にされたときにタイマが起動される場合、所定の閾値Δtthreは、第1の所定の固定値(例えば、予め定められたスイッチQ1をオン状態にしておく時間)と、第2の所定の固定値(例えば、予め定められたステップQ2をオン状態にしておく時間以下の時間)の合計であってもよい。あるいは、所定の閾値Δtthreは、実際に測定された、スイッチQ1がオン状態にされていた時間と、上記の第2の所定の固定値との合計であってもよい。 If the timer is started when the switch Q1 is turned on as shown in step 605, the predetermined threshold value Δt thre is set to a first predetermined fixed value (for example, the predetermined switch Q1 is turned on). It may be the sum of the storage time) and a second predetermined fixed value (e.g., a time less than or equal to the time for which the predetermined step Q2 is turned on). Alternatively, the predetermined threshold value Δt thre may be the sum of the actually measured time period during which the switch Q1 has been turned on and the second predetermined fixed value.
 スイッチQ2がオン状態にされたときにタイマが起動される場合、所定の閾値Δtthreは、上記の第2の所定の固定値であってもよい。 If the timer is started when the switch Q2 is turned on, the predetermined threshold Δt thre may be the second predetermined fixed value described above.
 貯留部116のエアロゾル源が不足している場合と、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足している場合とを比較すると、前者の場合の方が負荷132の温度が許容できない高温に達するまでの時間が短い。というのは、前者の場合には保持部130にエアロゾル源が供給されないので負荷132に供給される電力が負荷132の温度上昇に使用されるのに対して、後者の場合には貯留部116から保持部130にエアロゾル源が供給され得るので負荷132に供給される電力がエアロゾル源の霧化にも使用され得るからである。 Comparing the case where the aerosol source of the reservoir 116 is insufficient with the case where the reservoir 116 can supply the aerosol source but the aerosol source held by the holder 130 is insufficient, the former case is the case. However, the time for the temperature of the load 132 to reach an unacceptably high temperature is short. In the former case, since the aerosol source is not supplied to the holding unit 130 in the former case, the power supplied to the load 132 is used to raise the temperature of the load 132, while in the latter case, the storage unit 116 Because the aerosol source can be supplied to the holding unit 130, the power supplied to the load 132 can also be used for atomizing the aerosol source.
 タイマ起動から現在までの時間が所定の閾値未満である場合(ステップ614の「Yes」)、処理はステップ616に進む。ステップ616において、制御部106は、エアロゾル生成装置100が第1状態にあると判断する。第1状態においては、貯留部116が貯留するエアロゾル源が不足するので、負荷132の温度がエアロゾル源の沸点又はエアロゾル源の蒸発によりエアロゾル源の生成が生じる温度を超える。他方、タイマ起動から現在までの時間が所定の閾値未満である場合(ステップ614の「No」)、処理はステップ624に進む。ステップ624において、制御部106は、エアロゾル生成装置100が第2状態にあると判断する。第2状態においては、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足するので、負荷132の温度がエアロゾル源の沸点又はエアロゾル源の蒸発によりエアロゾル源の生成が生じる温度を超える。このように、制御部106は、第1経路202又は第2経路204が機能してから負荷132の温度に関連する値が閾値に到達するまでに要した時間に基づき、第1状態と第2状態とを区別するように構成することができる。 If the time from timer activation to the current time is less than the predetermined threshold (“Yes” in step 614), the process proceeds to step 616. In step 616, the control unit 106 determines that the aerosol generation device 100 is in the first state. In the first state, the temperature of the load 132 exceeds the temperature at which the generation of the aerosol source occurs due to the boiling point of the aerosol source or the evaporation of the aerosol source because the aerosol source stored in the reservoir 116 runs short. On the other hand, if the time from timer activation to the present time is less than the predetermined threshold (“No” in step 614), the process proceeds to step 624. In step 624, the control unit 106 determines that the aerosol generation device 100 is in the second state. In the second state, since the reservoir 116 can supply the aerosol source but there is a shortage of the aerosol source held by the holder 130, the temperature of the load 132 is the boiling point of the aerosol source or the evaporation of the aerosol source generates the aerosol source Exceeds the temperature at which As described above, the control unit 106 can set the first state and the second state based on the time taken for the value related to the temperature of the load 132 to reach the threshold after the first path 202 or the second path 204 functions. It can be configured to distinguish between states.
 本開示において、第1状態におけるエアロゾル源の不足とは、貯留部116内のエアロゾル源が完全に枯渇している状態、又は貯留部116内のエアロゾル源が少ないために保持部130に対してエアロゾル源を十分に供給できない状態を意味する。また、本開示において、第2状態におけるエアロゾロ源の不足とは、貯留部116がエアロゾル源を供給可能であるが、保持部130全体にわたってエアロゾル源が完全に枯渇している状態、又は保持部130の一部においてエアロゾル源が枯渇している状態を意味する。第1状態及び第2状態のいずれにおいても、十分なエアロゾルを生成することができない。 In the present disclosure, the shortage of the aerosol source in the first state means a state in which the aerosol source in the reservoir 116 is completely depleted or an aerosol to the holding unit 130 because there are few aerosol sources in the reservoir 116. It means that the source can not be supplied enough. Further, in the present disclosure, the shortage of the aerosol source in the second state means that although the reservoir 116 can supply the aerosol source, the aerosol source is completely depleted throughout the entire reservoir 130 or the reservoir 130 Indicates that the aerosol source is depleted in part of In either the first state or the second state, sufficient aerosol can not be generated.
 ステップ616の後、処理はステップ618に進み、制御部106は、通知部108を用いるなどして、エアロゾル生成装置100が第1状態にあり貯留部116の交換(又は貯留部116内のエアロゾル源の補充)を行うべきであることがユーザに認識されるようにする。処理はステップ620に進み、制御部106は取り外し検査モードに移行する。処理はステップ622に進み、制御部106は、貯留部116の取り外し(又はエアロゾル源の補充)が検出されたか否かを判定する。貯留部116の取り外しが検出された場合(ステップ622の「Yes」)、処理は終了する。そうでない場合(ステップ622の「No」)、処理はステップ618の前に戻る。 After step 616, the process proceeds to step 618, and the control unit 106 uses the notification unit 108 to change the storage unit 116 (or the aerosol source in the storage unit 116) with the aerosol generation device 100 in the first state. Make it possible for the user to recognize that The process proceeds to step 620, where the control unit 106 shifts to the removal inspection mode. The process proceeds to step 622, where the control unit 106 determines whether removal of the reservoir 116 (or replenishment of the aerosol source) has been detected. If removal of the storage section 116 is detected (“Yes” in step 622), the process ends. If not ("No" at step 622), the process returns to before step 618.
 ステップ624の後、処理はステップ626に進み、制御部106は、通知部108を用いるなどして、エアロゾル生成装置100が第2状態にあることがユーザに認識されるよう、警告を行う。その後処理は終了する。 After step 624, the process proceeds to step 626, where the control unit 106 warns the user that the aerosol generation device 100 is in the second state, such as by using the notification unit 108. Thereafter, the process ends.
 上述のように、本実施形態によれば、回路134が機能した後の負荷132の温度に関連する値の変化に基づいて、エアロゾル生成装置100Aが、貯留部116が貯留するエアロゾル源が不足した第1状態にあるか、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足した第2状態にあるか、を区別することが可能となる。したがって、エアロゾル源が完全に枯渇しているか否かを高精度に判断することができる。 As described above, according to the present embodiment, the aerosol generation device 100A runs out of the aerosol source stored in the reservoir 116 based on the change in the value related to the temperature of the load 132 after the circuit 134 functions. It is possible to distinguish whether in the first state or in the second state in which the reservoir 116 can supply the aerosol source but the aerosol source held by the holder 130 is insufficient. Therefore, it can be determined with high accuracy whether the aerosol source is completely depleted.
 また、上述のように、タイマはスイッチQ1がオフ状態にされたときに起動されてもよいし、スイッチQ2がオン状態にされたときに起動されてもよい。制御部106は、第1経路202が機能した後又は第2経路204が機能している間の負荷132の温度に関連する値の変化に基づいて、第1状態と第2状態とを区別することができる。したがって、エアロゾルを生成するための第1経路202とエアロゾル源の不足を検知するための第2経路204とを交互にオン状態にする構成において、第1状態と第2状態とを区別することができる。 Also, as described above, the timer may be activated when the switch Q1 is turned off, or may be activated when the switch Q2 is turned on. The control unit 106 distinguishes between the first state and the second state based on a change in a value related to the temperature of the load 132 after the first path 202 functions or while the second path 204 functions. be able to. Therefore, in the configuration in which the first path 202 for generating the aerosol and the second path 204 for detecting the shortage of the aerosol source are alternately turned on, the first state and the second state are distinguished. it can.
 図6の実施形態の変形例において、第1状態は、貯留部116が貯留するエアロゾル源が不足するために、負荷132の温度が、エアロゾル源の沸点又はエアロゾル源の蒸発によりエアロゾル生成が生じる温度未満の既定温度へ、第1状態及び第2状態とは異なる他の状態より早く到達する状態として定義されてもよい。また、第2状態は、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足するために、負荷132の温度が、エアロゾル源の沸点又はエアロゾル源の蒸発によりエアロゾル生成が生じる温度未満の既定温度へ、第1状態及び第2状態とは異なる他の状態より早く到達する状態として定義されてもよい。これらの場合、上述の図6の実施形態と比較して、エアロゾル源の不足を検知する精度が劣る一方、より早い検知が可能となる。 In the variation of the embodiment of FIG. 6, the first state is that the temperature of the load 132 is the temperature at which the aerosol generation occurs due to the boiling point of the aerosol source or the evaporation of the aerosol source due to the shortage of the aerosol source stored in the reservoir 116 It may be defined as a state in which the predetermined temperature below is reached earlier than other states different from the first state and the second state. In the second state, the temperature of the load 132 is aerosolized by the boiling point of the aerosol source or evaporation of the aerosol source because the reservoir 116 can supply the aerosol source but the aerosol source held by the holder 130 is insufficient. It may be defined as reaching a predetermined temperature below the temperature at which generation occurs, earlier than other states different from the first state and the second state. In these cases, the accuracy of detecting the shortage of the aerosol source is inferior to the embodiment of FIG.
 上述のように、図6の実施形態においては、貯留部116が貯留するエアロゾル源が不足した第1状態において実行される制御(ステップ618から622)と、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足した第2状態において実行される制御(ステップ626)とが異なる。 As described above, in the embodiment of FIG. 6, the control (steps 618 to 622) executed in the first state in which the aerosol source stored in the storage unit 116 runs short is capable of supplying the aerosol source However, this control is different from the control (step 626) performed in the second state in which the aerosol source held by the holding unit 130 runs short.
 図7は、本実施形態による、エアロゾル生成装置100A内のエアロゾル源の不足を検出する別の処理を示すフローチャートである。この例では、図5(B)に示したように、ユーザによる吸引が終了した後にスイッチQ1がオフ状態にされてスイッチQ2がオン状態にされることを想定する。 FIG. 7 is a flowchart showing another process of detecting the shortage of the aerosol source in the aerosol generation device 100A according to the present embodiment. In this example, as shown in FIG. 5B, it is assumed that the switch Q1 is turned off and the switch Q2 is turned on after the end of suction by the user.
 ステップ702の処理は図6のステップ602の処理と同様である。 The process of step 702 is the same as the process of step 602 in FIG.
 処理はステップ704に進み、制御部106は、スイッチQ1をオン状態にして第1経路202を機能させる。したがって、ヒータ(負荷132)に電力が供給され、保持部130内のエアロゾル源が加熱されてエアロゾルが生成される。 The process proceeds to step 704, where the control unit 106 turns on the switch Q1 to cause the first path 202 to function. Therefore, power is supplied to the heater (load 132), and the aerosol source in the holding unit 130 is heated to generate an aerosol.
 処理はステップ706に進み、制御部106は、スイッチQ1をオフ状態にしてスイッチQ2をオン状態にする。図7の例において、この処理は、ユーザによる吸引が終了した後に行われることに留意されたい。ステップ706の処理により第2経路204が機能し、要素112によって、負荷132の温度に関連する値が取得され、取得された値に基づいて負荷132の温度が導出される。 The process proceeds to step 706, where the control unit 106 turns off the switch Q1 and turns on the switch Q2. It should be noted that in the example of FIG. 7, this process is performed after the end of suction by the user. The processing of step 706 causes the second path 204 to function, the element 112 obtains a value related to the temperature of the load 132, and the temperature of the load 132 is derived based on the obtained value.
 処理はステップ708に進み、制御部106はタイマを起動させる。 The process proceeds to step 708, where the control unit 106 starts a timer.
 処理はステップ710に進む。ステップ710の処理はステップ608の処理と同様である。 Processing proceeds to step 710. The process of step 710 is similar to the process of step 608.
 負荷132の温度が所定の温度を超えていない場合(ステップ710の「No」)、処理はステップ712に進む。ステップ712及び714の処理はステップ610及び612の処理と同様である。 If the temperature of the load 132 does not exceed the predetermined temperature ("No" in step 710), the process proceeds to step 712. The processing of steps 712 and 714 is similar to the processing of steps 610 and 612.
 負荷132の温度が所定の温度を超えている場合(ステップ710の「Yes」)、処理はステップ716に進む。ステップ716において、制御部106は、負荷132の温度の時間微分値が所定の閾値(例えば、0より小さい値)より大きいか否かを判定する。 If the temperature of the load 132 exceeds the predetermined temperature (“Yes” in step 710), the process proceeds to step 716. At step 716, the control unit 106 determines whether the time derivative of the temperature of the load 132 is larger than a predetermined threshold (for example, a value smaller than 0).
 ユーザの吸引中に保持部130のエアロゾル源が不足した場合においては、貯留部116のエアロゾル源が不足している場合と、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足している場合とを比較すると、前者の場合の方がユーザの吸引終了後の負荷132の温度の時間微分値が大きい。というのは、前者の場合にはユーザの吸引終了後に保持部130にエアロゾル源が供給されないので負荷132の温度が上昇、停滞、または緩やかに低下し続けるのに対して、後者の場合にはユーザの吸引終了後に貯留部116から保持部130にエアロゾル源が供給され得るので負荷132の温度が低下し得るからである。 In the case where the aerosol source of the holding unit 130 runs short during suction by the user, the case where the aerosol source of the storage unit 116 runs short and the storage unit 116 can supply the aerosol source but the holding unit 130 holds it. As compared with the case where the aerosol source is insufficient, in the former case, the time derivative value of the temperature of the load 132 after the end of suction by the user is larger. In the former case, the temperature of the load 132 continues to rise, stagnate, or gradually decrease because the aerosol source is not supplied to the holding unit 130 after the end of suction by the user in the former case, whereas in the latter case the user is Because the aerosol source can be supplied from the storage unit 116 to the holding unit 130 after the end of the suction, the temperature of the load 132 may decrease.
 負荷132の温度の時間微分値が閾値より大きい場合(ステップ716の「Yes」)、処理はステップ718に進む。ステップ718において、制御部106は、エアロゾル生成装置100Aが、貯留部116が貯留するエアロゾル源が不足した第1状態にあると判断する。他方、負荷132の温度の時間微分値が閾値以下である場合(ステップ716の「No」)、処理はステップ726に進む。ステップ726において、制御部106は、エアロゾル生成装置100Aが、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足した第2状態にあると判断する。 If the time derivative of the temperature of the load 132 is greater than the threshold (“Yes” in step 716), the process proceeds to step 718. In step 718, the control unit 106 determines that the aerosol generation device 100A is in the first state in which the aerosol source stored in the storage unit 116 runs short. On the other hand, if the time derivative of the temperature of the load 132 is less than or equal to the threshold (“No” in step 716), the process proceeds to step 726. In step 726, the control unit 106 determines that the aerosol generation device 100A is in the second state in which the storage unit 116 can supply the aerosol source but the aerosol source held by the holding unit 130 is insufficient.
 ステップ720から724の処理はステップ618から622の処理と同様である。ステップ728の処理はステップ626の処理と同様である。 The processing of steps 720 to 724 is similar to the processing of steps 618 to 622. The process of step 728 is similar to the process of step 626.
 図7の例においては、制御部106は、第1経路202の動作が完了した後に第2経路204を機能させる。したがって、エアロゾルが生成されない静的な状態において、エアロゾル生成装置100が第1状態にあるのか第2状態にあるのかを精度よく区別することができる。 In the example of FIG. 7, the control unit 106 causes the second path 204 to function after the operation of the first path 202 is completed. Therefore, in the static state in which the aerosol is not generated, it is possible to accurately distinguish whether the aerosol generation device 100 is in the first state or in the second state.
 また、図7の例によれば、制御部106は、第1経路202の動作が完了した後又は第2経路204が機能している間の負荷132の温度に関連する値の変化に基づいて、第1状態と第2状態とを区別することができる。したがって、エアロゾルを生成するための第1経路202とエアロゾル源の不足を検知するための第2経路204とを順次にオン状態にする構成において、第1状態と第2状態とを区別することができる。 Also, according to the example of FIG. 7, the control unit 106 may change the value related to the temperature of the load 132 after the operation of the first path 202 is completed or while the second path 204 is functioning. , The first state and the second state can be distinguished. Therefore, in the configuration in which the first path 202 for generating the aerosol and the second path 204 for detecting the shortage of the aerosol source are sequentially turned on, the first state and the second state are distinguished. it can.
 なお、図7の例において、制御部106は、第1経路202の動作が複数回完了した後に第2経路204を機能させてもよい。例えば、スイッチQ1のオン/オフが5回完了した(ユーザによる吸引が5回完了した)後、スイッチQ2がオン状態にされてもよい。この場合、制御部106は、貯留部116を新品に交換した後又は貯留部116にエアロゾル源を補充した後に負荷132の動作回数又は積算した動作量が増えるほど、第2経路204を機能させる前に第1経路202を動作させる回数を減少させてもよい。 In the example of FIG. 7, the control unit 106 may cause the second path 204 to function after the operation of the first path 202 is completed a plurality of times. For example, after the on / off of the switch Q1 is completed five times (the aspiration by the user is completed five times), the switch Q2 may be turned on. In this case, after the storage unit 116 is replaced with a new storage unit 116 or after the storage unit 116 is replenished with the aerosol source, the control unit 106 causes the second path 204 to function as the number of operations of the load 132 or the integrated operation amount increases. The number of operating the first path 202 may be reduced.
 図6の実施形態と同様に、図7の実施形態においても、第1状態において実行される制御(ステップ720から724)と、第2状態において実行される制御(ステップ728)とが異なる。 Similar to the embodiment of FIG. 6, in the embodiment of FIG. 7, the control (steps 720 to 724) executed in the first state is different from the control (step 728) executed in the second state.
 図8は、本開示の第1の実施形態によるエアロゾル生成装置100Aの一部に関する例示的な回路構成を示す図である。 FIG. 8 is a diagram illustrating an exemplary circuit configuration regarding a portion of the aerosol generation device 100A according to the first embodiment of the present disclosure.
 図8に示す回路800は、電源110、制御部106、要素112、負荷132、単一の経路802、FET806を含むスイッチQ1、定電圧出力回路808及び抵抗812を備える。 The circuit 800 shown in FIG. 8 includes a power supply 110, a control unit 106, an element 112, a load 132, a single path 802, a switch Q1 including an FET 806, a constant voltage output circuit 808, and a resistor 812.
 回路134は、図8に示すような単一の経路802を含むように構成されてもよい。経路802は、負荷132に対して直列接続される。経路802は、スイッチQ1及び抵抗812を含み得る。この例において、回路134は、さらに、負荷132へ供給される電力を平滑化する素子(図示せず)を備えてもよい。これにより、遷移(スイッチのターンオン及びターンオフ)時のノイズやサージ電流によるノイズなどの影響を低減することができ、第1状態と第2状態との区別を高精度に行うことができる。 Circuit 134 may be configured to include a single path 802 as shown in FIG. Path 802 is connected in series to load 132. Path 802 may include switch Q 1 and resistor 812. In this example, circuit 134 may further include an element (not shown) that smoothes the power supplied to load 132. Thereby, the influence of noise at the time of transition (turn-on and turn-off of the switch) or noise due to surge current can be reduced, and the first state and the second state can be distinguished with high accuracy.
 図8において点線矢印で示すように、制御部106は、スイッチQ1を制御することができ、要素112により検知された値を取得することができる。 As indicated by the dotted arrow in FIG. 8, the control unit 106 can control the switch Q 1 and can acquire the value detected by the element 112.
 制御部106は、スイッチQ1をオフ状態からオン状態に切り替えることにより経路802を機能させる。 The control unit 106 causes the path 802 to function by switching the switch Q1 from the off state to the on state.
 経路802はエアロゾル源の霧化に用いられる。スイッチQ1がオン状態に切り替えられて経路802が機能するとき、負荷132に電力が供給され、負荷132は加熱される。負荷132の加熱により、霧化部118内の保持部130に保持されているエアロゾル源が霧化されてエアロゾルが生成される。 Path 802 is used to atomize the aerosol source. When the switch Q1 is switched on and the path 802 is functional, the load 132 is powered and the load 132 is heated. The heating of the load 132 atomizes the aerosol source held by the holding unit 130 in the atomizing unit 118 to generate an aerosol.
 経路802はまた、負荷132の温度に関連する値の取得に用いられる。スイッチQ1がオン状態にあり経路802が機能しているとき、電流は、定電圧出力回路808、スイッチQ1、抵抗812及び負荷132を流れる。図2に関連して既に述べたとおり、要素112が電圧センサであるとき、抵抗812に印加される電圧値を負荷132の温度に関連する値として用いて負荷132の温度を推定することができる。図2の例と同様に、要素112の具体例は電圧センサに限定されず、電流センサ(例えば、ホール素子)などの他の素子を含み得る。 Path 802 is also used to obtain a value related to the temperature of load 132. When the switch Q1 is on and the path 802 is functioning, current flows through the constant voltage output circuit 808, the switch Q1, the resistor 812 and the load 132. As already mentioned in connection with FIG. 2, when element 112 is a voltage sensor, the voltage value applied to resistor 812 can be used as a value related to the temperature of load 132 to estimate the temperature of load 132 . Similar to the example of FIG. 2, the example of element 112 is not limited to a voltage sensor, but may include other elements such as a current sensor (eg, a Hall element).
 図8に示す構成を備えるエアロゾル生成装置100Aは、ローパスフィルタ(図示せず)をさらに備えてもよい。要素112を用いて取得された負荷132の温度に関連する値(電流値、電圧値など)が当該ローパスフィルタを通過してもよい。この場合、制御部106は、ローパスフィルタを通過した温度に関連する値を取得し、これを用いて負荷132の温度を導出してもよい。 The aerosol generation device 100A having the configuration shown in FIG. 8 may further include a low pass filter (not shown). A value (current value, voltage value, etc.) related to the temperature of the load 132 acquired using the element 112 may pass through the low pass filter. In this case, the control unit 106 may obtain a value related to the temperature that has passed through the low pass filter, and may use this to derive the temperature of the load 132.
 図2の場合と同様に、定電圧出力回路808は、LDOレギュレータとして示され、キャパシタ814、FET816、誤差増幅器818、基準電圧源820、抵抗822及び824、並びにキャパシタ826を含み得る。定電圧出力回路808の構成は一例にすぎず、様々な構成が可能である。 As in the case of FIG. 2, constant voltage output circuit 808 is shown as an LDO regulator and may include capacitor 814, FET 816, error amplifier 818, reference voltage source 820, resistors 822 and 824, and capacitor 826. The configuration of the constant voltage output circuit 808 is merely an example, and various configurations are possible.
 図9は、図8の回路800を備えたエアロゾル生成装置100Aにおける、スイッチQ1を用いたエアロゾル源の霧化及びエアロゾル源の残量推定のタイミングを示す。図8の回路は単一の経路802のみを有するので、制御部106は、エアロゾル源が霧化されている間(ユーザが吸引をしている間)にエアロゾル源が不足しているか否かの検知も行う。 FIG. 9 illustrates the timing of atomization of the aerosol source and estimation of the remaining amount of the aerosol source using the switch Q1 in the aerosol generation device 100A including the circuit 800 of FIG. Since the circuit of FIG. 8 has only a single path 802, the control unit 106 determines whether the aerosol source is insufficient while the aerosol source is atomized (while the user is aspirating). It also detects.
 図10は、本実施形態による、エアロゾル生成装置100A内のエアロゾル源の不足を検出する処理を示すフローチャートである。この例では、エアロゾル生成装置100Aが図8に示す回路800を備える場合を想定する。 FIG. 10 is a flowchart showing a process of detecting the shortage of the aerosol source in the aerosol generation device 100A according to the present embodiment. In this example, it is assumed that the aerosol generation device 100A includes the circuit 800 shown in FIG.
 ステップ1002の処理は図6のステップ602の処理と同様であり、所定の条件が満たされる場合、制御部106は、ユーザによる吸引が開始されたと判断する。 The process of step 1002 is the same as the process of step 602 in FIG. 6, and when the predetermined condition is satisfied, the control unit 106 determines that suction by the user is started.
 処理はステップ1004に進み、制御部106は、スイッチQ1をオン状態にして経路802を機能させる。したがって、ヒータ(負荷132)に電力が供給され、保持部130内のエアロゾル源が加熱されてエアロゾルが生成される。制御部106はまた、要素112によって、負荷132の温度に関連する値(例えば、抵抗812に印加される電圧値、負荷132を流れる電流値など)を取得する。既に説明したようにして、取得された値に基づいて負荷132の温度が導出される。 The process proceeds to step 1004, and the control unit 106 turns on the switch Q1 to cause the path 802 to function. Therefore, power is supplied to the heater (load 132), and the aerosol source in the holding unit 130 is heated to generate an aerosol. The control unit 106 also obtains a value related to the temperature of the load 132 (eg, a voltage value applied to the resistor 812, a current value flowing through the load 132, etc.) by the element 112. As already described, the temperature of the load 132 is derived on the basis of the obtained values.
 ステップ1005において、制御部106はタイマ(図示せず)を起動させる。 At step 1005, the control unit 106 starts a timer (not shown).
 ステップ1006から1024の処理はステップ608から626の処理と同様である。 The processes of steps 1006 to 1024 are similar to the processes of steps 608 to 626.
 図6及び図7の実施形態と同様に、図10の実施形態においても、第1状態において実行される制御(ステップ1016から1020)と、第2状態において実行される制御(ステップ1024)とが異なる。 Similar to the embodiment of FIGS. 6 and 7, in the embodiment of FIG. 10, the control (steps 1016 to 1020) executed in the first state and the control (step 1024) executed in the second state are the same. It is different.
 図11は、ユーザがエアロゾル生成装置100Aを用いて正常な吸引を行う場合の負荷132の抵抗値の時系列的な変化を概念的に示すグラフである。 FIG. 11 is a graph conceptually showing a time-series change in resistance value of the load 132 when the user performs normal suction using the aerosol generation device 100A.
 ユーザによる吸引が検知されると、負荷132に電力が供給され、負荷132が加熱される。負荷132の温度は、室温(例えば、25℃)から、エアロゾル源の沸点又はエアロゾル源の蒸発によりエアロゾルの生成が生じる温度(例えば、200℃)に上昇する。保持部130に十分なエアロゾル源が存在する場合、負荷132に加えられた熱はエアロゾル源の霧化に用いられるので、図11に示すように、負荷132の温度は上記温度付近で安定する。ユーザによる吸引が終了すると、負荷132への電力供給が停止され、負荷132の温度は室温に向かって低下する。 When suction by the user is detected, power is supplied to the load 132 and the load 132 is heated. The temperature of the load 132 is raised from room temperature (e.g., 25 [deg.] C) to the boiling point of the aerosol source or to a temperature (e.g., 200 [deg.] C) at which aerosol generation occurs due to evaporation of the aerosol source. When a sufficient aerosol source is present in the holding unit 130, the heat applied to the load 132 is used to atomize the aerosol source, so that the temperature of the load 132 is stabilized around the above temperature, as shown in FIG. When the suction by the user is finished, the power supply to the load 132 is stopped, and the temperature of the load 132 decreases toward room temperature.
 ユーザによる吸引が終了してから次の吸引が開始するまでのインターバルが十分に長い場合、図11に示すように、負荷132は冷却され、その温度は室温に戻る。貯留部116内に十分な量のエアロゾル源が貯留されていることを前提とすれば、次の吸引の開始までに貯留部116から保持部130に十分な量のエアロゾル源が供給される。ここでは、このような吸引及びインターバルをそれぞれ「正常な」吸引及び「正常な」インターバルと呼ぶものとする。 If the interval between the end of suction by the user and the start of the next suction is long enough, the load 132 is cooled and its temperature returns to room temperature, as shown in FIG. Assuming that a sufficient amount of aerosol source is stored in the storage unit 116, a sufficient amount of aerosol source is supplied from the storage unit 116 to the holding unit 130 by the start of the next suction. Here, such aspiration and intervals will be referred to as "normal" aspiration and "normal" intervals, respectively.
 負荷132の抵抗値は、負荷132の温度により変化する。図11の例では、負荷132の温度が室温(25℃)からエアロゾル源の沸点(200℃)まで上昇する間、負荷132の抵抗値はR(TR.T.=25℃)からR(TB.P.=200℃)に上昇する。負荷132の温度がエアロゾル源の沸点に到達し、エアロゾル源の霧化が始まると、負荷132の温度が安定するので、負荷132の抵抗値もまた安定する。エアロゾル源の霧化が終了し、負荷132の温度が室温まで低下する間、負荷132の抵抗値もまた低下する。上述のとおり、図11の例では正常な吸引が行われるので、次の吸引の開始時には負荷132の抵抗値はR(TR.T.=25℃)に戻っている。 The resistance value of the load 132 changes with the temperature of the load 132. In the example of FIG. 11, while the temperature of the load 132 rises from room temperature (25.degree. C.) to the boiling point of the aerosol source (200.degree. C.), the resistance value of the load 132 is R ( TR.T. = 25.degree. C.) to R (R). Rise to T.B.P. When the temperature of the load 132 reaches the boiling point of the aerosol source and atomization of the aerosol source starts, the temperature of the load 132 stabilizes, so the resistance value of the load 132 also stabilizes. While atomization of the aerosol source is complete and the temperature of the load 132 drops to room temperature, the resistance of the load 132 also decreases. As described above, since normal suction is performed in the example of FIG. 11, the resistance value of the load 132 is returned to R ( TR.T. = 25.degree. C.) at the start of the next suction.
 本開示においては、以前の吸引の際の負荷132に対する加熱による負荷132の抵抗値の変化が次の吸引の際の負荷132の抵抗値に及ぼす影響を、負荷の「熱履歴」と呼ぶものとする。図11の例の場合、そのような影響は生じないので、負荷132の抵抗値に関して熱履歴は残らない。 In the present disclosure, the influence of the change in resistance of the load 132 due to heating with respect to the load 132 at the time of the previous suction exerting on the resistance of the load 132 at the next suction is referred to as “heat history” of the load. Do. In the case of the example of FIG. 11, since such an influence does not occur, no thermal history remains with respect to the resistance value of the load 132.
 図12Aは、ユーザによる吸引が終了してから次の吸引が開始するまでのインターバルが正常なインターバルよりも短いときの、負荷132の抵抗値の時系列的な変化を概念的に示すグラフである。 FIG. 12A is a graph conceptually showing a time-series change in resistance value of the load 132 when the interval from the end of suction by the user to the start of the next suction is shorter than the normal interval. .
 インターバルが短い場合、負荷132の温度が室温に戻る前に次の吸引が開始し、負荷132は再度加熱される。図12A(a)はこのような場合を表すグラフである。図12A(a)において、最初の吸引の開始から終了までの状況は図11の正常な吸引の場合と同様である。最初の吸引が終了すると、負荷132の温度は低下し、それに伴い負荷132の抵抗値も低下する。しかし、最初の吸引の終了から第2の吸引の開始までのインターバルが短いので、第2の吸引の開始時において、負荷132の温度は室温より高く、したがって負荷132の抵抗値もまた室温における抵抗値R(TR.T.=25℃)よりも大きい。すなわち、図11の例とは異なり、図12Aの例では、第2の吸引の開始時において、負荷132には熱履歴が残っている。このため、第2の吸引のために負荷132が加熱されると、貯留部116及び保持部130におけるエアロゾル源が不足し、負荷132の抵抗値がR(TB.P.=200℃)を超えて上昇することが起こり得る。 If the interval is short, the next suction starts before the temperature of the load 132 returns to room temperature, and the load 132 is heated again. FIG. 12A (a) is a graph showing such a case. In FIG. 12A (a), the situation from the start to the end of the first suction is the same as in the case of normal suction in FIG. When the first suction ends, the temperature of the load 132 decreases, and the resistance of the load 132 also decreases accordingly. However, because the interval from the end of the first suction to the start of the second suction is short, at the start of the second suction, the temperature of the load 132 is higher than room temperature and thus the resistance of the load 132 is also resistance at room temperature Greater than the value R (T R.T. = 25 ° C.). That is, unlike the example of FIG. 11, in the example of FIG. 12A, a heat history remains in the load 132 at the start of the second suction. For this reason, when the load 132 is heated for the second suction, the aerosol source in the reservoir 116 and the holder 130 runs short, and the resistance value of the load 132 becomes R (T B.P. = 200 ° C.). It is possible to rise above.
 図12A(b)は、図12A(a)に示す状況のもとで吸引が繰り返される場合の負荷132の抵抗値の時系列的な変化を示す。最初の吸引の終了から第2の吸引の開始までのインターバルが短いので、第2の吸引の開始時における負荷132の抵抗値は室温における抵抗値R(TR.T.=25℃)よりも大きい。また、このインターバルが短いため、貯留部116から保持部130へのエアロゾル源の供給が充分に行われない。従って、第2の吸引の開始時において、保持部130におけるエアロゾル源が、充分な長さを持つインターバルを設けた場合と比較して少なくなる虞がある。このように負荷132の熱履歴が残っており且つ保持部130におけるエアロゾル源が少ないので、負荷132の温度は、第2の吸引中に負荷132が加熱されてエアロゾルが安定的に生成される状態に達した後、保持部130におけるエアロゾル源が不足して、図示されるようにエアロゾル源の沸点を超えることがあり得る。したがって、負荷132の抵抗値もまた、R(TB.P.=200℃)よりも大きな値に達し得る。このような挙動が繰り返されることにより、負荷132の温度は、図6、図7及び図10に関連して説明された実施形態において示した閾値(例えば、350℃)に到達し得る。 FIG. 12A (b) shows a time-sequential change of the resistance value of the load 132 when suction is repeated under the condition shown in FIG. 12A (a). Since the interval from the end of the first suction to the start of the second suction is short, the resistance of the load 132 at the start of the second suction is higher than the resistance R at room temperature ( TR.T. = 25.degree. C.) large. Moreover, since this interval is short, supply of the aerosol source from the storage part 116 to the holding part 130 is not fully performed. Therefore, at the start of the second suction, the aerosol source in the holding unit 130 may be reduced as compared with the case where an interval having a sufficient length is provided. Since the thermal history of the load 132 remains in this manner and the amount of aerosol source in the holding unit 130 is small, the temperature of the load 132 is a state in which the load 132 is heated during the second suction and the aerosol is stably generated. As a result, the aerosol source in the holding unit 130 may run short and exceed the boiling point of the aerosol source as illustrated. Therefore, the resistance value of the load 132 can also reach a value greater than R (T B.P. = 200 ° C.). By repeating such behavior, the temperature of the load 132 may reach the threshold (for example, 350 ° C.) indicated in the embodiments described in connection with FIGS. 6, 7 and 10.
 本願発明者らは、図6、図7及び図10に関連して説明されたような実施形態において第1状態と第2状態とを区別するために用いられる閾値(例えば、ステップ614におけるΔtthre)などの条件を、負荷132の熱履歴に基づいて修正することにより、エアロゾル源が不足したときにエアロゾル生成装置100Aの制御を一層適切に実行できる技術を発明した。当該技術を以下で説明する。 We use a threshold (eg, Δt thre in step 614) used to distinguish between the first and second states in the embodiments as described in connection with FIGS. 6, 7 and 10. And the like, based on the heat history of the load 132, and invented a technology capable of more appropriately executing control of the aerosol generation device 100A when the aerosol source runs short. The technology is described below.
 図12Bは、本開示の実施形態による、ユーザによる吸引が短いインターバルで行われる場合において第1状態と第2状態とを区別するための条件を修正する処理を示すフローチャートである。 FIG. 12B is a flow chart illustrating a process of modifying conditions to distinguish between the first state and the second state when suction by a user is performed at short intervals according to an embodiment of the present disclosure.
 処理はステップ1202において開始し、制御部106は、カウンタnを0に設定する。 The process starts in step 1202, and the control unit 106 sets the counter n to 0.
 処理はステップ1204に進み、制御部106は、前回の吸引の終了時点から今回の吸引の開始時点までの吸引インターバル(intervalmeas)を計測する。 The process proceeds to step 1204, and the control unit 106 measures a suction interval (interval meas ) from the end time of the previous suction to the start time of the current suction.
 処理はステップ1206に進み、制御部106は、カウンタnの値をインクリメントする。 The process proceeds to step 1206, where the control unit 106 increments the value of the counter n.
 処理はステップ1208に進み、制御部106は、予め設定されたインターバルの値(intervalpreset)からステップ1204において計測されたintervalmeasを差し引いた値(Δinterval(n))を計算する。intervalpresetの値は、正常な吸引の場合に負荷132の温度がエアロゾル源の沸点から室温に戻るまでの時間(例えば、1秒)であってもよいし、前回の吸引の終了後に十分な量のエアロゾル源が貯留部116から保持部130に供給されるまでの時間であってもよい。 The process proceeds to step 1208, the control unit 106 calculates a preset interval of values (interval preset) measured in step 1204 from the interval meas the subtracted value (Δinterval (n)). The value of interval preset may be the time (for example, 1 second) for the temperature of load 132 to return to room temperature from the boiling point of the aerosol source in the case of normal suction, or a sufficient amount after the end of the previous suction The time until the aerosol source is supplied from the reservoir 116 to the holder 130 may be used.
 処理はステップ1210に進み、制御部106は、ステップ1208において計算されたΔinterval(n)が0より大きいか否かを判定する。 The process proceeds to step 1210, where the control unit 106 determines whether Δinterval (n) calculated in step 1208 is greater than zero.
 図12Bにおいて、Δinterval(n)が0以下である(intervalmeasがintervalpreset以上である)場合(ステップ1208の「No」)、処理はステップ1216に進むことになっている。しかし、処理がステップ1204の前に戻り、ステップ1204から1210が所定の回数繰り返されてもよい。 In Figure 12B, Δinterval (n) is 0 or less (interval meas is interval preset higher) if ( "No" in step 1208), the process is supposed to proceed to step 1216. However, processing may return before step 1204, and steps 1204 through 1210 may be repeated a predetermined number of times.
 Δinterval(n)が0より大きい(intervalmeasがintervalpresetより小さい)場合(ステップ1210の「Yes」)、処理はステップ1212に進む。ステップ1212において、制御部106は、これまでに計算されたΔinterval(n)を積算した値Σを求める。ステップ1210に示した計算式は一例にすぎない。ステップ1212の処理は、負荷132の熱履歴に含まれる古い熱履歴が上記条件(第1状態と第2状態とを区別するための条件)に与える影響が、負荷132の熱履歴に含まれる新しい熱履歴が当該条件に与える影響よりも小さくなるように実行することができる。これにより、複数の熱履歴が蓄積された場合でも、第1状態と第2状態とを精度よく区別することができる。ステップ1212において様々な計算を実行し得ることが当業者には明らかであろう。 Greater Derutainterval (n) is 0 (interval meas is interval preset less) If ( "Yes" in step 1210), the process proceeds to step 1212. In step 1212, the control unit 106 obtains a value Σ obtained by integrating Δinterval (n) calculated so far. The formula shown in step 1210 is only an example. In the process of step 1212, the effect of the old heat history included in the heat history of the load 132 on the above condition (a condition for distinguishing between the first state and the second state) is included in the heat history of the load 132. It can carry out so that heat history may become smaller than the influence on the condition concerned. Thereby, even when a plurality of heat histories are accumulated, it is possible to accurately distinguish the first state and the second state. It will be apparent to one skilled in the art that various calculations may be performed at step 1212.
 処理はステップ1214に進み、制御部106は、ステップ1212にて得られた積算値Σと所定の関数とに基づいて、上記条件(例えば、Δtthre)を得る。図12Bにおいて、所定の関数F(Σ)の一例をステップ1214の横に示す。このように、ステップ1214においては、積算値Σが大きいほど(吸引インターバルが小さいほど)Δtthreが小さくなるように予め設定されてもよい。したがって、エアロゾルの生成に対する要求(ユーザによる吸引、所定のボタンの押下など)が終了してから次の要求が開始するまでの時間間隔が短いほど、第1状態が発生したと判断される可能性が小さくなるように上記条件が修正される。 The process proceeds to step 1214, and the control unit 106 obtains the above condition (for example, Δt thre ) based on the integrated value Σ obtained in step 1212 and a predetermined function. In FIG. 12B, an example of the predetermined function F (Σ) is shown beside step 1214. As described above, in step 1214, Δt thre may be preset so as to be smaller as the integrated value 大 き い is larger (as the suction interval is smaller). Therefore, it may be determined that the first state occurs as the time interval from the end of the request for generation of aerosol (aspiration by the user, pressing of a predetermined button, etc.) to the start of the next request is shorter. The above condition is corrected so that
 他方、Δinterval(n)が0以下である(intervalmeasがintervalpreset以上である)場合(ステップ1208の「No」)、処理はステップ1216に進む。ステップ1216において、制御部106は、カウンタnをリセットする。さらに処理はステップ1218に進み、Δtthreは予め定められた値に設定される。すなわち、吸引のインターバルが十分に大きい場合、第1状態と第2状態とを区別するために用いられる条件は修正されない。 On the other hand, Derutainterval (n) is 0 or less (interval meas is interval preset higher) if ( "No" in step 1208), the process proceeds to step 1216. At step 1216, the control unit 106 resets the counter n. Further, the process proceeds to step 1218, where Δt thre is set to a predetermined value. That is, if the aspiration interval is large enough, the conditions used to distinguish between the first and second states are not modified.
 上述のように、本実施形態によれば、制御部106は、回路134が機能した際の負荷132の熱履歴に基づき、第1状態と第2状態とを区別するための条件を修正するように動作する。したがって、負荷132の熱履歴が残っている場合でも、第1状態と第2状態とを精度よく区別することができる。 As described above, according to the present embodiment, the control unit 106 corrects the condition for distinguishing the first state from the second state based on the heat history of the load 132 when the circuit 134 functions. To work. Therefore, even when the heat history of the load 132 remains, the first state and the second state can be accurately distinguished.
 本実施形態によると、制御部106は、エアロゾルの生成に対する要求に基づいて当該要求の時系列的な変化を取得し、当該要求の時系列的な変化に由来する負荷132の熱履歴に基づき、第1状態と第2状態とを区別するための条件を修正するように動作する。したがって、正常でない吸引が行われた場合でも、第1状態と第2状態とを精度よく区別することができる。 According to the present embodiment, the control unit 106 acquires the time-series change of the request based on the request for generation of the aerosol, and based on the heat history of the load 132 derived from the time-series change of the request, It operates to correct the conditions for distinguishing between the first state and the second state. Therefore, even if the abnormal suction is performed, the first state and the second state can be accurately distinguished.
 ユーザによる吸引の時間が長い場合、吸引の時間が長く且つインターバルが通常の長さである場合などにおいても、図12A及び図12Bの例と同様の問題が生じ得るが、本実施形態により当該問題を解決することができる。すなわち、エアロゾルの生成に対する要求の時系列的な変化が、通常よりも長い時間に亘って行われる吸引に起因する場合でも、当該変化に由来する負荷132の熱履歴に基づいて、第1状態と第2状態とを区別するための条件を修正することができる。 When the suction time by the user is long or when the suction time is long and the interval has a normal length, the same problem as the example of FIGS. 12A and 12B may occur. Can be solved. That is, even if the time-series change of the demand for the generation of the aerosol is due to the aspiration performed over a longer time than usual, the first state is determined based on the thermal history of the load 132 derived from the change. The conditions for differentiating from the second state can be modified.
 図13Aは、負荷132の劣化などの原因により負荷132の冷却に要する時間が正常な場合と比較して長くなったときの、負荷132の抵抗値の時系列的な変化を概念的に示すグラフである。 FIG. 13A is a graph conceptually showing a time-series change in resistance value of the load 132 when the time required for cooling the load 132 is long due to a cause such as deterioration of the load 132 as compared with the case where the load 132 is normal. It is.
 負荷132の冷却に要する時間が長くなると、吸引のインターバルが正常であったとしても、負荷132の温度が室温に戻る前に次の吸引が開始することがあり得る。図13Aのグラフはこのような状況を示している。図13Aにおいて、最初の吸引の開始から終了までの状況は図11の正常な吸引の場合と同様である。最初の吸引が終了すると、負荷132の温度は低下し、それに伴い負荷132の抵抗値も低下する。しかし、負荷132の温度が低下する速度が遅いので、第2の吸引の開始時において、負荷132の温度は室温より高い。したがって、負荷132の抵抗値もまた室温における抵抗値R(TR.T.=25℃)よりも大きい。すなわち、図11の例とは異なり、図13Aの例では、第2の吸引の開始時において、負荷132には熱履歴が残っている。このため、第2の吸引のために負荷132が加熱されると、負荷132の抵抗値がR(TB.P.=200℃)へより早く到達するため、より多くのエアロゾル源が加熱されることでより多くのエアロゾルが生成され得る。従って、保持部130におけるエアロゾル源が不足しやすくなる。このような挙動が繰り返されることにより、負荷132の温度は、図6、図7及び図10に関連して説明された実施形態において示した閾値(例えば、350℃)に到達し得る。 If the time taken to cool the load 132 is long, even if the suction interval is normal, the next suction may start before the temperature of the load 132 returns to room temperature. The graph of FIG. 13A shows such a situation. In FIG. 13A, the situation from the start to the end of the first suction is similar to that of the normal suction of FIG. When the first suction ends, the temperature of the load 132 decreases, and the resistance of the load 132 also decreases accordingly. However, at the start of the second suction, the temperature of the load 132 is higher than room temperature because the temperature of the load 132 decreases slowly. Therefore, the resistance value of the load 132 is also larger than the resistance value R ( TR.T. = 25.degree. C.) at room temperature. That is, unlike the example of FIG. 11, in the example of FIG. 13A, the heat history remains in the load 132 at the start of the second suction. Therefore, when the load 132 is heated for a second suction, the resistance value of the load 132 is R (T B.P. = 200 ℃) Heyori arrives earlier, more aerosol source is heated Can produce more aerosol. Therefore, the aerosol source in the holding unit 130 tends to be short. By repeating such behavior, the temperature of the load 132 may reach the threshold (for example, 350 ° C.) indicated in the embodiments described in connection with FIGS. 6, 7 and 10.
 本願発明者らは、このような場合においても、図6、図7及び図10に関連して説明されたような実施形態において第1状態と第2状態とを区別するために用いられる閾値(例えば、ステップ614におけるΔtthre)などの条件を、負荷132の熱履歴に基づいて修正することにより、エアロゾル源が不足したときにエアロゾル生成装置100の制御を一層適切に実行できる技術を発明した。以下、当該技術について説明する。 Even in such a case, the inventors of the present invention use the threshold (the threshold used to distinguish between the first state and the second state in the embodiment as described in connection with FIGS. 6, 7 and 10). For example, by modifying the conditions such as Δt thre ) in step 614 based on the heat history of the load 132, a technique has been invented that can more appropriately control the aerosol generation device 100 when the aerosol source runs out. Hereinafter, the technology will be described.
 図13Bは、本開示の実施形態による、負荷132の冷却に要する時間が正常な場合と比較して長い場合において第1状態と第2状態とを区別するための条件を修正する処理を示すフローチャートである。 FIG. 13B is a flowchart illustrating a process of modifying conditions to distinguish between the first state and the second state when the time taken to cool the load 132 is long as compared to the normal case, according to an embodiment of the present disclosure. It is.
 処理はステップ1302において開始し、制御部106は、ユーザによる吸引が開始され、エアロゾル生成装置100Aの回路134が機能したときの負荷132の初期温度Tiniを取得する。 The process starts in step 1302, and the control unit 106 obtains an initial temperature T ini of the load 132 when suction by a user is started and the circuit 134 of the aerosol generation device 100A functions.
 処理はステップ1304に進み、制御部106は、初期温度Tiniと所定の関数とに基づいて、上記条件(例えば、Δtthre)を得る。図13Bにおいて、所定の関数F(Tini)の一例をステップ1304の横に示す。このように、ステップ1304においては、エアロゾル生成装置100の回路134が機能した際の負荷132の温度が高いほどΔtthreが小さくなるように処理が行われてもよい。したがって、本実施形態によれば、制御部106は、回路134が機能した際の負荷132の温度が高いほど、第1状態が発生したと判断される可能性が小さくなるように、上記条件を修正するように動作する。 The process proceeds to step 1304, and the control unit 106 obtains the above condition (for example, Δt thre ) based on the initial temperature T ini and a predetermined function. In FIG. 13B, an example of a predetermined function F (T ini ) is shown beside step 1304. Thus, in step 1304, processing may be performed such that Δt thre decreases as the temperature of the load 132 when the circuit 134 of the aerosol generation device 100 functions increases. Therefore, according to the present embodiment, as the temperature of the load 132 when the circuit 134 functions is higher, the control unit 106 reduces the possibility that the first state is determined to be generated. Works to fix.
 上述の説明において、本開示の第1の実施形態は、エアロゾル生成装置及びエアロゾル生成装置を動作させる方法として説明された。しかし、本開示が、プロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。 In the above description, the first embodiment of the present disclosure has been described as an aerosol generating device and a method of operating the aerosol generating device. However, it will be appreciated that the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or a computer readable storage medium storing the program.
<第2の実施形態>
 本開示の実施形態によるエアロゾル生成装置100に対して、通常の吸引の場合と比較して短いインターバル(例えば、貯留部116から保持部130へ十分な量のエアロゾルを供給するのに必要な時間よりも短いインターバル)で吸引が行われる場合、貯留部116が十分な量のエアロゾル源を貯留している場合であっても、保持部130におけるエアロゾル源の一時的な不足が生じ得る。1回の吸引における吸引容量が通常の吸引の場合と比較して大きい場合においても同様の問題が生じ得る。1回の吸引における吸引時間が通常の吸引の場合と比較して長い場合においても同様の問題が生じ得る。これらは上述の問題が生じ得る吸引の例にすぎない。様々な特徴を有する想定外の吸引パターンに起因して同様の問題が生じ得ることが当業者に理解されよう。本開示の第2の実施形態は上述のような問題を解決するものである。
Second Embodiment
For the aerosol generation device 100 according to an embodiment of the present disclosure, a shorter interval (for example, than the time required to supply a sufficient amount of aerosol from the reservoir 116 to the holder 130 as compared to the case of normal suction) If the suction is performed at a short interval, even if the reservoir 116 stores a sufficient amount of the aerosol source, a temporary shortage of the aerosol source in the holding unit 130 may occur. The same problem may occur when the aspiration volume in one aspiration is large compared to the case of normal aspiration. The same problem may occur in the case where the suction time in one suction is long as compared with the case of normal suction. These are only examples of aspiration where the above mentioned problems can occur. It will be understood by those skilled in the art that similar problems may arise due to unexpected suction patterns having various characteristics. The second embodiment of the present disclosure solves the problems as described above.
 本実施形態によるエアロゾル生成装置100の基本的な構成は、図1A及び図1Bに示されるエアロゾル生成装置100の構成と同様である。 The basic configuration of the aerosol generation device 100 according to the present embodiment is the same as the configuration of the aerosol generation device 100 shown in FIGS. 1A and 1B.
 本実施形態によるエアロゾル生成装置100は、貯留部116から保持部130へ供給されるエアロゾル源の量又は速度の少なくとも一方を調整することを可能にする供給部を備えてもよい。供給部は制御部106により制御されてもよい。供給部は、貯留部116と保持部130との間に配置されたポンプ、貯留部116の霧化部118に対する開口を制御するように構成される機構など、様々な構成により実現することができる。 The aerosol generation device 100 according to the present embodiment may include a supply unit that makes it possible to adjust at least one of the amount or the velocity of the aerosol source supplied from the storage unit 116 to the holding unit 130. The supply unit may be controlled by the control unit 106. The supply unit can be realized by various configurations such as a pump disposed between the storage unit 116 and the holding unit 130, a mechanism configured to control an opening of the storage unit 116 to the atomization unit 118, and the like. .
 本実施形態によるエアロゾル生成装置100は、エアロゾル源の温度を調整することを可能にする温調部を備えてもよい。温調部は制御部106により制御されてもよい。温調部は様々な構成及び配置により実現することができる。 The aerosol production | generation apparatus 100 by this embodiment may be provided with the heat control part which enables adjusting the temperature of an aerosol source. The temperature control unit may be controlled by the control unit 106. The temperature control unit can be realized by various configurations and arrangements.
 本実施形態によるエアロゾル生成装置100は、エアロゾル生成装置100内の通気抵抗を変更することを可能にする変更部を備えてもよい。変更部は制御部106により制御されてもよい。変更部は様々な構成及び配置により実現することができる。 The aerosol generating device 100 according to the present embodiment may include a changing unit that enables the air flow resistance in the aerosol generating device 100 to be changed. The change unit may be controlled by the control unit 106. The change unit can be realized by various configurations and arrangements.
 本実施形態によるエアロゾル生成装置100は、エアロゾルの生成に対する要求を出力する要求部を備えてもよい。要求部は制御部106により制御されてもよい。要求部は様々な構成及び配置により実現することができる。 The aerosol production | generation apparatus 100 by this embodiment may be equipped with the request | requirement part which outputs the request | requirement with respect to the production | generation of aerosol. The request unit may be controlled by the control unit 106. The request unit can be realized by various configurations and arrangements.
 図14は、本実施形態による、エアロゾル生成装置100において保持部130のエアロゾル源の一時的な不足を抑制する処理を示すフローチャートである。 FIG. 14 is a flowchart showing a process of suppressing a temporary shortage of the aerosol source of the holding unit 130 in the aerosol generation device 100 according to the present embodiment.
 処理はステップ1402において開始する。処理が開始すると、制御部106は、カウンタnerrを0に設定する。カウンタnerrの値は、想定外の吸引が検出された回数を示してもよい。 Processing commences at step 1402. When the process starts, the control unit 106 sets the counter n err to 0. The value of the counter n err may indicate the number of times an unexpected suction is detected.
 処理はステップ1404に進み、制御部106は、吸引のインターバル、吸引容量、吸引時間の長さなどを測定する。これらはステップ1404において測定され得るパラメータの例にすぎない。想定外の吸引を検知するのに役立つ様々なパラメータをステップ1404において測定することにより本実施形態を実現し得ることは当業者に理解されるべきである。 The process proceeds to step 1404, and the control unit 106 measures the suction interval, the suction volume, the length of suction time, and the like. These are merely examples of parameters that may be measured at step 1404. It should be understood by those skilled in the art that the present embodiment can be realized by measuring various parameters that help detect unexpected suction in step 1404.
 処理はステップ1406に進み、制御部106は、ステップ1404において測定されたパラメータを通常の吸引における対応するパラメータと比較して、現在行われている吸引が想定外の特徴を有する吸引であるか否かを判定する。例えば、制御部106は、測定された吸引インターバルが所定の閾値より短い場合に、現在の吸引が想定外の吸引であると判断してもよい。別の例において、制御部106は、測定された吸引容量が所定の閾値を超える場合に、現在の吸引が想定外の吸引であると判断してもよい。別の例において、制御部106は、測定された吸引時間の長さが所定の閾値よりも長い場合に、現在の吸引が想定外の吸引であると判断してもよい。あるいは、制御部106は、第1の実施形態に関して図6、図7、図10、図12B及び図13Bに関連して説明された技術を用いて、現在の吸引が、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足する状態(例えば、第1の実施形態における第2状態)を生じさせ得るか否かを判断してもよい。例えば、第1の実施形態に関して説明したように、制御部106は、回路134を機能させてからの負荷132の温度変化に基づいてステップ1406の判定を行ってもよい。あるいは、第1の実施形態に関して説明したように、制御部106は、要求部からの要求の時系列的な変化に基づいてステップ1406の判定を行ってもよい。 The process proceeds to step 1406, where the controller 106 compares the parameters measured in step 1404 with the corresponding parameters in normal aspiration to determine whether the aspiration currently being performed is aspiration with an unexpected feature. Determine if For example, the control unit 106 may determine that the current suction is an unexpected suction when the measured suction interval is shorter than a predetermined threshold. In another example, the control unit 106 may determine that the current suction is an unexpected suction when the measured suction volume exceeds a predetermined threshold. In another example, the control unit 106 may determine that the current suction is an unexpected suction when the length of the measured suction time is longer than a predetermined threshold. Alternatively, the control unit 106 may use the technique described in connection with FIGS. 6, 7, 10, 12B and 13B with respect to the first embodiment to make the reservoir 116 an aerosol source for the current suction. However, it may be determined whether it is possible to cause a state (for example, the second state in the first embodiment) in which the aerosol source held by the holding unit 130 can be supplied. For example, as described in the first embodiment, the control unit 106 may make the determination of step 1406 based on the temperature change of the load 132 after the circuit 134 is made to function. Alternatively, as described in the first embodiment, the control unit 106 may perform the determination of step 1406 based on a time-series change of the request from the request unit.
 現在の吸引が想定外の吸引でない場合(ステップ1406の「No」)、処理はステップ1404の前に戻る。あるいは、処理は終了してもよい。 If the current aspiration is not an unexpected aspiration ("No" at step 1406), the process returns to before step 1404. Alternatively, the process may end.
 現在の吸引が想定外の吸引である場合(ステップ1406の「Yes」)、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足し得る状態(より具体的には、このような保持部130のエアロゾル源の不足により負荷132の温度がエアロゾル源の沸点を超える乾燥状態又は該乾燥状態の前兆)が検知されたことになる。処理はステップ1408に進み、制御部106は、カウンタnerrの値をインクリメントする。 When the current suction is unexpected suction (“Yes” in step 1406), a state in which the reservoir 116 can supply the aerosol source but the aerosol source held by the holder 130 may run short (more specifically, In such a case, the shortage of the aerosol source of the holding unit 130 results in detection of a dry state or a precursor of the dry state in which the temperature of the load 132 exceeds the boiling point of the aerosol source. The process proceeds to step 1408, where the control unit 106 increments the value of the counter n err .
 処理はステップ1410に進み、制御部106は、カウンタnerrの値が所定の閾値を超えるか否かを判定する。 The process proceeds to step 1410, where the control unit 106 determines whether the value of the counter n err exceeds a predetermined threshold.
 カウンタnerrの値が所定の閾値を超える場合(ステップ1410の「Yes」)、処理はステップ1414に進む。ステップ1414において、制御部106は、保持部130におけるエアロゾル源の一時的な不足を抑制するための制御を実行する。 If the value of the counter n err exceeds the predetermined threshold (“Yes” in step 1410), the process proceeds to step 1414. In step 1414, the control unit 106 executes control for suppressing a temporary shortage of the aerosol source in the holding unit 130.
 ステップ1414において、制御部106は、電源110が負荷132への給電を開始する際と電源110が負荷132への給電を完了する際の少なくとも一方において、保持部130が保持するエアロゾル源の保持量を増大させる制御又は当該保持量が増大する可能性を向上させる制御を実行してもよい。これにより、保持部130の一時的な乾燥の発生又は再発を抑制することができる。 In step 1414, the control unit 106 holds the amount of aerosol source held by the holding unit 130 at least when the power supply 110 starts supplying power to the load 132 and / or when the power supply 110 completes supplying power to the load 132. The control to increase or the control to improve the possibility of increasing the holding amount may be performed. Thereby, generation | occurrence | production or recurrence of temporary drying of the holding | maintenance part 130 can be suppressed.
 一例として、ステップ1414において、制御部106は、エアロゾルの生成を完了してから次にエアロゾルの生成を開始するまでのインターバルを前回のインターバルよりも長くする制御を実行してもよい。これにより、延長されたインターバルの間はエアロゾルの生成が禁止され、貯留部116から保持部130へエアロゾル源を供給する時間を確保することができる。したがって、保持部130の一時的な乾燥の発生又は再発を抑制することができる。この例において、制御部106は、エアロゾル源の粘性、エアロゾル源の残量、負荷132の電気抵抗値、電源110の温度の少なくとも1つに基づき、インターバルの長さを修正してもよい。これにより、インターバルが過剰に長くなることを防ぐことができ、ユーザエクスペリエンスが悪化することを抑制することができる。 As an example, in step 1414, the control unit 106 may execute control to make the interval between the completion of the generation of the aerosol and the start of the next generation of the aerosol longer than the previous interval. As a result, generation of aerosol is prohibited during the extended interval, and a time for supplying the aerosol source from the reservoir 116 to the holder 130 can be secured. Therefore, the occurrence or recurrence of temporary drying of the holding unit 130 can be suppressed. In this example, the control unit 106 may correct the interval length based on at least one of the viscosity of the aerosol source, the remaining amount of the aerosol source, the electrical resistance value of the load 132, and the temperature of the power source 110. This can prevent the interval from becoming excessively long, and can suppress the deterioration of the user experience.
 一例として、ステップ1414において、制御部106は、貯留部116から保持部130へ供給されるエアロゾル源の量又は速度の少なくとも一方を増加させるように上述の供給部を制御してもよい。これにより、ユーザに不便を感じさせることなく、保持部130の一時的な乾燥の発生又は再発を抑制することができる。 As an example, in step 1414, the control unit 106 may control the above-described supply unit to increase at least one of the amount or the velocity of the aerosol source supplied from the storage unit 116 to the holding unit 130. Thereby, it is possible to suppress the occurrence or recurrence of temporary drying of the holding unit 130 without causing the user to feel inconvenience.
 一例として、ステップ1414において、制御部106は、エアロゾルの生成量を減らすように前記回路を制御してもよい。 As an example, in step 1414, the control unit 106 may control the circuit to reduce the amount of aerosol generation.
 一例として、ステップ1414において、制御部106は、エアロゾル源を加温するように上述の温調部を制御してもよい。一般的な液体のエアロゾル源は、自身の温度が上昇すると、その粘性が下がる性質を持つ。すなわちエアロゾル源をエアロゾルの生成が生じない温度で加温すれば、毛細管効果によって貯留部116から保持部130へ供給されるエアロゾル源の量又は速度の少なくても一方を増加させられる。制御部106はまた、負荷132によってエアロゾルが生成されていない間に、温調部を制御してエアロゾル源を加温してもよい。これにより、主に吸引が行われていないときに貯留部116から保持部130へのエアロゾル源の供給がなされるので、加温の効果が得られやすい。制御部106はまた、負荷132を温調部として用いてもよい。これにより、加温のための別のヒータを設ける必要がなく、構成の簡素化やコスト低減が可能となる。 As an example, in step 1414, the control unit 106 may control the above-described temperature control unit to heat the aerosol source. A common liquid aerosol source has the property of decreasing its viscosity as its temperature rises. That is, if the aerosol source is heated at a temperature at which generation of aerosol does not occur, at least one of the amount or the velocity of the aerosol source supplied from the reservoir 116 to the holder 130 can be increased by capillary effect. The control unit 106 may also control the temperature control unit to heat the aerosol source while the aerosol is not generated by the load 132. As a result, the aerosol source is supplied from the storage unit 116 to the holding unit 130 mainly when suction is not performed, so the effect of heating can be easily obtained. The control unit 106 may also use the load 132 as a temperature control unit. As a result, there is no need to provide another heater for heating, and the configuration can be simplified and the cost can be reduced.
 一例として、ステップ1414において、制御部106は、エアロゾル生成装置100内の通気抵抗を増大させるように上述の変更部を制御してもよい。 As an example, in step 1414, the control unit 106 may control the above-described changing unit to increase the ventilation resistance in the aerosol generation device 100.
 一例として、制御部106は、上述の要求部からの要求が大きいほど(例えば、吸引に関して検知される気圧変化が大きいほど)エアロゾルの生成量が多くなるような相関関係に基づき、回路134を制御してもよい。ステップ1414において、制御部106は、要求の大きさに対応するエアロゾルの生成量が少なくなるように当該相関関係を修正してもよい。 As an example, the control unit 106 controls the circuit 134 based on the correlation such that the larger the request from the above-described request unit (for example, the larger the change in the detected air pressure with respect to suction), the more the aerosol is generated. You may In step 1414, the control unit 106 may correct the correlation so that the amount of aerosol generation corresponding to the size of the request is reduced.
 一例として、制御部106は、エアロゾルの生成を完了してから次にエアロゾルの生成を開始するまでのインターバルを前回のインターバルよりも長くする制御を行う第1モードと、電源110が負荷132への給電を開始する際と電源110が負荷132への給電を完了する際の少なくとも一方において、インターバルの制御を行うことなく保持部130におけるエアロゾル源の保持量を増大させる制御又は当該保持量が増大する可能性を向上させる制御を行う第2モードとを実行することができるように構成されてもよい。ステップ1414において、制御部106は、第1モードよりも優先して第2モードを実行してもよい。これにより、ユーザに不便さを感じさせずに、保持部130の一時的な乾燥の発生又は再発を抑制することができる。 As an example, the control unit 106 performs a first mode in which an interval from the completion of the generation of the aerosol to the start of the next generation of the aerosol is longer than the previous interval, and the power source 110 supplies the load 132 At the time of starting power feeding and / or when power source 110 completes power feeding to load 132, control to increase the amount of holding of the aerosol source in holding unit 130 without controlling the interval or the amount of holding increases It may be configured to be able to execute the second mode of performing control to improve the possibility. In step 1414, the control unit 106 may execute the second mode in preference to the first mode. Thereby, it is possible to suppress the occurrence or recurrence of temporary drying of the holding unit 130 without causing the user to feel inconvenience.
 制御部106はまた、第2モードの実行後さらに保持部130の乾燥状態又は乾燥状態の前兆を検知した場合、第1モードを実行してもよい。これにより、ユーザの利便性を損ないかねないインターバルの制御以外の手段によっては保持部130の一時的な乾燥を抑制できない状況に陥ったときに初めて、インターバル制御を行うので、ユーザの利便性の確保と保持部130の一時的な乾燥の発生又は再発の抑制とを両立することができる。 The control unit 106 may also execute the first mode when detecting the dry state or the precursor of the dry state of the holding unit 130 after the execution of the second mode. As a result, since interval control is performed only when temporary drying of the holding unit 130 can not be suppressed by means other than interval control that may impair the user's convenience, ensuring the user's convenience And suppression of the occurrence or recurrence of temporary drying of the holding portion 130 can be achieved.
 図14に示す処理1400が複数回行われる場合、その都度、制御部106は、ステップ1414において実行される処理を上述のような様々な処理のうちから選択してもよい。例えば、ステップ1414において実行され得る処理のうちユーザに強いる負担が小さい処理が優先的に実行されてもよい。当該処理を実行しても保持部130の一時的な乾燥の発生又は再発を抑制できない場合、ユーザに強いる負担がより大きい処理が実行されてもよい。 When the process 1400 shown in FIG. 14 is performed a plurality of times, the control unit 106 may select the process to be performed in step 1414 from the various processes as described above each time. For example, among the processing that can be executed in step 1414, processing that imposes less burden on the user may be preferentially executed. If the execution or the recurrence of the temporary drying of the holding unit 130 can not be suppressed even by executing the process, a process that places a greater burden on the user may be performed.
 カウンタnerrの値が所定の閾値を超えない場合(ステップ1410の「No」)、処理はステップ1412に進む。ステップ1412において、制御部106は、ユーザに対して警告を行う。当該警告は、現在の吸引の影響により十分なエアロゾルの生成が行えなくなり得ることをユーザに容易に理解させることができるものであることが望ましい。例えば、制御部106は、上述の乾燥状態又は乾燥状態の前兆が検知されたことに基づいて、通知部108を機能させてもよい。通知部108がLEDなどの発光素子、ディスプレイ、スピーカ、バイブレータなどである場合、制御部106は、通知部108は、発光、表示、発声、振動などの動作を通知部108に行わせてもよい。これにより、ユーザが吸引を控えるようになり、その結果として貯留部116から保持部130へエアロゾル源を供給する時間を確保することができる。したがって、保持部130の一時的な乾燥、乾燥の再発等を抑制することができる。 If the value of the counter n err does not exceed the predetermined threshold (“No” in step 1410), the process proceeds to step 1412. In step 1412, the control unit 106 warns the user. It is desirable that the warning be able to make it easy for the user to understand that the effect of the current aspiration may make it impossible to generate sufficient aerosol. For example, the control unit 106 may cause the notification unit 108 to function based on the detection of the dry state or the precursor of the dry state described above. When the notification unit 108 is a light emitting element such as an LED, a display, a speaker, a vibrator, or the like, the control unit 106 may cause the notification unit 108 to perform operations such as light emission, display, vocalization, and vibration. . As a result, the user can refrain from suction, and as a result, it is possible to secure a time for supplying the aerosol source from the storage unit 116 to the holding unit 130. Therefore, temporary drying of the holding part 130, relapse of drying, etc. can be suppressed.
 一例として、ステップ1412において、制御部106は、通知部108を1回又は複数回機能させた後さらに乾燥状態又は乾燥状態の前兆を検知した場合、次の前記インターバルを前回のインターバルよりも長くする制御を実行してもよい。これにより、最初からユーザに対して不便を強いることなく、保持部130の一時的な乾燥の発生又は再発を抑制することができる。この例において、制御部106は、エアロゾル源の粘性、エアロゾル源の残量、負荷132の電気抵抗値、電源110の温度の少なくとも1つに基づき、インターバルの長さを修正してもよい。 As an example, in step 1412, when the control unit 106 causes the notification unit 108 to function once or a plurality of times and further detects a dry state or a precursor of the dry state, the control unit 106 makes the next interval longer than the previous interval. Control may be performed. Thereby, it is possible to suppress the occurrence or recurrence of temporary drying of the holding unit 130 without causing inconvenience to the user from the beginning. In this example, the control unit 106 may correct the interval length based on at least one of the viscosity of the aerosol source, the remaining amount of the aerosol source, the electrical resistance value of the load 132, and the temperature of the power source 110.
 一実施形態において、制御部106は、エアロゾルの生成の完了後、該エアロゾルの生成に用いられた量のエアロゾル源以上の量のエアロゾル源が貯留部116から保持部130へ供給されるまでの期間に相当するインターバルにおいては、エアロゾルの生成を抑制する制御又はエアロゾルの生成が抑制される可能性を向上させる制御を実行してもよい。これにより、保持部130の一時的な乾燥の発生を効果的に抑制することができる。この例において、制御部106は、エアロゾルを生成している間は通知部108を第1モードで制御し、上記インターバルの間は通知部108を当該第1モードとは異なる第2モードで制御してもよい。これにより、ユーザが吸引を控えるようになり、その結果として貯留部116から保持部130へエアロゾル源を供給する時間を確保することができる。したがって、保持部130の一時的な乾燥、乾燥の再発等を抑制することができる。制御部106はまた、上記インターバルの間に要求部からの要求を取得した場合、通知部108を第2モードとは異なる第3モードで制御してもよい。制御部106はまた、上記インターバルの間はエアロゾルの生成を禁止するように回路134を制御してもよい。これにより、上記インターバル中は保持部130が保持するエアロゾル源の量が減少しにくくなる。結果として、保持部130の一時的な乾燥の発生又は再発を抑制することができる。制御部106はまた、要求部からの要求の大きさ及び変化の少なくとも一方に基づき、上記インターバルの長さを修正してもよい。これにより、吸引のパターンに応じてインターバルの長さが補正されるので、適切な吸引インターバルにより、保持部130の一時的な乾燥の発生又は再発を抑制することができる。 In one embodiment, after completion of the generation of the aerosol, the control unit 106 is a period from when the amount of the aerosol source equal to or more than the amount of the aerosol source used to generate the aerosol is supplied from the storage unit 116 to the holding unit 130 In the interval equivalent to the above, control to suppress the generation of aerosol or control to improve the possibility of suppressing the generation of aerosol may be executed. Thereby, generation | occurrence | production of temporary drying of the holding part 130 can be suppressed effectively. In this example, the control unit 106 controls the notification unit 108 in the first mode while generating the aerosol, and controls the notification unit 108 in the second mode different from the first mode during the interval. May be As a result, the user can refrain from suction, and as a result, it is possible to secure a time for supplying the aerosol source from the storage unit 116 to the holding unit 130. Therefore, temporary drying of the holding part 130, relapse of drying, etc. can be suppressed. The control unit 106 may control the notification unit 108 in a third mode different from the second mode when acquiring a request from the request unit during the interval. The controller 106 may also control the circuit 134 to inhibit the generation of aerosol during the interval. As a result, the amount of the aerosol source held by the holding unit 130 is less likely to be reduced during the interval. As a result, generation or recurrence of temporary drying of the holding unit 130 can be suppressed. The control unit 106 may also modify the length of the interval based on at least one of the size and the change of the request from the request unit. As a result, the length of the interval is corrected according to the suction pattern, so that the occurrence or recurrence of temporary drying of the holding unit 130 can be suppressed by an appropriate suction interval.
 図15は、図14の処理1400において行われる吸引インターバルの較正の具体例を示す。制御部106は、様々な手法で得られる補正係数を用いて現在の吸引インターバルAを較正することができる。 FIG. 15 illustrates an example of aspiration interval calibration performed in process 1400 of FIG. The control unit 106 can calibrate the current suction interval A using correction coefficients obtained by various methods.
 制御部106は、吸引容量導出部1510、吸引間隔導出部1512、液粘性導出部1514、保持部接触量導出部1518を含んでもよいし、これらのコンポーネントとして機能するように構成されてもよい。エアロゾル生成装置100は、流量又は流速センサ1502、温度センサ1506、電流センサ1508及び電圧センサ1510のうち少なくとも1つを備えてもよい。エアロゾル生成装置100はまた、エアロゾル源の液物性1504を検知する手段を備えてもよい。 The control unit 106 may include a suction volume deriving unit 1510, a suction interval deriving unit 1512, a liquid viscosity deriving unit 1514, and a holding unit contact amount deriving unit 1518, or may be configured to function as these components. The aerosol generating device 100 may comprise at least one of a flow or flow rate sensor 1502, a temperature sensor 1506, a current sensor 1508 and a voltage sensor 1510. The aerosol generating device 100 may also include means for detecting the liquid property 1504 of the aerosol source.
 図15に示すように、吸引容量導出部1510は、流量又は流速センサ1502により検知された流量又は流速値に基づいて吸引容量を導出する。制御部106は、吸引容量と補正係数α1との間の予め規定された関係1522に基づいて、導出された吸引容量から補正係数α1を得る。 As shown in FIG. 15, the suction volume deriving unit 1510 derives a suction volume based on the flow rate or flow rate value detected by the flow rate or flow rate sensor 1502. The control unit 106 obtains the correction coefficient α1 from the derived suction volume based on the predefined relation 1522 between the suction volume and the correction coefficient α1.
 吸引間隔導出部1512は、流量又は流速センサ1502により検知された流量又は流速値に基づいて吸引間隔を導出する。制御部106は、吸引間隔と補正係数α2との間の予め規定された関係1524に基づいて、導出された吸引容量から補正係数α2を得る。 The suction interval deriving unit 1512 derives a suction interval based on the flow rate or flow rate value detected by the flow rate or flow rate sensor 1502. The control unit 106 obtains the correction coefficient α2 from the derived suction volume based on the predefined relationship 1524 between the suction interval and the correction coefficient α2.
 液粘性導出部1514は、エアロゾル源の液物性及び温度センサ1506により検知された温度に基づいて液粘性を導出する。制御部106は、液粘性と補正係数α3との間の予め規定された関係1526に基づいて、導出された液粘性から補正係数α3を得る。 The liquid viscosity deriving unit 1514 derives the liquid viscosity based on the liquid physical property of the aerosol source and the temperature detected by the temperature sensor 1506. The control unit 106 obtains the correction coefficient α3 from the derived liquid viscosity based on the predefined relationship 1526 between the liquid viscosity and the correction coefficient α3.
 制御部106は、温度センサ1506により検知された外気温1516と補正係数α4との間の予め規定された関係1528に基づいて、検知された外気温から補正係数α4を得る。 The control unit 106 obtains the correction coefficient α4 from the detected outside air temperature based on the predefined relationship 1528 between the outside air temperature 1516 detected by the temperature sensor 1506 and the correction coefficient α4.
 保持部接触量導出部1518は、電流センサ1508により検知された電流値及び電圧センサ1510により検知された電圧値に基づいて、保持部接触量を導出する。なお保持部接触量とは、保持部130がどれだけ貯留部116に貯留されたエアロゾル源と接触するかを表す量である。この保持部接触量に応じて、毛細管効果によって貯留部116から保持部130へ供給されるエアロゾル源の量が変動する。この保持部130へ供給されるエアロゾル源の量が変動した結果、負荷132の温度も併せて変動するため、電流センサ1508と電圧センサ1510を用いて導出される負荷132の抵抗値から、保持部接触量を導出できる。制御部106は、保持部接触量と補正係数α5との間の予め規定された関係1530に基づいて、導出された保持部接触量から補正係数α5を得る。 The holding unit contact amount deriving unit 1518 derives the holding unit contact amount based on the current value detected by the current sensor 1508 and the voltage value detected by the voltage sensor 1510. The holding unit contact amount is an amount indicating how much the holding unit 130 contacts the aerosol source stored in the storage unit 116. Depending on the holding unit contact amount, the amount of the aerosol source supplied from the storage unit 116 to the holding unit 130 fluctuates due to the capillary effect. Since the temperature of the load 132 also changes as a result of the fluctuation of the amount of the aerosol source supplied to the holding unit 130, the holding unit is obtained from the resistance value of the load 132 derived using the current sensor 1508 and the voltage sensor 1510. The amount of contact can be derived. The control unit 106 obtains the correction coefficient α5 from the derived holding unit contact amount based on the predefined relationship 1530 between the holding unit contact amount and the correction coefficient α5.
 制御部106は、検知された電流値及び電圧値から導出されたヒータ抵抗値1520と補正係数α6との間の予め規定された関係1532に基づいて、補正係数α6を得る。 The control unit 106 obtains the correction coefficient α6 based on the predefined relationship 1532 between the heater resistance value 1520 derived from the detected current value and voltage value and the correction coefficient α6.
 制御部106は、上述のようにして得られた補正係数α1~α6を様々な手法で現在の吸引インターバルAに対して適用することができる。例えば、制御部106は、補正係数α1からα6を加算した値をAに乗算することにより得られる値を全体の補正係数として用いることにより、構成された吸引インターバルA´を得てもよい。 The control unit 106 can apply the correction coefficients α1 to α6 obtained as described above to the current suction interval A by various methods. For example, the control unit 106 may obtain the configured suction interval A ′ by using a value obtained by multiplying A by adding the correction coefficients α1 to α6 as the entire correction coefficient.
 これらは補正係数を導出する手法の例にすぎず、様々な手法を適用することができる。図15において概念的に示した処理を具体的に実現するためにエアロゾル生成装置100を様々に構成し得ることが当業者に理解されるべきである。 These are merely examples of techniques for deriving correction coefficients, and various techniques can be applied. It should be understood by those skilled in the art that the aerosol generating device 100 can be variously configured to specifically implement the process schematically illustrated in FIG.
 上述の説明において、本開示の第2の実施形態は、エアロゾル生成装置及びエアロゾル生成装置を動作させる方法として説明された。しかし、本開示が、プロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。 In the above description, the second embodiment of the present disclosure has been described as an aerosol generating device and a method of operating the aerosol generating device. However, it will be appreciated that the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or a computer readable storage medium storing the program.
<第3の実施形態>
 本開示の第1の実施形態に関して説明したように、貯留部が貯留するエアロゾル源が不足した第1状態にあるか、貯留部がエアロゾル源を供給可能であるが保持部が保持するエアロゾル源が不足した第2状態にあるか、を区別することができるエアロゾル生成装置が実現可能である。以下で説明する本開示の第3の実施形態は、このような特徴を有するエアロゾル生成装置を適切に制御することを可能にするものである。
Third Embodiment
As described in relation to the first embodiment of the present disclosure, the reservoir is in the first state where the aerosol source stored in the reservoir runs short, or the aerosol source that the reservoir can supply the aerosol source but the holder holds It is possible to realize an aerosol generation device that can distinguish whether it is in the second state that is insufficient. The third embodiment of the present disclosure described below makes it possible to appropriately control an aerosol generating device having such features.
 本開示の第1の実施形態に関して説明されたエアロゾル生成装置の構成(例えば、図1A、図1B、図2、図3、図8などに関連して説明された構成)及び動作方法(例えば、図6、図7、図10、図12B、図13Bなどに関連して説明された処理)、並びに本開示の第2の実施形態に関して説明されたエアロゾル生成装置の動作方法(例えば、図14、図15などに関連して説明された処理)は、本実施形態の例として用いることが可能である。 Configurations (eg, the configurations described in connection with FIGS. 1A, 1B, 2, 3, 8 etc.) and methods of operation (eg, such as the aerosol generation devices described in relation to the first embodiment of the present disclosure) 6, 7, 10, 12B, 13B etc.), as well as the method of operation of the aerosol generating device described with respect to the second embodiment of the present disclosure (eg, FIG. 14, FIG. The process described with reference to FIG. 15 and the like can be used as an example of the present embodiment.
 一例において、本開示の実施形態によるエアロゾル生成装置100は、電源110と、電源110から給電を受けて発熱しエアロゾル源を霧化する負荷132と、負荷132の温度に関連する値を取得するために用いられる要素112と、電源110と負荷132を電気的に接続する回路134と、エアロゾル源を貯留する貯留部116と、貯留部116から供給されるエアロゾル源を負荷132が加熱可能な状態に保持する保持部130と、制御部106とを備える。制御部106は、回路134が機能した後又は機能している間の負荷132の温度に関連する値の変化に基づき、エアロゾル生成装置100が、貯留部116が貯留するエアロゾル源が不足した第1状態にあるか、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足した第2状態にあるか、を区別し、第1状態が検知された場合は第1制御を実行し、第2状態が検知された場合は第1制御と異なる第2制御を実行するように構成されてもよい。これにより、貯留部116のエアロゾル源の不足を検知した場合の制御と、保持部130のエアロゾル源の不足を検知した場合の制御とが異なるので、エアロゾル生成装置100において生じる事象に応じて適切な制御を実行することができる。 In one example, the aerosol generating apparatus 100 according to an embodiment of the present disclosure obtains a value related to the power supply 110, a load 132 that generates power by generating power from the power supply 110, and atomizes the aerosol source, and a temperature of the load 132. 112, the circuit 134 for electrically connecting the power supply 110 and the load 132, the reservoir 116 for storing the aerosol source, and the load 132 capable of heating the aerosol source supplied from the reservoir 116 A holding unit 130 to hold and a control unit 106 are provided. The control unit 106 is configured such that the aerosol generation device 100 runs out of the aerosol source stored in the storage unit 116 based on the change in the value related to the temperature of the load 132 after or while the circuit 134 is functioning. It distinguishes whether it is in the second state where the storage unit 116 can supply the aerosol source but the aerosol source held by the holding unit 130 runs short, and the first state is detected. The control may be performed, and the second control different from the first control may be performed when the second state is detected. As a result, since the control when detecting the shortage of the aerosol source of the storage unit 116 and the control when detecting the shortage of the aerosol source of the holding unit 130 are different, it is appropriate according to the event that occurs in the aerosol generating device 100. Control can be performed.
 一例において、第1状態においては、貯留部116が貯留するエアロゾル源が不足するために、負荷132の温度がエアロゾル源の沸点又はエアロゾル源の蒸発によりエアロゾル源の生成が生じる温度を超える。第2状態においては、貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足するために、負荷132の温度がエアロゾル源の沸点又はエアロゾル源の蒸発によりエアロゾル源の生成が生じる温度を超える。 In one example, in the first state, the temperature of the load 132 exceeds the boiling point of the aerosol source or the temperature at which the generation of the aerosol source occurs due to evaporation of the aerosol source due to a shortage of the aerosol source that the reservoir 116 stores. In the second state, the temperature of the load 132 is determined by the evaporation of the boiling point of the aerosol source or the evaporation of the aerosol source because the reservoir 116 can supply the aerosol source but lacks the aerosol source that the holding unit 130 holds. Exceeding the temperature at which generation occurs.
 一例において、上述の第2制御は、上述の第1制御に比べて、貯留部116が貯留するエアロゾル源を多く減少させる。これにより、事象に応じて貯留部116のエアロゾル残量及び保持部130のエアロゾル残量を適切な値に維持することができる。 In one example, the second control described above reduces the number of aerosol sources stored by the storage section 116 more than the first control described above. As a result, the remaining amount of aerosol in the storage unit 116 and the remaining amount of aerosol in the holding unit 130 can be maintained at appropriate values according to the event.
 一例において、第2制御において制御部106が実行する制御は、第1制御において制御部106が実行する制御よりも、多くの数の変数及び/又は多くの量のアルゴリズムを変更する。第1制御は第1状態(貯留部116が貯留するエアロゾル源が不足した状態)が検知された場合に実行される。したがって、第1制御は、ユーザに対して貯留部116の交換又はエアロゾルの補充を指示することのみを含んでもよい。他方、第2制御は第2状態(貯留部116がエアロゾル源を供給可能であるが保持部130が保持するエアロゾル源が不足した状態)が検知された場合に実行される。したがって、第2制御は、例えば、本開示の第2の実施形態に関連して説明された図14のステップ1414の処理に含まれ得る様々な制御を含み得る。例えば、第2制御は、電源110が負荷132への給電を開始する際と電源110が負荷132への給電を完了する際の少なくとも一方において、保持部130が保持するエアロゾル源の保持量を増大させる制御又は当該保持量が増大する可能性を向上させる制御を含んでもよい。第2制御はまた、エアロゾルの生成を完了してから次にエアロゾルの生成を開始するまでのインターバルを前回のインターバルよりも長くする制御を含んでもよい。インターバルの長さは、エアロゾル源の粘性、エアロゾル源の残量、負荷132の電気抵抗値、電源110の温度の少なくとも1つに基づいて修正されてもよい。第2制御はまた、貯留部116から保持部130へ供給されるエアロゾル源の量又は速度の少なくとも一方を増加させる制御を含んでもよい。第2制御はまた、エアロゾルの生成量を減らすように回路134を制御することを含んでもよい。第2制御はまた、エアロゾル源を加温するように温調部を制御することを含んでもよい。第2制御はまた、負荷132によってエアロゾルが生成されていない間に、温調部を制御してエアロゾル源を加温することを含んでもよい。第2制御はまた、エアロゾル生成装置100内の通気抵抗を増大させるように上述の変更部を制御することを含んでもよい。第2制御はまた、要求部からの要求が大きいほどエアロゾルの生成量が多くなるような相関関係に基づき、回路134を制御することを含んでもよい。第2制御はまた、要求の大きさに対応するエアロゾルの生成量が少なくなるように当該相関関係を修正することを含んでもよい。本実施形態において、第1制御と比較して、第2制御を実行するためには、多くの数の変数及び/又は多くの量のアルゴリズムを変更する必要があることが理解されよう。 In one example, the control executed by the control unit 106 in the second control changes the number of variables and / or the amount of algorithm more than the control executed by the control unit 106 in the first control. The first control is executed when the first state (a state in which the aerosol source stored in the storage unit 116 is insufficient) is detected. Thus, the first control may only include instructing the user to replace the reservoir 116 or replenish the aerosol. On the other hand, the second control is executed when the second state (a state in which the storage unit 116 can supply the aerosol source but the aerosol source held by the holding unit 130 is insufficient) is detected. Thus, the second control may include, for example, various controls that may be included in the process of step 1414 of FIG. 14 described in connection with the second embodiment of the present disclosure. For example, the second control increases the amount of aerosol source held by the holding unit 130 at least when the power supply 110 starts supplying power to the load 132 and / or when the power supply 110 completes supplying power to the load 132. The control may include control to increase the possibility that the holding amount increases. The second control may also include control to make an interval between the completion of the generation of the aerosol and the start of the next generation of the aerosol longer than the previous interval. The length of the interval may be corrected based on at least one of the viscosity of the aerosol source, the remaining amount of the aerosol source, the electrical resistance value of the load 132, and the temperature of the power supply 110. The second control may also include control to increase at least one of the amount or the velocity of the aerosol source supplied from the reservoir 116 to the holder 130. The second control may also include controlling the circuit 134 to reduce the amount of aerosol produced. The second control may also include controlling the temperature control unit to heat the aerosol source. The second control may also include controlling the temperature control unit to warm the aerosol source while the aerosol is not generated by the load 132. The second control may also include controlling the above-described changes to increase the ventilation resistance in the aerosol generating device 100. The second control may also include controlling the circuit 134 based on the correlation such that the larger the demand from the demander is, the more the aerosol is produced. The second control may also include modifying the correlation to reduce the amount of aerosol generation that corresponds to the magnitude of the request. It will be appreciated that, in this embodiment, to perform the second control, as compared to the first control, it is necessary to change the number of variables and / or the amount of algorithm.
 一例において、第2制御においてエアロゾルの生成を許可するために使用者に要求される作業の数は、第1制御においてエアロゾルの生成を許可するために使用者に要求される作業の数より少ない。例えば、第1制御の場合、ユーザは貯留部116を交換する作業、貯留部116にエアロゾル源を補充する作業などを行わなければならない。他方、第2制御は上述のような様々な制御を含み得るが、これらの制御はユーザに作業を行うことを要求することなく制御部106などのエアロゾル生成装置100のコンポーネントによって自動的に実行することが可能である。少なくともこれらのことから、本実施形態において、第2制御においてエアロゾルの生成を許可するために使用者に要求される作業の数が、第1制御においてエアロゾルの生成を許可するために使用者に要求される作業の数より少なくなり得ることが理解されよう。 In one example, the number of operations required of the user to allow the generation of the aerosol in the second control is less than the number of operations required of the user to allow the generation of the aerosol in the first control. For example, in the case of the first control, the user has to perform an operation of replacing the storage unit 116, an operation of replenishing the storage unit 116 with an aerosol source, and the like. On the other hand, although the second control may include various controls as described above, these controls are automatically executed by components of the aerosol generating apparatus 100 such as the control unit 106 without requiring the user to perform work. It is possible. At least from these things, in the present embodiment, the number of operations required of the user to allow the generation of the aerosol in the second control requires the user to allow the generation of the aerosol in the first control. It will be appreciated that it may be less than the number of tasks performed.
 一例において、制御部106は、第1制御と第2制御において、少なくとも既定期間だけエアロゾルの生成を禁止してもよい。これにより、第1状態及び第2状態のいずれの場合においてもエアロゾル生成装置100を不能化することができるので、負荷132の温度がさらに上昇することを抑制することができる。不能化とは、ユーザがエアロゾル生成装置100を操作しても負荷132への給電を行わないことを意味する。 In one example, the control unit 106 may prohibit the generation of the aerosol for at least a predetermined period in the first control and the second control. Thereby, since the aerosol production | generation apparatus 100 can be disabled also in any case of a 1st state and a 2nd state, it can suppress that the temperature of the load 132 raises further. Disabling means that the user does not supply power to the load 132 even if the user operates the aerosol generating apparatus 100.
 第2制御においてエアロゾルの生成が禁止される期間は、第1制御においてエアロゾルの生成が禁止される期間より短くてもよい。第1状態から通常の制御が可能な状態に戻すためには貯留部116を交換するなどの作業が必要であるが、第2状態から通常の制御が可能な状態に戻すためにはそのような作業は不要である。したがって、不能化制御が不必要に長い時間実行されることを抑制することができる。 The period during which the generation of the aerosol is prohibited in the second control may be shorter than the period during which the generation of the aerosol is prohibited in the first control. In order to return from the first state to a state in which normal control can be performed, an operation such as replacing the storage section 116 is necessary, but to return from the second state to a state in which normal control is possible No work is required. Therefore, it is possible to suppress the disabling control from being performed for an unnecessarily long time.
 一例において、第1制御と第2制御は、エアロゾルの生成が禁止された状態からエアロゾルの生成が許可される状態へ移行するための復帰条件をそれぞれ有する。復帰とは、ユーザがエアロゾル生成装置100を操作して負荷132に給電することが可能な状態に戻ることを意味する。第1制御における復帰条件は、第2制御における復帰条件より厳しくなるよう設定されてもよい。例えば、第1制御における復帰条件は、第2制御における復帰条件よりも、多くの数の満たすべき条件を含む。別の例において、第1制御における復帰条件は、第2制御における復帰条件よりも、ユーザに強いる作業の工数が多い。別の例において、第1制御における復帰条件は、第2制御における復帰条件よりも、実行に時間がかかる。別の例において、第1制御における復帰条件が制御部106による制御のみでは完結せず、ユーザによる手作業等を必要とする一方、第2制御における復帰条件は制御部106による制御のみで完結する。別の例において、第2制御における復帰条件が充足されても、第1制御における復帰条件は充足されない。第1制御における復帰条件に含まれる、エアロゾル生成装置100の構成要素の交換作業の数は、第2制御における復帰条件に含まれる、エアロゾル生成装置100の構成要素の交換作業の数より多くてもよい。 In one example, the first control and the second control each have a return condition for transitioning from a state in which the generation of the aerosol is prohibited to a state in which the generation of the aerosol is permitted. The return means that the user operates the aerosol generation device 100 to return to a state in which the load 132 can be supplied. The return condition in the first control may be set to be stricter than the return condition in the second control. For example, the return condition in the first control includes a larger number of conditions to be satisfied than the return condition in the second control. In another example, the return condition in the first control has more man-hours for the user to work than the return condition in the second control. In another example, the return condition in the first control takes longer to execute than the return condition in the second control. In another example, the recovery condition in the first control is not completed only by the control by the control unit 106 and requires manual operation by the user, etc., while the recovery condition in the second control is completed only by the control by the control unit . In another example, even if the return condition in the second control is satisfied, the return condition in the first control is not satisfied. The number of replacement operations of the components of the aerosol generation device 100 included in the recovery condition in the first control may be greater than the number of replacement operations of the components of the aerosol generation device 100 included in the recovery condition in the second control. Good.
 一例において、エアロゾル生成装置100は、1つ以上の通知部108を備えてもよい。第1制御において機能する通知部108の数は、第2制御において機能する通知部108の数より多くてもよい。これにより、通常の状態に復帰するためにユーザの作業を必要とする場合において、ユーザがエアロゾル源の不足を認識しやすくなる。結果として、早期の復帰が可能となる。別の例において、第1制御において通知部108が機能する時間は、第2制御において通知部108が機能する時間より長くてもよい。別の例において、第1制御において電源110から通知部2へ供給される電力量は、第2制御において電源110から通知部へ供給される電力量より多くてもよい。 In one example, the aerosol generation device 100 may include one or more notification units 108. The number of notification units 108 that function in the first control may be greater than the number of notification units 108 that function in the second control. This makes it easy for the user to recognize the shortage of the aerosol source when the user's work is required to return to the normal state. As a result, early recovery is possible. In another example, the time when the notification unit 108 functions in the first control may be longer than the time when the notification unit 108 functions in the second control. In another example, the amount of power supplied from the power supply 110 to the notification unit 2 in the first control may be larger than the amount of power supplied from the power supply 110 to the notification unit 2 in the second control.
 上述の説明において、本開示の第3の実施形態は、エアロゾル生成装置及びエアロゾル生成装置を動作させる方法として説明された。しかし、本開示が、プロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。 In the above description, the third embodiment of the present disclosure has been described as an aerosol generating device and a method of operating the aerosol generating device. However, it will be appreciated that the present disclosure may be embodied as a program that, when executed by a processor, causes the processor to perform the method, or a computer readable storage medium storing the program.
 以上、本開示の実施形態が説明されたが、これらが例示にすぎず、本開示の範囲を限定するものではないことが理解されるべきである。本開示の趣旨及び範囲から逸脱することなく、実施形態の変更、追加、改良などを適宜行うことができることが理解されるべきである。本開示の範囲は、上述した実施形態のいずれによっても限定されるべきではなく、特許請求の範囲及びその均等物によってのみ規定されるべきである。 Although the embodiments of the present disclosure have been described above, it should be understood that these are merely examples and do not limit the scope of the present disclosure. It should be understood that changes, additions, improvements and the like of the embodiments can be made as appropriate without departing from the spirit and scope of the present disclosure. The scope of the present disclosure should not be limited by any of the above-described embodiments, but should be defined only by the appended claims and their equivalents.
 100A、100B…エアロゾル生成装置、102…第1の部材、104…第2の部材、106…制御部、108…通知部、110…電源、112…要素、114…メモリ、116…貯留部、118…霧化部、120…空気取込流路、121…エアロゾル流路、122…吸口部、126…第3の部材、128…香味源、130…保持部、132…負荷、134…回路、202、302…第1経路、204、304…第2経路、206、210…スイッチ、208、308、808…定電圧出力回路、212、222、312、812、822…抵抗、214、226、314、322、814、826…キャパシタ、218、818…誤差増幅器、220、820…基準電圧源、318…インダクタ、320…ダイオード、802…単一の経路、1502…電圧センサ、1504…液物性、1506…温度センサ、1508…電流センサ、1510…吸引容量導出部、1512…吸引間隔導出部、1514…液粘性導出部、1516…外気温、1518…保持部接触量導出部、1520…ヒータ抵抗値 DESCRIPTION OF SYMBOLS 100A, 100B ... aerosol generation apparatus, 102 ... 1st member, 104 ... 2nd member, 106 ... control part, 108 ... notification part, 110 ... power supply, 112 ... element, 114 ... memory, 116 ... storage part, 118 ... atomization unit 120: air intake flow channel 121: aerosol flow channel 122: suction unit 126: third member 128: flavor source 130: holding unit 132: load 134: circuit 202 302 ... 1st path, 204, 304 ... 2nd path, 206, 210 ... Switch, 208, 308, 808 ... Constant voltage output circuit, 212, 222, 312, 812, 822 ... Resistance, 214, 226, 314, 322, 814, 826 ... capacitor, 218, 818 ... error amplifier, 220, 820 ... reference voltage source, 318 ... inductor, 320 ... diode, 802 ... single Path: 1502, voltage sensor, 1504: physical property of liquid, 1506: temperature sensor, 1508: current sensor, 1510: suction capacity deriving unit, 1512: suction interval deriving unit, 1514: liquid viscosity deriving unit, 1516: outside temperature, 1518 ... Holding part contact amount deriving part, 1520 ... heater resistance value

Claims (26)

  1.  電源と、
     前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、
     前記負荷の温度に関連する値を取得するために用いられる要素と、
     前記電源と前記負荷を電気的に接続する回路と、
     前記エアロゾル源を貯留する貯留部と、
     前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、
     前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足するために前記負荷の温度が前記エアロゾル源の沸点を越える乾燥状態又は該乾燥状態の前兆を検知した場合、前記電源が前記負荷への給電を開始する際と前記電源が前記負荷への給電を完了する際の少なくとも一方において、前記保持部が保持する前記エアロゾル源の保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を実行するように構成された制御部と、
     を備える、
     エアロゾル生成装置。
    Power supply,
    A load that receives power from the power source to generate heat and atomize the aerosol source;
    An element used to obtain a value related to the temperature of the load;
    A circuit electrically connecting the power supply and the load;
    A reservoir for storing the aerosol source;
    A holding unit for holding the aerosol source supplied from the storage unit in a state where the load can heat the aerosol source;
    The storage unit can supply the aerosol source but the shortage of the aerosol source held by the holding unit detects a dry state or a precursor of the dry state in which the temperature of the load exceeds the boiling point of the aerosol source In this case, at least one of when the power supply starts supplying power to the load and / or when the power supply completes supplying power to the load, control for increasing the amount of holding of the aerosol source held by the holding unit or A control unit configured to execute control that improves the possibility of increasing the holding amount;
    Equipped with
    Aerosol generator.
  2.  使用者に対して通知を行う通知部を備え、
     前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記通知部を機能させるように構成される、
     請求項1に記載のエアロゾル生成装置。
    It has a notification unit that notifies the user,
    The control unit is configured to cause the notification unit to function when detecting the dry state or a precursor of the dry state.
    An aerosol generating device according to claim 1.
  3.  前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、エアロゾルの生成を完了してから次にエアロゾルの生成を開始するまでのインターバルを前回のインターバルよりも長くする制御を行うように構成される、
     請求項1に記載のエアロゾル生成装置。
    When the control unit detects the dry condition or the precursor of the dry condition, the control unit performs control to make the interval between the completion of the generation of the aerosol and the start of the next generation of the aerosol longer than the previous interval. Configured to
    An aerosol generating device according to claim 1.
  4.  使用者に対して通知を行う通知部を備え、
     前記制御部は、
      前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記通知部を機能させ、
      前記通知部を1回又は複数回機能させた後さらに前記乾燥状態又は前記乾燥状態の前兆を検知した場合、次の前記インターバルを前回のインターバルよりも長くする制御を行うように構成される、
     請求項3に記載のエアロゾル生成装置。
    It has a notification unit that notifies the user,
    The control unit
    When the dry condition or the precursor of the dry condition is detected, the notification unit is operated,
    The control unit is configured to perform control to make the next interval longer than the previous interval when the dry state or the precursor of the dry state is further detected after activating the notification unit one or more times.
    The aerosol production | generation apparatus of Claim 3.
  5.  前記制御部は、前記エアロゾル源の粘性、前記エアロゾル源の残量、前記負荷の電気抵抗値、前記電源の温度の少なくとも1つに基づき、前記インターバルの長さを修正するように構成される、
     請求項3又は4に記載のエアロゾル生成装置。
    The control unit is configured to correct the length of the interval based on at least one of the viscosity of the aerosol source, the remaining amount of the aerosol source, the electrical resistance value of the load, and the temperature of the power source.
    The aerosol production | generation apparatus of Claim 3 or 4.
  6.  前記貯留部から前記保持部へ供給される前記エアロゾル源の量又は速度の少なくとも一方を調整することを可能にする供給部を備え、
     前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記貯留部から前記保持部へ供給される前記エアロゾル源の量又は速度の少なくとも一方を増加させるように前記供給部を制御するように構成される、
     請求項1から5のいずれか1項に記載のエアロゾル生成装置。
    A supply unit that makes it possible to adjust at least one of the amount or the velocity of the aerosol source supplied from the storage unit to the holding unit;
    The control unit controls the supply unit to increase at least one of the amount or the velocity of the aerosol source supplied from the storage unit to the holding unit when detecting the dry condition or a precursor of the dry condition. Configured to
    The aerosol production | generation apparatus of any one of Claims 1-5.
  7.  前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、エアロゾルの生成量を減らすように前記回路を制御するように構成される、
     請求項1から6のいずれか1項に記載のエアロゾル生成装置。
    The control unit is configured to control the circuit to reduce an amount of aerosol generation when detecting the dry state or a precursor of the dry state.
    The aerosol production | generation apparatus of any one of Claims 1-6.
  8.  前記エアロゾル源の温度を調整することを可能にする温調部を含み、
     前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記エアロゾル源を加温するように前記温調部を制御するように構成される、
     請求項1から7のいずれか1項に記載のエアロゾル生成装置。
    Including a temperature control unit that allows the temperature of the aerosol source to be adjusted;
    The control unit is configured to control the temperature control unit to heat the aerosol source when detecting the dry state or a precursor of the dry state.
    The aerosol production | generation apparatus of any one of Claims 1-7.
  9.  前記制御部は、前記負荷によってエアロゾルが生成されていない間に、前記温調部を制御して前記エアロゾル源を加温するように構成される、
     請求項8に記載のエアロゾル生成装置。
    The control unit is configured to control the temperature control unit to heat the aerosol source while an aerosol is not generated by the load.
    The aerosol production | generation apparatus of Claim 8.
  10.  前記制御部は、前記負荷を前記温調部として用いるように構成される、
     請求項8又は9に記載のエアロゾル生成装置。
    The control unit is configured to use the load as the temperature control unit.
    The aerosol production | generation apparatus of Claim 8 or 9.
  11.  前記エアロゾル生成装置内の通気抵抗を変更することを可能にする変更部を含み、
     前記制御部は、前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記通気抵抗を増大させるように前記変更部を制御するように構成される、
     請求項1から10のいずれか1項に記載のエアロゾル生成装置。
    Including a change portion that allows changing air flow resistance in the aerosol generating device,
    The control unit is configured to control the change unit to increase the ventilation resistance when detecting the dry condition or a precursor of the dry condition.
    The aerosol production | generation apparatus of any one of Claims 1-10.
  12.  エアロゾルの生成に対する要求を出力する要求部を備え、
     前記制御部は、
      前記要求が大きいほどエアロゾルの生成量が多くなるような相関関係に基づき、前記回路を制御し、
      前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記要求の大きさに対応するエアロゾルの生成量が少なくなるように前記相関関係を修正する
     ように構成される、
     請求項1から11のいずれか1項に記載のエアロゾル生成装置。
    A request unit that outputs a request for aerosol generation,
    The control unit
    The circuit is controlled based on the correlation such that the generation amount of aerosol increases as the demand increases,
    When the dry condition or the precursor of the dry condition is detected, the correlation is corrected so as to reduce the amount of aerosol generation corresponding to the size of the request.
    The aerosol production | generation apparatus of any one of Claims 1-11.
  13.  前記制御部は、
      エアロゾルの生成を完了してから次にエアロゾルの生成を開始するまでのインターバルを前回のインターバルよりも長くする制御を行う第1モードと、前記電源が前記負荷への給電を開始する際と前記電源が前記負荷への給電を完了する際の少なくとも一方において、前記インターバルの制御を行うことなく前記保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を行う第2モードと、を実行することが可能であり、
      前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記第1モードよりも優先して前記第2モードを実行する
     ように構成される、
     請求項1に記載のエアロゾル生成装置。
    The control unit
    A first mode for performing control to make an interval from the completion of the generation of the aerosol to the start of the generation of the aerosol longer than the previous interval, the time when the power supply starts supplying power to the load, and the power supply A second mode of performing control to increase the holding amount without performing control of the interval, or control to improve the possibility of increasing the holding amount, at least when the power supply to the load is completed; It is possible to
    When the dry state or the precursor of the dry state is detected, the second mode is executed prior to the first mode.
    An aerosol generating device according to claim 1.
  14.  前記制御部は、前記第2モードの実行後さらに前記乾燥状態又は前記乾燥状態の前兆を検知した場合、前記第1モードを実行するように構成される、
     請求項13に記載のエアロゾル生成装置。
    The control unit is configured to execute the first mode when the dry state or a precursor of the dry state is further detected after execution of the second mode.
    The aerosol production | generation apparatus of Claim 13.
  15.  前記制御部は、前記回路を機能させてからの前記負荷の温度変化に基づき、前記乾燥状態を検知するように構成される、
     請求項1から14のいずれか1項に記載のエアロゾル生成装置。
    The control unit is configured to detect the dry state based on a temperature change of the load after the function of the circuit.
    The aerosol production | generation apparatus of any one of Claims 1-14.
  16.  エアロゾルの生成に対する要求を出力する要求部を備え、
     前記制御部は、前記要求の時系列的な変化に基づき、前記乾燥状態の前兆を検知するように構成される、
     請求項1から15のいずれか1項に記載のエアロゾル生成装置。
    A request unit that outputs a request for aerosol generation,
    The control unit is configured to detect a precursor of the dry state based on a time-series change of the request.
    The aerosol production | generation apparatus of any one of Claims 1-15.
  17.  エアロゾル生成装置を動作させる方法であって、
     負荷を加熱してエアロゾル源を霧化するステップと、
     貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足するために前記負荷の温度が前記エアロゾル源の沸点を越える乾燥状態又は該乾燥状態の前兆を検知した場合、前記負荷への給電が開始する際と前記負荷への給電が完了する際の少なくとも一方において、保持される前記エアロゾル源の保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を実行するステップと
     を含む、方法。
    A method of operating an aerosol generating device, comprising
    Heating the load to atomize the aerosol source;
    The amount of the aerosol source stored is not insufficient, but is maintained in a state where heating by the load is possible. The state of the load is a dry state or the dry state in which the temperature of the load exceeds the boiling point of the aerosol source Control is performed to increase the amount of holding of the aerosol source to be held or at least when the feeding of power to the load is started and / or when the feeding of power to the load is completed. Performing control to improve the possibilities.
  18.  電源と、
     前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、
     前記負荷の温度に関連する値を取得するために用いられる要素と、
     前記電源と前記負荷を電気的に接続する回路と、
     前記エアロゾル源を貯留する貯留部と、
     前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、
     エアロゾルの生成の完了後、該エアロゾルの生成に用いられた量の前記エアロゾル源以上の量の前記エアロゾル源が前記貯留部から前記保持部へ供給されるまでの期間に相当するインターバルにおいては、エアロゾルの生成を抑制する制御又はエアロゾルの生成が抑制される可能性を向上させる制御を実行するように構成された制御部と、
     を備える、
     エアロゾル生成装置。
    Power supply,
    A load that receives power from the power source to generate heat and atomize the aerosol source;
    An element used to obtain a value related to the temperature of the load;
    A circuit electrically connecting the power supply and the load;
    A reservoir for storing the aerosol source;
    A holding unit for holding the aerosol source supplied from the storage unit in a state where the load can heat the aerosol source;
    After completion of the generation of the aerosol, the aerosol is generated at an interval corresponding to a period until the amount of the aerosol source equal to or more than the amount of the aerosol source used to generate the aerosol is supplied from the reservoir to the holder. A control unit configured to execute control that suppresses the formation of the substance or control that improves the possibility that the generation of the aerosol is suppressed;
    Equipped with
    Aerosol generator.
  19.  使用者に対して通知を行う通知部を備え、
     前記制御部は、
      エアロゾルを生成している間は、前記通知部を第1モードで制御し、
      前記インターバルの間は、前記通知部を前記第1モードとは異なる第2モードで制御する
     ように構成される、
     請求項18に記載のエアロゾル生成装置。
    It has a notification unit that notifies the user,
    The control unit
    While generating the aerosol, the notification unit is controlled in the first mode,
    During the interval, the notification unit is configured to control in a second mode different from the first mode.
    The aerosol generating device according to claim 18.
  20.  エアロゾルの生成に対する要求を出力する要求部を含み、
     前記制御部は、前記インターバルの間に前記要求を取得した場合、前記通知部を前記第2モードとは異なる第3モードで制御するように構成される、
     請求項19に記載のエアロゾル生成装置。
    Including a request unit that outputs a request for aerosol generation,
    When the control unit acquires the request during the interval, the control unit is configured to control the notification unit in a third mode different from the second mode.
    The aerosol generating device according to claim 19.
  21.  前記制御部は、前記インターバルの間は、エアロゾルの生成を禁止するように前記回路を制御するように構成される、
     請求項18に記載のエアロゾル生成装置。
    The controller is configured to control the circuit to inhibit aerosol generation during the interval.
    The aerosol generating device according to claim 18.
  22.  エアロゾルの生成に対する要求を出力する要求部を含み、
     前記制御部は、前記要求の大きさ及び変化の少なくとも一方に基づき、前記インターバルの長さを修正するように構成される、
     請求項18から21のいずれか1項に記載のエアロゾル生成装置。
    Including a request unit that outputs a request for aerosol generation,
    The control unit is configured to correct the length of the interval based on at least one of the size and the change of the request.
    22. An aerosol generating device according to any of claims 18-21.
  23.  エアロゾル生成装置を動作させる方法であって、
     負荷を加熱してエアロゾル源を霧化し、エアロゾルを生成するステップと、
     エアロゾルの生成の完了後、該エアロゾルの生成に用いられた量の前記エアロゾル源以上の量の貯留された前記エアロゾル源が前記負荷が加熱可能な状態に保持されるまでの期間に相当するインターバルにおいては、エアロゾルの生成を抑制する制御又はエアロゾルの生成が抑制される可能性を向上させる制御を実行するステップと
     を含む、方法。
    A method of operating an aerosol generating device, comprising
    Heating the load to atomize an aerosol source to produce an aerosol;
    At an interval corresponding to the time period until the load is held in a heatable state, after completion of the generation of the aerosol, the amount of the aerosol source stored above the amount of the aerosol source used for the generation of the aerosol is kept Performing a control that suppresses the formation of an aerosol or a control that improves the possibility that the formation of the aerosol is suppressed.
  24.  電源と、
     前記電源から給電を受けて発熱し、エアロゾル源を霧化する負荷と、
     前記負荷の温度に関連する値を取得するために用いられる要素と、
     前記電源と前記負荷を電気的に接続する回路と、
     前記エアロゾル源を貯留する貯留部と、
     前記貯留部から供給される前記エアロゾル源を前記負荷が加熱可能な状態に保持する保持部と、
     前記貯留部が前記エアロゾル源を供給可能であるが前記保持部が保持する前記エアロゾル源が不足する場合、前記電源が前記負荷への給電を開始する際と前記電源が前記負荷への給電を完了する際の少なくとも一方において、前記保持部が保持する前記エアロゾル源の保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を実行するように構成された制御部と、
     を備える、
     エアロゾル生成装置。
    Power supply,
    A load that receives power from the power source to generate heat and atomize the aerosol source;
    An element used to obtain a value related to the temperature of the load;
    A circuit electrically connecting the power supply and the load;
    A reservoir for storing the aerosol source;
    A holding unit for holding the aerosol source supplied from the storage unit in a state where the load can heat the aerosol source;
    The storage unit can supply the aerosol source, but when the aerosol source held by the holding unit runs short, the power supply completes the power supply to the load when the power supply starts power supply to the load A control unit configured to execute control to increase the holding amount of the aerosol source held by the holding unit or control to increase the possibility of the holding amount to increase at least one of the following:
    Equipped with
    Aerosol generator.
  25.  エアロゾル生成装置を動作させる方法であって、
     負荷を加熱してエアロゾル源を霧化するステップと、
     貯留される前記エアロゾル源は不足していないが前記負荷による加熱が可能な状態に保持される前記エアロゾル源が不足する場合、前記負荷への給電が開始する際と前記負荷への給電が完了する際の少なくとも一方において、保持される前記エアロゾル源の保持量を増大させる制御又は前記保持量が増大する可能性を向上させる制御を実行するステップと
     を含む、方法。
    A method of operating an aerosol generating device, comprising
    Heating the load to atomize the aerosol source;
    If there is not a shortage of the stored aerosol source but there is a shortage of the aerosol source kept in a state where heating by the load is possible, the feeding of the load starts and the feeding of the load is completed Performing at least one of control to increase the amount of holding of the aerosol source to be held or control to increase the possibility that the amount of holding is increased.
  26. プロセッサにより実行されると、前記プロセッサに、請求項17、23及び25のいずれか1項に記載の方法を実行させる、プログラム。
     
    26. A program which, when executed by a processor, causes the processor to perform the method according to any one of claims 17, 23 and 25.
PCT/JP2017/038309 2017-10-24 2017-10-24 Aerosol generator, and method and program for actuating same WO2019082262A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2017/038309 WO2019082262A1 (en) 2017-10-24 2017-10-24 Aerosol generator, and method and program for actuating same
KR1020207014243A KR102478727B1 (en) 2017-10-24 2017-10-24 Aerosol generating device and method and program for operating the same
JP2019549708A JP6812570B2 (en) 2017-10-24 2017-10-24 Aerosol generator and method and program to operate it
RU2020116742A RU2749257C1 (en) 2017-10-24 2017-10-24 Aerosol generating apparatus, method for activation of apparatus and computer-readable data storage medium containing program for implementation thereof (variants)
EP17929539.9A EP3701813B1 (en) 2017-10-24 2017-10-24 Aerosol generator, and method and program for actuating same
CN201780096249.9A CN111511229B (en) 2017-10-24 2017-10-24 Aerosol generating device, method for operating same, and storage medium
US16/856,067 US20200245687A1 (en) 2017-10-24 2020-04-23 Aerosol generating apparatus and method and program for actuating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038309 WO2019082262A1 (en) 2017-10-24 2017-10-24 Aerosol generator, and method and program for actuating same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/856,067 Continuation US20200245687A1 (en) 2017-10-24 2020-04-23 Aerosol generating apparatus and method and program for actuating the same

Publications (1)

Publication Number Publication Date
WO2019082262A1 true WO2019082262A1 (en) 2019-05-02

Family

ID=66247337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038309 WO2019082262A1 (en) 2017-10-24 2017-10-24 Aerosol generator, and method and program for actuating same

Country Status (7)

Country Link
US (1) US20200245687A1 (en)
EP (1) EP3701813B1 (en)
JP (1) JP6812570B2 (en)
KR (1) KR102478727B1 (en)
CN (1) CN111511229B (en)
RU (1) RU2749257C1 (en)
WO (1) WO2019082262A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112006335A (en) * 2019-05-31 2020-12-01 日本烟草产业株式会社 Control device for aerosol inhaler and aerosol inhaler
US11166493B2 (en) 2019-05-31 2021-11-09 Japan Tobacco Inc. Control device for aerosol inhalation device and aerosol inhalation device
EP3876768A4 (en) * 2020-01-16 2021-12-22 KT & G Corporation Aerosol generating device
WO2022013383A3 (en) * 2020-07-15 2022-03-10 Philip Morris Products S.A. Nicotine electronic vaping devices having dryness detection and auto shutdown

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887053B1 (en) * 2020-09-30 2021-06-16 日本たばこ産業株式会社 Power supply unit of aerosol generator
CN117677314A (en) * 2021-04-29 2024-03-08 日本烟草国际股份有限公司 Aerosol generating device providing pumping information
WO2023288022A1 (en) * 2021-07-16 2023-01-19 Predictably Human, Inc. Drug delivery systems, devices, and methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412829A1 (en) 2001-07-31 2004-04-28 Chrysalis Technologies Incorporated Method and apparatus for generating a volatilized liquid
EP2257195A1 (en) 2008-03-25 2010-12-08 Philip Morris Products S.A. Method for controlling the formation of smoke constituents in an electrical aerosol generating system
EP2493342A1 (en) 2009-10-29 2012-09-05 Philip Morris Products S.A. An electrically heated smoking system with improved heater
EP2654471A1 (en) 2010-12-24 2013-10-30 Philip Morris Products S.a.s. Aerosol generating system with means for disabling consumable
EP2654469A1 (en) 2010-12-24 2013-10-30 Philip Morris Products S.a.s. An aerosol generating system having means for determining depletion of a liquid substrate
EP2654470A1 (en) 2010-12-24 2013-10-30 Philip Morris Products S.a.s. An aerosol generating system having means for handling consumption of a liquid substrate
EP2797446A2 (en) 2011-12-30 2014-11-05 Philip Morris Products S.a.s. Detection of aerosol-forming substrate in an aerosol generating device
WO2015100361A1 (en) 2013-12-23 2015-07-02 Pax Labs, Inc. Vaporization device systems and methods
EP2895930A2 (en) 2012-09-11 2015-07-22 Philip Morris Products S.A. Device and method for controlling an electrical heater to control temperature
WO2016150922A2 (en) * 2015-03-26 2016-09-29 Philip Morris Products S.A. Heater management

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2493342A (en) 1945-09-18 1950-01-03 Cons Vultee Aircraft Corp Offset landing gear strut with continuously circulating ball type bearing
US4800187A (en) 1987-10-28 1989-01-24 Corning Glass Works Method of crystallizing a zeolite on the surface of a monolithic ceramic substrate
JP2654471B2 (en) 1989-01-13 1997-09-17 コニカ株式会社 Electrophotographic copying machine
JP2797446B2 (en) 1989-06-09 1998-09-17 井関農機株式会社 Combine cutting height control device
JP2870888B2 (en) 1989-11-22 1999-03-17 アロカ株式会社 Photoacoustic imaging device
JP2895930B2 (en) 1990-08-08 1999-05-31 株式会社アドバンテスト Timing calibration method for IC test equipment
JP2654469B2 (en) 1993-10-13 1997-09-17 大蔵省印刷局長 Lifting mechanism for weighing object
BR112013020366A2 (en) * 2011-02-09 2017-03-21 Capuano Sammy electronic cigarette
JP5398806B2 (en) 2011-11-04 2014-01-29 ジルトロニック アクチエンゲゼルシャフト Cleaning device, measuring method and calibration method
WO2013141907A1 (en) 2012-03-23 2013-09-26 Njoy, Inc. Electronic cigarette configured to simulate the natural burn of a traditional cigarette
GB2507102B (en) * 2012-10-19 2015-12-30 Nicoventures Holdings Ltd Electronic inhalation device
TWI608805B (en) * 2012-12-28 2017-12-21 菲利浦莫里斯製品股份有限公司 Heated aerosol-generating device and method for generating aerosol with consistent properties
EP2950674B1 (en) * 2013-01-30 2023-08-30 Philip Morris Products S.A. Improved aerosol from tobacco
WO2015038981A2 (en) * 2013-09-13 2015-03-19 Nicodart, Inc. Programmable electronic vaporizing apparatus and smoking cessation system
KR20150100361A (en) 2014-02-25 2015-09-02 한화테크윈 주식회사 System for detecting a plurality of substrates
CN204070551U (en) 2014-07-21 2015-01-07 深圳市合元科技有限公司 Electronic cigarette
GB2528711B (en) * 2014-07-29 2019-02-20 Nicoventures Holdings Ltd E-cigarette and re-charging pack
WO2016029225A1 (en) * 2014-08-22 2016-02-25 Fontem Holdings 2 B.V. Method, system and device for controlling a heating element
GB2529629B (en) 2014-08-26 2021-05-12 Nicoventures Trading Ltd Electronic aerosol provision system
WO2017084818A1 (en) * 2015-11-17 2017-05-26 Philip Morris Products S.A. Aerosol-generating system with self-activated electric heater
US11006669B2 (en) 2016-02-25 2021-05-18 Altria Client Services Llc Aerosol-generating systems with liquid level determination and methods of determining liquid level in aerosol-generating systems
KR20180117603A (en) 2016-02-25 2018-10-29 필립모리스 프로덕츠 에스.에이. Electric Aerosol Generation System with Tilt Sensor
EP3419446B1 (en) * 2016-02-25 2020-04-01 Philip Morris Products S.a.s. Electrically operated aerosol-generating system with temperature sensor
CN106418702A (en) * 2016-09-06 2017-02-22 深圳市合元科技有限公司 Electronic cigarette and method and device for temperature control of same
KR102257195B1 (en) 2018-11-08 2021-05-26 주식회사 엘지화학 Liquid crystal alignment agent composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
KR102471392B1 (en) 2020-08-11 2022-11-28 박진수 Functional mask

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412829A1 (en) 2001-07-31 2004-04-28 Chrysalis Technologies Incorporated Method and apparatus for generating a volatilized liquid
EP2257195A1 (en) 2008-03-25 2010-12-08 Philip Morris Products S.A. Method for controlling the formation of smoke constituents in an electrical aerosol generating system
EP2471392A1 (en) 2008-03-25 2012-07-04 Philip Morris Products S.A. An aerosol generating system having a controller for controlling the formation of smoke constituents
EP2493342A1 (en) 2009-10-29 2012-09-05 Philip Morris Products S.A. An electrically heated smoking system with improved heater
EP2654471A1 (en) 2010-12-24 2013-10-30 Philip Morris Products S.a.s. Aerosol generating system with means for disabling consumable
EP2654469A1 (en) 2010-12-24 2013-10-30 Philip Morris Products S.a.s. An aerosol generating system having means for determining depletion of a liquid substrate
EP2654470A1 (en) 2010-12-24 2013-10-30 Philip Morris Products S.a.s. An aerosol generating system having means for handling consumption of a liquid substrate
EP2870888A1 (en) 2010-12-24 2015-05-13 Philip Morris Products S.A. An aerosol generating system having means for disabling a consumable part
EP2797446A2 (en) 2011-12-30 2014-11-05 Philip Morris Products S.a.s. Detection of aerosol-forming substrate in an aerosol generating device
EP2895930A2 (en) 2012-09-11 2015-07-22 Philip Morris Products S.A. Device and method for controlling an electrical heater to control temperature
WO2015100361A1 (en) 2013-12-23 2015-07-02 Pax Labs, Inc. Vaporization device systems and methods
WO2016150922A2 (en) * 2015-03-26 2016-09-29 Philip Morris Products S.A. Heater management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3701813A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112006335A (en) * 2019-05-31 2020-12-01 日本烟草产业株式会社 Control device for aerosol inhaler and aerosol inhaler
EP3744191A1 (en) * 2019-05-31 2020-12-02 Japan Tobacco Inc. Control device for aerosol inhalation device and aerosol inhalation device
US11166493B2 (en) 2019-05-31 2021-11-09 Japan Tobacco Inc. Control device for aerosol inhalation device and aerosol inhalation device
US11490661B2 (en) 2019-05-31 2022-11-08 Japan Tabacco Inc. Control device for aerosol inhalation device and aerosol inhalation device
EP4215068A1 (en) * 2019-05-31 2023-07-26 Japan Tobacco Inc. Control device for aerosol inhalation device and aerosol inhalation device
US11969023B2 (en) 2019-05-31 2024-04-30 Japan Tobacco Inc. Control device for aerosol inhalation device and aerosol inhalation device
EP3876768A4 (en) * 2020-01-16 2021-12-22 KT & G Corporation Aerosol generating device
WO2022013383A3 (en) * 2020-07-15 2022-03-10 Philip Morris Products S.A. Nicotine electronic vaping devices having dryness detection and auto shutdown

Also Published As

Publication number Publication date
CN111511229A (en) 2020-08-07
EP3701813A1 (en) 2020-09-02
JP6812570B2 (en) 2021-01-13
RU2749257C1 (en) 2021-06-07
KR20200075854A (en) 2020-06-26
US20200245687A1 (en) 2020-08-06
CN111511229B (en) 2024-01-12
KR102478727B1 (en) 2022-12-19
EP3701813B1 (en) 2022-01-12
JPWO2019082262A1 (en) 2020-07-02
EP3701813A4 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP6816302B2 (en) Aerosol generator and method and program to operate it
JP6780907B2 (en) Aerosol generator and method and program to operate it
JP6812570B2 (en) Aerosol generator and method and program to operate it
JP6889345B1 (en) Aerosol generator, control method of aerosol generator and program to make the processor execute the method
JPWO2019146063A1 (en) Aerosol generator, method and program for operating the same
JPWO2019146061A1 (en) Aerosol generator, method and program for operating the same
JPWO2018020619A1 (en) Flavor suction device, cartridge and flavor unit
JPWO2019146062A1 (en) Aerosol generator and method for manufacturing aerosol generator
CN112512356A (en) Aerosol generating device, method for operating aerosol generating device, and program
TWI773697B (en) Aerosol generating device, and method and computer program product for operating the aerosol generating device
JP6941211B2 (en) Aerosol generator and method and program to operate it
TWI774701B (en) Aerosol generating device, and method and computer program product for operating the aerosol generating device
EA040739B1 (en) AEROSOL GENERATING DEVICE, METHOD AND PROGRAM TO ACTIVATE IT
TW201916816A (en) Aerosol generating device, and method and program for operating the aerosol generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207014243

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017929539

Country of ref document: EP

Effective date: 20200525