WO2019073648A1 - Biological signal sensor - Google Patents

Biological signal sensor Download PDF

Info

Publication number
WO2019073648A1
WO2019073648A1 PCT/JP2018/026795 JP2018026795W WO2019073648A1 WO 2019073648 A1 WO2019073648 A1 WO 2019073648A1 JP 2018026795 W JP2018026795 W JP 2018026795W WO 2019073648 A1 WO2019073648 A1 WO 2019073648A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological signal
main surface
signal sensor
detection electrodes
living body
Prior art date
Application number
PCT/JP2018/026795
Other languages
French (fr)
Japanese (ja)
Inventor
友祐 吉田
木原 高栄
中尾 元保
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201890001274.4U priority Critical patent/CN213309802U/en
Publication of WO2019073648A1 publication Critical patent/WO2019073648A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Definitions

  • the present invention relates to a biological signal sensor that is brought into contact with a living body to acquire a biological signal.
  • Patent Document 1 a myoelectric sensor (a biological signal sensor) in which a plurality of planar electrodes are arranged in contact with each other in a planar casing is used.
  • both the housing of the myoelectric sensor and the electrodes are planar, and when the myoelectric sensor is in proximity to a rounded living body, the contact area can not be secured widely. There is a possibility that the signal can not be measured reliably.
  • an object of the present invention is to provide a structure which secures a wide contact area to a living body and efficiently acquires a stable biological signal.
  • One aspect of the biological signal sensor of the present invention is a housing having a first main surface disposed in proximity to a living body at the time of measuring a biological signal, and a second main surface opposite to the first main surface, And a plurality of detection electrodes provided on one main surface.
  • the first main surface is elliptically curved such that the center is recessed from the outside to the inside of the housing with respect to the end.
  • the biological signal sensor can be reliably brought into contact with the living body when measuring the biological signal, and the stability of the measurement is improved.
  • the plurality of detection electrodes in one aspect of the biological signal sensor of the present invention be configured to protrude in a first direction which is a thickness direction of a housing.
  • the plurality of detection electrodes are in more intimate contact with the living body, thereby further improving the measurement stability.
  • a plurality of detections are performed when a direction connecting the both ends protruding due to the curvature of the first main surface is a second direction and a direction orthogonal to the second direction is a third direction.
  • the electrode preferably has a length in the second direction longer than a length in the third direction.
  • the biological signal from the muscle fiber can be efficiently received by the direction of the muscle fiber being orthogonal to the second direction.
  • the plurality of detection electrodes in one aspect of the biological signal sensor of the present invention are preferably disposed at positions orthogonal to the third direction.
  • the biosignals when the biosignal sensor is used as an myoelectric sensor, the biosignals can be received more accurately by arranging the plurality of detection electrodes in a direction orthogonal to the direction in which the muscle fibers extend. .
  • the second main surface is preferably curved so that the center of the end protrudes from the inside to the outside of the housing.
  • the case of the biological signal sensor when the case of the biological signal sensor is fixed with a rubber band or the like at the time of measurement of the biological signal, the case can be fixed more reliably.
  • At least one of the plurality of detection electrodes in one aspect of the biosignal sensor of the present invention is formed so that the surface in contact with the living body is curved in an elliptical shape.
  • One aspect of a biological signal sensor includes a housing having a first main surface disposed in proximity to a living body when measuring a biological signal, and a second main surface opposite to the first main surface, And a plurality of detection electrodes provided on one main surface. At least one of the plurality of detection electrodes is formed to be elliptically curved such that the surface in contact with the living body is concaved inward from the outside of the detection electrode at the center with respect to the end.
  • the plurality of detection electrodes when measuring the biological signal, the plurality of detection electrodes can be reliably brought into contact with the living body, and the stability of the measurement is improved.
  • FIG. 1 is an external perspective view from the first main surface 101 side of a biological signal sensor 10 according to a first embodiment of the present invention.
  • FIG. 2A is a schematic view of the biological signal sensor 10 according to the first embodiment of the present invention
  • FIG. 2B is a schematic view of the biological signal sensor 10 as viewed from the side.
  • FIG. 3 is an image diagram in which the biological signal sensor 10 according to the first embodiment of the present invention is brought into contact with a living body 20.
  • FIG. 4A is a plan view of the biological signal sensor 10 according to the first embodiment of the present invention as viewed from the first main surface 101 side
  • FIG. 4B is a plan view of the biological signal sensor 10. It is a side outline figure in B line.
  • FIG. 4A is a plan view of the biological signal sensor 10 according to the first embodiment of the present invention as viewed from the first main surface 101 side
  • FIG. 4B is a plan view of the biological signal sensor 10. It is a side outline figure in B line.
  • FIG. 4A is
  • FIG. 5A is a plan view of the biological signal sensor 10A according to the second embodiment of the present invention as viewed from the first main surface 101 side
  • FIG. 5B is a plan view of the biological signal sensor 10A
  • FIG. 5 (C) is a side schematic view of the biosignal sensor 10A taken along the line C-C
  • FIG. 6A is a plan view of the biological signal sensor 10B according to the third embodiment of the present invention as viewed from the first main surface 101B side
  • FIG. 6B is a plan view of the biological signal sensor 10B. It is a side outline figure in B line.
  • FIG. 1 is an external perspective view from the first main surface 101 side of a biological signal sensor 10 according to a first embodiment of the present invention.
  • FIG. 2A is a schematic view of the biological signal sensor 10 according to the first embodiment of the present invention
  • FIG. 2B is a schematic view of the biological signal sensor 10 as viewed from the side.
  • FIG. 3 is an image diagram in which the biological signal sensor 10 according to the first embodiment of the present invention is brought into contact with a living body 20.
  • FIG. 4A is a plan view of the biological signal sensor 10 according to the first embodiment of the present invention as viewed from the first main surface 101 side
  • FIG. 4B is a plan view of the biological signal sensor 10. It is a side outline figure in B line.
  • the biological signal sensor 10 includes a housing 100 and a plurality of detection electrodes 151.
  • the housing 100 includes a first major surface 101, a second major surface 102, and four side surfaces connecting the first major surface 101 and the second major surface 102, which are arranged to be spaced apart from each other.
  • the first major surface 101 includes corner portions CR1, CR2, CR3, and CR4.
  • the housing 100 and the detection electrode 151 are both rigid.
  • the housing 100 is preferably insulating.
  • the detection electrode 151 is preferably, for example, a titanium compound.
  • the thickness direction of the housing 100 is a first direction
  • the short direction of the housing 100 is a second direction
  • the longitudinal direction is a third direction.
  • the opposite sides in the second direction are parallel
  • the opposite sides in the third direction are parallel.
  • the second direction and the third direction are orthogonal to each other.
  • the first major surface 101 has a shape that is recessed from the outside to the inside at a substantially central point in the second direction, and is curved in an elliptical shape, for example.
  • the shape of the first main surface 101 of the housing 100 and the shape of the detection electrode 151 are more specifically described with reference to FIGS. 2A and 2B.
  • the plane connecting the corner portions CR1, CR2, CR3 and CR4 in the first major surface 101 is taken as a reference plane BP.
  • a central point between the corner CR1 and the corner CR2 in the second direction of the reference plane BP is a middle point MP1.
  • a central point between the corner CR3 and the corner CR4 in the second direction of the reference plane BP is taken as a middle point MP2.
  • a straight line connecting the middle point MP1 and the middle point MP2 is taken as a middle line ML.
  • the first major surface 101 is a curved elliptical arc-shaped surface that is most concaved at the position where the above-described midline ML is projected to the first major surface 101.
  • FIG. 2B is a schematic side view of the biological signal sensor 10 viewed from the side including the first direction and the second direction including the corner portions CR1 and CR2.
  • the first major surface 101 has a concaved-curved elliptical arc shape at the midpoint MP1 in the second direction. More specifically, in the first direction, the distance between the reference plane BP and the first major surface 101 is the longest at the location of the midpoint MP1, and becomes shorter as it approaches both ends.
  • FIG. 3 is an image diagram in which the biological signal sensor 10 is specifically brought into contact with the two arm portions of the living body 20.
  • the first major surface 101 of the housing 100 is brought into contact with the roundness of the two arms of the living body 20.
  • the biological signal sensor 10 (the housing 100) is brought into contact so that the direction in which the two arms extend is parallel to the third direction of the biological signal sensor 10.
  • the first major surface 101 is curved, the curved surface of the first major surface 101 and the curved surface due to the roundness of the living body 20 become substantially parallel to each other, and the first main surface of the housing 100
  • the face 101 can be in more intimate contact with the living body 20.
  • the living body in the present invention is a generic term for living things as living things. For example, human bodies, animals, plants and the like.
  • the living body to be detected is generally rounded, the curved elliptical arc shape of the housing 100 is efficiently adapted to the living body.
  • the biosignal sensor 10 can measure a biosignal more reliably.
  • FIG. 4A is a plan view of the biological signal sensor 10 as viewed from the first main surface 101 side.
  • FIG. 4B is a schematic side view of the biosignal sensor 10 taken along line BB in FIG. 4A.
  • the plurality of detection electrodes 151 are formed on the first main surface 101 of the housing 100.
  • the plurality of detection electrodes 151 are arranged substantially equally along the third direction on the first major surface 101.
  • the plurality of detection electrodes 151 are formed to protrude from the first major surface 101. Top surfaces 155 (surfaces facing the first major surface 101) of the plurality of detection electrodes 151 are planar.
  • the contact area of the detection electrode 151 to the living body 20 is increased, and a stable biological signal can be obtained.
  • the top surface 155 of the plurality of sensing electrodes 151 is the surface of the living body 20. It is pushed in and abuts.
  • the contact area can be reliably obtained, and the biological signal can be received more stably.
  • the top surfaces 155 of the plurality of detection electrodes 151 are planar, the manufacture of the detection electrodes 151 is easy.
  • the plurality of detection electrodes 151 have a shape that is long in the second direction. As a result, the contact area at one location in the extending direction of the muscle fibers can be increased, and the biological signal can be received at a further stable high level.
  • the biological signal sensor 10 is wound around the living body 20. In this case, it is possible to wind easily and has the effect of being hard to shift.
  • FIG. 5A is a plan view of the biological signal sensor 10A according to the second embodiment of the present invention as viewed from the first main surface 101 side
  • FIG. 5B is a plan view of the biological signal sensor 10A
  • FIG. 5 (C) is a side schematic view of the biosignal sensor 10A taken along the line C-C.
  • the biological signal sensor 10A according to the second embodiment is different from the biological signal sensor 10 according to the first embodiment, The difference is that the detection electrode 152A is provided.
  • the other configuration of the biological signal sensor 10A is the same as that of the biological signal sensor 10, and the description of the same parts will be omitted.
  • the biological signal sensor 10A includes a plurality of detection electrodes 151 and a detection electrode 152A.
  • the plurality of detection electrodes 151 and the detection electrodes 152A are arranged substantially equally on the first major surface 101.
  • the detection electrode 151 and the detection electrode 152A are formed to protrude from the first major surface 101.
  • the top surface 155 (surface facing the first major surface 101) of the detection electrode 151 is a flat surface.
  • the top surface 156 of the detection electrode 152A is a curved elliptical arc-shaped surface in which the center point of the detection electrode 152A in the second direction is most recessed toward the first main surface 101. .
  • the biological signal sensor 10A having such a configuration, it can be stably brought into contact with the living body 20, and the biological signal can be efficiently acquired. In addition, depending on the shape of the living body 20, biological signals can be acquired more efficiently.
  • FIG. 6A is a plan view of the biological signal sensor 10B according to the third embodiment of the present invention as viewed from the first main surface 101B side
  • FIG. 6B is a plan view of the biological signal sensor 10B. It is a side outline figure in B line.
  • the biological signal sensor 10B according to the third embodiment is different from the biological signal sensor 10 according to the first embodiment in a plurality of detection electrodes 151B. It differs in the point of having and the shape of 1st main surface 101B and 2nd main surface 102B.
  • the other configuration of the biological signal sensor 10B is the same as that of the biological signal sensor 10, and the description of the same parts will be omitted.
  • the biological signal sensor 10B includes a plurality of detection electrodes 151B.
  • the detection electrode 151B has a shape in which the length in the second direction is longer than that of the detection electrode 151 of the first embodiment. More specifically, the length of the detection electrode 151B is substantially the same as the length in the second direction of the housing 100B.
  • the detection electrode 151B is formed on the first main surface 101B of the biological signal sensor 10B.
  • the top surface 157 of the detection electrode 151B is a curved elliptical arc-shaped surface in which the center point of the detection electrode 151B in the second direction is most recessed toward the first major surface 101B.
  • the first main surface 101B and the second main surface 102B of the biological signal sensor 10B are flat.
  • the length in the second direction of the detection electrode 151B is long and curved in an elliptic arc shape. Therefore, the contact with the living body 20 can be stabilized, and the biological signal can be efficiently acquired.
  • the configuration provided with three detection electrodes is shown, but any number may be provided as long as the configuration can detect a biological signal.
  • one of the detection electrodes is a ground electrode to be grounded, and the remaining two detection electrodes are It may be used as a detection electrode.
  • casing 100 in each above-mentioned embodiment are R-chamfered. Therefore, the stimulation when the biological signal sensor contacts the living body can be alleviated.
  • BP reference surface CR1, CR2, CR3, CR4: corner portion ML: midline MP1, MP2: middle point R: radius
  • 10A, 10B biological signal sensor 20: living body 100, 100B: housing 101, 101B: first 1 main surface 102, 102B ... second main surface 151, 151B, 152A ... detection electrode 155, 156, 157 ... top surface

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

This biological signal sensor (10) is provided with: a case (100) having a first main surface (101) that is placed near a living body (20) during measurement of a biological signal, and a second main surface (102) on the side opposite the first main surface (101); and a plurality of detection electrodes (151) provided on the first main surface (101). The first main surface (101) is elliptically curved so that the center, relative to the edge, is recessed from the outside of the case (100) to the inside thereof.

Description

生体信号センサBiological signal sensor
 この発明は、生体に接触させて生体信号を取得する、生体信号センサに関する。 The present invention relates to a biological signal sensor that is brought into contact with a living body to acquire a biological signal.
 従来、1つ、もしくは複数の電極を用いて、生体(検体者)からの生体信号を取得する技術が各種実用化されている。 Conventionally, various techniques for acquiring a biological signal from a living body (sampler) using one or a plurality of electrodes have been put to practical use.
 特許文献1においては、平面状の筐体に、複数の平面状の電極を当接して並べた筋電センサ(生体信号センサ)が用いられている。 In Patent Document 1, a myoelectric sensor (a biological signal sensor) in which a plurality of planar electrodes are arranged in contact with each other in a planar casing is used.
特開2008-295867号公報JP 2008-295867 A
 しかしながら、特許文献1の筋電センサは、筋電センサの筐体、電極が共に平面状であり、丸みを帯びた生体に近接させたときに、接触面積を広く確保することができず、生体信号を確実に計測することができないおそれがある。 However, in the myoelectric sensor of Patent Document 1, both the housing of the myoelectric sensor and the electrodes are planar, and when the myoelectric sensor is in proximity to a rounded living body, the contact area can not be secured widely. There is a possibility that the signal can not be measured reliably.
 したがって、本発明の目的は、生体への接触面積を広く確保し、安定した生体信号を効率良く取得する構造を提供することである。 Therefore, an object of the present invention is to provide a structure which secures a wide contact area to a living body and efficiently acquires a stable biological signal.
 この発明の生体信号センサの一態様は、生体信号の計測時に生体に近接して配置される第1主面と、第1主面の反対側の第2主面とを有する筐体と、第1主面に設けられる複数の検出電極とを備えている。第1主面は、端に対して中央が筐体の外側から内側へ凹むように楕円状に湾曲している。 One aspect of the biological signal sensor of the present invention is a housing having a first main surface disposed in proximity to a living body at the time of measuring a biological signal, and a second main surface opposite to the first main surface, And a plurality of detection electrodes provided on one main surface. The first main surface is elliptically curved such that the center is recessed from the outside to the inside of the housing with respect to the end.
 この構成では、生体信号の計測時に、生体信号センサを生体に確実に接触させることができ、計測の安定性が向上する。 In this configuration, the biological signal sensor can be reliably brought into contact with the living body when measuring the biological signal, and the stability of the measurement is improved.
 また、この発明の生体信号センサの一態様における複数の検出電極は、筐体の厚み方向である第1方向へ突出している構成であることが好ましい。 Further, it is preferable that the plurality of detection electrodes in one aspect of the biological signal sensor of the present invention be configured to protrude in a first direction which is a thickness direction of a housing.
 この構成では、生体に対して複数の検出電極が、より密着する構造となるため、計測の安定性がさらに向上する。 In this configuration, the plurality of detection electrodes are in more intimate contact with the living body, thereby further improving the measurement stability.
 また、この発明の生体信号センサの一態様において、第1主面の湾曲によって突出する両端を結ぶ方向を第2方向とし、第2方向に直交する方向を第3方向とした場合、複数の検出電極は、第2方向の長さが第3方向の長さよりも長いことが好ましい。 Further, in one aspect of the biological signal sensor of the present invention, a plurality of detections are performed when a direction connecting the both ends protruding due to the curvature of the first main surface is a second direction and a direction orthogonal to the second direction is a third direction. The electrode preferably has a length in the second direction longer than a length in the third direction.
 この構成では、生体信号センサを筋電センサとして用いた場合に、筋繊維の方向と第2方向が直交することによって、筋繊維からの生体信号を効率よく受信することができる。 In this configuration, when the biological signal sensor is used as an myoelectric sensor, the biological signal from the muscle fiber can be efficiently received by the direction of the muscle fiber being orthogonal to the second direction.
 この発明の生体信号センサの一態様における複数の検出電極は、第3方向に直交する位置に配置されていることが好ましい。 The plurality of detection electrodes in one aspect of the biological signal sensor of the present invention are preferably disposed at positions orthogonal to the third direction.
 この構成では、生体信号センサを筋電センサとして用いた場合に、複数の検出電極が筋繊維の伸びる方向と直交する方向に配置されていることにより、生体信号をより正確に受信することができる。 In this configuration, when the biosignal sensor is used as an myoelectric sensor, the biosignals can be received more accurately by arranging the plurality of detection electrodes in a direction orthogonal to the direction in which the muscle fibers extend. .
 また、この発明の生体信号センサの一態様において、第2主面は、端に対して中央が筐体の内側から外側へ突出するように湾曲していることが好ましい。 Further, in one aspect of the biosignal sensor of the present invention, the second main surface is preferably curved so that the center of the end protrudes from the inside to the outside of the housing.
 この構成では、生体信号の測定時に、生体信号センサの筐体をゴムバンド等で固定する場合に、より確実に該筐体を固定することができる。 In this configuration, when the case of the biological signal sensor is fixed with a rubber band or the like at the time of measurement of the biological signal, the case can be fixed more reliably.
 また、この発明の生体信号センサの一態様における複数の検出電極の少なくとも1つは、生体と接触する面が、楕円状に湾曲して形成されることが好ましい。 Further, it is preferable that at least one of the plurality of detection electrodes in one aspect of the biosignal sensor of the present invention is formed so that the surface in contact with the living body is curved in an elliptical shape.
 この構成では、複数の検出電極が、生体により密着する構造となるため、計測の安定性がさらに向上する。 In this configuration, since the plurality of detection electrodes are in close contact with the living body, the measurement stability is further improved.
 この発明の生体信号センサの一態様は、生体信号の計測時に生体に近接して配置される第1主面と、第1主面と反対側の第2主面とを有する筐体と、第1主面に設けられる複数の検出電極とを備えている。複数の検出電極の少なくとも1つは、端に対して中央が検出電極の外側から内側へ凹むように、生体と接触する面が、楕円状に湾曲して形成される。 One aspect of a biological signal sensor according to the present invention includes a housing having a first main surface disposed in proximity to a living body when measuring a biological signal, and a second main surface opposite to the first main surface, And a plurality of detection electrodes provided on one main surface. At least one of the plurality of detection electrodes is formed to be elliptically curved such that the surface in contact with the living body is concaved inward from the outside of the detection electrode at the center with respect to the end.
 この構成では、生体信号の計測時に、複数の検出電極を生体に確実に接触させることができ、計測の安定性が向上する。 In this configuration, when measuring the biological signal, the plurality of detection electrodes can be reliably brought into contact with the living body, and the stability of the measurement is improved.
 この発明によれば、生体への接触面を広く確保し、安定した生体信号を効率良く取得する構造を提供することができる。 According to the present invention, it is possible to provide a structure that secures a wide contact surface with a living body and efficiently acquires a stable biological signal.
図1は、本発明の第1の実施形態に係る生体信号センサ10の第1主面101側からの外観斜視図である。FIG. 1 is an external perspective view from the first main surface 101 side of a biological signal sensor 10 according to a first embodiment of the present invention. 図2(A)は、本発明の第1の実施形態に係る生体信号センサ10の概要図であり、図2(B)は、生体信号センサ10を側面から見た概要図である。FIG. 2A is a schematic view of the biological signal sensor 10 according to the first embodiment of the present invention, and FIG. 2B is a schematic view of the biological signal sensor 10 as viewed from the side. 図3は本発明の第1の実施形態に係る生体信号センサ10を生体20に接触させたイメージ図である。FIG. 3 is an image diagram in which the biological signal sensor 10 according to the first embodiment of the present invention is brought into contact with a living body 20. As shown in FIG. 図4(A)は、本発明の第1の実施形態に係る生体信号センサ10を第1主面101側から見た平面図であり、図4(B)は、生体信号センサ10のB-B線における側面概要図である。FIG. 4A is a plan view of the biological signal sensor 10 according to the first embodiment of the present invention as viewed from the first main surface 101 side, and FIG. 4B is a plan view of the biological signal sensor 10. It is a side outline figure in B line. 図5(A)は、本発明の第2の実施形態に係る生体信号センサ10Aを第1主面101側から見た平面図であり、図5(B)は、生体信号センサ10AのB-B線における側面概要図であり、図5(C)は、生体信号センサ10AのC-C線における側面概要図である。FIG. 5A is a plan view of the biological signal sensor 10A according to the second embodiment of the present invention as viewed from the first main surface 101 side, and FIG. 5B is a plan view of the biological signal sensor 10A. FIG. 5 (C) is a side schematic view of the biosignal sensor 10A taken along the line C-C. 図6(A)は、本発明の第3の実施形態に係る生体信号センサ10Bを第1主面101B側から見た平面図であり、図6(B)は、生体信号センサ10BのB-B線における側面概要図である。FIG. 6A is a plan view of the biological signal sensor 10B according to the third embodiment of the present invention as viewed from the first main surface 101B side, and FIG. 6B is a plan view of the biological signal sensor 10B. It is a side outline figure in B line.
(第1の実施形態)
 本発明の第1の実施形態に係る生体信号センサについて、図を参照して説明する。図1は、本発明の第1の実施形態に係る生体信号センサ10の第1主面101側からの外観斜視図である。図2(A)は、本発明の第1の実施形態に係る生体信号センサ10の概要図であり、図2(B)は、生体信号センサ10を側面から見た概要図である。図3は、本発明の第1の実施形態に係る生体信号センサ10を生体20に接触させたイメージ図である。図4(A)は、本発明の第1の実施形態に係る生体信号センサ10を第1主面101側から見た平面図であり、図4(B)は、生体信号センサ10のB-B線における側面概要図である。
First Embodiment
A biological signal sensor according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view from the first main surface 101 side of a biological signal sensor 10 according to a first embodiment of the present invention. FIG. 2A is a schematic view of the biological signal sensor 10 according to the first embodiment of the present invention, and FIG. 2B is a schematic view of the biological signal sensor 10 as viewed from the side. FIG. 3 is an image diagram in which the biological signal sensor 10 according to the first embodiment of the present invention is brought into contact with a living body 20. As shown in FIG. FIG. 4A is a plan view of the biological signal sensor 10 according to the first embodiment of the present invention as viewed from the first main surface 101 side, and FIG. 4B is a plan view of the biological signal sensor 10. It is a side outline figure in B line.
 図1に示すように、生体信号センサ10は、筐体100と、複数の検出電極151とを備える。筐体100は、互いに間隔をあけて配置された、第1主面101と、第2主面102と、第1主面101と第2主面102とを連接する4側面とを備える。第1主面101は、角部CR1、CR2、CR3、CR4を備える。 As shown in FIG. 1, the biological signal sensor 10 includes a housing 100 and a plurality of detection electrodes 151. The housing 100 includes a first major surface 101, a second major surface 102, and four side surfaces connecting the first major surface 101 and the second major surface 102, which are arranged to be spaced apart from each other. The first major surface 101 includes corner portions CR1, CR2, CR3, and CR4.
 筐体100、検出電極151は、ともに剛体である。筐体100は、絶縁性であることが好ましい。検出電極151は、例えば、チタン化合物であることが好ましい。 The housing 100 and the detection electrode 151 are both rigid. The housing 100 is preferably insulating. The detection electrode 151 is preferably, for example, a titanium compound.
 筐体100の厚み方向を第1方向とし、筐体100における、短手方向を第2方向とし、長手方向を第3方向とする。第2方向の対辺同士は平行であり、また、第3方向の対辺同士は、平行である。なお、第2方向と第3方向とは、直交する。 The thickness direction of the housing 100 is a first direction, the short direction of the housing 100 is a second direction, and the longitudinal direction is a third direction. The opposite sides in the second direction are parallel, and the opposite sides in the third direction are parallel. The second direction and the third direction are orthogonal to each other.
 第1主面101は、第2方向における、略中心点において、外側から内側へ凹む形状であり、例えば楕円状に湾曲している。 The first major surface 101 has a shape that is recessed from the outside to the inside at a substantially central point in the second direction, and is curved in an elliptical shape, for example.
 図2(A)、図2(B)を用いて、筐体100の第1主面101の形状と、検出電極151の形状をより具体的に示す。図2(A)に示すように、第1主面101における、角部CR1、CR2、CR3、CR4を結んだ平面を基準面BPとする。 The shape of the first main surface 101 of the housing 100 and the shape of the detection electrode 151 are more specifically described with reference to FIGS. 2A and 2B. As shown in FIG. 2A, the plane connecting the corner portions CR1, CR2, CR3 and CR4 in the first major surface 101 is taken as a reference plane BP.
 基準面BPの第2方向における角部CR1と角部CR2との中央点を、中点MP1とする。同様に、基準面BPの第2方向における角部CR3と角部CR4との中央点を、中点MP2とする。また、中点MP1と、中点MP2を結んだ直線を中線MLとする。 A central point between the corner CR1 and the corner CR2 in the second direction of the reference plane BP is a middle point MP1. Similarly, a central point between the corner CR3 and the corner CR4 in the second direction of the reference plane BP is taken as a middle point MP2. Further, a straight line connecting the middle point MP1 and the middle point MP2 is taken as a middle line ML.
 第1主面101は、上述の中線MLを第1主面101に投影した位置において、最も凹むようにした、湾曲する楕円弧形状の面である。 The first major surface 101 is a curved elliptical arc-shaped surface that is most concaved at the position where the above-described midline ML is projected to the first major surface 101.
 より具体的な湾曲する楕円弧形状を、図2(B)を用いて説明する。図2(B)は、角部CR1、CR2を含んだ、第1方向と第2方向を含む面側から見た、生体信号センサ10の側面概要図である。第1主面101は、第2方向における中点MP1の箇所で、最も凹んだ湾曲する楕円弧形状である。より具体的には、第1方向において、基準面BPと第1主面101との距離が、中点MP1の箇所で最長であり、両端に近づくほど短くなる形状である。 A more specific curved elliptical arc shape will be described using FIG. 2 (B). FIG. 2B is a schematic side view of the biological signal sensor 10 viewed from the side including the first direction and the second direction including the corner portions CR1 and CR2. The first major surface 101 has a concaved-curved elliptical arc shape at the midpoint MP1 in the second direction. More specifically, in the first direction, the distance between the reference plane BP and the first major surface 101 is the longest at the location of the midpoint MP1, and becomes shorter as it approaches both ends.
 湾曲する楕円弧形状とは、好ましくは、湾曲面を円周の一部とする円の半径Rが、R=50mm~300mmの範囲となることが好ましい。このことによって、筐体100の生体に対する密着性を向上させることができる。 In the curved elliptical arc shape, preferably, the radius R of a circle whose curved surface is a part of the circumference is preferably in the range of R = 50 mm to 300 mm. By this, the adhesiveness with respect to the biological body of the housing | casing 100 can be improved.
 図3は、具体的に生体20の二の腕部分に、生体信号センサ10を接触させたイメージ図である。生体20の二の腕の丸みに対し、筐体100の第1主面101を接触させる。この際、二の腕が伸びる方向と、生体信号センサ10の第3方向とが平行となるように、生体信号センサ10(筐体100)を接触させる。ここで、第1主面101が湾曲していることにより、第1主面101の湾曲面と、生体20の丸みによる湾曲面とが面状に略平行になり、筐体100の第1主面101を生体20に、より密接して接触させることができる。 FIG. 3 is an image diagram in which the biological signal sensor 10 is specifically brought into contact with the two arm portions of the living body 20. As shown in FIG. The first major surface 101 of the housing 100 is brought into contact with the roundness of the two arms of the living body 20. At this time, the biological signal sensor 10 (the housing 100) is brought into contact so that the direction in which the two arms extend is parallel to the third direction of the biological signal sensor 10. Here, since the first major surface 101 is curved, the curved surface of the first major surface 101 and the curved surface due to the roundness of the living body 20 become substantially parallel to each other, and the first main surface of the housing 100 The face 101 can be in more intimate contact with the living body 20.
 なお、本発明における生体とは、生物として生きているものを総称したものである。例えば、人体、動物、植物等である。 The living body in the present invention is a generic term for living things as living things. For example, human bodies, animals, plants and the like.
 検出対象である生体は一般的に丸みを帯びているので、筐体100の湾曲する楕円弧形状は、効率良く、生体に適合させられる。 Since the living body to be detected is generally rounded, the curved elliptical arc shape of the housing 100 is efficiently adapted to the living body.
 このことにより、第1主面101に検出電極151が配置されているため、生体信号センサ10は、生体信号をより確実に計測することができる。 Since the detection electrode 151 is arrange | positioned at 1st main surface 101 by this, the biosignal sensor 10 can measure a biosignal more reliably.
 次に、複数の検出電極151の構成について、具体的に説明する。 Next, the configuration of the plurality of detection electrodes 151 will be specifically described.
 図4(A)は、生体信号センサ10を第1主面101側から見た、平面図である。図4(B)は、図4(A)における、生体信号センサ10のB-B線における側面概要図である。 FIG. 4A is a plan view of the biological signal sensor 10 as viewed from the first main surface 101 side. FIG. 4B is a schematic side view of the biosignal sensor 10 taken along line BB in FIG. 4A.
 図4(A)、図4(B)に示すように、複数の検出電極151は、筐体100の第1主面101に形成されている。複数の検出電極151は、第1主面101において、第3方向に沿って、略均等に配置されている。 As shown in FIGS. 4A and 4B, the plurality of detection electrodes 151 are formed on the first main surface 101 of the housing 100. The plurality of detection electrodes 151 are arranged substantially equally along the third direction on the first major surface 101.
 複数の検出電極151は、第1主面101から突出するように形成されている。複数の検出電極151の天面155(第1主面101と対向する面)は、平面状である。 The plurality of detection electrodes 151 are formed to protrude from the first major surface 101. Top surfaces 155 (surfaces facing the first major surface 101) of the plurality of detection electrodes 151 are planar.
 このことから、検出電極151の、生体20に対する接触面積は大きくなり、安定した生体信号を得ることができる。 From this, the contact area of the detection electrode 151 to the living body 20 is increased, and a stable biological signal can be obtained.
 特に、複数の検出電極151が、第1主面101から突出していることによって、柔らかい生体20表面に筐体100を接触させた時に、複数の検出電極151の天面155が、生体20の表面に押し込まれて当接する。 In particular, when the casing 100 is in contact with the surface of the soft living body 20 by the plurality of detection electrodes 151 protruding from the first main surface 101, the top surface 155 of the plurality of sensing electrodes 151 is the surface of the living body 20. It is pushed in and abuts.
 したがって、当接面積を確実に稼ぐことができ、生体信号をより安定して受信できる。また、複数の検出電極151の天面155が平面状であることから、検出電極151の製造が容易である。 Therefore, the contact area can be reliably obtained, and the biological signal can be received more stably. In addition, since the top surfaces 155 of the plurality of detection electrodes 151 are planar, the manufacture of the detection electrodes 151 is easy.
 また、複数の検出電極151は、第2方向に長い形状である。これにより、筋繊維の伸びる方向の1箇所での当接面積を増やすことができ、生体信号をさらに安定した高いレベルで受信できる。 In addition, the plurality of detection electrodes 151 have a shape that is long in the second direction. As a result, the contact area at one location in the extending direction of the muscle fibers can be increased, and the biological signal can be received at a further stable high level.
 なお、図4(A)、図4(B)に示すように、第2主面102は、第1主面101と略平行となる形状であることから、生体信号センサ10を生体20に巻き付ける際に、容易に巻き付けることができ、かつ、ずれ難い効果を奏する。 As shown in FIGS. 4A and 4B, since the second major surface 102 has a shape substantially parallel to the first major surface 101, the biological signal sensor 10 is wound around the living body 20. In this case, it is possible to wind easily and has the effect of being hard to shift.
(第2の実施形態)
 本発明の第2の実施形態に係る生体信号センサについて、図を参照して説明する。図5(A)は、本発明の第2の実施形態に係る生体信号センサ10Aを第1主面101側から見た平面図であり、図5(B)は、生体信号センサ10AのB-B線における側面概要図であり、図5(C)は、生体信号センサ10AのC-C線における側面概要図である。
Second Embodiment
A biological signal sensor according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 5A is a plan view of the biological signal sensor 10A according to the second embodiment of the present invention as viewed from the first main surface 101 side, and FIG. 5B is a plan view of the biological signal sensor 10A. FIG. 5 (C) is a side schematic view of the biosignal sensor 10A taken along the line C-C.
 図5(A)、図5(B)、図5(C)に示すように、第2の実施形態に係る生体信号センサ10Aは、第1の実施形態に係る生体信号センサ10に対して、検出電極152Aを備えている点において異なる。生体信号センサ10Aの他の構成は、生体信号センサ10と同様であり、同様の箇所の説明は省略する。 As shown in FIGS. 5 (A), 5 (B) and 5 (C), the biological signal sensor 10A according to the second embodiment is different from the biological signal sensor 10 according to the first embodiment, The difference is that the detection electrode 152A is provided. The other configuration of the biological signal sensor 10A is the same as that of the biological signal sensor 10, and the description of the same parts will be omitted.
 図5(A)に示すように、生体信号センサ10Aは、複数の検出電極151と、検出電極152Aを備える。複数の検出電極151、検出電極152Aは、第1主面101において、略均等に配置されている。 As shown in FIG. 5A, the biological signal sensor 10A includes a plurality of detection electrodes 151 and a detection electrode 152A. The plurality of detection electrodes 151 and the detection electrodes 152A are arranged substantially equally on the first major surface 101.
 図5(B)、図5(C)に示すように、検出電極151、検出電極152Aは、第1主面101から突出するように形成されている。また、図5(B)に示すように、検出電極151の天面155(第1主面101と対向する面)は、フラットな平面である。図5(C)に示すように、検出電極152Aの天面156は、検出電極152Aの第2方向における中心点が、第1主面101側へ最も凹んだ、湾曲する楕円弧形状の面である。 As shown in FIGS. 5B and 5C, the detection electrode 151 and the detection electrode 152A are formed to protrude from the first major surface 101. Further, as shown in FIG. 5B, the top surface 155 (surface facing the first major surface 101) of the detection electrode 151 is a flat surface. As shown in FIG. 5C, the top surface 156 of the detection electrode 152A is a curved elliptical arc-shaped surface in which the center point of the detection electrode 152A in the second direction is most recessed toward the first main surface 101. .
 このような構成の生体信号センサ10Aにおいても、生体20に安定して接触させることができ、生体信号を効率よく取得することができる。また、生体20の形状によっては、より効率的に生体信号を取得できる。 Also in the biological signal sensor 10A having such a configuration, it can be stably brought into contact with the living body 20, and the biological signal can be efficiently acquired. In addition, depending on the shape of the living body 20, biological signals can be acquired more efficiently.
 本実施形態においては、検出電極152Aが1つ形成されている例について説明したが、全ての検出電極が検出電極152Aと同じ形状であっても、同様の効果を得ることができる。 In the present embodiment, an example in which one detection electrode 152A is formed has been described, but even if all the detection electrodes have the same shape as the detection electrode 152A, the same effect can be obtained.
(第3の実施形態)
 本発明の第3の実施形態に係る生体信号センサについて、図を参照して説明する。図6(A)は、本発明の第3の実施形態に係る生体信号センサ10Bを第1主面101B側から見た平面図であり、図6(B)は、生体信号センサ10BのB-B線における側面概要図である。
Third Embodiment
A biological signal sensor according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 6A is a plan view of the biological signal sensor 10B according to the third embodiment of the present invention as viewed from the first main surface 101B side, and FIG. 6B is a plan view of the biological signal sensor 10B. It is a side outline figure in B line.
 図6(A)、図6(B)に示すように、第3の実施形態に係る生体信号センサ10Bは、第1の実施形態に係る生体信号センサ10に対して、複数の検出電極151Bを備えている点、第1主面101B、第2主面102Bの形状において異なる。生体信号センサ10Bの他の構成は、生体信号センサ10と同様であり、同様の箇所の説明は省略する。 As shown in FIGS. 6A and 6B, the biological signal sensor 10B according to the third embodiment is different from the biological signal sensor 10 according to the first embodiment in a plurality of detection electrodes 151B. It differs in the point of having and the shape of 1st main surface 101B and 2nd main surface 102B. The other configuration of the biological signal sensor 10B is the same as that of the biological signal sensor 10, and the description of the same parts will be omitted.
 図6(A)に示すように、生体信号センサ10Bは、複数の検出電極151Bを備える。検出電極151Bは、第1の実施形態の検出電極151と比較して、第2方向における長さが長い形状である。より具体的には、検出電極151Bの長さは、筐体100Bの第2方向における長さと略同じである。 As illustrated in FIG. 6A, the biological signal sensor 10B includes a plurality of detection electrodes 151B. The detection electrode 151B has a shape in which the length in the second direction is longer than that of the detection electrode 151 of the first embodiment. More specifically, the length of the detection electrode 151B is substantially the same as the length in the second direction of the housing 100B.
 検出電極151Bは、生体信号センサ10Bの第1主面101Bに形成されている。検出電極151Bの天面157は、検出電極151Bの第2方向における中心点が、第1主面101B側へ最も凹んだ、湾曲する楕円弧形状の面である。 The detection electrode 151B is formed on the first main surface 101B of the biological signal sensor 10B. The top surface 157 of the detection electrode 151B is a curved elliptical arc-shaped surface in which the center point of the detection electrode 151B in the second direction is most recessed toward the first major surface 101B.
 図6(B)に示すように、生体信号センサ10Bの第1主面101B、第2主面102Bは、フラットな平面である。 As shown in FIG. 6B, the first main surface 101B and the second main surface 102B of the biological signal sensor 10B are flat.
 このような構成の生体信号センサ10Bにおける、第1主面101B、第2主面102Bが平面状であっても、検出電極151Bの第2方向における長さが長く、かつ湾曲する楕円弧形状であるため、生体20に対する接触を安定させることができ、生体信号を効率よく取得することができる。 Even if the first main surface 101B and the second main surface 102B in the biological signal sensor 10B having such a configuration are planar, the length in the second direction of the detection electrode 151B is long and curved in an elliptic arc shape. Therefore, the contact with the living body 20 can be stabilized, and the biological signal can be efficiently acquired.
 なお、上述の各実施形態において、検出電極を3つ備えた構成を示したが、生体信号を検出できる構成であれば、いくつ備えていても良い。 In each of the above-described embodiments, the configuration provided with three detection electrodes is shown, but any number may be provided as long as the configuration can detect a biological signal.
 また、上述の各実施形態では、特に具体的に示していないが、生体センサを筋電センサとして用いる場合には、検出電極の1つを接地されるグランド電極とし、残る検出電極の2つを検出用電極として用いれば良い。 In each of the above-described embodiments, although not specifically shown, when the biological sensor is used as an myoelectric sensor, one of the detection electrodes is a ground electrode to be grounded, and the remaining two detection electrodes are It may be used as a detection electrode.
 また、上述の各実施形態における、筐体100の第1主面101における角部CR1、CR2、CR3、CR4はR面取りされていることが好ましい。これにより、生体信号センサが生体へ接触したときの刺激を和らげることができる。
Moreover, it is preferable that the corner parts CR1, CR2, CR3, and CR4 in the 1st main surface 101 of the housing | casing 100 in each above-mentioned embodiment are R-chamfered. Thereby, the stimulation when the biological signal sensor contacts the living body can be alleviated.
BP…基準面
CR1、CR2、CR3、CR4…角部
ML…中線
MP1、MP2…中点
R…半径
10、10A、10B…生体信号センサ
20…生体
100、100B…筐体
101、101B…第1主面
102、102B…第2主面
151、151B、152A…検出電極
155、156、157…天面
BP: reference surface CR1, CR2, CR3, CR4: corner portion ML: midline MP1, MP2: middle point R: radius 10, 10A, 10B: biological signal sensor 20: living body 100, 100B: housing 101, 101B: first 1 main surface 102, 102B ... second main surface 151, 151B, 152A ... detection electrode 155, 156, 157 ... top surface

Claims (11)

  1.  生体信号の計測時に生体に近接して配置される第1主面と、前記第1主面の反対側の第2主面と、を有する筐体と、
     前記第1主面に設けられる複数の検出電極と、
    を備え、
     前記第1主面は、端に対して中央が前記筐体の外側から内側へ凹むように楕円状に湾曲している、
     生体信号センサ。
    A housing having a first main surface disposed in proximity to a living body when measuring a biological signal, and a second main surface opposite to the first main surface;
    A plurality of detection electrodes provided on the first main surface;
    Equipped with
    The first main surface is elliptically curved such that the center is recessed from the outside to the inside of the housing with respect to the end.
    Biosignal sensor.
  2.  前記複数の検出電極は、
     前記筐体の厚み方向である第1方向へ突出している、請求項1に記載の生体信号センサ。
    The plurality of detection electrodes are
    The biological signal sensor according to claim 1, which protrudes in a first direction which is a thickness direction of the housing.
  3.  前記第1主面の湾曲によって突出する両端を結ぶ方向を第2方向とし、前記第2方向に直交する方向を第3方向として、
     前記複数の検出電極は、第2方向の長さが前記第3方向の長さよりも長い、
     請求項1または請求項2に記載の生体信号センサ。
    The direction which connects the both ends which protrude by curving of the said 1st main surface is made into 2nd direction, and let the direction orthogonal to the said 2nd direction be 3rd direction,
    The plurality of detection electrodes have a length in the second direction longer than a length in the third direction,
    The biosignal sensor according to claim 1 or 2.
  4.  前記複数の検出電極は、
     前記第3方向に直交する位置に配置されている、請求項3に記載の生体信号センサ。
    The plurality of detection electrodes are
    The biological signal sensor according to claim 3, which is disposed at a position orthogonal to the third direction.
  5.  前記第2主面は、端に対して中央が前記筐体の内側から外側へ突出するように湾曲している、
     請求項1乃至請求項4のいずれかに記載の生体信号センサ。
    The second main surface is curved such that the center thereof protrudes from the inside to the outside of the housing with respect to the end.
    The biosignal sensor according to any one of claims 1 to 4.
  6.  前記複数の検出電極の少なくとも1つは、前記生体と接触する面が、楕円状に湾曲して形成される、
     請求項1乃至請求項5のいずれかに記載の生体信号センサ。
    At least one of the plurality of detection electrodes is formed such that the surface in contact with the living body is elliptically curved.
    The biosignal sensor according to any one of claims 1 to 5.
  7.  生体信号の計測時に生体に近接して配置される第1主面と、前記第1主面と反対側の第2主面と、を有する筐体と、
     前記第1主面に設けられる複数の検出電極と、
    を備え、
     前記複数の検出電極の少なくとも1つは、端に対して中央が前記検出電極の外側から内側へ凹むように、前記生体と接触する面が、楕円状に湾曲して形成される、
     生体信号センサ。
    A housing having a first main surface disposed in proximity to a living body when measuring a biological signal, and a second main surface opposite to the first main surface;
    A plurality of detection electrodes provided on the first main surface;
    Equipped with
    At least one of the plurality of detection electrodes is formed such that the surface in contact with the living body is elliptically curved such that the center of the end is recessed from the outside to the inside of the detection electrode.
    Biosignal sensor.
  8.  前記複数の検出電極は、
     前記筐体の厚み方向である第1方向へ突出している、請求項7に記載の生体信号センサ。
    The plurality of detection electrodes are
    The biological signal sensor according to claim 7, which protrudes in a first direction which is a thickness direction of the housing.
  9.  前記第1主面の湾曲している方向の端を結ぶ方向を第2方向とし、前記第2方向に直交する方向を第3方向として、
     前記複数の検出電極は、前記第2方向の長さが前記第3方向の長さよりも長い、
     請求項7または請求項8に記載の生体信号センサ。
    A direction connecting the ends of the first main surface in the curved direction is a second direction, and a direction orthogonal to the second direction is a third direction.
    The plurality of detection electrodes have a length in the second direction longer than a length in the third direction.
    The biosignal sensor according to claim 7 or 8.
  10.  前記複数の検出電極は、
     前記第3方向に直交する位置に配置されている、請求項9に記載の生体信号センサ。
    The plurality of detection electrodes are
    The biological signal sensor according to claim 9, arranged at a position orthogonal to the third direction.
  11.  前記第2主面は、端に対して中央が前記筐体の内側から外側へ突出するように湾曲している、
     請求項7乃至請求項10のいずれかに記載の生体信号センサ。
    The second main surface is curved such that the center thereof protrudes from the inside to the outside of the housing with respect to the end.
    The biosignal sensor according to any one of claims 7 to 10.
PCT/JP2018/026795 2017-10-12 2018-07-18 Biological signal sensor WO2019073648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890001274.4U CN213309802U (en) 2017-10-12 2018-07-18 Biological signal sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-198293 2017-10-12
JP2017198293 2017-10-12

Publications (1)

Publication Number Publication Date
WO2019073648A1 true WO2019073648A1 (en) 2019-04-18

Family

ID=66101147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026795 WO2019073648A1 (en) 2017-10-12 2018-07-18 Biological signal sensor

Country Status (2)

Country Link
CN (1) CN213309802U (en)
WO (1) WO2019073648A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276007A (en) * 2000-03-30 2001-10-09 Tanita Corp Instrument for measuring biological electric impedance
JP2008086361A (en) * 2006-09-29 2008-04-17 Casio Comput Co Ltd Biological information detecting device
JP2008295867A (en) * 2007-06-01 2008-12-11 Oisaka Denshi Kiki:Kk Biological signal measuring device
US20150165269A1 (en) * 2012-04-27 2015-06-18 Fibrux Oy Method and device for measuring muscle signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276007A (en) * 2000-03-30 2001-10-09 Tanita Corp Instrument for measuring biological electric impedance
JP2008086361A (en) * 2006-09-29 2008-04-17 Casio Comput Co Ltd Biological information detecting device
JP2008295867A (en) * 2007-06-01 2008-12-11 Oisaka Denshi Kiki:Kk Biological signal measuring device
US20150165269A1 (en) * 2012-04-27 2015-06-18 Fibrux Oy Method and device for measuring muscle signals

Also Published As

Publication number Publication date
CN213309802U (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP2015512658A5 (en) A system for determining the relative spatial variation of subsurface resistivity to frequency within tissue.
ATE308918T1 (en) DEVICE FOR MEASURING A MULTIPLE ELECTRICAL SIGNALS FROM A PATIENT'S BODY
CN106473718B (en) Neckstrap type biological information detection device
JP2016526677A (en) Calibration of contact probe
TW200624812A (en) Multiple axis acceleration sensor
US11672423B2 (en) Vibration detection apparatus
WO2019073648A1 (en) Biological signal sensor
JP6205792B2 (en) ECG measurement device, electrocardiogram measurement method, and electrocardiogram measurement program
JP2005205041A (en) Sensor unit supporting structure of contact type measuring instrument
CN104685315A (en) Thickness inspection device
US20220412716A1 (en) Strain gauge, force sensor and interventional medical catheter
KR101603762B1 (en) Measuring device human body impedance having strain sensor
JP2017125718A (en) Profile shape estimation device, profile shape estimation method and program
JP2002031503A (en) Elastic strain sensor
JP7019445B2 (en) Indentation test equipment
JPH0775630A (en) Joint angle sensor
JP2003106835A (en) Inclination angle sensor
WO2024029446A1 (en) Bioelectrode
RU214867U1 (en) Electric field strength sensor with sensing elements in the form of a spherical square
RU2799025C1 (en) Strain gauge, force sensor and operational medical catheter
US20230404433A1 (en) Neck movement measuring device
JPWO2020111936A5 (en)
US20220346688A1 (en) Grip strength measurement apparatus
KR102333062B1 (en) Electromagnetic Wave based Non-Invasive Glucose Sensor and Sensing Method thereof
JP4499493B2 (en) Ion balance sensor and static eliminator with ion balance sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP