WO2019075859A1 - 一种交通流组成影响的信号交叉口调头开口选位方法 - Google Patents

一种交通流组成影响的信号交叉口调头开口选位方法 Download PDF

Info

Publication number
WO2019075859A1
WO2019075859A1 PCT/CN2017/113273 CN2017113273W WO2019075859A1 WO 2019075859 A1 WO2019075859 A1 WO 2019075859A1 CN 2017113273 W CN2017113273 W CN 2017113273W WO 2019075859 A1 WO2019075859 A1 WO 2019075859A1
Authority
WO
WIPO (PCT)
Prior art keywords
turn
vehicle
phase
opening
turning
Prior art date
Application number
PCT/CN2017/113273
Other languages
English (en)
French (fr)
Inventor
姚荣涵
孙立
张文松
郑刘杰
龙梦
梁亚林
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/340,667 priority Critical patent/US20200066143A1/en
Publication of WO2019075859A1 publication Critical patent/WO2019075859A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/02Crossings, junctions or interconnections between roads on the same level
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights

Definitions

  • the invention belongs to the technical field of traffic management and control, and particularly relates to a method for selecting a mouth opening of a signalized intersection caused by the composition of a traffic flow.
  • the composition of traffic flow refers to the proportion of various types of motor vehicles traveling on actual roads. Common types of motor vehicles include cars, medium-sized cars and buses.
  • the vehicle arrival mode refers to the order and number of arrivals of each type of vehicle.
  • the effective transit time is equal to the effective green time minus the green light loss time.
  • the invention is based on the actual traffic flow composition requirement, analyzes the influence of various traffic flow arrival modes on the traffic flow law of the left-turn lane, and obtains the green light loss time of the left-turn lane, and then establishes a left-turn lane traffic capacity calculation model, and adopts the traffic model.
  • the maximum capacity is the best choice for the target to determine the opening position of the U-turn, so that the space-time resource utilization rate of the left-turn lane is the highest.
  • the present invention is directed to the deficiencies of the prior art, and provides a method for selecting a signal opening of a signalized intersection of a traffic flow composition.
  • the geometric design parameters involved include: left turn wide lane length D L , left bend waiting zone straight section length D WS , left bend waiting zone curve section length D WC , where the entrance and opposite are located
  • the geometric design parameters involved include: design speeds V L , V T , V R of the left turn lane, the straight lane, and the right turn lane;
  • the left turn traffic of the entrance road where the turning head opening is located is first released, and then the straight traffic flow conflicting with the left turn traffic flow is released;
  • the parameters involved in the signal timing scheme include: period duration C, phase number ⁇ , phase number Phase effective green time Green light interval G between adjacent phases;
  • the parameters involved in the spatio-temporal characteristics of traffic flow include: number of vehicle types Vehicle type number The arrival rate ⁇ k of each type of vehicle arriving on the left-turn lane, the ratio p' k of the head-turning vehicles in each type of vehicle, the body length l k corresponding to each type of vehicle, and the safety between adjacent vehicles in the intersection parking queue The distance l 0 and the saturated head time h of the standard car;
  • the U-turn vehicle enters the left-turn lane before the partial left-turning vehicle and waits for the traffic signal at the U-turn opening, resulting in a "vacant area" between the last left-turn queue vehicle in front of the U-turn opening and the U-turn opening.
  • the left-turning vehicle After the start of phase 7, the left-turning vehicle must decelerate-stop-queue after the left-turn lane stop line, and the head-turning vehicle continues to drive away through the turning-over opening. If the left-turning queued vehicle arrives at a certain time in phase 7, it will just turn around. If the opening is blocked, then the subsequently-turned U-turn vehicle can only be forced to decelerate-park-queue, causing the remaining green light of the phase 7 to be released; if the U-turn opening is not blocked by the left-turning vehicle before the end of phase 7, the phase is considered The utilization of the green light in the head is not affected;
  • phase 6 effective green time is subtracted from the phase 6 left turn green light loss time to obtain the phase 6 effective transit time, and the phase 6 effective transit time is divided by the standard car saturated head time to obtain the phase. 6 number of standard cars passing through the left turn lane;
  • phase 7 effective green time is subtracted from the phase 7 green light loss time to obtain the phase 7 effective transit time, and the phase 7 effective transit time is divided by the standard car saturated head time to obtain the phase 7.
  • the range of values for the opening position of the turning head is determined, and the capacity of the left-turn lane corresponding to the selection of the opening of the head is obtained, and the capacity of the left-turn lane and the opening of the head are drawn.
  • the head opening position corresponding to the highest point of the curve is the best choice for the head opening.
  • the invention fully considers various vehicle arrival modes in the process of determining the left-turn lane capacity. For the difference in space-time resource utilization ratio of the left-turn lane, and based on the geometric design parameters of the intersection and its actual operational characteristics, the model is established and simplified, and the optimal position of the turning head opening is determined with the maximum left-turn lane capacity as the target. Make the selection of the head opening more reasonable.
  • the invention When determining the optimal position of the left turn lane turning head, the invention is based on the actual traffic flow composition characteristics and the traffic flow distribution law at the intersection, and fully considers the difference of the influence of various vehicle arrival modes on the subsequent vehicle traffic during the actual running process. Sex, establish a corresponding calculation model, making the selection of the U-turn opening more scientific and reasonable;
  • the present invention adopts the previous vehicle arrival rate model and the intersection opening setting form, and firstly creates a method for selecting the opening of the head under the influence of various vehicle arrival modes, and comprehensively considers the left-turn and turn-over requirements and intersections of various vehicles.
  • the graphic design and its signal control scheme enable the established traffic capacity calculation formula to more accurately describe the influence of the traffic flow composition on the correspondence between the left-turn lane capacity and the selection of the head opening, which can better serve the urban signalized intersection. Optimize the design.
  • FIG. 1 is a schematic view of a plane intersection used in the present invention.
  • FIG. 2 is a schematic diagram of a signal phase scheme employed by the present invention.
  • FIG. 3 is a schematic diagram of the queuing when the U-turn vehicle blocks the left-turning vehicle in the phase 6 initial time.
  • 4 is a schematic diagram of the queuing when the left-turning vehicle blocks the U-turn vehicle during the phase 7 period.
  • Figure 5 is a flow chart of the calculation method of the present invention.
  • the invention establishes a left-turn lane capacity calculation model with a U-turn opening by analyzing the difference of the influence of various vehicle arrival modes on the subsequent vehicle traffic, and determines the traffic efficiency as the goal.
  • the optimal position of the left turn lane turning head opening makes the space utilization of the left turn-turn head combined lane the highest.
  • a method for selecting a signal opening of a signalized intersection of a traffic flow composition includes the following steps:
  • phase 1, 3, 5, and 7 respectively control the direct traffic flow of the east, north, west, and south imports, and phase 2, 4, 6, and 8 respectively control the west.
  • the left-turn traffic flow of the imported, south-imported, east-imported, and north-introduced, the control signal of the U-turn traffic follows the phase 6 simultaneously and ends simultaneously with the phase 7;
  • the specific parameters include: the cycle duration C, the effective green time g 1 of each phase, g 2 , g 3 , g 4 , g 5 , g 6 , g 7 , g 8 , the green light interval G between the control phase 5 of the preceding traffic and the control phase 6 of the left-turn traffic allowing the turning;
  • the parameters involved include: number of vehicle types Vehicle type number The arrival rate ⁇ k of each type of vehicle arriving on the left-turn lane, the ratio p' k of the head-turning vehicles in each type of vehicle, the body length l k corresponding to each type of vehicle, and the safety between adjacent vehicles in the intersection parking queue The distance l 0 and the saturated head time h of the standard car;
  • the U-turn vehicle enters the left-turn lane before the partial left-turn vehicle and is in the U-turn Waiting for the traffic signal at the opening, resulting in a "vacant area" between the last left-turn queued vehicle in front of the U-turn opening and the U-turn opening.
  • the subsequently-turned left-turning vehicle must decelerate-stop-queue at the rear of the U-turn opening.
  • the subsequent left-turning vehicle should be started behind the U-turn opening, which reduces the left-turn green light utilization rate; if the “empty area” is not formed in front of the U-turn opening before the start of the phase 6, it is determined that the left-turn lane space is sufficient.
  • the queued vehicle arrival mode has no effect on the left turn green light utilization rate in phase 6;
  • the left-turning vehicle After the start of phase 7, the left-turning vehicle must decelerate-stop-queue after the left-turn lane stop line, and the head-turning vehicle can continue to leave through the turning-over opening, if the left-turn queued vehicle arriving at a certain point in phase 7 happens to be If the U-turn opening is blocked, then the subsequently-turned U-turn vehicle can only be forced to decelerate-park-queue, causing the remaining green light of the phase 7 to be released; if the U-turn opening is not blocked by the left-turning vehicle before the end of the phase 7, it is considered The utilization of the green light in the phase 7 is not affected;
  • n is the number of various vehicle arrival modes corresponding to the value of D O at the beginning of phase 6;
  • k is the type of vehicle, common vehicle types include cars, medium cars, buses, etc.;
  • l k is the length of the body of the k-type vehicle, m;
  • l 0 is the average safety distance between two adjacent vehicles in the intersection parking queue, m;
  • the turning vehicle must wait for the last straight passing vehicle passing the end of the last phase green light to pass the conflict point between the two before starting and passing the turning opening to leave the intersection, the opposite end of the previous phase.
  • the time t SL of the last straight-through vehicle passing through the turning opening is
  • D S is the distance between the opposite entrance lane and the entrance lane of the entrance, m;
  • D O is the distance between the opening of the turning head and the parking line of the inlet lane, m;
  • D U is the width of the opening of the turning head, m
  • V T is the design speed of the intersection straight lane, m/s
  • the green light interval between the control phase 5 and the phase 6 of the traffic flow is G, assuming that the starting loss time of the turning vehicle is ⁇ t U , and if t SL ⁇ G, the straight traveling vehicle is between the two phases
  • the left turn vehicle waits for the turning vehicle departure time t 1 to be equal to the starting loss time of the turning vehicle, ie
  • the left-turning vehicle waits for the turning-over vehicle to leave the time equal to: the last phase of the green light at the end of the opposite direction, the last straight-passing vehicle passing through the turning opening, minus the green light interval, and then the start-up vehicle loss Time summation, ie
  • V L is the design speed of the left turn lane at the intersection, m/s;
  • D WA is the length of the "vacant area" and is calculated by:
  • p k is the probability that the model of a queuing vehicle on the D WC +D WS +D O segment is k, and its calculation formula is as follows:
  • ⁇ k is the arrival rate of each type of vehicle on the left turn lane of the entrance lane
  • m is the number of various vehicle arrival modes corresponding to D O in phase 7;
  • phase 7 if g' arrives within 7 seconds The left-turning vehicle just blocks the opening of the U-turn, and the subsequently-turned U-turn vehicle will be unable to pass and will be forced to stop waiting in line; at this time, the loss time t LU (g' 7 ) caused by the left-turning vehicle blocking the transit of the U-turned vehicle is
  • 0 ⁇ g '7 ⁇ g 7 , g 7 7 is a phase effective green time, s;
  • phase 6 effective green time is subtracted from the phase 6 left turn green light loss time to obtain the phase 6 effective transit time, and the phase 6 effective transit time is divided by the standard car saturated head time to obtain the phase. 6 number of standard cars passing through the left turn lane;
  • phase 7 effective green time is subtracted from the phase 7 green light loss time to obtain the phase 7 effective transit time, and the phase 7 effective transit time is divided by the standard car saturated head time to obtain the phase 7.
  • the head opening position corresponding to the highest point of the curve is the best choice for the head opening.
  • the present invention provides a left-turn lane capacity calculation model influenced by the composition of traffic flow, and solves the problem of the left-turn lane turn opening selection method at the signalized intersection of various vehicle arrival modes, thereby overcoming the current selection of the head opening.
  • the blindness of the position improves the utilization of time and space resources at the intersection and has a high use value.
  • the length of the left-turn widened lane is used as the range of the opening of the turning head, but the same is true for the intersection of the left-turn widened lane of the imported road, and only the length of the solid section of the inlet is used as the value range of the opening of the turning head.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种交通流组成影响的信号交叉口调头开口选位方法,在确定左转车道通行能力的过程中,分析了各种车辆到达模式对左转绿灯利用率和调头绿灯利用率的差异化影响,并结合交通管理需求与交通流时空特性,提出了设置调头开口的信号交叉口左转车道通行能力计算方法,使得实际交通流组成影响的左转车道通行能力计算更加准确。

Description

一种交通流组成影响的信号交叉口调头开口选位方法 技术领域
本发明属于交通管理与控制技术领域,具体涉及一种交通流组成影响的信号交叉口调头开口选位方法。
背景技术
交通流组成是指在实际道路中行驶的各种类型机动车所占的比例,常见的机动车类型包含小汽车、中型车及公交车等。车辆到达模式是指各类型车辆的到达顺序和数量。有效通行时间等于有效绿灯时间减去绿灯损失时间。
目前,关于信号交叉口调头开口的研究多以标准小汽车为目标对象,问题描述与实际交通运行环境存在一定的差异性,所得结论不能很好地满足实际情况下的交通需求;工程实践中交叉口调头开口的选位多以设计人员的经验为主、盲目性较大,致使左转车流和调头车流在交叉口内相互干扰严重,造成左转车道时空资源浪费,甚至引发所在进口道整体车流运行不畅,降低了交通流运行效率。
本发明立足于实际交通流组成需求,分析各种交通流到达模式对左转车道车流运行规律的影响,得出左转车道的绿灯损失时间,进而建立左转车道通行能力计算模型,并以通行能力最大为目标确定调头开口的最佳选位,使得左转车道时空资源利用率最高。
发明内容
本发明针对现有技术的不足,提供一种交通流组成影响的信号交叉口调头开口选位方法。
本发明的技术方案包括如下步骤:
(一)获取交叉口调头开口选位的背景参数
(1)确定几何设计参数
对于调头开口所在进口道,涉及的几何设计参数包括:左转展宽车道长度DL、左弯待转区直线段长度DWS、左弯待转区曲线段长度DWC、所在进口道与对向进口道停车线之间的距离DS、调头开口与所在进口道停车线之间的距离DO、调头开口宽度DU
对于每条进口道,涉及的几何设计参数包括:左转车道、直行车道、右转车道的设计速度VL、VT、VR
(2)确定信号控制方案
为保证调头车流的连续性,先放行调头开口所处进口道的左转车流,紧接着放行与该左转车流冲突的直行车流;
信号配时方案涉及的参数包括:周期时长C、相位数η、相位编号
Figure PCTCN2017113273-appb-000001
相位有效绿灯时间
Figure PCTCN2017113273-appb-000002
相邻相位之间的绿灯间隔时间G;
(3)确定交通流时空特性
交通流时空特性涉及的参数包括:车辆类型数
Figure PCTCN2017113273-appb-000003
车辆类型编号
Figure PCTCN2017113273-appb-000004
左转车道上到达的各类型车辆对应的到达率λk、各类型车辆中调头车辆的比例p′k、各类型车辆对应的车身长度lk、交叉口停车队列中相邻车辆之间的安全间距l0、标准小汽车的饱和车头时距h;
以上参数直接或间接获取;
(二)分析各种车辆到达模式对左转车道利用率的影响
(1)分析相位6初始时刻各种车辆到达模式对左转绿灯利用率的影响
若在相位6开始之前,调头车辆先于部分左转车辆进入左转车道并在调头开口处等候通行信号,导致调头开口前方的最后一辆左转排队车辆与调头开口之间形成一个“空置区域”,后续到达的左转车辆必须在调头开口后方减速-停 车-排队,待左转绿灯启亮后,后续到达的左转车辆要在调头开口后方启动,降低了左转绿灯利用率;若相位6开始之前,调头开口前方没有形成“空置区域”,则判定左转车道空间被充分利用,排队车辆到达模式对相位6内的左转绿灯利用率没有影响;
(2)分析相位7时段内各种车辆到达模式对调头绿灯利用率的影响
在相位7开始之后,左转车辆必须在左转车道停车线后减速-停车-排队,调头车辆则继续通过调头开口驶离,如果在相位7内某一时刻到达的左转排队车辆恰好将调头开口挡住,那么后续到达的调头车辆只能被迫减速-停车-排队,从而造成相位7剩余的调头绿灯时间空放;若在相位7结束前调头开口没有被左转排队车辆阻挡,则认为相位7内的调头绿灯利用率没有受到影响;
(三)建立相位6时段内的左转绿灯损失时间计算模型
(1)当调头开口前产生“空置区域”时,分析调头开口前各种左转排队车辆的到达模式;
(2)根据“空置区域”长度,计算由于调头车辆阻挡导致的左转绿灯损失时间;
(3)对于调头开口前产生“空置区域”的情况,计算调头开口前各种左转排队车辆到达模式的发生概率;
(4)计算相位6左转绿灯损失时间,即“空置区域”影响的左转绿灯损失时间加权平均值;
(四)建立相位7时段内的调头绿灯损失时间计算模型
(1)当调头开口被左转排队车辆阻挡时,分析各种左转排队车辆的到达模式;
(2)计算由于左转排队车辆阻挡调头车辆导致的调头绿灯损失时间;
(3)对于调头开口被左转排队车辆阻挡的情况,计算各种左转排队车辆到达模式的发生概率;
(4)计算相位7调头绿灯损失时间,即左转排队车辆到达模式影响的调头绿灯损失时间加权平均值;
(五)建立调头开口所在左转车道的通行能力计算模型
(1)在一个信号周期内,利用相位6有效绿灯时间减去相位6左转绿灯损失时间得到相位6有效通行时间,并利用相位6有效通行时间除以标准小汽车饱和车头时距,得到相位6内左转车道上通过的标准小汽车数;
(2)在一个信号周期内,利用相位7有效绿灯时间减去相位7调头绿灯损失时间得到相位7有效通行时间,并利用相位7有效通行时间除以标准小汽车饱和车头时距,得到相位7内左转车道上通过的标准小汽车数;
(3)将相位6和相位7内左转车道上通过的标准小汽车数相加得到一个信号周期内左转车道上通过的标准小汽车总数,然后将其换算成一小时内左转车道上通过的标准小汽车数,得到调头开口选位影响的左转车道通行能力;
(六)确定左转车道调头开口最佳选位
(1)绘制左转车道通行能力与调头开口选位对应的变化曲线
当获取交叉口几何设计参数、信号控制方案及交通流特性之后,为调头开口位置确定取值范围,得出不同调头开口选位对应的左转车道通行能力,绘制左转车道通行能力与调头开口选位对应的变化曲线;
(2)根据变化曲线获得左转车道调头开口的最佳位置
根据左转车道通行能力与调头开口选位对应的变化曲线,曲线最高点对应的调头开口位置就是所求调头开口的最佳选位。
本发明在确定左转车道通行能力的过程中,充分考虑了各种车辆到达模式 对左转车道时空资源利用率方面的差异,并根据交叉口几何设计参数及其实际运行特征,进行模型的建立与简化,并以左转车道通行能力最大为目标确定调头开口的最佳位置,使得调头开口选位更加合理。
本发明的有益效果:
(1)本发明在确定左转车道调头开口最佳位置时,立足于交叉口实际交通流组成特性和车流集散规律,充分考虑了实际运行过程中各种车辆到达模式对后续车辆通行影响的差异性,建立相应计算模型,使得调头开口的选位更加科学、合理;
(2)本发明沿用以前的车辆到达率模型和交叉口调头开口设置形式,首创各种车辆到达模式影响下的调头开口选位方法,统筹考虑了各类车辆的左转及调头需求、交叉口平面设计及其信号控制方案,使得建立的通行能力计算公式能够更加准确地描述交通流组成对左转车道通行能力与调头开口选位对应关系的影响,可以更好地服务于城市信号交叉口的优化设计。
附图说明
图1是本发明所适用的平面十字交叉口示意图。
图2是本发明所采用的信号相位方案示意图。
图3是相位6初始时刻调头车辆阻挡左转车辆通行时的排队示意图。
图4是相位7时段内左转车辆阻挡调头车辆通行时的排队示意图。
图5是本发明所述计算方法的流程图。
具体实施方式
下面结合附图和技术方案,进一步说明本发明的具体实施方式。
本发明通过分析各种车辆到达模式对后续车辆通行影响的差异性,建立了带有调头开口的左转车道通行能力计算模型,并以通行效率最优为目标确定了 左转车道调头开口的最佳位置,使得左转-调头合用车道的时空资源利用率最高。
如图1、图2、图3、图4、图5所示,一种交通流组成影响的信号交叉口调头开口选位方法,包括如下步骤:
(一)获取交叉口调头开口选位的背景参数
(1)确定几何设计参数,如图1所示,具体包括:调头开口所在进口道的左转展宽车道长度DL、左弯待转区直线段长度DWS、左弯待转区曲线段长度DWC、所在进口道与对向进口道停车线之间的距离DS、调头开口与所在进口道停车线之间的距离DO、调头开口宽度DU,各进口道左转车道、直行车道、右转车道相应的设计速度VL、VT、VR
(2)确定信号控制方案,如图2所示,相位1、3、5、7分别控制东进口、北进口、西进口、南进口的直行车流,相位2、4、6、8分别控制西进口、南进口、东进口、北进口的左转车流,调头车流的控制信号跟随相位6同时开启、与相位7同时结束;具体参数包括:周期时长C,每个相位的有效绿灯时间g1、g2、g3、g4、g5、g6、g7、g8,上一直行车流的控制相位5与允许调头的左转车流的控制相位6之间的绿灯间隔时间G;
(3)确定交通流时空特性,涉及的参数包括:车辆类型数
Figure PCTCN2017113273-appb-000005
车辆类型编号
Figure PCTCN2017113273-appb-000006
左转车道上到达的各类型车辆对应的到达率λk、各类型车辆中调头车辆的比例p′k、各类型车辆对应的车身长度lk、交叉口停车队列中相邻车辆之间的安全间距l0、标准小汽车的饱和车头时距h;
(二)分析各种车辆到达模式对左转车道利用率的影响
(1)分析相位6初始时刻各种车辆到达模式对左转绿灯利用率的影响
若在相位6开始之前,调头车辆先于部分左转车辆进入左转车道并在调头 开口处等候通行信号,导致调头开口前方的最后一辆左转排队车辆与调头开口之间形成一个“空置区域”,后续到达的左转车辆必须在调头开口后方减速-停车-排队,待左转绿灯启亮后,后续到达的左转车辆要在调头开口后方启动,降低了左转绿灯利用率;若相位6开始之前,调头开口前方没有形成“空置区域”,则判定左转车道空间被充分利用,排队车辆到达模式对相位6内的左转绿灯利用率没有影响;
(2)分析相位7时段内各种车辆到达模式对调头绿灯利用率的影响
在相位7开始之后,左转车辆必须在左转车道停车线后减速-停车-排队,调头车辆则可以继续通过调头开口驶离,如果在相位7内某一时刻到达的左转排队车辆恰好将调头开口挡住,那么后续到达的调头车辆只能被迫减速-停车-排队,从而造成相位7剩余的调头绿灯时间空放;若在相位7结束前调头开口没有被左转排队车辆阻挡,则认为相位7内的调头绿灯利用率没有受到影响;
(三)建立相位6时段内的左转绿灯损失时间计算模型
(1)解析调头开口前产生“空置区域”时的各种左转排队车辆到达模式
当调头开口前存在“空置区域”时,其各种左转排队车辆到达模式表达为
Figure PCTCN2017113273-appb-000007
式中:n为相位6开始之时对应DO取值的各种车辆到达模式的种数;
k为车辆类型,常见的车辆类型包括小汽车、中型车、公交车等;
Figure PCTCN2017113273-appb-000008
为相位6开始之时DWC+DWS+DO段上第n种车辆到达模式对应的k类左转排队车辆数;
Figure PCTCN2017113273-appb-000009
为相位6开始之时DWC+DWS+DO段上第n种车辆到达模式对应的各类型左转排队车辆总数;
lk为k类车辆的车身长度,m;
l0为在交叉口停车队列中相邻两车之间的平均安全间距,m;
(2)计算左转车辆等待调头车辆驶离时间
相位6时段内,调头车辆必须等待上一相位绿灯末尾通过的最后一辆直行车辆通过两者之间的冲突点后,才能启动并通过调头开口驶离交叉口,上一相位末尾对向进口道最后一辆直行车辆驶过调头开口的时间tSL
Figure PCTCN2017113273-appb-000010
式中:DS为对向进口道停车线与所在进口道停车线之间的距离,m;
DO为调头开口与所在进口道停车线之间的距离,m;
DU为调头开口的宽度,m;
VT为交叉口直行车道的设计速度,m/s;
已知上一直行车流的控制相位5与相位6之间的绿灯间隔时间为G,假设调头车辆的启动损失时间为ΔtU,如果tSL<G,则该直行车辆在两个相位之间的绿灯间隔时间内通过,此时左转车辆等待调头车辆驶离时间t1就等于调头车辆的启动损失时间,即
t1=ΔtU         (3)
如果tSL≥G,则左转车辆等待调头车辆驶离时间等于:上一相位绿灯末尾对向进口道最后一辆直行车辆驶过调头开口的时间减去绿灯间隔时间,再与调头车辆启动损失时间求和,即
Figure PCTCN2017113273-appb-000011
综上可知,左转车辆等待调头车辆驶离的时间为
Figure PCTCN2017113273-appb-000012
(3)计算调头开口后方的首辆左转排队车辆通过“空置区域”的时间
结合公式(1),在调头开口后方被调头车辆阻挡的首辆左转排队车辆通过“空置区域”的时间t2
Figure PCTCN2017113273-appb-000013
式中:VL为交叉口左转车道的设计速度,m/s;
DWA为“空置区域”长度,由下式计算:
Figure PCTCN2017113273-appb-000014
综上可知,所求调头车辆阻挡左转车辆通行产生的损失时间
Figure PCTCN2017113273-appb-000015
Figure PCTCN2017113273-appb-000016
(4)计算调头开口前产生“空置区域”时的各种左转排队车辆到达模式的发生概率
调头车辆阻挡左转车辆通行的情形发生在相位6绿灯启亮之前,假设DWC+DWS+DO段上排队的各类型左转车辆总数为
Figure PCTCN2017113273-appb-000017
调头开口处至少有一辆调头车辆排队等待,则该类情况发生的概率
Figure PCTCN2017113273-appb-000018
Figure PCTCN2017113273-appb-000019
式中:pk为DWC+DWS+DO段上某一辆排队车辆的车型为k的概率,其计算公式如下:
Figure PCTCN2017113273-appb-000020
式中:λk为所在进口道左转车道上各类型车辆的到达率;
(5)计算相位6时段内的左转绿灯损失时间
调头车辆阻挡左转车辆通行时,相位6内的左转绿灯损失时间YUL的计算模型为
Figure PCTCN2017113273-appb-000021
(四)建立相位7时段内的调头绿灯损失时间计算模型
(1)解析调头开口被左转排队车辆阻挡时的各种左转排队车辆的到达模式
假设左转车辆停车排队遮挡调头开口时的排队车辆数为
Figure PCTCN2017113273-appb-000022
与DO、DU、l0以及到达的每辆左转车辆的车身长度lk有关,此时各种左转排队车辆的到达模式由下式求算:
Figure PCTCN2017113273-appb-000023
式中:m为相位7内对应DO取值的各种车辆到达模式的种数;
Figure PCTCN2017113273-appb-000024
为相位7内DO+DU段上第m种车辆到达模式对应的k类左转排队车辆数;
(2)计算由于左转排队车辆阻挡调头车辆导致的调头绿灯损失时间
在相位7内,若g′7秒内到达
Figure PCTCN2017113273-appb-000025
辆左转车辆刚好把调头开口遮挡,那么后续到达的调头车辆将无法通行而被迫停车排队等待;此时,左转车辆阻挡调头车辆通行导致的损失时间tLU(g′7)为
tLU(g′7)=g7-g′7         (13)
式中:0<g′7≤g7,g7为相位7有效绿灯时间,s;
(3)计算阻挡调头开口的各种左转排队车辆到达模式的发生概率
假设相位7时段内左转车道上各类车辆的到达是随机的且服从泊松分布, 同时已知到达的各类车辆中调头车辆的比例,那么到达的
Figure PCTCN2017113273-appb-000026
辆左转车辆对应的各类型车辆数
Figure PCTCN2017113273-appb-000027
Figure PCTCN2017113273-appb-000028
则此时问题转化为:求g′7秒内到达车辆总数为
Figure PCTCN2017113273-appb-000029
的概率
Figure PCTCN2017113273-appb-000030
Figure PCTCN2017113273-appb-000031
(4)计算相位7时段内调头绿灯损失时间
左转车辆阻挡调头车辆通行时,相位7时段内的调头绿灯损失时间计算模型为
Figure PCTCN2017113273-appb-000032
(五)建立调头开口所在左转车道的通行能力计算模型
(1)在一个信号周期内,利用相位6有效绿灯时间减去相位6左转绿灯损失时间得到相位6有效通行时间,并利用相位6有效通行时间除以标准小汽车饱和车头时距,得到相位6内左转车道上通过的标准小汽车数;
(2)在一个信号周期内,利用相位7有效绿灯时间减去相位7调头绿灯损失时间得到相位7有效通行时间,并利用相位7有效通行时间除以标准小汽车饱和车头时距,得到相位7内左转车道上通过的标准小汽车数;
(3)将相位6和相位7内左转车道上通过的标准小汽车数相加得到一个信号周期内左转车道上通过的标准小汽车总数,然后将其换算成一小时内左转车道上通过的标准小汽车数,得到调头开口选位影响的左转车道通行能力c,其计算模型为
Figure PCTCN2017113273-appb-000033
(六)确定左转车道调头开口最佳选位
(1)绘制左转车道通行能力与调头开口选位对应的变化曲线
当获取交叉口几何设计参数、信号控制方案及交通流特性之后,让调头开口位置DO在[0,DL-DU]内任意取整数值,得出不同调头开口选位对应的左转车道通行能力,绘制左转车道通行能力与调头开口选位对应的变化曲线;
(2)根据变化曲线获得左转车道调头开口的最佳位置
根据左转车道通行能力与调头开口选位对应的变化曲线,曲线最高点对应的调头开口位置就是所求调头开口的最佳选位。
综上,本发明提供了一种交通流组成影响的左转车道通行能力计算模型,并求解了各种车辆到达模式影响的信号交叉口左转车道调头开口选位方法,克服了目前调头开口选位的盲目性,提高了交叉口时空资源的利用率,具有较高的使用价值。应当指出,本发明是将左转展宽车道长度作为调头开口的取值范围,但对于进口道没有左转展宽车道的交叉口同样适用,只需将进口道实线段长度作为调头开口的取值范围即可;对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

  1. 一种交通流组成影响的信号交叉口调头开口选位方法,其特征在于:
    (一)获取交叉口调头开口选位的背景参数
    (1)确定几何设计参数
    对于调头开口所在进口道,涉及的几何设计参数包括:左转展宽车道长度DL、左弯待转区直线段长度DWS、左弯待转区曲线段长度DWC、所在进口道与对向进口道停车线之间的距离DS、调头开口与所在进口道停车线之间的距离DO、调头开口宽度DU
    对于每条进口道,涉及的几何设计参数包括:左转车道、直行车道、右转车道的设计速度VL、VT、VR
    (2)确定信号控制方案
    为保证调头车流的连续性,先放行调头开口所处进口道的左转车流,紧接着放行与该左转车流冲突的直行车流;
    信号配时方案涉及的参数包括:周期时长C、相位数η、相位编号
    Figure PCTCN2017113273-appb-100001
    相位有效绿灯时间
    Figure PCTCN2017113273-appb-100002
    相邻相位之间的绿灯间隔时间G;
    (3)确定交通流时空特性
    交通流时空特性涉及的参数包括:车辆类型数
    Figure PCTCN2017113273-appb-100003
    车辆类型编号
    Figure PCTCN2017113273-appb-100004
    左转车道上到达的各类型车辆对应的到达率λk、各类型车辆中调头车辆的比例p′k、各类型车辆对应的车身长度lk、交叉口停车队列中相邻车辆之间的安全间距l0、标准小汽车的饱和车头时距h;
    (二)分析各种车辆到达模式对左转车道利用率的影响
    相位6控制调头开口所处进口道的左转车流,相位7控制与该左转车流冲突的直行车流,调头车流在相位6和相位7内通行;
    (1)分析相位6初始时刻各种车辆到达模式对左转绿灯利用率的影响
    若在相位6开始之前,调头车辆先于部分左转车辆进入左转车道并在调头开口处等候通行信号,导致调头开口前方的最后一辆左转排队车辆与调头开口之间形成一个“空置区域”,后续到达的左转车辆必须在调头开口后方减速-停车-排队,待左转绿灯启亮后,后续到达的左转车辆要在调头开口后方启动,降低了左转绿灯利用率;若相位6开始之前,调头开口前方没有形成“空置区域”,则判定左转车道空间被充分利用,排队车辆到达模式对相位6内的左转绿灯利用率没有影响;
    (2)分析相位7时段内各种车辆到达模式对调头绿灯利用率的影响
    在相位7开始之后,左转车辆必须在左转车道停车线后减速-停车-排队,调头车辆则继续通过调头开口驶离,如果在相位7内某一时刻到达的左转排队车辆恰好将调头开口挡住,那么后续到达的调头车辆只能被迫减速-停车-排队,从而造成相位7剩余的调头绿灯时间空放;若在相位7结束前调头开口没有被左转排队车辆阻挡,则认为相位7内的调头绿灯利用率没有受到影响;
    (三)建立相位6时段内的左转绿灯损失时间计算模型
    (1)解析调头开口前产生“空置区域”时的各种左转排队车辆到达模式
    当调头开口前存在“空置区域”时,其各种左转排队车辆到达模式表达为
    Figure PCTCN2017113273-appb-100005
    式中:n为相位6开始之时对应DO取值的各种车辆到达模式的种数;
    k为车辆类型,常见的车辆类型包括小汽车、中型车、公交车等;
    Figure PCTCN2017113273-appb-100006
    为相位6开始之时DWC+DWS+DO段上第n种车辆到达模式对应的k类左转排队车辆数;
    Figure PCTCN2017113273-appb-100007
    为相位6开始之时DWC+DWS+DO段上第n种车辆到达模式对应的各类型左转排队车辆总数;
    lk为k类车辆的车身长度,m;
    l0为在交叉口停车队列中相邻两车之间的平均安全间距,m;
    (2)计算左转车辆等待调头车辆驶离时间
    相位6时段内,调头车辆必须等待上一相位绿灯末尾通过的最后一辆直行车辆通过两者之间的冲突点后,才能启动并通过调头开口驶离交叉口,上一相位末尾对向进口道最后一辆直行车辆驶过调头开口的时间tSL
    Figure PCTCN2017113273-appb-100008
    式中:DS为对向进口道停车线与所在进口道停车线之间的距离,m;
    DO为调头开口与所在进口道停车线之间的距离,m;
    DU为调头开口的宽度,m;
    VT为交叉口直行车道的设计速度,m/s;
    已知上一直行车流的控制相位5与相位6之间的绿灯间隔时间为G,假设调头车辆的启动损失时间为ΔtU,如果tSL<G,则该直行车辆在两个相位之间的绿灯间隔时间内通过,此时左转车辆等待调头车辆驶离时间t1就等于调头车辆的启动损失时间,即
    t1=ΔtU                (3)
    如果tSL≥G,则左转车辆等待调头车辆驶离时间等于:上一相位绿灯末尾对向进口道最后一辆直行车辆驶过调头开口的时间减去绿灯间隔时间,再与调头车辆启动损失时间求和,即
    Figure PCTCN2017113273-appb-100009
    综上可知,左转车辆等待调头车辆驶离的时间为
    Figure PCTCN2017113273-appb-100010
    (3)计算调头开口后方的首辆左转排队车辆通过“空置区域”的时间
    结合公式(1),在调头开口后方被调头车辆阻挡的首辆左转排队车辆通过“空置区域”的时间t2
    Figure PCTCN2017113273-appb-100011
    式中:VL为交叉口左转车道的设计速度,m/s;
    DWA为“空置区域”长度,由下式计算:
    Figure PCTCN2017113273-appb-100012
    综上可知,所求调头车辆阻挡左转车辆通行产生的损失时间
    Figure PCTCN2017113273-appb-100013
    Figure PCTCN2017113273-appb-100014
    (4)计算调头开口前产生“空置区域”时的各种左转排队车辆到达模式的发生概率
    调头车辆阻挡左转车辆通行的情形发生在相位6绿灯启亮之前,假设DWC+DWS+DO段上排队的各类型左转车辆总数为
    Figure PCTCN2017113273-appb-100015
    调头开口处至少有一辆调头车辆排队等待,则该类情况发生的概率
    Figure PCTCN2017113273-appb-100016
    Figure PCTCN2017113273-appb-100017
    式中:pk为DWC+DWS+DO段上某一辆排队车辆的车型为k的概率,其计算公式如下:
    Figure PCTCN2017113273-appb-100018
    式中:λk为所在进口道左转车道上各类型车辆的到达率;
    (5)计算相位6时段内的左转绿灯损失时间
    调头车辆阻挡左转车辆通行时,相位6内的左转绿灯损失时间YUL的计算模型为
    Figure PCTCN2017113273-appb-100019
    (四)建立相位7时段内的调头绿灯损失时间计算模型
    (1)解析调头开口被左转排队车辆阻挡时的各种左转排队车辆的到达模式
    假设左转车辆停车排队遮挡调头开口时的排队车辆数为
    Figure PCTCN2017113273-appb-100020
    与DO、DU、l0以及到达的每辆左转车辆的车身长度lk有关,此时各种左转排队车辆的到达模式由下式求算:
    Figure PCTCN2017113273-appb-100021
    式中:m为相位7内对应DO取值的各种车辆到达模式的种数;
    Figure PCTCN2017113273-appb-100022
    为相位7内DO+DU段上第m种车辆到达模式对应的k类左转排队车辆数;
    (2)计算由于左转排队车辆阻挡调头车辆导致的调头绿灯损失时间
    在相位7内,若g′7秒内到达
    Figure PCTCN2017113273-appb-100023
    辆左转车辆刚好把调头开口遮挡,那么后续到达的调头车辆将无法通行而被迫停车排队等待;此时,左转车辆阻挡调头车辆通行导致的损失时间tLU(g′7)为
    tLU(g′7)=g7-g′7          (13)
    式中:0<g′7≤g7,g7为相位7有效绿灯时间,s;
    (3)计算阻挡调头开口的各种左转排队车辆到达模式的发生概率
    假设相位7时段内左转车道上各类车辆的到达是随机的且服从泊松分布, 同时已知到达的各类车辆中调头车辆的比例,那么到达的
    Figure PCTCN2017113273-appb-100024
    辆左转车辆对应的各类型车辆数
    Figure PCTCN2017113273-appb-100025
    Figure PCTCN2017113273-appb-100026
    则此时问题转化为:求g′7秒内到达车辆总数为
    Figure PCTCN2017113273-appb-100027
    的概率
    Figure PCTCN2017113273-appb-100028
    Figure PCTCN2017113273-appb-100029
    (4)计算相位7时段内调头绿灯损失时间
    左转车辆阻挡调头车辆通行时,相位7时段内的调头绿灯损失时间计算模型为
    Figure PCTCN2017113273-appb-100030
    (五)建立调头开口所在左转车道的通行能力计算模型
    (1)在一个信号周期内,利用相位6有效绿灯时间减去相位6左转绿灯损失时间得到相位6有效通行时间,并利用相位6有效通行时间除以标准小汽车饱和车头时距,即得到相位6内左转车道上通过的标准小汽车数;
    (2)在一个信号周期内,利用相位7有效绿灯时间减去相位7调头绿灯损失时间得到相位7有效通行时间,并利用相位7有效通行时间除以标准小汽车饱和车头时距,即得到相位7内左转车道上通过的标准小汽车数;
    (3)将相位6和相位7内左转车道上通过的标准小汽车数相加得到一个信号周期内左转车道上通过的标准小汽车总数,然后将其换算成一小时内左转车道上通过的标准小汽车数,得到调头开口选位影响的左转车道通行能力c,其计算模型为
    Figure PCTCN2017113273-appb-100031
    (六)确定左转车道调头开口最佳选位
    (1)绘制左转车道通行能力与调头开口选位对应的变化曲线
    当获取交叉口几何设计参数、信号控制方案及交通流特性后,为调头开口位置确定取值范围,得出不同调头开口选位对应的左转车道通行能力,绘制左转车道通行能力与调头开口选位对应的变化曲线;
    (2)根据变化曲线获得左转车道调头开口的最佳位置
    根据左转车道通行能力与调头开口选位对应的变化曲线,曲线最高点对应的调头开口位置就是所求调头开口的最佳选位。
PCT/CN2017/113273 2017-10-17 2017-11-28 一种交通流组成影响的信号交叉口调头开口选位方法 WO2019075859A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/340,667 US20200066143A1 (en) 2017-10-17 2017-11-28 A position selecting method of a u-turn median opening at a signalized intersection under the influence of traffic flow compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710966270.1 2017-10-17
CN201710966270.1A CN107798868B (zh) 2017-10-17 2017-10-17 一种交通流组成影响的信号交叉口调头开口选位方法

Publications (1)

Publication Number Publication Date
WO2019075859A1 true WO2019075859A1 (zh) 2019-04-25

Family

ID=61534085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113273 WO2019075859A1 (zh) 2017-10-17 2017-11-28 一种交通流组成影响的信号交叉口调头开口选位方法

Country Status (3)

Country Link
US (1) US20200066143A1 (zh)
CN (1) CN107798868B (zh)
WO (1) WO2019075859A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112376340A (zh) * 2020-12-03 2021-02-19 吉林大学 一种左转路口导向线及左转停止线设计方法
CN113737589A (zh) * 2021-09-06 2021-12-03 上海市政工程设计研究总院(集团)有限公司 高架道路下的交叉口二次过街***
CN114677846A (zh) * 2022-04-13 2022-06-28 合肥工业大学 纯网联自动驾驶环境下信号交叉口进口道的动态分配方法
CN115662159A (zh) * 2022-09-15 2023-01-31 合肥工业大学 道路交叉口车道分布特征的信号相位方案选择及配时方法
CN115662156A (zh) * 2022-10-26 2023-01-31 合肥工业大学 网联环境下考虑行车安全的交叉口左转空间动态调控方法
CN115798226B (zh) * 2022-10-19 2024-05-03 公安部交通管理科学研究所 一种基于绿灯利用率的信号控制优化方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417039B (zh) * 2018-05-07 2019-06-07 大连理工大学 一种交通流组成影响的信号交叉***通需求估算方法
CN109385940B (zh) * 2018-10-26 2020-11-10 淮阴工学院 基于交通波理论的左转掉头口距停止线长度的设计方法
CN109598928B (zh) * 2018-11-26 2021-02-26 启迪设计集团股份有限公司 信号控制交叉口设置远引掉头的判定方法
US11161504B2 (en) * 2019-03-19 2021-11-02 Honda Motor Co., Ltd. Vehicle control apparatus and method
CN109841068B (zh) * 2019-03-28 2021-03-19 广东振业优控科技股份有限公司 基于路口中心处交通流冲突点占有率的交通信号控制方法
CN110865361B (zh) * 2019-11-29 2022-05-13 南京慧尔视智能科技有限公司 一种基于雷达数据的饱和车头时距检测方法
CN111785038B (zh) * 2020-06-11 2022-10-28 大连理工大学 基于绿灯延长请求区利用率的单点全感应式信号配时方法
CN112037508B (zh) * 2020-08-13 2022-06-17 山东理工大学 基于动态饱和流率的交叉口信号配时优化方法
CN112419751B (zh) * 2020-10-10 2021-10-08 同济大学 基于单截面电警数据的信号交叉口车道排队长度估计方法
CN112614382B (zh) * 2020-11-11 2022-03-04 山东卓智软件股份有限公司 相对距离智能化调节***
CN112884194B (zh) * 2020-12-15 2024-04-02 园测信息科技股份有限公司 基于信号交叉口运行状况的可变车道切换与信号配时方法
CN113112797B (zh) * 2021-04-09 2022-01-07 交通运输部公路科学研究所 基于车路协同技术的信号灯路口调度方法及***
CN113516857B (zh) * 2021-04-19 2022-08-16 安徽达尔智能控制***股份有限公司 一种基于雷达监测的交叉口信号配时动态调配方法及***
CN113436448B (zh) * 2021-06-28 2022-08-23 武汉市政工程设计研究院有限责任公司 一种信号交叉口借道左转车道设计方法及***
CN113936481B (zh) * 2021-12-02 2022-07-26 公安部交通管理科学研究所 一种信号控制交叉口的空间利用状况评价方法
CN115273467B (zh) * 2022-07-15 2023-07-04 南京莱斯信息技术股份有限公司 一种基于多区域检测数据的车流相互影响事件识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120036240A (ko) * 2010-10-07 2012-04-17 지도범 U턴 중 차선에 대한 설명서
CN102693629A (zh) * 2012-03-30 2012-09-26 天津市市政工程设计研究院 考虑大型车掉头需求的交叉口设计与控制方法
CN105133450A (zh) * 2015-09-12 2015-12-09 山东理工大学 一种设置中央隔离护栏的道路交叉口调头区域设计方法
CN106530722A (zh) * 2016-12-28 2017-03-22 山东理工大学 一种设置调头开口的信号交叉口双左转车道通行能力计算方法
CN106781555A (zh) * 2016-12-28 2017-05-31 山东理工大学 一种设置双左转车道的信号交叉口调头区域设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109362A (ko) * 2006-05-11 2007-11-15 여지홍 도로에서 횡단보도가 필요할 경우 교통시스템에 관한양방향 반 지하u턴차도.
CN106683443A (zh) * 2017-01-13 2017-05-17 哈尔滨工业大学 一种交叉口左转相位信号配时设计和优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120036240A (ko) * 2010-10-07 2012-04-17 지도범 U턴 중 차선에 대한 설명서
CN102693629A (zh) * 2012-03-30 2012-09-26 天津市市政工程设计研究院 考虑大型车掉头需求的交叉口设计与控制方法
CN105133450A (zh) * 2015-09-12 2015-12-09 山东理工大学 一种设置中央隔离护栏的道路交叉口调头区域设计方法
CN106530722A (zh) * 2016-12-28 2017-03-22 山东理工大学 一种设置调头开口的信号交叉口双左转车道通行能力计算方法
CN106781555A (zh) * 2016-12-28 2017-05-31 山东理工大学 一种设置双左转车道的信号交叉口调头区域设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AL-MASAEID, HASHEM R .: "Capacity of U-turn at Median Opening", ITE JOURNAL, vol. 69, no. 6, 30 June 1999 (1999-06-30), pages 28 - 30, 32; 34, XP055594635 *
SUN, FENG ET AL.: "Location of U-turn Openings at Signalized Intersections Based on Optimal Traffic Capacity", JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, vol. 52, no. 2, 30 April 2017 (2017-04-30), pages 334 - 339, XP055594628, ISSN: 0258-2724 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112376340A (zh) * 2020-12-03 2021-02-19 吉林大学 一种左转路口导向线及左转停止线设计方法
CN113737589A (zh) * 2021-09-06 2021-12-03 上海市政工程设计研究总院(集团)有限公司 高架道路下的交叉口二次过街***
CN114677846A (zh) * 2022-04-13 2022-06-28 合肥工业大学 纯网联自动驾驶环境下信号交叉口进口道的动态分配方法
CN114677846B (zh) * 2022-04-13 2022-12-06 合肥工业大学 纯网联自动驾驶环境下信号交叉口进口道的动态分配方法
CN115662159A (zh) * 2022-09-15 2023-01-31 合肥工业大学 道路交叉口车道分布特征的信号相位方案选择及配时方法
CN115662159B (zh) * 2022-09-15 2023-09-15 合肥工业大学 道路交叉口车道分布特征的信号相位方案选择及配时方法
CN115798226B (zh) * 2022-10-19 2024-05-03 公安部交通管理科学研究所 一种基于绿灯利用率的信号控制优化方法
CN115662156A (zh) * 2022-10-26 2023-01-31 合肥工业大学 网联环境下考虑行车安全的交叉口左转空间动态调控方法
CN115662156B (zh) * 2022-10-26 2023-09-12 合肥工业大学 网联环境下考虑行车安全的交叉口左转空间动态调控方法

Also Published As

Publication number Publication date
CN107798868A (zh) 2018-03-13
CN107798868B (zh) 2019-02-01
US20200066143A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2019075859A1 (zh) 一种交通流组成影响的信号交叉口调头开口选位方法
CN107730886B (zh) 一种车联网环境下城市交叉***通信号动态优化方法
CN104882008B (zh) 一种车联网环境下的无信号交叉口车辆协同控制方法
CN102024335B (zh) 服务于城市干线道路绿波控制的速度引导方法
CN107730922A (zh) 一种单向干线绿波协调控制自适应调整方法
CN108122420B (zh) 一种路中型动态公交专用道清空距离设置方法
CN111932916B (zh) 一种城市道路动态应急车道的控制方法及控制***
CN108364486B (zh) 多场景车辆优先自适应交通信号控制***及其工作方法
CN107016858A (zh) 一种交叉口多流向候驶区和错位式停车线的预信号控制方法
CN114155724B (zh) 一种车联网环境下的交叉***通信号控制方法
CN113257007B (zh) 交叉口共享自动驾驶车道的信号控制方法及***
CN113487868B (zh) 公交动态速度引导-驻站控制-信号优先协同控制方法
CN111127872B (zh) 考虑行人与右转车辆冲突的直右可变导向车道的控制方法
CN110706484B (zh) 设置逆向可变车道交叉口左转通行能力计算方法
CN111091724B (zh) 交叉口直行车使用对向左转道的动态车道设计及信控方法
CN106781555B (zh) 一种设置双左转车道的信号交叉口调头区域设计方法
CN114299755B (zh) 一种智能网联队列换道方法
CN116189462B (zh) 一种面向混合交通流的车辆轨迹与交通信号协同控制方法
CN114120666B (zh) 一种基于车路协同的智能车速诱导***
CN110288828A (zh) 上游港湾停靠站影响下交叉口进口道通行能力计算方法
CN104778839A (zh) 基于视频检测器的城市道路下游分方向交通状态判别方法
CN106780272B (zh) 一种利用交通冲突计算菱形立交减速匝道长度的方法
CN113628459A (zh) 一种面向间歇式公交车道的预约交叉口公交优先方法
CN106530722B (zh) 一种设置调头开口的信号交叉口双左转车道通行能力计算方法
WO2024060486A1 (zh) 基于可控智能网联车的高速公路匝道混合交通流管控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929288

Country of ref document: EP

Kind code of ref document: A1