WO2019078298A1 - Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg, and laminate or copper-clad laminate - Google Patents

Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg, and laminate or copper-clad laminate Download PDF

Info

Publication number
WO2019078298A1
WO2019078298A1 PCT/JP2018/038847 JP2018038847W WO2019078298A1 WO 2019078298 A1 WO2019078298 A1 WO 2019078298A1 JP 2018038847 W JP2018038847 W JP 2018038847W WO 2019078298 A1 WO2019078298 A1 WO 2019078298A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzoxazine resin
benzoxazine
formula
resin composition
cured product
Prior art date
Application number
PCT/JP2018/038847
Other languages
French (fr)
Japanese (ja)
Inventor
一貴 松浦
政隆 中西
窪木 健一
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201880064592.XA priority Critical patent/CN111164121A/en
Priority to JP2019549340A priority patent/JPWO2019078298A1/en
Publication of WO2019078298A1 publication Critical patent/WO2019078298A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00

Definitions

  • the present invention relates to a benzoxazine resin, a benzoxazine resin composition, a cured product of the same, a varnish, a prepreg and a laminate or a copper-clad laminate. Specifically, it can be used in various applications such as aerospace materials, machine tool member applications, electric and electronic materials, and is particularly useful in fiber reinforced composite materials applications where heat resistance is required, and sealing materials for electric and electronic parts, etc. Benzoxazine resin and its cured product.
  • thermosetting resins such as glass cloth-epoxy resin are conventionally used for printed wiring boards for electric and electronic devices, with a glass cloth as a base material. These thermosetting resins exhibit characteristics such as high heat resistance and dimensional stability due to a unique crosslinked structure, and thus are widely used in fields requiring high reliability of electronic parts and the like.
  • heat resistance glass transition temperature and thermal decomposition temperature
  • mechanical strength of resins by thinning of substrates The demand is growing.
  • CFRP Carbon fiber reinforced composite materials
  • Patent Document 1 discloses a reaction of bisphenol F (or bisphenol A), aniline and formalin.
  • Patent Document 2 discloses a thermosetting resin composition containing a benzoxazine resin, and describes that it has good moldability, low hygroscopicity, and excellent curability and mechanical properties. There is.
  • none of the above-mentioned problems can be sufficiently satisfied with the above-mentioned problems in applications such as aerospace materials, machine tool member applications, and electric and electronic materials.
  • the present invention has been made in view of such a situation, and a benzoxazine resin and benzoxazine resin composition capable of obtaining a cured product excellent in heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics (low water absorption). It is an object of the present invention to provide an article, a cured product thereof, a varnish, a prepreg, and a laminate or a copper-clad laminate.
  • the present inventors find that the cured product is excellent in heat resistance, thermal decomposition characteristics, dielectric characteristics and water absorption characteristics by using a benzoxazine resin having a specific structure, and completes the present invention. It came to
  • n is an average value of the number of repetitions and represents a real number of 1 to 10.
  • R 1 to R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group If .R 3 ⁇ R 7 represent either a group is present in plural, each of R 3 ⁇ R 7 is optionally being the same or different .
  • R 9, R 10 each independently represent a hydrogen atom Or an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group, and when a plurality of R 9 s and R 10 s are present, each R 9 s and R 10 s may be identical to each other The dotted line may indicate that a benzene ring may be formed.
  • Equation (2), n and R 1 ⁇ R 8 are as defined n and R 1 ⁇ R 8 in the formula (1).
  • R 9 and R 10 have the same meaning as R 9 and R 10 in the formula (1).
  • the dotted line represents that a benzene ring may be formed.
  • a benzoxazine resin composition containing the benzoxazine resin according to any one of the above items [1] to [3] and an epoxy resin [5] A benzoxazine resin composition containing the benzoxazine resin according to any one of the preceding items [1] to [3] or the benzoxazine resin composition according to the preceding item [4] and a cyanate ester resin, [6] A cured product obtained by curing the benzoxazine resin according to any one of the preceding items [1] to [3] or the benzoxazine resin composition according to the preceding item [4] or [5].
  • a laminated board or copper clad laminated board obtained by using the prepreg according to the preceding [8] It is about
  • the benzoxazine resin of the present invention is excellent in heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics in its cured product, and therefore is useful for fiber reinforced composite material applications, sealing materials for electric and electronic parts, and the like.
  • Example 1 shows the results of 1 H-NMR analysis of the benzoxazine resin obtained in Example 1.
  • Example 1 shows the results of 1 H-NMR analysis of the benzoxazine resin obtained in Example 2.
  • the result of MDSC measurement of the resin composition of Examples 5-9 is shown.
  • the benzoxazine resin of the present invention has a structure represented by the following formula (1).
  • n is an average value of the number of repetitions, and represents a real number of 1 to 10.
  • R 1 to R 8 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group.
  • R 9 and R 10 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group.
  • each R 9 s and R 10 s may be the same as or different from each other.
  • the dotted line represents that a benzene ring may be formed.
  • the alkyl group having 1 to 8 carbon atoms represented by R 1 to R 8 and R 9 and R 10 in the formula (1) is not limited to any of linear, branched or cyclic alkyl group, and specific examples thereof Examples include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, sec-butyl, n-pentyl, n-hexyl, n -Heptyl group, cyclopentyl group, cyclohexyl group etc. may be mentioned, and it is preferable that it is a linear or branched alkyl group having 1 to 8 carbon atoms, and is a linear or branched alkyl group having 1 to 4 carbon atoms It is more preferable that
  • the aryl group represented by R 1 to R 8 and R 9 and R 10 in the formula (1) is a residue obtained by removing one hydrogen atom from an aromatic hydrocarbon, and specific examples thereof include a phenyl group and biphenyl. Groups, naphthyl groups, anthryl groups, phenanthryl groups, pyrenyl groups and benzopyrenyl groups.
  • the alkoxy group represented by R 9 and R 10 in the formula (1) is a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a tert-butoxy group, sec- Examples thereof include butoxy, n-pentoxy, n-hexyloxy, n-heptyloxy, cyclopentoxy and cyclohexyloxy groups, etc., and it is a linear or branched alkoxy group having 1 to 8 carbon atoms It is preferably, and more preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • R 1 to R 8 in the formula (1) are preferably each independently a hydrogen atom, a halogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, each independently having a hydrogen atom or a bromine atom. Or a linear alkyl group having 1 to 4 carbon atoms is more preferable, and a hydrogen atom is even more preferable.
  • R 9 and R 10 in the formula (1) each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, an allyl group, a linear or branched chain having 1 to 4 carbon atoms It is preferably a chain alkoxy group, more preferably a hydrogen atom, a methyl group, a phenyl group, an allyl group or a methoxy group, and still more preferably a hydrogen atom.
  • n represents the average value of the number of repetitions, and is usually a real number of 1 to 10, preferably a real number of 1 to 5.
  • the value of n can be calculated from the value of weight average molecular weight obtained by measurement of gel permeation chromatography (GPC). Specifically, it is calculated by the following formula.
  • GPC gel permeation chromatography
  • benzoxazine resin represented by the formula (1) one having a bonding position of two methylene groups bonded to the biphenyl structure in the formula (1) is 4,4 ′, that is, in the following formula (4) More preferred are the benzoxazine resins represented.
  • N and R 1 to R 10 in the formula (4) have the same meanings as n and R 1 to R 10 in the formula (1).
  • the dotted line represents that a benzene ring may be formed.
  • the benzoxazine resin represented by the formula (1) of the present invention is, for example, an aniline resin represented by the formula (2), a phenol compound represented by the formula (3), and an aldehyde compound as raw materials. It can be synthesized by a known method represented by the following reaction formula. Although formaldehyde is described as an example of the aldehyde compound in the reaction formula, paraformaldehyde or benzaldehyde may be used.
  • N and R 1 to R 8 in the formula (2) have the same meanings as n and R 1 to R 8 in the formula (1), and the preferred range is also the same.
  • R 9 and R 10 in the formula (3) have the same meanings as R 9 and R 10 in the formula (1), and the preferred range is also the same.
  • the dotted line represents that a benzene ring may be formed.
  • the feed ratio of the phenolic compound is preferably 0.5 to 1.2 moles, and more preferably 0.75 to 1.1 moles with respect to 1 mole of the amino group of the aniline resin.
  • the preparation ratio of the aldehyde compound is preferably 1.7 to 4.3 moles, and more preferably 1.8 to 4.2 moles relative to 1 mole of the phenol compound.
  • the reaction may be carried out in a solvent or without solvent.
  • the solvent that can be used for the reaction is not particularly limited as long as it can dissolve the starting compound, and for example, methyl ethyl ketone, toluene, 1-propanol, 2-propanol, 1-butanol, 1,4-dioxane, ethylene glycol monomethyl ether, ethylene Examples thereof include glycol monoethyl ether and ethylene glycol monobutyl ether. These solvents may be used alone or in combination.
  • the reaction temperature is preferably 60 ° C. or higher.
  • the reaction time is not particularly limited, and may be selected while confirming the progress of the reaction by confirming the residual amount of the raw material used for the reaction.
  • the benzoxazine resin can be obtained by removing the condensed water generated during the synthesis, the remaining raw materials, the solvent, etc. under reduced pressure after completion of the synthesis, but since it has self-polymerizability, it is at 160 ° C. or less Vacuum distillation is preferred.
  • the benzoxazine resin used in the present invention may be one having a melting point or a softening point. When it has a melting point, 200 ° C. or less is preferable, and when it has a softening point, it is preferable that it is 150 ° C. or less. If the melting point or the softening point is too high, the possibility of gelation increases during mixing, which is not preferable.
  • n in the structural formula of the specific example has the same meaning as n in formula (1).
  • the benzoxazine resin of the present invention has self-curing (meaning that it can be ring-opening polymerized (cured) without other components such as a curing agent and a curing catalyst). That is, in addition to the fact that a curing catalyst and the like are not required at the time of curing, no by-products are generated in the polymerization process, and a polymer (cured product) with high dimensional stability without voids can be obtained.
  • the conditions for the self polymerization (curing) are preferably 200 ° C. or more and several tens minutes to several hours or so.
  • the benzoxazine resin of the present invention can be blended with a curing catalyst, a flame retardant, a filler, an additive, etc. as needed to make a benzoxazine resin composition.
  • the benzoxazine resin of the present invention can lower the curing temperature by blending with a curing catalyst.
  • the curing catalyst include metal complex catalysts, inorganic acids, inorganic bases, organic acids and organic bases, organic peroxides, azo compounds and the like.
  • metal complex catalyst which is a specific example of a curing catalyst, generally known ones can be used.
  • metal naphthenic acid salts such as cobalt, zinc, chromium, copper, iron, manganese, nickel, titanium, acetylacetonate, salts of derivatives thereof, organic acid salts such as various carboxylate alkoxides, etc. You may mix and use.
  • Organic acid salts, chlorides, phosphates, phosphites, hypophosphites, nitrates and the like alone or in mixtures thereof may also be mentioned as an example of the metal complex catalyst.
  • the curing catalyst include inorganic acids, inorganic bases, organic acids and organic bases, organic peroxides and azo compounds, such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, boric acid, sodium hydroxide, calcium hydroxide, Sodium carbonate, potassium carbonate, formic acid, acetic acid, citric acid, oxalic acid, p-toluenesulfonic acid, benzoic acid, phenol, allylphenol, methallylphenol, thiophenol, pyridine, trialkylamine, diazabicycloundecene, histidine And imidazoles, di-tert-butyl peroxide, dicumyl peroxide, azobisisobutyronitrile,
  • curing catalysts may be used alone or in combination of two or more.
  • the compounding amount of these curing catalysts may be appropriately selected depending on the kind and effect thereof, but is preferably 0.001 parts by mass or more and 10 parts by mass or less, more preferably 0.
  • the content is at least 01 parts by weight and at most 5 parts by weight, particularly preferably at least 0.05 parts by weight and at most 3 parts by weight.
  • flame retardant examples include bromine compounds, phosphorus compounds, chlorine compounds, metal hydroxides and antimony compounds.
  • the filler include fumed silica, calcined silica, precipitated silica, crushed silica, fused silica, diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, wax Stone clay, kaolin clay, calcined clay, carbon black, polyamide resin, silicone resin, polytetrafluoroethylene, polybutadiene and its modified product, modified product of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, etc.
  • Various forms of organic or inorganic fillers are included. These fillers may be used alone or in combination of two or more.
  • additives include surface treatment agents, reaction retarders, coloring materials, antistatic agents, antiaging agents, antioxidants, and the like.
  • a silane coupling agent As a specific example of a surface treatment agent, a silane coupling agent etc. are mentioned, for example.
  • reaction retarder examples include, for example, compounds such as alcohols, and examples of anti-aging agents include compounds such as hindered phenols.
  • anti-aging agents include compounds such as hindered phenols.
  • antioxidant butyl hydroxytoluene (BHT), butyl hydroxy anisole (BHA) etc. are mentioned, for example.
  • the colorant include, for example, titanium oxide, zinc oxide, ultramarine blue, bengala, lithopone, lead, cadmium, iron, cobalt, aluminum, inorganic salts such as hydrochloride, sulfate, etc .; azo pigments, phthalocyanine pigments, quinacridone pigments , Quinacridone quinone pigments, dioxazine pigments, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone pigments, perylene pigments, perinone pigments, diketopyrrolopyrrole pigments, quinonaphthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments And organic pigments such as isoindoline pigments and carbon black.
  • antistatic agent generally include quaternary ammonium salts; and hydrophilic compounds such as polyglycols and ethylene oxide derivatives.
  • the benzoxazine resin of the present invention can be formulated as a benzoxazine resin composition by blending it with a copolymer component such as an epoxy resin, a phenol resin, a melamine resin, an unsaturated polyester resin, a polyimide resin, a polyamide resin, a polyurethane resin and a cyanate ester resin. It is also good.
  • a copolymer component such as an epoxy resin, a phenol resin, a melamine resin, an unsaturated polyester resin, a polyimide resin, a polyamide resin, a polyurethane resin and a cyanate ester resin. It is also good.
  • These copolymerization components may be used alone or in combination of two or more.
  • the epoxy resin which can be blended is not particularly limited as long as it is a compound having at least one epoxy group, and examples thereof include bisphenol A, bisphenol F, bisphenol S, hexahydrobisphenol A, tetramethylbisphenol A, pyrocatechol, resorcinol, A glycidyl ether type obtained by the reaction of an epichlorohydrin with a polyphenol such as cresol novolak, phenol novolak, tetrabromobisphenol A, trihydroxybiphenyl, bisresorcinol, bisphenol hexafluoroacetone, tetramethyl bisphenol F, bixylenol, dihydroxynaphthalene, etc .; Glycerin, neopentyl glycol, ethylene glycol, propylene glycol, butylene glycol, hexylene Polyglycidyl ether type obtained by the reaction of an aliphatic polyhydric alcohol such as glycol, polyethylene glycol or polyprop
  • the lower limit value of the compounding amount is preferably 0.1 parts by mass, more preferably 1 part by mass with respect to 10 parts by mass of the benzoxazine resin from the viewpoint of water absorption characteristics. Part, particularly preferably 3 parts by mass.
  • the upper limit value of the compounding amount is preferably 100 parts by mass, more preferably 50 parts by mass, and particularly preferably 30 parts by mass with respect to 10 parts by mass of the benzoxazine resin.
  • the heat resistance of the cured product of the benzoxazine resin or the benzoxazine resin composition of the present invention can be improved by blending the benzoxazine resin composition with a cyanate ester resin.
  • the cyanate ester resin which can be blended is not particularly limited as long as it is a known cyanate ester resin, and, for example, novolac type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, tetramethyl bisphenol F type cyanate Bisphenol type cyanate ester resin such as ester resin; Naphthol aralkyl type cyanate ester resin obtained by reaction of naphthol aralkyl type phenol resin with cyanogen halide; Dicyclopentadiene type cyanate ester resin; Biphenyl alkyl type cyanate ester resin or phenols Products of phenol and various aldehydes, polymers of phenols and various diene compounds, poly
  • phenols examples include phenol, alkyl substituted phenol, aromatic substituted phenol, naphthol, alkyl substituted naphthol, dihydroxybenzene, alkyl substituted dihydroxybenzene and dihydroxynaphthalene.
  • aldehydes include formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde and cinnamaldehyde.
  • Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinyl norbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene and the like.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone and the like.
  • novolac type cyanate ester resins and naphthol aralkyl type cyanate ester resins are preferable, and novolac type cyanate ester resins are more preferable.
  • the crosslink density of the obtained cured product is increased, and not only the heat resistance is improved, but also by the improvement of the benzene concentration, excellent thermal decomposition characteristics and flame retardancy can be expected.
  • These may be used alone or in combination of two or more.
  • the lower limit of the compounding amount is preferably 0.1 parts by mass, more preferably 1 with respect to 10 parts by mass of the benzoxazine resin, from the viewpoint of heat resistance. It is part by weight, particularly preferably 3 parts by weight.
  • the upper limit value of the compounding amount is preferably 100 parts by mass, more preferably 50 parts by mass, and particularly preferably 30 parts by mass with respect to 10 parts by mass of the benzoxazine resin.
  • the benzoxazine resin or benzoxazine resin composition of the present invention can also be used as a varnish dissolved in a solvent.
  • the formation of a varnish is a preferred embodiment in the sense that the handling of the benzoxazine resin or benzoxazine resin composition of the present invention is facilitated.
  • a solvent which can be used for the varnish of the present invention for example, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dioxane, 1-propanol, 2-propanol, 1-butanol, 1 And 4-dioxane, ethylene glycol ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and propylene glycol monomethyl ether, etc., but the solvent capable of dissolving the benzoxazine resin represented by the formula (1) of the present invention If it exists, it can be used without particular restriction.
  • the above-described additives and optional components may be blended into the varnish of the present invention as required.
  • a varnish containing the benzoxazine resin of the present invention is applied to various substrates, and the solvent is removed (dried) at a temperature of 150 ° C. or less, for example, and then treated at a high temperature of 200 ° C. or more to obtain a cured product. it can.
  • the base materials such as a glass nonwoven fabric
  • the varnish of this invention after impregnating the base materials, such as a glass nonwoven fabric, with the varnish of this invention and removing a solvent, it can also be set as fiber reinforced materials, such as a laminated board and a copper clad laminated board, using the prepreg obtained.
  • the present invention will now be described in more detail by way of examples.
  • the softening point and the melt viscosity in the synthesis examples were measured by the following methods.
  • Softening point Measured according to JIS K-7234
  • Melt viscosity Viscosity at 150 ° C. in cone-plate method
  • Synthesis Example 1 In a flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer, 559 parts by mass of aniline and 500 parts by mass of toluene were charged, and 167 parts by mass of 35% hydrochloric acid was dropped over 1 hour at room temperature. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the toluene which was the organic layer was returned to the system for dehydration.
  • Example 1 In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 59 parts by mass of the aniline resin obtained in Synthesis Example 1, 28 parts by mass of phenol and 90 parts by mass of toluene were added, and the temperature was raised to 60 ° C. Then, 49 parts by mass of an aqueous solution of formaldehyde was added over 60 minutes. Thereafter, the temperature was raised to 80 ° C., and reaction was performed for 8 hours.
  • Example 2 In the same manner as in Example 1 except that 28 parts by mass of phenol was changed to 34 parts by mass of allylphenol, 98 parts by mass of the benzoxazine resin of the present invention was obtained.
  • the obtained benzoxazine resin had a softening point of 91 ° C. and a melt viscosity of 0.5 Pa ⁇ s. It was confirmed by 1 H-NMR analysis that the obtained benzoxazine resin is represented by the following formula (7). The results of 1 H-NMR are shown in FIG.
  • composition example 2 414 parts by mass of phenol and 251 parts by mass of 4,4'-bis (chloromethyl) -1,1'-biphenyl, p-toluene sulfone while nitrogen gas purge is applied to the flask equipped with a thermometer, a condenser, and a stirrer 13 parts by mass of acid was charged, and the temperature was raised to 80 ° C. under stirring to dissolve. After stirring for 4 hours, add 700 parts by mass of methyl isobutyl ketone, wash with 3 times 300 parts by mass of water until the washing water becomes neutral, and then add 1.3 kPa of unreacted phenol and methyl isobutyl ketone from the oil layer.
  • the reaction product was evaporated under reduced pressure under reduced pressure to obtain 310 parts by mass of a phenol aralkyl resin (softening point 65 ° C., melt viscosity 0.05, hydroxyl group equivalent 200 g / eq) represented by the following formula (8). Moreover, as a result of measuring by gel permeation chromatography, n2 in Formula (8) was 1.5 (average value).
  • benzoxazine resin had a softening point of 100 ° C. and a melt viscosity of 1.9 Pa ⁇ s.
  • Example 3 The benzoxazine resin obtained in Example 1 was cured under the curing conditions of 200 ° C. for 2 hours to obtain a cured product of the present invention.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 4 The benzoxazine resin obtained in Example 2 was cured under the curing conditions of 200 ° C. for 2 hours to obtain a cured product of the present invention.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • Comparative example 3 The benzoxazine resin obtained in Comparative Example 1 was cured under the curing conditions of 200 ° C. for 2 hours to obtain a cured product.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • the obtained cured product was measured under the following conditions. ⁇ Heat resistance> -Measurement of Tg (temperature at maximum of tan ⁇ ) was performed by DMA measurement.
  • Measuring device Dynamic viscoelasticity measuring instrument TA-instruments, Q-800 Measurement temperature: 30 to 350 ° C Heating rate: 2 ° C / min
  • Sample size Width 5 mm ⁇ length 50 mm ⁇ thickness 0.8 mm ⁇ Dielectric constant and dielectric loss tangent> -Measurement was performed by a cavity resonator perturbation method using a cavity resonator.
  • Measurement device Cavity resonator Agilent Technologies, Inc.
  • Measurement method Measurement at 1 GHz according to JIS K6991 Measurement mode: Cavity resonator perturbation method Measurement temperature: 25 ° C.
  • the heat resistance and the dielectric constant of the comparative example 2 and the comparative example 3 are good results, but the thermal decomposition characteristics, the dielectric loss tangent, and the water absorption characteristics are defective.
  • the comparative example 4 is a result in which neither characteristic is fully satisfactory.
  • the benzoxazine resin of the present invention showed excellent results in all of the heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics.
  • Example 5 60 parts by mass of the benzoxazine resin obtained in Example 2 and 40 parts by mass of EOCN-1020-55 (epoxy equivalent 194 g / eq. Softening point 54.8 ° C. manufactured by Nippon Kayaku Co., Ltd.) and mixing roll The resulting mixture was uniformly mixed and kneaded to obtain a benzoxazine-epoxy resin composition. MDSC measurements were performed to observe the curing behavior of the benzoxazine-epoxy. The results of the MDSC measurement are shown in FIG.
  • Example 6 60 parts by mass of the benzoxazine resin obtained in Example 2, 39 parts by mass of EOCN-1020-55, 1 part by mass of 18% octoop Zn (Hop Pharmaceutical Co., Ltd.) and mixed uniformly using a mixing roll The mixture was mixed and kneaded to obtain a benzoxazine-epoxy resin composition. MDSC measurements were performed to observe the curing behavior of the benzoxazine-epoxy resin composition. The results of the MDSC measurement are shown in FIG. Further, the benzoxazine-epoxy resin composition was cured under curing conditions of 200 ° C. for 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 2.
  • Example 7 35 parts by mass of the benzoxazine resin obtained in Example 2, 23 parts by mass of EOCN-1020-55, 41 parts of 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) One part by weight of 18 parts of octope Zn (manufactured by Hope Pharmaceutical Co., Ltd.) was mixed and uniformly mixed and kneaded using a mixing roll to obtain a benzoxazine-epoxy-cyanate ester resin composition. In order to observe the curing behavior of this benzoxazine-epoxy-cyanate ester resin composition, MDSC measurements were performed. The results of the MDSC measurement are shown in FIG.
  • benzoxazine-epoxy-cyanate ester resin composition was cured under curing conditions of 200 ° C. for 2 hours to obtain a cured product of the present invention.
  • the measurement results of the physical properties of the cured product are shown in Table 2.
  • Example 8 45 parts by mass of the benzoxazine resin obtained in Example 2 and 55 parts by mass of 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) are blended, and uniform using mixing rolls The mixture was mixed and kneaded to obtain a benzoxazine-cyanate ester resin composition. MDSC measurements were performed to observe the curing behavior of the benzoxazine-cyanate resin composition. The results of the MDSC measurement are shown in FIG.
  • Example 9 45 parts by mass of the benzoxazine resin obtained in Example 2, 54 parts by mass of 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.), 18% Octopus Zn (Hope Pharmaceutical ( 1 part by mass) and uniformly mixed and kneaded using a mixing roll to obtain a benzoxazine-cyanate ester resin composition.
  • MDSC measurements were performed to observe the curing behavior of the benzoxazine-cyanate resin composition. The results of the MDSC measurement are shown in FIG.
  • the cured products obtained in Examples 6 and 7 were measured under the following conditions. ⁇ Heat resistance> -Measurement of Tg (temperature at maximum of tan ⁇ ) was performed by DMA measurement.
  • Measuring device Dynamic viscoelasticity measuring instrument TA-instruments, Q-800 Measurement temperature: 30 to 350 ° C Heating rate: 2 ° C / min Sample size: Width 5 mm ⁇ length 50 mm ⁇ thickness 0.8 mm
  • the curing behavior of the resin compositions obtained in Examples 5 to 9 was measured under the following conditions. ⁇ Hardening behavior> The heat of curing was observed by MDSC measurement. Measuring device: Q-2000 TA Instruments Co. Measuring temperature: 25 to 330 ° C Heating rate: 3 ° C / min Measurement mode: MDSC measurement
  • the benzoxazine resin of the present invention showed excellent heat resistance even when it is cured with a general-purpose epoxy resin.
  • Example 7 which used together cyanate ester resin had further high heat resistance.
  • Example 5 to 7 in FIG. 3 From the results of Examples 5 to 7 in FIG. 3, it can be confirmed that the benzoxazine resin of the present invention can also be used as a curing agent for epoxy resin. Furthermore, it has been confirmed that Example 6 using a catalyst such as a metal catalyst has a lower curing temperature than Example 5. Further, from the results of Examples 8 and 9, it was confirmed that the benzoxazine of the present invention can be used as a curing agent for cyanate ester resin, and it was confirmed that the curing temperature was lowered by a catalyst such as a metal catalyst.
  • the benzoxazine resin of the present invention and the benzoxazine resin composition containing the same can provide a cured product having excellent heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics, and therefore, they can be used as laminates for printed wiring boards for electronic devices. It is useful for various applications, such as fiber reinforced composite materials used in the aerospace field.

Abstract

The purpose of the present invention is to provide a benzoxazine resin from which there is obtained a cured product having exceptional heat resistance, pyrolysis characteristics, dielectric characteristics, and water absorption characteristics, the cured product being suitable for fiber-reinforced composite materials used in printed wiring boards for electronic devices or in the aerospace field. A benzoxazine resin represented by formula (1). (In formula (1), n is an average value of the number of repetitions, and represents a real number of 1-10. R1 through R8 each independently represent a hydrogen atom, a halogen atom, or a C1-8 alkyl or aryl group. When there are more than one of each of R3 through R7, each of the R3 through R7 may be the same as or different from each other. R9 and R10 each independently represent a hydrogen atom or a C1-8 alkyl, aryl, allyl, or alkoxy group. When there are more than one of each of R9 and R10, each of the R9 and R10 may be the same as or different from each other. The dotted line indicates that a benzene ring is optionally formed.)

Description

ベンゾオキサジン樹脂、ベンゾオキサジン樹脂組成物、その硬化物、ワニス、プリプレグ及び積層板または銅張積層板Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg, laminate and copper-clad laminate
 本発明はベンゾオキサジン樹脂、ベンゾオキサジン樹脂組成物、その硬化物、ワニス、プリプレグ及び積層板または銅張積層板に関する。詳しくは、航空宇宙材料、工作機械部材用途、電気・電子材料等の種々の用途で利用可能であり、特に耐熱性が要求される繊維強化複合材料用途や電気電子部品の封止材等において有用なベンゾオキサジン樹脂及びその硬化物に関する。 The present invention relates to a benzoxazine resin, a benzoxazine resin composition, a cured product of the same, a varnish, a prepreg and a laminate or a copper-clad laminate. Specifically, it can be used in various applications such as aerospace materials, machine tool member applications, electric and electronic materials, and is particularly useful in fiber reinforced composite materials applications where heat resistance is required, and sealing materials for electric and electronic parts, etc. Benzoxazine resin and its cured product.
 一般に電気・電子機器用プリント配線基板は従来ガラス布を基材としたガラス布-エポキシ樹脂等の熱硬化性樹脂が用いられている。これらの熱硬化性樹脂は特有な架橋構造により高い耐熱性や寸法安定性等の特性を発現するため、電子部品などの高い信頼性が要求される分野において広く使われている。特に、銅張積層板や層間絶縁材料においては、プリント配線板の高密度実装、高多層化構成に伴う耐熱性(ガラス転移温度や熱分解性温度)、基板の薄型化による樹脂の機械強度に対する要求が高まっている。CPUなどの高度な処理能力のある半導体チップに関しては、CPU等の素子の高速化が進みクロック周波数が高くなるにつれて信号伝搬遅延や伝送損失が問題となり、配線板に使用する樹脂に対しては低誘電率化、低誘電正接化が求められている。 In general, thermosetting resins such as glass cloth-epoxy resin are conventionally used for printed wiring boards for electric and electronic devices, with a glass cloth as a base material. These thermosetting resins exhibit characteristics such as high heat resistance and dimensional stability due to a unique crosslinked structure, and thus are widely used in fields requiring high reliability of electronic parts and the like. In particular, in copper-clad laminates and interlayer insulation materials, heat resistance (glass transition temperature and thermal decomposition temperature) associated with high density mounting of printed wiring boards and high multilayer construction, and mechanical strength of resins by thinning of substrates The demand is growing. For semiconductor chips with high processing capabilities such as CPUs, the speeding up of elements such as CPUs advances, and as the clock frequency increases, signal propagation delay and transmission loss become problems, and the resin used for wiring boards is low. There is a demand for dielectric constant and low dielectric loss tangent.
 従来、繊維強化複合材料は、旅客機の機体や翼などの航空宇宙用途、ロボットハンドアームに代表される工作機械用途、建築・土木補修材としての用途、さらにはゴルフシャフトやテニスラケットなどのレジャー用品用途などに幅広く用いられている。繊維強化複合材料は、マトリックス樹脂と、炭素繊維、ガラス繊維、アルミナ繊維、ボロン繊維、及びアラミド繊維などの強化繊維とから成り、一般に軽量かつ高強度の特徴を有する。旅客機の機体や翼などの航空宇宙材料、ロボットハンドアームに代表される工作機械部材においては、特に炭素繊維強化複合材料(以下CFRPと称す)が使用されており、室温から約200℃までの温度範囲で剛性を保つ耐熱性、更に高熱下で放置しても力学強度を損なわないように熱分解特性が高い事を要求されている。繊維強化複合材料のマトリックス樹脂としては、架橋密度を高くした高耐熱性のエポキシ樹脂が広く使用されているが、高耐熱性のエポキシ樹脂は吸水率が悪化する(吸水率が高くなる)ため、信頼性の要求される航空宇宙材料や工作機械部材用途には不適である。 Conventionally, fiber reinforced composite materials have been used for aerospace applications such as aircraft fuselages and wings, machine tool applications typified by robot hand arms, applications as construction and civil engineering repair materials, and leisure products such as golf shafts and tennis rackets. It is widely used for applications. The fiber reinforced composite material is composed of a matrix resin and reinforcing fibers such as carbon fiber, glass fiber, alumina fiber, boron fiber and aramid fiber, and generally has characteristics of light weight and high strength. Carbon fiber reinforced composite materials (hereinafter referred to as CFRP) are used particularly in aerospace materials such as aircraft fuselages and wings, and machine tool members typified by robot hand arms, and temperatures from room temperature to about 200 ° C. It is required to have heat resistance that maintains rigidity within a range, and high thermal decomposition characteristics so as not to impair mechanical strength even if it is left under high heat. As the matrix resin of the fiber reinforced composite material, high heat resistant epoxy resin having a high crosslink density is widely used, but the high heat resistant epoxy resin is deteriorated in water absorption rate (water absorption rate becomes high), It is not suitable for aerospace materials and machine tool component applications that require reliability.
 上記課題を解決するため、エポキシ樹脂やフェノール樹脂の代替として、ベンゾオキサジン樹脂について検討がなされてきた。ベンゾオキサジン樹脂は、その硬化物が耐熱性、熱分解特性、難燃性に優れることから、プリント配線板用の積層板や半導体封止材料等の繊維強化複合材料等の様々な用途への応用が期待されている。
 特許文献1にはビスフェノールF(或いはビスフェノールA)とアニリンとホルマリンを反応させたものが開示されている。また、特許文献2には、ベンゾオキサジン樹脂を含有する熱硬化性樹脂組成物が開示されており、成形性が良好で吸湿性が低く、硬化性及び機械特性に優れていることが記載されている。しかしながら、いずれも航空宇宙材料や工作機械部材用途、電気・電子材料等の用途における上記課題について充分に満足の得られるものではない。
In order to solve the above problems, benzoxazine resins have been studied as substitutes for epoxy resins and phenol resins. Since the cured product of benzoxazine resin is excellent in heat resistance, thermal decomposition characteristics and flame retardancy, it is applied to various applications such as laminates for printed wiring boards and fiber reinforced composite materials such as semiconductor sealing materials. Is expected.
Patent Document 1 discloses a reaction of bisphenol F (or bisphenol A), aniline and formalin. Further, Patent Document 2 discloses a thermosetting resin composition containing a benzoxazine resin, and describes that it has good moldability, low hygroscopicity, and excellent curability and mechanical properties. There is. However, none of the above-mentioned problems can be sufficiently satisfied with the above-mentioned problems in applications such as aerospace materials, machine tool member applications, and electric and electronic materials.
日本国特開平11-12258号公報Japanese Patent Application Laid-Open No. 11-12258 日本国特開2002-161188号公報Japanese Patent Application Laid-Open No. 2002-161188
 本発明は、この様な状況に鑑みてなされたものであり、耐熱性、熱分解特性、誘電特性、吸水特性(低吸水性)に優れた硬化物が得られるベンゾオキサジン樹脂、ベンゾオキサジン樹脂組成物、その硬化物、ワニス、プリプレグ、及び、積層板または銅張積層板を提供することを目的とする。 The present invention has been made in view of such a situation, and a benzoxazine resin and benzoxazine resin composition capable of obtaining a cured product excellent in heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics (low water absorption). It is an object of the present invention to provide an article, a cured product thereof, a varnish, a prepreg, and a laminate or a copper-clad laminate.
 本発明者らは鋭意検討した結果、特定の構造を有するベンゾオキサジン樹脂を用いることにより、その硬化物が耐熱性、熱分解特性、誘電特性、吸水特性に優れることを見出し、本発明を完成するに至った。 As a result of intensive investigations, the present inventors find that the cured product is excellent in heat resistance, thermal decomposition characteristics, dielectric characteristics and water absorption characteristics by using a benzoxazine resin having a specific structure, and completes the present invention. It came to
 即ち、本発明は、
[1]下記式(1)で表されるベンゾオキサジン樹脂、
That is, the present invention
[1] Benzoxazine resin represented by the following formula (1),
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(1)中、nは繰り返し数の平均値であり、1~10の実数を表す。R~Rはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~8のアルキル基又はアリール基のいずれかを表す。R~Rがそれぞれ複数存在する場合、それぞれのR~Rは互いに同一であっても異なっていてもよい。R、R10はそれぞれ独立に水素原子、炭素数1~8のアルキル基、アリール基、アリル基又はアルコキシ基のいずれかを表す。R、R10がそれぞれ複数存在する場合、それぞれのR、R10は互いに同一であっても異なっていてもよい。点線はベンゼン環が形成されていてもよいことを表す。) (In formula (1), n is an average value of the number of repetitions and represents a real number of 1 to 10. R 1 to R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group If .R 3 ~ R 7 represent either a group is present in plural, each of R 3 ~ R 7 is optionally being the same or different .R 9, R 10 each independently represent a hydrogen atom Or an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group, and when a plurality of R 9 s and R 10 s are present, each R 9 s and R 10 s may be identical to each other The dotted line may indicate that a benzene ring may be formed.)
[2]前記式(1)におけるR~Rが水素原子である前項[1]に記載のベンゾオキサジン樹脂、
[3]下記式(2)で表されるアニリン樹脂と下記式(3)で表されるフェノール化合物とアルデヒド化合物とを反応させて得られる前項[1]又は[2]に記載のベンゾオキサジン樹脂、
[2] The benzoxazine resin according to the preceding item [1], wherein R 1 to R 8 in the formula (1) are hydrogen atoms,
[3] The benzoxazine resin according to the above item [1] or [2] obtained by reacting an aniline resin represented by the following formula (2) with a phenol compound represented by the following formula (3) and an aldehyde compound ,
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(2)中、n及びR~Rは前記式(1)中のn及びR~Rと同じ意味を表す。) (Equation (2), n and R 1 ~ R 8 are as defined n and R 1 ~ R 8 in the formula (1).)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(3)中、R、R10は前記式(1)中のR、R10と同じ意味を表す。点線はベンゼン環が形成されていてもよいことを表す。) (In the formula (3), R 9 and R 10 have the same meaning as R 9 and R 10 in the formula (1). The dotted line represents that a benzene ring may be formed.)
[4]前項[1]~[3]のいずれかに記載のベンゾオキサジン樹脂とエポキシ樹脂とを含有するベンゾオキサジン樹脂組成物、
[5]前項[1]~[3]のいずれかに記載のベンゾオキサジン樹脂または前項[4]に記載のベンゾオキサジン樹脂組成物とシアネートエステル樹脂とを含有するベンゾオキサジン樹脂組成物、
[6]前項[1]~[3]のいずれかに記載のベンゾオキサジン樹脂または前項[4]もしくは[5]に記載のベンゾオキサジン樹脂組成物を硬化してなる硬化物、
[7]前項[1]~[3]のいずれかに記載のベンゾオキサジン樹脂または前項[4]もしくは[5]に記載のベンゾオキサジン樹脂組成物を溶媒に溶かしたワニス、
[8]前項[7]に記載のワニスを基材に含浸させてなるプリプレグ、
[9]前項[8]に記載のプリプレグを硬化してなる硬化物、
[10]前項[8]に記載のプリプレグを使用して得られる積層板または銅張積層板、
に関するものである。
[4] A benzoxazine resin composition containing the benzoxazine resin according to any one of the above items [1] to [3] and an epoxy resin,
[5] A benzoxazine resin composition containing the benzoxazine resin according to any one of the preceding items [1] to [3] or the benzoxazine resin composition according to the preceding item [4] and a cyanate ester resin,
[6] A cured product obtained by curing the benzoxazine resin according to any one of the preceding items [1] to [3] or the benzoxazine resin composition according to the preceding item [4] or [5].
[7] A varnish obtained by dissolving the benzoxazine resin according to any one of the preceding items [1] to [3] or the benzoxazine resin composition according to the preceding item [4] or [5] in a solvent
[8] A prepreg obtained by impregnating a base material with the varnish according to the previous item [7],
[9] A cured product obtained by curing the prepreg according to the preceding item [8],
[10] A laminated board or copper clad laminated board obtained by using the prepreg according to the preceding [8],
It is about
 本発明のベンゾオキサジン樹脂は、その硬化物において耐熱性、熱分解特性、誘電特性、吸水特性に優れるため、繊維強化複合材料用途や電気電子部品の封止材等に有用である。 The benzoxazine resin of the present invention is excellent in heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics in its cured product, and therefore is useful for fiber reinforced composite material applications, sealing materials for electric and electronic parts, and the like.
実施例1で得られたベンゾオキサジン樹脂のH-NMR分析の結果を示す。1 shows the results of 1 H-NMR analysis of the benzoxazine resin obtained in Example 1. 実施例2で得られたベンゾオキサジン樹脂のH-NMR分析の結果を示す。 1 shows the results of 1 H-NMR analysis of the benzoxazine resin obtained in Example 2. 実施例5~9の樹脂組成物のMDSC測定結果を示す。The result of MDSC measurement of the resin composition of Examples 5-9 is shown.
 本発明のベンゾオキサジン樹脂は下記式(1)で表される構造を有する。 The benzoxazine resin of the present invention has a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)中、nは繰り返し数の平均値であり、1~10の実数を表す。R~Rはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~8のアルキル基又はアリール基のいずれかを表す。R~Rがそれぞれ複数存在する場合、それぞれのR~Rは互いに同一であっても異なっていてもよい。R、R10はそれぞれ独立に水素原子、炭素数1~8のアルキル基、アリール基、アリル基又はアルコキシ基のいずれかを表す。R、R10がそれぞれ複数存在する場合、それぞれのR、R10は互いに同一であっても異なっていてもよい。点線はベンゼン環が形成されていてもよいことを表す。 In the formula (1), n is an average value of the number of repetitions, and represents a real number of 1 to 10. Each of R 1 to R 8 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group. When a plurality of R 3 to R 7 exist, each of R 3 to R 7 may be the same as or different from each other. R 9 and R 10 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group. When a plurality of R 9 s and R 10 s are present, each R 9 s and R 10 s may be the same as or different from each other. The dotted line represents that a benzene ring may be formed.
 式(1)のR~R、及びR、R10が表す炭素数1~8のアルキル基とは、直鎖、分岐鎖又は環状のアルキル基の何れにも限定されず、その具体例としてはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、シクロペンチル基及びシクロヘキシル基等が挙げられるが、炭素数1~8の直鎖又は分岐鎖のアルキル基であることが好ましく、炭素数1~4の直鎖又は分岐鎖のアルキル基であることがより好ましい。 The alkyl group having 1 to 8 carbon atoms represented by R 1 to R 8 and R 9 and R 10 in the formula (1) is not limited to any of linear, branched or cyclic alkyl group, and specific examples thereof Examples include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, sec-butyl, n-pentyl, n-hexyl, n -Heptyl group, cyclopentyl group, cyclohexyl group etc. may be mentioned, and it is preferable that it is a linear or branched alkyl group having 1 to 8 carbon atoms, and is a linear or branched alkyl group having 1 to 4 carbon atoms It is more preferable that
 式(1)のR~R、及びR、R10が表すアリール基とは、芳香族炭化水素から水素原子を一つ除いた残基であり、その具体例としてはフェニル基、ビフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基及びベンゾピレニル基等が挙げられる。 The aryl group represented by R 1 to R 8 and R 9 and R 10 in the formula (1) is a residue obtained by removing one hydrogen atom from an aromatic hydrocarbon, and specific examples thereof include a phenyl group and biphenyl. Groups, naphthyl groups, anthryl groups, phenanthryl groups, pyrenyl groups and benzopyrenyl groups.
 式(1)のR、R10が表すアルコキシ基とは、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、sec-ブトキシ基、n-ペントキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、シクロペントキシ基及びシクロヘキシルオキシ基等が挙げられるが、炭素数1~8の直鎖又は分岐鎖のアルコキシ基であることが好ましく、炭素数1~4の直鎖又は分岐鎖のアルコキシ基であることがより好ましい。 The alkoxy group represented by R 9 and R 10 in the formula (1) is a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a tert-butoxy group, sec- Examples thereof include butoxy, n-pentoxy, n-hexyloxy, n-heptyloxy, cyclopentoxy and cyclohexyloxy groups, etc., and it is a linear or branched alkoxy group having 1 to 8 carbon atoms It is preferably, and more preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
 式(1)のR~Rとしては、それぞれ独立に水素原子、ハロゲン原子又は炭素数1~4の直鎖若しくは分岐鎖のアルキル基であることが好ましく、それぞれ独立に水素原子、臭素原子又は炭素数1~4の直鎖のアルキル基であることがより好ましく、水素原子であることが更に好ましい。 R 1 to R 8 in the formula (1) are preferably each independently a hydrogen atom, a halogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, each independently having a hydrogen atom or a bromine atom. Or a linear alkyl group having 1 to 4 carbon atoms is more preferable, and a hydrogen atom is even more preferable.
 式(1)のR、R10としては、それぞれ独立に水素原子、炭素数1~4の直鎖若しくは分岐鎖のアルキル基、フェニル基、アリル基、炭素数1~4の直鎖若しくは分岐鎖のアルコキシ基であることが好ましく、水素原子、メチル基、フェニル基、アリル基、メトキシ基であることがより好ましく、水素原子であることが更に好ましい。 R 9 and R 10 in the formula (1) each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, an allyl group, a linear or branched chain having 1 to 4 carbon atoms It is preferably a chain alkoxy group, more preferably a hydrogen atom, a methyl group, a phenyl group, an allyl group or a methoxy group, and still more preferably a hydrogen atom.
 式(1)のnは繰り返し数の平均値を表し、通常1~10の実数であり、好ましくは1~5の実数である。nの値はゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量の値から算出することが出来る。具体的には下記計算式により算出する。
n=[(重量平均分子量)-(n=1体の分子量)]÷[(n=2体の分子量)-(n=1体の分子量)]+1
 なお、本発明におけるGPC測定は下記条件にて行った。
カラム:Shodex KF-603、KF-602.5、KF-602、KF-601x2
連結溶離液:テトラヒドロフラン
流速:0.5ml/min.
カラム温度:40℃
検出:RI(示差屈折検出器)
In the formula (1), n represents the average value of the number of repetitions, and is usually a real number of 1 to 10, preferably a real number of 1 to 5. The value of n can be calculated from the value of weight average molecular weight obtained by measurement of gel permeation chromatography (GPC). Specifically, it is calculated by the following formula.
n = [(weight average molecular weight)-(n = 1 molecular weight of one body)] ÷ [(n = 2 molecular weight of two body)-(n = 1 molecular weight of one body) +1
The GPC measurement in the present invention was performed under the following conditions.
Column: Shodex KF-603, KF-602.5, KF-602, KF-601x2
Coupling eluent: tetrahydrofuran flow rate: 0.5 ml / min.
Column temperature: 40 ° C
Detection: RI (differential refraction detector)
 また、式(1)で表されるベンゾオキサジン樹脂としては、式(1)中のビフェニル構造に結合する二つのメチレン基の結合位置が4,4’であるもの、即ち下記式(4)で表されるベンゾオキサジン樹脂がより好ましい。 Further, as the benzoxazine resin represented by the formula (1), one having a bonding position of two methylene groups bonded to the biphenyl structure in the formula (1) is 4,4 ′, that is, in the following formula (4) More preferred are the benzoxazine resins represented.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(4)におけるn及びR~R10は前記式(1)におけるn及びR~R10と同じ意味を表す。点線はベンゼン環が形成されていてもよいことを表す。 N and R 1 to R 10 in the formula (4) have the same meanings as n and R 1 to R 10 in the formula (1). The dotted line represents that a benzene ring may be formed.
 本発明の式(1)で表されるベンゾオキサジン樹脂は、例えば、式(2)で表されるアニリン樹脂、式(3)で表されるフェノール化合物、及びアルデヒド化合物を原料に用いて、以下の反応式で表される公知の方法で合成することができる。尚、反応式中にはアルデヒド化合物の一例としてホルムアルデヒドを記載したが、パラホルムアルデヒドやベンズアルデヒド等を用いてもよい。 The benzoxazine resin represented by the formula (1) of the present invention is, for example, an aniline resin represented by the formula (2), a phenol compound represented by the formula (3), and an aldehyde compound as raw materials. It can be synthesized by a known method represented by the following reaction formula. Although formaldehyde is described as an example of the aldehyde compound in the reaction formula, paraformaldehyde or benzaldehyde may be used.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(2)におけるn及びR~Rは前記式(1)におけるn及びR~Rと同じ意味を表し、好ましい範囲も同じである。 N and R 1 to R 8 in the formula (2) have the same meanings as n and R 1 to R 8 in the formula (1), and the preferred range is also the same.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(3)におけるR、R10は前記式(1)におけるR、R10と同じ意味を表し、好ましい範囲も同じである。点線はベンゼン環が形成されていてもよいことを表す。 R 9 and R 10 in the formula (3) have the same meanings as R 9 and R 10 in the formula (1), and the preferred range is also the same. The dotted line represents that a benzene ring may be formed.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 フェノール化合物の仕込み比率は、アニリン樹脂のアミノ基1モルに対して0.5~1.2モルであることが好ましく、0.75~1.1モルであることがより好ましい。また、アルデヒド化合物の仕込み比率は、フェノール化合物1モルに対して1.7~4.3モルであることが好ましく、1.8~4.2モルであることがより好ましい。
 反応は溶媒中で行っても無溶媒で行ってもよい。反応に用い得る溶媒は原料化合物を溶解し得るものであれば特に限定されず、例えばメチルエチルケトン、トルエン、1-プロパノール、2-プロパノール、1-ブタノール、1,4-ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル及びエチレングリコールモノブチルエーテル等が挙げられる。これらの溶剤は一種で用いてもよく、混合して用いてもよい。
 反応温度は60℃以上が好ましい。反応時間は特に限定されず、反応に用いた原料の残存量を確認することで反応の進行状況を見極めながら選択すればよい。
 溶媒を用いた場合は、合成時に発生した縮合水、残存原料及び溶媒等を合成終了後に減圧下で除去することによりベンゾオキサジン樹脂を得ることができるが、自己重合性を有するため160℃以下での減圧蒸留が好ましい。
The feed ratio of the phenolic compound is preferably 0.5 to 1.2 moles, and more preferably 0.75 to 1.1 moles with respect to 1 mole of the amino group of the aniline resin. Further, the preparation ratio of the aldehyde compound is preferably 1.7 to 4.3 moles, and more preferably 1.8 to 4.2 moles relative to 1 mole of the phenol compound.
The reaction may be carried out in a solvent or without solvent. The solvent that can be used for the reaction is not particularly limited as long as it can dissolve the starting compound, and for example, methyl ethyl ketone, toluene, 1-propanol, 2-propanol, 1-butanol, 1,4-dioxane, ethylene glycol monomethyl ether, ethylene Examples thereof include glycol monoethyl ether and ethylene glycol monobutyl ether. These solvents may be used alone or in combination.
The reaction temperature is preferably 60 ° C. or higher. The reaction time is not particularly limited, and may be selected while confirming the progress of the reaction by confirming the residual amount of the raw material used for the reaction.
When a solvent is used, the benzoxazine resin can be obtained by removing the condensed water generated during the synthesis, the remaining raw materials, the solvent, etc. under reduced pressure after completion of the synthesis, but since it has self-polymerizability, it is at 160 ° C. or less Vacuum distillation is preferred.
 本発明において用いられるベンゾオキサジン樹脂は融点または軟化点を有するものを用いてもよい。融点を有する場合は200℃以下が好ましく、また軟化点を有する場合は150℃以下であることが好ましい。融点や軟化点が高温すぎる場合、混合の際にゲル化の可能性が高くなるため好ましくない。 The benzoxazine resin used in the present invention may be one having a melting point or a softening point. When it has a melting point, 200 ° C. or less is preferable, and when it has a softening point, it is preferable that it is 150 ° C. or less. If the melting point or the softening point is too high, the possibility of gelation increases during mixing, which is not preferable.
 以下に本発明の式(1)で表されるベンゾオキサジン樹脂の具体例を記載するが、本発明はこれらの具体例に限定されるものではない。尚、具体例の構造式中のnは式(1)におけるnと同じ意味を表す。 Specific examples of the benzoxazine resin represented by the formula (1) of the present invention will be described below, but the present invention is not limited to these specific examples. Incidentally, n in the structural formula of the specific example has the same meaning as n in formula (1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本発明のベンゾオキサジン樹脂は、自己硬化性(硬化剤や硬化触媒等の他の成分なしに開環重合(硬化)し得ることを意味する)を有する。即ち、硬化させる際に硬化触媒等が必要ないことに加え、重合過程において副生成物が発生しないので、ボイドのない寸法安定性の高い重合物(硬化物)を得ることができる。自己重合(硬化)の条件は、好ましくは200℃以上で数十分~数時間程度である。 The benzoxazine resin of the present invention has self-curing (meaning that it can be ring-opening polymerized (cured) without other components such as a curing agent and a curing catalyst). That is, in addition to the fact that a curing catalyst and the like are not required at the time of curing, no by-products are generated in the polymerization process, and a polymer (cured product) with high dimensional stability without voids can be obtained. The conditions for the self polymerization (curing) are preferably 200 ° C. or more and several tens minutes to several hours or so.
 一般的にC-O結合と比較してC-N結合は結合エネルギーが小さいため、C-N結合のほうが熱分解しやすいことが知られている。そこでNに隣接した分子骨格が高分子量であると遊離を防ぐと考えられる。したがって分子量の大きいフェノール樹脂と分子量の小さいアニリン化合物から合成したベンゾオキサジン樹脂と比較して分子量の大きいアニリン樹脂と分子量の小さいフェノール化合物から合成したベンゾオキサジン樹脂の方がアニリンの遊離を防ぐ構造になるため、熱分解特性の向上が期待できる。 In general, it is known that a C—N bond is more likely to be thermally decomposed because a C—N bond has a smaller bonding energy than a C—O bond. Then, it is thought that liberation is prevented if the molecular skeleton adjacent to N is high molecular weight. Therefore, compared with a benzoxazine resin synthesized from a high molecular weight phenol resin and a low molecular weight aniline compound, the structure of the aniline resin synthesized from the high molecular weight aniline resin and the low molecular weight phenol compound becomes a structure that prevents the release of aniline. Therefore, the improvement of the thermal decomposition characteristics can be expected.
 本発明のベンゾオキサジン樹脂は、必要に応じて硬化触媒、難燃剤、フィラー、添加剤等と配合してベンゾオキサジン樹脂組成物とすることができる。 The benzoxazine resin of the present invention can be blended with a curing catalyst, a flame retardant, a filler, an additive, etc. as needed to make a benzoxazine resin composition.
 本発明のベンゾオキサジン樹脂は、硬化触媒と配合することにより硬化温度を低下させることができる。硬化触媒としては金属錯体触媒、無機酸、無機塩基、有機酸及び有機塩基、有機過酸化物、アゾ化合物等を挙げることができる。
 硬化触媒の具体例である金属錯体触媒としては、一般に公知のものが使用できる。例えばコバルト、亜鉛、クロム、銅、鉄、マンガン、ニッケル、チタンなどの金属ナフテン酸塩、アセチルアセトナート、又その誘導体の塩、各種カルボン酸塩アルコキシド等の有機酸塩があり、これらを単独でも混合して使用しても良い。有機酸塩、塩化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩などの単独、または、それらの混合物等も金属錯体触媒の一例として挙げられる。硬化触媒の具体例である無機酸、無機塩基、有機酸及び有機塩基、有機過酸化物、アゾ化合物等としては、塩酸、硫酸、硝酸、リン酸、ホウ酸、水酸化ナトリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、ギ酸、酢酸、クエン酸、シュウ酸、p-トルエンスルホン酸、安息香酸、フェノール、アリルフェノール、メタリルフェノール、チオフェノール、ピリジン、トリアルキルアミン、ジアザビシクロウンデセン、ヒスチジン及びイミダゾール類、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等が挙げられ、塩酸、p-トルエンスルホン酸、安息香酸、フェノール、チオフェノールが好ましく、p-トルエンスルホン酸及び2-エチル-4-メチルイミダゾールがより好ましい。これらの硬化触媒は一種のみを用いても、二種以上を併用してもよい。
 これら硬化触媒の配合量は、その種類や効果によって適正選択すればよいが、ベンゾオキサジン樹脂100質量部に対して、好ましくは0.001質量部以上10質量部以下であり、さらに好ましくは0.01質量部以上5質量部以下、特に好ましくは0.05質量部以上3質量部以下である。
The benzoxazine resin of the present invention can lower the curing temperature by blending with a curing catalyst. Examples of the curing catalyst include metal complex catalysts, inorganic acids, inorganic bases, organic acids and organic bases, organic peroxides, azo compounds and the like.
As a metal complex catalyst which is a specific example of a curing catalyst, generally known ones can be used. For example, metal naphthenic acid salts such as cobalt, zinc, chromium, copper, iron, manganese, nickel, titanium, acetylacetonate, salts of derivatives thereof, organic acid salts such as various carboxylate alkoxides, etc. You may mix and use. Organic acid salts, chlorides, phosphates, phosphites, hypophosphites, nitrates and the like alone or in mixtures thereof may also be mentioned as an example of the metal complex catalyst. Examples of the curing catalyst include inorganic acids, inorganic bases, organic acids and organic bases, organic peroxides and azo compounds, such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, boric acid, sodium hydroxide, calcium hydroxide, Sodium carbonate, potassium carbonate, formic acid, acetic acid, citric acid, oxalic acid, p-toluenesulfonic acid, benzoic acid, phenol, allylphenol, methallylphenol, thiophenol, pyridine, trialkylamine, diazabicycloundecene, histidine And imidazoles, di-tert-butyl peroxide, dicumyl peroxide, azobisisobutyronitrile, azobisdimethylvaleronitrile and the like, and hydrochloric acid, p-toluenesulfonic acid, benzoic acid, phenol and thiophenol Preferably, p-toluenesulfonic acid and 2-ethyl-4- Chill imidazole is more preferable. These curing catalysts may be used alone or in combination of two or more.
The compounding amount of these curing catalysts may be appropriately selected depending on the kind and effect thereof, but is preferably 0.001 parts by mass or more and 10 parts by mass or less, more preferably 0. The content is at least 01 parts by weight and at most 5 parts by weight, particularly preferably at least 0.05 parts by weight and at most 3 parts by weight.
 難燃剤の具体例としては、臭素化合物、リン化合物、塩素化合物、金属水酸化物、アンチモン化合物等が挙げられる。 Specific examples of the flame retardant include bromine compounds, phosphorus compounds, chlorine compounds, metal hydroxides and antimony compounds.
 フィラーの具体例としてはヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ、ケイソウ土、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ろう石クレー、カオリンクレー、焼成クレー、カーボンブラック、ポリアミド樹脂、シリコーン樹脂、ポリテトラフロロエチレン、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂等の各種形状の有機または無機の充填剤が挙げられる。これらの充填剤は一種のみを用いても、二種以上を併用してもよい。 Specific examples of the filler include fumed silica, calcined silica, precipitated silica, crushed silica, fused silica, diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, wax Stone clay, kaolin clay, calcined clay, carbon black, polyamide resin, silicone resin, polytetrafluoroethylene, polybutadiene and its modified product, modified product of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, etc. Various forms of organic or inorganic fillers are included. These fillers may be used alone or in combination of two or more.
 添加剤の具体例としては、表面処理剤、反応遅延剤、色材、帯電防止剤、老化防止剤、酸化防止剤等が挙げられる。 Specific examples of the additive include surface treatment agents, reaction retarders, coloring materials, antistatic agents, antiaging agents, antioxidants, and the like.
 表面処理剤の具体例としては、例えばシランカップリング剤等が挙げられる。 As a specific example of a surface treatment agent, a silane coupling agent etc. are mentioned, for example.
 反応遅延剤の具体例としては、例えば、アルコール系等の化合物が挙げられ、老化防止剤としては、例えば、ヒンダードフェノール系等の化合物が挙げられる。また、酸化防止剤としては、例えば、ブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)等が挙げられる。 Specific examples of the reaction retarder include, for example, compounds such as alcohols, and examples of anti-aging agents include compounds such as hindered phenols. Moreover, as an antioxidant, butyl hydroxytoluene (BHT), butyl hydroxy anisole (BHA) etc. are mentioned, for example.
 色材の具体例としては、例えば、酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料;アゾ顔料、フタロシアニン顔料、キナクリドン顔料、キナクリドンキノン顔料、ジオキサジン顔料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ペリレン顔料、ペリノン顔料、ジケトピロロピロール顔料、キノナフタロン顔料、アントラキノン顔料、チオインジゴ顔料、ベンズイミダゾロン顔料、イソインドリン顔料、カーボンブラック等の有機顔料等が挙げられる。 Specific examples of the colorant include, for example, titanium oxide, zinc oxide, ultramarine blue, bengala, lithopone, lead, cadmium, iron, cobalt, aluminum, inorganic salts such as hydrochloride, sulfate, etc .; azo pigments, phthalocyanine pigments, quinacridone pigments , Quinacridone quinone pigments, dioxazine pigments, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone pigments, perylene pigments, perinone pigments, diketopyrrolopyrrole pigments, quinonaphthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments And organic pigments such as isoindoline pigments and carbon black.
 帯電防止剤の具体例としては、一般的に、第四級アンモニウム塩;ポリグリコール、エチレンオキサイド誘導体等の親水性化合物等が挙げられる。 Specific examples of the antistatic agent generally include quaternary ammonium salts; and hydrophilic compounds such as polyglycols and ethylene oxide derivatives.
 本発明のベンゾオキサジン樹脂は、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリウレタン樹脂、シアネートエステル樹脂等の共重合成分と配合することによりベンゾオキサジン樹脂組成物としてもよい。これらの共重合成分は一種のみを用いても、二種以上を併用してもよい。
 これらの共重合成分の中でも、加熱により本発明のベンゾオキサジン樹脂組成物中に生じるフェノール性水酸基との反応性を有するエポキシ樹脂やフェノール樹脂を配合することが好ましく、エポキシ樹脂を配合することが特に好ましい。
The benzoxazine resin of the present invention can be formulated as a benzoxazine resin composition by blending it with a copolymer component such as an epoxy resin, a phenol resin, a melamine resin, an unsaturated polyester resin, a polyimide resin, a polyamide resin, a polyurethane resin and a cyanate ester resin. It is also good. These copolymerization components may be used alone or in combination of two or more.
Among these copolymerization components, it is preferable to blend an epoxy resin or a phenol resin having reactivity with the phenolic hydroxyl group generated in the benzoxazine resin composition of the present invention by heating, and it is particularly preferable to blend an epoxy resin preferable.
 配合し得るエポキシ樹脂としては、少なくとも1つのエポキシ基を有する化合物であれば特に限定されず、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヘキサヒドロビスフェノールA、テトラメチルビスフェノールA、ピロカテコール、レゾルシノール、クレゾールノボラック、フェノールノボラック、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールF、ビキシレノール、ジヒドロキシナフタレン等の多価フェノールとエピクロルヒドリンとの反応によって得られるグリシジルエーテル型;グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコールとエピクロルヒドリンとの反応によって得られるポリグリシジルエーテル型;p-オキシ安息香酸、β-オキシナフトエ酸等のヒドロキシカルボン酸とエピクロルヒドリンとの反応によって得られるグリシジルエーテルエステル型;フタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸等のポリカルボン酸から誘導されるポリグリシジルエステル型;アミノフェノール、アミノアルキルフェノール等から誘導されるグリシジルアミノグリシジルエーテル型;アミノ安息香酸から誘導されるグリシジルアミノグリシジルエステル型;アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン等から誘導されるグリシジルアミン型;さらにエポキシ化ポリオレフィン、グリシジルヒダントイン、グリシジルアルキルヒダントイン、トリグリシジルシアヌレート等が挙げられる。耐熱性向上の観点からノボラック型のエポキシやグリシジルアミン型のエポキシ樹脂が好ましい。
 本発明のベンゾオキサジン樹脂組成物においてエポキシ樹脂を使用する場合、吸水特性の観点から、配合量の下限値はベンゾオキサジン樹脂10質量部に対し、0.1質量部が好ましく、更に好ましくは1質量部、特に好ましくは3質量部である。
 また、耐熱性の観点から、配合量の上限値はベンゾオキサジン樹脂10質量部に対し、100質量部が好ましく、更に好ましくは50質量部、特に好ましくは30質量部である。
The epoxy resin which can be blended is not particularly limited as long as it is a compound having at least one epoxy group, and examples thereof include bisphenol A, bisphenol F, bisphenol S, hexahydrobisphenol A, tetramethylbisphenol A, pyrocatechol, resorcinol, A glycidyl ether type obtained by the reaction of an epichlorohydrin with a polyphenol such as cresol novolak, phenol novolak, tetrabromobisphenol A, trihydroxybiphenyl, bisresorcinol, bisphenol hexafluoroacetone, tetramethyl bisphenol F, bixylenol, dihydroxynaphthalene, etc .; Glycerin, neopentyl glycol, ethylene glycol, propylene glycol, butylene glycol, hexylene Polyglycidyl ether type obtained by the reaction of an aliphatic polyhydric alcohol such as glycol, polyethylene glycol or polypropylene glycol with epichlorohydrin; obtained by the reaction of a hydroxycarboxylic acid such as p-hydroxybenzoic acid or β-hydroxynaphthoic acid with epichlorohydrin Of glycidyl ether ester type; phthalic acid, methyl phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, endomethylenetetrahydrophthalic acid, endomethylene hexahydrophthalic acid, trimellitic acid, polymerized fatty acid, etc. Polyglycidyl ester type derived from polycarboxylic acid; glycidyl aminoglycidyl ether type derived from aminophenol, aminoalkylphenol etc .; aminobenzoic acid or not Derived from glycidyl aminoglycidyl ester derived from aniline, toluidine, tribromoaniline, xylylenediamine, diaminocyclohexane, bisaminomethylcyclohexane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, etc. Glycidyl amine type; and epoxidized polyolefin, glycidyl hydantoin, glycidyl alkyl hydantoin, triglycidyl cyanurate and the like. From the viewpoint of heat resistance improvement, novolac type epoxy and glycidyl amine type epoxy resins are preferable.
When an epoxy resin is used in the benzoxazine resin composition of the present invention, the lower limit value of the compounding amount is preferably 0.1 parts by mass, more preferably 1 part by mass with respect to 10 parts by mass of the benzoxazine resin from the viewpoint of water absorption characteristics. Part, particularly preferably 3 parts by mass.
Further, from the viewpoint of heat resistance, the upper limit value of the compounding amount is preferably 100 parts by mass, more preferably 50 parts by mass, and particularly preferably 30 parts by mass with respect to 10 parts by mass of the benzoxazine resin.
 本発明のベンゾオキサジン樹脂またはベンゾオキサジン樹脂組成物は、シアネートエステル樹脂と配合したベンゾオキサジン樹脂組成物することにより、その硬化物の耐熱性を向上させることができる。配合し得るシアネートエステル樹脂としては、公知のシアネートエステル樹脂であれば特に限定されず、例えば、ノボラック型シアネートエステル樹脂、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、テトラメチルビスフェノールF型シアネートエステル樹脂などのビスフェノール型シアネートエステル樹脂;ナフトールアラルキル型フェノール樹脂と、ハロゲン化シアンとの反応で得られるナフトールアラルキル型シアネートエステル樹脂;ジシクロペンタジエン型シアネートエステル樹脂;ビフェニルアルキル型シアネートエステル樹脂やフェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル樹脂が挙げられる。
 上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。
 上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
 上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
 上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
 これらの中でもノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂が好ましく、ノボラック型シアネートエステル樹脂がより好ましい。ノボラック型シアネートエステル樹脂を用いることにより、得られる硬化物の架橋密度が増加し、耐熱性が向上するだけでなく、ベンゼン濃度の向上により、優れた熱分解特性や難燃性が期待できる。これらは単独で用いてもよく2種類以上を用いてもよい。
 本発明のベンゾオキサジン樹脂組成物においてシアネートエステル樹脂を使用する場合、耐熱性の観点から、配合量の下限値はベンゾオキサジン樹脂10質量部に対し、0.1質量部が好ましく、更に好ましくは1質量部、特に好ましくは3質量部である。
 また、ハンドリングの観点から、配合量の上限値はベンゾオキサジン樹脂10質量部に対し、100質量部が好ましく、更に好ましくは50質量部、特に好ましくは30質量部である。ベンゾオキサジン樹脂の配合量が多すぎると、ベンゾオキサジンと相分離をすることがある。
The heat resistance of the cured product of the benzoxazine resin or the benzoxazine resin composition of the present invention can be improved by blending the benzoxazine resin composition with a cyanate ester resin. The cyanate ester resin which can be blended is not particularly limited as long as it is a known cyanate ester resin, and, for example, novolac type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, tetramethyl bisphenol F type cyanate Bisphenol type cyanate ester resin such as ester resin; Naphthol aralkyl type cyanate ester resin obtained by reaction of naphthol aralkyl type phenol resin with cyanogen halide; Dicyclopentadiene type cyanate ester resin; Biphenyl alkyl type cyanate ester resin or phenols Products of phenol and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenol and ketones, and bisphenol Polycondensate of various aldehydes and the like include cyanate ester resin obtained by reacting a cyanogen halide with.
Examples of the above-mentioned phenols include phenol, alkyl substituted phenol, aromatic substituted phenol, naphthol, alkyl substituted naphthol, dihydroxybenzene, alkyl substituted dihydroxybenzene and dihydroxynaphthalene.
Examples of the various aldehydes include formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde and cinnamaldehyde.
Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinyl norbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene and the like.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone and the like.
Among these, novolac type cyanate ester resins and naphthol aralkyl type cyanate ester resins are preferable, and novolac type cyanate ester resins are more preferable. By using the novolac type cyanate ester resin, the crosslink density of the obtained cured product is increased, and not only the heat resistance is improved, but also by the improvement of the benzene concentration, excellent thermal decomposition characteristics and flame retardancy can be expected. These may be used alone or in combination of two or more.
When a cyanate ester resin is used in the benzoxazine resin composition of the present invention, the lower limit of the compounding amount is preferably 0.1 parts by mass, more preferably 1 with respect to 10 parts by mass of the benzoxazine resin, from the viewpoint of heat resistance. It is part by weight, particularly preferably 3 parts by weight.
In addition, from the viewpoint of handling, the upper limit value of the compounding amount is preferably 100 parts by mass, more preferably 50 parts by mass, and particularly preferably 30 parts by mass with respect to 10 parts by mass of the benzoxazine resin. When the compounding amount of benzoxazine resin is too large, phase separation may occur with benzoxazine.
 本発明のベンゾオキサジン樹脂またはベンゾオキサジン樹脂組成物は溶媒に溶解したワニスとして用いることもできる。ワニスとすることは、本発明のベンゾオキサジン樹脂またはベンゾオキサジン樹脂組成物の取り扱い(ハンドリング)が容易になるという意味では好ましい態様である。 The benzoxazine resin or benzoxazine resin composition of the present invention can also be used as a varnish dissolved in a solvent. The formation of a varnish is a preferred embodiment in the sense that the handling of the benzoxazine resin or benzoxazine resin composition of the present invention is facilitated.
 本発明のワニスに用い得る溶媒としては、例えばトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジオキサン、1-プロパノール、2-プロパノール、1-ブタノール、1,4-ジオキサン、エチレングリコールエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル及びプロピレングリコールモノメチルエーテル等が挙げられるが、本発明の式(1)で表されるベンゾオキサジン樹脂を溶解し得る溶媒であれば特に制限なく用いることができる。
 本発明のワニスには、必要に応じて前述の添加物や任意成分を配合してもよい。
As a solvent which can be used for the varnish of the present invention, for example, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dioxane, 1-propanol, 2-propanol, 1-butanol, 1 And 4-dioxane, ethylene glycol ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and propylene glycol monomethyl ether, etc., but the solvent capable of dissolving the benzoxazine resin represented by the formula (1) of the present invention If it exists, it can be used without particular restriction.
The above-described additives and optional components may be blended into the varnish of the present invention as required.
 本発明のベンゾオキサジン樹脂を含むワニスを各種の基板に塗布し、例えば150℃以下の温度で溶媒を除去(乾燥)した後、200℃以上の高温で処理することにより、硬化物とすることができる。
 また、本発明のワニスをガラス不織布等の基材に含浸させた後に溶媒を除去して得たプリプレグを用いて、積層板、銅張積層板等の繊維強化材料とすることもできる。
A varnish containing the benzoxazine resin of the present invention is applied to various substrates, and the solvent is removed (dried) at a temperature of 150 ° C. or less, for example, and then treated at a high temperature of 200 ° C. or more to obtain a cured product. it can.
Moreover, after impregnating the base materials, such as a glass nonwoven fabric, with the varnish of this invention and removing a solvent, it can also be set as fiber reinforced materials, such as a laminated board and a copper clad laminated board, using the prepreg obtained.
 次に本発明を実施例により更に具体的に説明する。なお、本発明はこれら実施例に限定されるものではない。合成例中の軟化点及び溶融粘度は下記の方法で測定した。
・軟化点  :JIS  K-7234に準じた方法で測定
・溶融粘度:コーンプレート法での150℃における粘度
The present invention will now be described in more detail by way of examples. The present invention is not limited to these examples. The softening point and the melt viscosity in the synthesis examples were measured by the following methods.
Softening point: Measured according to JIS K-7234 Melt viscosity: Viscosity at 150 ° C. in cone-plate method
(合成例1)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン559質量部とトルエン500質量部を仕込み、室温で35%塩酸167質量部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル251質量部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を190~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液500質量部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより下記式(5)で表されるアニリン樹脂335質量部(軟化点57℃、溶融粘度0.035Pa・s、アミン当量196g/eq)を得た。また、ゲルパーミエーションクロマトグラフィーで測定した結果、式(5)におけるn1は1.6(平均値)であった。
Synthesis Example 1
In a flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer, 559 parts by mass of aniline and 500 parts by mass of toluene were charged, and 167 parts by mass of 35% hydrochloric acid was dropped over 1 hour at room temperature. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the toluene which was the organic layer was returned to the system for dehydration. Subsequently, 251 parts by mass of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining at 60 to 70 ° C., and the reaction was further performed at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to bring the system to 190 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. After that, 500 parts by weight of a 30% aqueous solution of sodium hydroxide was slowly added dropwise while cooling so that the system was not vigorously refluxed, and the toluene distilled off at 80 ° C. or less was returned to the system and allowed to stand at 70 ° C. to 80 ° C. . The lower aqueous layer separated was removed, and the reaction solution was repeatedly washed with water until the washing solution became neutral. Next, 335 parts by mass of an aniline resin represented by the following formula (5) (softening point 57 ° C., melt viscosity 0.035 Pa · s, amine equivalent 196 g / a) by distilling excess aniline and toluene away from the oil layer under heating and pressure reduction. got eq). Moreover, as a result of measuring by gel permeation chromatography, n1 in Formula (5) was 1.6 (average value).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(実施例1)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、合成例1で得たアニリン樹脂59質量部、フェノール28質量部、トルエン90質量部を加え、60℃に昇温した。次いでホルムアルデヒド水溶液49質量部を60分かけて添加した。その後、80℃に昇温し、8時間反応を行った。
 反応終了後、トルエン90質量部を加え、水洗を繰り返したのち、ロータリーエバポレータにて加熱減圧下、トルエンを留去することで、本発明のベンゾオキサジン樹脂90質量部を得た。得られたベンゾオキサジン樹脂は、軟化点は102℃、溶融粘度は2.76Pa・sであった。
 H-NMR分析により、得られたベンゾオキサジン樹脂は下記式(6)で表されることを確認した。H-NMRの結果を図1に示す。
Example 1
In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 59 parts by mass of the aniline resin obtained in Synthesis Example 1, 28 parts by mass of phenol and 90 parts by mass of toluene were added, and the temperature was raised to 60 ° C. Then, 49 parts by mass of an aqueous solution of formaldehyde was added over 60 minutes. Thereafter, the temperature was raised to 80 ° C., and reaction was performed for 8 hours.
After completion of the reaction, 90 parts by mass of toluene was added, and after repeated washing with water, the toluene was distilled off under heating and reduced pressure using a rotary evaporator to obtain 90 parts by mass of the benzoxazine resin of the present invention. The obtained benzoxazine resin had a softening point of 102 ° C. and a melt viscosity of 2.76 Pa · s.
It was confirmed by 1 H-NMR analysis that the obtained benzoxazine resin is represented by the following formula (6). The results of 1 H-NMR are shown in FIG.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(実施例2)
 フェノール28質量部をアリルフェノール34質量部に変えた他は、実施例1と同様にして、本発明のベンゾオキサジン樹脂98質量部を得た。得られたベンゾオキサジン樹脂は、軟化点は91℃、溶融粘度は0.5Pa・sであった。
 H-NMR分析により、得られたベンゾオキサジン樹脂は下記式(7)で表されることを確認した。H-NMRの結果を図2に示す。
(Example 2)
In the same manner as in Example 1 except that 28 parts by mass of phenol was changed to 34 parts by mass of allylphenol, 98 parts by mass of the benzoxazine resin of the present invention was obtained. The obtained benzoxazine resin had a softening point of 91 ° C. and a melt viscosity of 0.5 Pa · s.
It was confirmed by 1 H-NMR analysis that the obtained benzoxazine resin is represented by the following formula (7). The results of 1 H-NMR are shown in FIG.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(合成例2)
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら、フェノール414質量部、及び4,4’-ビス(クロロメチル)-1,1’-ビフェニル251質量部、p-トルエンスルホン酸13質量部を仕込み、撹拌下で80℃まで昇温、溶解させた。4時間攪拌後、メチルイソブチルケトン700質量部を加えた後洗浄水が中性になるまで、300質量部の水で3回水洗し、次いで油層から未反応フェノール、メチルイソブチルケトンを1.3kPaの圧力下において減圧留去し、下記式(8)で表されるフェノールアラルキル樹脂(軟化点65℃、溶融粘度0.05、水酸基当量200g/eq)310質量部を得た。また、ゲルパーミエーションクロマトグラフィーで測定した結果、式(8)におけるn2は1.5(平均値)であった。
(Composition example 2)
414 parts by mass of phenol and 251 parts by mass of 4,4'-bis (chloromethyl) -1,1'-biphenyl, p-toluene sulfone while nitrogen gas purge is applied to the flask equipped with a thermometer, a condenser, and a stirrer 13 parts by mass of acid was charged, and the temperature was raised to 80 ° C. under stirring to dissolve. After stirring for 4 hours, add 700 parts by mass of methyl isobutyl ketone, wash with 3 times 300 parts by mass of water until the washing water becomes neutral, and then add 1.3 kPa of unreacted phenol and methyl isobutyl ketone from the oil layer. The reaction product was evaporated under reduced pressure under reduced pressure to obtain 310 parts by mass of a phenol aralkyl resin (softening point 65 ° C., melt viscosity 0.05, hydroxyl group equivalent 200 g / eq) represented by the following formula (8). Moreover, as a result of measuring by gel permeation chromatography, n2 in Formula (8) was 1.5 (average value).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(比較例1)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、合成例2で得られたフェノール樹脂59質量部、アニリン28質量部、トルエン90質量部を加え、40℃に昇温した。次いでホルムアルデヒド水溶液49質量部を60分かけて添加した。その後、80℃に昇温し、8時間反応を行った。
 反応終了後、トルエン90質量部を加え、水洗を繰り返したのち、ロータリーエバポレータにて130℃以下で加熱減圧下、トルエンを留去することでベンゾオキサジン樹脂88質量部を得た。得られたベンゾオキサジン樹脂は、軟化点は100℃、溶融粘度は1.9Pa・sであった。
(Comparative example 1)
In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 59 parts by mass of the phenol resin obtained in Synthesis Example 2, 28 parts by mass of aniline and 90 parts by mass of toluene were added, and the temperature was raised to 40 ° C. Then, 49 parts by mass of an aqueous solution of formaldehyde was added over 60 minutes. Thereafter, the temperature was raised to 80 ° C., and reaction was performed for 8 hours.
After completion of the reaction, 90 parts by mass of toluene was added, and after repeated washing with water, the toluene was distilled off by heating under reduced pressure at 130 ° C. or less with a rotary evaporator to obtain 88 parts by mass of benzooxazine resin. The obtained benzoxazine resin had a softening point of 100 ° C. and a melt viscosity of 1.9 Pa · s.
(実施例3)
 実施例1で得られたベンゾオキサジン樹脂を200℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 3)
The benzoxazine resin obtained in Example 1 was cured under the curing conditions of 200 ° C. for 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例4)
 実施例2で得られたベンゾオキサジン樹脂を200℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 4)
The benzoxazine resin obtained in Example 2 was cured under the curing conditions of 200 ° C. for 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 1.
(比較例2)
 ビスフェノールF骨格のベンゾオキサジン樹脂(四国化成(株)製、製品名:P-d型ベンゾオキサジン樹脂)を200℃×2時間の硬化条件で硬化させ、硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Comparative example 2)
A benzoxazine resin having a bisphenol F skeleton (manufactured by Shikoku Kasei Co., Ltd., product name: P-d-type benzoxazine resin) was cured under curing conditions of 200 ° C. for 2 hours to obtain a cured product. The measurement results of the physical properties of the cured product are shown in Table 1.
(比較例3)
 比較例1で得られたベンゾオキサジン樹脂を200℃×2時間の硬化条件で硬化させ、硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Comparative example 3)
The benzoxazine resin obtained in Comparative Example 1 was cured under the curing conditions of 200 ° C. for 2 hours to obtain a cured product. The measurement results of the physical properties of the cured product are shown in Table 1.
(比較例4)
 EOCN-1020-55(日本化薬(株)製 エポキシ当量194g/eq. 軟化点54.8℃)を65質量部、フェノールノボラック(明和化成(株)製 H-1、水酸基当量106g/eq.)34質量部、トリフェニルフォスフィン(純正化学(株)製)1質量部を配合しミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物を200℃×2時間の硬化条件で硬化させ、硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Comparative example 4)
65 parts by mass of EOCN-1020-55 (manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 194 g / eq. Softening point 54.8 ° C.), phenol novolak H1 (manufactured by Meiwa Kasei Co., Ltd., hydroxyl equivalent 106 g / eq. 34 parts by mass and 1 part by mass of triphenylphosphine (manufactured by Junsei Chemical Co., Ltd.) were mixed and uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition. The epoxy resin composition was cured under the curing conditions of 200 ° C. for 2 hours to obtain a cured product. The measurement results of the physical properties of the cured product are shown in Table 1.
 得られた硬化物は下記条件にて測定を実施した。
<耐熱性>
・DMA測定にてTg(tanδ最大時の温度)の測定を行った。
 測定装置:動的粘弾性測定器TA-instruments製、Q-800
 測定温度:30~350℃
 昇温速度:2℃/min
 サンプルサイズ:幅5mm×長さ50mm×厚み0.8mm
<誘電率及び誘電正接>
・空洞共振器を用いて空洞共振器摂動法にて測定を行った。
 測定装置:空洞共振器 Agilent Technologies社製
 測定方法:JIS K6991に準拠して1GHzにおいて測定
 測定モード:空洞共振器摂動法
 測定温度:25℃
 サンプルサイズ:幅1.7mm×長さ100mm×厚さ1.7mm
<耐熱分解性>
・TG-DTAを用いて重量が1%及び5%減少したときの温度を測定した。
 測定装置:TG-DTA6220 SII社製
 測定温度:30~580℃
 昇温速度:10℃/min
 Td1:1%重量減少温度
 Td5:5%重量減少温度
<吸水率>
・試験片を100℃の水中で24時間煮沸させた後の重量増加率(%)
 サンプルサイズ:直径5cm×厚み4mmの円盤状
The obtained cured product was measured under the following conditions.
<Heat resistance>
-Measurement of Tg (temperature at maximum of tan δ) was performed by DMA measurement.
Measuring device: Dynamic viscoelasticity measuring instrument TA-instruments, Q-800
Measurement temperature: 30 to 350 ° C
Heating rate: 2 ° C / min
Sample size: Width 5 mm × length 50 mm × thickness 0.8 mm
<Dielectric constant and dielectric loss tangent>
-Measurement was performed by a cavity resonator perturbation method using a cavity resonator.
Measurement device: Cavity resonator Agilent Technologies, Inc. Measurement method: Measurement at 1 GHz according to JIS K6991 Measurement mode: Cavity resonator perturbation method Measurement temperature: 25 ° C.
Sample size: Width 1.7mm × length 100mm × thickness 1.7mm
<Heat resistant decomposition resistance>
TG-DTA was used to measure the temperature at which the weight was reduced by 1% and 5%.
Measuring device: TG-DTA6220 manufactured by SII Measuring temperature: 30 to 580 ° C.
Heating rate: 10 ° C / min
Td 1: 1% weight loss temperature Td 5: 5% weight loss temperature <water absorption>
・ Weight gain (%) after boiling test piece in water at 100 ° C for 24 hours
Sample size: 5 cm diameter × 4 mm thick disc
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表1の結果より、比較例2、比較例3は耐熱性、誘電率が良好な結果であったが、熱分解特性、誘電正接、吸水特性に不具合を生じた。また、比較例4は、いずれの特性も十分満足いく結果ではない。これに対して、本発明のベンゾオキサジン樹脂は、耐熱性、熱分解特性、誘電特性、及び吸水特性の全ての特性において優れた結果を示した。 From the results of Table 1, the heat resistance and the dielectric constant of the comparative example 2 and the comparative example 3 are good results, but the thermal decomposition characteristics, the dielectric loss tangent, and the water absorption characteristics are defective. Moreover, the comparative example 4 is a result in which neither characteristic is fully satisfactory. On the other hand, the benzoxazine resin of the present invention showed excellent results in all of the heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics.
(実施例5)
 実施例2で得られたベンゾオキサジン樹脂を60質量部、EOCN-1020-55(日本化薬(株)製 エポキシ当量194g/eq. 軟化点54.8℃)を40質量部配合しミキシングロールを用いて均一に混合・混練し、ベンゾオキサジン-エポキシ樹脂組成物を得た。このベンゾオキサジン-エポキシの硬化挙動を観察するためMDSC測定を行った。MDSC測定の結果を図3に示す。
(Example 5)
60 parts by mass of the benzoxazine resin obtained in Example 2 and 40 parts by mass of EOCN-1020-55 (epoxy equivalent 194 g / eq. Softening point 54.8 ° C. manufactured by Nippon Kayaku Co., Ltd.) and mixing roll The resulting mixture was uniformly mixed and kneaded to obtain a benzoxazine-epoxy resin composition. MDSC measurements were performed to observe the curing behavior of the benzoxazine-epoxy. The results of the MDSC measurement are shown in FIG.
(実施例6)
 実施例2で得られたベンゾオキサジン樹脂を60質量部、EOCN-1020-55を39質量部、18%オクトープZn(ホープ製薬(株)製)を1質量部配合しミキシングロールを用いて均一に混合・混練し、ベンゾオキサジン-エポキシ樹脂組成物を得た。このベンゾオキサジン-エポキシ樹脂組成物の硬化挙動を観察するためMDSC測定を行った。MDSC測定の結果を図3に示す。
 更にこのベンゾオキサジン-エポキシ樹脂組成物を200℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(Example 6)
60 parts by mass of the benzoxazine resin obtained in Example 2, 39 parts by mass of EOCN-1020-55, 1 part by mass of 18% octoop Zn (Hop Pharmaceutical Co., Ltd.) and mixed uniformly using a mixing roll The mixture was mixed and kneaded to obtain a benzoxazine-epoxy resin composition. MDSC measurements were performed to observe the curing behavior of the benzoxazine-epoxy resin composition. The results of the MDSC measurement are shown in FIG.
Further, the benzoxazine-epoxy resin composition was cured under curing conditions of 200 ° C. for 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 2.
(実施例7)
 実施例2で得られたベンゾオキサジン樹脂を35質量部、EOCN-1020-55を23質量部、2,2-ビス(4-シアナトフェニル)プロパン(東京化成工業(株)製)を41質量部、18%オクトープZn(ホープ製薬(株)製)を1質量部配合しミキシングロールを用いて均一に混合・混練し、ベンゾオキサジン-エポキシ-シアネートエステル樹脂組成物を得た。このベンゾオキサジン-エポキシ-シアネートエステル樹脂組成物の硬化挙動を観察するためMDSC測定を行った。MDSC測定の結果を図3に示す。
 更にこのベンゾオキサジン-エポキシ-シアネートエステル樹脂組成物を200℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表2に示す。
(Example 7)
35 parts by mass of the benzoxazine resin obtained in Example 2, 23 parts by mass of EOCN-1020-55, 41 parts of 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) One part by weight of 18 parts of octope Zn (manufactured by Hope Pharmaceutical Co., Ltd.) was mixed and uniformly mixed and kneaded using a mixing roll to obtain a benzoxazine-epoxy-cyanate ester resin composition. In order to observe the curing behavior of this benzoxazine-epoxy-cyanate ester resin composition, MDSC measurements were performed. The results of the MDSC measurement are shown in FIG.
Further, the benzoxazine-epoxy-cyanate ester resin composition was cured under curing conditions of 200 ° C. for 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 2.
(実施例8)
 実施例2で得られたベンゾオキサジン樹脂を45質量部、2,2-ビス(4-シアナトフェニル)プロパン(東京化成工業(株)製)を55質量部配合し、ミキシングロールを用いて均一に混合・混練し、ベンゾオキサジン-シアネートエステル樹脂組成物を得た。このベンゾオキサジン-シアネート樹脂組成物の硬化挙動を観察するためMDSC測定を行った。MDSC測定の結果を図3に示す。
(Example 8)
45 parts by mass of the benzoxazine resin obtained in Example 2 and 55 parts by mass of 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) are blended, and uniform using mixing rolls The mixture was mixed and kneaded to obtain a benzoxazine-cyanate ester resin composition. MDSC measurements were performed to observe the curing behavior of the benzoxazine-cyanate resin composition. The results of the MDSC measurement are shown in FIG.
(実施例9)
 実施例2で得られたベンゾオキサジン樹脂を45質量部、2,2-ビス(4-シアナトフェニル)プロパン(東京化成工業(株)製)を54質量部、18%オクトープZn(ホープ製薬(株)製)を1質量部配合し、ミキシングロールを用いて均一に混合・混練し、ベンゾオキサジン-シアネートエステル樹脂組成物を得た。このベンゾオキサジン-シアネート樹脂組成物の硬化挙動を観察するためMDSC測定を行った。MDSC測定の結果を図3に示す。
(Example 9)
45 parts by mass of the benzoxazine resin obtained in Example 2, 54 parts by mass of 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.), 18% Octopus Zn (Hope Pharmaceutical ( 1 part by mass) and uniformly mixed and kneaded using a mixing roll to obtain a benzoxazine-cyanate ester resin composition. MDSC measurements were performed to observe the curing behavior of the benzoxazine-cyanate resin composition. The results of the MDSC measurement are shown in FIG.
 実施例6、7で得られた硬化物は下記条件にて測定を行った。
<耐熱性>
・DMA測定にてTg(tanδ最大時の温度)の測定を行った。
 測定装置:動的粘弾性測定器TA-instruments製、Q-800
 測定温度:30~350℃
 昇温速度:2℃/min
 サンプルサイズ:幅5mm×長さ50mm×厚み0.8mm
The cured products obtained in Examples 6 and 7 were measured under the following conditions.
<Heat resistance>
-Measurement of Tg (temperature at maximum of tan δ) was performed by DMA measurement.
Measuring device: Dynamic viscoelasticity measuring instrument TA-instruments, Q-800
Measurement temperature: 30 to 350 ° C
Heating rate: 2 ° C / min
Sample size: Width 5 mm × length 50 mm × thickness 0.8 mm
 実施例5~9で得られた樹脂組成物の硬化挙動は下記条件にて測定を行った。
<硬化挙動>
・MDSC測定にて硬化発熱の観察を行った。
 測定装置:Q-2000 TAインスツルメンツ社製
 測定温度:25~330℃
 昇温速度:3℃/min
 測定モード:MDSC測定
The curing behavior of the resin compositions obtained in Examples 5 to 9 was measured under the following conditions.
<Hardening behavior>
The heat of curing was observed by MDSC measurement.
Measuring device: Q-2000 TA Instruments Co. Measuring temperature: 25 to 330 ° C
Heating rate: 3 ° C / min
Measurement mode: MDSC measurement
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表2の結果より、本発明のベンゾオキサジン樹脂は汎用のエポキシ樹脂と硬化させた場合においても耐熱性に優れる結果を示した。そして、シアネートエステル樹脂を併用した実施例7は、更に高い耐熱性を有した。 From the results of Table 2, the benzoxazine resin of the present invention showed excellent heat resistance even when it is cured with a general-purpose epoxy resin. And Example 7 which used together cyanate ester resin had further high heat resistance.
 図3の実施例5~7の結果より、本発明のベンゾオキサジン樹脂はエポキシ樹脂の硬化剤としても使用することができることが確認できた。さらに、金属触媒等の触媒を用いた実施例6は、実施例5よりも硬化温度を下げることが確認できた。
 また、実施例8、9の結果より、本発明のベンゾオキサジンはシアネートエステル樹脂を硬化剤として使用できることが確認でき、金属触媒等の触媒により、硬化温度を下げることが確認できた。
From the results of Examples 5 to 7 in FIG. 3, it can be confirmed that the benzoxazine resin of the present invention can also be used as a curing agent for epoxy resin. Furthermore, it has been confirmed that Example 6 using a catalyst such as a metal catalyst has a lower curing temperature than Example 5.
Further, from the results of Examples 8 and 9, it was confirmed that the benzoxazine of the present invention can be used as a curing agent for cyanate ester resin, and it was confirmed that the curing temperature was lowered by a catalyst such as a metal catalyst.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2017年10月20日付で出願された日本国特許出願(特願2017-203285)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the present invention has been described in detail with reference to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present invention.
The present application is based on the Japanese Patent Application (Japanese Patent Application No. 2017-203285) filed on October 20, 2017, which is incorporated by reference in its entirety. Also, all references cited herein are taken as a whole.
 本発明のベンゾオキサジン樹脂及びそれを含むベンゾオキサジン樹脂組成物は、耐熱性、熱分解特性、誘電特性、吸水特性に優れた硬化物が得られるため、電子機器用プリント配線板用の積層板や航空宇宙分野で使用される繊維強化複合材料等の様々な用途に有用である。 The benzoxazine resin of the present invention and the benzoxazine resin composition containing the same can provide a cured product having excellent heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics, and therefore, they can be used as laminates for printed wiring boards for electronic devices. It is useful for various applications, such as fiber reinforced composite materials used in the aerospace field.

Claims (10)

  1.  下記式(1)で表されるベンゾオキサジン樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、nは繰り返し数の平均値であり、1~10の実数を表す。R~Rはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~8のアルキル基又はアリール基のいずれかを表す。R~Rがそれぞれ複数存在する場合、それぞれのR~Rは互いに同一であっても異なっていてもよい。R、R10はそれぞれ独立に水素原子、炭素数1~8のアルキル基、アリール基、アリル基又はアルコキシ基のいずれかを表す。R、R10がそれぞれ複数存在する場合、それぞれのR、R10は互いに同一であっても異なっていてもよい。点線はベンゼン環が形成されていてもよいことを表す。)
    Benzoxazine resin represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), n is an average value of the number of repetitions and represents a real number of 1 to 10. R 1 to R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group If .R 3 ~ R 7 represent either a group is present in plural, each of R 3 ~ R 7 is optionally being the same or different .R 9, R 10 each independently represent a hydrogen atom Or an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group, and when a plurality of R 9 s and R 10 s are present, each R 9 s and R 10 s may be identical to each other The dotted line may indicate that a benzene ring may be formed.)
  2.  前記式(1)におけるR~Rが水素原子である請求項1に記載のベンゾオキサジン樹脂。 The benzoxazine resin according to claim 1, wherein R 1 to R 8 in the formula (1) are hydrogen atoms.
  3.  下記式(2)で表されるアニリン樹脂と下記式(3)で表されるフェノール化合物とアルデヒド化合物とを反応させて得られる請求項1又は2に記載のベンゾオキサジン樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、n及びR~Rは前記式(1)中のn及びR~Rと同じ意味を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R、R10は前記式(1)中のR、R10と同じ意味を表す。点線はベンゼン環が形成されていてもよいことを表す。)
    The benzoxazine resin according to claim 1 or 2, which is obtained by reacting an aniline resin represented by the following formula (2) with a phenol compound represented by the following formula (3) and an aldehyde compound.
    Figure JPOXMLDOC01-appb-C000002
    (Equation (2), n and R 1 ~ R 8 are as defined n and R 1 ~ R 8 in the formula (1).)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), R 9 and R 10 have the same meaning as R 9 and R 10 in the formula (1). The dotted line represents that a benzene ring may be formed.)
  4.  請求項1~3のいずれかに記載のベンゾオキサジン樹脂とエポキシ樹脂とを含有するベンゾオキサジン樹脂組成物。 A benzoxazine resin composition comprising the benzoxazine resin according to any one of claims 1 to 3 and an epoxy resin.
  5.  請求項1~3のいずれかに記載のベンゾオキサジン樹脂または請求項4に記載のベンゾオキサジン樹脂組成物とシアネートエステル樹脂とを含有するベンゾオキサジン樹脂組成物。 A benzoxazine resin composition comprising the benzoxazine resin according to any one of claims 1 to 3 or the benzoxazine resin composition according to claim 4 and a cyanate ester resin.
  6.  請求項1~3のいずれかに記載のベンゾオキサジン樹脂または請求項4もしくは5に記載のベンゾオキサジン樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the benzoxazine resin according to any one of claims 1 to 3 or the benzoxazine resin composition according to claim 4 or 5.
  7.  請求項1~3のいずれかに記載のベンゾオキサジン樹脂または請求項4もしくは5に記載のベンゾオキサジン樹脂組成物を溶媒に溶かしたワニス。 A varnish obtained by dissolving the benzoxazine resin according to any one of claims 1 to 3 or the benzoxazine resin composition according to claim 4 or 5 in a solvent.
  8.  請求項7に記載のワニスを基材に含浸させてなるプリプレグ。 A prepreg obtained by impregnating the varnish according to claim 7 into a substrate.
  9.  請求項8に記載のプリプレグを硬化してなる硬化物。 A cured product obtained by curing the prepreg according to claim 8.
  10.  請求項8に記載のプリプレグを使用して得られる積層板または銅張積層板。 A laminate or copper clad laminate obtained using the prepreg according to claim 8.
PCT/JP2018/038847 2017-10-20 2018-10-18 Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg, and laminate or copper-clad laminate WO2019078298A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880064592.XA CN111164121A (en) 2017-10-20 2018-10-18 Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg, and laminate or copper-clad laminate
JP2019549340A JPWO2019078298A1 (en) 2017-10-20 2018-10-18 Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg and laminate or copper-clad laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-203285 2017-10-20
JP2017203285 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019078298A1 true WO2019078298A1 (en) 2019-04-25

Family

ID=66174475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038847 WO2019078298A1 (en) 2017-10-20 2018-10-18 Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg, and laminate or copper-clad laminate

Country Status (4)

Country Link
JP (1) JPWO2019078298A1 (en)
CN (1) CN111164121A (en)
TW (1) TW201922826A (en)
WO (1) WO2019078298A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896850A (en) * 2021-10-15 2022-01-07 北京理工大学 Flame-retardant high-heat-resistance low-dielectric benzoxazine resin and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592502A (en) * 2020-06-11 2020-08-28 广东同宇新材料有限公司 Biphenyl polyamine benzoxazine and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001755A (en) * 2007-06-25 2009-01-08 Sekisui Chem Co Ltd Thermosetting resin, thermosetting composition containing the same and molded body obtained from the same
JP2009084391A (en) * 2007-09-28 2009-04-23 Sekisui Chem Co Ltd Method for producing thermosetting resin having dihydrobenzoxazine ring structure
JP2011168671A (en) * 2010-02-17 2011-09-01 Jfe Chemical Corp Thermosetting resin composition and cured product thereof
JP2011213762A (en) * 2010-03-31 2011-10-27 Sekisui Chem Co Ltd Thermosetting resin composition having benzoxazine ring and method for producing the same, and molding and cured product
JP2012072319A (en) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd Method for producing thermosetting resin having benzoxazine ring, and thermosetting resin having benzoxazine ring
WO2017104295A1 (en) * 2015-12-16 2017-06-22 Dic株式会社 Oxazine compound, composition and cured product
JP2017186265A (en) * 2016-04-04 2017-10-12 日本化薬株式会社 Benzoxazine compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156450B1 (en) * 2014-06-13 2019-10-09 DIC Corporation Curable resin composition, cured product thereof, semiconductor sealing material, semiconductor device, prepreg, circuit board, buildup film, buildup board, fiber-reinforced composite material, and fiber-reinforced resin molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001755A (en) * 2007-06-25 2009-01-08 Sekisui Chem Co Ltd Thermosetting resin, thermosetting composition containing the same and molded body obtained from the same
JP2009084391A (en) * 2007-09-28 2009-04-23 Sekisui Chem Co Ltd Method for producing thermosetting resin having dihydrobenzoxazine ring structure
JP2011168671A (en) * 2010-02-17 2011-09-01 Jfe Chemical Corp Thermosetting resin composition and cured product thereof
JP2011213762A (en) * 2010-03-31 2011-10-27 Sekisui Chem Co Ltd Thermosetting resin composition having benzoxazine ring and method for producing the same, and molding and cured product
JP2012072319A (en) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd Method for producing thermosetting resin having benzoxazine ring, and thermosetting resin having benzoxazine ring
WO2017104295A1 (en) * 2015-12-16 2017-06-22 Dic株式会社 Oxazine compound, composition and cured product
JP2017186265A (en) * 2016-04-04 2017-10-12 日本化薬株式会社 Benzoxazine compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896850A (en) * 2021-10-15 2022-01-07 北京理工大学 Flame-retardant high-heat-resistance low-dielectric benzoxazine resin and preparation method thereof
CN113896850B (en) * 2021-10-15 2022-07-22 北京理工大学 Flame-retardant high-heat-resistance low-dielectric benzoxazine resin and preparation method thereof

Also Published As

Publication number Publication date
TW201922826A (en) 2019-06-16
CN111164121A (en) 2020-05-15
JPWO2019078298A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
JP2017186265A (en) Benzoxazine compound
KR102268344B1 (en) Active ester composition and cured product thereof
WO2014199659A9 (en) Compound containing phenolic hydroxyl group, phenolic resin, curable composition, cured product thereof, semiconductor sealing material, and printed circuit board
KR20210046039A (en) Phenolic compound, active ester resin and its manufacturing method, and thermosetting resin composition and cured product thereof
WO2019078298A1 (en) Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg, and laminate or copper-clad laminate
JP7415272B2 (en) Indanbisphenol compound, curable resin composition, and cured product
JP2017141389A (en) Oxazine resin composition and cured product of the same
CN113748152B (en) Curable resin composition
JP5328064B2 (en) Polyhydric phenol compound, thermosetting resin composition and cured product thereof
TWI794235B (en) Epoxy resin, production method, epoxy resin composition and hardened product thereof
JP5692471B1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
TWI522385B (en) An epoxy resin, an epoxy resin composition, and a cured product thereof
JP2022173168A (en) Phenolic resin, epoxy resin, curable resin composition, cured article, fiber-reinforced composite material, and fiber-reinforced resin molded article
CN117940478A (en) Phenol resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded article
JP5448137B2 (en) Polyhydric phenol resin, epoxy resin composition, and cured product thereof
JP4628621B2 (en) Method for producing phenol aralkyl resin
JP2017105898A (en) Epoxy resin, manufacturing method of epoxy resin, curable resin composition and cured article thereof
JP4748625B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP6464721B2 (en) Cyanate ester compound, cyanate ester resin, method for producing cyanate ester compound, curable resin composition, cured product thereof, build-up adhesive film, semiconductor sealing material, prepreg, and circuit board
JP6403003B2 (en) Cyanate ester compound, cyanate ester resin, curable composition, cured product thereof, build-up film, semiconductor sealing material, prepreg, circuit board, and method for producing cyanate ester resin
US20150322308A1 (en) Epoxy resin, production method thereof, epoxy resin composition, and cured product
TWI833907B (en) Hardening resin composition
TWI833906B (en) Hardening resin composition
JP2013108025A (en) Curable resin composition, cured product thereof, cyanate ester resin, semiconductor sealing material, prepreg, circuit board, and buildup film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868954

Country of ref document: EP

Kind code of ref document: A1