WO2019078676A2 - Method and device for transferring nanoparticle monolayer by using capillary tube - Google Patents

Method and device for transferring nanoparticle monolayer by using capillary tube Download PDF

Info

Publication number
WO2019078676A2
WO2019078676A2 PCT/KR2018/012422 KR2018012422W WO2019078676A2 WO 2019078676 A2 WO2019078676 A2 WO 2019078676A2 KR 2018012422 W KR2018012422 W KR 2018012422W WO 2019078676 A2 WO2019078676 A2 WO 2019078676A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
capillary
substrate
single layer
monolayer
Prior art date
Application number
PCT/KR2018/012422
Other languages
French (fr)
Korean (ko)
Other versions
WO2019078676A3 (en
Inventor
강태욱
장지한
이재경
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180116757A external-priority patent/KR102086740B1/en
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to US16/757,369 priority Critical patent/US11499893B2/en
Publication of WO2019078676A2 publication Critical patent/WO2019078676A2/en
Publication of WO2019078676A3 publication Critical patent/WO2019078676A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present disclosure relates to a method and apparatus for nanoparticle monolayer transfer using a capillary.
  • a single-layer structure of nanoparticles utilizing self-assembly at the interface between water and organic solvent can be applied to various fields such as high-efficiency electrodes, molecular detection, and energy harvesting due to their unique mechanical, optical, Has attracted attention as a next-generation material capable of solving the problems of existing technologies.
  • a single layer of nanoparticles present at the interface is generally transferred to a solid substrate and applied to real life applications.
  • the most widely used method for transferring a single layer of interfacial nanoparticles to a solid substrate is Langmuir film deposition [Lu, Y., Liu, GL & Lee, LP High-density silver nanoparticle film with temperature- controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 5, 5-9 (2005)].
  • the Langmuir-film deposition method is simply performed by bringing the substrate into contact with a single layer of nanoparticles at the interface.
  • LB Langmuir-Blodgett
  • LS Langmuir-Schaefer
  • the Langmuir film deposition method has a merit that it is possible to fabricate a large-sized substrate with a relatively simple process and to control the density of the nanoparticles. However, since the substrate and the interface must be in uniform contact, there was.
  • the existing Langmuir film deposition method was limited to glass substrates and silicon flat substrates, and it was difficult to apply them to solid surfaces having various structures and surface properties.
  • the Langmuir film deposition method has a disadvantage in that it is difficult to precisely control the transition area and shape of the single layer of nanoparticles as well as the position to be transferred.
  • ⁇ CP microcontact printing
  • the ⁇ CP technique solves some of the disadvantages of Langmuir film deposition, such as substrate dependence and low operability.
  • the polymer stamp used as a medium deformed by shrinkage and swelling during the transfer process,
  • nanoparticle loss occurs when the attractive force with the polymer stamp is larger.
  • the nanoparticle structure deposited on a solid substrate using the above-described technique can be applied to various fields such as electronic devices, catalysts, and energy harvesting as mentioned above. Especially, it is expected to be very promising in the field of optical molecule detection such as microfluidic system, inspection of food surface stability, inspection of illegal drugs such as drugs, and discrimination of counterfeit bills.
  • nanoparticles were introduced into microfluidic channels, food, and banknote surfaces to attempt optical molecular detection [Osberg, KD, Rycenga, M., Bourret, GR, Brown, KA, & Mirkin, Raman Scattering Nanosheets. Adv. Mater. 24, 6065-6070 (2012); Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392 (2010)], presently this technique remains at the level of evaporating the solvent of the nanoparticle solution from the solid surface or immersing the solid into the nanoparticle solution for a period of time.
  • the reproducibility of the deposition depends on the random attachment of the nanoparticles, and the sensitivity of the detection is also low because the nanoparticle structure can not be formed at a high density.
  • Exemplary embodiments of the present invention in one aspect, provide a capillary nanoparticle single layer transfer method and apparatus capable of transferring uniform nanoparticle monolayers to a high reproducibility regardless of substrate structure and surface energy. .
  • a nanoparticle single layer transfer method and apparatus using a capillary capable of controlling the area of a single layer of nanoparticles to be transferred and the kind of nanoparticles.
  • a capillary-based nanoparticle capable of fabricating a microfluidic device coupled with an optical molecular detection system by introducing a single layer of nanoparticles into a small- To provide a single layer transfer method and apparatus.
  • Exemplary embodiments of the present invention provide a nanoparticle single layer transfer method using a capillary wherein a monolayer of nanoparticles is separated using a capillary and transferred to a substrate.
  • the method comprises: forming a single layer nanoparticle monolayer at the interface between the liquid gases; Contacting the capillary to an interface between the liquid gas to separate the monolayer of nanoparticles into a capillary; And transferring a single layer of nanoparticles in the capillary to the substrate.
  • a capillary nanoparticle single layer transfer device comprising a capillary that separates a single layer of nanoparticles and then transitions, as a nanoparticle single layer transfer device.
  • the apparatus is a nanoparticle single layer transfer device, comprising: a nanoparticle monolayer forming portion in which a monolayer of nanoparticles is formed at an interface between liquid gasses; And a capillary provided to the single layer forming unit.
  • a method of detecting a substance to be detected comprising: separating a single layer of nanoparticles using a capillary and transferring the substance to a substrate on which a substance to be detected is located; And detecting a substance to be detected on the substrate from the Raman signal of the single layer of the transferred nanoparticles.
  • an apparatus for detecting a substance to be detected includes: a capillary that separates a single layer of nanoparticles and then transitions; And a detector for irradiating a laser beam onto the single layer of the transferred nanoparticles and detecting a detection target material from the Raman signal of the nanoparticle single layer.
  • the detection method and apparatus may be to detect drugs or explosives on the garment surface or bill face, or to detect harmful substances on the food surface.
  • a method for discriminating whether or not a banknote is counterfeited includes separating a monolayer of nanoparticles using a capillary and transferring a monolayer of nanoparticles in the capillary to at least one banknote And discriminating whether the banknote is a genuine paper when the Raman signal of the single layer of the transferred nanoparticles is measured.
  • a method of manufacturing a microfluidic channel comprising the steps of separating a single layer of nanoparticles using a capillary and transitioning to a microfluidic channel.
  • the capillary having a small diameter since the capillary having a small diameter is used, it is less influenced by the curvature of the substrate. Therefore, the present invention can be applied to a solid substrate having various structures other than a flat surface.
  • the capillary can be easily manipulated as compared with Langmuir film deposition method, and thus it is possible to transfer to a desired position with high accuracy.
  • a single layer of nanoparticles when used as a probe of an optical sensor, since the diameter of the general laser irradiation area is on the order of micrometer, the efficiency of the number of nanoparticles relative to the laser irradiation area is low in the conventional large area transfer method, According to embodiments, a single layer of nanoparticles can be transferred with an area of, for example, less than 1 mm in diameter, which is close to the laser irradiation area. Therefore, the efficiency of the number of nanoparticles relative to the laser irradiation area can be greatly improved.
  • capillary nanoparticle single layer transfer method and apparatus of the exemplary embodiments of the present invention require only one commercially available glass capillary tube, so that it is not required to have special expertise of the special equipment or the tester, .
  • capillary nanoparticle single layer transfer method and apparatus of the exemplary embodiments of the present invention simultaneous multiple transfer of a single layer of nanoparticles through a plurality of capillary bundles is possible and complex patterning is also possible.
  • Figure 1 is a schematic diagram illustrating the concept of a nanoparticle monolayer transfer technique using capillaries in an exemplary embodiment of the invention.
  • FIG. 2 is a photograph of a single layer of a gold nanoparticle having a size of 50 nm located at a liquid-gas interface and a single layer of the single layer being transferred to a PDMS substrate having a length of 1 cm on one side using the conventional method in the comparative example of the present invention .
  • FIGS. 3A through 3D illustrate photographs in which a monolayer of a gold nanoparticle having a size of 50 nm is transferred to PDMS substrates at various sizes using a capillary transfer technique in an embodiment of the present invention.
  • FIG. 3A through 3D illustrate photographs in which a monolayer of a gold nanoparticle having a size of 50 nm is transferred to PDMS substrates at various sizes using a capillary transfer technique in an embodiment of the present invention.
  • FIGS. 4A and 4B are cross-sectional views of a photomicrograph (FIG. 4A) of a spherical gold nanoparticle single layer 50 nm in size using a plurality of capillary bundles (FIG. 4A) (Fig. 4B).
  • Figures 5A-5F are UV data for six different types of nanoparticles in an embodiment of the invention.
  • FIGS. 6A to 6F show results obtained by observing a single layer of various nanoparticles transferred onto a glass substrate using a capillary-based transferring technique with a scanning electron microscope in the embodiment of the present invention.
  • Spherical gold nanoparticles each having a size of 50 nm (FIG. 6A), spherical gold nanoparticles having a size of 17 nm (FIG. 6B), spherical gold nanoparticles having a size of 50 nm, and core- (FIG. 6C), gold nanorods (FIG. 6D), spherical silver nanoparticles of 45 nm in size (FIG. 6E) and spherical silver nanoparticles of 30 nm in size (FIG.
  • FIGS. 7A to 7D show photographs in which a single layer of gold nanoparticles having a size of 50 nm is transferred to a size of 1 mm in diameter on the surfaces (front and back sides) of two kinds of leaves having a smooth living body surface in the embodiment of the present invention.
  • Figure 8 shows that, in an embodiment of the present invention, Escherichia coli ) shows a scanning electron microscopic result of a single layer of gold nanoparticles having a size of 50 nm on the surface of a PDMS in which there is a high density.
  • 9A to 9G show that in the embodiment of the present invention, after forming various PDMS microfluidic channels having a width of 1 mm and a depth of 650 mu m, a monolayer of spherical gold nanoparticles having a size of 50 nm is transferred Represents one photograph.
  • FIG. 10 is a graph showing the results of detection of 1 mM rhodamine 6G in a microfluidic channel in which gold nanorod monolayers are transferred through a surface enhanced Raman scattering method in the embodiment of the present invention.
  • Figure 11 shows a photograph of a single layer of spherical gold nanoparticles of 50 nm in size transitioned to a diameter of 1 mm using a capillary in a fibrous fabric of the garment surface in an embodiment of the invention.
  • Fig. 12 shows the results of detection of benzocaine using a surface enhanced Raman scattering method in a monolayer of spherical gold nanoparticles transferred to the surface of a garment containing benzocain, which is a similar drug of ***e, in the embodiment of the present invention.
  • FIG. 13 shows a photograph of a spherical gold nanoparticle single layer having a size of 50 nm transferred to a diameter of 1 mm by using a capillary on the surface of rice grains in an embodiment of the present invention.
  • FIG. 14 is a graph showing the results of detection of chlorpyrifos-methyl as a pesticide component by surface enhanced Raman scattering in a single layer of spherical gold nanoparticles transferred onto the surface of a rice grain containing commercially available agricultural chemicals Results are shown.
  • FIG. 15 shows a photograph of a spherical gold nanoparticle monolayer having a size of 50 nm transferred to a diameter of 1 mm using a capillary on the surface of an orange shell in an embodiment of the present invention.
  • FIG. 16 is a graph showing the results of detection of chlorpyrifos-methyl as a pesticide component using a surface enhanced Raman scattering method in a single layer of spherical gold nanoparticles transferred onto the surface of an orange skin containing commercial pesticide components .
  • Figure 17 shows various points of a US $ 100 bill to insert a chemical code for counterfeit bill protection in an embodiment of the present invention.
  • Figures 18A-18J are Raman signal results showing that strong peaks near 250 cm < -1 > are common in all gold nanoparticle monolayer locations transferred to a $ 100 bill in an embodiment of the present invention.
  • nano means 1000 nm or less.
  • the term " two-dimensional " means that there is no difference of more than one order between the horizontal size and the vertical size of the structure, but has a difference of at least one order of magnitude between the horizontal size and the thickness or the vertical size and thickness .
  • the plate shape is a two-dimensional shape.
  • harmful substances are organophosphorus insecticides such as chlorpyrifos, chlorpyrifos-methyl, parathion, methyl parathion, carbophenothion and penitrothion, organic chlorine based, mercury based, carbamate based insecticides And other pesticides and other substances known to be harmful to human body.
  • organophosphorus insecticides such as chlorpyrifos, chlorpyrifos-methyl, parathion, methyl parathion, carbophenothion and penitrothion, organic chlorine based, mercury based, carbamate based insecticides And other pesticides and other substances known to be harmful to human body.
  • drugs include illegal drugs such as phylloxes, ***e, cannabis, and other drugs, etc., which are restricted or prohibited by law.
  • the present inventors Using the capillary phenomenon of surface elevation in a thin tube due to surface tension, the present inventors have found that a single layer of a single layer of nanoparticles existing at a liquid and gas interface, more specifically, for example, an aqueous solution and an air interface, And a single layer of single-layer nanoparticles separated by inverting the capillary is transferred to the substrate.
  • a nanoparticle monolayer transfer method there is provided a monolayer nanoparticle transfer method using a capillary, wherein a monolayer of nanoparticles is separated using a capillary and transferred to a substrate.
  • the method comprises forming a monolayer nanoparticle monolayer at the interfacial surface of the liquid gas, contacting the capillary at the liquid gas interfacial surface to receive the nanoparticle monolayer locally and selectively into the capillary, And inverting the capillary and contacting the substrate with the capillary to transfer the monolayer of nanoparticles in the capillary to the substrate.
  • a nanoparticle single layer transfer device comprising: a nanoparticle single layer transfer device using a capillary, comprising a capillary for separating a monolayer of nanoparticles and then transferring a single layer of the nanoparticle; Lt; / RTI >
  • the apparatus is a nanoparticle single layer transfer apparatus comprising: a nanoparticle single layer forming unit in which a single layer of nanoparticles is formed at an interface between liquid gasses; And a capillary-based nanoparticle single layer transfer device including the capillary provided in the single-layer forming portion.
  • FIG. 1 is a schematic diagram illustrating the transition of a single layer of nanoparticles, which is self-assembled at the air interface with the nanoparticle aqueous solution, using a capillary to an exemplary solid substrate in an exemplary embodiment of the present invention.
  • nanoparticles dispersed in water can self-assemble into a monolayer at the interface between water and air by controlling inter-particle interaction using an organic solvent.
  • the liquid-gas interface is formed by first forming a liquid-liquid interface and then evaporating the liquid at the top to form an interface, or directly forming a liquid- Can be formed.
  • a single layer of nanoparticles present at the liquid-liquid interface it is usually possible to evaporate the liquid phase present in the upper layer and then transfer a single layer present at the liquid-air interface.
  • a single layer of nanoparticles is first formed on the water-nucleic acid interface, the nucleic acid is evaporated, and transferred to the substrate.
  • the organic solvent used in the liquid phase to form the interface with water may be an organic solvent such as benzene, toluene, chloroform, nucleic acid, fatty acid series such as oleic acid, .
  • alcohol may be added in a liquid-liquid phase.
  • an organic solvent such as benzene, toluene, nucleic acid or chloroform may be used as the lower liquid phase.
  • the gaseous phase can be air.
  • the capillary is brought into contact with the interface where the nanoparticle monolayer is present, and a single layer of the nanoparticle is accommodated in the capillary together with the liquid by capillary action.
  • a capillary tube having a cross-sectional diameter of 2 mm or less for example 0.1 to 2 mm, or 0.1 to 1.5 mm, or 0.1 to 1 mm, can be vertically contacted at the water-air interface at which the nanoparticle monolayer is present .
  • the capillary force due to the surface tension of the water causes a sudden rise in the water surface inside the capillary.
  • the single layer of nanoparticles inside the capillary keeps its structure at the interface and rises with the water.
  • the capillary tube is turned upside down so that the capillary tube is in contact with the surface of the water.
  • gravity causes the solution in the capillary tube to come down in the opposite direction and expose the nanoparticle single layer structure to the capillary tube.
  • the single layer of nanoparticles transferred by the capillary transfer method becomes relatively more uniform.
  • the single layer of nanoparticles existing at the interface is irregularly present such as where the nanoparticles are present and absent from the naked eye.
  • the single layer of nanoparticles separated and transferred by the capillaries may range in diameter from about 0.1 to 2 mm, area from about 0.01 to 4 mm 2 .
  • the size of the nanoparticles to be transferred may be between 5 and 200 nm in diameter.
  • the nanoparticles to be transferred are not particularly limited, but may be one or more selected from inorganic materials such as metals, metal oxides, and organic materials.
  • the metal may be Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni
  • the inorganic material may be silica, quantum dot, lanthanide, iron oxide, and the like.
  • the organic material may be polystyrene, polyethylene glycol, or the like.
  • the shape of the nanoparticles to be transferred is not particularly limited, and may be one or more selected from the group consisting of, for example, spheres, rods, ellipsoids, dendrimers, tetrahedrons, hexahedrons, octahedrons,
  • the nanoparticles may also be in the form of a core-shell.
  • the substrate to be transferred is not limited as long as it can receive a single layer of nanoparticles from the capillary, for example, a hydrophilic or hydrophobic substrate, more specifically a hydrophilic or hydrophobic solid substrate.
  • the substrate can be one or more substrates selected from polymers, glass, ITO, silicon, metal, paper, cells,
  • the polymer-based substrate may be one or more selected from PDMS, PMMA, hydrogel, and the like.
  • the metal may be at least one selected from Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni and Fe.
  • the substrate to be transferred may be a flat substrate, a substrate having a large surface roughness, a curved substrate having a large curvature, and the like, which may include a fibrous substrate, a porous substrate, and the like.
  • the substrate may be at least one selected from the group consisting of rice, vegetable, fruit, meat, seafood, paper of various foods, clothes, banknotes, porous filters, cells of living organisms, microorganisms,
  • the living body may be a skin layer cell of, for example, animal or plant.
  • the microorganism may be, for example, E. coli coated on a substrate.
  • the substrate to be transferred may be a microfluidic channel.
  • the method and apparatus of the present invention allows for the simultaneous transfer of multiple single-layer nanoparticles of small area to the same substrate using a plurality of capillaries, and the complex shape of the patterning is also possible by controlling the transfer position Do.
  • the shape, area, or area of the capillary can be varied to control the shape or area of the transferred nanoparticle assembly.
  • a method of detecting a substance to be detected comprising: separating a single layer of nanoparticles using a capillary and transferring the single layer to a substrate; And detecting a substance to be detected on the substrate from the Raman signal of the single layer of the transferred nanoparticles.
  • the transferring step includes the steps of forming a monolayer of nanoparticles at the interface between the liquid gas, contacting the capillary at the interface between the liquid gas to separate the monolayer of nanoparticles into a capillary, And transferring the nanoparticle monolayer to the substrate.
  • a capillary nanoparticle single layer transfer device comprising a capillary that separates a single layer of nanoparticles and then transfers to a substrate, as a nanoparticle single layer transfer device.
  • the apparatus comprises: a nanoparticle monolayer forming portion in which a monolayer of nanoparticles is formed at an interface between liquid gasses; And the capillary provided in the single-layer forming portion.
  • the method and apparatus can be usefully used to detect drugs or explosives on a garment surface or a bill surface, or to detect hazardous materials on a food surface.
  • a method of discriminating whether or not a banknote is counterfeited comprising: separating a single layer of nanoparticles using a capillary, and transferring a single layer of nanoparticles in the capillary to the original bill more than once; And discriminates that the banknote is genuine when the Raman signal of the single layer of the transferred nanoparticles is measured.
  • a method of manufacturing a microfluidic (microfluidic, microfluidic) channel comprising: using a capillary to separate a monolayer of nanoparticles and transition to a microfluidic channel, Channel fabrication method.
  • the exemplary embodiments of the present invention use capillary phenomenon to selectively separate a single layer of a single layer of nanoparticles into a small area. According to this, a reproducible transition of a single layer of uniform nanoparticles is possible regardless of the surface properties and structure of the solid substrate. In addition, it uses only commercially available glass capillary tubes without the need for highly specialized or specialized equipment, so the cost is low, the transition speed is very fast, and the accessibility is simple.
  • the method and apparatus of the present invention allow a single layer of nanoparticles to be transferred to the surface of paper such as fibrous clothes, various foods such as rice grains and oranges, paper money, etc., and high-speed field inspections of illegal drugs, explosives, , Counterfeit banknote prevention technology, and the like.
  • the nucleic acid was added to form an interface with the aqueous solution.
  • Metal nanoparticles are stable at the interface due to the energy due to the surface tension, but when only the nucleic acid is added, the electrostatic repulsion between the nanoparticles is stronger, so that the self-assembly phenomenon does not occur. Since ethanol weakens the charge of molecules surrounding the nanoparticle surface, it can induce self-assembly by reducing electrostatic repulsion.
  • a PDMS substrate having a length of 1 cm on one side was horizontally brought into contact with the interface where a single layer of nanoparticles existed, and then peeled off.
  • FIG. 2 is a photograph of a single layer of a spherical gold nanoparticle having a size of 50 nm existing at a water-air interface and a single layer thereof transferred to a PDMS substrate having a length of 1 cm on one side in the comparative example of the present invention.
  • the solid substrate having affinity with the nanoparticles was brought into contact with the interface horizontally and then peeled off.
  • a capillary of 12.5 cm in length and 10, 50, 100, and 200 ⁇ L in volume was vertically contacted with a monolayer of nanoparticles formed at the interface between the aqueous solution and the air interface, and the capillary was withdrawn after allowing the aqueous solution to rise above a certain amount into the capillary.
  • the withdrawn capillary was reversed and the solution in the capillary was forced down to the opposite direction inlet by gravity.
  • the capillary in this state was vertically brought into contact with the position where the PDMS and the glass substrate were to be transferred, and then peeled off.
  • FIGS. 3A through 3D illustrate photographs in which a monolayer of a gold nanoparticle having a size of 50 nm is transferred to PDMS substrates at various sizes using a capillary transfer technique in an embodiment of the present invention.
  • FIG. 3A through 3D illustrate photographs in which a monolayer of a gold nanoparticle having a size of 50 nm is transferred to PDMS substrates at various sizes using a capillary transfer technique in an embodiment of the present invention.
  • FIGS. 3A to 3D it can be seen that the area of the transition when the capillary having different diameters of the inlet is varied is different from that of the comparative example in which the capillary is not used, The layer was transferred.
  • Figures 4a and 4b show photographs of multiple nanoparticle monolayer simultaneous multiple transitions using a plurality of capillary packs. As shown in FIGS. 4A and 4B, it is possible to perform fine patterning such as 'NRG' because it is possible to precisely control the transition position through a capillary as well as a simple pattern.
  • Figures 5A-5F are UV data for six different types of nanoparticles in an embodiment of the invention.
  • FIGS. 6A to 6F show results obtained by transferring a monolayer of nanoparticles of various shapes and compositions to a glass substrate using a capillary tube, in an embodiment of the present invention, using a scanning electron microscope.
  • FIG. 6A to 6F show results obtained by transferring a monolayer of nanoparticles of various shapes and compositions to a glass substrate using a capillary tube, in an embodiment of the present invention, using a scanning electron microscope.
  • FIG. 6 it can be seen that a uniform single-layer structure in which particles are arranged at a high density is formed in all six types of nanoparticles.
  • FIGS. 7A to 7D show the results of transferring a single layer of nanoparticles to the surface of a leaf, which is a living body substrate having a soft surface, according to an embodiment of the present invention.
  • Figs. 7A and 7B are front and back surfaces of one leaf, respectively, and Figs. 7C and 7D are front and back surfaces of a different leaf, respectively.
  • FIG. 8 shows a scanning electron microscopic result of a gold nanoparticle monolayer transferred to a PDMS substrate coated with a high density of E. coli.
  • the PDMS precursor was poured and hardened in a preformed silicon mold through lithography, and a single layer of gold nanoparticles was transferred to a 1 mm diameter using a capillary tube inside the removed microfluidic channel.
  • Benzocaine solution to the clothing surface tinged with fibrous structures illegal drugs of ***e and chemical structure is water similar substitutes (10 ⁇ M) to 30 ⁇ l of after dropping were completely dried, by using a capillary size 50nm spherical gold nanoparticles A single layer was transferred.
  • the surface curvature and pesticide (reldan) aqueous solution in which roughness is commercially available on a large grain of rice and orange peel surface 30 ⁇ l was then dropped completely dried, by using a capillary transfer a spherical gold nanoparticle monolayers, the size of 50nm.
  • the graph of the 14 pesticides in a grain of rice surface shows the selective appears only in Raman signal nanoparticle monolayer region (chlorpyrifos-methyl), the detection lower limit of the recommended use concentration of the pesticide by 10 ⁇ M 0.7 Much lower amounts of pesticides than 1.4mM are also detectable.
  • FIG. 15 shows a photograph of a single layer of nanoparticles transferred to the surface of a rough orange rind with a large curvature like rice grains.
  • a spherical gold nanoparticle monolayer having a size of 50 nm was transferred to a 1 mm diameter area at various positions on the surface of a US $ 100 bill, and then irradiated with a 785 nm laser for 3 seconds to obtain a surface enhanced Raman scattering signal Respectively.
  • Figures 18A-18J are Raman signal results showing that strong peaks near 250 cm < -1 > are common in all gold nanoparticle monolayer locations transferred to a $ 100 bill in an embodiment of the present invention.
  • Figures 18a through 18j illustrate the potential of counterfeit banknote prevention technology through the appearance of gold nanoparticle intrinsic optical signals in a single layer of spherical gold nanoparticles 50 nm in size transferred at various locations in a $ 100 bill.
  • This signal is a signal due to the Au-O bond of gold nanoparticles, suggesting the possibility of utilizing a single layer of nanoparticles transferred to a paper currency with a capillary as a small area code with a unique chemical signal that can not be counterfeited.
  • the single layer of nanoparticles can be transferred to an area of 1 mm or less in diameter, which is similar to the laser irradiation area, the efficiency of the number of nanoparticles can be greatly improved .
  • Transition is possible regardless of the composition and shape of the nanoparticles.
  • the nanoparticles For example, as shown in FIG. 6, not only gold nanoparticles having different shapes but also spherical gold nanoparticles of different sizes, core-shell structure nanoparticles having a silica shell on the surface, and silver nanoparticles having different compositions, Is possible.
  • transition can be made regardless of the composition and shape of the solid substrate to be transferred.
  • nanoparticles are efficiently transferred to glass and PDMS substrates, which are typical materials having hydrophilic property and hydrophobic surface property, Therefore, it was found that transition can be made to a rough or curved surface.
  • this technology transitions a single layer of nanoparticles by contact between the substrate surface and the liquid interface, allowing nondestructive transfer to substrates that are susceptible to destruction by pressure or to substrates that require delicate manipulation There are advantages.
  • transition process is simple, without requiring special equipment or high expertise of the tester compared with existing nanometer-level lithography, electrochemical deposition, or Langmuir-BlowJet techniques.
  • nanoparticle single layer transfer technology using the present capillary can transfer a single layer of nanoparticles to various solid surfaces such as paper, such as fiber clothes, various foods, cells, paper money, etc., It can be confirmed that this method can be used not only for the inspection and the high speed inspection of the illegal drug field but also for the counterfeiting prevention technology. This is expected to greatly expand the accessibility of nanoparticles with precisely controlled structures in each field of society that requires fast and sensitive molecular detection.
  • a single layer of nanoparticles can be relatively uniformly transferred in a simple manner without professional equipment, regardless of the surface properties and structure of the solid substrate, and thus limited in the laboratory environment
  • Existing nanoparticle monolayer transfer technology can be greatly extended to field detection in various fields such as biomedicine, forensics, and pharmaceuticals.

Abstract

Disclosed are a method and a device for transferring a nanoparticle monolayer by using a capillary tube, wherein a nanoparticle monolayer present in a liquid-gas interface is locally and selectively separated and then transferred to a substrate by using the capillary tube. Accordingly, nondestructive and reproducible transfer can be made regardless of the surficial properties and structures of the substrate to which the monolayer is to be transferred. Therefore, the method and the device enable an in-situ high-speed inspection of harmful materials, such as an illegal drug and a residual pesticide, on surfaces of various solids such as fiber clothes, food, and banknotes, and can be easily coupled to a microfluid channel having a small size and a complicated structure. Further, the method and the device can transfer a nanoparticle monolayer in a simple and inexpensive process without using special and expensive equipment.

Description

모세관을 이용한 나노입자 단일층의 전이 방법 및 장치Transition method and device of nanoparticle monolayer using capillary
본 명세서는 모세관을 이용한 나노입자 단일층의 전이 방법 및 장치에 관한 것이다. The present disclosure relates to a method and apparatus for nanoparticle monolayer transfer using a capillary.
[본 발명을 지원한 국가연구개발사업][National R & D Project Supporting the Present Invention]
1. 과제고유번호: 17110709091. Assignment number: 1711070909
부처명: 과학기술정보통신부   Name: Ministry of Science and Technology, Ministry of Information and Communication
연구관리전문기관: 한국연구재단   Research Management Institution: Korea Research Foundation
연구사업명: 개인기초연구(과기정통부)(R&D)   Research Project Name: Personal Basic Research (Ministry of Information and Communication) (R & D)
연구과제명: 프로그래밍 기법을 이용한 자기조립체 기반 차세대 플라스모닉 복합 나노구조체 개발 및 응용    Research title: Development and application of next generation plasmonic nano structure based on self-assembly using programming technique
기여율: 34/100   Contribution rate: 34/100
주관기관: 서강대학교   Organization: Sogang University
연구기간: 2018.04.01~2019.02.28   Research period: 2018.04.01 ~ 2019.02.28
2. 과제고유번호: 17110733572. Assignment number: 1711073357
부처명: 과학기술정보통신부   Name: Ministry of Science and Technology, Ministry of Information and Communication
연구관리전문기관: 한국연구재단   Research Management Institution: Korea Research Foundation
연구사업명: 기후변화대응기술개발(R&D)    Research Project Name: Development of Climate Change Response Technology (R & D)
연구과제명: 표면증강라만분광법을 이용한 비평형 용존 C1 가스 및 대사 산물 실시간 모니터링 기술 개발    Development of non-equilibrium dissolved C1 gas and metabolite real-time monitoring technology using surface enhancement Raman spectroscopy
기여율: 33/100   Contribution rate: 33/100
주관기관: 서강대학교   Organization: Sogang University
연구기간: 2018.04.01~2018.12.31   Research period: 2018.04.01 ~ 2018.12.31
3. 과제고유번호: 13452756223. Assignment number: 1345275622
부처명: 교육부   Department name: Ministry of Education
연구관리전문기관: 한국연구재단   Research Management Institution: Korea Research Foundation
연구사업명: 이공학학술연구기반구축사업   Research Project Name: Establishment base of academic research
연구과제명: 바이오융합기술연구소    Research Project: Bio-fusion Technology Research Institute
기여율: 33/100   Contribution rate: 33/100
주관기관: 서강대학교   Organization: Sogang University
연구기간: 2018.01.01~2018.12.31   Study period: 2018.01.01 ~ 2018.12.31
물과 유기용매 계면에서의 자가조립 (self-assembly) 현상을 활용한 나노입자의 단일층 구조체는 단일 나노입자와 대비되는 독특한 기계적, 광학적, 전기적 특징 때문에 고효율 전극이나 분자 검출, 에너지 수확 등 다양한 영역에서 기존 기술의 문제점을 해결할 수 있는 차세대 재료로써 주목받고 있다.A single-layer structure of nanoparticles utilizing self-assembly at the interface between water and organic solvent can be applied to various fields such as high-efficiency electrodes, molecular detection, and energy harvesting due to their unique mechanical, optical, Has attracted attention as a next-generation material capable of solving the problems of existing technologies.
이 경우 액체 계면의 유동적 특성 때문에 계면에 존재하는 나노입자 단일층은 일반적으로 고체 기판에 전이되어 실생활에 응용되게 된다. In this case, due to the fluid nature of the liquid interface, a single layer of nanoparticles present at the interface is generally transferred to a solid substrate and applied to real life applications.
계면의 나노입자 단일층을 고체 기판에 전이하기 위해 가장 널리 사용되는 방법은 랭뮤어 필름 (Langmuir film) 증착법이다[Lu, Y., Liu, G. L. & Lee, L. P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 5, 5-9 (2005)]. The most widely used method for transferring a single layer of interfacial nanoparticles to a solid substrate is Langmuir film deposition [Lu, Y., Liu, GL & Lee, LP High-density silver nanoparticle film with temperature- controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 5, 5-9 (2005)].
랭뮤어 필름 증착법은 단순히 기판을 계면의 나노입자 단일층과 접촉시킴으로써 이루어지는데, 기판의 접촉 배향이 계면과 수직일 때를 랭뮤어-블로젯 (Langmuir-Blodgett, LB) 증착이라 하고, 수평일 때를 랭뮤어-섀퍼 (Langmuir-Schaefer, LS) 증착이라 한다. The Langmuir-film deposition method is simply performed by bringing the substrate into contact with a single layer of nanoparticles at the interface. When the contact orientation of the substrate is perpendicular to the interface, it is called Langmuir-Blodgett (LB) deposition, Is referred to as Langmuir-Schaefer (LS) deposition.
랭뮤어 필름 증착법은 비교적 간단한 과정으로 대면적의 기판을 제작할 수 있고 나노입자의 밀집도 역시 조절할 수 있다는 장점이 있으나, 기판과 계면이 균일하게 접촉해야 하기 때문에 평면 구조의 기판에만 적용 가능하다는 큰 단점이 있었다. The Langmuir film deposition method has a merit that it is possible to fabricate a large-sized substrate with a relatively simple process and to control the density of the nanoparticles. However, since the substrate and the interface must be in uniform contact, there was.
따라서 기존 랭뮤어 필름 증착법은 유리나 실리콘 등의 평면 기판에만 제한적으로 적용되었으며 주변에서 볼 수 있는 다양한 구조와 표면 성질을 지닌 고체 표면에는 적용이 어려웠다.Therefore, the existing Langmuir film deposition method was limited to glass substrates and silicon flat substrates, and it was difficult to apply them to solid surfaces having various structures and surface properties.
또한, 랭뮤어 필름 증착법은 나노입자 단일층의 전이 면적과 형태뿐만 아니라 전이하고자 하는 위치의 정확한 제어가 어렵다는 단점이 있었다. In addition, the Langmuir film deposition method has a disadvantage in that it is difficult to precisely control the transition area and shape of the single layer of nanoparticles as well as the position to be transferred.
이러한 문제점을 해결하기 위해, 원하는 형태와 면적으로 미리 제작된 고분자 스탬프에 나노입자 단일층을 전이시킨 후, 고체 기판에 찍어내는 마이크로컨택트 프린팅(microcontact printing, μCP) 기술이 고안되었다[Jackman, R. J., Wilbur, J. L. & Whitesides, G. M. Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269, 664-666 (1995)].To solve this problem, a microcontact printing ( μ CP) technique has been devised in which a single layer of nanoparticles is transferred to a polymer stamp preformed in a desired shape and area and then printed on a solid substrate [Jackman, RJ , Wilbur, JL & Whitesides, GM Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269, 664-666 (1995)).
μCP 기술은 랭뮤어 필름 증착법의 기판 의존성과 낮은 조작성이라는 단점을 일부 해결하였으나, 매개체로 사용되는 고분자 스탬프가 전이 과정에서 수축, 팽윤하는 등 변형될 뿐만 아니라, 나노입자 단일층과 기판 사이의 인력보다 고분자 스탬프와의 인력이 더 클 경우에 나노입자의 손실이 발생한다는 단점이 있었다. The μ CP technique solves some of the disadvantages of Langmuir film deposition, such as substrate dependence and low operability. However, not only is the polymer stamp used as a medium deformed by shrinkage and swelling during the transfer process, There is a disadvantage that nanoparticle loss occurs when the attractive force with the polymer stamp is larger.
또한, μCP 기술은 고분자 스탬프를 사용하여 기판에 전이하는 과정에서 충분한 압력을 가해 주어야 하므로, 그 과정에서 손상을 입을 가능성이 있는 부드러운 재질의 기판, 특히 생물학적 표면에 적용하기 어렵다는 큰 단점이 있었다.In addition, since the CPCP technique must apply sufficient pressure in the process of transferring the polymer stamp to the substrate, there is a serious disadvantage that it is difficult to apply to a substrate of soft material, particularly a biological surface, which may be damaged in the process.
한편, 위와 같은 기술을 사용하여 고체 기판 위에 증착된 나노입자 구조체는 앞서 언급된 바와 같이 전자 기기, 촉매, 에너지 수확 등 다양한 분야에 응용될 수 있다. 그 중에서도 특히 미소유체시스템을 비롯하여 식품 표면 안정성 검사, 마약류 등 불법 약물 검사, 위조지폐 판별 등의 광학적 분자검출 분야에서 크게 유망할 것으로 기대된다.On the other hand, the nanoparticle structure deposited on a solid substrate using the above-described technique can be applied to various fields such as electronic devices, catalysts, and energy harvesting as mentioned above. Especially, it is expected to be very promising in the field of optical molecule detection such as microfluidic system, inspection of food surface stability, inspection of illegal drugs such as drugs, and discrimination of counterfeit bills.
기존에도 나노입자를 미소유체채널이나 식품, 지폐의 표면에 도입함으로써 광학적 분자검출이 일부 시도되었으나[Osberg, K. D., Rycenga, M., Bourret, G. R., Brown, K. A., & Mirkin, C. A. Dispersible Surface-Enhanced Raman Scattering Nanosheets. Adv. Mater. 24, 6065-6070 (2012); Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392 (2010)], 현재 이러한 기술은 나노입자 용액의 용매를 고체 표면에서 증발시키거나 고체를 나노입자 용액에 일정 시간 담그는 수준에 머물러 있다.In the past, nanoparticles were introduced into microfluidic channels, food, and banknote surfaces to attempt optical molecular detection [Osberg, KD, Rycenga, M., Bourret, GR, Brown, KA, & Mirkin, Raman Scattering Nanosheets. Adv. Mater. 24, 6065-6070 (2012); Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392 (2010)], presently this technique remains at the level of evaporating the solvent of the nanoparticle solution from the solid surface or immersing the solid into the nanoparticle solution for a period of time.
이러한 경우에는 나노입자의 무작위한 부착에 의존하므로 증착의 재현성이 크게 떨어질 뿐만 아니라, 고밀도로 제어된 나노입자 구조체를 형성할 수 없으므로 검출의 민감도 역시도 낮다는 큰 단점이 있다.In this case, the reproducibility of the deposition depends on the random attachment of the nanoparticles, and the sensitivity of the detection is also low because the nanoparticle structure can not be formed at a high density.
본 발명의 예시적인 구현예들에서는, 일측면에서, 기판의 구조와 표면 에너지에 관계없이 균일한 나노입자 단일층을 높은 재현성으로 전이할 수 있는, 모세관을 이용한 나노입자 단일층 전이 방법 및 장치를 제공하고자 한다.Exemplary embodiments of the present invention, in one aspect, provide a capillary nanoparticle single layer transfer method and apparatus capable of transferring uniform nanoparticle monolayers to a high reproducibility regardless of substrate structure and surface energy. .
본 발명의 예시적인 구현예들에서는, 다른 일측면에서, 전이되는 나노입자단일층의 면적과 나노입자의 종류를 조절 가능한, 모세관을 이용한 나노입자 단일층 전이 방법 및 장치를 제공하고자 한다.In an exemplary embodiment of the present invention, in another aspect, there is provided a nanoparticle single layer transfer method and apparatus using a capillary capable of controlling the area of a single layer of nanoparticles to be transferred and the kind of nanoparticles.
본 발명의 예시적인 구현예들에서는, 또 다른 일측면에서, 직경이 작은 미소유체채널에 나노입자 단일층을 도입함으로써 광학적 분자검출 시스템과 결합된 미소유체장치를 제작할 수 있는, 모세관을 이용한 나노입자 단일층 전이 방법 및 장치를 제공하고자 한다.In an exemplary embodiment of the present invention, in another aspect, there is provided a capillary-based nanoparticle capable of fabricating a microfluidic device coupled with an optical molecular detection system by introducing a single layer of nanoparticles into a small- To provide a single layer transfer method and apparatus.
본 발명의 예시적인 구현예들에서는, 또 다른 일측면에서, 각종 식품이나 의류 혹은 지폐 등의 다양한 고체 표면이나 생체나 미생물 등의 세포 표면에 전술한 바와 같이 나노입자 단일층을 도입함으로써 농약과 같은 유해 물질, 마약류 등 불법 약물, 폭발물 등을 실시간 현장 검출할 수 있는 방법 및 장치를 제공하고자 한다. In an exemplary embodiment of the present invention, in another aspect, by introducing a single layer of nanoparticles into various solid surfaces such as various foods, clothes, or banknotes, or cell surfaces such as living bodies or microorganisms, And to provide a method and an apparatus for detecting on-site, illegal substances such as toxic substances, drugs, and explosives.
본 발명의 예시적인 구현예들에서는, 나노 입자 단일층 전이 방법으로서, 모세관을 이용하여 나노 입자 단일층을 분리하고 기판에 전이하는, 모세관을 이용한 나노 입자 단일층 전이 방법을 제공한다.Exemplary embodiments of the present invention provide a nanoparticle single layer transfer method using a capillary wherein a monolayer of nanoparticles is separated using a capillary and transferred to a substrate.
예시적인 일 구현예에서, 상기 방법은, 액체 기체 간 계면에 단일층 나노입자 단일층을 형성하는 단계; 모세관을 액체 기체 간 계면에 접촉시켜 상기 나노입자 단일층을 모세관 내로 분리하는 단계; 및 모세관 내의 나노입자 단일층을 기판에 전이하는 단계;를 포함하는, 모세관을 이용한 나노입자 단일층 전이 방법을 제공한다.In an exemplary embodiment, the method comprises: forming a single layer nanoparticle monolayer at the interface between the liquid gases; Contacting the capillary to an interface between the liquid gas to separate the monolayer of nanoparticles into a capillary; And transferring a single layer of nanoparticles in the capillary to the substrate.
또한, 본 발명의 예시적인 구현예들에서는, 나노 입자 단일층 전이 장치로서, 나노 입자 단일층을 분리한 후 전이하는 모세관을 포함하는, 모세관을 이용한 나노 입자 단일층 전이 장치를 제공한다.Also, in exemplary embodiments of the present invention, there is provided a capillary nanoparticle single layer transfer device comprising a capillary that separates a single layer of nanoparticles and then transitions, as a nanoparticle single layer transfer device.
예시적인 일 구현예에서, 상기 장치는, 나노입자 단일층 전이 장치로서, 액체 기체 간 계면에 나노입자 단일층이 형성되는 나노입자 단일층 형성부; 및 상기 단일층 형성부에 제공되는 상기 모세관;을 포함하는, 모세관을 이용한 나노입자 단일층 전이 장치를 제공한다.In an exemplary embodiment, the apparatus is a nanoparticle single layer transfer device, comprising: a nanoparticle monolayer forming portion in which a monolayer of nanoparticles is formed at an interface between liquid gasses; And a capillary provided to the single layer forming unit.
또한, 본 발명의 예시적인 구현예들에서는, 검출 대상 물질을 검출하는 방법으로서, 모세관을 이용하여 나노 입자 단일층을 분리하고 검출 대상 물질이 위치하는 기판에 전이하는 단계; 및 상기 전이된 나노 입자 단일층의 라만 신호로부터 기판의 검출 대상 물질을 검출하는 단계;를 포함하는 검출 대상 물질의 검출 방법을 제공한다.Further, in exemplary embodiments of the present invention, there is provided a method of detecting a substance to be detected, comprising: separating a single layer of nanoparticles using a capillary and transferring the substance to a substrate on which a substance to be detected is located; And detecting a substance to be detected on the substrate from the Raman signal of the single layer of the transferred nanoparticles.
또한, 본 발명의 예시적인 구현예들에서는, 검출 대상 물질의 검출 장치로서, 나노 입자 단일층을 분리한 후 전이하는 모세관; 및 상기 전이된 나노 입자 단일층에 레이저를 조사하고 나노 입자 단일층의 라만 신호로부터 검출 대상 물질을 검출하는 검출부;를 포함하는 검출 대상 물질의 검출 장치를 제공한다.Further, in exemplary embodiments of the present invention, an apparatus for detecting a substance to be detected includes: a capillary that separates a single layer of nanoparticles and then transitions; And a detector for irradiating a laser beam onto the single layer of the transferred nanoparticles and detecting a detection target material from the Raman signal of the nanoparticle single layer.
예시적인 일 구현예에서, 상기 검출 방법 및 장치는 의류 표면 또는 지폐 표면의 약물 또는 폭발물을 검출하는 것이거나, 식품 표면의 유해 물질을 검출하는 것일 수 있다.In an exemplary embodiment, the detection method and apparatus may be to detect drugs or explosives on the garment surface or bill face, or to detect harmful substances on the food surface.
또한, 본 발명의 예시적인 구현예들에서는, 지폐 위조 여부 판별 방법으로서, 모세관을 이용하여 나노 입자 단일층을 분리하고 모세관 내의 나노입자 단일층을 진본 지폐에 한군데 이상 전이하는 단계;를 포함하는 것이고, 상기 전이된 나노 입자 단일층의 라만 신호가 측정되는 경우 지폐가 진본 지페인 것으로 판별하는, 지폐 위조 여부 판별 방법을 제공한다.Further, in exemplary embodiments of the present invention, a method for discriminating whether or not a banknote is counterfeited includes separating a monolayer of nanoparticles using a capillary and transferring a monolayer of nanoparticles in the capillary to at least one banknote And discriminating whether the banknote is a genuine paper when the Raman signal of the single layer of the transferred nanoparticles is measured.
또한, 본 발명의 예시적인 구현예들에서는, 미소유체채널 제조 방법으로서, 모세관을 이용하여 나노 입자 단일층을 분리하고 미소유체채널에 전이하는 단계를 포함하는 미소유체채널 제조 방법을 제공한다. Further, in exemplary embodiments of the present invention, there is provided a method of manufacturing a microfluidic channel, comprising the steps of separating a single layer of nanoparticles using a capillary and transitioning to a microfluidic channel.
본 발명의 예시적인 구현예들에 의하면, 직경이 작은 모세관을 사용함에 따라 기판의 곡률에 의한 영향을 적게 받으므로 평면이 아닌 다양한 구조의 고체 기판에도 적용이 가능하다는 장점이 있다.According to the exemplary embodiments of the present invention, since the capillary having a small diameter is used, it is less influenced by the curvature of the substrate. Therefore, the present invention can be applied to a solid substrate having various structures other than a flat surface.
또한 전이 과정에서 압력을 가해 주는 것이 아닌, 기판 표면과 액체 계면의 접촉을 통해 나노입자의 전이를 유도하기 때문에, 손상이 가해지기 쉬운 부드러운 재질의 기판에도 비파괴적인 전이가 가능하다는 장점이 있다.In addition, since it induces the nanoparticle transition through the contact between the substrate surface and the liquid interface rather than applying pressure in the transition process, nondestructive transfer is possible to a substrate of a soft material which is likely to be damaged.
또한 액체 계면의 나노입자 단일층과 고체 기판의 직접 접촉을 가능케 하므로 기존 μCP 기술과 대비하여 반 데르 발스 인력에 의해 나노입자의 손실 없이 균일한 나노입자 단일층을 재현성 있게 전이할 수 있다.In addition, it enables direct contact between the nanoparticle monolayer at the liquid interface and the solid substrate, so that a uniform nanoparticle single layer can be reproducibly transferred without the loss of nanoparticles by van der Waals attractive force compared to the conventional μCP technique.
또한 액체 계면의 나노입자 단일층은 모세관 내부에서 높은 안정성을 유지하므로 랭뮤어 필름 증착법과 대비하여 모세관의 조작성이 좋아 높은 정확도로 원하는 위치에 전이가 가능하다는 장점이 있다.In addition, since the monolayer of nanoparticles at the liquid interface maintains high stability in the capillary, it is advantageous in that the capillary can be easily manipulated as compared with Langmuir film deposition method, and thus it is possible to transfer to a desired position with high accuracy.
또한 나노입자 단일층을 광학 센서의 탐침으로 활용 시 일반적인 레이저 조사 면적의 직경이 마이크로미터 수준이므로, 기존의 대면적 전이 방법에서는 레이저 조사 면적 대비 나노입자 개수의 효율이 낮은 반면, 본 발명의 예시적인 구현예들에 의하면, 레이저 조사 면적과 비슷한 수준인 예컨대 직경 1mm 이하의 면적으로 나노입자 단일층을 전이할 수 있다. 따라서 레이저 조사 면적 대비 나노입자 개수의 효율이 크게 향상될 수 있다. In addition, when the single layer of nanoparticles is used as a probe of an optical sensor, since the diameter of the general laser irradiation area is on the order of micrometer, the efficiency of the number of nanoparticles relative to the laser irradiation area is low in the conventional large area transfer method, According to embodiments, a single layer of nanoparticles can be transferred with an area of, for example, less than 1 mm in diameter, which is close to the laser irradiation area. Therefore, the efficiency of the number of nanoparticles relative to the laser irradiation area can be greatly improved.
또한, 본 발명의 예시적인 구현예들의 모세관을 이용한 나노입자 단일층 전이 방법 및 장치는, 상용 시판되는 유리 모세관 하나만이 요구되므로 특별한 장비나 시험자의 높은 전문성을 요구하지 않고, 전이 과정이 저렴하고 간단하다는 장점이 있다.In addition, the capillary nanoparticle single layer transfer method and apparatus of the exemplary embodiments of the present invention require only one commercially available glass capillary tube, so that it is not required to have special expertise of the special equipment or the tester, .
또한, 본 발명의 예시적인 구현예들의 모세관을 이용한 나노입자 단일층 전이 방법 및 장치에 의하면, 다수의 모세관 묶음을 통한 나노입자 단일층의 동시 다중 전이가 가능하며 복잡한 형태의 패터닝 역시도 가능하다. Also, with the capillary nanoparticle single layer transfer method and apparatus of the exemplary embodiments of the present invention, simultaneous multiple transfer of a single layer of nanoparticles through a plurality of capillary bundles is possible and complex patterning is also possible.
또한, 본 발명의 예시적인 구현예들에 의하면, 기존 방법으로는 재현성 있는 전이가 어려웠던 섬유질 의류, 식품, 지폐 등 다양한 구조와 표면 성질을 가지는 고체 표면에 나노입자 단일층을 재현성 있고 쉽게 도입할 수 있다. 이에 따라, 잔류 농약 검출과 같은 식품 안정성 검사뿐만 아니라 불법 마약 및 폭발물 등의 고속 현장 검사, 위조 지폐 방지 등 다양한 분야에 폭넓게 활용될 수 있다. In addition, according to the exemplary embodiments of the present invention, it is possible to reproducibly and easily introduce a single layer of nanoparticles on a solid surface having various structures and surface properties such as fibrous clothes, food, paper money and the like, have. As a result, it can be widely used in a variety of fields such as food safety tests such as detection of residual pesticides, high-speed field inspections such as illegal drugs and explosives, and counterfeit banknotes prevention.
도 1은 본 발명의 예시적인 일 구현예에서, 모세관을 이용한 나노입자 단일층의 전이 기술에 대한 개념을 나타내는 개략도이다. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic diagram illustrating the concept of a nanoparticle monolayer transfer technique using capillaries in an exemplary embodiment of the invention.
도 2는 본 발명의 비교예에서, 액체-기체 계면에 위치하는 크기가 50nm인 금나노입자 단일층과, 그 단일층을 한 변의 길이가 1cm인 PDMS기판에 기존의 방법을 사용하여 전이시킨 사진을 나타낸다.FIG. 2 is a photograph of a single layer of a gold nanoparticle having a size of 50 nm located at a liquid-gas interface and a single layer of the single layer being transferred to a PDMS substrate having a length of 1 cm on one side using the conventional method in the comparative example of the present invention .
도 3a 내지 3d는 본 발명의 실시예에서, 모세관을 이용한 전이 기술을 이용하여 크기가 50nm인 금나노입자 단일층을 PDMS기판에 다양한 사이즈로 전이시킨 사진을 나타낸다. FIGS. 3A through 3D illustrate photographs in which a monolayer of a gold nanoparticle having a size of 50 nm is transferred to PDMS substrates at various sizes using a capillary transfer technique in an embodiment of the present invention. FIG.
도 4a 및 4b는 본 발명의 실시예에서, 복수의 모세관 묶음을 사용하여 크기가 50nm인 구형 금나노입자 단일층을 동시 다중 전이한 사진(도 4a)과, 'NRG'라는 복잡한 문자를 패터닝한 결과(도 4b)를 나타낸다.FIGS. 4A and 4B are cross-sectional views of a photomicrograph (FIG. 4A) of a spherical gold nanoparticle single layer 50 nm in size using a plurality of capillary bundles (FIG. 4A) (Fig. 4B).
도 5a 내지 5f는 본 발명 실시예에서, 여섯 가지 종류의 다양한 나노입자들에 대한 UV 데이터이다.Figures 5A-5F are UV data for six different types of nanoparticles in an embodiment of the invention.
도 6a 내지 6f는 본 발명의 실시예에서, 모세관을 이용한 전이 기술을 이용하여 유리기판에 전이시킨 다양한 나노입자 단일층을 주사전자현미경(Scanning electron microscope)으로 관찰한 결과이다. 각각 크기가 50nm인 구형 금나노입자(도 6a), 크기가 17nm인 구형 금나노입자(도 6b), 크기가 50nm인 구형 금나노입자 표면에 실리카 껍질을 부착한 코어-껍질 구조의 금나노입자(도 6c), 금나노막대(도 6d), 크기가 45nm인 구형 은나노입자(도 6e), 그리고 크기가 30nm인 구형 은나노입자(도 6f) 단일층을 주사전자현미경으로 관찰한 결과이다. FIGS. 6A to 6F show results obtained by observing a single layer of various nanoparticles transferred onto a glass substrate using a capillary-based transferring technique with a scanning electron microscope in the embodiment of the present invention. Spherical gold nanoparticles each having a size of 50 nm (FIG. 6A), spherical gold nanoparticles having a size of 17 nm (FIG. 6B), spherical gold nanoparticles having a size of 50 nm, and core- (FIG. 6C), gold nanorods (FIG. 6D), spherical silver nanoparticles of 45 nm in size (FIG. 6E) and spherical silver nanoparticles of 30 nm in size (FIG.
도 7a 내지 7d는 본 발명의 실시예에서, 부드러운 생체 표면을 지닌 나뭇잎 2종의 표면 (각 앞, 뒷면)에 크기가 50nm인 금나노입자 단일층을 직경 1mm의 크기로 전이한 사진을 나타낸다. FIGS. 7A to 7D show photographs in which a single layer of gold nanoparticles having a size of 50 nm is transferred to a size of 1 mm in diameter on the surfaces (front and back sides) of two kinds of leaves having a smooth living body surface in the embodiment of the present invention.
도 8은 본 발명의 실시예에서, 대장균(Escherichia coli)이 고밀도로 존재하는 PDMS 표면에 크기가 50 nm인 금나노입자 단일층을 전이한 주사전자현미경 결과를 나타낸다.Figure 8 shows that, in an embodiment of the present invention, Escherichia coli ) shows a scanning electron microscopic result of a single layer of gold nanoparticles having a size of 50 nm on the surface of a PDMS in which there is a high density.
도 9a 내지 9g는 본 발명의 실시예에서, 너비가 1 mm, 깊이가 650μm인 다양한 PDMS 미소유체채널을 제작한 후, 채널 내부에 모세관을 사용하여 크기가 50nm인 구형 금나노입자 단일층을 전이한 사진을 나타낸다.9A to 9G show that in the embodiment of the present invention, after forming various PDMS microfluidic channels having a width of 1 mm and a depth of 650 mu m, a monolayer of spherical gold nanoparticles having a size of 50 nm is transferred Represents one photograph.
도 10는 본 발명의 실시예에서, 금나노막대 단일층이 전이된 미소유체채널 내부에서 표면증강라만산란법을 통해 1mM의 rhodamine 6G를 검출한 결과이다.FIG. 10 is a graph showing the results of detection of 1 mM rhodamine 6G in a microfluidic channel in which gold nanorod monolayers are transferred through a surface enhanced Raman scattering method in the embodiment of the present invention.
도 11은 본 발명의 실시예에서, 의류 표면의 섬유질 직물에 모세관을 사용하여 크기가 50nm인 구형 금나노입자 단일층을 직경 1mm로 전이한 사진을 나타낸다.Figure 11 shows a photograph of a single layer of spherical gold nanoparticles of 50 nm in size transitioned to a diameter of 1 mm using a capillary in a fibrous fabric of the garment surface in an embodiment of the invention.
도 12은 본 발명의 실시예에서, 코카인의 유사 약물인 벤조카인이 포함된 의류 표면에 전이된 구형 금나노입자 단일층에서 표면증강라만산란법을 이용하여 벤조카인을 검출한 결과를 나타낸다.Fig. 12 shows the results of detection of benzocaine using a surface enhanced Raman scattering method in a monolayer of spherical gold nanoparticles transferred to the surface of a garment containing benzocain, which is a similar drug of ***e, in the embodiment of the present invention.
도 13는 본 발명의 실시예에서, 쌀알 표면에 모세관을 사용하여 크기가 50nm인 구형 금나노입자 단일층을 직경 1mm로 전이한 사진을 나타낸다.13 shows a photograph of a spherical gold nanoparticle single layer having a size of 50 nm transferred to a diameter of 1 mm by using a capillary on the surface of rice grains in an embodiment of the present invention.
도 14은 본 발명의 실시예에서, 상용 시판되는 농약 성분을 포함하고 있는 쌀알 표면에 전이된 구형 금나노입자 단일층에서 표면증강라만산란법을 이용하여 농약 성분인 클로르피리포스-메틸을 검출한 결과를 나타낸다.FIG. 14 is a graph showing the results of detection of chlorpyrifos-methyl as a pesticide component by surface enhanced Raman scattering in a single layer of spherical gold nanoparticles transferred onto the surface of a rice grain containing commercially available agricultural chemicals Results are shown.
도 15는 본 발명의 실시예에서, 오렌지 껍질 표면에 모세관을 사용하여 크기가 50nm인 구형 금나노입자 단일층을 직경 1mm로 전이한 사진을 나타낸다.15 shows a photograph of a spherical gold nanoparticle monolayer having a size of 50 nm transferred to a diameter of 1 mm using a capillary on the surface of an orange shell in an embodiment of the present invention.
도 16은 본 발명의 실시예에서, 상용 시판되는 농약 성분을 포함하고 있는 오렌지 껍질 표면에 전이된 구형 금나노입자 단일층에서 표면증강라만산란법을 이용하여 농약 성분인 클로르피리포스-메틸을 검출한 결과를 나타낸다.FIG. 16 is a graph showing the results of detection of chlorpyrifos-methyl as a pesticide component using a surface enhanced Raman scattering method in a single layer of spherical gold nanoparticles transferred onto the surface of an orange skin containing commercial pesticide components .
도 17은 본 발명의 실시예에서, 위조 지폐 방지용 화학 코드를 삽입할 미국 100달러 지폐의 여러 지점을 표시한다.Figure 17 shows various points of a US $ 100 bill to insert a chemical code for counterfeit bill protection in an embodiment of the present invention.
도 18a 내지 18j는 본 발명의 실시예에서 100달러 지폐에 전이된 모든 금나노입자 단일층 위치에서 250cm-1 근처의 강한 피크가 공통적으로 나타나는 것을 보여 주는 라만 신호 결과이다. Figures 18A-18J are Raman signal results showing that strong peaks near 250 cm < -1 > are common in all gold nanoparticle monolayer locations transferred to a $ 100 bill in an embodiment of the present invention.
이하, 본 발명의 예시적인 구현예들을 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail.
본 명세서에서 나노란 1000nm 이하를 의미한다.In this specification, nano means 1000 nm or less.
본 명세서에서 2차원이란 구조체의 가로 크기 및 세로 크기 사이에는 1오더 이상의 차이가 나지 않지만, 가로 크기와 두께 또는 세로 크기와 두께 사이에 1오더 이상의 차이(적어도 10배 이상의 차이)를 가지는 것을 의미한다. 예컨대 판 형상이 2차원 형상이다.As used herein, the term " two-dimensional " means that there is no difference of more than one order between the horizontal size and the vertical size of the structure, but has a difference of at least one order of magnitude between the horizontal size and the thickness or the vertical size and thickness . For example, the plate shape is a two-dimensional shape.
본 명세서에서 유해 물질이란 식품 등에서 검출되는 예컨대 클로르피리포스, 클로르피리포스-메틸, 파라티온, 메틸파라티온, 카보페노싸이온, 페니트로티온 등의 유기인계 살충제나 유기염소계, 수은계, 카바메이트계 살충제 등과 같은 각종 농약이나 기타 인체에 유해한 것으로 알려져 있는 물질을 의미한다. In the present specification, harmful substances are organophosphorus insecticides such as chlorpyrifos, chlorpyrifos-methyl, parathion, methyl parathion, carbophenothion and penitrothion, organic chlorine based, mercury based, carbamate based insecticides And other pesticides and other substances known to be harmful to human body.
본 명세서에서 약물이란 필로폰, 코카인, 대마초 등 불법 마약이나 기타 유통 등이 법으로 제한되거나 금지된 약물을 포함한다. In the present specification, drugs include illegal drugs such as phylloxes, ***e, cannabis, and other drugs, etc., which are restricted or prohibited by law.
본 발명자들은 표면장력에 의해 가는 관 속에서의 수면이 상승하는 모세관 현상을 활용하여, 액상과 기체 계면, 보다 구체적으로 예컨대 수용액과 공기 계면에 존재하는 단일 층의 나노입자 단일층을 모세관으로 좁은 영역에서 분리 후 모세관을 거꾸로 하여 분리된 단일층 나노입자 단일층을 기판에 전이시키는 기술을 제시한다. Using the capillary phenomenon of surface elevation in a thin tube due to surface tension, the present inventors have found that a single layer of a single layer of nanoparticles existing at a liquid and gas interface, more specifically, for example, an aqueous solution and an air interface, And a single layer of single-layer nanoparticles separated by inverting the capillary is transferred to the substrate.
즉, 본 발명의 예시적인 구현예들에서는, 나노 입자 단일층 전이 방법으로서, 모세관을 이용하여 나노 입자 단일층을 분리하고 기판에 전이하는, 모세관을 이용한 나노 입자 단일층 전이 방법을 제공한다.Namely, in exemplary embodiments of the present invention, as a nanoparticle monolayer transfer method, there is provided a monolayer nanoparticle transfer method using a capillary, wherein a monolayer of nanoparticles is separated using a capillary and transferred to a substrate.
구체적으로, 상기 방법은, 액체 기체 간 계면에 단일층 나노입자 단일층을 형성하는 단계, 모세관을 액체 기체 간 계면에 접촉시켜 나노입자 단일층을 국소적 및 선택적으로 모세관 내로 수용함으로써 나노입자 단일층을 선택적으로 분리하는 단계, 및 모세관을 거꾸로 세우고 이에 기판을 접촉시켜 모세관내의 나노입자 단일층을 기판으로 전이하는 단계를 포함할 수 있다.Specifically, the method comprises forming a monolayer nanoparticle monolayer at the interfacial surface of the liquid gas, contacting the capillary at the liquid gas interfacial surface to receive the nanoparticle monolayer locally and selectively into the capillary, And inverting the capillary and contacting the substrate with the capillary to transfer the monolayer of nanoparticles in the capillary to the substrate.
또한, 본 발명의 예시적인 구현예들에서는, 나노 입자 단일층 전이 장치로서, 나노 입자 단일층을 분리한 후 해당 나노 입자 단일층을 전이하는 모세관을 포함하는, 모세관을 이용한 나노 입자 단일층 전이 장치를 제공한다.Also, in exemplary embodiments of the present invention, there is provided a nanoparticle single layer transfer device comprising: a nanoparticle single layer transfer device using a capillary, comprising a capillary for separating a monolayer of nanoparticles and then transferring a single layer of the nanoparticle; Lt; / RTI >
구체적으로, 상기 장치는, 나노입자 단일층 전이 장치로서, 액체 기체 간 계면에 나노입자 단일층이 형성되는 나노입자 단일층 형성부; 및 상기 단일층 형성부에 제공되는 상기 모세관;을 포함하는, 모세관을 이용한 나노입자 단일층 전이 장치일 수 있다.Specifically, the apparatus is a nanoparticle single layer transfer apparatus comprising: a nanoparticle single layer forming unit in which a single layer of nanoparticles is formed at an interface between liquid gasses; And a capillary-based nanoparticle single layer transfer device including the capillary provided in the single-layer forming portion.
도 1은 본 발명의 예시적인 일 구현예에서, 모세관을 사용하여 나노입자 수용액과 공기 계면에서 자가 조립으로 형성되어 있는 나노입자 단일층을 고체 기판으로 전이시키는 것을 보여 주는 개략도이다. FIG. 1 is a schematic diagram illustrating the transition of a single layer of nanoparticles, which is self-assembled at the air interface with the nanoparticle aqueous solution, using a capillary to an exemplary solid substrate in an exemplary embodiment of the present invention.
도 1에 도시된 바와 같이, 우선 물 속에 분산되어 있는 나노입자는 유기용매를 사용하여 입자 간 상호작용을 조절함으로써 물과 공기 간 계면에 단일층(monolayer)으로 자기조립(self-assembly)시킬 수 있다. As shown in FIG. 1, first, nanoparticles dispersed in water can self-assemble into a monolayer at the interface between water and air by controlling inter-particle interaction using an organic solvent. have.
계면에서 나노입자 단일층을 자기 조립으로 형성하는 것을 보다 상술하면, 계면 형성을 위하여 먼저 액체-액체 계면을 만든 후 상부의 액체를 증발시켜 액체-기체 계면을 형성시키거나, 또는 바로 액체-기체 계면을 형성시킬 수 있다. In order to form a monolayer of nanoparticles at the interface more specifically, the liquid-gas interface is formed by first forming a liquid-liquid interface and then evaporating the liquid at the top to form an interface, or directly forming a liquid- Can be formed.
액체-액체 계면에 존재하는 나노입자 단일층의 경우에는 보통 위층에 존재하는 액체상을 증발시킨 뒤 액체-공기 계면에 존재하는 단일층을 전이할 수 있다. 예컨대, 후술하는 실시예의 경우 물과 핵산 계면에 먼저 나노입자 단일층을 형성시키고, 핵산을 증발시킨 뒤 기판에 전이한다. In the case of a single layer of nanoparticles present at the liquid-liquid interface, it is usually possible to evaporate the liquid phase present in the upper layer and then transfer a single layer present at the liquid-air interface. For example, in the embodiment described below, a single layer of nanoparticles is first formed on the water-nucleic acid interface, the nucleic acid is evaporated, and transferred to the substrate.
비제한적인 예시에서, 액상이 물인 경우 물과 함께 계면을 형성하기 위하여 액상으로 사용되는 유기용매로는 벤젠, 톨루엔, 클로로포름, 핵산, 올레산 등 지방산 계열, 올레일아민 등 지방족 아민 계열 등의 유기 용매가 있다.In a non-limiting example, when the liquid phase is water, the organic solvent used in the liquid phase to form the interface with water may be an organic solvent such as benzene, toluene, chloroform, nucleic acid, fatty acid series such as oleic acid, .
한편, 나노입자의 자기 조립을 위하여 액상-액상에 예컨대 알코올을 첨가할 수 있다. On the other hand, for self-assembly of the nanoparticles, for example, alcohol may be added in a liquid-liquid phase.
액체-기체 계면을 바로 형성하는 경우에는 하부 액상으로 벤젠, 톨루엔, 핵산, 클로로포름 등의 유기용매를 사용할 수 있다. When the liquid-gas interface is directly formed, an organic solvent such as benzene, toluene, nucleic acid or chloroform may be used as the lower liquid phase.
기체상은 공기일 수 있다.The gaseous phase can be air.
다음으로, 모세관을 나노입자 단일층이 존재하는 계면에 접촉시키고, 모세관 현상에 의하여 나노입자 단일층을 액체와 함께 모세관으로 수용한다.Next, the capillary is brought into contact with the interface where the nanoparticle monolayer is present, and a single layer of the nanoparticle is accommodated in the capillary together with the liquid by capillary action.
예컨대, 나노입자 단일층이 존재하는 물-공기 계면에 단면의 직경이 2mm 이하인 모세관, 예컨대 0.1~2mm, 또는 0.1~1.5mm, 또는 0.1~1mm인 모세관(capillary tube)을 수직으로 접촉시킬 수 있다. For example, a capillary tube having a cross-sectional diameter of 2 mm or less, for example 0.1 to 2 mm, or 0.1 to 1.5 mm, or 0.1 to 1 mm, can be vertically contacted at the water-air interface at which the nanoparticle monolayer is present .
이때 물의 표면장력 때문에 발생하는 모세관 힘에 의해 모세관 내부의 수면이 급격히 상승하게 되는데, 모세관 내부에 존재하는 나노입자 단일층은 계면에서 그 구조를 유지하며 물과 함께 상승하게 된다. In this case, the capillary force due to the surface tension of the water causes a sudden rise in the water surface inside the capillary. The single layer of nanoparticles inside the capillary keeps its structure at the interface and rises with the water.
이후 모세관을 분리시킨 후 수면과 접촉했던 모세관 입구가 위쪽으로 향하도록 모세관을 뒤집으면 중력에 의해 모세관 내부의 용액이 반대 방향으로 내려오며 나노입자 단일층 구조체가 모세관 입구에 노출되게 된다.After the capillary is separated, the capillary tube is turned upside down so that the capillary tube is in contact with the surface of the water. When the capillary tube is turned upside down, gravity causes the solution in the capillary tube to come down in the opposite direction and expose the nanoparticle single layer structure to the capillary tube.
이 상태에서도 수용액은 친수성 물질인 유리와 접촉하는 것이 안정하므로 모세관 바깥으로 흘러나오지 않는다. Even in this state, since the aqueous solution is stable in contact with the glass as the hydrophilic material, it does not flow out of the capillary.
이렇게 모세관 입구에 노출된 나노입자를 전이시키고자 하는 고체 기판 표면에 수직으로 접촉시킨 후 떼어내면 나노입자와 고체 기판 사이의 반데르발스 상호작용에 의해 나노입자 단일층만이 고체 기판 표면에 남게 된다.When the nanoparticles exposed at the capillary inlet are vertically contacted with the surface of the solid substrate to be transferred and then removed, only a single layer of nanoparticles remains on the surface of the solid substrate due to van der Waals interaction between the nanoparticles and the solid substrate.
이와 같이 2차적인 고분자 스탬프를 사용하지 않고 계면의 나노입자 단일층과 고체 기판 사이의 반데르발스 인력에 의한 직접 접촉을 유도하므로 나노입자의 손실을 최소화 할 수 있다. 한편, 반데르발스 인력 외에 정전기적 인력을 이용할 수도 있다.Thus, it is possible to minimize the loss of nanoparticles by inducing direct contact by the van der Waals force between the interface monolayer of nanoparticles and the solid substrate without using a secondary polymer stamp. On the other hand, electrostatic attraction can be used in addition to Van der Waals attraction.
이와 같이 모세관을 이용하면 나노입자 단일층을 전이하는 과정에서 생기는 크기가 큰 균열을 방지할 수 있기 때문에 모세관을 이용한 전이 방법으로 전이된 나노입자 단일층은 상대적으로 더 균일하게 된다. 또한, 계면에 존재하는 나노입자 단일층은 육안으로 보기에도 나노입자가 있는 곳과 없는 곳이 크게 구분되는 등 불규칙하게 존재할 수밖에 없는데, 이를 대면적으로 전이시킬 경우 나노입자가 있는 곳과 없는 곳을 함께 전이시킬 수밖에 없으므로 불규칙하지만, 모세관을 이용하면 나노입자가 존재하는 곳의 단일층만 국소적으로 분리해 내어 전이시킬 수 있으므로 더 균일하고 재현성이 높다고 할 수 있다.Because capillaries can prevent large cracks in the process of transferring a single layer of nanoparticles, the single layer of nanoparticles transferred by the capillary transfer method becomes relatively more uniform. In addition, the single layer of nanoparticles existing at the interface is irregularly present such as where the nanoparticles are present and absent from the naked eye. When the nanoparticles are transferred to a large area, However, it is more uniform and reproducible because capillary can separate and transfer only a single layer where nanoparticles are present, irregularly because it has to be transferred together.
예시적인 일 구현예에서, 모세관에 의하여 분리되고 전이되는 나노입자 단일층은 직경이 대략 0.1~2mm, 면적은 대략 0.01~4mm2 범위일 수 있다.In an exemplary embodiment, the single layer of nanoparticles separated and transferred by the capillaries may range in diameter from about 0.1 to 2 mm, area from about 0.01 to 4 mm 2 .
예시적인 일 구현예에서, 전이되는 나노입자의 크기는 직경이 5 ~ 200nm일 수 있다.In an exemplary embodiment, the size of the nanoparticles to be transferred may be between 5 and 200 nm in diameter.
예시적인 일 구현예에서, 전이되는 나노입자는, 특별히 제한되지 않지만, 예컨대 금속, 산화금속 등 무기물, 또는 유기물에서 선택되는 하나 이상일 수 있다. 상기 금속은 Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni, Fe 등 일 수 있다. 상기 무기물은 실리카, 양자점(quantum dot), 란타나이드, 산화철 등일 수 있다. 상기 유기물은 폴리스티렌, 폴리에틸렌글리콜 등일 수 있다.In one exemplary embodiment, the nanoparticles to be transferred are not particularly limited, but may be one or more selected from inorganic materials such as metals, metal oxides, and organic materials. The metal may be Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni, The inorganic material may be silica, quantum dot, lanthanide, iron oxide, and the like. The organic material may be polystyrene, polyethylene glycol, or the like.
예시적인 일 구현예에서, 전이되는 나노입자의 모양도 특별히 제한되지 않으며, 예컨대 구, 막대, 타원체, 덴드리머, 사면체, 육면체, 팔면체, 2차원 사각형, 2차원 삼각형 그룹에서 선택되는 하나 이상일 수 있다. 또한, 나노입자는 코어-쉘 형태일 수도 있다. In an exemplary embodiment, the shape of the nanoparticles to be transferred is not particularly limited, and may be one or more selected from the group consisting of, for example, spheres, rods, ellipsoids, dendrimers, tetrahedrons, hexahedrons, octahedrons, The nanoparticles may also be in the form of a core-shell.
예시적인 일 구현예에서, 전이시킬 기판은 나노입자 단일층을 모세관으로부터 이전받을 수 있는 것이면 제한되지 않으며, 예컨대, 친수성 또는 소수성 기판, 보다 구체적으로 친수성 또는 소수성 고체 기판일 수 있다. In an exemplary embodiment, the substrate to be transferred is not limited as long as it can receive a single layer of nanoparticles from the capillary, for example, a hydrophilic or hydrophobic substrate, more specifically a hydrophilic or hydrophobic solid substrate.
비제한적인 예시로서, 상기 기판은 고분자, 유리, ITO, 실리콘, 금속, 종이, 세포 등에서 선택되는 하나 이상의 기판일 수 있다. 상기 고분자 계열 기판은 PDMS, PMMA, hydrogel 등에서 선택되는 하나 이상으로 이루어진 것일 수 있다. 상기 금속은 Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni, Fe 등에서 선택되는 하나 이상일 수 있다.As a non-limiting example, the substrate can be one or more substrates selected from polymers, glass, ITO, silicon, metal, paper, cells, The polymer-based substrate may be one or more selected from PDMS, PMMA, hydrogel, and the like. The metal may be at least one selected from Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni and Fe.
또한, 예시적인 일 구현예에서, 전이시킬 기판은 평면 기판을 비롯하여 표면 거칠기가 큰 기판, 곡률이 큰 곡면 기판일 수 있으며, 이는 섬유질 기판, 다공성 기판 등을 포함할 수 있다. Further, in an exemplary embodiment, the substrate to be transferred may be a flat substrate, a substrate having a large surface roughness, a curved substrate having a large curvature, and the like, which may include a fibrous substrate, a porous substrate, and the like.
비제한적인 예시에서, 상기 기판은 쌀, 채소, 과일, 육류, 해산물 등을 포함하는 각종 식품, 의복, 지폐 등의 종이, 다공성 필터, 생체나 미생물 등의 세포 등에서 선택되는 하나 이상일 수 있다. 상기 생체는 예컨대 동식물의 스킨층 세포일 수 있다. 미생물은 예컨대 기판에 코팅된 대장균 등일 수 있다. 이와 같이 비파괴적이고 정밀한 조작이 요구되는 기판의 경우에도 본 발명의 모세관을 이용하는 방법 및 장치는 매우 유용하다. In a non-limiting example, the substrate may be at least one selected from the group consisting of rice, vegetable, fruit, meat, seafood, paper of various foods, clothes, banknotes, porous filters, cells of living organisms, microorganisms, The living body may be a skin layer cell of, for example, animal or plant. The microorganism may be, for example, E. coli coated on a substrate. The method and apparatus using the capillary of the present invention are very useful even in the case of a substrate requiring non-destructive and precise operation.
또한, 예시적인 일 구현예에서, 전이시킬 기판은 미소유체채널일 수 있다. Further, in an exemplary embodiment, the substrate to be transferred may be a microfluidic channel.
예시적인 일 구현예에서, 본 발명의 방법 및 장치에서는 복수개의 모세관을 사용하여 동일 기판에 작은 면적의 나노입자 단일층 여러 개를 동시에 전이할 수 있으며, 전이 위치 조절을 통해 복잡한 형태의 패터닝 역시 가능하다. In one exemplary embodiment, the method and apparatus of the present invention allows for the simultaneous transfer of multiple single-layer nanoparticles of small area to the same substrate using a plurality of capillaries, and the complex shape of the patterning is also possible by controlling the transfer position Do.
또한, 예시적인 일 구현예에서, 모세관의 구조, 형태 또는 면적을 다양하게 조절하여 전이된 나노입자 조립체의 형상 또는 면적을 조절할 수 있다.Further, in an exemplary embodiment, the shape, area, or area of the capillary can be varied to control the shape or area of the transferred nanoparticle assembly.
한편, 본 발명의 예시적인 구현예들에서는, 검출 대상 물질을 검출하는 방법으로서, 모세관을 이용하여 나노 입자 단일층을 분리하고 기판에 전이하는 단계; 및 상기 전이된 나노 입자 단일층의 라만 신호로부터 기판의 검출 대상 물질을 검출하는 단계;를 포함하는 검출 대상 물질의 검출 방법을 제공한다.Meanwhile, in exemplary embodiments of the present invention, there is provided a method of detecting a substance to be detected, comprising: separating a single layer of nanoparticles using a capillary and transferring the single layer to a substrate; And detecting a substance to be detected on the substrate from the Raman signal of the single layer of the transferred nanoparticles.
예시적인 일 구현예에서, 상기 전이 단계는, 액체 기체 간 계면에 나노입자 단일층을 형성하는 단계, 모세관을 액체 기체 간 계면에 접촉시켜 상기 나노입자 단일층을 모세관 내로 분리하는 단계, 및 모세관 내의 나노입자 단일층을 기판에 전이하는 단계;를 포함할 수 있다.In an exemplary embodiment, the transferring step includes the steps of forming a monolayer of nanoparticles at the interface between the liquid gas, contacting the capillary at the interface between the liquid gas to separate the monolayer of nanoparticles into a capillary, And transferring the nanoparticle monolayer to the substrate.
또한, 본 발명의 예시적인 구현예들에서는, 나노입자 단일층 전이 장치로서, 나노 입자 단일층을 분리한 후 기판에 전이하는 모세관을 포함하는, 모세관을 이용한 나노 입자 단일층 전이 장치를 제공한다.Also, in exemplary embodiments of the present invention, there is provided a capillary nanoparticle single layer transfer device comprising a capillary that separates a single layer of nanoparticles and then transfers to a substrate, as a nanoparticle single layer transfer device.
구체적으로, 상기 장치는, 액체 기체 간 계면에 나노입자 단일층이 형성되는 나노입자 단일층 형성부; 및 상기 단일층 형성부에 제공되는 상기 모세관;을 포함할 수 있다.Specifically, the apparatus comprises: a nanoparticle monolayer forming portion in which a monolayer of nanoparticles is formed at an interface between liquid gasses; And the capillary provided in the single-layer forming portion.
예시적인 일 구현예에서, 상기 방법 및 장치는 의류 표면 또는 지폐 표면의 약물 또는 폭발물을 검출하거나, 식품 표면의 유해 물질을 검출하는데 유용하게 사용될 수 있다.In one exemplary embodiment, the method and apparatus can be usefully used to detect drugs or explosives on a garment surface or a bill surface, or to detect hazardous materials on a food surface.
아울러, 본 발명의 예시적인 구현예들에서는, 지폐 위조 여부 판별 방법으로서, 모세관을 이용하여 나노 입자 단일층을 분리하고 모세관 내의 나노입자 단일층을 진본 지폐에 한 군데 이상 전이하는 단계;를 포함하는 것이고, 상기 전이된 나노 입자 단일층의 라만 신호가 측정되는 경우 지폐가 진본인 것으로 판별하는, 지폐 위조 여부 판별 방법을 제공한다.Further, in exemplary embodiments of the present invention, there is provided a method of discriminating whether or not a banknote is counterfeited, comprising: separating a single layer of nanoparticles using a capillary, and transferring a single layer of nanoparticles in the capillary to the original bill more than once; And discriminates that the banknote is genuine when the Raman signal of the single layer of the transferred nanoparticles is measured.
또한, 본 발명의 예시적인 구현예들에서는, 미소유체 (미세유체, 마이크로 유체) 채널 제조 방법으로서, 모세관을 이용하여 나노 입자 단일층을 분리하고 미소유체채널에 전이하는 단계;를 포함하는 미소유체채널 제조 방법을 제공한다.Further, in exemplary embodiments of the present invention, there is provided a method of manufacturing a microfluidic (microfluidic, microfluidic) channel, comprising: using a capillary to separate a monolayer of nanoparticles and transition to a microfluidic channel, Channel fabrication method.
이상과 같이 본 발명의 예시적인 구현예들에서는 단일층의 나노입자 단일층을 작은 면적으로 선택적 분리하기 위하여 모세관 현상을 이용한다. 이에 따르면, 고체 기판의 표면 성질과 구조에 관계없이 균일한 나노입자 단일층의 재현성 있는 전이가 가능하다. 또한, 고도의 전문성이나 전문 장비 없이도, 상용 시판되는 유리 모세관만을 사용하므로 비용이 낮고 전이 속도가 매우 빠르며, 간단하여 접근성이 높다.As described above, the exemplary embodiments of the present invention use capillary phenomenon to selectively separate a single layer of a single layer of nanoparticles into a small area. According to this, a reproducible transition of a single layer of uniform nanoparticles is possible regardless of the surface properties and structure of the solid substrate. In addition, it uses only commercially available glass capillary tubes without the need for highly specialized or specialized equipment, so the cost is low, the transition speed is very fast, and the accessibility is simple.
또한, 본 발명의 방법 및 장치를 통해 나노 입자 단일층이 섬유질 의류나, 쌀알, 오렌지 등의 각종 식품류, 혹은 지폐 등의 종이 표면에 전이되어, 불법 마약류나 폭발물, 식품 유해물질 등의 고속 현장 검사, 위조지폐 방지 기술 등에 폭넓게 활용될 수 있다.Further, the method and apparatus of the present invention allow a single layer of nanoparticles to be transferred to the surface of paper such as fibrous clothes, various foods such as rice grains and oranges, paper money, etc., and high-speed field inspections of illegal drugs, explosives, , Counterfeit banknote prevention technology, and the like.
이하, 본 발명의 예시적인 구현예들에 따른 구체적인 실시예를 더욱 상세하게 설명한다. 그러나 본 발명이 하기 실시예에 한정되는 것은 아니며 첨부된 특허청구범위 내에서 다양한 형태의 실시예들이 구현될 수 있고, 단지 하기 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것임이 이해될 것이다. Hereinafter, specific embodiments according to exemplary embodiments of the present invention will be described in more detail. It should be understood, however, that the invention is not limited to the embodiments described below, but that various embodiments of the invention may be practiced within the scope of the appended claims, It will be understood that the invention is intended to facilitate the practice of the invention to those skilled in the art.
[비교예][Comparative Example]
나노입자의 자가조립을 통해 나노입자 단일층을 형성하는 단계Step of self-assembly of nanoparticles to form a single layer of nanoparticles
나노입자 수용액 9ml에 n-헥산 3ml를 조심스럽게 첨가하여 계면을 형성한 후 나노입자 수용액상에 에탄올 4.5ml를 첨가하고 6시간동안 상온에서 n-헥산을 모두 증발시켰다.To 9 ml of the nanoparticle aqueous solution, 3 ml of n-hexane was carefully added to form an interface, 4.5 ml of ethanol was added to the nanoparticle aqueous solution, and all of n-hexane was evaporated at room temperature for 6 hours.
핵산은 수용액과 계면을 형성하기 위해서 첨가되었다. 금속 나노입자는 표면장력에 의한 에너지 때문에 계면에 존재하는 것이 안정하지만, 핵산만 첨가했을 경우에는 나노입자끼리의 정전기적 반발력이 더 강해 자기조립 현상이 발생하지 않게 된다. 에탄올은 나노입자 표면을 둘러싸고 있는 분자의 전하를 약화시키기 때문에, 정전기적 반발력을 줄여 자기조립을 유도할 수 있다. The nucleic acid was added to form an interface with the aqueous solution. Metal nanoparticles are stable at the interface due to the energy due to the surface tension, but when only the nucleic acid is added, the electrostatic repulsion between the nanoparticles is stronger, so that the self-assembly phenomenon does not occur. Since ethanol weakens the charge of molecules surrounding the nanoparticle surface, it can induce self-assembly by reducing electrostatic repulsion.
고체 기판에 나노입자 단일층을 전이하는 단계Step of transferring a single layer of nanoparticles to a solid substrate
한 변의 길이가 1cm인 PDMS기판을 나노입자 단일층이 존재하는 계면에 수평으로 접촉시킨 뒤 떼어냈다.A PDMS substrate having a length of 1 cm on one side was horizontally brought into contact with the interface where a single layer of nanoparticles existed, and then peeled off.
도 2는 본 발명의 비교예에 있어서, 물-공기 계면에 존재하는 크기가 50nm인 구형 금나노입자 단일층과, 그 단일층을 한 변의 길이가 1cm인 PDMS 기판에 전이시킨 사진을 나타낸 것이다. 여기서는 나노입자와 친화력을 가진 고체 기판을 계면에 수평으로 접촉시킨 후 떼어내었다. FIG. 2 is a photograph of a single layer of a spherical gold nanoparticle having a size of 50 nm existing at a water-air interface and a single layer thereof transferred to a PDMS substrate having a length of 1 cm on one side in the comparative example of the present invention. Here, the solid substrate having affinity with the nanoparticles was brought into contact with the interface horizontally and then peeled off.
[실시예][Example]
나노입자의 자가조립을 통해 나노입자 단일층을 형성하는 단계Step of self-assembly of nanoparticles to form a single layer of nanoparticles
나노입자 수용액 9ml에 n-헥산 3ml를 조심스럽게 첨가하여 계면을 형성한 후 나노입자 수용액상에 에탄올 4.5ml를 첨가하고 6시간동안 상온에서 n-헥산을 모두 증발시켰다.To 9 ml of the nanoparticle aqueous solution, 3 ml of n-hexane was carefully added to form an interface, 4.5 ml of ethanol was added to the nanoparticle aqueous solution, and all of n-hexane was evaporated at room temperature for 6 hours.
모세관을 이용하여 나노입자 단일층을 선택적으로 분리하는 단계Selectively separating a single layer of nanoparticles using a capillary
길이가 12.5cm이고 전체 부피가 각각 10, 50, 100, 200μL 인 모세관을 수용액과 공기 계면에서 형성되어 있는 나노입자 단일층에 수직으로 접촉시켜 수용액이 모세관 내로 일정량 이상 올라오도록 한 후 모세관을 빼냈다.A capillary of 12.5 cm in length and 10, 50, 100, and 200 μL in volume was vertically contacted with a monolayer of nanoparticles formed at the interface between the aqueous solution and the air interface, and the capillary was withdrawn after allowing the aqueous solution to rise above a certain amount into the capillary.
분리시킨 나노입자 단일층을 고체 기판에 전이하는 단계Transferring the separated nanoparticle monolayer to a solid substrate
빼낸 모세관을 역방향으로 뒤집어 중력에 의해 모세관 내부의 용액이 반대 방향 입구까지 모두 내려오도록 하였다. 이 상태의 모세관을 PDMS와 유리 기판의 전이시키고자 하는 위치에 수직으로 접촉시킨 후 떼어냈다.The withdrawn capillary was reversed and the solution in the capillary was forced down to the opposite direction inlet by gravity. The capillary in this state was vertically brought into contact with the position where the PDMS and the glass substrate were to be transferred, and then peeled off.
도 3a 내지 3d는 본 발명의 실시예에서, 모세관을 이용한 전이 기술을 이용하여 크기가 50nm인 금나노입자 단일층을 PDMS기판에 다양한 사이즈로 전이시킨 사진을 나타낸다. FIGS. 3A through 3D illustrate photographs in which a monolayer of a gold nanoparticle having a size of 50 nm is transferred to PDMS substrates at various sizes using a capillary transfer technique in an embodiment of the present invention. FIG.
도 3a 내지 3d로부터 알 수 있듯이, 입구의 직경이 다른 모세관을 사용하였을 때 전이되는 면적을 달라짐을 확인할 수 있으며, 모세관을 사용하지 않은 비교예의 경우와 달리 단일층의 균열이 적고 상대적으로 균일하게 단일층이 전이되었다.As can be seen from FIGS. 3A to 3D, it can be seen that the area of the transition when the capillary having different diameters of the inlet is varied is different from that of the comparative example in which the capillary is not used, The layer was transferred.
도 4a 및 4b는 복수의 모세관 묶음을 사용하여 나노입자 단일층을 동시 다중 전이한 사진을 나타낸다. 도 4a 및 4b에서 보듯이 단순 패턴뿐만 아니라 모세관을 통해 전이 위치의 세밀한 조절이 가능하므로 'NRG'와 같은 복잡한 패터닝 역시 가능하다는 것을 보여 준다.Figures 4a and 4b show photographs of multiple nanoparticle monolayer simultaneous multiple transitions using a plurality of capillary packs. As shown in FIGS. 4A and 4B, it is possible to perform fine patterning such as 'NRG' because it is possible to precisely control the transition position through a capillary as well as a simple pattern.
도 5a 내지 5f는 본 발명 실시예에서, 여섯 가지 종류의 다양한 나노입자들에 대한 UV 데이터이다.Figures 5A-5F are UV data for six different types of nanoparticles in an embodiment of the invention.
도 6a 내지 6f는 본 발명의 실시예에 있어서, 다양한 모양과 조성의 나노입자 단일층을 모세관을 사용하여 유리기판에 전이시킨 결과를 주사전자현미경(Scanning electron microscope)를 통해 분석한 결과이다. FIGS. 6A to 6F show results obtained by transferring a monolayer of nanoparticles of various shapes and compositions to a glass substrate using a capillary tube, in an embodiment of the present invention, using a scanning electron microscope. FIG.
구체적으로, 모세관을 이용한 전이 기술을 이용하여 유리기판에 전이시킨 6가지 종류의 나노입자 단일층을 주사전자현미경(Scanning electron microscope)으로 관찰한 결과이다. 각각 크기가 50nm인 구형 금나노입자(도 6a), 크기가 17nm인 구형 금나노입자(도 6b), 크기가 50nm인 구형 금나노입자 표면에 실리카 껍질을 부착한 코어-껍질 구조의 금나노입자(도 6c), 금나노막대(도 6d), 크기가 45nm인 구형 은나노입자(도 6e), 그리고 크기가 30nm인 구형 은나노입자(도 6f) 단일층을 주사전자현미경으로 관찰한 결과이다. Specifically, the result of observing a single layer of six types of nanoparticles transferred onto a glass substrate using a capillary-based transfer technique with a scanning electron microscope. Spherical gold nanoparticles each having a size of 50 nm (FIG. 6A), spherical gold nanoparticles having a size of 17 nm (FIG. 6B), spherical gold nanoparticles having a size of 50 nm, and core- (FIG. 6C), gold nanorods (FIG. 6D), spherical silver nanoparticles of 45 nm in size (FIG. 6E) and spherical silver nanoparticles of 30 nm in size (FIG.
도 6에서 알 수 있듯이, 6가지 종류의 나노입자 모두에서 입자가 고밀도로 배열된 균일한 단일층 구조를 형성하고 있음을 확인할 수 있다.As can be seen from FIG. 6, it can be seen that a uniform single-layer structure in which particles are arranged at a high density is formed in all six types of nanoparticles.
도 7a 내지 7d는 본 발명의 실시예에 있어서, 부드러운 성질의 표면을 갖는 생체 기판인 나뭇잎의 표면에 나노입자 단일층을 전이한 결과를 나타낸다. 도 7a 및 7b가 각각 하나의 나뭇잎의 앞 뒷면이고, 도 7c 및 7d가 각각 다른 나뭇잎의 앞 뒷면이다.FIGS. 7A to 7D show the results of transferring a single layer of nanoparticles to the surface of a leaf, which is a living body substrate having a soft surface, according to an embodiment of the present invention. Figs. 7A and 7B are front and back surfaces of one leaf, respectively, and Figs. 7C and 7D are front and back surfaces of a different leaf, respectively.
도 7로부터 알 수 있듯이, 전이 과정에서 나뭇잎의 조직에 손상 없이 비파괴적이고 재현성 있는 전이가 가능함을 확인할 수 있다.As can be seen from FIG. 7, it can be seen that nondestructive and reproducible transfer is possible without damaging the leaf tissue during the transfer process.
도 8은 대장균이 고밀도로 코팅된 PDMS 기판에 금나노입자 단일층을 전이한 주사전자현미경 결과를 나타낸다.8 shows a scanning electron microscopic result of a gold nanoparticle monolayer transferred to a PDMS substrate coated with a high density of E. coli.
도 8로부터 알 수 있듯이, 금나노입자 단일층이 대장균 표면을 균일하게 코팅한 모습을 확인할 수 있으며, 이 과정에서 압력을 가하지 않으므로 대장균이 이탈하거나 구조가 파괴되지 않고 원통형을 잘 유지하고 있음을 확인할 수 있다.As can be seen from FIG. 8, it can be seen that a single layer of gold nanoparticles uniformly coated the surface of E. coli. In this process, since no pressure is applied, it is confirmed that the coliform is well maintained without escaping the E. coli or destroying the structure .
[검출 특성 분석][Analysis of detection characteristics]
표면증강라만산란법을Surface enhanced Raman scattering method 통해 미소유체장치 내부에서  Inside the microfluidic device through rhodaminerhodamine 6G를 검출하는 단계 Detecting 6G
리소그래피를 통해 미리 형성된 실리콘 몰드에 PDMS 전구체를 붓고 굳힌 후 떼어 낸 미소유체채널 내부에 모세관을 사용하여 금나노입자 단일층을 1mm직경으로 전이하였다.The PDMS precursor was poured and hardened in a preformed silicon mold through lithography, and a single layer of gold nanoparticles was transferred to a 1 mm diameter using a capillary tube inside the removed microfluidic channel.
도 9a 내지 9g에서 나타난 바와 같이, 다양한 너비와 구조의 채널 내부의 원하는 위치에 정확히 전이가 가능하였다.As shown in Figs. 9a to 9g, it was possible to precisely transfer to desired positions inside the channels of various widths and structures.
이후 채널에 1mM의 rhodamine 6G 수용액을 흘려보내면서 785nm 레이저를 3초간 조사하여 라만 신호를 측정하였다.Thereafter, a Raman signal was measured by irradiating 785 nm laser for 3 seconds while flowing 1 mM rhodamine 6G aqueous solution into the channel.
도 10에서와 같이 미소유체채널의 내부에서 rhodamine 6G의 라만 신호가 검출됨을 확인할 수 있었다. As shown in FIG. 10, it was confirmed that the Raman signal of rhodamine 6G was detected inside the microfluidic channel.
표면증강라만산란법을Surface enhanced Raman scattering method 통해 섬유질 의류 표면에서 벤조카인을 검출하는 단계 The step of detecting benzocaine on the surface of the fibrous garment
섬유질 구조를 띠고 있는 의류 표면에 불법 마약류인 코카인과 화학적 구조가 유사한 대용물인 벤조카인 용액(10μM)을 30μl 떨어뜨린 후 완전히 건조시키고, 모세관을 이용하여 크기가 50nm인 구형 금나노입자 단일층을 전이하였다.Benzocaine solution to the clothing surface tinged with fibrous structures illegal drugs of ***e and chemical structure is water similar substitutes (10 μ M) to 30 μ l of after dropping were completely dried, by using a capillary size 50nm spherical gold nanoparticles A single layer was transferred.
도 11의 사진에서와 같이, 표면이 거친 섬유질 구조를 갖는 의류 표면에도 직경이 1mm로 나노입자 단일층의 재현성 있는 전이가 가능함을 확인하였다.As shown in the photograph of FIG. 11, it was confirmed that reproducible transfer of a single layer of nanoparticles was possible with a diameter of 1 mm even on a garment surface having a rough fibrous structure.
도 12에서 나타난 바와 같이, 785nm 레이저를 조사함으로써 벤조카인의 라만 신호가 이 나노입자 단일층 영역에서만 선택적으로 나타남을 확인할 수 있었고, 나노입자가 없는 영역에서는 벤조카인의 신호가 나타나지 않았다.As shown in FIG. 12, by irradiating a 785 nm laser, it was confirmed that the Raman signal of the benzocaine selectively appeared only in the single layer region of the nanoparticles, and the signal of the benzocaine did not appear in the region without the nanoparticles.
표면증강라만산란법을 통해 식품 표면에서 유해 물질을 검출하는 단계Detecting harmful substances on food surface through surface enhancement Raman scattering method
표면 곡률과 거칠기가 큰 쌀알과 오렌지 껍질 표면에 상용 시판되는 농약(렐단) 수용액을 30μl 떨어뜨린 후 완전히 건조시키고, 모세관을 이용하여 크기가 50nm인 구형 금나노입자 단일층을 전이하였다.The surface curvature and pesticide (reldan) aqueous solution in which roughness is commercially available on a large grain of rice and orange peel surface 30 μ l was then dropped completely dried, by using a capillary transfer a spherical gold nanoparticle monolayers, the size of 50nm.
도 13의 사진에서와 같이, 크기가 작고 곡률이 큰 쌀알 표면에 직경이 1mm인 나노입자 단일층이 전이됨을 확인할 수 있었다.As shown in the photograph of FIG. 13, it was confirmed that a single layer of nanoparticles having a diameter of 1 mm was transferred to the surface of the rice grain having a small size and a large curvature.
도 14에서의 그래프는 쌀알 표면에서 농약 성분(클로르피리포스-메틸)의 라만 신호가 나노입자 단일층 영역에서만 선택적으로 나타남을 보여 주며, 검출 하한은 10μM로써 본 농약의 사용 권장 농도인 0.7~1.4mM에 비해 훨씬 적은 양의 농약 성분 역시도 민감하게 검출이 가능함을 보여 준다.The graph of the 14 pesticides in a grain of rice surface shows the selective appears only in Raman signal nanoparticle monolayer region (chlorpyrifos-methyl), the detection lower limit of the recommended use concentration of the pesticide by 10 μ M 0.7 Much lower amounts of pesticides than 1.4mM are also detectable.
도 15에는 쌀알과 마찬가지로 곡률이 크고 표면이 거친 오렌지 껍질 표면에 전이된 나노입자 단일층의 사진이 나타나 있다.FIG. 15 shows a photograph of a single layer of nanoparticles transferred to the surface of a rough orange rind with a large curvature like rice grains.
도 16에는 785nm 레이저를 조사했을 때 오렌지 껍질에서 나타나는 라만 신호가 표기되어 있으며 역시 쌀알의 경우와 마찬가지로 농약 성분의 라만 신호가 나노입자 단일층 영역에서만 나타났고, 검출 하한은 1μM로써 본 농약의 사용 권장 농도인 0.7~1.4mM에 비해 훨씬 적은 양의 농약 성분 역시도 민감하게 검출이 가능함을 보여 준다.16 there is indicated the Raman signal that appears in orange peel when investigating 785nm laser has also appeared only Raman signal nanoparticle monolayer area of agricultural chemicals, as in the case of a grain of rice, a detection lower limit of the pesticide as 1 μ M The pesticide content, which is much lower than the recommended concentration of 0.7 ~ 1.4mM, can also be detected sensitively.
위조 지폐 방지를 위해 지폐 표면에 화학적 코드를 삽입하는 단계Step of inserting a chemical code on the surface of the bill to prevent forgery
도 17의 사진에서 나타난 바와 같이, 미국 100달러 지폐 표면의 여러 위치에 크기가 50nm인 구형 금나노입자 단일층을 직경 1mm 면적으로 전이한 후, 785nm 레이저를 3초간 조사하여 표면증강라만산란 신호를 관찰하였다.As shown in the photograph of FIG. 17, a spherical gold nanoparticle monolayer having a size of 50 nm was transferred to a 1 mm diameter area at various positions on the surface of a US $ 100 bill, and then irradiated with a 785 nm laser for 3 seconds to obtain a surface enhanced Raman scattering signal Respectively.
도 18a 내지 18j는 본 발명의 실시예에서 100달러 지폐에 전이된 모든 금나노입자 단일층 위치에서 250cm-1 근처의 강한 피크가 공통적으로 나타나는 것을 보여 주는 라만 신호 결과이다. Figures 18A-18J are Raman signal results showing that strong peaks near 250 cm < -1 > are common in all gold nanoparticle monolayer locations transferred to a $ 100 bill in an embodiment of the present invention.
도 18a 내지 18j는 100달러 지폐의 여러 위치에 전이된 50nm 크기의 구형 금나노입자 단일층에서 금나노입자 고유의 광학적 신호가 나타나며, 이를 통해 잠재적인 위조 지폐 방지 기술이 가능함을 보여 준다. Figures 18a through 18j illustrate the potential of counterfeit banknote prevention technology through the appearance of gold nanoparticle intrinsic optical signals in a single layer of spherical gold nanoparticles 50 nm in size transferred at various locations in a $ 100 bill.
이러한 신호는 금나노입자의 Au-O 결합에 의한 신호로써, 모세관을 이용해 지폐에 전이한 나노입자 단일층을 위조가 불가능한 고유의 화학적 신호를 갖는 소면적 코드로써 활용할 수 있는 가능성을 제시한다.This signal is a signal due to the Au-O bond of gold nanoparticles, suggesting the possibility of utilizing a single layer of nanoparticles transferred to a paper currency with a capillary as a small area code with a unique chemical signal that can not be counterfeited.
이상에서와 같이, 본 발명의 예시적인 구현예들의 모세관을 이용한 나노입자 단일층 전이 방법의 경우, 기판의 표면 성질과 구조에 관계없이 재현성 있는 전이가 가능하며, 나노입자의 종류, 전이 위치, 전이 면적 등에 있어서 높은 확장성을 갖는다는 장점이 있다. As described above, in the capillary-based nanoparticle single layer transfer method of the exemplary embodiments of the present invention, reproducible transfer is possible regardless of the surface property and structure of the substrate, and the kind, transition position, It is advantageous in that it has high expandability in area and the like.
또한, 단일층 나노입자 단일층을 광학 센서의 탐침으로써 활용하는 경우에 일반적인 레이저 조사 면적의 직경이 마이크로미터 수준이므로, 기존의 대면적 전이 방법에서는 레이저 조사 면적 대비 나노입자 개수의 효율이 낮다는 단점이 있었다. In addition, when a single-layer nano-particle single layer is used as a probe of an optical sensor, since the diameter of a general laser irradiation area is in a micrometer range, the conventional large-area transfer method has a disadvantage that the efficiency of the number of nanoparticles .
반면, 본 발명의 예시적인 구현예들에 의하면, 레이저 조사 면적과 비슷한 수준인 직경 1mm 이하의 면적으로 나노입자 단일층을 전이할 수 있으므로 레이저 조사 면적 대비 나노입자 개수의 효율이 크게 향상될 수 있다. On the other hand, according to exemplary embodiments of the present invention, since the single layer of nanoparticles can be transferred to an area of 1 mm or less in diameter, which is similar to the laser irradiation area, the efficiency of the number of nanoparticles can be greatly improved .
또한 나노입자의 조성과 모양에 관계없이 전이가 가능하다. 즉, 예컨대 도 6에서 보인 바와 같이, 크기가 다른 구형 금나노입자를 비롯해서 모양이 다른 금나노막대 뿐만 아니라 표면에 실리카 껍질을 부착한 코어-쉘 구조 나노입자, 조성이 다른 은나노입자 등 역시도 효과적으로 전이가 가능하다. Transition is possible regardless of the composition and shape of the nanoparticles. For example, as shown in FIG. 6, not only gold nanoparticles having different shapes but also spherical gold nanoparticles of different sizes, core-shell structure nanoparticles having a silica shell on the surface, and silver nanoparticles having different compositions, Is possible.
아울러, 전이하고자 하는 고체 기판의 성분과 모양에 관계없이 전이가 가능하다는 장점이 있는데, 예컨대 친수성과 소수성 표면성질을 갖는 대표적인 물질인 유리와 PDMS기판에 모두 나노입자가 효과적으로 전이되었으며, 전이 면적이 작기 때문에 거칠거나 곡률이 큰 표면에도 전이가 가능함을 알 수 있었다.In addition, there is an advantage in that transition can be made regardless of the composition and shape of the solid substrate to be transferred. For example, nanoparticles are efficiently transferred to glass and PDMS substrates, which are typical materials having hydrophilic property and hydrophobic surface property, Therefore, it was found that transition can be made to a rough or curved surface.
추가적으로 본 기술은 기판 표면과 액체 계면 사이의 접촉에 의해 나노입자 단일층을 전이하므로, 압력에 의해서 구조가 파괴될 가능성이 있는 부드러운 표면의 기판이나 섬세한 조작이 요구되는 기판에도 비파괴적인 전이가 가능하다는 장점이 있다.In addition, this technology transitions a single layer of nanoparticles by contact between the substrate surface and the liquid interface, allowing nondestructive transfer to substrates that are susceptible to destruction by pressure or to substrates that require delicate manipulation There are advantages.
이 외에도 기존 나노미터 수준의 리소그래피 기법이나 전기화학적 증착 방법, 혹은 랭뮤어-블로젯 기법과 비교하여 특별한 장비나 시험자의 높은 전문성을 요구하지 않고, 전이 과정이 간단하다는 장점이 있다. In addition, there is an advantage in that the transition process is simple, without requiring special equipment or high expertise of the tester compared with existing nanometer-level lithography, electrochemical deposition, or Langmuir-BlowJet techniques.
또한 모세관의 묶음을 사용함으로써 간단한 형태의 패터닝부터 보다 복잡한 형태의 패터닝도 가능하며, 벤치탑 장비를 통해 자동화 공정 역시도 구현할 수 있을 것으로 기대된다.In addition, by using a bundle of capillaries, it is possible to perform patterning from a simple shape to a more complicated shape, and it is expected that an automated process can be implemented through a bench top equipment.
본 발명의 예시적인 구현예들에 의하면, 본 모세관을 이용한 나노입자 단일층 전이 기술을 통해 섬유질 의류, 각종 식품, 세포, 지폐 등의 종이와 같은 다양한 고체 표면에 나노입자 단일층을 전이함으로써 식품 안정성 검사나, 불법 마약류 현장 고속 검사뿐만 아니라, 위조지폐 방지 기술로써 잠재적으로 활용할 수 있음을 확인할 수 있었다. 이는 빠르고 민감한 분자 검출이 필요한 사회 각 분야에서 구조가 정밀하게 제어된 나노입자의 접근성을 크게 확장시킬 수 있을 것으로 예상된다.According to exemplary embodiments of the present invention, nanoparticle single layer transfer technology using the present capillary can transfer a single layer of nanoparticles to various solid surfaces such as paper, such as fiber clothes, various foods, cells, paper money, etc., It can be confirmed that this method can be used not only for the inspection and the high speed inspection of the illegal drug field but also for the counterfeiting prevention technology. This is expected to greatly expand the accessibility of nanoparticles with precisely controlled structures in each field of society that requires fast and sensitive molecular detection.
본 발명의 예시적인 구현예들에 의하면, 전문적인 장비 없이 간단한 방법으로 상대적으로 균일하게 나노입자 단일층을 고체 기판의 표면 성질과 구조에 관계 없이 전이할 수 있고, 이에 따라 실험실 환경에서만 제한적으로 구현되던 기존 나노입자 단일층 전이 기술을 생체의학, 법의학, 식약품 등 다양한 분야의 현장 검출로 크게 확장할 수 있다.According to exemplary embodiments of the present invention, a single layer of nanoparticles can be relatively uniformly transferred in a simple manner without professional equipment, regardless of the surface properties and structure of the solid substrate, and thus limited in the laboratory environment Existing nanoparticle monolayer transfer technology can be greatly extended to field detection in various fields such as biomedicine, forensics, and pharmaceuticals.

Claims (31)

  1. 나노 입자 단일층 전이 방법으로서, As a nanoparticle single layer transfer method,
    모세관을 이용하여 나노 입자 단일층을 분리하고 기판에 전이하는 것을 특징으로 하는 나노 입자 단일층 전이 방법.Wherein the nanoparticle monolayer is separated using a capillary and transferred to a substrate.
  2. 제 1 항에 있어서,The method according to claim 1,
    액체 기체 간 계면에 나노입자 단일층을 형성하는 단계, Forming a monolayer of nanoparticles at the interface between the liquid gas,
    모세관을 액체 기체 간 계면에 접촉시켜 상기 나노입자 단일층을 모세관 내로 분리하는 단계; 및 Contacting the capillary to an interface between the liquid gas to separate the monolayer of nanoparticles into a capillary; And
    모세관 내의 나노입자 단일층을 기판에 전이하는 단계;를 포함하는 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.And transferring the monolayer of nanoparticles in the capillary to the substrate.
  3. 제 2 항에 있어서, 3. The method of claim 2,
    액체 액체 간 계면에 나노입자 자기 조립을 통하여 나노입자 단일층을 형성한 후, 상부 액체를 증발시켜 액체 기체 간 계면에 나노입자 단일층을 형성하는 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the nanoparticle monolayer is formed by self-assembly of the nanoparticles at the interface between the liquid and the liquid, and then the upper liquid is evaporated to form a monolayer of nanoparticles at the interface between the liquid gases. .
  4. 제 2 항에 있어서, 3. The method of claim 2,
    모세관을 상기 계면에 접촉시켜 나노입자 단일층을 모세관 내로 수용한 후,A capillary is brought into contact with the interface to accommodate a single layer of nanoparticles into the capillary,
    모세관을 뒤집고 모세관에 기판을 접촉시켜 모세관 내의 나노입자 단일층을 기판으로 전이하는 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the capillary is inverted and the substrate is brought into contact with the capillary to transfer a single layer of nanoparticles in the capillary to the substrate.
  5. 제 4 항에 있어서, 5. The method of claim 4,
    나노입자 단일층과 기판 사이에 반데르발스 힘 또는 정전기적 인력이 작용하는 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein a van der Waals force or an electrostatic attractive force acts between the nanoparticle monolayer and the substrate.
  6. 제 2 항에 있어서, 3. The method of claim 2,
    물과 공기 간 계면에 나노입자 단일층을 형성하는 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein a nanoparticle monolayer is formed at the interface between water and air.
  7. 제 2 항에 있어서, 3. The method of claim 2,
    전이되는 나노입자 단일층 면적은 4mm2 이하인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the single layer area of the nanoparticles to be transferred is less than or equal to 4 mm < 2 & gt ;.
  8. 제 2 항에 있어서, 3. The method of claim 2,
    전이되는 나노입자는 직경이 5 ~ 200nm인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the nanoparticles to be transferred have a diameter of 5 to 200 nm.
  9. 제 2 항에 있어서, 3. The method of claim 2,
    전이되는 나노입자는 금속, 무기물, 또는 고분자로부터 선택되는 하나 이상으로 이루어지는 나노입자인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the nanoparticles to be transferred are nanoparticles composed of at least one selected from a metal, an inorganic material, and a polymer.
  10. 제 9 항에 있어서, 10. The method of claim 9,
    상기 금속은 Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni, Fe로 이루어지는 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the metal is at least one selected from the group consisting of Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni and Fe.
  11. 제 9 항에 있어서, 10. The method of claim 9,
    상기 무기물은 실리카, 양자점(quantum dot), 란타나이드, 산화철로 이루어지는 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the inorganic material is at least one selected from the group consisting of silica, a quantum dot, lanthanide, and iron oxide.
  12. 제 9 항에 있어서,10. The method of claim 9,
    상기 고분자는 폴리스티렌 또는 폴리에틸렌글리콜 중 하나 이상인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the polymer is at least one of polystyrene or polyethylene glycol.
  13. 제 2 항에 있어서,3. The method of claim 2,
    전이되는 나노입자는 구, 막대, 타원체, 덴드리머, 사면체, 육면체, 팔면체, 2차원 사각형, 2차원 삼각형 형상으로 이루어진 그룹에서 선택되는 하나 이상의 형상을 가지는 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the nanoparticles to be transferred have at least one shape selected from the group consisting of spheres, rods, ellipsoids, dendrimers, tetrahedrons, hexahedrons, octahedrons, two-dimensional squares, Way.
  14. 제 2 항에 있어서,3. The method of claim 2,
    상기 기판은 친수성 또는 소수성 기판인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the substrate is a hydrophilic or hydrophobic substrate.
  15. 제 2 항에 있어서,3. The method of claim 2,
    상기 기판은 고분자, 유리, ITO, 실리콘, 금속, 종이 및 세포로 이루어진 그룹에서 선택되는 하나 이상의 재질로 된 기판인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the substrate is a substrate of one or more materials selected from the group consisting of polymer, glass, ITO, silicon, metal, paper, and cell.
  16. 제 15 항에 있어서,16. The method of claim 15,
    상기 고분자는 PDMS, PMMA, hydrogel로 이루어지는 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the polymer is one or more selected from the group consisting of PDMS, PMMA and hydrogel.
  17. 제 15 항에 있어서,16. The method of claim 15,
    상기 금속은 Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni 및 Fe로 이루어지는 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the metal is at least one selected from the group consisting of Au, Ag, Pd, Pt, Al, Cu, Co, Cr, Mn, Ni and Fe.
  18. 제 2 항에 있어서,3. The method of claim 2,
    상기 기판은 곡면 기판인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the substrate is a curved substrate. ≪ RTI ID = 0.0 > 21. < / RTI >
  19. 제 2 항에 있어서,3. The method of claim 2,
    상기 기판은 미소유체채널인 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein the substrate is a microfluidic channel. ≪ RTI ID = 0.0 > 21. < / RTI >
  20. 제 2 항에 있어서,3. The method of claim 2,
    복수개의 모세관을 사용하여 동일 기판에 나노입자 단일층 복수 개를 동시에 전이하는 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 방법.Wherein a plurality of single layers of nanoparticles are simultaneously transferred to the same substrate using a plurality of capillaries.
  21. 검출 대상 물질을 검출하는 방법으로서, A method for detecting a substance to be detected,
    모세관을 이용하여 나노 입자 단일층을 분리하고 검출 대상 물질이 위치하는 기판에 전이하는 단계; 및Separating a monolayer of nanoparticles using a capillary and transferring the nanoparticle to a substrate on which the substance to be detected is located; And
    상기 전이된 나노 입자 단일층의 라만 신호로부터 기판의 검출 대상 물질을 검출하는 단계;를 포함하는 것을 특징으로 하는 검출 대상 물질의 검출 방법.And detecting a substance to be detected on the substrate from the Raman signal of the single layer of the nanoparticles transferred.
  22. 제 21 항에 있어서,22. The method of claim 21,
    상기 전이 단계는, 액체 기체 간 계면에 나노입자 단일층을 형성하는 단계, Wherein the transfer step comprises the steps of forming a monolayer of nanoparticles at the interface between the liquid gases,
    모세관을 액체 기체 간 계면에 접촉시켜 상기 나노입자 단일층을 모세관 내로 분리하는 단계; 및Contacting the capillary to an interface between the liquid gas to separate the monolayer of nanoparticles into a capillary; And
    모세관 내의 나노입자 단일층을 기판에 전이하는 단계;를 포함하는 것을 특징으로 하는 검출 대상 물질의 검출 방법.And transferring the monolayer of nanoparticles in the capillary to the substrate.
  23. 제 21 항에 있어서,22. The method of claim 21,
    상기 기판은 의류 표면, 식품 표면, 지폐 표면 또는 다공성 필터 표면인 것을 특징으로 하는 검출 대상 물질의 검출 방법.Wherein the substrate is a garment surface, a food surface, a banknote surface, or a porous filter surface.
  24. 제 23 항에 있어서,24. The method of claim 23,
    상기 방법은 의류 표면 또는 지폐 표면의 약물 또는 폭발물을 검출하는 것을 특징으로 하는 검출 대상 물질의 검출 방법.Wherein the method comprises detecting a drug or an explosive on the surface of a garment or a bill surface.
  25. 제 23 항에 있어서,24. The method of claim 23,
    상기 방법은 식품 표면의 유해 물질을 검출하는 것을 특징으로 하는 검출 대상 물질의 검출 방법.A method for detecting a substance to be detected, the method comprising detecting harmful substances on the surface of a food.
  26. 제 21 항에 있어서,22. The method of claim 21,
    상기 기판은 세포 표면인 것을 특징으로 하는 검출 대상 물질의 검출 방법.Wherein the substrate is a cell surface.
  27. 지폐 위조 여부 판별 방법으로서, As a method for discriminating whether or not a banknote is forged,
    모세관을 이용하여 나노 입자 단일층을 분리하고 모세관 내의 나노입자 단일층을 진본 지폐에 한군데 이상 전이하는 단계;를 포함하는 것이고,Separating the monolayer of nanoparticles using a capillary and transferring a single layer of nanoparticles in the capillary to at least one banknote;
    상기 전이된 나노 입자 단일층의 라만 신호가 측정되는 경우 지폐가 진본인 것으로 판별하는 것을 특징으로 하는 지폐 위조 여부 판별 방법.Wherein when the Raman signal of the single layer of the transferred nanoparticles is measured, it is determined that the banknote is genuine.
  28. 미소유체채널 제조 방법으로서, A method of manufacturing a microfluidic channel,
    모세관을 이용하여 나노 입자 단일층을 분리하고 미소유체채널에 전이하는 단계;를 포함하는 것을 특징으로 하는 미소유체채널 제조 방법.Separating a single layer of nanoparticles using a capillary and transitioning to a microfluidic channel.
  29. 나노입자 단일층 전이 장치로서, As a nanoparticle single layer transfer device,
    나노 입자 단일층을 분리한 후 전이하는 모세관을 포함하는 것을 특징으로 하는 모세관을 이용한 나노 입자 단일층 전이 장치.Wherein the nanoparticle monolayer comprises a capillary that migrates after separating the monolayer of nanoparticles.
  30. 제 29 항에 있어서,30. The method of claim 29,
    상기 장치는, 액체 기체 간 계면에 나노입자 단일층이 형성되는 나노입자 단일층 형성부; 및 The apparatus comprises: a nanoparticle monolayer forming portion in which a monolayer of nanoparticles is formed at an interface between liquid gasses; And
    상기 단일층 형성부에 제공되는 상기 모세관을 포함하는 것을 특징으로 하는 모세관을 이용한 나노입자 단일층 전이 장치.And the capillary provided in the single layer forming unit.
  31. 검출 대상 물질의 검출 장치로서,An apparatus for detecting a substance to be detected,
    나노 입자 단일층을 분리한 후 전이하는 모세관; 및A capillary that transitions after separating a single layer of nanoparticles; And
    상기 전이된 나노 입자 단일층에 레이저를 조사하고 나노 입자 단일층의 라만 신호로부터 검출 대상 물질을 검출하는 검출부;를 포함하는 것을 특징으로 하는 검출 대상 물질의 검출 장치.And a detector for irradiating a laser beam onto the single layer of the nanoparticles and detecting a detection target material from the Raman signal of the single layer of nanoparticles.
PCT/KR2018/012422 2017-10-20 2018-10-19 Method and device for transferring nanoparticle monolayer by using capillary tube WO2019078676A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/757,369 US11499893B2 (en) 2017-10-20 2018-10-19 Method and device for transferring nanoparticle monolayer by using capillary tube

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0136396 2017-10-20
KR20170136396 2017-10-20
KR10-2018-0116757 2018-10-01
KR1020180116757A KR102086740B1 (en) 2017-10-20 2018-10-01 Method and Apparatus for Transfer of Nanoparticle Monolayer Using Capillary Tube

Publications (2)

Publication Number Publication Date
WO2019078676A2 true WO2019078676A2 (en) 2019-04-25
WO2019078676A3 WO2019078676A3 (en) 2019-08-08

Family

ID=66173828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012422 WO2019078676A2 (en) 2017-10-20 2018-10-19 Method and device for transferring nanoparticle monolayer by using capillary tube

Country Status (1)

Country Link
WO (1) WO2019078676A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540353A (en) * 2021-06-21 2021-10-22 复旦大学 Oriented gas-liquid interface polymer semiconductor film and construction method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9044781B2 (en) * 2012-12-04 2015-06-02 Fei Company Microfluidics delivery systems
WO2015166416A1 (en) * 2014-04-29 2015-11-05 Sol Voltaics Ab Methods of capturing and aligning an assembly of nanowires
KR101683758B1 (en) * 2015-03-18 2016-12-07 포항공과대학교 산학협력단 Suction nozzle
KR101765387B1 (en) * 2015-06-24 2017-08-23 서강대학교산학협력단 Nanogap structure having ultrasmall void between metal cores and molecular sensing apparatus and method using the same, and method for preparing the nanogap structure by selective etching

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540353A (en) * 2021-06-21 2021-10-22 复旦大学 Oriented gas-liquid interface polymer semiconductor film and construction method and application thereof
CN113540353B (en) * 2021-06-21 2022-10-11 复旦大学 Oriented gas-liquid interface polymer semiconductor film and construction method and application thereof

Also Published As

Publication number Publication date
WO2019078676A3 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
Alyami et al. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants
CN101263241B (en) Water-soluble polymer substrate having metallic nanoparticle coating
US6139831A (en) Apparatus and method for immobilizing molecules onto a substrate
US7999025B2 (en) Asymmetrically-functionalized nanoparticles organized on one-dimensional chains
WO2017099313A1 (en) Surface-enhanced raman scattering (sers) nanoparticles, method for preparing same, and applications thereof
CN1127041C (en) Process for producing multilayered microparticles
WO1999036576A1 (en) Gel pad arrays and methods and systems for making them
WO2019078676A2 (en) Method and device for transferring nanoparticle monolayer by using capillary tube
US9995719B2 (en) Methods and devices for selective deposition of materials including mechanical abrasion
Hamze et al. Single-cell analysis in situ in a Bacillus subtilis swarming community identifies distinct spatially separated subpopulations differentially expressing hag (flagellin), including specialized swarmers
WO2020017797A1 (en) Surface-enhanced raman scattering patch and attachable sensor using same
US20110086766A1 (en) Chemical and Biological Detection Arrays
Pandey et al. Multifarious applications of atomic force microscopy in forensic science investigations
Diaz et al. High-throughput fabrication of anti-counterfeiting colloid-based photoluminescent microtags using electrical nanoimprint lithography
Lee et al. Scanning surface potential microscopy of spore adhesion on surfaces
Gessner et al. Raman spectroscopy investigation of biological materials by use of etched and silver coated glass fiber tips
Lee et al. Fabrication of protein microarrays for immunoassay using the electrospray deposition (ESD) method
KR102086740B1 (en) Method and Apparatus for Transfer of Nanoparticle Monolayer Using Capillary Tube
Tsukagoshi et al. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors
KR101759894B1 (en) Lab-on-a-chip and a method of fabricating thereof
Roskov et al. Preparation of combinatorial arrays of polymer thin films for transmission electron microscopy analysis
Koyani et al. Sensors for the detection of explosives and gunshots residues
Shiveshwarkar et al. Investigating the Characteristics and Responses of Diacetylene Based Materials as Spray-On Colorimetric Sensors
JP2002519633A (en) Sensor based on polymer / plasticizer
TW202106869A (en) Dielectrophoretic immobilization of a particle in proximity to a cavity for interfacing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867920

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867920

Country of ref document: EP

Kind code of ref document: A2