WO2019075914A1 - 一种智能穿戴设备的佩戴状态检测方法及装置 - Google Patents

一种智能穿戴设备的佩戴状态检测方法及装置 Download PDF

Info

Publication number
WO2019075914A1
WO2019075914A1 PCT/CN2017/118280 CN2017118280W WO2019075914A1 WO 2019075914 A1 WO2019075914 A1 WO 2019075914A1 CN 2017118280 W CN2017118280 W CN 2017118280W WO 2019075914 A1 WO2019075914 A1 WO 2019075914A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared ray
wearable device
difference
light intensity
smart wearable
Prior art date
Application number
PCT/CN2017/118280
Other languages
English (en)
French (fr)
Inventor
栾浩杰
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Priority to US16/754,893 priority Critical patent/US11169588B2/en
Publication of WO2019075914A1 publication Critical patent/WO2019075914A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3231Monitoring the presence, absence or movement of users
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to the field of smart wearable device wearing detection technology, and in particular, to a wearable state detecting method and device for a smart wearable device.
  • the wearing detection method generally uses a fixed-intensity infrared ray to illuminate the measured object, and detects the distance between the transmitter and the object through the infrared ray to determine whether to wear the smart wearing device.
  • This kind of detection method is easy to cause misjudgment.
  • the smart wearable device is placed flat on the table or close to the surface of other objects, the accuracy of the smart watch wearing detection cannot be guaranteed.
  • the prior art adopts supplementary judgment conditions such as temperature difference and capacitance difference of the upper and lower surfaces of the smart wearable device, but these conditions are highly susceptible to the surrounding environment, causing misjudgment, and also causing higher power consumption problems.
  • the present invention provides a smart wearable device wearing state detecting method and device.
  • a method for detecting a wearing state of a smart wearable device is provided.
  • the smart wearable device is configured with an infrared sensor, and the method includes:
  • the light intensity of the first infrared ray and the light intensity of the second infrared ray are both set in advance, and the light intensity of the second infrared ray is not equal to the light intensity of the first infrared ray.
  • the smart wearable device is output as the wearing state.
  • the method further includes:
  • the infrared sensor is controlled to emit a third infrared ray, and the light intensity of the third infrared ray is preset, and the light intensity of the first infrared ray and the second infrared ray are not equal;
  • the first effective mean of obtaining the light intensity of the reflected signal of the first infrared light comprises:
  • the average value is taken as the first effective average value; otherwise, the reflection signal of the first infrared ray is resampled, a new set of sampling signals is obtained, the variance and the mean value are calculated, and the sampling times are accumulated; The accumulated sampling times exceed the preset sampling times, and the output smart wearable device is in a non-wearing state.
  • the second effective mean of obtaining the light intensity of the reflected signal of the second infrared light comprises:
  • the average value is taken as the second effective average value, otherwise the smart wearable device is output as the non-wearing state.
  • the third effective mean of obtaining the light intensity of the reflected signal of the third infrared light comprises:
  • the average value is taken as the third effective average value, otherwise the smart wearable device is output as the non-wearing state.
  • the method further comprises:
  • the infrared sensor is activated to detect the wearing state of the smart wearable device.
  • a wearing state detecting device for a smart wearing device wherein the smart wearing device is configured with an infrared sensor, wherein the device comprises:
  • the light intensity control unit is configured to control the infrared sensor to emit the first infrared ray and the second infrared ray, wherein the light intensity of the first infrared ray and the light intensity of the second infrared ray are both preset, and the light intensity of the second infrared ray and the first infrared ray are The light intensity is not equal;
  • a mean value obtaining unit configured to acquire a first effective mean value of a light intensity of a reflected signal of the first infrared ray, and a second effective mean value of a light intensity of the reflected signal of the second infrared ray;
  • the mean comparison unit is configured to calculate a difference between the first effective mean and the second effective mean as a first difference, and compare an absolute value of the first difference with a first preset difference threshold;
  • the wearing state output unit is configured to output the smart wearable device in a non-wearing state if the absolute value of the first difference is less than the preset difference threshold.
  • the light intensity control unit is further configured to control the infrared sensor to emit a third infrared ray, wherein the light intensity of the third infrared ray is preset, and the light intensity of the first infrared ray and the second infrared ray are not equal;
  • the mean value obtaining unit is further configured to acquire a third effective mean value of the light intensity of the reflected signal of the third infrared ray;
  • the mean comparison unit is further configured to calculate a difference between the first effective mean and the third effective mean as a second difference, and compare an absolute value of the second difference with a second preset difference threshold;
  • the wearing state output unit is further configured to output the smart wearable device as a non-wearing state if the absolute value of the second difference is less than the preset difference threshold, or output the smart wearable device as a wearable state.
  • a smart wearable device is provided.
  • the smart wearable device is configured with an infrared sensor.
  • the smart wearable device includes a memory and a processor.
  • the memory and the processor are connected by an internal bus, and the memory is stored.
  • a computer program executed by a processor that, when executed by a processor, implements the method steps described above.
  • the technical scheme of the invention utilizes the difference that different objects have different reflections of infrared rays of different light intensities.
  • the difference between the effective mean values of different reflected signals is used as the judgment intelligence.
  • the conditions under which the device is worn By collecting the reflected signals of the objects illuminated by different light intensity infrared rays, the difference between the light intensity of the reflected signals under different light intensities is compared with the preset difference threshold value, so that the wearing state of the smart wearable device can be accurately determined, thereby avoiding The erroneous judgment caused by the determination of the wearing condition by the distance determination, and the determination of the temperature difference and the capacitance difference which are greatly affected by the surrounding environment. And using two infrared rays of different light intensity for illumination comparison, the criterion of judgment is improved, and the possibility of misjudgment is reduced.
  • 1 is a method for detecting a wearing state of a smart wearable device according to an embodiment of the present invention
  • FIG. 2 is a method for detecting a wearing state of a smart wearable device according to another embodiment of the present invention.
  • FIG. 3 is a flowchart of obtaining a first effective average value according to an embodiment of the present invention.
  • FIG. 5 is a device for detecting wearing state of a smart wearable device according to an embodiment of the present invention.
  • FIG. 6 is a smart wearable device according to an embodiment of the present invention.
  • the inventors of the present application have thought of utilizing the characteristics that different objects have different reflections of infrared rays of different light intensities, and calculating the light intensity of the reflected signals by acquiring reflection signals of two kinds of light intensity infrared rays.
  • the mean value based on the difference between the two means to determine the wearing state of the smart wearable device.
  • FIG. 1 is a flow chart of detecting the wearing state of the smart wearable device by using infrared rays of two kinds of light intensity.
  • infrared rays are irradiated by two different light intensities, and the following steps are specifically included:
  • Step S110 controlling the infrared sensor to emit a first infrared ray to obtain a first effective average value of the light intensity of the first infrared reflected signal.
  • the smart wearable device is equipped with a micro processor that controls the infrared sensor to emit infrared rays, and the infrared light encounters an object to generate a reflected signal.
  • the reflected signal is acquired, and the light intensity of the reflected signal is analyzed, and the effective average of the light intensity of the reflected signal is calculated.
  • the intensity of the infrared light emitted by the infrared sensor is determined by the current through the infrared sensor. In the detection method, the intensity of all infrared rays is set in advance, and the light intensities between the respective infrared rays are not equal.
  • the infrared sensor is controlled to emit the first infrared ray, collect the first infrared reflected signal, and analyze and calculate the effective average value of the light intensity of the first infrared reflected signal, which is recorded as the first effective average.
  • Step S120 controlling the infrared sensor to emit a second infrared ray to obtain a second effective average value of the light intensity of the second infrared reflected signal.
  • the processor regulates the current through the infrared sensor and controls the infrared sensor to emit a second infrared ray.
  • the light intensity of the second infrared ray is not equal to the light intensity of the first infrared ray, and may be greater than the light intensity of the first infrared ray or smaller than the light intensity of the first infrared ray.
  • the reflected signal of the second infrared ray is collected, and the effective average value of the light intensity of the second infrared reflected signal is obtained, which is recorded as the second effective average value.
  • Step S130 calculating a difference between the first effective mean value and the second effective mean value as the first difference value.
  • step S140 it is determined whether the absolute value of the first difference is smaller than the first preset difference threshold; if the process proceeds to step S151, if not, the process proceeds to step S152.
  • Different objects generate different reflected signals for infrared rays of the same light intensity.
  • different reflected signals mean that the reflected signals have different light intensities; the same object also produces different reflected signals for different infrared rays.
  • the reflection of the human body on infrared rays differs depending on the intensity of the infrared light. For example, infrared rays having a light intensity of 1000 and 3000 are respectively irradiated on the human body, and the light intensity of the reflected signals is 100 and 600, respectively.
  • the reflection of the infrared rays by the object is different from the reflection of the infrared rays by the human body.
  • the intensity of the reflected signals of the infrared rays of the objects of 1000 and 3000 is 100 and 200. It can be seen that the difference between the reflected signals of the human body and the infrared rays of different light intensities is relatively large. Thus, the wearing state of the smart wearable device is determined by comparing the difference in light intensity of the reflected signals at different light intensities with a preset difference threshold.
  • step S151 the smart wearable device is output as a non-wearing state.
  • the absolute value of the first difference is smaller than the first preset difference threshold, indicating that the smart wearable device is not the human body, thereby determining that the smart wearable device is not worn on the human body and is in the non-wearing state.
  • step S152 the smart wearable device is in a wearing state.
  • the absolute value of the first difference is not less than the first preset difference threshold, indicating that the smart wearable device is irradiated with the human body, thereby determining that the smart wearable device is in the wearing state.
  • the embodiment by obtaining the reflected signals of the first infrared ray and the second infrared ray, analyzing the effective mean values of the light intensities of the two reflected signals and calculating the difference between the two effective average values, according to the difference
  • the absolute value is compared with the preset difference threshold to determine the wearing state of the smart wearable device.
  • the method uses two kinds of light intensity infrared rays to test, which improves the accuracy of the wearing state judgment.
  • the third infrared ray irradiation object is added, and the judgment condition is increased, so that the condition for outputting the wearing state is more strict.
  • the issuance of the first infrared ray and the second infrared ray and the acquisition of the effective averaging are the same as in the previous embodiment, except that when the absolute value of the first difference is not less than the first preset difference threshold, The smart wearable device is not outputted to be in a wearing state, but the infrared sensor is controlled to emit a third infrared ray, as by step S153.
  • the light intensity of the third infrared ray is also set in advance, and is not equal to the light intensity of the first infrared ray and the light intensity of the second infrared ray.
  • the light intensity of the first, second, and third infrared rays may be gradually increased or gradually weakened, or may be other arrangements, which are not limited by the present invention.
  • Step S160 Acquire a third effective mean value of the light intensity of the third infrared reflected signal, and calculate a difference between the first effective mean value and the third effective mean value as the second difference value.
  • Step S170 determining whether the absolute value of the second difference is smaller than the second preset difference threshold. Comparing the absolute value of the second difference with the second preset difference threshold, and if the absolute value of the second difference is less than the second preset difference threshold, proceeding to step S181, outputting the smart wearable device as a non-wearing state, Otherwise, go to step S182 to output the smart wearable device as the wearing state. It can be seen that only when the first difference is not less than the first preset difference threshold, and the second difference is not less than the second preset difference threshold, the smart wearable device can be output as the wearing state, and the judgment condition is increased, so that the output is output. The smart wearable device is more rigorous in terms of wearing state, so the output is more accurate.
  • the infrared sensor is controlled to emit infrared rays of different light intensities by adjusting the energizing current of the infrared sensor.
  • the infrared sensor emits infrared rays of corresponding light intensity through different currents, emits first infrared rays at the first energizing current, adjusts to the second energizing current, emits the second infrared rays, adjusts to the third energizing current, and the infrared sensor emits the third infrared.
  • the difference between the second effective mean value and the third effective mean value may also be calculated as the third difference value, and the third difference value and the third preset difference are compared.
  • the size of the value threshold If the absolute value of the third difference is less than the third preset difference threshold, the smart wearable device is output as a non-wearing state, otherwise the smart wearable device is outputted as a wearable state.
  • the fourth infrared ray can be added for comparison, thereby making the condition of the output wearing state more strict and the result obtained is more accurate.
  • the infrared combination of the two light intensities is sufficient to determine the wearing state of the smart wearable device, and the infrared combination of three or more light intensities is used for the detection. It brings more power consumption problems and has little effect on the accuracy of the test results.
  • FIG. 3 is a flowchart of obtaining a first effective mean value.
  • the step of obtaining a first effective average value in this embodiment includes:
  • Step S210 performing a predetermined number of sampling on the reflected signal of the first infrared ray to obtain a set of sampling signals.
  • the infrared sensor emits infrared rays, and if there is a barrier on the infrared light path, the infrared rays will reflect and generate a reflected signal.
  • the reflected signal is sampled, and the light intensity of a certain number of sampled signals is taken as a set of data.
  • the error that may be present in the sampled signal if judged by the intensity of a sampled signal, the number of samples is too small to be representative, and the error may be large. Therefore, increasing the number of samples, using a certain number of samples of the light intensity as a set of judgment data, can reduce the error and reduce the probability of misjudgment.
  • step S220 the variance and the mean of the light intensities of a set of sampled signals are calculated.
  • step S230 it is determined whether the variance is less than the preset variance threshold; if the process proceeds to step S241, if no, the process proceeds to step S242.
  • Variance is a measure of the degree of data dispersion. If the variance of the intensity of the sampled signal is too large, that is, the degree of dispersion of the sampled signal is large, indicating that the sampled signal is unstable, there is a certain disturbance when sampling the reflected signal. The existence of the disturbance makes the error of the sampled signal larger, and the result of the set of sampled signals cannot be used as the final output result, and the reflected signal needs to be resampled. If the variance of the intensity of the sampled signal is less than the preset variance threshold, the dispersion of the sampled signal is small, and the error of the sampled signal is small. Within an acceptable reasonable range, the result can be used as an output.
  • step S241 the average value is taken as the first effective average value.
  • the variance of the intensity of the sampled signal is less than the preset variance threshold, the distribution of the sampled signal is within a preset range, and the error of the sampled signal is within an acceptable range, and the result of the set of sampled signals can be used as a final output.
  • the sampling signal error is small, that is, the disturbance is small, and the smart wearable device is in a stable state.
  • step S242 the number of sampling times is accumulated.
  • the variance of the intensity of the sampled signal is greater than the preset variance threshold, indicating that there is a disturbance, the reflected signal is unstable, and the sampling needs to be performed again. Each time you resample, you need to accumulate the number of samples.
  • step S243 it is determined whether the sampling number exceeds a preset number of times, and if not, returning to step S210 to re-sample the reflected signal.
  • step S244 the process goes to step S244 to directly output the smart wearable device to the non-wearing state, so as to prompt the user to make corresponding adjustments. If the number of samplings does not exceed the preset number of times, the process returns to step S210, and the reflected signal is again sampled to obtain a new set of sampling signals.
  • the step of obtaining the second effective mean is similar to the step of obtaining the first effective mean.
  • the specific steps are as follows:
  • Step S310 performing a predetermined number of sampling on the reflected signal of the second infrared ray to obtain a set of sampling signals.
  • step S320 the variance and the mean of the light intensity of the sampled signal are calculated.
  • Step S330 determining whether the variance is less than a preset variance threshold. If the variance is less than the preset variance threshold, then go to step S331, otherwise go to step S332.
  • step S331 the average value is taken as the second effective average value.
  • Step S332 directly outputting the smart wearable device to a non-wearing state.
  • the acquisition of the second effective mean is performed after the first effective average output.
  • the smart wearable device When the first effective average value is output, the smart wearable device is already in a stable state, and there is no interference.
  • the second infrared reflected signal is sampled, and the obtained sampling signals are all stable signals.
  • the variance of the sampling signal of the second infrared ray is greater than the preset variance threshold, that is, the degree of dispersion of the sampling signal is different from the preset degree of dispersion, indicating that the infrared ray is not the human body, and the smart wearing device can be directly output as the non-wearing state, without the need Resample.
  • the step of obtaining a third effective mean is consistent with the step of obtaining a second effective mean.
  • Performing a predetermined number of samples on the reflected signal of the third infrared ray acquiring a set of sampling signals, calculating a variance and a mean of the light intensity of the sampled signal, and determining whether the variance is less than a preset variance threshold. If the variance is less than the preset variance threshold, the average value is taken as the third effective average; otherwise, the smart wearable device is directly outputted as the non-wearing state.
  • the third effective mean value is not required to be acquired, that is, the infrared sensor does not emit the third infrared ray.
  • the third effective mean value is acquired only when the wearing state of the three light intensities is used for the wearing state.
  • the acquisition of the third effective mean value and the second effective mean value may be performed simultaneously or sequentially.
  • the smart wearable device records and analyzes the wearing habit of the user, and periodically activates the infrared sensor to detect the wearing state of the smart wearable device according to the wearing habit of the user. It is also possible to activate the infrared sensor to detect its wearing state before the smart wearable device performs the test of the setting item.
  • the smart wearable device records the time of outputting the wearing state every day, and by analyzing the time of outputting the wearing state, the habit of the user wearing the smart wearable device every day can be obtained.
  • the detection of the wearing state is initiated by itself, and it is determined whether the user wears the device.
  • the detection of the wearing state is started to ensure the smooth progress of the project test.
  • the wearing state detecting device 400 of the smart wearing device includes:
  • the light intensity control unit 410 is configured to control the infrared sensor to emit infrared rays. Specifically, the processor in the smart wearable device controls the infrared sensor to emit the first infrared ray and the second infrared ray.
  • the mean value obtaining unit 420 is configured to acquire a first effective average value of the light intensity of the reflected signal under the first light intensity infrared ray irradiation, and obtain a second effective average value of the light intensity of the reflected signal under the second light intensity infrared ray irradiation.
  • the mean comparison unit 430 is configured to calculate a difference between the first effective mean and the second effective mean as a first difference, and compare an absolute value of the first difference with a preset difference threshold.
  • the wearing state output unit 440 is configured to output a wearing state of the smart wearable device. If the absolute value of the first difference is greater than the preset average threshold, the smart wearable device is outputted, otherwise the smart wearable device is outputted.
  • the light intensity control unit 410 is further configured to control the infrared sensor to emit a third infrared ray, wherein the light intensity of the third infrared ray is preset, and the light intensity of the first infrared ray and the second infrared ray are The light intensity is not equal.
  • the mean value obtaining unit 420 is further configured to acquire a third effective mean value of the light intensity of the reflected signal of the third infrared ray.
  • the mean comparison unit 430 is further configured to calculate a second difference between the first effective mean and the third effective mean, and compare the absolute value of the second difference with the second preset difference threshold.
  • the wearing state output unit 440 is further configured to output the smart wearable device as a non-wearing state if the absolute value of the second difference is less than the preset difference threshold, or output the smart wearable device as a worn state.
  • the mean value obtaining unit 420 further includes the following modules:
  • the first sampling module is configured to perform a predetermined number of sampling on the reflected signal of the first infrared ray to obtain a set of sampling signals.
  • the first calculating module is configured to calculate a variance and an average of the light intensity of the sampled signal by using a set of sampling signals acquired by the first sampling module.
  • the first variance determination module is configured to determine whether the variance calculated by the first calculation module is less than a preset variance threshold. If it is less than, it goes to the first average output unit, otherwise it returns to the first sampling module, and the sampling times are accumulated until the accumulated sampling times exceed the preset sampling times, and the wearing state output unit 440 outputs the smart wearing device as the unworn state.
  • the first mean output unit is configured to output the average value calculated by the first calculation module as the first effective average.
  • the second sampling module is configured to perform a predetermined number of sampling on the reflected signal of the second infrared ray to obtain a set of sampling signals, or perform a predetermined number of sampling on the reflected signals of the third infrared ray to obtain a set of sampling signals.
  • the second calculating module is configured to calculate a variance and an average of the light intensity of the sampling signal for the set of sampling signals acquired by the second sampling module.
  • the second variance determination module is configured to determine whether the variance calculated by the second calculation module is less than a preset variance threshold. If it is less than, it goes to the second average output unit, otherwise the worn state output unit 440 outputs the smart wearable device as an unworn state.
  • a second mean value output unit configured to output the average value calculated by the second calculation module as the second effective average value; or output the average value calculated by the second calculation module as the third effective average value.
  • the second average output unit outputs a second effective average; if the second sampling module samples the third infrared, the second average output unit outputs a third effective average.
  • the light intensity control unit 410 of the wearing state detecting device 400 of the smart wearable device is further configured to adjust an energizing current of the infrared sensor, and control the infrared sensor to emit the first infrared light, the second infrared light, or the third infrared.
  • the wearing state detecting device 400 of the smart wearable device further includes an activation unit for periodically starting the infrared sensor to detect the smart according to the wearing habit of the smart wearable device recorded and analyzed by the user. The wearing state of the wearable device. At the same time, the activation unit starts the infrared sensor to detect the wearing state of the smart wearable device before the smart wearable device performs the test of the setting item.
  • the wearing state detecting device 400 of the smart wearing device of the embodiment of the present invention may be used to perform the foregoing method embodiments, and the principles and technical effects thereof are similar to those in the method embodiment, and details are not described herein again.
  • the smart wearable device is configured with an infrared sensor. As shown in FIG. 6, the device further includes a memory 510 and a processor 520. The memory 510 and the processor 520 are communicably connected through an internal bus 530. It is used to detect the wearing status of the smart wearable device.
  • a memory program 510 stores a computer program 511 that can be executed by the processor 520, which can be used to implement the method steps of the above-described smart wearable device wearing state detection when executed by the processor 520.
  • the technical solution implemented by the present invention obtains the effective mean value of the light intensity of the reflected signal under different light intensity infrared rays by utilizing the difference in the reflection of infrared rays of different light intensity by different objects, and calculates the effective average of the light intensity of the reflected signal under different light intensity infrared rays.
  • the difference of the effective mean values, the difference value is compared with the preset difference threshold value to determine the wearing state of the smart wearable device, thereby avoiding the erroneous determination caused by the distance determining wearing state and the temperature difference greatly affected by the surrounding environment. Misjudgment caused by judgment conditions such as capacitance difference.
  • the reflection signals of the two light intensity infrared rays are used for comparison to improve the accuracy of the determination.
  • the technical solution of the present invention further provides for adding a third infrared ray irradiation object to perform wearing state detection of the smart wearable device.
  • the third infrared ray is added, the judgment condition is also increased, so that the condition for outputting the smart wearable device to the wearing state is more strict, so the output result is more accurate.
  • the technical solution of the present invention also provides an acquisition method of the effective mean value, determining whether the smart wearable device is in a stable state by the variance of the light intensity of the reflected signal, and obtaining the effective mean value in a stable state, thereby ensuring the effective mean value of the acquisition.
  • the accuracy ensures the accuracy of the wearing state determination, enabling the smart wearable device to perform item detection under the condition that the wearing state is accurately determined.
  • the smart wearable device starts the detection of the wearing state according to the need, for example, starting the detection according to the wearing habit of the user, or starting the detection before the test of the setting item, thereby avoiding the power consumption problem caused by the real-time detection, achieving a good province. Electric effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种智能穿戴设备的佩戴状态检测方法及其装置,通过利用不同物体对不同光强的红外线的反射存在差异这一特点,获取第一红外线反射信号的第一有效均值和第二红外线反射信号的第二有效均值,利用第一有效均值与第二有效均值的差值大小判定智能穿戴设备的佩戴状态,从而避免了由距离判定佩戴状态带来的错误判定,以及受周围环境影响较大的温度差、电容差等判定条件引起的误判。利用两种光强的反射信号作对比,提高判定的精确度。

Description

一种智能穿戴设备的佩戴状态检测方法及装置
交叉引用
本申请引用于2017年10月20日提交的专利名称为“一种智能穿戴设备的佩戴状态检测方法及装置”的第201710984369.4号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及智能穿戴设备佩戴检测技术领域,尤其涉及一种智能穿戴设备的佩戴状态检测方法及装置。
背景技术
现有技术在佩戴检测方法通常采用一种固定强度的红外线照射被测物,通过红外线检测发射器与物体的距离,判断是否佩戴智能穿戴设备。该种检测方法,很容易造成误判。当智能穿戴设备平展放置在桌面或贴近其他物体表面时,无法保证智能手表佩戴检测的准确性。此外,现有技术采用通过智能穿戴设备上下表面温度差、电容差等补充判定条件,但这些条件极易受周围环境的影响,引起误判,而且也会带来更高的功耗问题。
发明内容
为了解决上述背景技术中存在的智能穿戴设备佩戴状态检测不准确的问题,本发明提供了一种智能穿戴设备的佩戴状态检测方法及装置。
根据本发明的一个方面,提供一种智能穿戴设备的佩戴状态检测方法,智能穿戴设备配置有红外传感器,该方法包括:
控制红外传感器发出第一红外线,获取第一红外线的反射信号的光强的第一有效均值;
控制红外传感器发出第二红外线,获取第二红外线的反射信号的光强的第二有效均值;
计算第一有效均值与第二有效均值的差值为第一差值,若第一差值的绝对值小于第 一预设差值阈值,则输出智能穿戴设备为非佩戴状态;
其中,第一红外线的光强和第二红外线的光强均预先设定,且第二红外线的光强与第一红外线的光强不相等。
优选地,在第一差值不小于第一预设差值阈值时,输出智能穿戴设备为佩戴状态。
优选地,在第一差值不小于第一预设差值阈值时,该方法还包括:
控制红外传感器发出第三红外线,第三红外线的光强预先设定,且与第一红外线的光强和第二红外线的光强均不相等;
获取第三红外线的反射信号的光强的第三有效均值;
计算第一有效均值与第三有效均值的差值为第二差值,若第二差值的绝对值小于第二预设差值阈值,则输出智能穿戴设备为非佩戴状态,否则输出智能穿戴设备为佩戴状态。
优选地,获取第一红外线的反射信号的光强的第一有效均值包括:
对第一红外线的反射信号进行预定数量的采样,获取一组采样信号并计算一组采样信号的光强的方差和均值;
判断方差若小于预设方差阈值,则将均值作为第一有效均值,否则重新进行第一红外线的反射信号的采样,获取新的一组采样信号计算方差和均值进行判断,并累计采样次数;直至累计的采样次数超过预设采样次数,输出智能穿戴设备为非佩戴状态。
优选地,获取第二红外线的反射信号的光强的第二有效均值包括:
对第二红外线的反射信号进行预定数量的采样,获取一组采样信号并计算一组采样信号的光强的方差和均值;
判断方差若小于预设方差阈值,则将均值作为第二有效均值,否则输出智能穿戴设备为非佩戴状态。
优选地,获取第三红外线的反射信号的光强的第三有效均值包括:
对第三红外线的反射信号进行预定数量的采样,获取一组采样信号并计算一组采样信号的光强的方差和均值;
判断方差若小于预设方差阈值,则将均值作为第三有效均值,否则输出智能穿戴设备为非佩戴状态。
优选地,该方法还包括:
记录并分析用户对智能穿戴设备的佩戴习惯,根据用户的佩戴习惯定时启动红外传感器以检测智能穿戴设备的佩戴状态;
和/或,
在智能穿戴设备进行设定项目的测试之前,启动红外传感器以检测智能穿戴设备的佩戴状态。
根据本发明的另一个方面,提供一种智能穿戴设备的佩戴状态检测装置,智能穿戴设备配置有红外传感器,其特征在于,该装置包括:
光强控制单元,被配置为控制红外传感器发出第一红外线和第二红外线,第一红外线的光强和第二红外线的光强均预先设定,且第二红外线的光强与第一红外线的光强不相等;
均值获取单元,被配置为获取第一红外线的反射信号光强的第一有效均值,以及获取第二红外线的反射信号光强的第二有效均值;
均值比较单元,被配置为计算第一有效均值与第二有效均值的差值为第一差值,并将第一差值的绝对值与第一预设差值阈值进行比较;
佩戴状态输出单元,被配置为若第一差值的绝对值小于预设差值阈值,则输出智能穿戴设备为非佩戴状态。
优选地,光强控制单元,还被配置为控制红外传感器发出第三红外线,第三红外线的光强预先设定,且与第一红外线的光强和第二红外线的光强均不相等;
均值获取单元,还被配置为获取第三红外线的反射信号的光强的第三有效均值;
均值比较单元,还被配置为计算第一有效均值与第三有效均值的差值为第二差值,并将第二差值的绝对值与第二预设差值阈值进行比较;
佩戴状态输出单元,还被配置为若第二差值的绝对值小于预设差值阈值,则输出智能穿戴设备为非佩戴状态,否则输出智能穿戴设备为佩戴状态。
根据本发明的再一方面,提供一种智能穿戴设备,该智能穿戴设备配置有红外传感器,智能穿戴设备包括存储器和处理器,存储器和处理器之间通过内部总线通讯连接,存储器存储有能够被处理器执行的计算机程序,计算机程序被处理器执行时能够实现上述的方法步骤。
本发明的技术方案,利用不同物体对不同光强的红外线的反射存在差异这一特点, 通过采集两种不同光强的红外线反射信号,将不同反射信号的有效均值之间的差值作为判断智能设备是否佩戴的条件。通过采集被不同光强红外线照射的物体的反射信号,将不同光强下反射信号的光强的差值与预设差值阈值进行对比,能准确判断出智能穿戴设备的佩戴状态,从而避免了由距离判定佩戴状态带来的错误判定,以及受周围环境影响较大的温度差、电容差等判定条件引起的误判。且用两种不同光强的红外线进行照射对比,提高了判定的标准,减少误判的可能。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明一个实施例的一种智能穿戴设备的佩戴状态检测方法;
图2为本发明另一个实施例的一种智能穿戴设备的佩戴状态检测方法;
图3为本发明一个实施例的获取第一有效均值的流程图;
图4为本发明一个实施例的获取第二有效均值的流程图;
图5为本发明一个实施例的一种智能穿戴设备的佩戴状态检测装置;
图6为本发明一个实施例的智能穿戴设备。
具体实施方式
为了解决背景技术中提出的技术问题,本申请的发明人想到利用不同物体对不同光强的红外线的反射存在差异这一特点,通过获取两种光强红外线的反射信号,计算反射信号的光强的均值,根据两个均值的差值来判定智能穿戴设备的佩戴状态。为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步的详细描述。
实施例一
图1是采用两种光强的红外线进行智能穿戴设备的佩戴状态检测的流程图,参见图1,本实施例采用两种不同光强的红外线照射物体,具体包括如下步骤:
步骤S110,控制红外传感器发出第一红外线,获取第一红外线反射信号的光强的第一有效均值。
智能穿戴设备中配置有微型处理器,该处理器控制红外传感器发出红外线,红外线 遇到物体会产生反射信号。采集该反射信号,并分析获取该反射信号的光强,计算反射信号的光强的有效均值。红外传感器发出的红外线的光强,由通过红外传感器的电流决定。在该检测方法中,所有红外线的光强均预先设定,且各个红外线之间的光强均不相等。控制红外传感器先发出第一红外线,采集第一红外线反射信号,并分析计算第一红外线反射信号的光强的有效均值,记为第一有效均值。
步骤S120,控制红外传感器发出第二红外线,获取第二红外线反射信号的光强的第二有效均值。
处理器调节通过红外传感器的电流,并控制红外传感器发出第二红外线。需要说明的是,第二红外线的光强与第一红外线的光强不相等,可以大于第一红外线的光强,也可以小于第一红外线的光强。该步骤采集第二红外线的反射信号,获得该第二红外线反射信号的光强的有效均值,记为第二有效均值。
步骤S130,计算第一有效均值与第二有效均值的差值,作为第一差值。
步骤S140,判断第一差值的绝对值是否小于第一预设差值阈值;若是转入步骤S151,若否转入步骤S152。
不同的物体对同一光强的红外线产生不同的反射信号,此处不同的反射信号是指反射信号的光强不同;同一物体对不同的红外线也产生不同的反射信号。人体对红外线的反射随着红外线光强的增强而不同,例如光强为1000和3000的红外线分别照射在人体上,其反射信号的光强分别为100和600。物体对红外线的反射与人体对红外线的反射不同,例如物体对光强为1000和3000的红外线的反射信号的光强为100和200。可知,人体对不同光强的红外线的反射信号的差值比较大。由此,通过将不同光强下反射信号的光强的差值与预设差值阈值进行对比,判定智能穿戴设备的佩戴状态。
步骤S151,输出智能穿戴设备为非佩戴状态。
该步骤中,第一差值的绝对值小于第一预设差值阈值,说明智能穿戴设备照射的不是人体,从而判断智能穿戴设备没有佩戴在人体上,处于非佩戴状态中。
步骤S152,智能穿戴设备为佩戴状态。
该步骤中,第一差值的绝对值不小于第一预设差值阈值,说明智能穿戴设备照射的是人体,从而判断智能穿戴设备处于佩戴状态中。
由图1所示可知,本实施例中通过获取第一红外线和第二红外线的反射信号,分析 获取两种反射信号的光强的有效均值并计算两个有效均值的差值,根据差值的绝对值与预设差值阈值进行大小比较,判断智能穿戴设备的佩戴状态。该方法采用了两种光强的红外线进行测试,提高了佩戴状态判断的准确率。
实施例二
为了进一步提高佩戴状态的判断准确率,减少误判,如图2所示,增加第三红外线照射物体,并增加判断条件,使得输出佩戴状态的条件更为严格。
在本实施例中,第一红外线和第二红外线的发出、以及有效均值的获取与上一实施例相同,区别在于,在第一差值的绝对值不小于第一预设差值阈值时,不输出智能穿戴设备为佩戴状态,而是控制红外传感器发出第三红外线,如步骤S153。第三红外线的光强也是预先设定,且与第一红外线的光强和第二红外线的光强均不相等。第一、第二和第三红外线的光强可以采用逐渐增强或者逐渐减弱的方式,也可以是其他的排列方式,本发明不做限定。
步骤S160,获取第三红外线反射信号的光强的第三有效均值,计算第一有效均值与第三有效均值的差值,作为第二差值。
步骤S170,判断第二差值的绝对值是否小于第二预设差值阈值。将第二差值的绝对值与第二预设差值阈值比较,若第二差值的绝对值小于第二预设差值阈值,则转到步骤S181,输出智能穿戴设备为非佩戴状态,否则转到步骤S182,输出智能穿戴设备为佩戴状态。可见,只有在第一差值不小于第一预设差值阈值,以及第二差值不小于第二预设差值阈值时,才能输出智能穿戴设备为佩戴状态,增多了判断条件,使得输出智能穿戴设备为佩戴状态的条件更严格,因此输出的结果更准确。
在上述两个实施例中,通过调节红外传感器的通电电流,控制红外传感器发出不同光强的红外线。红外传感器通过不同大小的电流,发出相应光强的红外线,在第一通电电流下发出第一红外线,调节至第二通电电流,发出第二红外线,调节至第三通电电流,红外传感器发出第三红外线。
可以理解的是,为使智能穿戴设备输出更准确的佩戴状态,还可以计算第二有效均值和第三有效均值的差值,作为第三差值,比较第三差值与第三预设差值阈值的大小。若第三差值的绝对值小于第三预设差值阈值,则输出智能穿戴设备为非佩戴状态,否则输出所述智能穿戴设备为佩戴状态。另外还可以增加第四红外线进行比较,由此使得输 出佩戴状态的条件更加严格,获取的结果也更加精确。但需要说明的是,在预设差值阈值选取合理的情况下,采用两种光强的红外线组合足以判定智能穿戴设备的佩戴状态,采用三种或三种以上光强的红外线组合进行检测会带来更大的功耗问题,且对检测结果的精确度影响不大。
实施例三
图3是获取第一有效均值的流程图,参见图3,本实施例获取第一有效均值的步骤包括:
步骤S210,对第一红外线的反射信号进行预订数量的采样,获取一组采样信号。
红外传感器发出红外线,红外线光路上若存在阻挡物,红外线会发生反射,产生反射信号。对该反射信号进行采样,取一定数量的采样信号的光强作为一组数据。采样信号可能会存在的误差,若以一个采样信号的光强进行判断,则样本数量太少不具备代表性,而且误差可能会很大。因此增加样本数量,以一定数量的采样信号的光强作为一组判断数据,可以降低误差,减小误判的概率。
步骤S220,计算一组采样信号的光强的方差和均值。
取该组数据的平均值作为最终的输出结果,这样可以使获得的结果误差更小,更符合真实值。
步骤S230,判断该方差是否小于预设方差阈值;若是转入步骤S241,若否转入步骤S242。
方差是衡量数据离散程度的标准。若是采样信号的光强的方差过大,即采样信号的离散程度较大,说明采样信号不稳定,在对反射信号进行采样时存在一定的扰动。扰动的存在使采样信号的误差较大,那么该组采样信号的结果就不能作为最终的输出结果,需要对反射信号重新进行采样。若是采样信号的光强的方差小于预设方差阈值,说明该组采样信号的离散程度较小,采样信号的误差也小,在可接受的合理范围内,其结果可以作为输出结果。
步骤S241,将该均值作为第一有效均值。
采样信号的光强的方差小于预设方差阈值,采样信号的分布在预设范围内,采样信号的误差在可接受范围内,可将该组采样信号的结果作为最终的输出结果。需要说明的是,在该情况下,采样信号误差小,即说明扰动小,智能穿戴设备处于一个稳定的状态 当中。
步骤S242,累计采样次数。
该步骤中,采样信号的光强的方差大于预设方差阈值,说明存在扰动,反射信号不稳定,需要重新进行采样。每次重新进行采样时,需要累计采样次数。
步骤S243,判断采样次数是否超过预设次数,若否返回步骤S210重新对反射信号进行采样。
在重新开始对反射信号进行采样之前,判断采样次数是否超过预设次数。若是采样次数超过了预设次数,说明扰动一直存在,反射信号也不稳定,智能穿戴设备也是处于不稳定的状态,无法进行采样和判断佩戴状态,以及也无法启动必要的监测功能,例如心率监测等,此时转到步骤S244,直接输出智能穿戴设备为非佩戴状态,用以提示用户,使用户进行相应的调整。若是采样次数没有超过预设次数,则返回到步骤S210,对反射信号重新进行一次采样,获得一组新的采样信号。
在本发明的一个实施例中,获取第二有效均值的步骤与获取第一有效均值步骤类似。如图4所示,具体步骤如下:
步骤S310,对第二红外线的反射信号进行预定数量的采样,获取一组采样信号。
步骤S320,计算采样信号的光强的方差和均值。
步骤S330,判断该方差是否小于预设方差阈值。若该方差小于预设方差阈值,则转到步骤S331,否则转到步骤S332。
步骤S331,将该均值作为第二有效均值。
步骤S332,直接输出智能穿戴设备为非佩戴状态。
在第一有效均值输出以后,才进行第二有效均值的获取。在输出第一有效均值时,智能穿戴设备已经处于一个稳定的状态,不存在干扰,此时进行第二红外线反射信号的采样,获得的采样信号均是稳定的信号。第二红外线的采样信号的方差大于预设方差阈值,即采样信号的离散程度与预设的离散程度不同,说明红外线照射到的不是人体,可以直接输出智能穿戴设备为非佩戴状态,而不需要进行重新采样。
在本发明的一个实施例中,获取第三有效均值的步骤与获取第二有效均值步骤一致。对第三红外线的反射信号进行预定数量的采样,获取一组采样信号,计算采样信号的光强的方差和均值,判断该方差是否小于预设方差阈值。若该方差小于预设方差阈值, 则将该均值作为第三有效均值;否则直接输出智能穿戴设备为非佩戴状态。
可以理解的是,在采用两种光强的红外线进行佩戴状态的判断时,不需要进行第三有效均值的获取,即红外传感器不发出第三红外线。只有在采用三种光强的红外线进行佩戴状态的判断时,才进行第三有效均值的获取。第三有效均值与第二有效均值的获取可以同步进行,也可以先后进行。
需要说明的是,采用三种以上光强的红外线进行佩戴状态的判断时,后续有效均值的获取与第二有效均值和第三有效均值的获取方式一致,此处不再赘述。
在本发明的一个实施例中,智能穿戴设备记录并分析用户的佩戴习惯,根据用户的佩戴习惯定时启动红外传感器检测智能穿戴设备的佩戴状态。也可以在智能穿戴设备进行设定项目的测试之前,启动红外传感器检测其佩戴状态。
具体地,智能穿戴设备自行记录每天输出佩戴状态的时间,通过对输出佩戴状态的时间进行分析,可以获得用户每天佩戴智能穿戴设备的习惯。在用户的佩戴时间范围内,自行启动佩戴状态的检测,判断用户是否佩戴该设备。或者,在用户进行项目的测试之前,例如心率监测、睡眠监测等,启动佩戴状态的检测,以保证项目测试的顺利进行。
实施例四
图5为本发明一个实施例的一种智能穿戴设备的佩戴状态检测装置400,参见图5,该智能穿戴设备的佩戴状态检测装置400包括:
光强控制单元410,用于控制红外传感器发出红外线。具体地,智能穿戴设备中的处理器控制红外传感器,使其发出第一红外线和第二红外线。
均值获取单元420,用于获取第一光强红外线照射下的反射信号的光强的第一有效均值,以及获取第二光强红外线照射下的反射信号的光强的第二有效均值。
均值比较单元430,用于计算第一有效均值和第二有效均值的差值为第一差值,并将第一差值的绝对值与预设差值阈值进行比较。
佩戴状态输出单元440,用于输出智能穿戴设备的佩戴状态。若第一差值的绝对值大于预设均值阈值,输出智能穿戴设备为佩戴状态,否则输出智能穿戴设备为非佩戴状态。
在本发明的一个实施例中,光强控制单元410,还被配置为控制红外传感器发出第三红外线,第三红外线的光强预先设定,且与第一红外线的光强和第二红外线的光强均 不相等。
均值获取单元420,还被配置为获取第三红外线的反射信号的光强的第三有效均值。
均值比较单元430,还被配置为计算第一有效均值与第三有效均值的第二差值,并将第二差值的绝对值与第二预设差值阈值进行比较。
佩戴状态输出单元440,还被配置为若第二差值的绝对值小于预设差值阈值,则输出智能穿戴设备为非佩戴状态,否则输出智能穿戴设备为佩戴状态。
在本实施例中,均值获取单元420还包括如下模块:
第一采样模块,用于对第一红外线的反射信号进行预定数量的采样,获取一组采样信号。
第一计算模块,用于对第一采样模块获取的一组采样信号,计算采样信号的光强的方差和均值。
第一方差判断模块,用于判断第一计算模块计算的方差是否小于预设方差阈值。若小于则转到第一均值输出单元,否则返回第一采样模块,并累计采样次数,直至累计的采样次数超过预设采样次数,由佩戴状态输出单元440输出智能穿戴设备为未佩戴状态。
第一均值输出单元,用于将第一计算模块计算的均值作为第一有效均值进行输出。
第二采样模块,用于对第二红外线的反射信号进行预定数量的采样,获取一组采样信号;或者对第三红外线的反射信号进行预定数量的采样,获取一组采样信号。
第二计算模块,用于对第二采样模块获取的一组采样信号,计算采样信号的光强的方差和均值。
第二方差判断模块,用于判断第二计算模块计算的方差是否小于预设方差阈值。若小于则转到第二均值输出单元,否则有佩戴状态输出单元440输出智能穿戴设备为未佩戴状态。
第二均值输出单元,用于将第二计算模块计算的均值作为第二有效均值进行输出;或者将第二计算模块计算的均值作为第三有效均值进行输出。
由于第二有效均值和第三有效均值的获取步骤一致,在同样的模块中进行处理。若第二采样模块对第二红外线进行采样,则第二均值输出单元输出第二有效均值;若第二采样模块对第三红外线进行采样,则第二均值输出单元输出第三有效均值。
在本发明的一个实施例中,该智能穿戴设备的佩戴状态检测装置400的光强控制单 元410还被用于调节红外传感器的通电电流,控制红外传感器发出第一红外线、第二红外线或第三红外线。
在本发明的一个实施例中,智能穿戴设备的佩戴状态检测装置400还包括一个启动单元,该启动单元用于根据记录并分析的用户对智能穿戴设备的佩戴习惯,定时启动红外传感器以检测智能穿戴设备的佩戴状态。同时,该启动单元还在智能穿戴设备进行设定项目的测试之前,启动红外传感器检测智能穿戴设备的佩戴状态。
本发明实施例的智能穿戴设备的佩戴状态检测装置400可以用于执行上述方法实施例,其原理和技术效果与方法实施例中类似,此处不再赘述。
在本发明的另一个实施例中,智能穿戴设备配置有红外传感器,如图6所示,还包括一存储器510和一处理器520,存储器510和处理器520之间通过内部总线530通讯连接,用于检测智能穿戴设备的佩戴状态。存储器510中存储有能够被处理器520执行的计算机程序511,该计算机程序511被处理器520执行时能够用于实现上述智能穿戴设备佩戴状态检测的方法步骤。
综上所述,本发明实施的技术方案,通过利用不同物体对不同光强的红外线的反射存在差异这一特点,获取不同光强红外线照射下的反射信号的光强的有效均值,通过计算两个有效均值的差值,将差值与预设差值阈值进行比较判定智能穿戴设备的佩戴状态,从而避免了由距离判定佩戴状态带来的错误判定,以及受周围环境影响较大的温度差、电容差等判定条件引起的误判。利用两种光强红外线的反射信号作对比,提高判定的精确度。
本发明的技术方案还提供了增加第三红外线照射物体,进行智能穿戴设备的佩戴状态检测。增加第三红外线,判断条件也随之增多,使得输出智能穿戴设备为佩戴状态的条件更严格,因此输出的结果更准确。
本发明的技术方案还给出了有效均值的获取方法,通过反射信号的光强的方差确定智能穿戴设备是否处于稳定的状态,在稳定的状态下进行有效均值的获取,能保证获取的有效均值的准确度,确保佩戴状态判定的准确性,使智能穿戴设备能在精确判定佩戴状态的条件下进行项目检测。同时,智能穿戴设备根据需要启动佩戴状态的检测,例如根据用户的佩戴习惯定时启动检测,或者在设定项目的测试之前启动检测,从而避免了实时检测带来的功耗问题,达到良好的省电效果。
以上所述,仅为本发明的具体实施方式,在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本发明的目的,本发明的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种智能穿戴设备的佩戴状态检测方法,所述智能穿戴设备配置有红外传感器,其特征在于,所述方法包括:
    控制所述红外传感器发出第一红外线,获取所述第一红外线的反射信号的光强的第一有效均值;
    控制所述红外传感器发出第二红外线,获取所述第二红外线的反射信号的光强的第二有效均值;
    计算所述第一有效均值与所述第二有效均值的差值为第一差值,若所述第一差值的绝对值小于第一预设差值阈值,则输出所述智能穿戴设备为非佩戴状态;
    其中,所述第一红外线的光强和所述第二红外线的光强均预先设定,且所述第二红外线的光强与所述第一红外线的光强不相等。
  2. 如权利要求1所述的方法,其特征在于,在所述第一差值不小于所述第一预设差值阈值时,输出所述智能穿戴设备为佩戴状态。
  3. 如权利要求1所述的方法,其特征在于,在所述第一差值不小于所述第一预设差值阈值时,所述方法还包括:
    控制所述红外传感器发出第三红外线,所述第三红外线的光强预先设定,且与所述第一红外线的光强和所述第二红外线的光强均不相等;
    获取所述第三红外线的反射信号的光强的第三有效均值;
    计算所述第一有效均值与所述第三有效均值的差值为第二差值,若所述第二差值的绝对值小于第二预设差值阈值,则输出所述智能穿戴设备为非佩戴状态,否则输出所述智能穿戴设备为佩戴状态。
  4. 如权利要求1或3所述的方法,其特征在于,所述获取所述第一红外线的反射信号的光强的第一有效均值包括:
    对所述第一红外线的反射信号进行预定数量的采样,获取一组采样信号并计算所述一组采样信号的光强的方差和均值;
    判断所述方差若小于预设方差阈值,则将所述均值作为所述第一有效均值,否则重新进行第一红外线的反射信号的采样,获取新的一组采样信号计算方差和均值进行判断,并累计采样次数;直至累计的采样次数超过预设采样次数,输出 所述智能穿戴设备为非佩戴状态。
  5. 如权利要求4所述的方法,其特征在于,所述获取所述第二红外线的反射信号的光强的第二有效均值包括:
    对所述第二红外线的反射信号进行预定数量的采样,获取一组采样信号并计算所述一组采样信号的光强的方差和均值;
    判断所述方差若小于预设方差阈值,则将所述均值作为所述第二有效均值,否则输出所述智能穿戴设备为非佩戴状态。
  6. 如权利要求5所述的方法,其特征在于,所述获取所述第三红外线的反射信号的光强的第三有效均值包括:
    对所述第三红外线的反射信号进行所述预定数量的采样,获取一组采样信号并计算所述一组采样信号的光强的方差和均值;
    判断所述方差若小于所述预设方差阈值,则将所述均值作为所述第三有效均值,否则输出所述智能穿戴设备为非佩戴状态。
  7. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    记录并分析用户对所述智能穿戴设备的佩戴习惯,根据用户的佩戴习惯定时启动所述红外传感器以检测所述智能穿戴设备的佩戴状态;
    和/或,
    在所述智能穿戴设备进行设定项目的测试之前,启动所述红外传感器以检测所述智能穿戴设备的佩戴状态。
  8. 一种智能穿戴设备的佩戴状态检测装置,所述智能穿戴设备配置有红外传感器,其特征在于,所述装置包括:
    光强控制单元,被配置为控制所述红外传感器发出第一红外线和第二红外线,所述第一红外线的光强和所述第二红外线的光强均预先设定,且所述第二红外线的光强与所述第一红外线的光强不相等;
    均值获取单元,被配置为获取所述第一红外线的反射信号光强的第一有效均值,以及获取所述第二红外线的反射信号光强的第二有效均值;
    均值比较单元,被配置为计算所述第一有效均值与所述第二有效均值的差值为第一差值,并将所述第一差值的绝对值与第一预设差值阈值进行比较;
    佩戴状态输出单元,被配置为若所述第一差值的绝对值小于预设差值阈值,则输出所述智能穿戴设备为非佩戴状态。
  9. 根据权利要求8所述的装置,其特征在于,所述佩戴状态输出单元,还被配置为在所述第一差值不小于所述第一预设差值阈值时,输出所述智能穿戴设备为佩戴状态。
  10. 根据权利要求8所述的装置,其特征在于,
    所述光强控制单元,还被配置为控制所述红外传感器发出第三红外线,所述第三红外线的光强预先设定,且与所述第一红外线的光强和所述第二红外线的光强均不相等;
    所述均值获取单元,还被配置为获取所述第三红外线的反射信号的光强的第三有效均值;
    所述均值比较单元,还被配置为计算所述第一有效均值与所述第三有效均值的差值为第二差值,并将所述第二差值的绝对值与第二预设差值阈值进行比较;
    所述佩戴状态输出单元,还被配置为若所述第二差值的绝对值小于预设差值阈值,则输出所述智能穿戴设备为非佩戴状态,否则输出所述智能穿戴设备为佩戴状态。
  11. 一种智能穿戴设备,所述智能穿戴设备配置有红外传感器,其特征在于,所述智能穿戴设备包括存储器和处理器,所述存储器和所述处理器之间通过内部总线通讯连接,所述存储器存储有能够被所述处理器执行的计算机程序,所述计算机程序被所述处理器执行时能够实现权利要求1-7任意一项所述的方法步骤。
PCT/CN2017/118280 2017-10-20 2017-12-25 一种智能穿戴设备的佩戴状态检测方法及装置 WO2019075914A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/754,893 US11169588B2 (en) 2017-10-20 2017-12-25 Method and apparatus for detecting wearing state of smart wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710984369.4A CN107907916B (zh) 2017-10-20 2017-10-20 一种智能穿戴设备的佩戴状态检测方法及装置
CN201710984369.4 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019075914A1 true WO2019075914A1 (zh) 2019-04-25

Family

ID=61841673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118280 WO2019075914A1 (zh) 2017-10-20 2017-12-25 一种智能穿戴设备的佩戴状态检测方法及装置

Country Status (3)

Country Link
US (1) US11169588B2 (zh)
CN (1) CN107907916B (zh)
WO (1) WO2019075914A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732105B2 (ja) * 2018-09-30 2020-07-29 シェンチェン グディックス テクノロジー カンパニー,リミテッド 容量検出モジュール、方法及び電子機器
US20220022814A1 (en) * 2018-11-01 2022-01-27 Huawei Technologies Co., Ltd. Method and Electronic Device for Detecting Heart Rate
CN110114738B (zh) * 2019-03-25 2020-12-01 深圳市汇顶科技股份有限公司 可穿戴设备、佩戴检测方法及存储介质
CN113892920B (zh) * 2020-07-06 2023-06-27 华为技术有限公司 可穿戴设备的佩戴检测方法、装置及电子设备
CN111781656B (zh) * 2020-07-30 2023-09-15 广州市南方人力资源评价中心有限公司 头戴式显示设备的佩戴状态检测方法、装置、设备和介质
CN112190248B (zh) * 2020-11-03 2024-05-24 深圳市汇顶科技股份有限公司 佩戴状态检测方法、装置以及可穿戴设备
WO2022094742A1 (zh) * 2020-11-03 2022-05-12 深圳市汇顶科技股份有限公司 佩戴状态检测方法、装置以及可穿戴设备
CN112690758B (zh) * 2020-12-21 2022-04-22 歌尔光学科技有限公司 数据的处理方法、装置、终端设备及计算机可读存储介质
CN113687444A (zh) * 2021-09-18 2021-11-23 拉扎斯网络科技(上海)有限公司 辅助检测设备及辅助检测信号的获取方法和装置
CN114268872A (zh) * 2021-11-29 2022-04-01 歌尔科技有限公司 无线耳机佩戴检测方法、设备和存储介质
CN114900786A (zh) * 2022-04-15 2022-08-12 广州易而达科技股份有限公司 一种蓝牙耳机连接控制方法、装置、电子设备和存储介质
CN114866638A (zh) * 2022-05-13 2022-08-05 安克创新科技股份有限公司 设备状态检测方法、装置、电子设备及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212315A (ja) * 2012-04-03 2013-10-17 Kyokko Denki Kk 装着型使用者状態情報取得装置
CN105445812A (zh) * 2015-11-12 2016-03-30 青岛海信电器股份有限公司 一种人体传感器检测方法及装置
CN105487372A (zh) * 2015-12-30 2016-04-13 深圳市鼎芯东方科技有限公司 智能手表的佩戴检测方法和装置
CN106153098A (zh) * 2016-08-08 2016-11-23 深圳市宏电技术股份有限公司 一种可穿戴设备的佩戴状态检测方法及装置
CN106291121A (zh) * 2016-07-29 2017-01-04 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
CN106645978A (zh) * 2016-10-28 2017-05-10 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
CN106647952A (zh) * 2016-12-31 2017-05-10 广东乐心医疗电子股份有限公司 检测可穿戴设备是否佩戴的方法与装置以及可穿戴设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581612B2 (en) * 2013-08-26 2017-02-28 EveryFit, Inc. Systems and methods for a power efficient method for detecting wear and non-wear of a sensor
US9747433B2 (en) * 2014-06-24 2017-08-29 Google Technology Holdings, LLC Wearable electronic device and method for securing same
KR20160108983A (ko) * 2015-03-09 2016-09-21 삼성전자주식회사 웨어러블 전자 장치의 분실 방지 방법 및 장치
KR102534724B1 (ko) * 2016-11-10 2023-05-22 삼성전자주식회사 전자 장치 및 그의 동작 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212315A (ja) * 2012-04-03 2013-10-17 Kyokko Denki Kk 装着型使用者状態情報取得装置
CN105445812A (zh) * 2015-11-12 2016-03-30 青岛海信电器股份有限公司 一种人体传感器检测方法及装置
CN105487372A (zh) * 2015-12-30 2016-04-13 深圳市鼎芯东方科技有限公司 智能手表的佩戴检测方法和装置
CN106291121A (zh) * 2016-07-29 2017-01-04 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
CN106153098A (zh) * 2016-08-08 2016-11-23 深圳市宏电技术股份有限公司 一种可穿戴设备的佩戴状态检测方法及装置
CN106645978A (zh) * 2016-10-28 2017-05-10 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
CN106647952A (zh) * 2016-12-31 2017-05-10 广东乐心医疗电子股份有限公司 检测可穿戴设备是否佩戴的方法与装置以及可穿戴设备

Also Published As

Publication number Publication date
CN107907916A (zh) 2018-04-13
US11169588B2 (en) 2021-11-09
CN107907916B (zh) 2019-04-02
US20200379545A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2019075914A1 (zh) 一种智能穿戴设备的佩戴状态检测方法及装置
JP5993030B2 (ja) 吸収性物品への液体排出を検出する方法
US10111616B2 (en) Apparatus, method and computer accessible medium for monitoring sleep quality and apparatus thereof
CN103989462B (zh) 一种脉搏波形第一特征点和第二特征点的提取方法
CN109805941A (zh) 生物信息估计装置和生物信息估计方法
CN107703779B (zh) 通过识别可穿戴设备是否佩戴控制功能启闭的方法与装置
CN106153098A (zh) 一种可穿戴设备的佩戴状态检测方法及装置
US20230346306A1 (en) Methods and systems to detect eating
JP2007221491A (ja) 光電センサ
US20220401033A1 (en) Monitoring system for a feeding bottle
CN104487871B (zh) 生物体感知器以及省电模式设定方法
WO2011113727A1 (en) An infrared thermometer, particularly for clinical use
CN109443525A (zh) 一种设备异响检测***及检测方法
CN112244793A (zh) 健康监测方法、装置及存储介质
KR101681834B1 (ko) 스마트워치를 이용한 흡연 검출 방법
US20210307619A1 (en) Fever detection
WO2019080479A1 (zh) 一种提升准确度的心率检测方法和装置
CN106326672B (zh) 入睡检测方法与***
CN107389954A (zh) 促***试纸条检测笔
CN106092341B (zh) 一种智能温度传感器***
KR101788784B1 (ko) Uwb 센서를 이용해 제스처를 인식하는 방법 및 장치
JP5200518B2 (ja) 眼球内物質測定装置
EP3991157B1 (en) Evaluating movement of a subject
US20100049073A1 (en) Method, System, and Computer Program for Determining if a Subject is Snoring
WO2024097813A3 (en) System and method for detecting sensor compression of continuous glucose monitoring (cgm) sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929254

Country of ref document: EP

Kind code of ref document: A1