WO2019069888A1 - Sample holding stand - Google Patents

Sample holding stand Download PDF

Info

Publication number
WO2019069888A1
WO2019069888A1 PCT/JP2018/036784 JP2018036784W WO2019069888A1 WO 2019069888 A1 WO2019069888 A1 WO 2019069888A1 JP 2018036784 W JP2018036784 W JP 2018036784W WO 2019069888 A1 WO2019069888 A1 WO 2019069888A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
sample
indenter
pin
vibration
Prior art date
Application number
PCT/JP2018/036784
Other languages
French (fr)
Japanese (ja)
Inventor
英二 草野
Original Assignee
英二 草野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英二 草野 filed Critical 英二 草野
Publication of WO2019069888A1 publication Critical patent/WO2019069888A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion

Definitions

  • the present invention relates to a sample holder used for a tester which evaluates the frictional wear and the like of a sample with an indenter or pin while reciprocating or rotating the sample, and more particularly to a sample holder which can improve the repeatability in multiple tests. .
  • test sample such as a thin film
  • indenter ball
  • pin ball
  • sticking-slip phenomenon occurs microscopically on the test surface and a phenomenon in which the indenter or pin jumps from the test surface is generated.
  • the material peels off from the indenter or pin or test sample, adheres to the mating material or itself, and suddenly grows uniquely due to the sticking phenomenon.
  • the result is an obstacle that greatly affects the results of the friction and wear test.
  • the mutual adhesion does not necessarily grow to the same shape and size for each test because it rapidly develops and grows from the fine adhesion nuclei formed in the initial sliding phase of frictional wear.
  • Patent Document 1 a test method for evaluating the stick-slip property of a sliding material (Patent Document 1) and a method of detecting the stick-slip to diagnose failure of a device having a sliding surface
  • Patent Document 2 a test method for evaluating the stick-slip property of a sliding material
  • Patent Document 2 a method of detecting the stick-slip to diagnose failure of a device having a sliding surface
  • the present invention suppresses the jump from the test surface of the indenter or the pin due to the stick-slip phenomenon, and suppresses the rapid growth and growth of the adhesion between the indenter or the pin and the test sample, in consideration of the above problems. It is an object of the present invention to provide a sample holder capable of improving the reproducibility in a plurality of tests.
  • the sample holder of the present invention is a sample holder used in a testing machine that slides the test sample in a direction parallel to the test surface while pressing a loaded indenter or pin against the test surface of the test sample,
  • the test sample is provided with a vibration applying mechanism for applying a vibration to the test sample, and the vibration applying mechanism applies a vibration to the test sample during the sliding, whereby the test surface of the indenter or pin due to the stick-slip phenomenon And suppressing the progress and growth of adhesion between the indenter or pin and the test sample.
  • the frequency of the vibration is 100 Hz to 10 MHz.
  • the amplitude of the vibration is 10 nm to 10 ⁇ m.
  • the testing machine is characterized in that it is a friction and wear testing machine or a scratch testing machine.
  • the sliding of the indenter or pin causes a stick-slip phenomenon, and the indenter or pin repeats sticking-slip to the test surface and causes a jumping phenomenon from the test surface.
  • the vibration is released immediately after the indenter or the pin is fixed to the test surface. Since the indwelling time of the indenter or the pin is shorter than in the conventional case, the amount of deflection caused by the indwelling or the pin adhering to the test surface decreases, and as a result, the indenter or the pin jumps from the test surface Length and vertical height) are suppressed.
  • the indenter or pin lands and slides on the test surface again after jumping over the test surface by a very small amount.
  • the amount of adhesion is small and the amount of growth of adhesion is also small, it does not easily become an obstacle when the indenter or pin slides on the test surface.
  • the test surface is vibrating, the indenter or the pin can slide while dragging the adhesion while the adhesion is occurring.
  • the amount by which the indenter or pin jumps from the test surface can be suppressed, and the rapid growth and growth of adhesion can be suppressed, so that both affect each other. It is possible to suppress the decrease in the reproducibility of the test result that has been caused by the That is, the reproducibility of the friction and wear test and the scratch test can be improved.
  • the frequency of vibration is preferably about 100 Hz to 10 MHz, and the amplitude of vibration is preferably about 10 nm to 10 ⁇ m. If the frequency or amplitude of the vibration goes out of these ranges, it is difficult to obtain the effect of vibrating the test surface.
  • the wear depth after the test is about several hundred nm and the wear width is about 100 ⁇ m.
  • the contact surface diameter between the indenter and the test piece obtained assuming a Hertzian contact is considered to be about several tens of ⁇ m, and in sliding, there is a shake due to the mechanical mechanism in the lateral direction (sliding orthogonal direction) While forming wear marks.
  • the depth of wear marks formed per sliding is about several nm.
  • the friction and wear phenomenon at light loads is a phenomenon at the atomic level, and it is possible to give fine vibrations of 1 ⁇ m or less at a frequency of more than 1 kHz if possible in one slide. It is desirable for the improvement of the sex.
  • the scratch mark depth obtained after sliding for several seconds is about several hundreds of nm, and the formation of the scratch mark is a phenomenon at the atomic level. Therefore, it is desirable to apply fine vibrations of 1 ⁇ m or less at frequencies exceeding 1 kHz if possible even in a scratch test.
  • the present invention is particularly effective for friction and wear testers and scratch testers in which the reproducibility of test results is low due to the stick-slip phenomenon.
  • the perspective view which shows the structure in the case of using a piezoelectric element as a vibration addition mechanism in 1st Embodiment A perspective view showing a configuration in the case of using a magnetostrictive element as a vibration applying mechanism in the first embodiment
  • the perspective view which shows the structure in the case of using a piezoelectric element as a vibration addition mechanism in 2nd Embodiment The perspective view which shows the structure in the case of using a magnetostriction element as a vibration addition mechanism in 2nd Embodiment
  • the perspective view showing the composition in the case of rotating a test sample in the level surface in a 3rd embodiment The perspective view showing the composition in the case of a scratch tester in a 4th embodiment Graph showing wear scar cross section obtained by wear test Graph showing critical load obtained by scratch test
  • the tester may have a mechanism for sliding a test sample in a direction parallel to the test surface while pressing a loaded indenter or pin against the test surface of the test sample.
  • the tester of the present embodiment is a friction and wear tester 1, which reciprocates a test sample 20 placed horizontally on the sample holder 10 in the horizontal direction (front-back direction). I assume.
  • the tester includes a sample holder driving mechanism 30 for reciprocating the sample holder 10.
  • the configuration and operation of the sample holder driving mechanism 30 are well known, and therefore the description thereof is omitted.
  • the speed of the reciprocation by the sample holder driving mechanism 30 can be adjusted to, for example, about 5 to 200 mm / s, but is not limited thereto.
  • the sample holder 10 includes a vibration applying mechanism 40 and is used to place and fix the test sample 20 on the surface of the sample holder body 11.
  • the vibration applying mechanism 40 is provided to apply vibration to the test sample 20.
  • the vibration applying mechanism 40 includes the piezoelectric element 41 (FIG. 1) or the magnetostrictive element 42 (FIG.
  • the piezoelectric element 41 or the magnetostrictive element 42 is a fixed end, and the movable end which is a vibration emission surface is a sample holder. It is attached to the front or back side of the main body 11.
  • the piezoelectric element 41 it is most common to use an element showing vibration in the thickness direction, but an element showing vibration in the longitudinal direction or longitudinal direction may be used.
  • the piezoelectric element 41 or the magnetostrictive element 42 vibrates in response to a drive control signal transmitted from a control unit (not shown), and the vibration is transmitted to the sample holder body 11 to vibrate the test sample 20 in the front-rear direction. .
  • the test sample 20 may be vibrated in the left-right direction by attaching the piezoelectric element 41 or the magnetostrictive element 42 to the left or right side surface of the sample holder main body 11.
  • the frequency of vibration by the vibration applying mechanism 40 is preferably about 100 Hz to 10 MHz, and the amplitude of the vibration is preferably about 10 nm to 1 ⁇ m.
  • the indenter or pin 50 may be a general one such as a circular or polygonal vertical cross section at its tip.
  • the material of the indenter or pin 50 cemented carbide, SUS304, SUS440C, Al 2 O 3, SiC, Si 3 N 4, nylon, or Teflon those (TM) general like can be used.
  • the material in which stick-slip easily occurs is SUS304, SUS440C, Al 2 O 3 , SiC, or Si 3 N 4 .
  • the light load is generally about 5 N or less, but varies depending on the type of test sample 20.
  • the thin film for example, an extremely thin glass or a single crystal substrate may be mentioned as the test sample 20 which often carries out the friction and wear test under a light load.
  • the operator sets the test sample 20 on the sample holder main body 11 and drives the sample holder driving mechanism 30 and the vibration applying mechanism 40 in a state where a predetermined light load is applied to the indenter or the pin 50.
  • the test sample 20 starts to reciprocate horizontally while vibrating, and the indenter or pin 50 relatively starts to slide and vibrate on the surface of the test surface while applying a light load to the test sample 20.
  • symbol 60 in the figure has shown the abrasion mark.
  • the sliding causes the stick-slip phenomenon, but in the present invention, since the test surface continues to vibrate, the amount by which the indenter or pin 50 jumps from the test surface can be suppressed as described above, and the rapid growth and growth of adhesion It can be suppressed.
  • a test sample is mounted by attaching the piezoelectric element 43 (FIG. 3) or the magnetostrictive element 44 (FIG. 4) of the vibration applying mechanism 40 to the lower or upper surface of the sample holder body 11. It is characterized in that the sample holder driving mechanism 30 slides in a direction parallel to the test surface (longitudinal direction) while vibrating 20 in a direction (vertical direction) perpendicular to the test surface.
  • the lower part of the piezoelectric element 43 or the magnetostrictive element 44 is a fixed end, and the upper part is a movable end which is a vibration radiation surface, and the sample holder main body 11 is attached on the movable end. Then, the piezoelectric element 43 or the magnetostrictive element 44 is stretched and vibrated in the same direction (vertical direction) as the load direction by the indenter or the pin 50 to vibrate the test sample 20 in the vertical direction. In the case of the configuration of the present embodiment as well as in the first embodiment, even if the stick-slip phenomenon occurs, the indenter or pin 50 is tested by vibrating the sample holder 10 (test sample 20) in the vertical direction.
  • the amount of jumping from the surface can be suppressed, and the rapid growth and growth of adhesion can be suppressed.
  • the test sample 20 is vibrated in the vertical direction, that is, in a direction parallel to the load, the load on the sample surface by the indenter or the pin 50 is minutely changed in vibration. This can prevent the excessive stick-slip phenomenon due to the progress of adhesion, thereby enhancing the reproducibility of the test.
  • the present embodiment is characterized in that the sample holder driving mechanism 70 rotates the sample holder 10 in a horizontal plane.
  • the sliding speed by the sample holder driving mechanism 70 can be adjusted to, for example, about 5 to 600 mm / s, but is not limited thereto.
  • the piezoelectric element 43 or the magnetostrictive element 44 is attached to the lower surface of the sample holder main body 11, and the test sample 20 is vibrated in the direction (vertical direction) perpendicular to the test surface. While testing, rotate the test surface. In rotational sliding, wear powder deposition occurs on both sides of the wear mark 60, and no wear mark 60 deposition occurs in the wear mark 60. It is hard to produce the influence of the adhesion of the abrasion powder to the indenter which occurs in the influence or the change of the sliding direction. Furthermore, although not described in the present embodiment, when it is desired to evaluate the amount of wear of the indenter or pin, a rotational wear test in which the indenter or pin is continuously worn is a desirable test method.
  • the tester of the present embodiment is the scratch tester 2 and is characterized in that the sample holder drive mechanism 80 moves the test sample 20 in one direction (forward) in a horizontal plane.
  • the piezoelectric element 41 or the magnetostrictive element 42 of the vibration applying mechanism 40 vibrates the sample holder 10 (test sample 20) in the left-right direction by being attached to either the left or right side surface of the sample holder body 11.
  • the sample holder 10 (test sample 20) may be vibrated in the front-rear direction by attaching the piezoelectric element 41 or the magnetostrictive element 42 to any of the front and rear side surfaces of the sample holder main body 11.
  • the load by the indenter or pin 50 is increased as the test sample 20 moves in one direction.
  • the maximum load by the indenter or pin 50 is about 50 mN to 10 N, and the load is increased from the initial load with a load change rate of about 100 mN / min to 5 N / min, for example.
  • the scratch distance is generally about 2 mm to 10 mm.
  • diamond having a tip diameter of about 2 to 10 ⁇ m is generally used.
  • the scratch test is a method in which a diamond indenter or pin 50 penetrates the sample thin film and the adhesion of the thin film deposited on the substrate is evaluated from the appearance of the penetration.
  • the load at the time when the scratch mark 61 reaches the substrate is taken as the critical load.
  • the phenomenon occurring between the diamond indenter or pin 50 and the sample thin film is a frictional wear phenomenon, which is the frictional wear at the atomic level as in the frictional wear test. Therefore, as the diamond indenter or the pin 50 slides, a cohesion is formed, and the scratch mark 61 is formed while repeating the minute stick-slip phenomenon accompanied by the lateral vibration of the indenter or the pin 50.
  • the trace depth obtained in sliding (scratch) for a few seconds under light load is several 100 nm or less, and the width of the trace is several ⁇ m or less, and the amplitude is at a frequency of several kHz or more during sliding.
  • minute vibrations of about 100 nm the formation of abnormal adhesion in the formation of the scratch marks 61 can be suppressed, and the reproducibility of the test can be enhanced.
  • the sample holder main body 11 is vibrated in the front-rear direction, the left-right direction, or the vertical direction.
  • the sample holder main body 11 has a plurality of piezoelectric elements 41 43 or magnetostrictive elements 42 44. It may be made to vibrate in the direction which combined suitably a longitudinal direction, a horizontal direction, and a perpendicular direction by attaching.
  • the sample vibration was given in the direction orthogonal to the wear direction, and its frequency was 1 MHz.
  • the wear scar formed on the sample after reciprocating wear was measured with a profilometer to obtain a wear scar cross-sectional area.
  • the measurement of the wear trace cross-sectional shape was taken as the central portion of the reciprocal sliding.
  • Five tests were performed on the same sample under the conditions of sample vibration.
  • FIG. 7 shows the wear trace cross-sectional area obtained by the wear test.
  • Table 1 also shows the coefficient of variation of the test results obtained in the reciprocating sliding test using the sample vibration and the reciprocating sliding test not using the sample vibration. The coefficient of variation of the measured value is reduced due to sample vibration in any sample.
  • FIG. 8 shows the critical load obtained by the scratch test.
  • Table 2 shows coefficients of variation of test results obtained in the scratch test using the sample vibration and the scratch test without using the sample vibration. The coefficient of variation of the measured value is reduced due to sample vibration in any sample.
  • the present invention can suppress the jump from the test surface of the indenter or the pin due to the stick-slip phenomenon, and can suppress the rapid growth and growth of the adhesion between the indenter or the pin and the test sample, and can improve the repeatability in multiple tests. It is a sample holder and has industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Provided is a sample holding stand with which repeatability in a plurality of tests can be improved by suppressing jumping of an indenter or a pin from a sample surface as a result of a stick-slip phenomenon, and suppressing sudden progressive growth of adhesion between the indenter or the pin and a test sample. A sample holding stand 10 according to the present invention is provided with a vibration applying mechanism 40 for applying vibrations to a test sample 20, wherein, by the vibration applying mechanism applying vibrations to the test sample while sliding, jumping of an indenter or a pin 50 from the sample surface as a result of a stick-slip phenomenon is suppressed, and progressive growth of adhesion between the indenter or the pin and the test sample is suppressed. Since the amount of jumping of the indenter or the pin from the sample surface can be suppressed by causing the sample holding stand (test sample) to vibrate, and sudden progressive growth of adhesion can be suppressed, deterioration in the repeatability of test results caused by mutual influence between the sample holding stand and the indenter or the pin can be suppressed. That is, repeatability in frictional wear tests can be improved.

Description

試料保持台Sample holder
 本発明は、試料を往復あるいは回転運動させながら圧子又はピンにより試料の摩擦摩耗性等を評価する試験機に使用する試料保持台に関し、特に複数回の試験における再現性を向上できる試料保持台に関する。 The present invention relates to a sample holder used for a tester which evaluates the frictional wear and the like of a sample with an indenter or pin while reciprocating or rotating the sample, and more particularly to a sample holder which can improve the repeatability in multiple tests. .
 機械デバイス、電気電子デバイス、光学デバイス等が微細化するにしたがい、これらデバイスに使用されている薄膜等の摩擦摩耗性や耐スクラッチ性に関する試験を行なう必要が生まれてきた。
 試験方法としては、微小な荷重を負荷した圧子(ボール)又はピンを試験面(薄膜等の表面)に押し付けながら、試験試料(薄膜等)を当該試験面に平行な方向に往復移動させたり、試験試料を試験面に平行な平面内で回転させたりするボール(ピン)オンディスク式等が知られている。
As mechanical devices, electrical and electronic devices, optical devices and the like have become finer, it has become necessary to conduct tests on the wear resistance and scratch resistance of thin films and the like used in these devices.
As a test method, a test sample (such as a thin film) is reciprocated in a direction parallel to the test surface while pressing an indenter (ball) or pin loaded with a minute load against the test surface (a surface such as a thin film) A ball (pin) on disk type or the like is known which rotates a test sample in a plane parallel to a test surface.
 このような、圧子又はピンを用いた摩擦摩耗試験等では、試験面において微視的にいわゆる固着-滑り現象(スティックスリップ現象)が発生すると共に圧子又はピンが試験面から跳ぶ現象が発生していた。
 さらに、固着現象にともない、圧子又はピンあるいは試験試料から材料がはく離し、これが相手材や自身に凝着し、かつ急激に特異成長する結果、圧子又はピンが試験面を摺動していく際の障害となり、摩擦摩耗試験の結果に大きく影響を与えていた。この相互凝着は、摩擦摩耗の摺動初期において形成された微細凝着核から急激に進展成長するために、試験毎に必ずしも同様の形状や大きさに成長するわけではなかった。この凝着の急激な進展成長が、上記スティックスリップ現象における圧子又はピンの試験面からの跳びとともに相互に影響し合い、複数回の試験で得られる結果の再現性を低くする大きな要因となっていた。
 このような問題は、特に軽荷重の摩擦摩耗試験において顕著に表れるものである。換言すると、圧子又はピンによる荷重が大きい場合は、圧子又はピンは試験面に強く押し付けられているため、スティックスリップ現象が発生した際に試験面から跳び難く、また、凝着が急激に進展成長しても摺動時の障害にはなり難い。したがって、圧子又はピンによる荷重が大きい場合には試験結果の再現性に問題はない。
In such a friction wear test using an indenter or a pin, a so-called sticking-slip phenomenon (stick-slip phenomenon) occurs microscopically on the test surface and a phenomenon in which the indenter or pin jumps from the test surface is generated. The
Furthermore, when the indenter or pin slides on the test surface, the material peels off from the indenter or pin or test sample, adheres to the mating material or itself, and suddenly grows uniquely due to the sticking phenomenon. The result is an obstacle that greatly affects the results of the friction and wear test. The mutual adhesion does not necessarily grow to the same shape and size for each test because it rapidly develops and grows from the fine adhesion nuclei formed in the initial sliding phase of frictional wear. The rapid growth of this adhesion is an important factor that mutually influences the jump from the test surface of the indenter or the pin in the stick-slip phenomenon, thereby reducing the repeatability of the results obtained in multiple tests. The
Such problems are particularly noticeable in light load friction wear tests. In other words, when the load by the indenter or the pin is large, the indenter or the pin is strongly pressed against the test surface, so that it is difficult to jump from the test surface when the stick-slip phenomenon occurs, and the adhesion grows rapidly and grows Even if it does not become an obstacle at the time of sliding. Therefore, there is no problem in the reproducibility of the test results when the load by the indenter or the pin is large.
 従来、摺動材におけるスティックスリップ性を評価するための試験方法(特許文献1)や、摺動面を持つ装置の故障診断を行なうためにスティックスリップを検出する方法(特許文献2)は知られているが、上記スティックスリップ現象による圧子又はピンの試験面からの跳びや凝着の急激な進展成長を原因とする試験結果の再現性低下の問題に着目し、これを解決する技術は未だなされていないのが現状である。 Conventionally, a test method for evaluating the stick-slip property of a sliding material (Patent Document 1) and a method of detecting the stick-slip to diagnose failure of a device having a sliding surface (Patent Document 2) are known. However, attention has been paid to the problem of reduction in the reproducibility of the test results due to rapid progress and growth of the jump or adhesion from the test surface of the indenter or pin due to the above-mentioned stick-slip phenomenon, and a technology for solving this has not been made. It is not the current situation.
特開2005-17064号公報JP, 2005-17064, A 特開平10-47313号公報Japanese Patent Application Laid-Open No. 10-47313
 本発明は、上記のような問題を考慮して、スティックスリップ現象による圧子又はピンの試験面からの跳びを抑制するとともに、圧子又はピンと試験試料との凝着の急激な進展成長を抑制し、複数回の試験における再現性を向上できる試料保持台を提供することを課題とする。 The present invention suppresses the jump from the test surface of the indenter or the pin due to the stick-slip phenomenon, and suppresses the rapid growth and growth of the adhesion between the indenter or the pin and the test sample, in consideration of the above problems. It is an object of the present invention to provide a sample holder capable of improving the reproducibility in a plurality of tests.
 本発明の試料保持台は、荷重を付加した圧子又はピンを試験試料の試験面に押し付けながら、前記試験試料を前記試験面に平行な方向に摺動させる試験機で使用する試料保持台において、前記試験試料に振動を付加する振動付加機構を備えており、前記振動付加機構が前記摺動中に前記試験試料に振動を付加することで、スティックスリップ現象による前記圧子又はピンの前記試験面からの跳びを抑制するとともに、前記圧子又はピンと前記試験試料との凝着の進展成長を抑制することを特徴とする。
 また、前記振動の周波数が100 Hz~10 MHzであることを特徴とする。
 また、前記振動の振幅が10 nm~10 μmであることを特徴とする。
 また、前記試験機が摩擦摩耗試験機又はスクラッチ試験機であることを特徴とする。
The sample holder of the present invention is a sample holder used in a testing machine that slides the test sample in a direction parallel to the test surface while pressing a loaded indenter or pin against the test surface of the test sample, The test sample is provided with a vibration applying mechanism for applying a vibration to the test sample, and the vibration applying mechanism applies a vibration to the test sample during the sliding, whereby the test surface of the indenter or pin due to the stick-slip phenomenon And suppressing the progress and growth of adhesion between the indenter or pin and the test sample.
The frequency of the vibration is 100 Hz to 10 MHz.
In addition, it is characterized in that the amplitude of the vibration is 10 nm to 10 μm.
Further, the testing machine is characterized in that it is a friction and wear testing machine or a scratch testing machine.
 圧子又はピンの摺動によりスティックスリップ現象が発生し、圧子又はピンは試験面に対して固着-滑りを繰り返すと共に試験面から跳ぶ現象が生じる。本発明では試験中に試験面が振動し続けているので、圧子又はピンが試験面に固着した直後に当該振動によって固着が解消される。圧子又はピンの固着時間が従来と比較して短くなるので、圧子又はピンが試験面に固着することで生じる撓み量が少なくなり、その結果として圧子又はピンが試験面から跳ぶ量(水平方向の長さ及び鉛直方向の高さ)が抑制される。圧子又はピンは極僅かな量だけ試験面上を跳んだ後に着地して再び試験面上を摺動する。このように、試料保持台(試験試料)を振動させることで圧子又はピンが試験面から跳ぶ量を抑制できるという効果を得られる。
 さらに、従来は圧子又はピンの固着にともない、圧子又はピン自身あるいは試験試料から材料がはく離し、これが相手材や圧子又はピンに凝着して急激に特異成長していくという問題があった。本発明では上述のとおり固着した直後に固着が解消されるので凝着量を抑制でき、且つ凝着が急激に特異成長することも抑制できる。凝着量が少なく且つ凝着の成長量も少ないので圧子又はピンが試験面を摺動する際の障害になり難い。また、試験面が振動しているので圧子又はピンは凝着が生じた状態のまま、凝着を引きずりながら摺動していくことができる。
The sliding of the indenter or pin causes a stick-slip phenomenon, and the indenter or pin repeats sticking-slip to the test surface and causes a jumping phenomenon from the test surface. In the present invention, since the test surface continues to vibrate during the test, the vibration is released immediately after the indenter or the pin is fixed to the test surface. Since the indwelling time of the indenter or the pin is shorter than in the conventional case, the amount of deflection caused by the indwelling or the pin adhering to the test surface decreases, and as a result, the indenter or the pin jumps from the test surface Length and vertical height) are suppressed. The indenter or pin lands and slides on the test surface again after jumping over the test surface by a very small amount. As described above, by vibrating the sample holder (test sample), it is possible to obtain an effect that the amount of jumping of the indenter or the pin from the test surface can be suppressed.
Furthermore, conventionally, there has been a problem that the material separates from the indenter or pin itself or the test sample as it adheres to the indenter or pin and adheres to the mating material or the indenter or pin to cause a unique growth. In the present invention, since the adhesion is eliminated immediately after the adhesion as described above, the amount of adhesion can be suppressed, and the abrupt growth of the adhesion can also be suppressed. Since the amount of adhesion is small and the amount of growth of adhesion is also small, it does not easily become an obstacle when the indenter or pin slides on the test surface. In addition, since the test surface is vibrating, the indenter or the pin can slide while dragging the adhesion while the adhesion is occurring.
 このように、試料保持台(試験試料)を振動させることで圧子又はピンが試験面から跳ぶ量を抑制でき、且つ凝着の急激な進展成長を抑制できるので、両者が相互に影響し合うことにより生じていた試験結果の再現性の低下を抑制することができる。つまり、摩擦摩耗試験やスクラッチ試験の再現性を向上することができる。
 振動の周波数としては100 Hz~10 MHz程度が好ましく、振動の振幅としては10 nm~10 μm程度が好ましい。振動の周波数又は振幅がこれら範囲を外れると試験面を振動させる効果が得られ難い。
 すなわち、実施例にも示されるように、軽荷重による摩耗においては、試験後の摩耗痕深さは数100 nm程度、摩耗痕幅は100 μm程度である。ヘルツ接触を仮定して得られる圧子と試験片との接触面直径は数10μm程度とあると考えられ、摺動においては、横方向(摺動直交方向)への機械機構に起因するブレをともないながら摩耗痕を形成していく。1摺動あたりに形成される摩耗痕の深さは~数nm程度である。軽荷重における摩擦摩耗現象は、原子レベルでの現象であり、1摺動においてでき得れば1 kHzを越える周波数により、1 μm以下の微細な振動を与えることが原子レベルにおける摩擦摩耗現象の再現性の向上には望ましい。また、スクラッチ試験においても軽荷重を用いる場合には数秒の摺動の後に得られるスクラッチ痕深さは、数100 nm程度であり、スクラッチ痕の形成は原子レベルにおける現象である。したがって、スクラッチ試験においてもでき得れば1 kHzを越える周波数により、1 μm以下の微細な振動与えることが望ましい。
 本発明は、スティックスリップ現象によって試験結果の再現性が低かった摩擦摩耗試験機やスクラッチ試験機に対して特に効果を得られる。
As described above, by vibrating the sample holder (test sample), the amount by which the indenter or pin jumps from the test surface can be suppressed, and the rapid growth and growth of adhesion can be suppressed, so that both affect each other. It is possible to suppress the decrease in the reproducibility of the test result that has been caused by the That is, the reproducibility of the friction and wear test and the scratch test can be improved.
The frequency of vibration is preferably about 100 Hz to 10 MHz, and the amplitude of vibration is preferably about 10 nm to 10 μm. If the frequency or amplitude of the vibration goes out of these ranges, it is difficult to obtain the effect of vibrating the test surface.
That is, as shown in the examples, in the light load wear, the wear depth after the test is about several hundred nm and the wear width is about 100 μm. The contact surface diameter between the indenter and the test piece obtained assuming a Hertzian contact is considered to be about several tens of μm, and in sliding, there is a shake due to the mechanical mechanism in the lateral direction (sliding orthogonal direction) While forming wear marks. The depth of wear marks formed per sliding is about several nm. The friction and wear phenomenon at light loads is a phenomenon at the atomic level, and it is possible to give fine vibrations of 1 μm or less at a frequency of more than 1 kHz if possible in one slide. It is desirable for the improvement of the sex. In the case of using a light load also in the scratch test, the scratch mark depth obtained after sliding for several seconds is about several hundreds of nm, and the formation of the scratch mark is a phenomenon at the atomic level. Therefore, it is desirable to apply fine vibrations of 1 μm or less at frequencies exceeding 1 kHz if possible even in a scratch test.
The present invention is particularly effective for friction and wear testers and scratch testers in which the reproducibility of test results is low due to the stick-slip phenomenon.
第1の実施の形態において振動付加機構として圧電素子を用いる場合の構成を示す斜視図The perspective view which shows the structure in the case of using a piezoelectric element as a vibration addition mechanism in 1st Embodiment 第1の実施の形態において振動付加機構として磁歪素子を用いる場合の構成を示す斜視図A perspective view showing a configuration in the case of using a magnetostrictive element as a vibration applying mechanism in the first embodiment 第2の実施の形態において振動付加機構として圧電素子を用いる場合の構成を示す斜視図The perspective view which shows the structure in the case of using a piezoelectric element as a vibration addition mechanism in 2nd Embodiment 第2の実施の形態において振動付加機構として磁歪素子を用いる場合の構成を示す斜視図The perspective view which shows the structure in the case of using a magnetostriction element as a vibration addition mechanism in 2nd Embodiment 第3の実施の形態において試験試料を水平面内で回転させる場合の構成を示す斜視図The perspective view showing the composition in the case of rotating a test sample in the level surface in a 3rd embodiment 第4の実施の形態においてスクラッチ試験機の場合の構成を示す斜視図The perspective view showing the composition in the case of a scratch tester in a 4th embodiment 摩耗試験により得られた摩耗痕断面積を示すグラフGraph showing wear scar cross section obtained by wear test スクラッチ試験により得られた臨界荷重を示すグラフGraph showing critical load obtained by scratch test
[第1の実施の形態]
 本発明の試料保持台及びこの試料保持台を備える試験機の第1の実施の形態について説明する。
 試験機は、荷重を付加した圧子又はピンを試験試料の試験面に押し付けながら、試験試料を試験面に平行な方向に摺動させる仕組みを持つものであればよい。
 図1及び図2に示すように、本実施の形態の試験機は摩擦摩耗試験機1であり、試料保持台10に水平に置いた試験試料20を水平方向(前後方向)に往復移動させるものとする。
First Embodiment
A first embodiment of a sample holder according to the present invention and a tester comprising the sample holder will be described.
The tester may have a mechanism for sliding a test sample in a direction parallel to the test surface while pressing a loaded indenter or pin against the test surface of the test sample.
As shown in FIGS. 1 and 2, the tester of the present embodiment is a friction and wear tester 1, which reciprocates a test sample 20 placed horizontally on the sample holder 10 in the horizontal direction (front-back direction). I assume.
 試験機は試料保持台10を往復移動させるための試料保持台駆動機構30を備える。試料保持台駆動機構30の構成及び動作は周知であるため説明を省略する。試料保持台駆動機構30による往復移動の速さは例えば5~200 mm/s 程度に調整できるが、これに限定されない。
 試料保持台10は振動付加機構40を備えており、試料保持台本体11の表面に試験試料20を載置・固定するために用いられる。
 振動付加機構40は試験試料20に振動を付加するために設けられる。振動付加機構40は圧電素子41(図1)又は磁歪素子42(図2)を備えており、圧電素子41又は磁歪素子42の一端を固定端とし、振動放射面である可動端を試料保持台本体11の前又は後ろの側面に取り付ける。圧電素子41の場合は厚み方向振動を示す素子を使うことが最も一般的であるが、長さ方向あるいは縦方向振動を示す素子を使用しても良い。
 圧電素子41又は磁歪素子42は制御部(図示略)から送信される駆動制御信号を受けて振動し、この振動が試料保持台本体11に伝達されることで試験試料20が前後方向に振動する。なお、圧電素子41又は磁歪素子42を試料保持台本体11の左又は右の側面に取り付けることで、試験試料20を左右方向に振動させることにしてもよい。
 振動付加機構40による振動の周波数としては100 Hz~10 MHz程度が好ましく、振動の振幅としては10 nm ~1 μm程度が好ましい。
The tester includes a sample holder driving mechanism 30 for reciprocating the sample holder 10. The configuration and operation of the sample holder driving mechanism 30 are well known, and therefore the description thereof is omitted. The speed of the reciprocation by the sample holder driving mechanism 30 can be adjusted to, for example, about 5 to 200 mm / s, but is not limited thereto.
The sample holder 10 includes a vibration applying mechanism 40 and is used to place and fix the test sample 20 on the surface of the sample holder body 11.
The vibration applying mechanism 40 is provided to apply vibration to the test sample 20. The vibration applying mechanism 40 includes the piezoelectric element 41 (FIG. 1) or the magnetostrictive element 42 (FIG. 2), and one end of the piezoelectric element 41 or the magnetostrictive element 42 is a fixed end, and the movable end which is a vibration emission surface is a sample holder. It is attached to the front or back side of the main body 11. In the case of the piezoelectric element 41, it is most common to use an element showing vibration in the thickness direction, but an element showing vibration in the longitudinal direction or longitudinal direction may be used.
The piezoelectric element 41 or the magnetostrictive element 42 vibrates in response to a drive control signal transmitted from a control unit (not shown), and the vibration is transmitted to the sample holder body 11 to vibrate the test sample 20 in the front-rear direction. . The test sample 20 may be vibrated in the left-right direction by attaching the piezoelectric element 41 or the magnetostrictive element 42 to the left or right side surface of the sample holder main body 11.
The frequency of vibration by the vibration applying mechanism 40 is preferably about 100 Hz to 10 MHz, and the amplitude of the vibration is preferably about 10 nm to 1 μm.
 圧子又はピン50はその先端の縦断面が円形や多角形など一般的なものを用いることができる。圧子又はピン50の材質としては超硬合金、SUS304、SUS440C、Al2O3、SiC、Si3N4、ナイロン、あるいはテフロン(登録商標)など一般的なものを使用できる。但し、スティックスリップが生じやすい材質はSUS304、SUS440C、Al2O3、SiC、あるいはSi3N4である。
 上述のとおり、軽荷重による摩擦摩耗試験ではスティックスリップ現象が生じることで試験結果の再現性が低下するという問題がある。軽荷重とは一般的にはおおよそ5 N以下であるが、試験試料20の種類によって変動する。軽荷重で摩擦摩耗試験を行なうことが多い試験試料20として薄膜以外には例えば極薄のガラスあるいは単結晶基板等が挙げられる。
The indenter or pin 50 may be a general one such as a circular or polygonal vertical cross section at its tip. The material of the indenter or pin 50 cemented carbide, SUS304, SUS440C, Al 2 O 3, SiC, Si 3 N 4, nylon, or Teflon those (TM) general like can be used. However, the material in which stick-slip easily occurs is SUS304, SUS440C, Al 2 O 3 , SiC, or Si 3 N 4 .
As described above, in the friction and wear test under a light load, there is a problem that the reproducibility of the test results is reduced due to the occurrence of the stick-slip phenomenon. The light load is generally about 5 N or less, but varies depending on the type of test sample 20. Besides the thin film, for example, an extremely thin glass or a single crystal substrate may be mentioned as the test sample 20 which often carries out the friction and wear test under a light load.
 次に、試験機の動作について説明する。
 作業者は試料保持台本体11に試験試料20をセットし、圧子又はピン50に所定の軽荷重をかけた状態で試料保持台駆動機構30と振動付加機構40を駆動させる。試験試料20は振動しながら水平方向に往復移動を開始し、圧子又はピン50は試験試料20に軽荷重を付加しながら相対的に試験面の表面を摺動及び振動し始める。図中の符号60は摩耗痕を示している。
 摺動によりスティックスリップ現象が発生するが、本発明では試験面が振動し続けているので、上述のとおり圧子又はピン50が試験面から跳ぶ量を抑制でき、且つ凝着の急激な進展成長を抑制できる。
Next, the operation of the test machine will be described.
The operator sets the test sample 20 on the sample holder main body 11 and drives the sample holder driving mechanism 30 and the vibration applying mechanism 40 in a state where a predetermined light load is applied to the indenter or the pin 50. The test sample 20 starts to reciprocate horizontally while vibrating, and the indenter or pin 50 relatively starts to slide and vibrate on the surface of the test surface while applying a light load to the test sample 20. The code | symbol 60 in the figure has shown the abrasion mark.
The sliding causes the stick-slip phenomenon, but in the present invention, since the test surface continues to vibrate, the amount by which the indenter or pin 50 jumps from the test surface can be suppressed as described above, and the rapid growth and growth of adhesion It can be suppressed.
[第2の実施の形態]
 次に本発明の試料保持台及びこの試料保持台を備える試験機の第2の実施の形態について説明するが、上記第1の実施の形態と同様の構成になる箇所については同一の符号を付してその説明を省略する。
 図3及び図4に示すように、本実施の形態では振動付加機構40の圧電素子43(図3)又は磁歪素子44(図4)を試料保持台本体11の下面又は上面に取り付けて試験試料20を試験面に垂直な方向(上下方向)に振動させながら、試料保持台駆動機構30により試験面に平行な方向(前後方向)に摺動させる点に特徴を有する。
 具体的には、圧電素子43又は磁歪素子44の下部を固定端、上部を振動放射面である可動端とし、可動端上に試料保持台本体11を取り付ける。そして、圧電素子43又は磁歪素子44を、圧子又はピン50による荷重方向と同一方向(上下方向)に伸縮振動させて試験試料20を上下方向に振動させる。
 本実施の形態の構成の場合も上記第1の実施の形態と同様にスティックスリップ現象が発生した場合でも試料保持台10(試験試料20)を上下方向に振動させることで圧子又はピン50が試験面から跳ぶ量を抑制でき、且つ凝着の急激な進展成長を抑制できる。
 試験試料20を上下、すなわち荷重と平行する方向に振動させた場合には、圧子又はピン50による試料面への荷重に微細な振動変化を与えることになる。これにより、凝着の進展による過度なスティックスリップ現象を防ぐことができ、試験の再現性が高まる。
Second Embodiment
Next, a second embodiment of the sample holder of the present invention and a tester including the sample holder will be described. The same reference numerals as in the first embodiment denote the same parts as in the first embodiment. The explanation is omitted.
As shown in FIGS. 3 and 4, in the present embodiment, a test sample is mounted by attaching the piezoelectric element 43 (FIG. 3) or the magnetostrictive element 44 (FIG. 4) of the vibration applying mechanism 40 to the lower or upper surface of the sample holder body 11. It is characterized in that the sample holder driving mechanism 30 slides in a direction parallel to the test surface (longitudinal direction) while vibrating 20 in a direction (vertical direction) perpendicular to the test surface.
Specifically, the lower part of the piezoelectric element 43 or the magnetostrictive element 44 is a fixed end, and the upper part is a movable end which is a vibration radiation surface, and the sample holder main body 11 is attached on the movable end. Then, the piezoelectric element 43 or the magnetostrictive element 44 is stretched and vibrated in the same direction (vertical direction) as the load direction by the indenter or the pin 50 to vibrate the test sample 20 in the vertical direction.
In the case of the configuration of the present embodiment as well as in the first embodiment, even if the stick-slip phenomenon occurs, the indenter or pin 50 is tested by vibrating the sample holder 10 (test sample 20) in the vertical direction. The amount of jumping from the surface can be suppressed, and the rapid growth and growth of adhesion can be suppressed.
When the test sample 20 is vibrated in the vertical direction, that is, in a direction parallel to the load, the load on the sample surface by the indenter or the pin 50 is minutely changed in vibration. This can prevent the excessive stick-slip phenomenon due to the progress of adhesion, thereby enhancing the reproducibility of the test.
[第3の実施の形態]
 次に本発明の試料保持台及びこの試料保持台を備える試験機の第3の実施の形態について説明するが、上記各実施の形態と同様の構成になる箇所については同一の符号を付してその説明を省略する。
 図5に示すように、本実施の形態は試料保持台駆動機構70が試料保持台10を水平面内で回転させる点に特徴を有する。試料保持台駆動機構70による摺動速度は例えば5~600 mm/s程度に調整できるが、これに限定されない。
 本実施の形態では、第2の実施の形態と同様に圧電素子43又は磁歪素子44を試料保持台本体11の下面に取り付けて、試験試料20を試験面に垂直な方向(鉛直方向)に振動させながら、試験面を回転させる。
 回転摺動においては、摩耗粉の堆積は摩耗痕60の両側において生じ、摩耗痕60内においては摩耗痕60の堆積が生じないために、往復運動に比較して端部の摩耗痕60変化の影響、あるいは摺動方向の変化の際に生じる圧子への摩耗粉の凝着の影響が生じにくい。さらに、本実施の形態においては述べていないが、圧子又はピンの摩耗量を評価したい場合には、圧子又はピンを連続的に摩耗していく回転摩耗試験が望ましい試験方法となる。
Third Embodiment
Next, a third embodiment of a sample holder of the present invention and a tester including the sample holder will be described. The same reference numerals are given to parts having the same configuration as the above-described embodiments. The explanation is omitted.
As shown in FIG. 5, the present embodiment is characterized in that the sample holder driving mechanism 70 rotates the sample holder 10 in a horizontal plane. The sliding speed by the sample holder driving mechanism 70 can be adjusted to, for example, about 5 to 600 mm / s, but is not limited thereto.
In this embodiment, as in the second embodiment, the piezoelectric element 43 or the magnetostrictive element 44 is attached to the lower surface of the sample holder main body 11, and the test sample 20 is vibrated in the direction (vertical direction) perpendicular to the test surface. While testing, rotate the test surface.
In rotational sliding, wear powder deposition occurs on both sides of the wear mark 60, and no wear mark 60 deposition occurs in the wear mark 60. It is hard to produce the influence of the adhesion of the abrasion powder to the indenter which occurs in the influence or the change of the sliding direction. Furthermore, although not described in the present embodiment, when it is desired to evaluate the amount of wear of the indenter or pin, a rotational wear test in which the indenter or pin is continuously worn is a desirable test method.
[第4の実施の形態]
 次に本発明の試料保持台及びこの試料保持台を備える試験機の第4の実施の形態について説明するが、上記各実施の形態と同様の構成になる箇所については同一の符号を付してその説明を省略する。
 図6に示すように、本実施の形態の試験機はスクラッチ試験機2であり、試料保持台駆動機構80が試験試料20を水平面内で一方向(前方)に移動させる点に特徴を有する。
 振動付加機構40の圧電素子41又は磁歪素子42は、試料保持台本体11の左右いずれかの側面に取り付けられることで、試料保持台10(試験試料20)を左右方向に振動させる。なお、圧電素子41又は磁歪素子42を試料保持台本体11の前後いずれかの側面に取り付けることで試料保持台10(試験試料20)を前後方向に振動させることにしてもよい。
Fourth Embodiment
Next, a fourth embodiment of a sample holder according to the present invention and a tester including the sample holder will be described. The same reference numerals are given to parts having the same configuration as those in the above embodiments. The explanation is omitted.
As shown in FIG. 6, the tester of the present embodiment is the scratch tester 2 and is characterized in that the sample holder drive mechanism 80 moves the test sample 20 in one direction (forward) in a horizontal plane.
The piezoelectric element 41 or the magnetostrictive element 42 of the vibration applying mechanism 40 vibrates the sample holder 10 (test sample 20) in the left-right direction by being attached to either the left or right side surface of the sample holder body 11. The sample holder 10 (test sample 20) may be vibrated in the front-rear direction by attaching the piezoelectric element 41 or the magnetostrictive element 42 to any of the front and rear side surfaces of the sample holder main body 11.
 一般的なスクラッチ試験機では試験試料20の一方向への移動に伴い圧子又はピン50による荷重を増大させていく。圧子又はピン50による最大荷重は50 mN~10 N程度であり、初期荷重から、例えば100 mN/min~ 5 N/min 程度の荷重変化率をもって負荷を大きくしていく。スクラッチ距離は2 mm ~ 10 mm程度が一般的である。スクラッチ試験で用いる圧子又はピン50としては2 ~10 μm程度の先端径を持つダイヤモンドが一般的である。
 スクラッチ試験はダイヤモンド圧子又はピン50を試料薄膜に侵入させていき、その侵入の様子から基板上に堆積された薄膜の付着力を評価する方法である。一般的には、スクラッチ痕61が基板に到達した時点での荷重を臨界荷重とする。スクラッチ試験においても、ダイヤモンド圧子又はピン50と試料薄膜間におこる現象は摩擦摩耗現象であり、摩擦摩耗試験と同様に原子レベルでの摩擦摩耗である。したがって、ダイヤモンド圧子又はピン50の摺動にともない、凝着が形成され、圧子又はピン50の横振動をともなう微小なスティックスリップ現象を繰り返しながらスクラッチ痕61を形成していくこととなる。上述のとおり、軽荷重における数秒間の摺動(スクラッチ)において得られる痕深さは数100 nm以下、かつ痕の幅は数 μm以下であり、摺動中に数kHz以上の周波数において、振幅100 nm程度の微細振動を与えることにより、スクラッチ痕61の形成における異常な凝着の形成を抑制し、試験の再現性を高めることができる。
 なお、上記各実施の形態では試料保持台本体11を前後方向、左右方向、又は上下方向に振動させるものとしたが、試料保持台本体11に圧電素子41,43又は磁歪素子42,44を複数取り付けることで前後方向、左右方向、鉛直方向を適宜組み合わせた方向に振動させることにしてもよい。
In a general scratch tester, the load by the indenter or pin 50 is increased as the test sample 20 moves in one direction. The maximum load by the indenter or pin 50 is about 50 mN to 10 N, and the load is increased from the initial load with a load change rate of about 100 mN / min to 5 N / min, for example. The scratch distance is generally about 2 mm to 10 mm. As the indenter or pin 50 used in the scratch test, diamond having a tip diameter of about 2 to 10 μm is generally used.
The scratch test is a method in which a diamond indenter or pin 50 penetrates the sample thin film and the adhesion of the thin film deposited on the substrate is evaluated from the appearance of the penetration. In general, the load at the time when the scratch mark 61 reaches the substrate is taken as the critical load. Also in the scratch test, the phenomenon occurring between the diamond indenter or pin 50 and the sample thin film is a frictional wear phenomenon, which is the frictional wear at the atomic level as in the frictional wear test. Therefore, as the diamond indenter or the pin 50 slides, a cohesion is formed, and the scratch mark 61 is formed while repeating the minute stick-slip phenomenon accompanied by the lateral vibration of the indenter or the pin 50. As mentioned above, the trace depth obtained in sliding (scratch) for a few seconds under light load is several 100 nm or less, and the width of the trace is several μm or less, and the amplitude is at a frequency of several kHz or more during sliding. By applying minute vibrations of about 100 nm, the formation of abnormal adhesion in the formation of the scratch marks 61 can be suppressed, and the reproducibility of the test can be enhanced.
In the above embodiments, the sample holder main body 11 is vibrated in the front-rear direction, the left-right direction, or the vertical direction. However, the sample holder main body 11 has a plurality of piezoelectric elements 41 43 or magnetostrictive elements 42 44. It may be made to vibrate in the direction which combined suitably a longitudinal direction, a horizontal direction, and a perpendicular direction by attaching.
[往復摺動摩耗試験]
 試料振動を用いた往復摺動および試料振動を用いない往復摺動による摩耗試験の実施例を示す。
 試料は、インジウム-すず酸化物(ITO)薄膜、SiO2薄膜、およびSi3N4薄膜とし、基板はいずれもほう珪酸ガラス(厚さ1.1 mm)である。膜厚はおおよそ300 nm である。圧子は、直径10 mm のSUS304製球とした。圧子荷重は0.20 N 、往復試験周波数 1 Hzとする、圧子移動速さを33.3 mm/s、圧子移動距離は10 mm とした。往復回数を1000回とした。試料振動は、摩耗方向と直交する方向に与え、その周波数は1 MHzとした。往復摩耗の後に試料に形成された摩耗痕を、プロファイルメーターで測定し、摩耗痕断面積を得た。摩耗痕断面形状の測定は往復摺動の中央部とした。同一の試料に対して、試料振動有無の条件において5回の試験を実施した。
 図7に摩耗試験により得られた摩耗痕断面積を示す。また、表1に試料振動を用いた往復摺動および試料振動を用いない往復摺動試験において得られた試験結果の変動係数を示す。いずれの試料においても試料振動により測定値の変動係数が小さくなる。
Figure JPOXMLDOC01-appb-T000001
 
[Reciprocal sliding wear test]
The example of the abrasion test by reciprocation sliding which uses sample vibration, and reciprocation slide which does not use sample vibration is shown.
The samples were indium-tin oxide (ITO) thin film, SiO 2 thin film, and Si 3 N 4 thin film, and the substrate was borosilicate glass (thickness: 1.1 mm). The film thickness is approximately 300 nm. The indenter was a 10 mm diameter SUS304 ball. The indenter load is 0.20 N, the reciprocating test frequency is 1 Hz, the indenter movement speed is 33.3 mm / s, and the indenter movement distance is 10 mm. The number of round trips was 1,000. The sample vibration was given in the direction orthogonal to the wear direction, and its frequency was 1 MHz. The wear scar formed on the sample after reciprocating wear was measured with a profilometer to obtain a wear scar cross-sectional area. The measurement of the wear trace cross-sectional shape was taken as the central portion of the reciprocal sliding. Five tests were performed on the same sample under the conditions of sample vibration.
FIG. 7 shows the wear trace cross-sectional area obtained by the wear test. Table 1 also shows the coefficient of variation of the test results obtained in the reciprocating sliding test using the sample vibration and the reciprocating sliding test not using the sample vibration. The coefficient of variation of the measured value is reduced due to sample vibration in any sample.
Figure JPOXMLDOC01-appb-T000001
[スクラッチ試験]
 試料振動を用いたスクラッチ試験および試料振動を用いないスクラッチ試験による付着力評価の実施例を示す。
 試料は、TiN薄膜、Si3N4薄膜、およびTa2O5薄膜とし、基板はいずれもほう珪酸ガラス(厚さ1.1 mm)である。膜厚はおおよそ300 nm である。圧子は、先端曲率半径が2 μmのダイヤモンドとした。圧子の最大荷重は50 mN、走査距離は4 mm 、負荷速度は25 mN/分とした。試料振動は、圧子進行方向と直交する方向に与え、その周波数は1 MHzとした。同一の試料に対して、試料振動有無の条件において5回の試験を実施し、押し込み深さおよび摩擦係数の変化から、臨界荷重を求めた。
 図8にスクラッチ試験により得られた臨界荷重を示す。また、表2に試料振動を用いたスクラッチ試験および試料振動を用いないスクラッチ試験において得られた試験結果の変動係数を示す。いずれの試料においても試料振動により測定値の変動係数が小さくなる。
Figure JPOXMLDOC01-appb-T000002
 
[Scratch test]
An example of adhesion evaluation by a scratch test using sample vibration and a scratch test without sample vibration is shown.
The samples were TiN thin film, Si 3 N 4 thin film, and Ta 2 O 5 thin film, and the substrate was borosilicate glass (thickness: 1.1 mm). The film thickness is approximately 300 nm. The indenter was a diamond with a tip radius of 2 μm. The maximum load of the indenter was 50 mN, the scanning distance was 4 mm, and the loading speed was 25 mN / min. The sample vibration was given in the direction orthogonal to the indenter traveling direction, and its frequency was 1 MHz. Five tests were performed on the same sample under the conditions of sample vibration, and the critical load was determined from changes in indentation depth and friction coefficient.
FIG. 8 shows the critical load obtained by the scratch test. Further, Table 2 shows coefficients of variation of test results obtained in the scratch test using the sample vibration and the scratch test without using the sample vibration. The coefficient of variation of the measured value is reduced due to sample vibration in any sample.
Figure JPOXMLDOC01-appb-T000002
 本発明は、スティックスリップ現象による圧子又はピンの試験面からの跳びを抑制するとともに、圧子又はピンと試験試料との凝着の急激な進展成長を抑制し、複数回の試験における再現性を向上できる試料保持台であり、産業上の利用可能性を有する。 The present invention can suppress the jump from the test surface of the indenter or the pin due to the stick-slip phenomenon, and can suppress the rapid growth and growth of the adhesion between the indenter or the pin and the test sample, and can improve the repeatability in multiple tests. It is a sample holder and has industrial applicability.
1 摩擦摩耗試験機
2 スクラッチ試験機
10 試料保持台
11 試料保持台本体
20 試験試料
30 試料保持台駆動機構
40 振動付加機構
41 圧電素子
42 磁歪素子
43 圧電素子
44 磁歪素子
50 圧子又はピン
60 摩耗痕
61 スクラッチ痕
70 試料保持台駆動機構
80 試料保持台駆動機構
 

 
1 Friction and wear tester
2 Scratch testing machine
10 Sample holder
11 Sample holder main body
20 test sample
30 Sample holder drive mechanism
40 vibration addition mechanism
41 Piezoelectric element
42 Magnetostrictive element
43 Piezoelectric element
44 Magnetostrictive element
50 indenter or pin
60 wear marks
61 Scratch marks
70 Sample holder drive mechanism
80 Sample holder drive mechanism

Claims (4)

  1.  荷重を付加した圧子又はピンを試験試料の試験面に押し付けながら、前記試験試料を前記試験面に平行な方向に摺動させる試験機で使用する試料保持台において、
     前記試験試料に振動を付加する振動付加機構を備えており、
     前記振動付加機構が前記摺動中に前記試験試料に振動を付加することで、スティックスリップ現象による前記圧子又はピンの前記試験面からの跳びを抑制するとともに、前記圧子又はピンと前記試験試料との凝着の進展成長を抑制することを特徴とする試料保持台。
     
    A sample holder used in a testing machine which slides a test sample in a direction parallel to the test surface while pressing a loaded indenter or pin against the test surface of the test sample,
    It has a vibration application mechanism that applies vibration to the test sample,
    The vibration applying mechanism applies vibration to the test sample during the sliding, thereby suppressing jumping of the indenter or pin from the test surface due to the stick-slip phenomenon, and the indenter or pin and the test sample A sample holder characterized by suppressing adhesion growth and growth.
  2.  前記振動の周波数が100 Hz~10 MHzであることを特徴とする請求項1に記載の試料保持台。
     
    The sample holder according to claim 1, wherein the frequency of the vibration is 100 Hz to 10 MHz.
  3.  前記振動の振幅が10 nm~10 μmであることを特徴とする請求項1又は2に記載の試料保持台。
     
    The sample holder according to claim 1 or 2, wherein the amplitude of the vibration is 10 nm to 10 μm.
  4.  前記試験機が摩擦摩耗試験機又はスクラッチ試験機であることを特徴とする請求項1~3のいずれか一項に記載の試料保持台。
     
    The sample holder according to any one of claims 1 to 3, wherein the tester is a friction and wear tester or a scratch tester.
PCT/JP2018/036784 2017-10-03 2018-10-02 Sample holding stand WO2019069888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-193280 2017-10-03
JP2017193280A JP2019066366A (en) 2017-10-03 2017-10-03 Sample holding stand

Publications (1)

Publication Number Publication Date
WO2019069888A1 true WO2019069888A1 (en) 2019-04-11

Family

ID=65994974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036784 WO2019069888A1 (en) 2017-10-03 2018-10-02 Sample holding stand

Country Status (2)

Country Link
JP (1) JP2019066366A (en)
WO (1) WO2019069888A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115615858A (en) * 2022-05-20 2023-01-17 荣耀终端有限公司 Friction test apparatus and method
WO2023084987A1 (en) * 2021-11-10 2023-05-19 住友電気工業株式会社 Contactor and method for evaluating microabrasion characteristics of single-crystal diamond using same
WO2023084988A1 (en) * 2021-11-10 2023-05-19 住友電気工業株式会社 Contact, and method for evaluating microwear properties of single-crystal diamond using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451791B (en) * 2020-03-24 2021-09-24 天津大学 Two-degree-of-freedom swing platform based on stick-slip principle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140939A (en) * 1986-12-03 1988-06-13 Res Dev Corp Of Japan Measuring instrument for surface characteristic
JPH01214735A (en) * 1988-02-23 1989-08-29 Hitachi Ltd Evaluating method of contact resistance
JP2005098757A (en) * 2003-09-22 2005-04-14 Toyota Central Res & Dev Lab Inc Adhesive wear testing device and adhesive wear test method
JP2005164369A (en) * 2003-12-02 2005-06-23 Seiko Epson Corp Abrasion tester
JP2005249462A (en) * 2004-03-02 2005-09-15 Toyota Motor Corp Fretting wear evaluation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140939A (en) * 1986-12-03 1988-06-13 Res Dev Corp Of Japan Measuring instrument for surface characteristic
JPH01214735A (en) * 1988-02-23 1989-08-29 Hitachi Ltd Evaluating method of contact resistance
JP2005098757A (en) * 2003-09-22 2005-04-14 Toyota Central Res & Dev Lab Inc Adhesive wear testing device and adhesive wear test method
JP2005164369A (en) * 2003-12-02 2005-06-23 Seiko Epson Corp Abrasion tester
JP2005249462A (en) * 2004-03-02 2005-09-15 Toyota Motor Corp Fretting wear evaluation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084987A1 (en) * 2021-11-10 2023-05-19 住友電気工業株式会社 Contactor and method for evaluating microabrasion characteristics of single-crystal diamond using same
WO2023084988A1 (en) * 2021-11-10 2023-05-19 住友電気工業株式会社 Contact, and method for evaluating microwear properties of single-crystal diamond using same
CN115615858A (en) * 2022-05-20 2023-01-17 荣耀终端有限公司 Friction test apparatus and method
CN115615858B (en) * 2022-05-20 2023-10-31 荣耀终端有限公司 Friction testing device and method

Also Published As

Publication number Publication date
JP2019066366A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2019069888A1 (en) Sample holding stand
Bowden et al. The nature of sliding and the analysis of friction
JP4507898B2 (en) Torsion test equipment
US7089787B2 (en) Torsional harmonic cantilevers for detection of high frequency force components in atomic force microscopy
Vahdat et al. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes
US6502455B1 (en) Microscratch test indenter and method of microscratch testing
Takashima et al. Fatigue crack growth behavior of micro-sized specimens prepared from an electroless plated Ni-P amorphous alloy thin film
EP2335044B1 (en) Continuous or instrumented indentation device with convex bearing surface and use thereof, particularly for metal sheet indentation
Schneider et al. A laser-acoustic method for testing and classifying hard surface layers
JP5581905B2 (en) Method for measuring polar surface elastic modulus of solid material sample and method for evaluating adhesion of resin surface to film using the same
JP2013050428A (en) Abrasion testing method, and abrasion testing device
CN105527184A (en) Nanometer press mark measuring system
JP2018119900A (en) Hardness tester and hardness testing method
JP2013019782A (en) Nano indentation tester and method of correcting data of the same
Beake et al. Micro-impact testing: a new technique for investigating fracture toughness
Tomala et al. Nanotribology of Mo–Se–C films
JP2009014547A (en) Observation method for solid substance, grease evaluation method, and method for manufacturing bearing
Hesjedal et al. The origin of ultrasound-induced friction reduction in microscopic mechanical contacts
JP2006162301A (en) Abrasion testing machine
JP2008256490A (en) Pin-on-friction testing device
JP5297735B2 (en) Contact displacement sensor
Miyake et al. Durability evaluation of perfluoropolyether-lubricant-coated protective diamond-like carbon film by the lateral vibration friction test
JP2000002649A (en) Method and device for testing friction coefficient of macromolecular material
JP2011164002A (en) Hardness measuring method
CN209721938U (en) Cutter for substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863870

Country of ref document: EP

Kind code of ref document: A1