WO2019071388A1 - 电池控制电路及电子设备 - Google Patents

电池控制电路及电子设备 Download PDF

Info

Publication number
WO2019071388A1
WO2019071388A1 PCT/CN2017/105385 CN2017105385W WO2019071388A1 WO 2019071388 A1 WO2019071388 A1 WO 2019071388A1 CN 2017105385 W CN2017105385 W CN 2017105385W WO 2019071388 A1 WO2019071388 A1 WO 2019071388A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
control circuit
controller
electronic device
Prior art date
Application number
PCT/CN2017/105385
Other languages
English (en)
French (fr)
Inventor
陶波波
董锐华
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2017/105385 priority Critical patent/WO2019071388A1/zh
Priority to CN201780092216.7A priority patent/CN110754027A/zh
Priority to US16/652,500 priority patent/US20200287400A1/en
Publication of WO2019071388A1 publication Critical patent/WO2019071388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/108Parallel operation of dc sources using diodes blocking reverse current flow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/109Scheduling or re-scheduling the operation of the DC sources in a particular order, e.g. connecting or disconnecting the sources in sequential, alternating or in subsets, to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a battery control circuit and an electronic device.
  • the battery when powering the system of the electronic device, the battery can be powered by the dual battery.
  • the main battery is used to supply power to the system.
  • the secondary battery serves as a backup battery to supply power to the system, but there are also primary and secondary batteries.
  • the situation of simultaneous power supply When the main and auxiliary batteries supply power to the system at the same time, the two batteries have a mutual charge and discharge process, especially when one of the batteries fails, which seriously affects the life of the battery and the performance of the system.
  • an embodiment of the present invention provides a battery control circuit and an electronic device.
  • a controller By controlling a conduction state of each power switch by using a controller, power supply to each power circuit in the system is realized, and when two batteries are present, When the system is powered, the two batteries are prevented from being charged and discharged, which prolongs the service life of the battery and improves the system performance of the electronic device.
  • an embodiment of the present invention provides a battery control circuit applied to an electronic device having N batteries, where the control circuit includes:
  • N is a positive integer greater than one
  • One ends of the N power switches are respectively connected in series with the output ends of the N batteries;
  • the other end of the i-th power switch is respectively connected to the cathode of the i-1th power diode and the anode of the i-th power diode, wherein i is greater than 1 and less than N;
  • the other end of the Nth power switch is respectively connected to the cathode of the N-1th power diode and the power supply end of each power circuit in the electronic device;
  • the N first output ends of the controller are respectively connected to the control ends of the N power switches for controlling the conduction states of the N power switches.
  • the battery control circuit provided by the embodiment of the present invention is applied to an electronic device having N batteries, including: a controller, N power switches, N-1 power diodes, and N is a positive integer greater than 1; the N powers One end of the switch is respectively connected in series with the output ends of the N batteries; the other end of the first power switch is respectively connected to the power input end and the anode of the first power diode; the other end of the i-th power switch is respectively Connected to the cathode of the i-1th power diode and the anode of the ith power diode, wherein i is greater than 1 and less than N; the other end of the Nth power switch is respectively connected to the cathode of the N-1th power diode Connected to the power supply end of each of the power circuits in the electronic device; the N first output ends of the controller are respectively connected to the control ends of the N power switches for controlling the N power switches On state.
  • an embodiment of the present invention provides an electronic device, including the battery control circuit and the N batteries according to the above first aspect.
  • the electronic device includes a battery control circuit and N batteries, wherein the battery control circuit comprises: a controller, N power switches, N-1 power diodes, and N is greater than 1. a positive integer; one end of the N power switches are respectively connected in series with the output ends of the N batteries; the other end of the first power switch is respectively connected to the power input end and the anode of the first power diode; The other ends of the power switches are respectively connected to the cathodes of the i-1th power diode and the anode of the ith power diode, wherein i is greater than 1 and less than N; the other end of the Nth power switch is respectively The cathodes of the N-1 power diodes are connected to the power supply ends of the respective power circuits in the electronic device; the N first output ends of the controller are respectively connected to the control ends of the N power switches, and are used for Controlling an on state of the N power switches.
  • the battery control circuit comprises: a controller, N power switches, N-1 power diodes, and N is
  • FIG. 1 is a schematic structural diagram of a battery control circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a battery control circuit according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the battery control circuit comprises a controller, N power switches, and N-1 power diode battery control circuits.
  • FIG. 1 is a schematic structural view of a battery control circuit according to an embodiment of the present invention.
  • the battery control circuit is applied to an electronic device having N batteries, and the battery control circuit includes: a controller 101, N power switches K, N-1 power diodes D, and N is a positive integer greater than one;
  • One ends of the N power switches K are respectively connected in series with the output ends of the N batteries;
  • the other end of the first power switch is respectively connected to the power input terminal VBUS and the anode of the first power diode;
  • the other end of the i-th power switch is respectively connected to the cathode of the i-1th power diode and the anode of the i-th power diode, wherein i is greater than 1 and less than N;
  • the other end of the Nth power switch is respectively connected to the cathode of the N-1th power diode and the power supply terminal VBAT of each power circuit in the electronic device;
  • the N first output ends of the controller 101 are respectively connected to the control ends of the N power switches K for controlling the conduction states of the N power switches K.
  • the electronic device in FIG. 1 includes three batteries BATT1, BATT2, BATT3,
  • the control circuit includes three power switches K1, K2, and K3 and two power diodes D1 and D2 as an example.
  • the power input terminal VBUS is connected to an external charging power source through an adapter or a USB data line, etc., so that the battery is charged when the battery needs to be charged.
  • the power switch may be any power switch such as a transistor, a power multiplexed multiplexer chip, or a micro DC relay.
  • the battery in the embodiment of the present application may be any type of battery such as a lithium battery or a flexible battery, and the types and battery capacities of the N batteries may be the same or different, and are not limited herein.
  • the other ends of the N batteries are respectively connected to the ground GND.
  • the N batteries are connected to one end of the first power switch and one end of the second power switch according to the capacity from large to small, until the Nth power switch is connected. Connected at one end. That is, when the battery capacities of the three batteries BATT1, BATT2, and BATT3 shown in FIG. 1 are different, the capacity of BATT1 is the largest and the capacity of BATT3 is the smallest.
  • controller 101 is used to:
  • the k+1th power switch is controlled to be turned on, and the first preset is delayed.
  • the kth power switch is turned off after the time interval, where k is a positive integer greater than or equal to 1, and less than or equal to N.
  • the power supply conditions can be set as needed.
  • the first preset voltage threshold may be set as needed.
  • the batteries are charged and discharged
  • the first power switch when determining that each battery meets the power supply condition, first, the first power switch is turned on, and the other power switches are turned off, thereby utilizing the first battery to each power circuit in the electronic device. Power is supplied. Then, when the power of the first battery does not satisfy the power supply condition, and the second battery satisfies the power supply condition, the controller 101 may first control the second power switch to be turned on, and then control the first power switch to be turned off, and then switch. In order to supply power to each of the electrical circuits in the electronic device by the second battery, and so on, until the Nth battery is used to supply power to each of the electrical circuits in the electronic device.
  • the kth power switch In the process of switching from the power supply using the kth battery to the power supply using the k+1th battery, if the kth power switch is first turned off, and then the k+1th power switch is turned on, The system is powered off. Therefore, in this embodiment, the k+1th power switch is first turned on, and then the kth power switch is turned off.
  • the power of the kth battery does not satisfy the power supply condition, and the k+1th battery satisfies the power supply condition, that is, the voltage of the k+1th battery is greater than the voltage of the kth battery, so the kth power
  • the switch and the k+1th power switch are simultaneously turned on, the kth diode will not be turned on, that is, during the battery switching process, the phenomenon that the batteries are mutually charged does not occur.
  • the k+1th power switch may be controlled to be turned on first, and then the first preset time interval is delayed and then controlled.
  • the kth power switch is turned off, so that when the power of the kth battery does not satisfy the power supply condition, the k+1th battery is used for power supply.
  • the first preset time interval can be set as needed. For example, it can be set to 2 seconds (s), 3s, etc. as needed.
  • the battery control circuit shown in FIG. 1 if the voltage across the battery is greater than 3.4 volts (V), it is determined that the battery power meets the power supply condition. When the voltage across the battery is less than or equal to 3.4V, It is determined that the battery power does not satisfy the power supply condition, and the first preset time interval is 3s.
  • the controller 101 determines that the power of BATT1 satisfies the power supply condition. At this time, the controller 101 can control K1 to be closed, K2 and K3 to be disconnected, and the power diodes D1 and D2 are forwarded. Therefore, BATT1 is used to supply power to each electric circuit of the electronic device.
  • controller 101 determines that the power of BATT1 does not satisfy the power supply condition, and the power of BATT2 satisfies the power supply condition, and controller 101 can control K2 to be turned on, and After the delay of 3s, the control K1 is disconnected, so that the power circuit of the electronic device is powered by the BATT2. Since K2 is turned on, the power diode D1 is turned off, thereby reliably avoiding BATT2 charging BATT1.
  • the controller 101 determines that the power of the BATT2 does not satisfy the power supply condition, and the power of the BATT3 satisfies the power supply condition, and the controller 101 can control the K3 to be turned on, and After the delay of 3s, the control K2 is disconnected, so that the BATT3 is used to supply power to each electric circuit of the electronic device.
  • the delay is controlled after the k+1th power switch is turned on.
  • the kth power switch is controlled to be turned off after the first preset time interval, so there are cases where the two power switches are simultaneously turned on.
  • the kth power switch and the k+1th power switch are simultaneously turned on, since the voltage of the k+1th battery is higher than the voltage of the kth battery, the kth battery cannot be the k+1th The battery is charged. And since the power diode between the kth power switch and the k+1th power switch is reversely turned off, the k+1th battery does not charge the kth battery. Thereby, the occurrence of charging of the two batteries is avoided, the service life of the battery is prolonged, and the performance of the system is improved.
  • the controller 101 can be used to control the conduction state of each power switch, thereby realizing the power supply of each battery to each power circuit in the system.
  • the controller 101 is used to control the conduction state of each power switch to realize The process of charging each battery will be described. Specifically, the controller 101 Used for:
  • the j+1th power switch is controlled to be turned on to charge the j+1th battery, where j is greater than or a positive integer equal to 1, and less than or equal to N;
  • the jth power switch When it is determined that the charging of the j+1th battery is finished, the jth power switch is controlled to be turned on, and the j+1th power switch is turned off after a second preset time interval is delayed.
  • the charging conditions can be set as needed. Generally, when the voltage across a battery is less than the second preset voltage threshold, it is determined that the battery power meets the charging condition; when the voltage across the battery is greater than or equal to the second preset voltage threshold, determining the battery power Charging conditions are not met.
  • the second preset voltage threshold can be set as needed.
  • the voltage across the battery and the current flowing into the battery That is, the charging current is different, so it is possible to determine whether the battery is charged or not based on the voltage across the battery and the current flowing into the battery. For example, when the voltage across a battery is greater than 4.2V and the current flowing into the battery is close to zero, it can be determined that the battery is charging.
  • the charging order of the N batteries is starting from the Nth battery, and after the charging of the Nth battery is finished, the N-th One battery is charged, and after the N-1th battery is charged, the N-2th battery is charged until the charging of the first battery is completed.
  • the controller 101 can control the Nth power switch to be turned on, and the other power switches are turned off, thereby charging the Nth battery. Then, after the charging of the Nth battery is completed, the controller 101 can switch to charge the N-1th battery by controlling the conduction state of the N-1th power switch, and so on until the first battery is charged. Charging is over.
  • the j+1th power switch may be first turned on to charge the jth battery, and then the j+1th power switch is turned off after a second preset time interval. To disconnect the j+1th battery from the charging circuit.
  • the jth power switch and the j+1th power switch are both turned on, the voltage of the anode of the jth power diode connected between the two is lower than the cathode voltage, so the jth power diode is in the reverse state. Therefore, the j+1th battery is not charged for the jth battery.
  • the second preset time interval can be set as needed. For example, you can set it to 2s, 3s, etc. as needed.
  • the battery control circuit shown in FIG. 1 if the voltage at both ends of a battery is less than 4.2V, the battery needs to be charged. When the voltage at both ends of a battery is greater than or equal to 4.2V, it is not required. Charge the battery. When the voltage across a battery is greater than or equal to 4.2V and the current flowing into the battery is close to zero, the battery is charged.
  • the second preset time interval is 3s.
  • VBUS is connected to the USB.
  • the controller 101 determines that BATT1, BATT2, and BATT3 need to be charged. At this time, the controller 101 It is possible to control K3 to close, K1 and K2 to disconnect, thereby charging BATT3.
  • the controller 101 determines that the charging of BATT3 is over. At this time, the controller 101 can control K2 to be turned on, and after 3s delay, the control K3 is turned off, thereby bATT2. Charge it.
  • the controller 101 determines that the charging of BATT2 is over. At this time, the controller 101 can control K1 to be turned on, and the control K2 is turned off after a delay of 3 seconds. And charge BATT1.
  • the delay is After the preset time interval, the j+1th power switch is controlled to be turned off, so there are cases where the two power switches are simultaneously turned on.
  • the j+1th power switch and the jth power switch are simultaneously turned on, since the voltage of the j+1th battery is higher than the voltage of the jth battery, the jth battery cannot be the j+1th The battery is charged. And because the power diode between the jth power switch and the j+1th power switch is reversed, the j+1th battery does not charge the jth battery. Thereby, the occurrence of charging of the two batteries is avoided, the service life of the battery is prolonged, and the performance of the system is improved.
  • the controller 101 can control the conduction state of each power switch to charge or discharge each battery based on the voltage across the battery and the current flowing into each battery, that is, the charging current.
  • the battery control circuit may further include a voltage current sampling circuit 102 for collecting voltages at both ends of each battery and detecting charging and/or discharging current of the battery. Therefore, the output value of the voltage current sampling circuit 102 may be at least one of a battery voltage, a charging current, or a discharging current.
  • An input end of the voltage current sampling circuit 102 is respectively connected to an output end of the N batteries, and an output end of the voltage current sampling circuit 102 is connected to a first input end of the controller 101;
  • the controller 101 is configured to determine a state of the N batteries according to an output value of the voltage current sampling circuit 102 to control an on state of the N power switches K.
  • the voltage and current sampling circuit 102 is a circuit that can collect the voltage across the battery, and is not limited herein.
  • the voltage and current sampling circuit 102 can separately collect voltages at both ends of the N batteries, and output voltages at both ends of the battery to the controller 101, so that the controller 101 can be based on N batteries.
  • the voltage at the terminal controls the conduction state of the N power switches K during charging and discharging to supply power to each battery or to charge each battery.
  • the battery control circuit can also A current detecting circuit 103 is included to detect the magnitude of the charging current.
  • the current detecting circuit 103 is connected in series between the charging control circuit and the other end of the first power switch tube, and an output end of the current detecting circuit 103 is connected to an input end of the controller 101.
  • the current detecting circuit 103 is any circuit that can detect a current.
  • the current detecting circuit 103 may be constituted by a current transformer, and the current of the primary side is converted into a small current on the secondary side by the current transformer to detect the magnitude of the charging current.
  • FIG. 2 is a diagram in which the current detecting circuit 103 is constituted by a current transformer as an example.
  • the controller 101 may determine the magnitude of the charging current according to the output value of the current detecting circuit 103, and determine the voltage of the battery at both ends according to the output value of the voltage current sampling circuit 102. , thereby judging the charging phase of the battery. If it is determined that the battery is charged, the other batteries can be charged by controlling the conduction state of each power switch.
  • the controller 101 can also control the charging current of the battery according to the voltage across the battery to charge the battery in different stages, and therefore, implemented in the present invention.
  • a charge control circuit 104 can also be included.
  • the charging control circuit 104 is serially connected between the power input end and the other end of the first power switch tube;
  • the control end of the charging control circuit 104 is connected to the second output end of the controller 101;
  • the controller 101 is further configured to control a charging current by controlling an operating state of the charging control circuit 104.
  • the charging control circuit 104 is any circuit that can control the magnitude of the charging current, and is not limited herein.
  • FIG. 2 illustrates the charging control circuit 104 including an N-type metal oxide semiconductor field effect transistor 1041 and a PNP type transistor 1042 as an example.
  • metal oxide semiconductor field effect transistor 1041 and the transistor 1042 may be of any type, which is not limited herein.
  • the gate of the metal oxide semiconductor field effect transistor is connected to the third output end of the controller 101, the source of the metal oxide semiconductor field effect transistor and the fourth output end of the controller 101 Connecting, a drain of the MOSFET is connected to a base of the transistor;
  • An emitter of the transistor is coupled to an input of the power source, and a collector of the transistor is coupled to an other end of the first power switch and an anode of the first power diode.
  • the controller 101 controls the conduction state of each power switch to charge a certain battery
  • the duty ratio of the metal oxide semiconductor field effect transistor 1041 and the transistor 1042 in the charging control circuit 104 can be controlled.
  • the battery is charged in different stages such as pre-charging, constant current, constant voltage, and turbulence.
  • the controller 101 can also determine the actual charging current of the battery through the output value of the current detecting circuit 103, so that the actual charging current of the battery and the expected charging current are not At the same time, the operating state of the charge control circuit 104 is controlled to adjust the charging current of the battery.
  • the controller 101 can also determine whether each battery has failed or has failed by the output value of the current detecting circuit 103, thereby actively cutting off the battery and outputting alarm information when a battery fails or fails, so that the user can timely Make repairs. Thereby, the charging process of the battery is safer, and the system can still work normally when a battery fails, thereby improving the safety and reliability of the electronic device.
  • the battery control circuit further A surge voltage protection circuit 105 can be included.
  • One end of the surge voltage protection circuit 105 is connected to the power supply terminal VBAT of each power circuit in the electronic device, and the other end of the surge voltage protection circuit 105 is connected to the ground line GND.
  • the surge voltage protection circuit 105 can be composed of any surge protection device such as a gas discharge tube, a varistor, and a TVS transient suppression diode.
  • FIG. 2 illustrates the surge voltage protection circuit 105 including the Zener diode D3 and the capacitor C as an example.
  • the surge voltage protection circuit 105 when the voltage in the circuit is normal, the surge voltage protection circuit 105 has no influence on the circuit operation; when the high pulse voltage comes, the surge voltage protection circuit 105 can bypass the surge energy to ensure that the voltage of the circuit is within a reasonable range. Inside, thereby protecting the rear stage circuit from surges.
  • the battery control circuit provided by the embodiment of the invention can independently charge and discharge each battery, and the charging and discharging process does not interfere with each other, thereby preventing overcharge and overdischarge, prolonging battery life, and sharing N batteries.
  • the same charging control circuit 104, the current detecting circuit 103, and the voltage current sampling circuit 102 save space in the stack and are advantageous for increasing the battery capacity.
  • the battery control circuit provided by the embodiment of the present application is applied to an electronic device having N batteries, including: a controller, N power switches, N-1 power diodes, and N is a positive integer greater than 1; the N powers One end of the switch is respectively connected in series with the output ends of the N batteries; the other end of the first power switch is respectively connected to the power input end and the anode of the first power diode; the i-th work The other end of the rate switch is respectively connected to the cathode of the i-1th power diode and the anode of the i-th power diode, wherein i is greater than 1 and less than N; the other end of the Nth power switch is respectively associated with the Nth - a cathode of the power diode is connected to a power supply end of each of the electrical circuits; and the N first outputs of the controller are respectively connected to the control ends of the N power switches for control The on state of the N power switches.
  • FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device includes: a battery control circuit and N batteries.
  • FIG. 3 is an illustration of an electronic device including a lithium battery BATT1, a lithium battery BATT2, and a flexible battery BATT3.
  • the battery control circuit is not shown in FIG.
  • the electronic device may be any electronic device such as a mobile phone, a wearable device, or a smart audio, and is not specifically limited herein.
  • the electronic device may further include a main board 31 and a flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the components of the battery control circuit can be disposed on the main board 31, and the three batteries can be connected to the corresponding power switches on the main board 31 through the FPC.
  • the battery control circuit For the structure and working principle of the battery control circuit, reference may be made to the explanation of the above embodiments, and details are not described herein again.
  • the electronic device may further include: a flexible outer casing 32 that is bendable, and a pair of elastic pieces 33 symmetrically disposed on both sides of any bendable portion of the flexible outer casing 32.
  • the pair of spring pieces 33 includes a first elastic piece 331 and a second elastic piece 332.
  • the two elastic pieces of the pair of elastic pieces 33 are reliably contacted; when the flexible outer casing 32 is in the second state, the two elastic pieces of the pair of elastic pieces 33 are separated, wherein
  • the first state is a curved state, and the second state is a flat state;
  • the first elastic piece 331 of the pair of elastic pieces 33 is connected to the power source in the electronic device, and the second elastic piece 332 is connected to the input end of the controller 101 in the battery control circuit;
  • the controller 101 is configured to control a display state and content of the display screen 34 of the electronic device according to a voltage value on the second elastic piece 332.
  • the power source in the electronic device may be any battery controlled by the battery control circuit, or may be another battery in the electronic device, which is not limited herein.
  • the first elastic piece 331 can be connected to the power supply on the main board 31 through the cable 35, and the second elastic piece 332 can be connected to the input end of the controller 101 on the main board 31 through the cable 35.
  • the pair of elastic pieces symmetrically disposed on both sides of any bendable portion of the flexible outer casing 32 may be a pair or a plurality of pairs, which is not limited herein.
  • the angle threshold may be preset, and when the angle at which the flexible outer casing 32 of the electronic device is bent exceeds the preset angle threshold, it is determined that the flexible outer casing 32 is in a bent state; when the flexible outer casing 32 of the electronic device is bent, the angle is less than When the angle threshold is set, it is determined that the flexible outer casing 32 is in a flat state.
  • the display state of the display screen 34 may include the display interface size of the display screen 34, the displayed font size, the font color, and the like.
  • the display state and content of the corresponding display screen 34 are different.
  • the display 34 has more content and a smaller font
  • the display 34 has less content and a larger font.
  • the second elastic piece 332 is The voltage value is the voltage value of the power source; when the flexible outer casing 32 is in the flat state, the two spring pieces in the pair of spring pieces 33 are separated, so that the voltage value on the other spring piece 332 is zero. That is, when the flexible outer casing 32 is in different states, the voltage values on the other elastic piece 332 are different, so that the controller 101 can determine the state of the flexible outer casing 32 according to the voltage value on the other elastic piece 332, thereby controlling the electronic device display. Different display states and contents are displayed on the screen 34.
  • the electronic device provided by the embodiment of the invention can use N batteries to supply power, improve battery capacity, increase battery life and use duration; N batteries share the same charging control circuit 104, current detecting circuit 103 and voltage current sampling circuit 102, The stacking space is saved, which is beneficial to the increase of the battery capacity; the electronic device has the bending detection function, so that the display state and content of the display screen 34 can be conveniently switched, and the operability and practicality are more abundant and reasonable.
  • the display screen 34 may include a flexible touch panel (TP) and a flexible screen that are attached to the flexible outer casing 32, and the flexible TP and the flexible screen pass the FPC.
  • the motherboard 31 is connected so that the motherboard 31 can communicate with the flexible TP and the flexible screen, and control the flexible TP and the flexible screen.
  • the main board 31 may further include a baseband chip, a power management chip, a memory chip, a battery charge and discharge circuit, a battery detection circuit, a radio frequency circuit, a TP and a flexible screen drive circuit, an acceleration sensor, a gravity sensor, a proximity light sensor, and the like.
  • the electronic device includes a battery control circuit and N batteries, wherein
  • the battery control circuit includes: a controller, N power switches, N-1 power diodes, N is a positive integer greater than 1; one ends of the N power switches are respectively connected in series with the output ends of the N batteries; The other end of a power switch is respectively connected to the power input terminal and the anode of the first power diode; the other end of the i-th power switch is respectively connected to the cathode of the i-1th power diode and the i-th power diode An anode connection, wherein i is greater than 1, and less than N; the other end of the Nth power switch is respectively connected to the cathode of the N-1th power diode and the power supply end of each of the electrical circuits in the electronic device; The N first output ends of the controller are respectively connected to the control ends of the N power switches for controlling the conduction states of the N power switches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池控制电路及电子设备,电池控制电路应用于具有N个电池的电子设备,控制电路包括控制器(101)、N个功率开关、N-1个功率二极管;N个功率开关的一端分别与N个电池的输出端串联连接;第一个功率开关的另一端,分别与电源输入端及第一个功率二极管的阳极连接;第i个功率开关的另一端,分别与第i-1个功率二极管的阴极及第i个功率二极管的阳极连接;第N个功率开关的另一端,分别与第N-1个功率二极管的阴极及电子设备中的各用电回路的供电端连接;控制器(101)的N个第一输出端分别与N个功率开关的控制端连接,用于控制N个功率开关的导通状态。所述电池控制电路及电子设备可以延长电池的使用寿命,提升电子设备的***性能。

Description

电池控制电路及电子设备 技术领域
本发明涉及电子技术领域,尤其涉及一种电池控制电路及电子设备。
背景技术
随着互联网技术的不断发展和全球终端产品智能化的日益推进,人们在生活和工作中使用的电子设备越来越多,例如智能手机、平板电脑、智能音响、智能空调等。
目前,在对电子设备的***进行供电时,可以采用双电池供电的方式,首先利用主电池给***供电,当电量不足时,副电池作为备用的电池对***进行供电,但也存在主副电池同时供电的情形。当主副电池同时给***供电时,两个电池存在相互充放电过程,特别当其中一个电池失效时,会严重影响电池的寿命和***的性能。
发明内容
有鉴于此,本发明实施例提供一种电池控制电路及电子设备,通过利用控制器控制各功率开关的导通状态,实现了对***中各用电回路的供电,当出现两个电池同时给***供电的情形时,避免了两个电池互相充放电的情况发生,延长了电池的使用寿命,提高了电子设备的***性能。
本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种电池控制电路,应用于具有N个电池的电子设备,所述控制电路包括:
控制器、N个功率开关、N-1个功率二极管,N为大于1的正整数;
所述N个功率开关的一端分别与所述N个电池的输出端串联连接;
第一个功率开关的另一端,分别与电源输入端及第一个功率二极管的阳极 连接;
第i个功率开关的另一端,分别与第i-1个功率二极管的阴极及第i个功率二极管的阳极连接,其中,i大于1,且小于N;
第N个功率开关的另一端,分别与第N-1个功率二极管的阴极及所述电子设备中的各用电回路的供电端连接;
所述控制器的N个第一输出端分别与所述N个功率开关的控制端连接,用于控制所述N个功率开关的导通状态。
本发明实施例提供的电池控制电路,应用于具有N个电池的电子设备,包括:控制器、N个功率开关、N-1个功率二极管,N为大于1的正整数;所述N个功率开关的一端分别与所述N个电池的输出端串联连接;第一个功率开关的另一端,分别与电源输入端及第一个功率二极管的阳极连接;第i个功率开关的另一端,分别与第i-1个功率二极管的阴极及第i个功率二极管的阳极连接,其中,i大于1,且小于N;第N个功率开关的另一端,分别与第N-1个功率二极管的阴极及所述电子设备中的各用电回路的供电端连接;所述控制器的N个第一输出端分别与所述N个功率开关的控制端连接,用于控制所述N个功率开关的导通状态。由此,通过利用控制器控制各功率开关的导通状态,实现了对***中各用电回路的供电,当出现两个电池同时给***供电的情形时,避免了两个电池互相充放电的情况发生,延长了电池的使用寿命,提高了电子设备的***性能。
第二方面,本发明实施例提供一种电子设备,包括如上述第一方面所述的电池控制电路及N个电池。
本发明实施例提供的电子设备,包括电池控制电路及N个电池,其中电池控制电路包括:控制器、N个功率开关、N-1个功率二极管,N为大于1的 正整数;所述N个功率开关的一端分别与所述N个电池的输出端串联连接;第一个功率开关的另一端,分别与电源输入端及第一个功率二极管的阳极连接;第i个功率开关的另一端,分别与第i-1个功率二极管的阴极及第i个功率二极管的阳极连接,其中,i大于1,且小于N;第N个功率开关的另一端,分别与第N-1个功率二极管的阴极及所述电子设备中的各用电回路的供电端连接;所述控制器的N个第一输出端分别与所述N个功率开关的控制端连接,用于控制所述N个功率开关的导通状态。由此,通过利用控制器控制各功率开关的导通状态,实现了对***中各用电回路的供电,当出现两个电池同时给***供电的情形时,避免了两个电池互相充放电的情况发生,延长了电池的使用寿命,提高了电子设备的***性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明一个实施例的电池控制电路的结构示意图;
图2为本发明另一个实施例的电池控制电路的结构示意图;
图3为本发明一个实施例的电子设备的结构示意图。
具体实施方式
下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
具体的,本发明各实施例针对现有技术,采用双电池供电的方式对电子设备的***进行供电时,在主副电池同时给***供电的情形下,两个电池存在相互充放电过程,特别当其中一个电池失效时,会严重影响电池的寿命和***的性能的问题,提出一种电池控制电路。该电池控制电路包括控制器、N个功率开关、N-1个功率二极管的电池控制电路,通过利用控制器控制各功率开关的导通状态,实现了对***中各用电回路的供电,当出现两个电池同时给***供电的情形时,避免了两个电池互相充放电的情况发生,延长了电池的使用寿命,提高了电子设备的***性能。
下面参照附图来描述根据本发明实施例提出的电池控制电路及电子设备。
图1为本发明一个实施例的电池控制电路的结构示意图。
如图1所示,电池控制电路应用于具有N个电池的电子设备,电池控制电路包括:控制器101、N个功率开关K、N-1个功率二极管D,N为大于1的正整数;
所述N个功率开关K的一端分别与所述N个电池的输出端串联连接;
第一个功率开关的另一端,分别与电源输入端VBUS及第一个功率二极管的阳极连接;
第i个功率开关的另一端,分别与第i-1个功率二极管的阴极及第i个功率二极管的阳极连接,其中,i大于1,且小于N;
第N个功率开关的另一端,分别与第N-1个功率二极管的阴极及所述电子设备中的各用电回路的供电端VBAT连接;
所述控制器101的N个第一输出端分别与所述N个功率开关K的控制端连接,用于控制所述N个功率开关K的导通状态。
需要说明的是,图1中以电子设备包括3个电池BATT1、BATT2、BATT3、 控制电路包括K1、K2、K3这3个功率开关及D1、D2这2个功率二极管为例进行示意。
具体的,电源输入端VBUS通过适配器或USB数据线等与外部充电电源连接,从而在电池需要充电时,对电池进行充电。
其中,功率开关,可以是晶体管、功率复用多路开关芯片、微型直流继电器等任意功率开关。
另外,本申请实施例中的电池,可以是锂电池、柔性电池等任意类型的电池,且N个电池的类型及电池容量可以相同,也可以不同,此处不作限制。N个电池的另一端分别与地线GND连接。
具体的,当N个电池的容量不同时,N个电池根据容量由大到小,依次与第一个功率开关的一端连接、第二个功率开关的一端连接,直至与第N个功率开关的一端连接。即,当图1中所示的BATT1、BATT2、BATT3 3个电池的电池容量不同时,BATT1的容量最大、BATT3的容量最小。
具体工作时,控制器101用于:
在电池放电过程中,在第k个电池的电量不满足供电条件、且第k+1个电池的电量满足供电条件时,控制第k+1个功率开关导通,并延时第一预设的时间间隔后控制第k个功率开关断开,其中,k为大于或等于1,且小于或等于N的正整数。
其中,供电条件可以根据需要设置。通常,当某个电池两端的电压大于第一预设电压阈值时,确定该电池的电量满足供电条件;当某个电池两端的电压小于或等于第一预设电压阈值时,确定该电池的电量不满足供电条件。其中,第一预设电压阈值可以根据需要设置。
具体的,在供电过程中,为了避免多个电池同时供电时,电池间互相充放 电,本申请实施例中,可用在确定各个电池都满足供电条件时,首先控制第1个功率开关导通,其它功率开关断开,从而利用第1个电池对电子设备中的各用电回路进行供电。然后,在第1个电池的电量不满足供电条件,且第2个电池满足供电条件时,控制器101可以首先控制第2个功率开关导通,然后再控制第1个功率开关断开,切换为利用第2个电池对电子设备中的各用电回路进行供电,并依次类推,直至利用第N个电池对电子设备中的各用电回路进行供电。
由于在从利用第k个电池进行供电,切换到利用第k+1个电池进行供电的过程中,若先控制第k个功率开关断开,再控制第k+1个功率开关导通,会造成***断电,因此,本实施例中,首先控制第k+1个功率开关导通,再控制第k个功率开关断开。而这个过程中,第k个电池的电量已经不满足供电条件,而第k+1个电池满足供电条件,即第k+1个电池的电压大于第k个电池的电压,因此第k个功率开关和第k+1个功率开关同时导通时,第k个二极管不会导通,即在电池切换过程中,不会出现电池间互相充电的现象。
进一步的,在本发明实施例中,为了保证***在电池切换过程中不会出现断电现象,可以先控制第k+1个功率开关导通,延时第一预设的时间间隔后再控制第k个功率开关断开,从而在第k个电池的电量不满足供电条件时,利用第k+1个电池进行供电。
其中,第一预设的时间间隔,可以根据需要设置。比如,可以根据需要,设置为2秒(s)、3s等等。
具体实现时,以图1中所示的电池控制电路为例,假设电池两端的电压大于3.4伏(V)时,确定电池的电量满足供电条件,当电池两端的电压小于或等于3.4V时,确定电池的电量不满足供电条件,第一预设的时间间隔为3s。
在放电过程中,当BATT1两端的电压大于3.4V时,控制器101确定BATT1的电量满足供电条件,此时控制器101可以控制K1闭合、K2和K3断开,功率二极管D1、D2正向导通,从而利用BATT1对电子设备的各用电回路进行供电。当BATT1两端的电压低于3.4V、BATT2两端的电压大于3.4V时,控制器101确定BATT1的电量不满足供电条件,BATT2的电量满足供电条件,此时控制器101可以控制K2导通,并延时3s后控制K1断开,从而利用BATT2对电子设备的各用电回路进行供电。由于K2在导通后,会使得功率二极管D1截止,从而可靠避免了BATT2为BATT1进行充电。当BATT2两端的电压低于3.4V、BATT3两端的电压大于3.4V时,控制器101确定BATT2的电量不满足供电条件,BATT3的电量满足供电条件,此时控制器101可以控制K3导通,并延时3s后控制K2断开,从而利用BATT3对电子设备的各用电回路进行供电。
可以理解的是,在电池放电过程中,当从利用第k个电池进行供电,切换到利用第k+1个电池进行供电的过程中,由于控制第k+1个功率开关导通后,延时第一预设的时间间隔后再控制第k个功率开关断开,因此存在两个功率开关同时导通的情况。而在第k个功率开关和第k+1个功率开关同时导通时,由于第k+1个电池的电压高于第k个电池的电压,因此第k个电池无法对第k+1个电池进行充电。且由于第k个功率开关和第k+1个功率开关之间的功率二极管反向截止,从而第k+1个电池不会对第k个电池进行充电。由此,避免了两个电池相互充电的情况发生,延长了电池的使用寿命,提高了***的性能。
通过上述分析可知,可以利用控制器101控制各功率开关的导通状态,实现各电池对***中各用电回路的供电,下面对利用控制器101控制各功率开关的导通状态,以实现对各电池的充电的过程进行说明。具体的,控制器101 用于:
在充电过程中,若确定第j个电池与第j+1个电池均满足充电条件,则控制第j+1个功率开关导通以为所述第j+1个电池进行充电,j为大于或等于1,且小于或等于N的正整数;
在确定所述第j+1个电池充电结束时,控制第j个功率开关导通,并延时第二预设的时间间隔后控制第j+1个功率开关断开。
其中,充电条件可以根据需要设置。通常,当某个电池两端的电压小于第二预设电压阈值时,确定该电池的电量满足充电条件;当某个电池两端的电压大于或等于第二预设电压阈值时,确定该电池的电量不满足充电条件。其中,第二预设电压阈值可以根据需要设置。
另外,由于对某个电池进行充电的过程中,会进行预充、恒流、恒压、涓流等不同阶段的充电,而在不同的充电阶段,该电池两端的电压及流入该电池的电流即充电电流是不同的,因此可以根据该电池两端的电压及流入该电池的电流,确定该电池是否充电结束。比如,当某电池两端的电压大于4.2V、且流入该电池的电流接近0时,可以确定该电池充电结束。
可以理解的是,在本发明实施例中,若N个电池均满足充电条件,N个电池的充电顺序为从第N个电池开始充电,在第N个电池充电结束后,再对第N-1个电池进行充电,在第N-1个电池充电结束后,再对第N-2个电池进行充电,直至对第1个电池充电结束。
也即是说,当N个电池均满足充电条件时,控制器101可以控制第N个功率开关导通,其它功率开关断开,从而为第N个电池进行充电。然后,在第N个电池充电结束后,控制器101可以通过控制第N-1个功率开关的导通状态,切换为对第N-1个电池充电,并依次类推,直至对第1个电池充电结束。
由于在第j+1个电池充电结束时,从为第j+1个电池充电切换到为第j个电池充电的过程中,若先控制第j+1个功率开关断开,再控制第j个功率开关导通,会使得电路中瞬间电流过大,导致电路不平稳,安全性差。因此,在本发明实施例中,可以先控制第j个功率开关导通,为第j个电池进行充电,之后延时第二预设的时间间隔后再控制第j+1个功率开关断开,以断开第j+1个电池与充电电路的连接。
由于第j个功率开关和第j+1个功率开关均导通时,连接在二者间的第j个功率二极管的阳极的电压低于阴极电压,因此第j个功率二极管处于反向截至状态,从而也不会出现第j+1个电池为第j个电池充电的情况。
其中,第二预设的时间间隔,可以根据需要设置。比如,可以根据需要,设置为2s、3s等等。
具体实现时,以图1中所示的电池控制电路为例,假设某电池两端的电压小于4.2V时,需要对该电池进行充电,当某电池两端的电压大于或等于4.2V时,不需要对该电池进行充电。当某电池两端的电压大于或等于4.2V、且流入该电池的电流接近0时,该电池充电结束。第二预设的时间间隔为3s。
在电源输入端VBUS与USB连接,为各电池进行充电过程中,当BATT1、BATT2、BATT3两端的电压均小于4.2V时,控制器101确定BATT1、BATT2、BATT3均需要充电,此时控制器101可以控制K3闭合、K1和K2断开,从而对BATT3进行充电。当BATT3两端的电压大于4.2V、且流入BATT3的电流接近0时,控制器101确定BATT3充电结束,此时控制器101可以控制K2导通,并延时3s后控制K3断开,从而对BATT2进行充电。当BATT2两端的电压大于4.2V、且流入BATT2的电流接近0时,控制器101确定BATT2充电结束,此时控制器101可以控制K1导通,并延时3s后控制K2断开,从 而对BATT1进行充电。
可以理解的是,在电池充电过程中,当从为第j+1个电池进行充电,切换到为第j个电池进行充电的过程中,由于控制第j个功率开关导通后,延时第二预设的时间间隔后再控制第j+1个功率开关断开,因此存在两个功率开关同时导通的情况。而在第j+1个功率开关和第j个功率开关同时导通时,由于第j+1个电池的电压高于第j个电池的电压,因此第j个电池无法对第j+1个电池进行充电。且由于第j个功率开关和第j+1个功率开关之间的功率二极管反向截止,从而第j+1个电池不会对第j个电池进行充电。由此,避免了两个电池相互充电的情况发生,延长了电池的使用寿命,提高了***的性能。
通过上述分析可知,控制器101可以根据各电池两端的电压、流入各电池的电流即充电电流等,对各功率开关的导通状态进行控制,以对各电池进行充电或放电。在本发明一种可能的实现形式中,如图2所示,电池控制电路,还可以包括电压电流采样电路102,用于采集各电池两端的电压及检测电池的充电和/或放电电流。故此,该电压电流采样电路102的输出值可以是电池的电压、充电电流或放电电流中的至少一个。
所述电压电流采样电路102的输入端,分别与所述N个电池的输出端连接,所述电压电流采样电路102的输出端与所述控制器101的第一输入端连接;
所述控制器101,用于根据所述电压电流采样电路102的输出值,确定所述N个电池的状态,以控制所述N个功率开关K的导通状态。
其中,电压电流采样电路102为可以采集任意电池两端电压的电路,此处不作限制。
具体的,电压电流采样电路102可以分别采集N个电池两端的电压,并将各电池两端的电压输出给控制器101,从而控制器101可以根据N个电池两 端的电压,在充电及放电过程中,控制N个功率开关K的导通状态,以利用各个电池进行供电或为各个电池进行充电。
另外,在为电池进行充电时,为了判断电池是否充电结束,以对各功率开关的导通状态进行控制,还需要检测充电电流的大小,因此,在本发明实施例中,电池控制电路还可以包括电流检测电路103,以检测充电电流大小。
所述电流检测电路103串联在所述充电控制电路与所述第一个功率开关管的另一端之间,所述电流检测电路103的输出端与所述控制器101的输入端连接。
其中,电流检测电路103为任意可以检测电流的电路。比如,电流检测电路103可以由电阻构成,在已知电阻的阻值Rsense的情况下,通过检测电阻两端的电压Vsense,从而根据Isense=Vsense/Rsense,确定充电电流Isense的大小。或者,电流检测电路103可以由电流互感器构成,通过电流互感器把一次侧大电流转换成二次侧小电流,来检测充电电流的大小。
图2以电流检测电路103由电流互感器构成为例进行示意。
具体的,在为某个电池充电的过程中,控制器101可以根据电流检测电路103的输出值,确定充电电流的大小,并根据电压电流采样电路102的输出值,确定该电池两端的电压大小,从而判断该电池的充电阶段。若确定该电池充电结束,则可以通过控制各功率开关的导通状态,其它电池进行充电。
进一步的,在为某个电池充电的过程中,控制器101还可以根据该电池两端的电压,对该电池的充电电流进行控制,以对该电池进行不同阶段的充电,因此,在本发明实施例中,还可以包括充电控制电路104。
所述充电控制电路104串接在所述电源输入端与所述第一个功率开关管的另一端之间;
所述充电控制电路104的控制端与所述控制器101的第二输出端连接;
所述控制器101,还用于通过控制所述充电控制电路104的工作状态,控制充电电流。
其中,充电控制电路104,为任意可以控制充电电流大小的电路,此处不作限制。
具体的,图2以充电控制电路104包括N型的金属氧化物半导体场效应晶体管1041和PNP型的三极管1042为例进行示意。
需要说明的是,金属氧化物半导体场效应晶体管1041和三极管1042可以为任意类型,此处不作限制。
其中,所述金属氧化物半导体场效应晶体管的栅极与所述控制器101的第三输出端连接,所述金属氧化物半导体场效应晶体管的源极与所述控制器101的第四输出端连接,所述金属氧化物半导体场效应晶体管的漏极与所述三极管的基极连接;
所述三极管的发射极与所述电源的输入端连接,所述三极管的集电极与所述第一个功率开关管的另一端及所述第一个功率二极管的阳极连接。
具体实现时,控制器101通过控制各功率开关的导通状态,为某个电池进行充电时,可以通过控制充电控制电路104中,金属氧化物半导体场效应晶体管1041及三极管1042的占空比,以调节充电电流的大小,从而对电池进行预充、恒流、恒压、涓流等不同阶段的充电。
需要说明的是,在对某个电池进行充电的过程中,控制器101还可以通过电流检测电路103的输出值,确定电池的实际充电电流,从而在电池的实际充电电流与预期的充电电流不同时,对充电控制电路104的工作状态进行控制,以对电池的充电电流进行调整。
另外,控制器101还可以通过电流检测电路103的输出值,确定各电池是否发生故障或已失效,从而在某电池故障或失效时,主动切断该路电池,并输出告警信息,以使用户及时进行修理。由此,使得电池的充电过程更安全,且在某电池故障时仍能保证***正常工作,提高了电子设备的安全性和可靠性。
值得注意的是,在实际运用中,电池控制电路中可能会出现浪涌,为了保证电路中的电压在合理的范围内,在本发明实施例中,如图2所示,电池控制电路中还可以包括浪涌电压保护电路105。
浪涌电压保护电路105的一端与电子设备中的各用电回路的供电端VBAT连接,浪涌电压保护电路105的另一端与地线GND连接。
其中,浪涌电压保护电路105可以由气体放电管、压敏电阻、TVS瞬态抑制二极管等任意浪涌保护器件构成。图2以浪涌电压保护电路105包括齐纳二极管D3和电容C为例进行示意。
具体的,在电路中电压正常时,浪涌电压保护电路105对电路工作没有影响;当高脉冲电压到来时,浪涌电压保护电路105可以旁路浪涌能量,保证电路的电压在合理的范围内,从而保护后级电路免受浪涌冲击。
可以理解的是,本发明实施例提供的电池控制电路,可以对每个电池独立进行充放电,充放电过程互不干扰,防止了过充过放,延长了电池使用寿命,且N个电池共用同一充电控制电路104、电流检测电路103及电压电流采样电路102,节省了堆叠空间,有利于电池容量的增加。
本申请实施例提供的电池控制电路,应用于具有N个电池的电子设备,包括:控制器、N个功率开关、N-1个功率二极管,N为大于1的正整数;所述N个功率开关的一端分别与所述N个电池的输出端串联连接;第一个功率开关的另一端,分别与电源输入端及第一个功率二极管的阳极连接;第i个功 率开关的另一端,分别与第i-1个功率二极管的阴极及第i个功率二极管的阳极连接,其中,i大于1,且小于N;第N个功率开关的另一端,分别与第N-1个功率二极管的阴极及所述电子设备中的各用电回路的供电端连接;所述控制器的N个第一输出端分别与所述N个功率开关的控制端连接,用于控制所述N个功率开关的导通状态。由此,通过利用控制器控制各功率开关的导通状态,实现了对***中各用电回路的供电,当出现两个电池同时给***供电的情形时,避免了两个电池互相充放电的情况发生,延长了电池的使用寿命,提高了电子设备的***性能。
图3为本申请一个实施例的电子设备的结构示意图。
如图3所示,该电子设备包括:电池控制电路及N个电池。
图3以电子设备包括锂电池BATT1、锂电池BATT2、柔性电池BATT3 3个电池为例进行示意。电池控制电路在图3中未示出。
电子设备可以是手机、穿戴设备、智能音响等任意电子设备,在此不做具体限制。
另外,电子设备还可以包括主板31、柔性印刷电路板(Flexible Printed Circuit,简称FPC)。
具体的,电池控制电路的各个元件可以设置在主板31上,3个电池可以通过FPC连接到主板31上对应的功率开关上。电池控制电路的结构和工作原理可参照上述各实施例的解释说明,此处不再赘述。
进一步的,如图3所示,电子设备还可以包括:可弯折的柔性外壳32,及在柔性外壳32的任意可弯折部的两侧对称设置的弹片对33。该弹片对33包括第一弹片331和第二弹片332。
所述柔性外壳32处于第一状态时,所述弹片对33中的两个弹片可靠接触;所述柔性外壳32处于第二状态时,所述弹片对33中的两个弹片分离,其中,所述第一状态为弯曲状态,所述第二状态为平直状态;
所述弹片对33中的第一弹片331与所述电子设备内的电源连接,第二弹片332与所述电池控制电路中的控制器101的输入端连接;
所述控制器101,用于根据所述第二弹片332上的电压值,控制所述电子设备显示屏34的显示状态及内容。
其中,电子设备内的电源可以为上述电池控制电路控制的任一电池,或者,也可以为电子设备内的其它电池,在此不做限定。
第一弹片331可以通过线缆35与主板31上的电源连接,第二弹片332可以通过线缆35与主板31上的控制器101的输入端连接。
需要说明的是,本发明实施例中,在柔性外壳32的任意可弯折部的两侧对称设置的弹片对可以为一对,也可以为多对,此处不作限制。
具体的,可以预先设置角度阈值,当电子设备的柔性外壳32被弯折的角度超过预设角度阈值时,确定柔性外壳32处于弯曲状态;当电子设备的柔性外壳32被弯折的角度小于预设角度阈值时,确定柔性外壳32处于平直状态。
显示屏34的显示状态,可以包括显示屏34的显示界面大小、显示的字体大小、字体颜色等等。
可以理解的是,在本发明实施例中,可以预先设置电子设备的柔性外壳32处于不同的状态时,对应的显示屏34的显示状态及内容不同。比如,在柔性外壳32被弯折小于60度时,将电子设备作为手机使用,显示屏34上显示的内容较多,字体较小;在柔性外壳32被弯折超过60度时,将电子设备作为手环使用,显示屏34上显示的内容较少,字体较大。从而在用户根据需要, 将电子设备的柔性外壳32进行不同程度的弯折,使柔性外壳32处于不同的状态时,电子设备显示屏上可以为不同的显示状态及内容,以满足用户的不同需求。
具体实现时,当柔性外壳32处于弯曲状态时,弹片对33中的两个弹片可靠接触,而由于弹片对33中的第一弹片331与电子设备内的电源连接,因此第二弹片332上的电压值为电源的电压值;当柔性外壳32处于平直状态时,弹片对33中的两个弹片分离,因此另一个弹片332上的电压值为0。即,当柔性外壳32处于不同的状态时,另一个弹片332上的电压值不同,从而控制器101可以根据另一个弹片332上的电压值,确定柔性外壳32的状态,进而可以控制电子设备显示屏34上为不同的显示状态及内容。
本发明实施例提供的电子设备,可以利用N个电池进行供电,提高了电池容量,增加了续航和使用时长;N个电池共用同一充电控制电路104、电流检测电路103及电压电流采样电路102,节省了堆叠空间,有利于电池容量的增加;电子设备具备弯折检测功能,从而可以方便的切换显示屏34的显示状态及内容,操作性和实用性更加丰富合理。
需要说明的是,在本发明实施例提供的电子设备中,显示屏34可以包括与柔性外壳32贴合在一起的柔性触摸屏(Touch Panel,简称TP)及柔性屏,柔性TP及柔性屏通过FPC与主板31连接,从而主板31可以与柔性TP及柔性屏进行通信,及对柔性TP及柔性屏进行控制。
另外,主板31还可以包括基带芯片、电源管理芯片、内存芯片、电池充放电回路、电池检测电路、射频电路、TP与柔性屏驱动电路、加速度传感器、重力传感器、接近光传感器等。
本申请实施例提供的电子设备中,包括电池控制电路及N个电池,其中 电池控制电路包括:控制器、N个功率开关、N-1个功率二极管,N为大于1的正整数;所述N个功率开关的一端分别与所述N个电池的输出端串联连接;第一个功率开关的另一端,分别与电源输入端及第一个功率二极管的阳极连接;第i个功率开关的另一端,分别与第i-1个功率二极管的阴极及第i个功率二极管的阳极连接,其中,i大于1,且小于N;第N个功率开关的另一端,分别与第N-1个功率二极管的阴极及所述电子设备中的各用电回路的供电端连接;所述控制器的N个第一输出端分别与所述N个功率开关的控制端连接,用于控制所述N个功率开关的导通状态。由此,通过利用控制器控制各功率开关的导通状态,实现了对***中各用电回路的供电,当出现两个电池同时给***供电的情形时,避免了两个电池互相充放电的情况发生,延长了电池的使用寿命,提高了电子设备的***性能。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种电池控制电路,其特征在于,应用于具有N个电池的电子设备,所述控制电路包括:控制器、N个功率开关、N-1个功率二极管,N为大于1的正整数;
    所述N个功率开关的一端分别与所述N个电池的输出端串联连接;
    第一个功率开关的另一端,分别与电源输入端及第一个功率二极管的阳极连接;
    第i个功率开关的另一端,分别与第i-1个功率二极管的阴极及第i个功率二极管的阳极连接,其中,i大于1,且小于N;
    第N个功率开关的另一端,分别与第N-1个功率二极管的阴极及所述电子设备中的各用电回路的供电端连接;
    所述控制器的N个第一输出端分别与所述N个功率开关的控制端连接,用于控制所述N个功率开关的导通状态。
  2. 如权利要求1所述的电池控制电路,其特征在于,所述N个电池容量不同;所述N个电池根据容量由大到小,依次与第一个功率开关的一端连接、第二个功率开关的一端连接,直至与第N个功率开关的一端连接。
  3. 如权利要求2所述的电池控制电路,其特征在于,所述控制器,还用于:
    在放电过程中,在第k个电池的电量不满足供电条件、且第k+1个电池的电量满足供电条件时,控制第k+1个功率开关导通,并延时第一预设的时间间隔后控制第k个功率开关断开,其中,k为大于或等于1,且小于或等于N的正整数。
  4. 如权利要求2所述的电池控制电路,其特征在于,所述控制器,还用于:
    在充电过程中,若确定第j个电池与第j+1个电池均满足充电条件,则控制第j+1个功率开关导通以为所述第j+1个电池进行充电,j为大于或等于1,且小于或等于N的正整数;
    在确定所述第j+1个电池充电结束时,控制第j个功率开关导通,并延时第二预设的时间间隔后控制第j+1个功率开关断开。
  5. 如权利要求1所述的电池控制电路,其特征在于,还包括:电压电流采样电路;
    所述电压电流采样电路的输入端,分别与所述N个电池的输出端连接,所述电压电流采样电路的输出端与所述控制器的第一输入端连接;
    所述控制器,用于根据所述电压采样电路的输出值,确定所述N个电池的状态,以控制所述N个功率开关的导通状态。
  6. 如权利要求1-5任一所述的电池控制电路,其特征在于,还包括:串接在所述电源输入端与所述第一个功率开关管的另一端之间的充电控制电路;
    所述充电控制电路的控制端与所述控制器的第二输出端连接;
    所述控制器,还用于通过控制所述充电控制电路的工作状态,控制充电电流。
  7. 如权利要求6所述的电池控制电路,其特征在于,还包括:串联在所述充电控制电路与所述第一个功率开关管的另一端之间的电流检测电路;
    所述电流检测电路的输出端与所述控制器的输入端连接;
    所述控制器,还用于根据所述电流检测电路的输出值,控制所述充电控制电路的工作状态。
  8. 如权利要求6所述的电池控制电路,其特征在于,所述充电控制电路,包括:金属氧化物半导体场效应晶体管和三极管;
    所述金属氧化物半导体场效应晶体管的栅极与所述控制器的第三输出端连接,所述金属氧化物半导体场效应晶体管的源极与所述控制器的第四输出端连接,所述金属氧化物半导体场效应晶体管的漏极与所述三极管的基极连接;
    所述三极管的发射极与所述电源的输入端连接,所述三极管的集电极与所述第一个功率开关管的另一端及所述第一个功率二极管的阳极连接。
  9. 如权利要求1所述的电池控制电路,其特征在于,还包括:浪涌电压保护电路;
    所述浪涌电压保护电路的一端与所述电子设备中的各用电回路的供电端连接,所述浪涌电压保护电路的另一端与地线连接。
  10. 一种电子设备,其特征在于,包括如权利要求1-9任一所述的电池控制电路及N个电池。
  11. 如权利要求10所述的电子设备,其特征在于,还包括:可弯折的柔性外壳,及在所述柔性外壳的任意可弯折部的两侧对称设置的弹片对;
    所述柔性外壳处于第一状态时,所述弹片对中的两个弹片可靠接触;所述柔性外壳处于第二状态时,所述弹片对中的两个弹片分离,其中,所述第一状态为弯曲状态,所述第二状态为平直状态;
    所述弹片对中的一个弹片与所述电子设备内的电源连接,所述弹片对中的另一个弹片与所述电池控制电路中的控制器输入端连接;
    所述控制器,用于根据所述另一个弹片上的电压值,控制所述电子设备显示屏的显示状态及内容。
PCT/CN2017/105385 2017-10-09 2017-10-09 电池控制电路及电子设备 WO2019071388A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/105385 WO2019071388A1 (zh) 2017-10-09 2017-10-09 电池控制电路及电子设备
CN201780092216.7A CN110754027A (zh) 2017-10-09 2017-10-09 电池控制电路及电子设备
US16/652,500 US20200287400A1 (en) 2017-10-09 2017-10-09 Battery control circuit and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105385 WO2019071388A1 (zh) 2017-10-09 2017-10-09 电池控制电路及电子设备

Publications (1)

Publication Number Publication Date
WO2019071388A1 true WO2019071388A1 (zh) 2019-04-18

Family

ID=66100323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105385 WO2019071388A1 (zh) 2017-10-09 2017-10-09 电池控制电路及电子设备

Country Status (3)

Country Link
US (1) US20200287400A1 (zh)
CN (1) CN110754027A (zh)
WO (1) WO2019071388A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209857926U (zh) * 2019-02-12 2019-12-27 精量电子(深圳)有限公司 传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698967A (en) * 1995-04-03 1997-12-16 Electrosource, Inc. Battery management system
CN202333844U (zh) * 2011-12-23 2012-07-11 耿军 N+1蓄电池组在线检测维护无缝供电装置
CN102694397A (zh) * 2011-03-22 2012-09-26 飞毛腿(福建)电子有限公司 一种电池组输出并联连接的控制方法
CN104037915A (zh) * 2014-07-04 2014-09-10 昆明南府电动车辆有限公司 一种电动车自动均衡充电器
CN205725069U (zh) * 2016-06-08 2016-11-23 维沃移动通信有限公司 一种充电电路及移动终端
CN106464006A (zh) * 2014-06-26 2017-02-22 Fdk株式会社 不间断供电电源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326442A (zh) * 2013-07-05 2013-09-25 清华大学 一种用于调度及均衡高压大容量并联电池组的开关装置
CN105811493A (zh) * 2014-12-31 2016-07-27 联想(北京)有限公司 电源电路及其放电方法、对其进行充电的方法、控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698967A (en) * 1995-04-03 1997-12-16 Electrosource, Inc. Battery management system
CN102694397A (zh) * 2011-03-22 2012-09-26 飞毛腿(福建)电子有限公司 一种电池组输出并联连接的控制方法
CN202333844U (zh) * 2011-12-23 2012-07-11 耿军 N+1蓄电池组在线检测维护无缝供电装置
CN106464006A (zh) * 2014-06-26 2017-02-22 Fdk株式会社 不间断供电电源装置
CN104037915A (zh) * 2014-07-04 2014-09-10 昆明南府电动车辆有限公司 一种电动车自动均衡充电器
CN205725069U (zh) * 2016-06-08 2016-11-23 维沃移动通信有限公司 一种充电电路及移动终端

Also Published As

Publication number Publication date
US20200287400A1 (en) 2020-09-10
CN110754027A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
US9444118B2 (en) Battery pack
CN100533912C (zh) 调整电池***中预充电电流的***和方法
US9509160B2 (en) Fast charging terminal
US7902794B2 (en) Over-voltage protected battery charger with bypass
US9263902B2 (en) Battery management system and battery pack having the same
EP2690747A2 (en) Control system, power supply system, and method for preventing a floating charge of battery
US11522369B2 (en) Battery management device and mobile terminal
US9077189B2 (en) Battery protection circuit module device
CN103607009A (zh) 一种带自动保护功能的充放电电路
US11329492B2 (en) Docking charing circuit and electronic device
WO2021018272A1 (zh) 一种充放电保护电路、终端设备及电池放电控制方法
US20110316471A1 (en) Battery control system
US8253384B2 (en) Electronic device having power management assembly
US20160094068A1 (en) Secondary battery protection circuit and battery device
US20080303352A1 (en) Automatic charging and power management device
WO2019071388A1 (zh) 电池控制电路及电子设备
US8947019B2 (en) Handheld device and power supply circuit thereof
JP2003079058A (ja) 電池パック
CN110556792A (zh) 一种锂电池保护***
CN212646801U (zh) 电压检测电路和电子设备
WO2024007983A1 (zh) 一种双电池切换装置及电子设备
US9391464B2 (en) External battery for determining the amplitude of charge current
CN219477618U (zh) 一种对电池包输出端通断的纯硬件控制电路
KR102161289B1 (ko) 외장 배터리
US20230029478A1 (en) Battery switch-on circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928433

Country of ref document: EP

Kind code of ref document: A1