WO2019071703A1 - Qled器件的封装方法及封装结构 - Google Patents

Qled器件的封装方法及封装结构 Download PDF

Info

Publication number
WO2019071703A1
WO2019071703A1 PCT/CN2017/110991 CN2017110991W WO2019071703A1 WO 2019071703 A1 WO2019071703 A1 WO 2019071703A1 CN 2017110991 W CN2017110991 W CN 2017110991W WO 2019071703 A1 WO2019071703 A1 WO 2019071703A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
qled device
buffer layer
organic
organic buffer
Prior art date
Application number
PCT/CN2017/110991
Other languages
English (en)
French (fr)
Inventor
肖娅丹
矫士博
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/579,557 priority Critical patent/US10566506B2/en
Publication of WO2019071703A1 publication Critical patent/WO2019071703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • the present invention relates to the field of display device packaging, and in particular, to a packaging method and a package structure of a QLED device.
  • OLED Organic Light Emitting Display
  • OLED has self-luminous, low driving voltage, high luminous efficiency, short response time, high definition and contrast, near 180° viewing angle, wide temperature range, flexible display and A large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • an OLED device generally employs an indium tin oxide (ITO) electrode and a metal electrode as anodes and cathodes of the device, respectively, and electrons and holes are injected from the cathode and the anode to the electron transport layer and the hole transport layer, respectively, driven by a certain voltage.
  • ITO indium tin oxide
  • the electrons and holes migrate to the light-emitting layer through the electron transport layer and the hole transport layer, respectively, and meet in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • a quantum dot is a nanocrystalline particle with a radius less than or close to the radius of the Bohr exciton, and its size particle size is generally between 1-20 nm.
  • Quantum dots have a quantum confinement effect that emits fluorescence upon excitation. Moreover, quantum dots have unique luminescent properties, such as excitation peak width, narrow emission peak, and adjustable luminescence spectrum, which make it have broad application prospects in the field of photoelectric luminescence.
  • a quantum dot light emitting diode (QLED) is an electroluminescent device that uses quantum dots as a light-emitting layer, and a quantum dot light-emitting layer is introduced between different conductive materials to obtain light of a desired wavelength.
  • quantum dot illumination Diodes have become a potential competitor for next-generation display technology.
  • QLED devices are very sensitive to water and oxygen, and are highly susceptible to device oxygen failure due to the influence of water and oxygen in the surrounding environment. Therefore, a highly sealed package structure is required.
  • the high-encapsulation package structure may cause heat dissipation of the device, which severely restricts Its efficiency and longevity. Therefore, how to ensure that the device has both sealing performance and heat dissipation becomes a problem to be solved in the package structure.
  • the object of the present invention is to provide a packaging method for a QLED device, which can timely and effectively derive the heat generated by the QLED device while ensuring the sealing property and the light extraction efficiency, thereby improving the stability of the device and prolonging the service life of the QLED device.
  • Another object of the present invention is to provide a package structure of a QLED device, which has high barrier sealing property to water and oxygen, and the heat generated by the QLED device can be efficiently and timely exported, thereby improving the stability of the device and prolonging the use of the QLED device. life.
  • the present invention first provides a method of packaging a QLED device, comprising the following steps:
  • Step 1 providing a substrate on which a QLED device is formed
  • Step 2 forming a thin film encapsulation layer on the QLED device and the substrate;
  • the thin film encapsulation layer comprises a plurality of inorganic barrier layers and at least one organic buffer layer arranged alternately;
  • the organic buffer layer is doped with a heat conductive material.
  • the specific method of forming the thin film encapsulation layer in the step 2 is: forming an inorganic barrier layer on the QLED device and the substrate, forming an organic buffer layer on the inorganic barrier layer, and repeating the above-mentioned fabrication steps Forming a thin film encapsulation layer in which a plurality of inorganic barrier layers and at least one organic buffer layer are alternately laminated.
  • the heat conductive material is graphene oxide; the mass fraction of the heat conductive material in the organic buffer layer is less than or equal to 5%.
  • the specific method for forming the organic buffer layer is: forming an organic film layer on the inorganic barrier layer by using a mixture of a heat conductive material, an organic substance and an organic solvent by screen printing, spin coating, inkjet printing or casting film formation, and Curing the organic film layer to obtain the organic buffer layer;
  • the organic substance is a combination of one or more of an epoxy resin, a silicon-based polymer, and a polymethyl methacrylate, and the organic solvent is ethanol, toluene, Phenol, or anisole.
  • the organic buffer layer has a thickness of 500 to 2000 nm.
  • the invention also provides a package structure of a QLED device, comprising:
  • a thin film encapsulation layer disposed on the base substrate and covering the QLED device
  • the thin film encapsulation layer comprises a plurality of inorganic barrier layers and at least one organic buffer layer arranged alternately;
  • the organic buffer layer is doped with a heat conductive material.
  • the organic buffer layer has a thickness of 500 to 2000 nm.
  • the organic substances in the organic buffer layer are epoxy resin, silicon-based polymer and polymethacrylic acid. A combination of one or more of the methyl esters.
  • the heat conductive material is graphene oxide; the mass fraction of the heat conductive material in the organic buffer layer is less than or equal to 5%.
  • One of the thin film encapsulation layers adjacent to the QLED device is an inorganic barrier layer.
  • the invention also provides a packaging method of a QLED device, comprising the following steps:
  • Step 1 providing a substrate on which a QLED device is formed
  • Step 2 forming a thin film encapsulation layer on the QLED device and the substrate;
  • the thin film encapsulation layer comprises a plurality of inorganic barrier layers and at least one organic buffer layer arranged alternately;
  • the organic buffer layer is doped with a heat conductive material
  • the specific method for forming the thin film encapsulation layer in the step 2 is: forming an inorganic barrier layer on the QLED device and the substrate, forming an organic buffer layer on the inorganic barrier layer, and repeating the above-mentioned fabrication a step of forming a thin film encapsulation layer in which a plurality of inorganic barrier layers and at least one organic buffer layer are alternately laminated;
  • the heat conductive material is graphene oxide; the mass fraction of the heat conductive material in the organic buffer layer is less than or equal to 5%;
  • the specific method for forming the organic buffer layer is: forming a mixture of a heat conductive material, an organic substance and an organic solvent on the inorganic barrier layer by screen printing, spin coating, inkjet printing or casting into a film. And coating the organic film layer to obtain the organic buffer layer;
  • the organic substance is a combination of one or more of an epoxy resin, a silicon-based polymer and polymethyl methacrylate, wherein the organic solvent is Ethanol, toluene, phenol, or anisole;
  • the organic buffer layer has a thickness of 500-2000 nm.
  • the packaging method of the QLED device provided by the present invention forms a thin film encapsulation layer in which a plurality of inorganic barrier layers and at least one organic buffer layer are alternately stacked on the QLED device, and the QLED device is sealed to block water and oxygen.
  • the device is invaded and the organic buffer layer is doped with a heat conductive material, so that the heat generated by the QLED device can be transmitted through the thin film encapsulation layer in time, thereby improving the heat dissipation of the thin film encapsulation layer, thereby improving the light extraction efficiency of the QLED device. And service life.
  • the package structure of the QLED device provided by the invention forms a thin film encapsulation layer which is formed by alternately laminating a plurality of inorganic barrier layers and at least one organic buffer layer on the QLED device, and sealing the QLED device to block water and oxygen from invading the device.
  • the organic buffer layer is also doped with a heat conductive material, which can transfer the heat generated by the QLED device through the thin film encapsulation layer in time, thereby improving the heat dissipation of the thin film encapsulation layer, thereby improving the light extraction efficiency and the service life of the QLED device.
  • FIG. 1 is a flow chart of a method of packaging a QLED device of the present invention
  • FIGS. 5 and 6 are schematic views of the package structure of the QLED device of the present invention.
  • the present invention provides a method for packaging a QLED device, including the following steps:
  • Step 1 as shown in FIG. 2, a substrate 10 is provided on which a QLED device 20 is formed.
  • the base substrate 10 is a TFT substrate including a plurality of thin film transistors (not shown) arranged in an array for driving the QLED device 20 to emit light.
  • Step 2 as shown in FIG. 3 to FIG. 6, a thin film encapsulation layer 50 is formed on the QLED device 20 and the base substrate 10; the thin film encapsulation layer 50 includes a plurality of inorganic barrier layers 30 and at least one organic layer which are alternately stacked.
  • the buffer layer 40; the organic buffer layer 40 is doped with a heat conductive material.
  • the specific method of forming the thin film encapsulation layer 50 in the step 2 is to form an inorganic barrier layer 30 on the QLED device 20 and the base substrate 10, and form an organic buffer layer on the inorganic barrier layer 30. 40.
  • the above-described fabrication steps are repeated a plurality of times to form a thin film encapsulation layer 50 in which a plurality of inorganic barrier layers 30 and at least one organic buffer layer 40 are alternately laminated.
  • one of the thin film encapsulation layers 50 on the top layer is an inorganic barrier layer 30, that is, the number of layers of the inorganic barrier layer 30 is one more than the number of layers of the organic buffer layer 40.
  • the material of the inorganic barrier layer 30 is a combination of one or more of an oxide of silicon, a nitride of silicon, and an oxide of aluminum, such as aluminum oxide (Al 2 O 3 ), nitriding.
  • Silicon (SiNx) the inorganic barrier layer 30 can be formed by plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), or sputtering.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • the inorganic barrier layer 30 has a thickness of 500 to 2000 nm.
  • the heat conductive material is graphene oxide.
  • the specific method of forming the organic buffer layer 40 is: after dissolving the heat conductive material and the organic substance in an organic solvent to form a mixture, the mixture is subjected to screen printing, spin coating, inkjet printing or casting on the inorganic barrier layer 30.
  • the organic film layer is formed by film formation, and then the organic film layer is cured by UV light irradiation or heating to obtain an organic buffer layer 40.
  • the organic buffer layer 40 has a thickness of 500-2000 nm.
  • the mass fraction of the thermal conductive material in the organic buffer layer is less than or equal to 5% to ensure the light transmittance of the package structure.
  • the material of the organic material is a combination of one or more of an epoxy resin, a silicon-based polymer, and a polymethyl methacrylate
  • the organic solvent may be selected from a volatile organic solvent such as ethanol or toluene. , phenol, or anisole.
  • the packaging method of the QLED device of the present invention forms a thin film encapsulation layer 50 including a plurality of inorganic barrier layers 30 and at least one organic buffer layer 40 which are alternately stacked on the QLED device 20, and is implemented for the QLED device 20.
  • the sealing is to block the damage of the device by water and oxygen, etc., wherein the inorganic barrier layer 30 is an effective barrier layer for water and oxygen, but some pinholes or foreign object defects are generated during the preparation of the inorganic barrier layer 30, and
  • the organic buffer layer 40 functions to cover the defects of the inorganic barrier layer 30.
  • the organic buffer layer 40 can also release the stress between the inorganic barrier layers 30 to achieve planarization, and the organic buffer layer 40 is doped with higher heat.
  • the graphene oxide can transfer the heat generated by the QLED device 20 through the thin film encapsulation layer 50 in time, thereby improving the heat dissipation of the thin film encapsulation layer 50, thereby improving the light extraction efficiency and the service life of the QLED device 20.
  • the thin film encapsulation layer 50 in which the inorganic barrier layer-organic buffer layer-inorganic barrier layer is alternately stacked as shown in FIG. 5 may be formed according to actual conditions or needs, or may be formed as shown in FIG. 6.
  • the inorganic barrier layer-organic buffer layer-inorganic barrier layer-organic buffer layer-inorganic barrier layer is shown as five layers of thin film encapsulation layer 50' alternately laminated to enhance the sealing property of the film encapsulation layer, which is not limited herein.
  • the present invention further provides a package structure of the QLED device, including:
  • a thin film encapsulation layer 50 disposed on the base substrate 10 and covering the QLED device 20;
  • the thin film encapsulation layer 50 includes a plurality of inorganic barrier layers 30 and at least one organic buffer layer 40 which are alternately stacked; the organic buffer layer 40 is doped with a heat conductive material.
  • a layer of the thin film encapsulation layer 50 adjacent to the QLED device 20 is inorganically blocked.
  • Layer 30 a layer of the thin film encapsulation layer 50 adjacent to the QLED device 20 is inorganically blocked.
  • one of the thin film encapsulation layers 50 on the top layer is an inorganic barrier layer 30, that is, the number of layers of the inorganic barrier layer 30 is one more than the number of layers of the organic buffer layer 40.
  • the heat conductive material is graphene oxide.
  • the organic matter in the organic buffer layer 40 is a combination of one or more of an epoxy resin, a silicon-based polymer, and polymethyl methacrylate.
  • the mass fraction of the thermal conductive material in the organic buffer layer 40 is less than or equal to 5% to ensure the transparency of the thin film encapsulation layer 50.
  • the organic buffer layer 40 has a thickness of 500-2000 nm.
  • the inorganic barrier layer 30 is a combination of one or more of an oxide of silicon, a nitride of silicon, and an oxide of aluminum, such as aluminum oxide (Al 2 O 3 ) or silicon nitride ( SiNx).
  • the inorganic barrier layer 30 has a thickness of 500 to 2000 nm.
  • the package structure of the QLED device of the present invention forms a thin film encapsulation layer 50 including a plurality of inorganic barrier layers 30 and at least one organic buffer layer 40 alternately stacked on the QLED device 20 for implementing the QLED device 20.
  • the sealing is to block the damage of the device such as water and oxygen.
  • the inorganic barrier layer 30 is an effective barrier layer for water and oxygen, but some pinholes or foreign matter defects are generated during the preparation of the inorganic barrier layer 30, and the organic buffer layer 40 functions. That is, the defects of the inorganic barrier layer 30 are covered, the organic buffer layer 40 can also release the stress between the inorganic barrier layers 30 to achieve planarization, and the organic buffer layer 40 is doped with graphene oxide having a high thermal conductivity.
  • the heat generated by the QLED device 20 can be transmitted through the thin film encapsulation layer 50 in time, thereby improving the heat dissipation of the thin film encapsulation layer 50, thereby improving the light extraction efficiency and the service life of the QLED device 20.
  • the thin film encapsulation layer 50 in which the inorganic barrier layer-organic buffer layer-inorganic barrier layer is alternately stacked as shown in FIG. 5 may be formed according to actual conditions or needs, or may be formed as shown in FIG. 6.
  • the inorganic barrier layer-organic buffer layer-inorganic barrier layer-organic buffer layer-inorganic barrier layer is shown as five layers of thin film encapsulation layer 50' alternately laminated to enhance the sealing property of the film encapsulation layer, which is not limited herein.
  • the packaging method of the QLED device of the present invention forms a thin film encapsulation layer in which a plurality of inorganic barrier layers and at least one organic buffer layer are alternately stacked on the QLED device, and the QLED device is sealed to block water and oxygen.
  • the intrusion, and the organic buffer layer is also doped with a heat conductive material, which can transfer the heat generated by the QLED device through the thin film encapsulation layer in time, thereby improving the heat dissipation of the thin film encapsulation layer, thereby improving the light extraction efficiency and service life of the QLED device.
  • the package structure of the QLED device of the present invention forms a multilayer inorganic barrier layer on the QLED device
  • the thin film encapsulation layer is alternately laminated with at least one organic buffer layer to seal the QLED device to block the damage of the device such as water and oxygen, and the organic buffer layer is further doped with a heat conductive material, and the heat generated by the QLED device can be timely
  • the ground is transferred through the thin film encapsulation layer, thereby improving the heat dissipation of the thin film encapsulation layer, thereby improving the light extraction efficiency and the service life of the QLED device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种QLED器件(20)的封装方法及封装结构。该QLED器件(20)的封装方法通过在QLED器件(20)上形成多层无机阻挡层(30)与至少一层有机缓冲层(40)交替层叠设置的薄膜封装层(50),对QLED器件(20)实现密封以阻挡水氧等对器件的侵害,并且有机缓冲层(40)中还掺杂了导热材料,能够将QLED器件(20)产生的热量及时地通过薄膜封装层(50)传递出来,从而提高薄膜封装层(50)的散热性,进而提高QLED器件(20)的出光效率和使用寿命。

Description

QLED器件的封装方法及封装结构 技术领域
本发明涉及显示装置封装领域,尤其涉及一种QLED器件的封装方法及封装结构。
背景技术
有机发光二极管显示装置(Organic Light Emitting Display,OLED)具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽、可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED器件的发光原理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。具体地,OLED器件通常采用氧化铟锡(ITO)电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
量子点(quantum dot,QD)是半径小于或者接近波尔激子半径的纳米晶颗粒,其尺寸粒径一般介于1-20nm之间。量子点具有量子限域效应,受激发后可以发射荧光。而且量子点具有独特的发光特性,例如激发峰宽、发射峰窄、发光光谱可调等性质,使得其在光电发光领域具有广阔的应用前景。量子点发光二极管(quantum dot light emitting diode,QLED)就是以量子点作为发光层的电致发光器件,在不同的导电材料之间引入量子点发光层从而得到所需要波长的光。经过二十多年来的发展,由于具有尺寸可调、波长可调、发光光谱半峰宽极窄、色域面积大、电致发光效率极高、可溶液制程降低损耗等优点,量子点发光二极管已成为下一代显示技术的极具潜力的竞争者。
然而QLED器件对水氧非常敏感,极易受到周围环境的水氧影响而造成器件失效,故需要极高密闭性的封装结构,然而高密闭的封装结构又会导致器件散热困难,从而严重制约了其效率和寿命表现。因而如何保证器件同时兼备密封性和散热性成为封装结构亟待解决的问题。
发明内容
本发明的目的在于提供一种QLED器件的封装方法,能够在保证密封性和出光效率的同时,将QLED器件产生的热量及时有效地导出,从而提高器件的稳定性,延长QLED器件的使用寿命。
本发明的另一目的在于提供一种QLED器件的封装结构,对水氧具有较高阻隔密封性,且QLED器件产生的热量能够及时有效地导出,从而提高器件的稳定性,延长QLED器件的使用寿命。
为实现上述目的,本发明首先提供一种QLED器件的封装方法,包括如下步骤:
步骤1,提供一衬底基板,在所述衬底基板上形成QLED器件;
步骤2,在所述QLED器件和衬底基板上形成薄膜封装层;
所述薄膜封装层包括交替层叠设置的多层无机阻挡层和至少一层有机缓冲层;
所述有机缓冲层中掺杂有导热材料。
所述步骤2形成的薄膜封装层的具体方法为:在所述QLED器件和衬底基板上形成一层无机阻挡层,在所述无机阻挡层形成一层有机缓冲层,重复多次上述制作步骤,形成多层无机阻挡层和至少一层有机缓冲层交替层叠设置的薄膜封装层。
所述导热材料为氧化石墨烯;所述有机缓冲层中导热材料的质量分数小于或等于5%。
形成有机缓冲层的具体方法为:在所述无机阻挡层上将导热材料、有机物及有机溶剂的混合物通过丝网印刷、旋涂、喷墨打印或流延成膜的方式形成有机膜层,并固化该有机膜层得到所述有机缓冲层;所述有机物为环氧树脂、硅基聚合物及聚甲基丙烯酸甲酯中的一种或多种的组合,所述有机溶剂为乙醇、甲苯、苯酚、或苯甲醚。
所述有机缓冲层的厚度为500-2000nm。
本发明还提供一种QLED器件的封装结构,包括:
衬底基板;
设于所述衬底基板上的QLED器件;
设于所述衬底基板上并覆盖所述QLED器件的薄膜封装层;
所述薄膜封装层包括交替层叠设置的多层无机阻挡层和至少一层有机缓冲层;
所述有机缓冲层中掺杂有导热材料。
所述有机缓冲层的厚度为500-2000nm。
所述有机缓冲层中的有机物为环氧树脂、硅基聚合物及聚甲基丙烯酸 甲酯中的一种或多种的组合。
所述导热材料为氧化石墨烯;所述有机缓冲层中导热材料的质量分数小于或等于5%。
所述薄膜封装层中靠近QLED器件的一层为无机阻挡层。
本发明还提供一种QLED器件的封装方法,包括如下步骤:
步骤1,提供一衬底基板,在所述衬底基板上形成QLED器件;
步骤2,在所述QLED器件和衬底基板上形成薄膜封装层;
所述薄膜封装层包括交替层叠设置的多层无机阻挡层和至少一层有机缓冲层;
所述有机缓冲层中掺杂有导热材料;
其中,所述步骤2形成薄膜封装层的具体方法为:在所述QLED器件和衬底基板上形成一层无机阻挡层,在所述无机阻挡层形成一层有机缓冲层,重复多次上述制作步骤,形成多层无机阻挡层和至少一层有机缓冲层交替层叠设置的薄膜封装层;
其中,所述导热材料为氧化石墨烯;所述有机缓冲层中导热材料的质量分数小于或等于5%;
其中,形成所述有机缓冲层的具体方法为:在所述无机阻挡层上将导热材料、有机物及有机溶剂的混合物通过丝网印刷、旋涂、喷墨打印或流延成膜的方式形成有机膜层,并固化该有机膜层得到所述有机缓冲层;所述有机物为环氧树脂、硅基聚合物及聚甲基丙烯酸甲酯中的一种或多种的组合,所述有机溶剂为乙醇、甲苯、苯酚、或苯甲醚;
其中,所述有机缓冲层的厚度为500-2000nm。
本发明的有益效果:本发明提供的QLED器件的封装方法,在QLED器件上形成多层无机阻挡层与至少一层有机缓冲层交替层叠设置的薄膜封装层,对QLED器件实现密封以阻挡水氧等对器件的侵害,并且有机缓冲层中还掺杂了导热材料,能够将QLED器件产生的热量及时地通过薄膜封装层传递出来,从而提高薄膜封装层的散热性,进而提高QLED器件的出光效率和使用寿命。本发明提供的QLED器件的封装结构,在QLED器件上形成多层无机阻挡层与至少一层有机缓冲层交替层叠设置的薄膜封装层,对QLED器件实现密封以阻挡水氧等对器件的侵害,并且有机缓冲层中还掺杂了导热材料,能够将QLED器件产生的热量及时地通过薄膜封装层传递出来,从而提高薄膜封装层的散热性,进而提高QLED器件的出光效率和使用寿命。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的QLED器件的封装方法的流程图;
图2为本发明的QLED器件的封装方法的步骤1的示意图;
图3至图6为本发明的QLED器件的封装方法的步骤2的示意图,且图5和图6为本发明的QLED器件的封装结构的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1至图5,本发明提供一种QLED器件的封装方法,包括如下步骤:
步骤1,如图2所示,提供一衬底基板10,在所述衬底基板10上形成QLED器件20。
具体地,所述衬底基板10为TFT基板,包括阵列排布的用于驱动QLED器件20发光的多个薄膜晶体管(未图示)。
步骤2,如图3至图6所示,在QLED器件20和衬底基板10上形成薄膜封装层50;所述薄膜封装层50包括交替层叠设置的多层无机阻挡层30和至少一层有机缓冲层40;所述有机缓冲层40中掺杂有导热材料。
具体地,所述步骤2形成薄膜封装层50的具体方法为:在所述QLED器件20和衬底基板10上形成一层无机阻挡层30,在所述无机阻挡层30形成一层有机缓冲层40,重复多次上述制作步骤,形成多层无机阻挡层30和至少一层有机缓冲层40交替层叠设置的薄膜封装层50。
具体地,所述薄膜封装层50中位于顶层的一层为无机阻挡层30,即所述无机阻挡层30的层数比有机缓冲层40的层数多一层。
具体地,所述无机阻挡层30的材料为硅的氧化物、硅的氮化物及铝的氧化物中的一种或多种的组合,如三氧化二铝(Al2O3)、氮化硅(SiNx),可以采用等离子体增强化学气相沉积法(PECVD)、原子层沉积法(ALD)或溅射镀膜法(sputtering)形成无机阻挡层30。所述无机阻挡层30的厚度为500-2000nm。
具体地,所述导热材料为氧化石墨烯。
具体地,形成有机缓冲层40的具体方法为:将导热材料和有机物溶于有机溶剂中形成混合物后,在无机阻挡层30上将该混合物通过丝网印刷、旋涂、喷墨打印或流延成膜的方式形成有机膜层,然后经UV光照射或加热的方式使有机膜层固化,得到有机缓冲层40。
具体地,所述有机缓冲层40的厚度为500-2000nm。
需要指出的是,当QLED发出的光需要从薄膜封装层一侧出射时,导热材料在有机缓冲层中的质量分数小于或等于5%,以保证封装结构的透光性。
具体地,所述有机物的材料为环氧树脂、硅基聚合物及聚甲基丙烯酸甲酯中的一种或多种的组合,所述有机溶剂可选择易挥发性有机溶剂,如乙醇、甲苯、苯酚、或苯甲醚。
需要说明的是,本发明的QLED器件的封装方法在QLED器件20上形成了包括交替层叠设置的多层无机阻挡层30和至少一层有机缓冲层40的薄膜封装层50,对QLED器件20实现密封以阻挡水氧等对器件的侵害,其中,无机阻挡层30为水氧的有效阻挡层,但是在制备无机阻挡层30过程中会产生一些针孔(Pinholes)或异物(Particle)缺陷,而有机缓冲层40的作用就是覆盖无机阻挡层30的缺陷,有机缓冲层40还可以释放无机阻挡层30之间的应力,实现平坦化,并且,有机缓冲层40中掺杂了具有较高的热导率的氧化石墨烯,能够将QLED器件20产生的热量及时地通过薄膜封装层50传递出来,从而提高薄膜封装层50的散热性,进而提高QLED器件20的出光效率和使用寿命。
上述QLED器件的封装方法中,可以根据实际情况或需要,形成如图5所示的无机阻挡层-有机缓冲层-无机阻挡层三层交替层叠设置的薄膜封装层50,也可以形成如图6所示的无机阻挡层-有机缓冲层-无机阻挡层-有机缓冲层-无机阻挡层五层交替层叠设置的薄膜封装层50’,以增强薄膜封装层的密封性,在此不做限制。
请参阅图5或图6,在上述的QLED器件的封装方法的基础上,本发明还提供一种QLED器件的封装结构,包括:
衬底基板10;
设于衬底基板10上的QLED器件20;
设于衬底基板10上并覆盖QLED器件20的薄膜封装层50;
所述薄膜封装层50包括交替层叠设置的多层无机阻挡层30和至少一层有机缓冲层40;所述有机缓冲层40中掺杂有导热材料。
具体地,所述薄膜封装层50中靠近QLED器件20的一层为无机阻挡 层30。
具体地,所述薄膜封装层50中位于顶层的一层为无机阻挡层30,即所述无机阻挡层30的层数比有机缓冲层40的层数多一层。
具体地,所述导热材料为氧化石墨烯。
具体地,所述有机缓冲层40中的有机物为环氧树脂、硅基聚合物及聚甲基丙烯酸甲酯中的一种或多种的组合。
需要指出的是,当QLED器件20发出的光需要从薄膜封装层50一侧出射时,导热材料在有机缓冲层40中的质量分数小于或等于5%,以保证薄膜封装层50的透光性。
具体地,所述有机缓冲层40的厚度为500-2000nm。
具体地,所述无机阻挡层30为硅的氧化物、硅的氮化物及铝的氧化物中的一种或多种的组合,如三氧化二铝(Al2O3)或氮化硅(SiNx)。
具体地,所述无机阻挡层30的厚度为500-2000nm。
需要说明的是,本发明的QLED器件的封装结构在QLED器件20上形成了包括交替层叠设置的多层无机阻挡层30和至少一层有机缓冲层40的薄膜封装层50,对QLED器件20实现密封以阻挡水氧等对器件的侵害,其中,无机阻挡层30为水氧的有效阻挡层,但是在制备无机阻挡层30过程中会产生一些针孔或异物缺陷,而有机缓冲层40的作用就是覆盖无机阻挡层30的缺陷,有机缓冲层40还可以释放无机阻挡层30之间的应力,实现平坦化,并且,有机缓冲层40中掺杂了具有较高的热导率的氧化石墨烯,能够将QLED器件20产生的热量及时地通过薄膜封装层50传递出来,从而提高薄膜封装层50的散热性,进而提高QLED器件20的出光效率和使用寿命。
上述QLED器件的封装结构中,可以根据实际情况或需要,形成如图5所示的无机阻挡层-有机缓冲层-无机阻挡层三层交替层叠设置的薄膜封装层50,也可以形成如图6所示的无机阻挡层-有机缓冲层-无机阻挡层-有机缓冲层-无机阻挡层五层交替层叠设置的薄膜封装层50’,以增强薄膜封装层的密封性,在此不做限制。
综上所述,本发明的QLED器件的封装方法在QLED器件上形成多层无机阻挡层与至少一层有机缓冲层交替层叠设置的薄膜封装层,对QLED器件实现密封以阻挡水氧等对器件的侵害,并且有机缓冲层中还掺杂了导热材料,能够将QLED器件产生的热量及时地通过薄膜封装层传递出来,从而提高薄膜封装层的散热性,进而提高QLED器件的出光效率和使用寿命。本发明的QLED器件的封装结构在QLED器件上形成多层无机阻挡层 与至少一层有机缓冲层交替层叠设置的薄膜封装层,对QLED器件实现密封以阻挡水氧等对器件的侵害,并且有机缓冲层中还掺杂了导热材料,能够将QLED器件产生的热量及时地通过薄膜封装层传递出来,从而提高薄膜封装层的散热性,进而提高QLED器件的出光效率和使用寿命。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (11)

  1. 一种QLED器件的封装方法,包括如下步骤:
    步骤1,提供一衬底基板,在所述衬底基板上形成QLED器件;
    步骤2,在所述QLED器件和衬底基板上形成薄膜封装层;
    所述薄膜封装层包括交替层叠设置的多层无机阻挡层和至少一层有机缓冲层;
    所述有机缓冲层中掺杂有导热材料。
  2. 如权利要求1所述的QLED器件的封装方法,其中,所述步骤2形成薄膜封装层的具体方法为:在所述QLED器件和衬底基板上形成一层无机阻挡层,在所述无机阻挡层形成一层有机缓冲层,重复多次上述制作步骤,形成多层无机阻挡层和至少一层有机缓冲层交替层叠设置的薄膜封装层。
  3. 如权利要求1所述的QLED器件的封装方法,其中,所述导热材料为氧化石墨烯;所述有机缓冲层中导热材料的质量分数小于或等于5%。
  4. 如权利要求2所述的QLED器件的封装方法,其中,形成所述有机缓冲层的具体方法为:在所述无机阻挡层上将导热材料、有机物及有机溶剂的混合物通过丝网印刷、旋涂、喷墨打印或流延成膜的方式形成有机膜层,并固化该有机膜层得到所述有机缓冲层;所述有机物为环氧树脂、硅基聚合物及聚甲基丙烯酸甲酯中的一种或多种的组合,所述有机溶剂为乙醇、甲苯、苯酚、或苯甲醚。
  5. 如权利要求1所述的QLED器件的封装方法,其中,所述有机缓冲层的厚度为500-2000nm。
  6. 一种QLED器件的封装结构,包括:
    衬底基板;
    设于所述衬底基板上的QLED器件;
    设于所述衬底基板上并覆盖所述QLED器件的薄膜封装层;
    所述薄膜封装层包括交替层叠设置的多层无机阻挡层和至少一层有机缓冲层;
    所述有机缓冲层中掺杂有导热材料。
  7. 如权利要求6所述的QLED器件的封装结构,其中,所述有机缓冲层的厚度为500-2000nm。
  8. 如权利要求6所述的QLED器件的封装结构,其中,所述有机缓冲 层中的有机物为环氧树脂、硅基聚合物及聚甲基丙烯酸甲酯中的一种或多种的组合。
  9. 如权利要求6所述的QLED器件的封装结构,其中,所述导热材料为氧化石墨烯;所述有机缓冲层中导热材料的质量分数小于或等于5%。
  10. 如权利要求6所述的QLED器件的封装结构,其中,所述薄膜封装层中靠近QLED器件的一层为无机阻挡层。
  11. 一种QLED器件的封装方法,包括如下步骤:
    步骤1,提供一衬底基板,在所述衬底基板上形成QLED器件;
    步骤2,在所述QLED器件和衬底基板上形成薄膜封装层;
    所述薄膜封装层包括交替层叠设置的多层无机阻挡层和至少一层有机缓冲层;
    所述有机缓冲层中掺杂有导热材料;
    其中,所述步骤2形成薄膜封装层的具体方法为:在所述QLED器件和衬底基板上形成一层无机阻挡层,在所述无机阻挡层形成一层有机缓冲层,重复多次上述制作步骤,形成多层无机阻挡层和至少一层有机缓冲层交替层叠设置的薄膜封装层;
    其中,所述导热材料为氧化石墨烯;所述有机缓冲层中导热材料的质量分数小于或等于5%;
    其中,形成所述有机缓冲层的具体方法为:在所述无机阻挡层上将导热材料、有机物及有机溶剂的混合物通过丝网印刷、旋涂、喷墨打印或流延成膜的方式形成有机膜层,并固化该有机膜层得到所述有机缓冲层;所述有机物为环氧树脂、硅基聚合物及聚甲基丙烯酸甲酯中的一种或多种的组合,所述有机溶剂为乙醇、甲苯、苯酚、或苯甲醚;
    其中,所述有机缓冲层的厚度为500-2000nm。
PCT/CN2017/110991 2017-10-09 2017-11-15 Qled器件的封装方法及封装结构 WO2019071703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/579,557 US10566506B2 (en) 2017-10-09 2017-11-15 Packaging method and package structure of QLED device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710931768.4A CN107565059A (zh) 2017-10-09 2017-10-09 Qled器件的封装方法及封装结构
CN201710931768.4 2017-10-09

Publications (1)

Publication Number Publication Date
WO2019071703A1 true WO2019071703A1 (zh) 2019-04-18

Family

ID=60985169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110991 WO2019071703A1 (zh) 2017-10-09 2017-11-15 Qled器件的封装方法及封装结构

Country Status (3)

Country Link
US (1) US10566506B2 (zh)
CN (1) CN107565059A (zh)
WO (1) WO2019071703A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214930A1 (en) * 2019-04-19 2020-10-22 Nanosys, Inc. Flexible electroluminescent devices
CN112080099A (zh) * 2020-09-21 2020-12-15 合肥福纳科技有限公司 一种qled器件、复合材料及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833976A (zh) * 2017-10-24 2018-03-23 深圳市华星光电半导体显示技术有限公司 Qled器件的制作方法及qled器件
CN108493356B (zh) * 2018-04-25 2019-07-02 云谷(固安)科技有限公司 薄膜封装结构、薄膜封装方法及显示面板
US20210328190A1 (en) * 2018-08-16 2021-10-21 Lg Chem, Ltd. Encapsulation film
CN110061043B (zh) * 2019-04-30 2021-08-31 武汉天马微电子有限公司 一种显示装置及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170082896A1 (en) * 2015-09-22 2017-03-23 Samsung Electronics Co., Ltd. Led package, backlight unit and illumination device including same, and liquid crystal display including backlight unit
CN106633887A (zh) * 2016-06-21 2017-05-10 深圳市大族元亨光电股份有限公司 大功率led用石墨烯导热硅脂及其制备方法
CN106972113A (zh) * 2017-05-25 2017-07-21 深圳市华星光电技术有限公司 Oled器件的封装组件及封装方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102293981B1 (ko) * 2014-10-13 2021-08-26 엘지디스플레이 주식회사 유기발광표시패널 및 그 제조방법
KR20180054262A (ko) * 2016-11-15 2018-05-24 엘지디스플레이 주식회사 양자점 발광다이오드 및 이를 이용한 발광 표시장치
CN106753208B (zh) * 2016-11-21 2020-01-14 北京化工大学 一种氧化石墨烯改性的led导热灌封胶及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170082896A1 (en) * 2015-09-22 2017-03-23 Samsung Electronics Co., Ltd. Led package, backlight unit and illumination device including same, and liquid crystal display including backlight unit
CN106633887A (zh) * 2016-06-21 2017-05-10 深圳市大族元亨光电股份有限公司 大功率led用石墨烯导热硅脂及其制备方法
CN106972113A (zh) * 2017-05-25 2017-07-21 深圳市华星光电技术有限公司 Oled器件的封装组件及封装方法、显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214930A1 (en) * 2019-04-19 2020-10-22 Nanosys, Inc. Flexible electroluminescent devices
CN113748532A (zh) * 2019-04-19 2021-12-03 纳米***公司 柔性电致发光装置
CN112080099A (zh) * 2020-09-21 2020-12-15 合肥福纳科技有限公司 一种qled器件、复合材料及其应用

Also Published As

Publication number Publication date
US20190189869A1 (en) 2019-06-20
CN107565059A (zh) 2018-01-09
US10566506B2 (en) 2020-02-18

Similar Documents

Publication Publication Date Title
US10276832B2 (en) Oled display and manufacturing method thereof
US10566506B2 (en) Packaging method and package structure of QLED device
US9748523B2 (en) Organic light-emitting device
WO2017206216A1 (zh) Oled显示装置
US9660209B2 (en) Method for manufacturing OLED device and OLED device manufactured therewith
US10283732B2 (en) OLED packaging method and package structure
US20160260921A1 (en) Method for manufacturing oled device and oled device manufactured therewith
JP2011507196A (ja) 発光ダイオードの外部効率の向上
WO2017210927A1 (zh) 自发光显示装置
WO2018113007A1 (zh) Oled封装方法与oled封装结构
WO2018040294A1 (zh) 一种薄膜封装结构及有机发光二极管器件
US20180336838A1 (en) Blue light compensation film and oled display
CN108682753B (zh) Oled显示面板及其制作方法
US20170125722A1 (en) Lighting device, method for producing a lighting device
JP2010109364A (ja) 有機発光ダイオード装置とその製造方法
KR101339549B1 (ko) 유기 발광 다이오드 및 이의 제조방법
US10249846B2 (en) OLED packaging method and OLED package structure
WO2019200668A1 (zh) 一种oled的封装结构及封装方法
US9704924B2 (en) Light emitting device
WO2012063445A1 (ja) 有機el表示装置およびその製造方法
JP2009087752A (ja) 発光表示素子及び発光表示パネル
KR102467691B1 (ko) 양자점 발광 소자, 그 제조 방법 및 양자점 발광 소자를 포함하는 디스플레이 소자
Jo et al. Fabrication of color conversion layers using adhesive transfer of phosphor particles for improving light extraction efficiency and uniformity of down-conversion white OLED
CN210535694U (zh) Qled器件的封装结构
KR101649757B1 (ko) 유기전계발광소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928161

Country of ref document: EP

Kind code of ref document: A1