WO2019075661A1 - 基于亚像素角点识别的试样表面变形数字图像测量装置及方法 - Google Patents

基于亚像素角点识别的试样表面变形数字图像测量装置及方法 Download PDF

Info

Publication number
WO2019075661A1
WO2019075661A1 PCT/CN2017/106693 CN2017106693W WO2019075661A1 WO 2019075661 A1 WO2019075661 A1 WO 2019075661A1 CN 2017106693 W CN2017106693 W CN 2017106693W WO 2019075661 A1 WO2019075661 A1 WO 2019075661A1
Authority
WO
WIPO (PCT)
Prior art keywords
specimen
deformation
sub
digital image
measurement
Prior art date
Application number
PCT/CN2017/106693
Other languages
English (en)
French (fr)
Inventor
邵龙潭
郭晓霞
刘永禄
黄川�
吴铭明
李希成
夏平心
鞠鹏
刘潇
王春
薛杰
王颖
Original Assignee
苏州汇才土水工程科技有限公司
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇才土水工程科技有限公司, 大连理工大学 filed Critical 苏州汇才土水工程科技有限公司
Priority to PCT/CN2017/106693 priority Critical patent/WO2019075661A1/zh
Priority to US16/648,177 priority patent/US11119016B2/en
Publication of WO2019075661A1 publication Critical patent/WO2019075661A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/579Depth or shape recovery from multiple images from motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/68Analysis of geometric attributes of symmetry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10148Varying focus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30172Centreline of tubular or elongated structure

Definitions

  • the invention belongs to the technical field of digital image measurement and geotechnical engineering, and relates to a sample surface digital image measuring device and method based on sub-pixel corner point recognition.
  • Deformation measurement of specimens is one of the most important contents in experimental mechanics and an important part of geotechnical experiments.
  • Conventional sample deformation measurement uses strain gauges, Hall effect sensors, local deformation measurement sensors, eddy current sensors and other measurement methods. These methods have the following disadvantages: (1) average measurement, (2) contact measurement, (3) The measurement accuracy is not high or the measurement points are small. At the same time, the overall deformation image of the sample cannot be obtained, and the strain field at any point of the sample is not obtained. It is difficult to study the local deformation characteristics of the sample; and, for the measurement environment under some special conditions, the measurement is performed. There are higher requirements for the means, such as measuring the deformation of a soil sample in a water pressure vessel.
  • optical measurement (hereinafter referred to as optical measurement) method is the most widely used.
  • Optical measurement has many advantages such as non-contact, fast response, high precision, wide range, automation, etc., and has been widely used in many fields.
  • Optical measurement technology is divided into interference optical measurement and non-interference optical measurement.
  • Interferometric optical measurement techniques such as holographic interference, speckle interference, moiré interference, etc.
  • non-interferometric optical measurement techniques such as geometric moiré techniques, and digital image measurement techniques
  • digital image measurement techniques are highly adaptable to the measurement environment and simple to operate And other characteristics have been rapidly developed.
  • the application of optical measurement technology in the study of material deformation characteristics has promoted the research process of people to explore the mechanical properties and behavior of materials.
  • the measurement of volumetric deformation and radial deformation of unsaturated soil samples has always been a problem, and digital image measurement methods provide an effective means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种基于亚像素角点识别的试样表面变形数字图像测量装置包括:图测压力室、CMOS工业相机、相机支架(15)、柔性遮光罩(14)以及计算机和配套的测量软件。还提供了一种基于亚像素角点识别的试样表面变形数字图像测量方法,该方法通过试样(4)上印制的方格,将试样(4)离散成若干个四节点有限单元,网格的角点作为有限单元的节点,基于亚像素的边缘检测和角点识别,实时跟踪特征点的变形,通过试样(4)后方的两面成120︒的平面镜(3)来捕获试样(4)的全表面变形信息,将三幅图像进行拼接和误差修正,实现全表面的变形观测。该装置简单、成本低,精度高,能实时测量并跟踪特征点的变形,得到全表面的变形场和应变场。

Description

基于亚像素角点识别的试样表面变形数字图像测量装置及方法 技术领域
本发明属于数字图像测量和岩土工程试验技术领域,涉及一种基于亚像素角点识别的试样表面数字图像测量装置及方法。
背景技术
试样变形测量是实验力学中最重要的内容之一,也是岩土工程试验的重要内容。传统的试样变形测量多采用应变计、霍尔效应传感器、局部变形测量传感器、电涡流传感器等测量方法,这些方法有以下缺点:(1)平均测量,(2)接触式测量,(3)测量精度不高或是测点较少。同时,都不能得到试样的整体变形图像,也得不到试样局部任意点变形的应变场,难以实现对试样局部变形特性进行研究;并且,对于有些特殊条件下的测量环境,对测量手段会有更高的要求,比如测量一个土试样在有水压力容器内的变形,采用传统的测量方法会干扰试样,且在水下有压力的环境内操作很麻烦。因此在传统的测量基础上后续发展的现代测量技术中,光学测量(下简称光测)方法应用最广。
光测具有非接触、响应快、精度高、范围宽、自动化等众多优点,现已广泛应用于众多领域。光测技术分为干涉光学测量和非干涉光学测量。干涉光学测量技术如全息干涉、散斑干涉、云纹干涉等;非干涉光学测量技术如几何云纹技术、以及数字图像测量技术;其中数字图像测量技术因其对测量环境适用性强、操作简单等特点得到快速发展。光学测量技术在材料变形特性研究方面的应用,推动了人们探知材料力学性质和行为的研究进程。在岩土工程试验领域,非饱和土样的体积变形和径向变形测量一直是一个难题,数字图像测量方法提供了一种有效的手段。
发明内容

Claims (1)

  1. Figure PCTCN2017106693-appb-100001
PCT/CN2017/106693 2017-10-18 2017-10-18 基于亚像素角点识别的试样表面变形数字图像测量装置及方法 WO2019075661A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/106693 WO2019075661A1 (zh) 2017-10-18 2017-10-18 基于亚像素角点识别的试样表面变形数字图像测量装置及方法
US16/648,177 US11119016B2 (en) 2017-10-18 2017-10-18 Image measurement device and method for the surface deformation of specimen based on sub-pixel corner detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/106693 WO2019075661A1 (zh) 2017-10-18 2017-10-18 基于亚像素角点识别的试样表面变形数字图像测量装置及方法

Publications (1)

Publication Number Publication Date
WO2019075661A1 true WO2019075661A1 (zh) 2019-04-25

Family

ID=66173148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106693 WO2019075661A1 (zh) 2017-10-18 2017-10-18 基于亚像素角点识别的试样表面变形数字图像测量装置及方法

Country Status (2)

Country Link
US (1) US11119016B2 (zh)
WO (1) WO2019075661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752963A (zh) * 2019-08-29 2021-05-04 汤浅***机器株式会社 变形试验机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724897B (zh) * 2020-05-14 2021-04-11 財團法人工業技術研究院 應變量測方法及應變量測裝置
CN113074650A (zh) * 2021-03-25 2021-07-06 江苏省特种设备安全监督检验研究院 一种对真空绝热深冷压力容器的接管应变强化监测的方法
KR102507561B1 (ko) * 2021-05-28 2023-03-09 현대제철 주식회사 인장 시험 장치
CN113487594B (zh) * 2021-07-22 2023-12-01 上海嘉奥信息科技发展有限公司 一种基于深度学习的亚像素角点检测方法、***及介质
CN114136773B (zh) * 2021-11-10 2023-01-17 苏州大学 一种平面应变土样变形的piv增强测量方法
CN115308247B (zh) * 2022-10-11 2022-12-16 江苏昭华精密铸造科技有限公司 一种氧化铝粉体除渣质量检测方法
CN116993725B (zh) * 2023-09-26 2023-11-28 深圳市普能达电子有限公司 一种柔性电路板智能贴片信息处理***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2258734B (en) * 1991-08-12 1995-02-01 Daniel Rabindrana Hettiaratchi Triaxial compression testing
KR100486837B1 (ko) * 2005-01-17 2005-04-29 한국토지공사 불포화토 물성 측정장치
CN103344501A (zh) * 2013-07-20 2013-10-09 中国水利水电科学研究院 大型土工三轴蠕变试验***
CN104614256A (zh) * 2015-02-06 2015-05-13 河海大学 一种温控式冷热循环非饱和土三轴仪
CN106840850A (zh) * 2017-03-08 2017-06-13 苏州汇才土水工程科技有限公司 一台带有数字图像测量技术的多功能冻土三轴仪
CN106990803A (zh) * 2017-03-08 2017-07-28 苏州汇才土水工程科技有限公司 一种可实现图像测量与温度控制的多功能压力室

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472000B1 (en) * 2007-12-13 2013-06-25 John Lemmon Films, Incorporated Animation stand with multiple axis camera support
JP6742149B2 (ja) * 2016-05-19 2020-08-19 株式会社タムロン 変倍光学系及び撮像装置
US9936129B2 (en) * 2016-06-15 2018-04-03 Obsidian Sensors, Inc. Generating high resolution images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2258734B (en) * 1991-08-12 1995-02-01 Daniel Rabindrana Hettiaratchi Triaxial compression testing
KR100486837B1 (ko) * 2005-01-17 2005-04-29 한국토지공사 불포화토 물성 측정장치
CN103344501A (zh) * 2013-07-20 2013-10-09 中国水利水电科学研究院 大型土工三轴蠕变试验***
CN104614256A (zh) * 2015-02-06 2015-05-13 河海大学 一种温控式冷热循环非饱和土三轴仪
CN106840850A (zh) * 2017-03-08 2017-06-13 苏州汇才土水工程科技有限公司 一台带有数字图像测量技术的多功能冻土三轴仪
CN106990803A (zh) * 2017-03-08 2017-07-28 苏州汇才土水工程科技有限公司 一种可实现图像测量与温度控制的多功能压力室

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, XIAO: "Method of Whole Surface Deformation Measurement for Soil Specimen in Triaxial Tests and Its Application", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 30 November 2012 (2012-11-30), pages 15 - 62, ISSN: 1674-022X *
SHAO, LONGTAN ET AL.: "Application of Digital Image Processing Technique to Measuring Specimen Deformation in Triaxial Test", ROCK AND SOIL MECHANICS, 10 June 2015 (2015-06-10), pages 674 - 683, ISSN: 1000-7598 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752963A (zh) * 2019-08-29 2021-05-04 汤浅***机器株式会社 变形试验机
CN112752963B (zh) * 2019-08-29 2024-05-24 汤浅***机器株式会社 变形试验机

Also Published As

Publication number Publication date
US20200264082A1 (en) 2020-08-20
US11119016B2 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2019075661A1 (zh) 基于亚像素角点识别的试样表面变形数字图像测量装置及方法
Zhang et al. Digital image correlation using ring template and quadrilateral element for large rotation measurement
Wang et al. Digital image correlation in experimental mechanics and image registration in computer vision: Similarities, differences and complements
Sutton et al. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications
Vo et al. Advanced geometric camera calibration for machine vision
Pan et al. Automated initial guess in digital image correlation aided by Fourier–Mellin transform
Lee et al. Optimum accuracy of two-dimensional strain measurements using digital image correlation
CN105758719B (zh) 一种基于双镜反射的均匀应变光学测量装置及方法
Wei et al. Parallel-based calibration method for line-structured light vision sensor
Yan et al. Precise 3D shape measurement of three-dimensional digital image correlation for complex surfaces
Zhu et al. A computer vision approach to study surface deformation of materials
Qiu et al. A shape reconstruction and visualization method for a flexible hinged plate using binocular vision
CN112697063B (zh) 一种基于显微视觉的芯片应变测量方法
Pang Digital image correlation
Li et al. Camera calibration with a near-parallel imaging system based on geometric moments
Tang et al. Photogrammetry-based two-dimensional digital image correlation with nonperpendicular camera alignment
JP6533914B2 (ja) 計測方法、計測装置、計測プログラム及び計測プログラムを記録した、コンピュータ読み取り可能な記録媒体
Xiao et al. Corner detection and sorting method based on improved Harris algorithm in camera calibration
Xu et al. Strain analysis of pressure vessels contained pits based on digital image correlation method
Zhou et al. Multipose measurement of surface defects on rotary metal parts with a combined laser-and-camera sensor
Deepan et al. Determination of slope, curvature, and twist from a single shearography fringe pattern using derivative-based regularized phase tracker
Shao et al. Experimental investigation of strain errors in stereo-digital image correlation due to camera calibration
Li et al. A novel computation method for 2D deformation of fish scale based on SURF and NR optimisation
Mikołajczyk et al. Camera-Based Automatic System for Tool Measurements and Recognition
Hassan et al. Measuring full-field deformation in ultra-high-performance concrete structural components using tag-based robotic vision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929212

Country of ref document: EP

Kind code of ref document: A1