WO2019069860A1 - バイオマス固体燃料の製造装置およびその製造方法 - Google Patents

バイオマス固体燃料の製造装置およびその製造方法 Download PDF

Info

Publication number
WO2019069860A1
WO2019069860A1 PCT/JP2018/036715 JP2018036715W WO2019069860A1 WO 2019069860 A1 WO2019069860 A1 WO 2019069860A1 JP 2018036715 W JP2018036715 W JP 2018036715W WO 2019069860 A1 WO2019069860 A1 WO 2019069860A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
solid fuel
yield
biomass solid
biomass
Prior art date
Application number
PCT/JP2018/036715
Other languages
English (en)
French (fr)
Inventor
友祐 平岩
茂也 林
信之 大井
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2019546699A priority Critical patent/JP7348065B2/ja
Priority to US16/652,624 priority patent/US11198829B2/en
Priority to RU2020115196A priority patent/RU2781529C2/ru
Priority to AU2018345068A priority patent/AU2018345068B2/en
Priority to CA3077667A priority patent/CA3077667A1/en
Publication of WO2019069860A1 publication Critical patent/WO2019069860A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/442Wood or forestry waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/447Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B41/00Safety devices, e.g. signalling or controlling devices for use in the discharge of coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an apparatus and method for producing a biomass solid fuel.
  • Patent Document 1 Semi-carbonized by pressure-molding while heating pulverized biomass, bio-coke excellent in strength is obtained.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to realize a solid fuel in which self-heating is suppressed.
  • a carbonization furnace for carbonizing a biomass molded body to obtain a biomass solid fuel
  • a yield calculation unit for calculating the yield of the biomass solid fuel
  • / or a temperature measurement unit for measuring the temperature of the carbonization furnace
  • a control unit for controlling the heat source of the carbonizing furnace, the control unit being the heat source based on the correlation between the self-heating property of the biomass solid fuel and the yield and / or the temperature of the carbonizing furnace.
  • FIG. 1 is a process flow from biomass of raw material to biomass solid fuel (PBT described later) and optionally classified and cooled products.
  • the biomass of the raw material is crushed and subjected to a pulverizing process 110 and then formed into pellets in the forming process 120 (WP described later) and heated in a heating process 130.
  • a binder such as a binder is not added, and it is molded simply by compressing and pressing the biomass powder.
  • the biomass solid fuel (PBT described later) obtained through the heating step 130 becomes a product through the classification / cooling step 140 as necessary.
  • the unheated biomass molded body (White Pellet: hereinafter referred to as WP) immediately after passing through the molding step 120 has a low strength and is easily pulverized during handling since the biomass powder is simply pressure molded. In addition, it swells and collapses due to water absorption.
  • the biomass molded body is heated (low temperature carbonization) at 150 to 400 ° C. in the heating step 130 (rotary kiln 2) to maintain strength and water resistance while maintaining the shape as a molded body.
  • Biomass solid fuel (Pelletizing Before Torrefaction: hereinafter referred to as PBT) is produced.
  • molding process 120, and the heating process 130 can refer to the manufacturing process of the biomass solid fuel described in the international application number PCT / JP2015 / 78552.
  • FIG. 2 is an aspect of a system configuration diagram in the heating step 130.
  • the apparatus for producing biomass solid fuel according to the present invention includes a hopper 1, a rotary kiln 2 as a carbonizing furnace, and a control unit 3.
  • the WP stored in the hopper 1 is supplied to the rotary kiln 2 and heated to produce PBT (biomass solid fuel).
  • PBT biomass solid fuel
  • the PBT after production is transported using the conveyor 5.
  • the rotary kiln 2 is an external heating type, and heat gas from the external heat source 6 is supplied from the inlet 21 provided on the outer peripheral side of the kiln body 20 and discharged indirectly from the outlet 22. Do the heating.
  • the control unit 3 controls the external heat source 6 to appropriately change the temperature (heat gas inlet temperature Tgin) at the heat gas inlet 21, and controls the temperature of the rotary kiln 2.
  • the rotary kiln 2 shown in FIG. 2 is a countercurrent system in which the flows of the object to be heated (PBT) and the heat gas are opposed to each other, but may be a cocurrent system.
  • the oxygen concentration in the rotary kiln 2 is set to 10% or less.
  • a supply amount measurement unit 31 for measuring the supply amount V1 of WP is provided on the upstream side of the rotary kiln 2, and a production amount measurement unit 32 for measuring the production amount V2 of PBT is provided on the downstream side.
  • the measured WP supply amount V1 and the PBT production amount V2 are output to the control unit 3, and the yield calculation unit 3a calculates the yield Y in the rotary kiln 2 (heating step 130).
  • the supply amount V1 of WP and the production amount V2 of PBT may be calculated from the bulk density of WP and PBT measured in advance and the volume fluctuation within a predetermined time, or the weight may be measured.
  • the supply amount measurement unit 31 and the production amount measurement unit 32 can be appropriately changed according to the respective methods.
  • a temperature measurement unit 41 is provided in the interior of the rotary kiln 2 in the kiln body 20 to measure the kiln internal temperature T1.
  • a temperature measurement unit 42 is provided at the outlet of the rotary kiln 2 to measure the kiln outlet temperature (temperature of PBT immediately after production) T2. Both T1 and T2 are output to the control unit 3.
  • the temperature of the rotary kiln 2 may be determined based on only one of the kiln internal temperature T1 and the kiln outlet temperature T2.
  • the temperature measuring unit 42 may not be provided in the manufacturing apparatus, and when only the kiln outlet temperature T2 is used, the temperature measuring unit 41 may not be provided in the manufacturing apparatus. Good.
  • the controller 3 controls the temperature of the hot gas at the inlet 21 (hot gas inlet temperature).
  • a well-known method is used about temperature control of hot gas.
  • the control of the heat gas inlet temperature Tgin is performed based on at least one selected from the above-mentioned yield Y, the temperature T1, and the temperature T2.
  • control based on yield Y is performed, in Embodiment 2 control based on temperature T1 and / or T2 is performed, and in Embodiment 3, control based on yield Y and temperature T1 and / or T2 is performed. Do.
  • the sample was filled in a 100 mm cubed stainless steel container, suspended inside a constant temperature bath, the temperature of the substance was continuously measured at a temperature of 140 ° C. for 24 hours, and the highest temperature was taken as the “maximum reached temperature”. Substances with an ignition or temperature rise of 200 ° C. or higher were regarded as self-heating substances.
  • the self-heating property of the biomass solid fuel can be controlled by adjusting the yield Y and / or the temperature of the rotary kiln 2 to be within a predetermined range as described in the following first to third embodiments.
  • FIGS. 3 to 7B and Table 1 described below show the maximum achieved temperature and yield Y of the sample when the above self-heating test is performed for PBT using various biomass as raw materials (also described as “solid yield Y”) Show the correlation with The yield Y is a value calculated by (dry weight after 100 ⁇ heating / dry weight before heating) (%).
  • FIG. 3 shows the relationship between the solid yield of PBT made from rubber wood and the maximum temperature reached. When it evaluates based on the said parameter
  • the lower limit value Ymin of the yield Y as a threshold value in advance and controlling the temperature of the heat gas to be the lower limit value Ymin or more, it is possible to obtain a PBT with reduced self-heating. Since the yield Y decreases as the temperature of the rotary kiln 2 (heating step 130) increases, it is determined that the temperature of the rotary kiln 2 is too high if the yield Y is lower than the lower limit. Therefore, the heat gas inlet temperature Tgin temperature is lowered.
  • the upper limit value Ymax of the yield Y is provided in advance, and when it exceeds Ymax, the temperature of the hot gas inlet temperature Tgin is raised.
  • Ymax may be determined based on water resistance when solid fuel is immersed in water (whether pellet shape can be maintained when immersed in water). It is preferable that the solid fuel which can not maintain the pellet shape after being immersed in water may be damaged by rainwater or the like when it is stored outdoors, causing a problem in handling, so that the pellet shape can be maintained even if it is immersed in water. As shown in Table 1 below, when the yield Y is too high (that is, the heating temperature at the time of PBT production is too low), when solid fuel is immersed in water, the connection or adhesion between biomass powders can not be maintained; Will collapse.
  • Ymax may be the maximum yield out of the range of yield (with water resistance) which does not collapse when immersed in biomass solid fuel in water.
  • the value of mechanical durability after immersion of the solid fuel in water may also be referred to to determine Ymax.
  • biomass solid fuel with improved water resistance can be obtained by raising the temperature of the hot gas inlet temperature Tgin.
  • Ymax is determined based on COD (chemical oxygen demand) of immersion water and / or HGI (grindability index) of PBT in addition to or instead of the above criteria based on water resistance of the solid fuel.
  • COD chemical oxygen demand
  • preparation of immersion water sample for COD measurement is carried out according to the inspection method of metals etc. contained in the environmental agency notification No. 13 (a) industrial waste of 1974, JIS K 0102 (2010) The COD value analyzed by -17. If the yield Y is too high (that is, the heating temperature at the time of PBT production is too low), COD becomes high, and when PBT is stored outdoors, problems such as the elution of organic matter such as tar becoming large due to rain water etc. It may occur.
  • Ymax may be the maximum yield among the yields such that the COD is preferably 1000 mg / L or less, for example, when the raw material biomass is a rubber tree.
  • Ymax is exceeded, biomass solid fuel with reduced COD can be obtained by raising the temperature of the hot gas inlet temperature Tgin.
  • COD may increase temporarily by heating when heating temperature is comparatively low like solid fuel which uses acacia in the below-mentioned Table 1 and radiata pine as a raw material. This is considered to be because the tar content in the raw material remains without volatilization since the heating temperature is relatively low, but the tar content is easily eluted due to the decomposition of cellulose and the like accompanying carbonization.
  • HGI grindability index
  • Ymax may be, for example, the maximum yield among the yields such that HGI is preferably 20 or more when the raw material biomass is a rubber tree.
  • the thermal gas inlet temperature Tgin so as to be in the range of Ymin ⁇ Y ⁇ Ymax, it is possible to obtain a PBT having desired properties.
  • Fig. 4 shows acacias
  • Fig. 5 shows dipterocarp trees
  • Fig. 6 shows radiata pines
  • Fig. 7A is a mixture of 50 wt% larch and 45 wt% spruce and 5 wt% birch
  • Fig. 7B 30 wt% spruce and 45 wt% pine and 25 wt% fir
  • FIG. 8 is a control flow in the first embodiment.
  • temperature control of the rotary kiln 2 is performed based on the yield Y of PBT as described above.
  • step S11 the yield Y is calculated.
  • step S12 it is determined whether the calculated yield Y falls below the lower limit value Ymin. If YES, the yield Y is low, and the temperature of the rotary kiln 2 is considered to be too high, and the heat gas inlet temperature Tgin is lowered in step S16. If it is NO, it will transfer to step S13.
  • step S13 it is determined whether the yield Y exceeds the upper limit Ymax. If YES, the yield Y is high, the temperature of the rotary kiln 2 is considered to be too low, and the thermal gas inlet temperature Tgin is raised in step S14. If NO, then Ymin ⁇ Y ⁇ Ymax, and the temperature of the rotary kiln 2 is considered to be appropriate, and the heat gas inlet temperature Tgin is maintained in step S15.
  • the flow of the first embodiment may be periodically and repeatedly performed as in the case of known automatic control, and may be repeated as needed.
  • Table 1 is a table showing the yield of PBT using various biomass as a raw material, the heating temperature in the heating step 130, the maximum temperature reached in the self-heating test, and the like.
  • the temperature of the rotary kiln 2 (heating temperature in the heating step 130) is correlated with the self-heating (and yield Y) of PBT, in Embodiment 2, the temperature of the rotary kiln 2 (in one aspect, the inside of the kiln Control is performed based on the temperature T1).
  • a kiln outlet temperature T2 may be used, or T1 and T2 may be combined. When combining T1 and T2, an average value of these may be used.
  • the highest temperature among the heating temperatures T1 at which the self-heating property is less than 200 ° C. is set in advance as Tmax.
  • Tmax 250 ° C.
  • Tmin may be, for example, the lowest temperature among the heating temperatures at which a PBT having water resistance can be obtained without disintegrating when the PBT is immersed in water, and further reference to the value of mechanical durability after immersion in water You may Alternatively, Tmin may be determined based on COD (chemical oxygen demand) of immersion water and / or HGI (grindability index) of PBT. Tmin may be, for example, the lowest temperature of the temperature T1 at which COD is preferably 1000 mg / L or less when the raw material biomass is a rubber tree. Alternatively, when the biomass of the raw material is a rubber tree, the temperature may be the lowest of the temperatures T1 at which HGI is preferably 20 or more.
  • the second embodiment will be described using the kiln internal temperature T1, the kiln outlet temperature T2 may be used instead, or T1 and T2 may be combined as appropriate.
  • FIG. 9 is a control flow in the second embodiment.
  • step S21 the internal temperature T1 of the kiln is measured.
  • step S22 it is determined whether T1 falls below the lower limit value Tmin. If YES, the temperature of the rotary kiln 2 is too low, so the heat gas inlet temperature Tgin is increased in step S26. If it is NO, it will transfer to step S23.
  • step S23 it is determined whether T1 exceeds the upper limit Tmax. If YES, the temperature of the rotary kiln 2 is too high, so the heat gas inlet temperature Tgin is lowered in step S24. If NO, then Tmin ⁇ T1 ⁇ Tmax, the temperature of the rotary kiln 2 is appropriate, and the heat gas inlet temperature Tgin is maintained in step S25.
  • the flow of the second embodiment may be periodically and repeatedly executed as well as known automatic control, and may be repeated as needed.
  • FIG. 10 is a control flow in the third embodiment. By using both the yield and the temperature of the rotary kiln 2, more accurate control is performed. Note that although FIG. 10 is described using the kiln internal temperature T1 as in the second embodiment, a kiln outlet temperature T2 may be used, or T1 and T2 may be combined as appropriate. When combining T1 and T2, an average value of these may be used. In Embodiment 3, upper limit value Ymax and lower limit value Ymin of yield Y can be determined in the same manner as in Embodiment 1, and temperature upper limit value Tmax and temperature lower limit value Tmin can be determined in the same manner as Embodiment 2. These are preset in the control unit of the biomass solid fuel production apparatus.
  • step S31 the yield Y is calculated.
  • step S32 it is determined whether the calculated yield Y is less than the lower limit value Ymin. If YES, the yield Y is low, and the temperature of the rotary kiln 2 is too high, so the heat gas inlet temperature Tgin is lowered in step S39. If it is NO, it will transfer to step S33.
  • step S33 it is determined whether the yield Y exceeds the upper limit Ymax. If YES, the yield Y is high, the temperature of the rotary kiln 2 is considered to be too low, and the thermal gas inlet temperature Tgin is raised in step S37. If it is NO, then Ymin ⁇ Y ⁇ Ymax, and the yield Y is in the appropriate range, but the control shifts to step S34 to perform control based on the internal temperature T1 of the kiln.
  • step S34 the internal temperature T1 of the kiln is measured.
  • step S35 it is determined whether T1 falls below the lower limit value Tmin. If YES, it is determined that the temperature of the rotary kiln 2 is too low, and the heat gas inlet temperature Tgin is raised in step S37. If it is NO, it will transfer to step S36.
  • step S36 it is determined whether T1 exceeds the upper limit value Tmax. If YES, it is determined that the temperature of the rotary kiln 2 is too high, and the heat gas inlet temperature Tgin is lowered in step S39. If NO, then Tmin ⁇ T1 ⁇ Tmax, the temperature of the rotary kiln 2 is considered to be appropriate, and the heat gas inlet temperature Tgin is maintained in step S38.
  • the heat gas inlet temperature Tgin can be controlled when the kiln internal temperature T1 is not in the appropriate range, and the control accuracy can be improved. It is possible.
  • the flow of the third embodiment may be periodically and repeatedly performed as in the case of known automatic control, and may be repeated as needed.
  • the apparatus for producing biomass solid fuel comprises a carbonization furnace (rotary kiln 2) for obtaining biomass solid fuel by carbonizing a biomass molded body, and a yield calculation unit 3a for calculating yield Y of biomass solid fuel and / or carbonization Temperature measurement units 41 and 42 for measuring the temperature (T1, T2) of the furnace, and a control unit 3 for controlling the heat source 6 of the carbonization furnace,
  • the control unit 3 controls the heat source based on the correlation between the self-heating of the biomass solid fuel and the yield Y and / or the temperature of the carbonization furnace T1 (which may be T2 or a combination of T1 and T2). It was decided to.
  • the control unit 3 is provided in advance with the lower limit value Ymin of the yield Y, and when the yield falls below the lower limit value Ymin, the temperature of the heat source (thermal gas inlet temperature Tgin) is lowered. Since there is a strong correlation between the yield and the self-heating property, the lower limit of the yield at which the self-heating property is less than the desired value is set in advance, and it is efficient to control the temperature of the heat source based on this lower limit. Production becomes possible.
  • the control unit 3 is previously provided with the upper temperature limit Tmax of the carbonization furnace, and when the temperature of the carbonization furnace exceeds the upper temperature limit Tmax, the temperature of the heat source is decreased. There is a strong correlation between the self-heating property and the temperature of the carbonizing furnace, so set the upper limit of the temperature of the carbonizing furnace where the self-heating property is less than the desired value in advance, and control the temperature of the heat source Efficient production.
  • the control unit 3 is previously provided with the upper limit Ymax of the yield Y, and when the yield Y exceeds the upper limit Ymax, the temperature of the heat source is increased. If the yield is higher than necessary, the properties of PBT will be reduced (strength, water resistance, drainage pollution, etc.), so the desired PBT can be obtained by setting the upper limit value Ymax.
  • the control unit 3 preliminarily includes the lower limit temperature Tmin of the carbonization furnace, and raises the temperature of the heat source when the temperature of the carbonization furnace is lower than the lower limit temperature Tmin. Even when the temperature of the carbonization furnace is low, the properties of PBT decrease (strength, water resistance, drainage pollution, etc.), so a desired PBT can be obtained by setting the temperature lower limit value Tmin.
  • the temperature measurement units 41 and 42 measure the temperature T1 inside the carbonizing furnace and the temperature T2 at the carbonizing furnace outlet, respectively. Controllability can be improved by using the in-furnace temperature (kiln internal temperature) T1 and / or the outlet temperature (kiln outlet temperature) T2.
  • the furnace temperature T1 is advantageous in accuracy
  • the outlet temperature T2 is advantageous in that the temperature of biomass solid fuel can be measured directly, and good control characteristics can be obtained by appropriately using or combining each. For example, control may be performed based on the average of T1 and T2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Abstract

自己発熱性が抑制されたバイオマス固体燃料を実現する。本発明のバイオマス固体燃料の製造装置は、バイオマス成型体を炭化してバイオマス固体燃料を得る炭化炉と、前記バイオマス固体燃料の収率を算出する収率算出部、および/または、前記炭化炉の温度を計測する温度計測部と、前記炭化炉の熱源を制御する制御部とを備え、前記制御部は、前記バイオマス固体燃料の自己発熱性と、前記収率および/または前記炭化炉の温度との相関に基づき、前記熱源を制御する。

Description

バイオマス固体燃料の製造装置およびその製造方法
 本発明は、バイオマス固体燃料の製造装置および製造方法に関する。
 従来、特許文献1にあっては、粉砕されたバイオマスを加熱しながら加圧成形することにより半炭化し、強度に優れたバイオコークスを得ている。
特許第4088933号
 固体燃料においては、ハンドリング時の発熱(自己発熱性)を抑制することが重要であるが、上記特許文献1にあっては、自己発熱性の課題及びその解決法については記載されていない。
 本発明は上記課題を解決するためになされたものであり、その目的とするところは、自己発熱性が抑制された固体燃料を実現することにある。
 本発明では、バイオマス成型体を炭化してバイオマス固体燃料を得る炭化炉と、前記バイオマス固体燃料の収率を算出する収率算出部、および/または、前記炭化炉の温度を計測する温度計測部と、前記炭化炉の熱源を制御する制御部とを備え、前記制御部は、前記バイオマス固体燃料の自己発熱性と、前記収率および/または前記炭化炉の温度との相関に基づき、前記熱源を制御することを特徴とする。
 本発明によれば、自己発熱性が抑制された固体燃料を実現できる。
本発明のバイオマス固体燃料の製造装置を用いて原料バイオマスから製品を得るまでのプロセスフローである。 本発明の製造装置のシステム構成図の一態様である。 ゴムの木を原料とする固体燃料の自己発熱性と収率の相関を示す図である。 アカシアを原料とする固体燃料の自己発熱性と収率の相関を示す図である。 フタバガキ科の樹木を原料とする固体燃料の自己発熱性と収率の相関を示す図である。 ラジアータパインを原料とする固体燃料の自己発熱性と収率の相関を示す図である。 カラマツ、スプルース、およびカバノキの混合物を原料とする固体燃料の自己発熱性と収率の相関を示す図である。 スプルース、マツ、およびモミの混合物を原料とする固体燃料の自己発熱性と収率の相関を示す図である。 実施形態1の制御フローである。 実施形態2の制御フローである。 実施形態3の制御フローである。
 [実施形態]
 (全体構成)
 図1は、原料のバイオマスからバイオマス固体燃料(後述のPBT)および必要に応じて分級・冷却された製品を得るまでのプロセスフローである。原料のバイオマスは破砕、粉砕工程110を経た後成型工程120においてペレット状に成型され(後述のWP)、加熱工程130において加熱される。成型工程120ではバインダー等の結合剤は添加されず、単にバイオマス粉を圧縮、加圧することで成型される。加熱工程130を経て得られたバイオマス固体燃料(後述のPBT)は、必要に応じ分級・冷却工程140を経て製品となる。
 成型工程120を経た直後の未加熱のバイオマス成型体(White Pellet:以下WPと記載)は、単にバイオマス粉を加圧成型したのみであるため強度が低く、ハンドリング中に粉化しやすい。また吸水により膨張して崩壊してしまう。
 そのため本発明においては、加熱工程130(ロータリーキルン2)でバイオマス成型体(WP)を150~400℃で加熱(低温炭化)することで、成型体としての形状を保持しつつ、強度及び耐水性を有するバイオマス固体燃料(Pelletizing Before Torrefaction:以下PBTと記載)が製造される。なお上述の破砕、粉砕工程110、成型工程120、及び加熱工程130は、国際出願番号 PCT/JP2015/78552に記載されたバイオマス固体燃料の製造工程を参照できる。
 図2は加熱工程130におけるシステム構成図の一態様である。本発明のバイオマス固体燃料の製造装置はホッパ1、炭化炉としてのロータリーキルン2、制御部3を有する。ホッパ1に貯蔵されたWPはロータリーキルン2に供給されて加熱され、PBT(バイオマス固体燃料)が製造される。製造後のPBTはコンベア5を用いて搬送される。
 本発明の一態様において、ロータリーキルン2は外熱式であり、外部熱源6からの熱ガスをキルン本体20の外周側に設けられた入口21から供給し、出口22から排出することで、間接的に加熱を行う。制御部3は外部熱源6を制御することで熱ガスの入口21における温度(熱ガス入口温度Tgin)を適宜変更し、ロータリーキルン2の温度を制御する。なお図2のロータリーキルン2は被加熱物(PBT)と熱ガスの流れが対向する向流式であるが、並流式であってもよい。なおロータリーキルン2内の酸素濃度は10%以下となるよう設定される。
 ロータリーキルン2の上流側にはWPの供給量V1を計測する供給量計測部31が設けられ、下流側にはPBTの製造量V2を計測する製造量計測部32が設けられている。計測されたWPの供給量V1及びPBTの製造量V2は制御部3に出力され、収率算出部3aにおいてロータリーキルン2(加熱工程130)における収率Yが算出される。なお本発明における収率Yは、固体収率(=重量収率)を示すものとする。
 なお、WPの供給量V1、PBTの製造量V2は、予め計測されたWP、PBTの嵩密度と所定時間内の容積変動から算出してもよいし、重量を測定してもよい。それぞれの手法に合わせ、供給量計測部31および製造量計測部32は適宜変更可能である。
 ロータリーキルン2のキルン本体20内部には温度計測部41が設けられ、キルン内部温度T1を計測する。またロータリーキルン2の出口には温度計測部42が設けられ、キルン出口温度(製造直後のPBTの温度)T2を計測する。T1,T2ともに制御部3へ出力される。本発明の一態様においては、ロータリーキルン2の温度を、キルン内部温度T1およびキルン出口温度T2のうち一方のみに基づいて決定してもよい。キルン内部温度T1のみを用いる場合は、製造装置に温度計測部42が設けられていなくてもよく、キルン出口温度T2のみを用いる場合は、製造装置に温度計測部41が設けられていなくてもよい。
 制御部3は、入口21における熱ガスの温度(熱ガス入口温度)を制御する。熱ガスの温度制御については公知の手法を用いる。その際、上述の収率Y、温度T1,および温度T2から選ばれる少なくとも一つに基づき熱ガス入口温度Tginの制御を行う。後述の実施形態1では収率Yに基づく制御を行い、実施形態2では温度T1及び/又はT2に基づく制御を行い、実施形態3では収率Y、ならびに温度T1及び/又はT2に基づく制御を行う。
 (自己発熱性制御)
 固体燃料のハンドリングにおいては、貯蔵時、運搬時の発熱(自己発熱性)の低減が課題である。自己発熱性の指標として「国際連合:危険物輸送に関する勧告:試験方法および及び判定基準のマニュアル:第5版:自己発熱性試験」に規定された自己発熱性試験があり、詳細は以下のとおりである。
 100mm立方体のステンレス製容器に試料を充填し、恒温槽内部に吊り下げ、140℃の温度で24時間連続して物質の温度を測定し、最も高い温度を「最高到達温度」とした。発火又は温度上昇が200℃以上となった物質は、自己発熱性物質と認めるものとした。
 バイオマス固体燃料の自己発熱性は、下記実施形態1~3に記載するように、収率Yおよび/またはロータリーキルン2の温度を所定の範囲内になるように調整することにより制御することができる。
 [実施形態1:収率による制御]
 図3~図7Bと後述の表1は、各種バイオマスを原料とするPBTにつき、上記自己発熱性試験を行った際の試料の最高到達温度と収率Y(「固体収率Y」とも記載)との相関を示す。収率Yは、(100×加熱後の乾重量/加熱前の乾重量)(%)により算出した値である。図3はゴムの木を原料としたPBTの固体収率と最高到達温度との関係を示す。当該指標に基づき評価を行った際、PBTの収率Yと自己発熱性(上記試験に基づく温度上昇)との間に一定の相関がみられる。例えば図3および表1では、収率Yが下限値Ymin(約76.8%超え~83.4%)以上であれば自己発熱性試験における最高到達温度が200℃未満に抑制されていることが分かる。
 したがって、収率Yの下限値Yminを予め閾値として設定し、この下限値Ymin以上となるよう熱ガスの温度を制御することにより、自己発熱性を低減したPBTを得ることができる。ロータリーキルン2(加熱工程130)の温度が高ければ収率Yも下がるため、収率Yが下限値よりも低ければロータリーキルン2の温度が高すぎると判断される。よって熱ガス入口温度Tgin温度を下げる。
 後述の表1に示すように、固体燃料の自己発熱による温度上昇と、固体燃料の無水無灰ベース揮発分の量との間にも相関関係がみられる。すなわち、固体燃料の揮発分(無水無灰ベース)が小さいほど、自己発熱性試験の最高到達温度は高くなる。このことは自己発熱性が増大することを示している。よって、Yminを設定する際、無水無灰ベース揮発分の量を考慮してもよい。
 一方収率Yが必要以上に高い場合はロータリーキルン2の温度が低く、PBTの炭化が不十分となってPBTの強度、耐水性、貯蔵時の排水汚濁等の問題が発生する(上記PCT/JP2015/78552参照)。したがって収率Yの上限値Ymaxを予め設け、Ymaxを上回った場合は熱ガス入口温度Tginの温度を上昇させる。
 一態様において、Ymaxは、固体燃料を水中に浸漬した際の耐水性(水中浸漬した際ペレット形状を維持できるかどうか)に基づいて決定してもよい。水中浸漬後にペレット形状が維持できない固体燃料は、屋外貯蔵したときに雨水等により崩壊してしまいハンドリングに問題が生じてしまうため、水中浸漬してもペレット形状が維持できることが好ましい。後述の表1に示したように、収率Yが高すぎる(すなわちPBT製造時の加熱温度が低すぎる)と、固体燃料を水中浸漬した際バイオマス粉同士の接続または接着が維持できずにペレットが崩壊してしまう。よって、Ymaxは、バイオマス固体燃料を水中浸漬した際崩壊しない(耐水性を有する)範囲の収率のうち、最大の収率としてもよい。また、固体燃料を水中浸漬した後の機械的耐久性の値も参照してYmaxを決定してもよい。Ymaxを上回った場合は熱ガス入口温度Tginの温度を上昇させることにより、耐水性が向上したバイオマス固体燃料を得ることができる。
 Ymaxは、上記固体燃料の耐水性に基づく基準に加えて、あるいはこれに代えて、浸漬水のCOD(化学的酸素要求量)および/またはPBTのHGI(粉砕性指数)等に基づいて決定してもよい。COD(化学的酸素要求量)は、COD測定用浸漬水試料の調製を昭和48年環境庁告示第13号(イ)産業廃棄物に含まれる金属等の検定方法に従って行い、JIS K0102(2010)-17によって分析したCOD値のことをいう。CODは、収率Yが高すぎる(すなわちPBT製造時の加熱温度が低すぎる)と高くなり、PBTを屋外貯蔵したときに雨水等によりタール等の有機物の溶出が大きくなってしまう等の問題が発生する場合がある。よって、Ymaxは、例えば原料のバイオマスがゴムの木の場合、CODが、好ましくは1000mg/L以下となるような収率のうち、最大の収率としてもよい。Ymaxを上回った場合は熱ガス入口温度Tginの温度を上昇させることにより、CODが低減したバイオマス固体燃料を得ることができる。
 なお、後述の表1中のアカシア、ラジアータパインを原料とする固体燃料のように、加熱温度が比較的低温のときには、加熱により一時的にCODが増加する場合がある。これは加熱温度が比較的低温であるため原料中のタール分が揮発することなく残留する一方、炭化に伴うセルロース等の分解によりタール分が溶出しやすくなっているためと考えられる。
 HGI(粉砕性指数)は、JIS M 8801に基づくものであり、高いほど粉砕性が良好であることを示す。HGIは、収率Yが高すぎる(すなわちPBT製造時の加熱温度が低すぎる)と小さくなってしまい、燃料として使用が困難になってしまう場合がある。よって、Ymaxは、例えば、原料のバイオマスがゴムの木の場合、HGIが、好ましくは20以上になるような収率のうち、最大の収率としてもよい。Ymaxを上回った場合は熱ガス入口温度Tginの温度を上昇させることにより、HGIが上昇したバイオマス固体燃料を得ることができる。
 このように、Ymin≦Y≦Ymaxの範囲となるよう熱ガス入口温度Tginを制御することにより、所望の性状を有するPBTを得ることが可能となる。
 図4はアカシア、図5はフタバガキ科の樹木、図6はラジアータパイン、図7Aはカラマツ50wt%とスプルース45wt%とカバノキ5wt%の混合物、図7Bはスプルース30wt%とマツ45wt%とモミ25wt%との混合物を原料としたPBTの、固体収率と最高到達温度との関係をそれぞれ示す。これらの原料についても、それぞれ、収率Yが所定値以上であれば自己発熱性試験における最高到達温度が200℃未満に抑制されているため、図3のゴムの木を原料とする場合と同様に収率Yの下限値Yminを規定した制御を行うことでPBTの自己発熱性を低減させることが可能である。収率Yの上限値についても、ゴムの木と同様にPBTの強度、耐水性、排水汚濁等を考慮して、例えば、PBTを水中に浸漬した際の耐水性、浸漬水のCOD(化学的酸素要求量)および/またはPBTのHGI(粉砕性指数)等に基づいて決定する。これら以外のバイオマス原料についても、同様に収率と最高到達温度との相関を用いることで適切な制御を行うことができる。
 図8は実施形態1における制御フローである。実施形態1では上述のとおりPBTの収率Yに基づき、ロータリーキルン2の温度制御を行うものである。
 ステップS11では収率Yを算出する。
 ステップS12では、算出された収率Yが下限値Yminを下回るか否かを判断する。YESであれば収率Yが低く、ロータリーキルン2の温度が高すぎるとされ、ステップS16において熱ガス入口温度Tginを下げる。NOであればステップS13へ移行する。
 ステップS13では、収率Yが上限値Ymaxを上回るか否かを判断する。YESであれば収率Yが高く、ロータリーキルン2の温度が低すぎるとされ、ステップS14において熱ガス入口温度Tginを上げる。NOであればYmin≦Y≦Ymaxであり、ロータリーキルン2の温度は適正であるとされ、ステップS15において熱ガス入口温度Tginを維持する。
 実施形態1のフローは、公知の自動制御と同様に周期的に繰り返し実行してもよいし、必要に応じて随時繰り返してもよい。
 [実施形態2:炭化炉の温度による制御]
 表1は各種バイオマスを原料とするPBTの収率、加熱工程130における加熱温度、および自己発熱性試験での最高到達温度等を示す表である。
Figure JPOXMLDOC01-appb-T000001
 表1中、水中浸漬後の機械的耐久性(DU)は、各固体燃料を水中に168時間浸漬したものについて、アメリカ農業工業者規格ASAE S 269.4、およびドイツ工業規格DIN EN 15210-1に準拠して機械的耐久性DUを以下の式:
  DU=(m1/m0)×100
に基づいて測定した値である。式中、m0は回転処理前の試料重量、m1は回転処理後の篩上試料重量であり、篩は円孔径3.15mmの板ふるいを用いた。表中「崩壊」と記載しているところは、水中浸漬によりバイオマス固体燃料のペレットがバイオマス粉同士の接続または接着が維持できずに崩壊してしまい、機械的耐久性の測定ができなかったことを示す。
 表1から、ロータリーキルン2の温度T(加熱工程130における加熱温度)はPBTの自己発熱性(および収率Y)と相関があるため、実施形態2ではロータリーキルン2の温度(一態様において、キルン内部温度T1)に基づき制御を行う。なお、ロータリーキルン2の温度として、キルン出口温度T2を用いてもよいし、T1とT2を組み合わせてもよい。T1とT2を組み合わせる場合は、これらの平均値を用いてもよい。
 具体的には自己発熱性が200℃未満となる加熱温度T1のうち最高の温度を予めTmaxとして設定する。例えばゴムの木では250℃以下であれば自己発熱性が200℃未満に抑制されているため、Tmax=250℃として制御を行う。一方、加熱温度T1が低すぎる場合は上述のとおりPBTの強度、耐水性、排水汚濁等の問題が発生するため、加熱温度T1の下限値Tminを予め設定し(例えばゴムの木ではTmin=200℃)、Tmin≦T1≦Tmaxとなるように制御を行う。Tminは、例えば、PBTを水中に浸漬した際崩壊せず、耐水性を有するPBTを得られる加熱温度のうち、最低の温度としてもよく、さらに、水中浸漬後の機械的耐久性の値を参照してもよい。あるいは、Tminは、浸漬水のCOD(化学的酸素要求量)および/またはPBTのHGI(粉砕性指数)等に基づいて決定してもよい。Tminは、例えば原料のバイオマスがゴムの木の場合、CODが、好ましくは1000mg/L以下となるような温度T1のうち、最低の温度としてもよい。あるいは、原料のバイオマスがゴムの木の場合、HGIが、好ましくは20以上になるような温度T1のうち、最低の温度としてもよい。なお、実施形態2ではキルン内部温度T1を用いて説明するが、これに代えてキルン出口温度T2を用いてもよいし、T1とT2を適宜組み合わせてもよい。
 図9は実施形態2における制御フローである。
 ステップS21ではキルン内部温度T1を計測する。
 ステップS22では、T1が下限値Tminを下回るか否かを判断する。YESであればロータリーキルン2の温度が低すぎるため、ステップS26において熱ガス入口温度Tginを上げる。NOであればステップS23へ移行する。
 ステップS23では、T1が上限値Tmaxを上回るか否かを判断する。YESであればロータリーキルン2の温度が高すぎるため、ステップS24において熱ガス入口温度Tginを下げる。NOであればTmin≦T1≦Tmaxであり、ロータリーキルン2の温度は適正であり、ステップS25において熱ガス入口温度Tginを維持する。
 実施形態2のフローは、公知の自動制御と同様に周期的に繰り返し実行してもよいし、必要に応じて随時繰り返してもよい。
 [実施形態3:収率および温度による制御]
 図10は実施形態3における制御フローである。収率およびロータリーキルン2の温度をともに用いることで、より高精度な制御を行うものである。なお、図10では実施形態2と同様にキルン内部温度T1を用いて説明するが、キルン出口温度T2を用いてもよいし、T1,T2を適宜組み合わせてもよい。T1とT2を組み合わせる場合は、これらの平均値を用いてもよい。実施形態3において、収率Yの上限値Ymaxおよび下限値Yminは実施形態1と同様に決定することができ、温度上限値Tmaxおよび温度下限値Tminは実施形態2と同様に決定することができ、これらは、バイオマス固体燃料の製造装置の制御部に予め設定される。
 ステップS31では収率Yを算出する。
 ステップS32では、算出された収率Yが下限値Yminを下回るか否かを判断する。YESであれば収率Yが低く、ロータリーキルン2の温度が高すぎるため、ステップS39において熱ガス入口温度Tginを下げる。NOであればステップS33へ移行する。
 ステップS33では、収率Yが上限値Ymaxを上回るか否かを判断する。YESであれば収率Yが高く、ロータリーキルン2の温度が低すぎるとされ、ステップS37において熱ガス入口温度Tginを上げる。NOであればYmin≦Y≦Ymaxであり収率Yは適正範囲にあるが、さらにキルン内部温度T1に基づく制御を行うためステップS34へ移行する。
 ステップS34ではキルン内部温度T1を計測する。
 ステップS35では、T1が下限値Tminを下回るか否かを判断する。YESであればロータリーキルン2の温度が低すぎるとされ、ステップS37において熱ガス入口温度Tginを上げる。NOであればステップS36へ移行する。
 ステップS36では、T1が上限値Tmaxを上回るか否かを判断する。YESであればロータリーキルン2の温度が高すぎるとされ、ステップS39において熱ガス入口温度Tginを下げる。NOであればTmin≦T1≦Tmaxであり、ロータリーキルン2の温度は適正であるとされ、ステップS38において熱ガス入口温度Tginを維持する。
 このように、実施形態3では収率Yが適正範囲であってもキルン内部温度T1が適正範囲にない場合は熱ガス入口温度Tginを制御することが可能であり、制御精度を向上させることが可能である。
 実施形態3のフローは、公知の自動制御と同様に周期的に繰り返し実行してもよいし、必要に応じて随時繰り返してもよい。
 [効果]
 本発明の好ましい態様とその効果について記載する。下記(1)~(6)の態様のうち、複数の態様を組み合わせるのも好ましい。
 (1)バイオマス固体燃料の製造装置は、バイオマス成型体を炭化してバイオマス固体燃料を得る炭化炉(ロータリーキルン2)と、バイオマス固体燃料の収率Yを算出する収率算出部3aおよび/または炭化炉の温度(T1、T2)を計測する温度計測部41,42と、炭化炉の熱源6を制御する制御部3とを備え、
 制御部3は、バイオマス固体燃料の自己発熱性と、収率Yおよび/または炭化炉の温度T1(T2、またはT1とT2との組み合わせであってもよい)との相関に基づき、熱源を制御することとした。
 これにより、自己発熱性が抑制された良好な燃料を得ることができる。
 (2)制御部3は、収率Yの下限値Yminを予め備え、収率が下限値Yminを下回る場合、熱源(熱ガス入口温度Tgin)の温度を低下させることとした。収率と自己発熱性には強い相関がみられるため、自己発熱性が所望値以下となる収率の下限値を予め設定し、この下限値に基づき熱源の温度を制御することで効率的な生産が可能となる。
 (3)制御部3は、炭化炉の温度上限値Tmaxを予め備え、炭化炉の温度が温度上限値Tmaxを超える場合、熱源の温度を低下させることとした。自己発熱性と炭化炉の温度には強い相関が見られるため、自己発熱性が所望値以下となる炭化炉の温度上限値を予め設定し、この温度上限値に基づき熱源の温度を制御することで効率的な生産を行うことができる。
 (4)制御部3は、収率Yの上限値Ymaxを予め備え、収率Yが上限値Ymaxを超える場合、熱源の温度を上昇させることとした。収率が必要以上に高くなるとPBTの性状が低下するため(強度、耐水性、排水汚濁等)、上限値Ymaxを設けることで所望のPBTを得ることができる。
 (5)制御部3は、炭化炉の温度下限値Tminを予め備え、炭化炉の温度が温度下限値Tminを下回る場合、熱源の温度を上昇させることとした。炭化炉の温度が低い場合もPBTの性状が低下するため(強度、耐水性、排水汚濁等)、温度下限値Tminを設けることで所望のPBTを得ることができる。
 (6)温度計測部41、42は、それぞれ、炭化炉内部の温度T1および炭化炉出口における温度T2を計測することとした。
 炉内温度(キルン内部温度)T1および/または出口温度(キルン出口温度)T2を用いることで、制御性を向上させることができる。炉内温度T1は正確性、出口温度T2はバイオマス固体燃料の温度を直接計測できる点に利点があり、それぞれを適宜使用または組み合わせることで良好な制御特性が得られる。例えば、T1とT2の平均に基づき制御してもよい。
2 ロータリーキルン
3 制御部
3a 収率算出部
6 熱源
41,42 温度計測部

Claims (7)

  1.  バイオマス成型体を炭化してバイオマス固体燃料を得る炭化炉と、
     前記バイオマス固体燃料の収率を算出する収率算出部、および/または、前記炭化炉の温度を計測する温度計測部と、
     前記炭化炉の熱源を制御する制御部と
     を備え、
     前記制御部は、前記バイオマス固体燃料の自己発熱性と、前記収率および/または前記炭化炉の温度との相関に基づき、前記熱源を制御すること
     を特徴とするバイオマス固体燃料の製造装置。
  2.  前記制御部は、
     収率の下限値を予め備え、
     前記収率算出部により算出された収率が前記下限値未満の場合、前記熱源の温度を低下させること
     を特徴とする、請求項1に記載のバイオマス固体燃料の製造装置。
  3.  前記制御部は、
     前記炭化炉の温度上限値を予め備え、
     前記炭化炉の温度計測部により計測された温度が前記温度上限値を超える場合、前記熱源の温度を低下させること
     を特徴とする、請求項1または請求項2に記載のバイオマス固体燃料の製造装置。
  4.  前記制御部は、
     収率の上限値を予め備え、
     前記収率算出部により算出された収率が前記上限値を超える場合、前記熱源の温度を上昇させること
     を特徴とする、請求項2または3に記載のバイオマス固体燃料の製造装置。
  5.  前記制御部は、
     前記炭化炉の温度下限値を予め備え、
     前記炭化炉の温度が前記温度下限値未満の場合、前記熱源の温度を上昇させること
     を特徴とする、請求項3または4に記載のバイオマス固体燃料の製造装置。
  6.  前記温度計測部は、前記炭化炉内部の温度および/または前記炭化炉出口における温度を計測すること
     を特徴とする、請求項1ないし請求項5のいずれか1項に記載のバイオマス固体燃料の製造装置。
  7.  バイオマス成型体を炭化炉で炭化してバイオマス固体燃料を得る方法であって、
     前記バイオマス固体燃料の自己発熱性と、前記バイオマス固体燃料の収率および/または前記炭化炉の温度との相関に基づき、前記炭化炉の熱源を制御することを特徴とする、バイオマス固体燃料の製造方法。
PCT/JP2018/036715 2017-10-04 2018-10-01 バイオマス固体燃料の製造装置およびその製造方法 WO2019069860A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019546699A JP7348065B2 (ja) 2017-10-04 2018-10-01 バイオマス固体燃料の製造装置およびその製造方法
US16/652,624 US11198829B2 (en) 2017-10-04 2018-10-01 Apparatus for manufacturing a biomass solid fuel and a method for manufacturing the same
RU2020115196A RU2781529C2 (ru) 2017-10-04 2018-10-01 Устройство для получения твёрдого топлива из биомассы и способ получения твёрдого топлива
AU2018345068A AU2018345068B2 (en) 2017-10-04 2018-10-01 Device and method for manufacturing biomass solid fuel
CA3077667A CA3077667A1 (en) 2017-10-04 2018-10-01 Device and method for manufacturing biomass solid fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-194540 2017-10-04
JP2017194540 2017-10-04

Publications (1)

Publication Number Publication Date
WO2019069860A1 true WO2019069860A1 (ja) 2019-04-11

Family

ID=65994726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036715 WO2019069860A1 (ja) 2017-10-04 2018-10-01 バイオマス固体燃料の製造装置およびその製造方法

Country Status (5)

Country Link
US (1) US11198829B2 (ja)
JP (1) JP7348065B2 (ja)
AU (1) AU2018345068B2 (ja)
CA (1) CA3077667A1 (ja)
WO (1) WO2019069860A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229824A1 (en) 2019-05-13 2020-11-19 Hamer, Christopher Process for producing solid biomass fuel
WO2021024001A1 (en) 2019-08-08 2021-02-11 Hamer, Christopher Process for producing solid biomass fuel
WO2021156628A1 (en) 2020-02-06 2021-08-12 Hamer, Christopher Process for producing solid biomass fuel
WO2021230007A1 (ja) * 2020-05-11 2021-11-18 出光興産株式会社 バイオマス固形燃料の製造方法及びバイオマス固形燃料
GB202117376D0 (en) 2021-12-01 2022-01-12 Bai hong mei Process for producing solid biomass fuel
WO2022079427A1 (en) 2020-10-12 2022-04-21 Hamer, Christopher Process for producing solid biomass fuel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11828164B2 (en) 2019-04-01 2023-11-28 Schlumberger Technology Corporation Instrumented cutter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056608A1 (ja) * 2014-10-07 2016-04-14 宇部興産株式会社 バイオマス固体燃料
JP2017043657A (ja) * 2015-08-24 2017-03-02 春男 上原 半炭化物製造装置及び発電システム
JP2017145335A (ja) * 2016-02-18 2017-08-24 三菱重工環境・化学エンジニアリング株式会社 バイオマス燃料製造プラント

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077652A1 (ja) 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization 木質バイオマス固形燃料及びその製法
US20080103747A1 (en) * 2006-10-31 2008-05-01 Macharia Maina A Model predictive control of a stillage sub-process in a biofuel production process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056608A1 (ja) * 2014-10-07 2016-04-14 宇部興産株式会社 バイオマス固体燃料
JP2017043657A (ja) * 2015-08-24 2017-03-02 春男 上原 半炭化物製造装置及び発電システム
JP2017145335A (ja) * 2016-02-18 2017-08-24 三菱重工環境・化学エンジニアリング株式会社 バイオマス燃料製造プラント

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229824A1 (en) 2019-05-13 2020-11-19 Hamer, Christopher Process for producing solid biomass fuel
WO2021024001A1 (en) 2019-08-08 2021-02-11 Hamer, Christopher Process for producing solid biomass fuel
WO2021156628A1 (en) 2020-02-06 2021-08-12 Hamer, Christopher Process for producing solid biomass fuel
WO2021230007A1 (ja) * 2020-05-11 2021-11-18 出光興産株式会社 バイオマス固形燃料の製造方法及びバイオマス固形燃料
JP7490444B2 (ja) 2020-05-11 2024-05-27 出光興産株式会社 バイオマス固形燃料の製造方法
WO2022079427A1 (en) 2020-10-12 2022-04-21 Hamer, Christopher Process for producing solid biomass fuel
GB202117376D0 (en) 2021-12-01 2022-01-12 Bai hong mei Process for producing solid biomass fuel
WO2023099900A1 (en) 2021-12-01 2023-06-08 Hamer, Christopher Process for producing solid biomass fuel

Also Published As

Publication number Publication date
CA3077667A1 (en) 2019-04-11
US20200239800A1 (en) 2020-07-30
JP7348065B2 (ja) 2023-09-20
RU2020115196A (ru) 2021-11-01
RU2020115196A3 (ja) 2022-01-31
JPWO2019069860A1 (ja) 2020-10-22
AU2018345068B2 (en) 2022-03-03
AU2018345068A1 (en) 2020-04-30
US11198829B2 (en) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2019069860A1 (ja) バイオマス固体燃料の製造装置およびその製造方法
US11920100B2 (en) Process for producing solid biomass fuel
Andrew et al. The physical, proximate and ultimate analysis of rice husk briquettes produced from a vibratory block mould briquetting machine
CA2896771C (en) Biomass solid fuel
Aina et al. Heat energy from value-added sawdust briquettes of albizia zygia
KR101371884B1 (ko) 바이오매스 원료를 이용한 고체 연료의 제조 방법 및 이로부터 제조된 고체 연료
US20100133086A1 (en) Apparatus and process for producing biocoke
WO2010058377A2 (de) Verfahren und vorrichtung zur herstellung von werk-oder brennstoffen
CN104884587A (zh) 型煤制造方法及型煤制造装置
JP5469896B2 (ja) バイオコークス製造方法及び製造装置
Jifara et al. Pelletization of mixed torrefied corn cob and khat stem to enhance the physicochemical and thermal properties of solid biofuel and parametric optimization
Zhang et al. Effects of moisture content and temperature on the quality of water hyacinth pellets
RU2781529C2 (ru) Устройство для получения твёрдого топлива из биомассы и способ получения твёрдого топлива
JP6525100B1 (ja) バイオマス固体燃料製造方法およびバイオマス固体燃料製造装置
Monsen et al. Charcoal in anodes for aluminium production
KR102458125B1 (ko) 돈분 및 마스크 폐기물을 이용한 바이오 고형원료 및 그 제조방법
GB2592842A (en) Process for producing solid biomass fuel
TWI752538B (zh) 固態生質燃料的製造方法
KR20100007851A (ko) 느타리버섯폐배지를 이용한 고체연료 제조방법
Arul Kumar et al. Mechanical, physical and chemical properties of saw dust briquette
KR100489679B1 (ko) 야금용 코크스의 제조방법
RU2373261C1 (ru) Способ получения брикетов из бурого угля
Mirwa et al. Utilization of Pine Fruit and Peanut Shell Wastes into Briquettes as an Alternative Fuel
Bibrzycki et al. Statistical description of biomass blends devolatilization
WO2014145973A1 (en) Production of low emission biomass fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546699

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3077667

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018345068

Country of ref document: AU

Date of ref document: 20181001

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18865021

Country of ref document: EP

Kind code of ref document: A1