WO2019065768A1 - Retainer for tapered roller bearing, and tapered roller bearing - Google Patents

Retainer for tapered roller bearing, and tapered roller bearing Download PDF

Info

Publication number
WO2019065768A1
WO2019065768A1 PCT/JP2018/035766 JP2018035766W WO2019065768A1 WO 2019065768 A1 WO2019065768 A1 WO 2019065768A1 JP 2018035766 W JP2018035766 W JP 2018035766W WO 2019065768 A1 WO2019065768 A1 WO 2019065768A1
Authority
WO
WIPO (PCT)
Prior art keywords
tapered roller
diameter ring
pair
tapered
roller bearing
Prior art date
Application number
PCT/JP2018/035766
Other languages
French (fr)
Japanese (ja)
Inventor
清水 拓也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201880062093.7A priority Critical patent/CN111133210B/en
Publication of WO2019065768A1 publication Critical patent/WO2019065768A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances

Definitions

  • the present invention relates to a resin tapered roller bearing retainer for use in railway vehicles, automobiles, industrial machines and the like, and a tapered roller bearing using the cage.
  • tapered roller bearings roll between an inner ring having a tapered raceway surface on the outer peripheral surface, an outer ring having a tapered raceway surface on the inner peripheral surface, and a raceway surface of the inner ring and a raceway surface of the outer ring
  • a plurality of tapered rollers and a cage for holding the tapered rollers in a rollable manner in the pocket portion are provided.
  • the cage is formed by connecting a large diameter ring portion and a small diameter ring portion by a plurality of column portions, and accommodates tapered rollers in pocket portions between the column portions.
  • metal materials such as rolled steel plates have been used as cages for tapered roller bearings.
  • metal cages are problematic in that they are heavy in weight, and the amount of wear generated in the bearings during use accelerates the deterioration of the lubricating oil and thus shortens the product life of the bearings. . Therefore, a resin cage, which is an injection molded body of a resin composition, is known from the viewpoint of weight saving and long life of the bearing.
  • a resin cage is inferior in strength to a metal cage, a method for securing the strength of the resin cage has been proposed.
  • a method of securing the strength of the resin cage As a method of securing the strength of the resin cage, a method focusing on a weld line formed by joining molten resin at the time of injection molding is known.
  • the weld line is generated only in the small diameter ring portion, and the weld line is not generated in the large diameter ring portion, thereby improving the strength of the large diameter ring portion in the radial direction.
  • the weld line is generated only in one ring portion, and the reinforcing line of which the orientation is disturbed is further included in the weld line, thereby improving the strength of the cage. .
  • the improvement of the strength of the resin cage is not achieved only by controlling the weld line.
  • various forces such as a pushing force from the tapered roller and a centrifugal force are applied to the cage.
  • high stress is applied to the corner R portion which is a connecting portion between the column portion and each ring portion due to stress concentration. Therefore, there is a possibility that the resin-made cage may be broken depending on the corner R portion under use conditions where higher stress is generated such as under high speed rotation and high vibration. Therefore, in order to improve the strength of the resin cage, it is desirable to reduce the stress concentration at the corner R and to reduce the generated stress.
  • the present invention has been made in view of such a background, and is a tapered roller bearing retainer excellent in strength at corner R portions between a column portion and each ring portion, and a tapered roller bearing using the cage. Intended to provide.
  • the cage for a tapered roller bearing of the present invention is a cage for a tapered roller bearing which is an injection molded body of a resin composition, and the cage connects a large diameter ring portion and a small diameter ring portion with each other.
  • a plurality of column portions are provided, and a pocket portion is formed between adjacent column portions, and the large diameter ring portion and the column portion, and the small diameter ring portion and the column portion respectively have corner R portions
  • Mold division lines formed by injection molding are respectively formed along the axial direction on a pair of surfaces of the adjacent pillars forming the pocket portion, the pair of surfaces being the mold
  • a tapered pair of second surface the taper angle of the first surface of the pair may be smaller than the taper angle of the pair
  • a concave relief portion is provided in the large diameter ring portion. Furthermore, the ratio of the axial length of the recess to the axial width of the large diameter ring is less than 10%.
  • a concave relief portion is provided in the small diameter ring portion.
  • an inner ring having a tapered raceway surface on an outer peripheral surface, an outer ring having a tapered raceway surface on an inner peripheral surface, a raceway surface of the inner ring and a raceway surface of the outer ring A tapered roller bearing comprising: a plurality of rolling tapered rollers; and a cage for holding the tapered rollers rollably in a pocket portion, wherein the cage is the cage for a tapered roller bearing according to the present invention It is characterized by
  • mold division lines by injection molding are respectively formed along the axial direction on a pair of surfaces of adjacent pillars constituting the pocket, and the pair of surfaces is a mold A pair of tapered first surfaces that narrow the circumferential width of the pocket portion toward the outer diameter direction on the large diameter ring side with respect to the dividing line, and on the small diameter ring side with respect to the mold dividing line Since it has a pair of tapered second surfaces that narrow the width of the pocket in the outer diameter direction, the pair of second surfaces are conical when the cage holds tapered rollers. In contact with the roller, the pair of first surfaces do not contact the tapered roller. That is, the tapered rollers are held by the pair of second surfaces of the adjacent column portions.
  • the pocket portion on the large diameter ring portion side is compared with the case where these taper angles are the same.
  • the circumferential width of the As a result, it is possible to increase the curvature radius of the corner R portion between the column portion and the large diameter ring portion. Further, in this case, since the pair of first surfaces do not contact the tapered rollers, interference with the tapered rollers is less likely to occur even if the radius of curvature of the corner R portion is increased. As mentioned above, the stress concentration of corner R can be eased, and the strength of the resin cage can be improved.
  • the concave relief portion is provided in the large diameter ring portion as the corner R portion between the large diameter ring portion and the column portion, the radius of curvature of the corner R portion can be made larger, and stress concentration is achieved. It can be relaxed suitably. Furthermore, the ratio of the axial length of the relief portion at the corner R portion to the axial width of the large diameter ring portion is less than 10%, so the axial width of the large diameter ring portion is reduced. The reduction in strength of the large diameter ring portion can be suppressed.
  • the concave relief portion is provided in the small diameter ring portion as the corner R portion between the small diameter ring portion and the column portion, stress concentration can be alleviated also in the corner R portion on the small diameter ring portion side.
  • the tapered roller bearing of the present invention rolls between the inner race having a tapered raceway on the outer peripheral surface, the outer race having a tapered raceway on the inner peripheral surface, and the raceway of the inner ring and the raceway of the outer race And a cage for rotatably holding the tapered rollers in the pocket portion, wherein the cage is the cage for tapered roller bearings of the present invention, and the cage is at the corner R portion Since the strength is excellent, weight reduction and long life of the tapered roller bearing can be suitably achieved.
  • FIG. 1 is an axial sectional view of a tapered roller bearing.
  • the tapered roller bearing 1 includes an inner ring 2 having a tapered raceway surface 2a on the outer peripheral surface, an outer ring 3 having a tapered raceway surface 3a on the inner peripheral surface, and a raceway surface 2a of the inner ring 2 And a raceway surface 3a of the outer ring 3, and a cage 5 for holding the tapered rollers 4 so as to be rollable at regular intervals in the circumferential direction.
  • Each raceway surface is tapered such that the diameter of the raceway surface increases and decreases along the axial direction.
  • the angle of the taper is not particularly limited, but is usually about 15 ° to 60 ° with respect to the axial direction.
  • FIG. 2 shows an example of the tapered roller bearing retainer of the present invention.
  • the cage 5 includes a large diameter ring portion 6, a small diameter ring portion 7, and a plurality of column portions 8 connecting these, and a pocket portion 9 is formed between adjacent column portions 8 .
  • the tapered roller 4 is accommodated in the pocket portion 9.
  • the large diameter ring portion 6 and the column portion 8 are connected by forming a corner R portion 10a which allows these to be smoothly continued.
  • the small diameter ring portion 7 and the column portion 8 are connected by forming a corner R portion 10b which allows these to be smoothly continued.
  • the corner R portion 10 a and the corner R portion 10 b are formed in a circular arc shape in cross section in the radial direction. By this corner R portion, it is possible to suppress excessive stress concentration on the position where the ring portions 6, 7 and the column portion 8 intersect.
  • the holder 5 is an injection molded body of a resin composition, and is obtained using two dies in an axial direction (axial draw).
  • FIG. 3 shows a schematic view of the mold.
  • the mold 11 is a mold for a bearing cage for manufacturing the annular cage 5 by injection molding of a resin composition.
  • the mold 11 has at least a fixed mold 12 and a movable mold 13 which can be clamped and released relative to the fixed mold 12, and when they meet, a molded cavity having a desired bearing cage shape is obtained.
  • 14 forms. Specifically, in the manufacture of the holder 5, one or a plurality of gates, which are resin injection ports, are provided to the molding cavity 14, and molten resin is injected from the gate to fill the molding cavity. When the inside of the molding cavity is filled with resin, pressure is applied to compress the resin in the molding cavity (pressure holding). After cooling and solidifying the molten resin in the mold for a certain period of time, the mold is opened to obtain a bearing cage made of resin.
  • FIG. 4 the perspective enlarged view of the holder
  • a pair of surfaces of the adjacent pillars 8 form a pocket 9.
  • a pair of surfaces of adjacent pillars 8 face each other across the pocket.
  • metal division lines X formed by injection molding are respectively formed along the axial direction of the tapered roller bearing 1 (the axial direction of the cage 5) on the pair of surfaces.
  • the surface forming the pocket 9 of each column 8 is a discontinuous surface divided by the metal dividing line X, and the surface forming the pocket 9 of each column 8 is: A surface 8a on the side (large diameter side) of the ring portion 6 larger in diameter than the metal dividing line X and a surface 8b on the side (small diameter side) of the smaller diameter ring portion 7 than the metal dividing line X are provided.
  • the metal dividing line X is shifted from the center of the column portion 8 to the large diameter ring portion 6 side.
  • the large diameter side surface 8 a is formed by the fixed mold 12, and the small diameter side surface 8 b is formed by the movable mold 13.
  • the large diameter surface 8 a may be formed by the movable mold 13, and the small diameter surface 8 b may be formed by the fixed mold 12.
  • the pair of surfaces is a pair of surfaces 8 a and 8 a on the larger diameter ring portion 6 side (large diameter side) than the metal dividing line X
  • a pair of surfaces 8b and 8b on the smaller diameter ring portion 7 side (small diameter side) than the line X is provided.
  • the pair of surfaces 8a, 8a and the pair of surfaces 8b, 8b are each formed in a tapered shape so as to narrow the width in the circumferential direction of the pocket portion 9 toward the outer diameter direction. In this configuration, when the tapered roller 4 is stored, the pair of surfaces 8 b and 8 b contact the tapered roller 4, while the pair of surfaces 8 a and 8 a do not contact the tapered roller 4.
  • the curvature radius (R dimension) of the corner R portion As a method of reducing the stress concentration, for example, it is conceivable to increase the curvature radius (R dimension) of the corner R portion. By increasing the radius of curvature, it is expected that the generated stress is dispersed and the stress concentration is alleviated.
  • the curvature radius of the corner R portion 10a is larger than the curvature radius of the chamfered portion 4a of the tapered roller 4, the chamfered portion 4a of the corner R portion 10a and the tapered roller 4 Interfere with each other, making it difficult to hold the tapered roller 4.
  • a concave relief N in the axial direction of the large diameter ring 6 is provided as the corner R 10a, and the radius of curvature of the corner R 10a is increased. Is considered. In this case, interference with the chamfered portion 4 a of the tapered roller 4 can be prevented while relieving stress concentration. However, in this case, if the relief portion N is increased (for example, increased in the axial direction) in order to increase the radius of curvature of the corner R portion 10a, the axial width of the large diameter ring 6 and hence the cross sectional area decrease. As a result, the strength of the cage 5 may be reduced.
  • the axial section height (radial width) h of the large diameter ring 6 is increased to make the large diameter ring 6 thick in the radial direction. It is conceivable to prevent the decrease in strength.
  • the magnitude relationship between h1 and h2 is h1 ⁇ h2. In this case, when the radial width h of the large diameter ring portion 6 is increased, the mold parting line X is shifted radially inward.
  • the area of the surface 8 b is reduced, and as a result, the contact length d of the column portion 8 and the tapered roller 4 is shortened.
  • the magnitude relationship between d1 and d2 is d1> d2. Then, by increasing the radial width h of the large diameter ring portion 6, it may be difficult to stably hold the tapered roller 4.
  • the axial cross-sectional length (axial width) L of the large diameter ring portion 6 is increased to make the large diameter ring portion 6 axially thick. It is conceivable to prevent the decrease in strength.
  • the bearing peripheral parts 15 and the like exist near the axial direction of the cage 5, when the axial width L of the large diameter ring portion 6 is increased, interference with the bearing peripheral parts 15 is concerned.
  • increasing the radius of curvature of the corner R portion 10a such as providing the relief portion may be advantageous in relieving stress concentration on the corner R portion 10a, but maintaining the strength of the large diameter ring portion 6 It is considered difficult to do.
  • the cage 5 of the present invention realizes a configuration in which the strength of the large diameter ring portion 6 is maintained while making it possible to increase the radius of curvature of the corner R portion 10a.
  • the taper angle of the pair of surfaces 8a and 8a on the large diameter side is compared to the taper angle of the pair of surfaces 8b and 8b on the small diameter side. Also made smaller. That is, the taper angle is changed so that the circumferential width of the pocket portion 9 is widened with respect to the mold parting line X with respect to the large diameter side faces 8a, 8a.
  • the large diameter side surfaces 8a, 8a are "a pair of first surfaces”
  • the small diameter side surfaces 8b, 8b are "a pair of second surfaces”.
  • FIG. 8 shows a schematic cross-sectional view seen from the small diameter ring 7 side along the axis of the tapered roller 4.
  • the taper angle of the large diameter side surfaces 8a and 8a is ⁇ a
  • the taper angle of the small diameter side surfaces 8b and 8b is ⁇ b.
  • ⁇ a is smaller than ⁇ b ( ⁇ a ⁇ b).
  • the tapered roller 4 is held in contact with the pair of surfaces 8 b and 8 b on the small diameter side (the front side in FIG. 8). Therefore, the taper angle ⁇ a of the pair of surfaces 8a is changed to a smaller side, and the retention of the tapered roller 4 is maintained even if the circumferential width W of the pocket 9 is increased.
  • the taper angle ⁇ b of the pair of surfaces 8b on the small diameter side is not particularly limited as long as the tapered roller 4 can be stably held, and is, for example, 20 to 60 degrees, more preferably 30 to 50. Degrees.
  • the taper angle ⁇ a of the pair of surfaces 8a on the large diameter side is not particularly limited as long as the angle is smaller than the taper angle ⁇ b.
  • the difference between the taper angle ⁇ a and the taper angle ⁇ b is, for example, 1 to 10 degrees, and preferably 1 to 5 degrees. In consideration of these, it is particularly preferable that the taper angle ⁇ b is 30 to 50 degrees and the taper angle ⁇ a is an angle smaller by 1 to 5 degrees than the taper angle ⁇ b.
  • the relief portion is formed in an arc shape in a radial direction cross section.
  • the position where the relief portion is provided is not particularly limited, for example, as shown in FIG. 9, the relief portion 16 can be provided on the large diameter ring portion 6 along the outer diameter surface of the tapered roller 4.
  • the relief portion can be made smaller when the relief portion is provided, as compared with the conventional cage.
  • an axial length along the outer diameter surface of the tapered roller 4 in the recess 16 is t1
  • an axial width (t1 along the outer diameter surface of the tapered roller 4 in the large diameter ring portion 6 Assuming that t2 is included, in the conventional cage (a cage in which the taper angle ⁇ a and the taper angle ⁇ b are the same), the relief amount is 10 to 20% in the axial length ratio (t1 / t2) of the large diameter ring portion 6 It is an extent.
  • the stress concentration is relaxed by changing the taper angle, so that the amount of run-off can be made smaller than that of the conventional cage.
  • the relief amount can be made less than 10% in the axial direction length ratio (t1 / t2) of the large diameter ring portion 6.
  • the amount of relief can be reduced, so that stress concentration in the corner R portion 10a can be more suitably alleviated while maintaining the strength of the large diameter ring portion 6. it can.
  • the recess portion 16 can be similarly provided for the corner R portion 10b on the small diameter side. Further, the position and the shape of the recess 16 may be changed according to each of the corner R 10 a and the corner R 10 b. From the viewpoint of strength and stress dispersion of the cage 5, it is preferable to provide the recess 16 in the large diameter ring 6 along the axial direction and to provide the recess 16 in the small diameter ring 7 along the axial direction.
  • the resin composition used as the material of the bearing cage of the present invention can be injection molded and any material can be used as long as it has sufficient heat resistance and mechanical strength as the cage material.
  • a synthetic resin used as a base resin of this resin composition polyamide 6 (PA 6) resin, polyamide 6-6 (PA 66) resin, polyamide 6-10 (PA 610) resin, polyamide 6-12 (PA 612) resin, for example Polyamide (PA) resin such as polyamide 4-6 (PA46) resin, polyamide 9-T (PA9T) resin, polyamide 6-T (PA6T) resin, polymetaxylene adipamide (polyamide MXD-6) resin, injection molding Fluoroplastics, low density polyethylene, high density polyethylene, polyethylene (PE) resin such as ultra high molecular weight polyethylene, polyacetal (POM) resin, polyphenylene sulfide (PPS) resin, polyetheretherketone (PEEK) resin, polyamide imide ( PAI) resin, polyether imide PEI) resins, and
  • fibers such as glass fiber, aramid fiber, carbon fiber, various mineral fibers (whiskers) and the like within a range not to inhibit injection moldability to these resins. It is preferable to blend a reinforcing material.
  • additives other than the fibrous reinforcing material may be blended. Examples of this additive include inorganic fillers such as calcium silicate and talc, solid lubricants such as graphite and polytetrafluoroethylene (PTFE) resin, and antistatic agents.
  • PTFE polytetrafluoroethylene
  • the tapered roller bearing using the tapered roller bearing retainer of the present invention can prevent problems such as cage breakage at corner R portions. Further, by adopting a resin cage, weight reduction and long life of the bearing can be achieved.
  • a tapered roller bearing of the present invention is not limited to these.
  • the taper angle ⁇ a of the large diameter side of the pair of surfaces was 38 degrees
  • the taper angle ⁇ b of the small diameter side of the pair of surfaces was 40 degrees.
  • the retainer does not have a relief portion as a corner R portion which is a connection portion between the large diameter ring portion and the column portion.
  • the 3D model of the cage was used to calculate the stress generated in the drop impact condition. The stress distribution of the calculated stress is shown in FIG.
  • Comparative Example The same resin composition as in the example was used for injection molding to form a cage.
  • the taper angle ⁇ a of the large diameter side of the pair of surfaces and the taper angle ⁇ b of the small diameter side of the pair of surfaces were both 40 degrees.
  • a relief portion was provided as a corner R portion to be a connection portion between the large diameter ring portion and the column portion.
  • the relief portion was provided on the large diameter ring portion along the outer diameter surface of the tapered roller.
  • the axial length (t1) along the outer diameter surface of the tapered roller in the relief portion is 1.6 mm
  • the axial width (t2) along the outer diameter surface of the tapered roller in the large diameter ring portion is 9 It was .0 mm.
  • the ratio (t1 / t2) of the axial length of the relief portion to the axial width of the large diameter ring portion was about 18%.
  • the stress generated under the same conditions as Example 1 was calculated using the 3D model of the cage. The stress distribution of the calculated stress is shown in FIG.
  • the cage for a tapered roller bearing of the present invention is excellent in strength at the corner R, and therefore, can be widely used as a cage for a tapered roller bearing used in railway vehicles, automobiles, industrial machines, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided are a retainer for a tapered roller bearing having excellent strength in a rounded corner part, and a tapered roller bearing that uses this retainer. In a retainer 5, pocket parts 9 are formed between adjacent post parts 8, rounded corner parts are formed to link large-diameter ring parts and post parts 8 and to link small-diameter ring parts and post parts 8, and mold-splitting lines X are formed by injection molding along an axial direction in each of the pairs of surfaces of adjacent post parts 8 constituting pocket parts 9. Each of these pairs of surfaces has a tapered pair of surfaces 8a, 8a nearer to the large-diameter ring part side than the mold-splitting line X, where the circumferential width of the pocket part 9 is narrowed toward the outside-diameter direction, and a tapered pair of surfaces 8b, 8b nearer to the small-diameter ring part side than the mold-splitting line X, where the circumferential width of the pocket part 9 is narrowed toward the outside-diameter direction. The taper angle θa of the pair of surfaces 8a, 8a is smaller than the taper angle θb of the pair of surfaces 8b, 8b.

Description

円すいころ軸受用保持器および円すいころ軸受Retainer for tapered roller bearing and tapered roller bearing
 本発明は、鉄道車両、自動車、産業機械などに用いられる樹脂製の円すいころ軸受用保持器および該保持器を用いた円すいころ軸受に関する。 The present invention relates to a resin tapered roller bearing retainer for use in railway vehicles, automobiles, industrial machines and the like, and a tapered roller bearing using the cage.
 円すいころ軸受は、一般に、外周面にテーパ状の軌道面を有する内輪と、内周面にテーパ状の軌道面を有する外輪と、内輪の軌道面と外輪の軌道面との間を転動する複数の円すいころと、各円すいころをポケット部で転動自在に保持する保持器とを備えている。さらに、保持器は、大径リング部と小径リング部とを複数の柱部で連結してなり、柱部同士の間のポケット部に円すいころを収納している。 Generally, tapered roller bearings roll between an inner ring having a tapered raceway surface on the outer peripheral surface, an outer ring having a tapered raceway surface on the inner peripheral surface, and a raceway surface of the inner ring and a raceway surface of the outer ring A plurality of tapered rollers and a cage for holding the tapered rollers in a rollable manner in the pocket portion are provided. Furthermore, the cage is formed by connecting a large diameter ring portion and a small diameter ring portion by a plurality of column portions, and accommodates tapered rollers in pocket portions between the column portions.
 従来、円すいころ軸受の保持器としては、圧延鋼板などの金属材質が用いられてきた。しかし、金属製の保持器は重量が重くなること、また、使用中に軸受内で発生する磨耗分が潤滑油の劣化を促進させ、ひいては軸受の製品寿命を短縮させることなどが問題であった。そこで、軸受の軽量化や長寿命化の観点から、樹脂組成物の射出成形体である樹脂製保持器が知られている。ただし、樹脂製保持器は、金属製の保持器に比べて強度が劣ることから、樹脂製保持器の強度を確保する手法が提案されている。 Heretofore, metal materials such as rolled steel plates have been used as cages for tapered roller bearings. However, metal cages are problematic in that they are heavy in weight, and the amount of wear generated in the bearings during use accelerates the deterioration of the lubricating oil and thus shortens the product life of the bearings. . Therefore, a resin cage, which is an injection molded body of a resin composition, is known from the viewpoint of weight saving and long life of the bearing. However, since a resin cage is inferior in strength to a metal cage, a method for securing the strength of the resin cage has been proposed.
 樹脂製保持器の強度を確保する手法としては、射出成形時の際に溶融樹脂が合流してできるウエルドラインに着目した手法が知られている。例えば、特許文献1に記載の技術では、小径リング部にのみウエルドラインを発生させ、大径リング部にウエルドラインを発生させないことで、大径リング部の径方向に対する強度の向上を図っている。また、特許文献2に記載の技術では、一方のリング部にのみウエルドラインを発生させ、さらにそのウエルドラインに配向が乱れた強化繊維を含ませることで、保持器の強度の向上を図っている。 As a method of securing the strength of the resin cage, a method focusing on a weld line formed by joining molten resin at the time of injection molding is known. For example, in the technique described in Patent Document 1, the weld line is generated only in the small diameter ring portion, and the weld line is not generated in the large diameter ring portion, thereby improving the strength of the large diameter ring portion in the radial direction. . Further, in the technique described in Patent Document 2, the weld line is generated only in one ring portion, and the reinforcing line of which the orientation is disturbed is further included in the weld line, thereby improving the strength of the cage. .
特開2014-92252号公報JP 2014-92252 A 特開2013-46982号公報JP, 2013-46982, A
 ところで、樹脂製保持器の強度の向上は、ウエルドラインを制御することだけで達成されるものではない。円すいころ軸受の回転時において、保持器には、円すいころから押される力や遠心力など様々な力が加わる。特に、柱部と各リング部との連結部となる隅R部には、応力集中により高い応力が加わる。そのため、高速回転下や高振動下などのより高い応力が発生する使用条件下では、隅R部に依拠して樹脂製保持器が破損するおそがある。それゆえ、樹脂製保持器の強度向上において、隅R部の応力集中を緩和し、発生応力を低減させることが望ましい。 By the way, the improvement of the strength of the resin cage is not achieved only by controlling the weld line. At the time of rotation of the tapered roller bearing, various forces such as a pushing force from the tapered roller and a centrifugal force are applied to the cage. In particular, high stress is applied to the corner R portion which is a connecting portion between the column portion and each ring portion due to stress concentration. Therefore, there is a possibility that the resin-made cage may be broken depending on the corner R portion under use conditions where higher stress is generated such as under high speed rotation and high vibration. Therefore, in order to improve the strength of the resin cage, it is desirable to reduce the stress concentration at the corner R and to reduce the generated stress.
 本発明はこのような背景に鑑みてなされたものであり、柱部と各リング部との間の隅R部での強度に優れる円すいころ軸受用保持器および該保持器を用いた円すいころ軸受を提供することを目的とする。 The present invention has been made in view of such a background, and is a tapered roller bearing retainer excellent in strength at corner R portions between a column portion and each ring portion, and a tapered roller bearing using the cage. Intended to provide.
 本発明の円すいころ軸受用保持器は、樹脂組成物の射出成形体である円すいころ軸受用保持器であって、該保持器は、大径リング部と、小径リング部と、これらを連結する複数の柱部とを備え、隣接する柱部同士の間にポケット部が形成されており、上記大径リング部と上記柱部、および、上記小径リング部と上記柱部は、それぞれ隅R部を形成して連結され、上記ポケット部を構成する上記隣接する柱部の一対の面に、射出成形による金型分割線が軸方向に沿ってそれぞれ形成され、上記一対の面は、上記金型分割線よりも大径リング部側で、且つ外径方向に向かって上記ポケット部の周方向の幅を狭めるテーパ状の一対の第1面と、上記金型分割線よりも小径リング部側で、且つ外径方向に向かって上記ポケット部の周方向の幅を狭めるテーパ状の一対の第2面とを有し、上記一対の第1面のテーパ角が、上記一対の第2面のテーパ角よりも小さいことを特徴とする。 The cage for a tapered roller bearing of the present invention is a cage for a tapered roller bearing which is an injection molded body of a resin composition, and the cage connects a large diameter ring portion and a small diameter ring portion with each other. A plurality of column portions are provided, and a pocket portion is formed between adjacent column portions, and the large diameter ring portion and the column portion, and the small diameter ring portion and the column portion respectively have corner R portions Mold division lines formed by injection molding are respectively formed along the axial direction on a pair of surfaces of the adjacent pillars forming the pocket portion, the pair of surfaces being the mold A pair of tapered first surfaces that narrow the circumferential width of the pocket toward the outer diameter direction on the large diameter ring side with respect to the parting line and on the small diameter ring part with respect to the mold parting line Narrow the circumferential width of the pocket towards the outer diameter direction And a tapered pair of second surface, the taper angle of the first surface of the pair may be smaller than the taper angle of the pair of second side.
 また、上記大径リング部と上記柱部との間の上記隅R部として、上記大径リング部に凹状のぬすみ部を設けたことを特徴とする。さらに、上記ぬすみ部の軸方向長さの、上記大径リング部の軸方向幅に対する割合が、10%未満であることを特徴とする。 Further, as the corner R portion between the large diameter ring portion and the pillar portion, a concave relief portion is provided in the large diameter ring portion. Furthermore, the ratio of the axial length of the recess to the axial width of the large diameter ring is less than 10%.
 また、上記小径リング部と上記柱部との間の上記隅R部として、上記小径リング部に凹状のぬすみ部を設けたことを特徴とする。 Further, as the corner R portion between the small diameter ring portion and the column portion, a concave relief portion is provided in the small diameter ring portion.
 本発明の円すいころ軸受は、外周面にテーパ状の軌道面を有する内輪と、内周面にテーパ状の軌道面を有する外輪と、上記内輪の軌道面と上記外輪の軌道面との間を転動する複数の円すいころと、上記円すいころをポケット部で転動自在に保持する保持器とを備える円すいころ軸受であって、上記保持器が、本発明の円すいころ軸受用保持器であることを特徴とする。 According to the tapered roller bearing of the present invention, an inner ring having a tapered raceway surface on an outer peripheral surface, an outer ring having a tapered raceway surface on an inner peripheral surface, a raceway surface of the inner ring and a raceway surface of the outer ring A tapered roller bearing comprising: a plurality of rolling tapered rollers; and a cage for holding the tapered rollers rollably in a pocket portion, wherein the cage is the cage for a tapered roller bearing according to the present invention It is characterized by
 本発明の円すいころ軸受用保持器は、ポケット部を構成する隣接する柱部の一対の面に、射出成形による金型分割線が軸方向に沿ってそれぞれ形成され、一対の面は、金型分割線よりも大径リング部側で、且つ外径方向に向かってポケット部の周方向の幅を狭めるテーパ状の一対の第1面と、金型分割線よりも小径リング部側で、且つ外径方向に向かってポケット部の周方向の幅を狭めるテーパ状の一対の第2面とを有しているので、上記保持器が円すいころを保持した状態では、一対の第2面が円すいころと接触し、一対の第1面は円すいころに接触しない。つまり、隣接する柱部の一対の第2面で円すいころを保持している。 In the cage for a tapered roller bearing of the present invention, mold division lines by injection molding are respectively formed along the axial direction on a pair of surfaces of adjacent pillars constituting the pocket, and the pair of surfaces is a mold A pair of tapered first surfaces that narrow the circumferential width of the pocket portion toward the outer diameter direction on the large diameter ring side with respect to the dividing line, and on the small diameter ring side with respect to the mold dividing line Since it has a pair of tapered second surfaces that narrow the width of the pocket in the outer diameter direction, the pair of second surfaces are conical when the cage holds tapered rollers. In contact with the roller, the pair of first surfaces do not contact the tapered roller. That is, the tapered rollers are held by the pair of second surfaces of the adjacent column portions.
 この構成において、一対の第1面のテーパ角が、一対の第2面のテーパ角よりも小さくなるようにしたので、これらのテーパ角が同じ場合に比べて、大径リング部側のポケット部の周方向の幅が広くなる。その結果、柱部と大径リング部との間の隅R部の曲率半径を大きくすることができる。またこの場合、一対の第1面は円すいころに接触しないため、該隅R部の曲率半径を大きくしても円すいころとの干渉は生じにくい。以上より、隅R部の応力集中を緩和でき、ひいては、樹脂製保持器の強度を向上させることができる。 In this configuration, since the taper angle of the pair of first surfaces is smaller than the taper angle of the pair of second surfaces, the pocket portion on the large diameter ring portion side is compared with the case where these taper angles are the same. The circumferential width of the As a result, it is possible to increase the curvature radius of the corner R portion between the column portion and the large diameter ring portion. Further, in this case, since the pair of first surfaces do not contact the tapered rollers, interference with the tapered rollers is less likely to occur even if the radius of curvature of the corner R portion is increased. As mentioned above, the stress concentration of corner R can be eased, and the strength of the resin cage can be improved.
 また、大径リング部と柱部との間の隅R部として、大径リング部に凹状のぬすみ部を設けたので、該隅R部の曲率半径をより大きくとることができ、応力集中を好適に緩和できる。さらに、上記隅R部におけるぬすみ部の軸方向長さの、大径リング部の軸方向幅に対する割合が、10%未満であるので、大径リング部の軸方向幅が小さくなることに起因する大径リング部の強度低下を抑制することができる。 In addition, since the concave relief portion is provided in the large diameter ring portion as the corner R portion between the large diameter ring portion and the column portion, the radius of curvature of the corner R portion can be made larger, and stress concentration is achieved. It can be relaxed suitably. Furthermore, the ratio of the axial length of the relief portion at the corner R portion to the axial width of the large diameter ring portion is less than 10%, so the axial width of the large diameter ring portion is reduced. The reduction in strength of the large diameter ring portion can be suppressed.
 さらに、小径リング部と柱部との間の隅R部として、小径リング部に凹状のぬすみ部を設けたので、小径リング部側の隅R部についても応力集中を緩和できる。 Furthermore, since the concave relief portion is provided in the small diameter ring portion as the corner R portion between the small diameter ring portion and the column portion, stress concentration can be alleviated also in the corner R portion on the small diameter ring portion side.
 本発明の円すいころ軸受は、外周面にテーパ状の軌道面を有する内輪と、内周面にテーパ状の軌道面を有する外輪と、内輪の軌道面と外輪の軌道面との間を転動する複数の円すいころと、円すいころをポケット部で転動自在に保持する保持器とを備え、上記保持器が、本発明の円すいころ軸受用保持器であり、該保持器は隅R部の強度に優れるので、円すいころ軸受の軽量化や長寿命化を好適に図ることができる。 The tapered roller bearing of the present invention rolls between the inner race having a tapered raceway on the outer peripheral surface, the outer race having a tapered raceway on the inner peripheral surface, and the raceway of the inner ring and the raceway of the outer race And a cage for rotatably holding the tapered rollers in the pocket portion, wherein the cage is the cage for tapered roller bearings of the present invention, and the cage is at the corner R portion Since the strength is excellent, weight reduction and long life of the tapered roller bearing can be suitably achieved.
本発明の円すいころ軸受の軸方向断面図である。It is an axial sectional view of the tapered roller bearing of this invention. 本発明の円すいころ軸受用保持器を示す斜視図である。It is a perspective view which shows the retainer for tapered roller bearings of this invention. 射出成形に使用する保持器用金型の概略図である。It is the schematic of the metal mold | die for retainers used for injection molding. 本発明の円すいころ軸受用保持器の斜視拡大図である。It is a perspective enlarged view of the tapered roller bearing retainer according to the present invention. 円すいころと隅R部の関係を示す図である。It is a figure which shows the relationship between a tapered roller and a corner R part. 円すいころと保持器の接触の関係を示す図である。It is a figure which shows the relationship of the contact of a tapered roller and a holder | retainer. 保持器と軸受周辺部品との関係を示す図である。It is a figure which shows the relationship between a holder | retainer and bearing periphery components. 円すいころの軸に沿った断面模式図である。It is a cross-sectional schematic diagram along the axis of a tapered roller. 隅R部としてぬすみ部を設けた図である。It is the figure which provided the relief part as a corner R part. 隅R部に発生する応力の分布を示す図である。It is a figure which shows distribution of the stress which generate | occur | produces in corner R part.
 本発明の円すいころ軸受を図1に基づいて説明する。図1は、円すいころ軸受の軸方向断面図である。図1に示すように、円すいころ軸受1は、外周面にテーパ状の軌道面2aを有する内輪2と、内周面にテーパ状の軌道面3aを有する外輪3と、内輪2の軌道面2aと外輪3の軌道面3aとの間を転動する複数の円すいころ4と、円すいころ4を周方向一定間隔で転動自在に保持する保持器5とを備えている。各軌道面は、軸方向に沿って該軌道面を構成する径が増加・減少するテーパ状である。テーパの角度は特に限定されないが、軸方向に対して通常15°~60°程度である。 The tapered roller bearing of the present invention will be described based on FIG. FIG. 1 is an axial sectional view of a tapered roller bearing. As shown in FIG. 1, the tapered roller bearing 1 includes an inner ring 2 having a tapered raceway surface 2a on the outer peripheral surface, an outer ring 3 having a tapered raceway surface 3a on the inner peripheral surface, and a raceway surface 2a of the inner ring 2 And a raceway surface 3a of the outer ring 3, and a cage 5 for holding the tapered rollers 4 so as to be rollable at regular intervals in the circumferential direction. Each raceway surface is tapered such that the diameter of the raceway surface increases and decreases along the axial direction. The angle of the taper is not particularly limited, but is usually about 15 ° to 60 ° with respect to the axial direction.
 図2には、本発明の円すいころ軸受用保持器の一例を示す。保持器5は、大径リング部6と、小径リング部7と、これらを連結する複数の柱部8とを備えてなり、隣接する柱部8同士の間にポケット部9が形成されている。このポケット部9に円すいころ4が収納される。大径リング部6と柱部8は、これらを滑らかに連続させる隅R部10aを形成して連結されている。同様に、小径リング部7と柱部8は、これらを滑らかに連続させる隅R部10bを形成して連結されている。隅R部10aおよび隅R部10bは、径方向断面が円弧状に形成されている。この隅R部により、各リング部6、7と柱部8が交差する位置への過度な応力集中を抑制することができる。 FIG. 2 shows an example of the tapered roller bearing retainer of the present invention. The cage 5 includes a large diameter ring portion 6, a small diameter ring portion 7, and a plurality of column portions 8 connecting these, and a pocket portion 9 is formed between adjacent column portions 8 . The tapered roller 4 is accommodated in the pocket portion 9. The large diameter ring portion 6 and the column portion 8 are connected by forming a corner R portion 10a which allows these to be smoothly continued. Similarly, the small diameter ring portion 7 and the column portion 8 are connected by forming a corner R portion 10b which allows these to be smoothly continued. The corner R portion 10 a and the corner R portion 10 b are formed in a circular arc shape in cross section in the radial direction. By this corner R portion, it is possible to suppress excessive stress concentration on the position where the ring portions 6, 7 and the column portion 8 intersect.
 保持器5は、樹脂組成物の射出成形体であり、軸方向(アキシャルドロー)の2枚の金型を利用して得られる。図3には、該金型の概略図を示す。図3に示すように、金型11は、円環状の保持器5を樹脂組成物の射出成形で製造するための軸受保持器用金型である。金型11は、固定型12と、固定型12に対して型締め・型開き可能な可動型13とを少なくとも有し、これらが衝合することで、所望の軸受保持器の形状の成形キャビティ14を形成している。保持器5の製造において、具体的には、成形キャビティ14に対して樹脂注入口であるゲートを1点または複数点設け、このゲートより溶融樹脂を注入し成形キャビティに充填させる。成形キャビティ内が樹脂で充填されると、この成形キャビティ内の樹脂を圧縮するように圧力をかける(保圧)。一定時間、金型内で溶融樹脂を冷却して固化させたのち、金型を開いて樹脂製の軸受保持器が得られる。 The holder 5 is an injection molded body of a resin composition, and is obtained using two dies in an axial direction (axial draw). FIG. 3 shows a schematic view of the mold. As shown in FIG. 3, the mold 11 is a mold for a bearing cage for manufacturing the annular cage 5 by injection molding of a resin composition. The mold 11 has at least a fixed mold 12 and a movable mold 13 which can be clamped and released relative to the fixed mold 12, and when they meet, a molded cavity having a desired bearing cage shape is obtained. 14 forms. Specifically, in the manufacture of the holder 5, one or a plurality of gates, which are resin injection ports, are provided to the molding cavity 14, and molten resin is injected from the gate to fill the molding cavity. When the inside of the molding cavity is filled with resin, pressure is applied to compress the resin in the molding cavity (pressure holding). After cooling and solidifying the molten resin in the mold for a certain period of time, the mold is opened to obtain a bearing cage made of resin.
 図4には、保持器5の斜視拡大図を示す。図4に示すように、隣接する柱部8の一対の面はポケット部9を形成している。隣接する柱部8の一対の面は、ポケット部を隔てて互いに対向している。ここで、上述の射出成形では、2つの金型の割り面の都合上、各柱部8のポケット部9を形成する面が2つの金型の影響を受ける。そのため、上記一対の面には、射出成形による金属分割線Xが円すいころ軸受1の軸方向(保持器5の軸方向)に沿ってそれぞれ形成されている。この場合、各柱部8のポケット部9を形成する面はそれぞれ、金属分割線Xを境に分断された不連続面となっており、各柱部8のポケット部9を形成する面は、金属分割線Xよりも大径リング部6側(大径側)の面8aと、金属分割線Xよりも小径リング部7側(小径側)の面8bとを有している。なお、金属分割線Xは、柱部8の中央より大径リング部6側にシフトしている。 In FIG. 4, the perspective enlarged view of the holder | retainer 5 is shown. As shown in FIG. 4, a pair of surfaces of the adjacent pillars 8 form a pocket 9. A pair of surfaces of adjacent pillars 8 face each other across the pocket. Here, in the above-mentioned injection molding, the surface which forms the pocket part 9 of each pillar part 8 receives to the influence of two metal molds on account of the dividing surface of two metal molds. Therefore, metal division lines X formed by injection molding are respectively formed along the axial direction of the tapered roller bearing 1 (the axial direction of the cage 5) on the pair of surfaces. In this case, the surface forming the pocket 9 of each column 8 is a discontinuous surface divided by the metal dividing line X, and the surface forming the pocket 9 of each column 8 is: A surface 8a on the side (large diameter side) of the ring portion 6 larger in diameter than the metal dividing line X and a surface 8b on the side (small diameter side) of the smaller diameter ring portion 7 than the metal dividing line X are provided. The metal dividing line X is shifted from the center of the column portion 8 to the large diameter ring portion 6 side.
 図4では、大径側の面8aが、固定型12によって形成され、小径側の面8bが、可動型13によって形成されている。なお、大径側の面8aを可動型13によって形成し、小径側の面8bを固定型12によって形成してもよい。 In FIG. 4, the large diameter side surface 8 a is formed by the fixed mold 12, and the small diameter side surface 8 b is formed by the movable mold 13. The large diameter surface 8 a may be formed by the movable mold 13, and the small diameter surface 8 b may be formed by the fixed mold 12.
 図4において、隣接する柱部8の一対の面に関して言えば、一対の面は、金属分割線Xよりも大径リング部6側(大径側)の一対の面8a、8aと、金属分割線Xよりも小径リング部7側(小径側)の一対の面8b、8bとを有している。一対の面8a、8aおよび一対の面8b、8bは、いずれも外径方向に向かってポケット部9の周方向の幅を狭めるようにテーパ状に形成されている。この構成において円すいころ4が収納された場合には、一対の面8b、8bが、円すいころ4に接触する一方、一対の面8a、8aは円すいころ4に接触しない。 Referring to the pair of surfaces of the adjacent column portion 8 in FIG. 4, the pair of surfaces is a pair of surfaces 8 a and 8 a on the larger diameter ring portion 6 side (large diameter side) than the metal dividing line X A pair of surfaces 8b and 8b on the smaller diameter ring portion 7 side (small diameter side) than the line X is provided. The pair of surfaces 8a, 8a and the pair of surfaces 8b, 8b are each formed in a tapered shape so as to narrow the width in the circumferential direction of the pocket portion 9 toward the outer diameter direction. In this configuration, when the tapered roller 4 is stored, the pair of surfaces 8 b and 8 b contact the tapered roller 4, while the pair of surfaces 8 a and 8 a do not contact the tapered roller 4.
 ところで、保持器5には、軸受の回転時に様々な力が加わり、特に、図4に示す隅R部10aや隅R部10bには、応力集中によって高い応力が発生する。そのため、保持器5の強度の向上を図るため、隅R部10aおよび隅R部10bの応力集中を緩和させることが望ましい。特に円すいころ軸受では、大径リング部6の方が、小径リング部7よりも高い応力が発生するため、隅R部10aにおける対策がより重要となる。 By the way, various forces are applied to the cage 5 at the time of rotation of the bearing, and in particular, high stress is generated due to stress concentration in the corner R portion 10a and the corner R portion 10b shown in FIG. Therefore, in order to improve the strength of the cage 5, it is desirable to reduce the stress concentration in the corner R portion 10a and the corner R portion 10b. In particular, in the tapered roller bearing, since the larger diameter ring portion 6 generates higher stress than the small diameter ring portion 7, the countermeasure at the corner R portion 10a becomes more important.
 ここで、応力集中を緩和させる方法として、例えば、隅R部の曲率半径(R寸法)を大きくすることが考えられる。曲率半径を大きくすることで、発生応力が分散され、応力集中が緩和されることが期待される。しかし、例えば、図5(a)に示すように、隅R部10aの曲率半径を、円すいころ4の面取り部4aの曲率半径よりも大きくすると、隅R部10aと円すいころ4の面取り部4aとが干渉してしまい、円すいころ4を保持することが困難となる。 Here, as a method of reducing the stress concentration, for example, it is conceivable to increase the curvature radius (R dimension) of the corner R portion. By increasing the radius of curvature, it is expected that the generated stress is dispersed and the stress concentration is alleviated. However, for example, as shown in FIG. 5A, when the curvature radius of the corner R portion 10a is larger than the curvature radius of the chamfered portion 4a of the tapered roller 4, the chamfered portion 4a of the corner R portion 10a and the tapered roller 4 Interfere with each other, making it difficult to hold the tapered roller 4.
 これの対処として、例えば、図5(b)に示すように、隅R部10aとして大径リング部6の軸方向に凹状のぬすみ部Nを設け、隅R部10aの曲率半径を大きくすることが考えられる。この場合、応力集中を緩和しつつ、円すいころ4の面取り部4aとの干渉を防ぐことができる。しかしこの場合、隅R部10aの曲率半径を大きくするべく、ぬすみ部Nを大きく(例えば、軸方向に大きく)すると、大径リング部6の軸方向幅、ひいては断面積が減少してしまい、結果として保持器5の強度が低下するおそれがある。 As a countermeasure for this, for example, as shown in FIG. 5 (b), a concave relief N in the axial direction of the large diameter ring 6 is provided as the corner R 10a, and the radius of curvature of the corner R 10a is increased. Is considered. In this case, interference with the chamfered portion 4 a of the tapered roller 4 can be prevented while relieving stress concentration. However, in this case, if the relief portion N is increased (for example, increased in the axial direction) in order to increase the radius of curvature of the corner R portion 10a, the axial width of the large diameter ring 6 and hence the cross sectional area decrease. As a result, the strength of the cage 5 may be reduced.
 そのため、ぬすみ部を設けるにあたり、ぬすみ部に起因する保持器5の強度低下を防ぐ方策が必要となる。例えば、方策の一つとして、図6に示すように、大径リング部6の軸方向断面高さ(径方向幅)hを大きくして、大径リング部6を径方向に肉厚とすることで強度低下を防ぐことが考えられる。図6において、h1とh2の大小関係はh1<h2である。この場合、大径リング部6の径方向幅hを大きくすると、金型分割線Xが径方向内側に寄ることになる。その結果、面8bの面積が小さくなり、結果的に柱部8と円すいころ4の接触長さdが短くなる。図6において、d1とd2の大小関係はd1>d2である。そうすると、大径リング部6の径方向幅hを大きくすることで、円すいころ4を安定して保持することが困難となるおそれがある。 Therefore, in providing the relief portion, it is necessary to take measures to prevent the reduction in the strength of the cage 5 caused by the relief portion. For example, as one of the measures, as shown in FIG. 6, the axial section height (radial width) h of the large diameter ring 6 is increased to make the large diameter ring 6 thick in the radial direction. It is conceivable to prevent the decrease in strength. In FIG. 6, the magnitude relationship between h1 and h2 is h1 <h2. In this case, when the radial width h of the large diameter ring portion 6 is increased, the mold parting line X is shifted radially inward. As a result, the area of the surface 8 b is reduced, and as a result, the contact length d of the column portion 8 and the tapered roller 4 is shortened. In FIG. 6, the magnitude relationship between d1 and d2 is d1> d2. Then, by increasing the radial width h of the large diameter ring portion 6, it may be difficult to stably hold the tapered roller 4.
 一方、その他の方策として、例えば図7に示すように、大径リング部6の軸方向断面長さ(軸方向幅)Lを大きくして、大径リング部6を軸方向に肉厚とすることで強度低下を防ぐことが考えられる。しかしながら、保持器5の軸方向近傍には軸受周辺部品15などが存在するため、大径リング部6の軸方向幅Lを大きくすると、軸受周辺部品15との干渉が懸念される。 On the other hand, as another measure, for example, as shown in FIG. 7, the axial cross-sectional length (axial width) L of the large diameter ring portion 6 is increased to make the large diameter ring portion 6 axially thick. It is conceivable to prevent the decrease in strength. However, since the bearing peripheral parts 15 and the like exist near the axial direction of the cage 5, when the axial width L of the large diameter ring portion 6 is increased, interference with the bearing peripheral parts 15 is concerned.
 このように、ぬすみ部を設けるなどの隅R部10aの曲率半径を大きくすることは、隅R部10aへの応力集中を緩和する上で有利となり得るが、大径リング部6の強度を維持することが困難であると考えられる。 As described above, increasing the radius of curvature of the corner R portion 10a such as providing the relief portion may be advantageous in relieving stress concentration on the corner R portion 10a, but maintaining the strength of the large diameter ring portion 6 It is considered difficult to do.
 そこで、本発明の保持器5は、隅R部10aの曲率半径を大きくすることを可能としつつも、大径リング部6の強度を維持した構成を実現している。具体的には、ポケット部9を構成する隣接した柱部8の一対の面において、大径側の一対の面8a、8aのテーパ角を、小径側の一対の面8b、8bのテーパ角よりも小さくなるようにした。すなわち、大径側の一対の面8a、8aについて、金型分割線Xを基準としてポケット部9の周方向幅が広がるようにテーパ角を変更している。なお、大径側の一対の面8a、8aが「一対の第1面」であり、小径側の一対の面8b、8bが「一対の第2面」である。以下に、図8に基づいて説明する。 Therefore, the cage 5 of the present invention realizes a configuration in which the strength of the large diameter ring portion 6 is maintained while making it possible to increase the radius of curvature of the corner R portion 10a. Specifically, in the pair of surfaces of the adjacent column portion 8 constituting the pocket portion 9, the taper angle of the pair of surfaces 8a and 8a on the large diameter side is compared to the taper angle of the pair of surfaces 8b and 8b on the small diameter side. Also made smaller. That is, the taper angle is changed so that the circumferential width of the pocket portion 9 is widened with respect to the mold parting line X with respect to the large diameter side faces 8a, 8a. Note that the large diameter side surfaces 8a, 8a are "a pair of first surfaces", and the small diameter side surfaces 8b, 8b are "a pair of second surfaces". Below, it demonstrates based on FIG.
 図8には、円すいころ4の軸に沿って小径リング部7側から見た断面模式図を示す。隣接する柱部8の一対の面において、大径側の一対の面8a、8aのテーパ角をθaとし、小径側の一対の面8b、8bのテーパ角をθbとする。ここで、従来の保持器ではθaとθbが同じ角度(θa=θb)となっているのに対し、本発明の保持器5ではθaがθbよりも小さくなっている(θa<θb)。これにより、θaとθbが同じ角度の場合に比べて、大径リング部6側(図8の紙面奥側)のポケット部9の外径側の周方向幅Wが広くなる。その結果、隅R部10aの曲率半径を大きくすることができる。これにより、隅R部10aにおいて応力集中が緩和され、高い応力が隅R部10aに加わることを抑制することができる。 FIG. 8 shows a schematic cross-sectional view seen from the small diameter ring 7 side along the axis of the tapered roller 4. In the pair of surfaces of the adjacent pillars 8, the taper angle of the large diameter side surfaces 8a and 8a is θa, and the taper angle of the small diameter side surfaces 8b and 8b is θb. Here, in the conventional cage, θa and θb have the same angle (θa = θb), but in the cage 5 of the present invention, θa is smaller than θb (θa <θb). As a result, the circumferential width W on the outer diameter side of the pocket portion 9 on the large diameter ring portion 6 side (the rear side in the drawing of FIG. 8) becomes wider than in the case where θa and θb are the same angle. As a result, the curvature radius of the corner R portion 10a can be increased. Thereby, the stress concentration in the corner R portion 10a is alleviated, and it is possible to suppress that a high stress is applied to the corner R portion 10a.
 一方で、図8に示すように、円すいころ4は、小径側(図8の紙面手前側)の一対の面8b、8bに接触して保持されている。そのため、一対の面8a、8aのテーパ角θaを小さくする側に変更し、ポケット部9の周方向幅Wが広くなっても、円すいころ4の保持性は維持される。 On the other hand, as shown in FIG. 8, the tapered roller 4 is held in contact with the pair of surfaces 8 b and 8 b on the small diameter side (the front side in FIG. 8). Therefore, the taper angle θa of the pair of surfaces 8a is changed to a smaller side, and the retention of the tapered roller 4 is maintained even if the circumferential width W of the pocket 9 is increased.
 ここで、小径側の一対の面8b、8bのテーパ角θbは、円すいころ4を安定して保持できる角度であれば特に限定されず、例えば20~60度であり、より好ましくは30~50度である。一方、大径側の一対の面8a、8aのテーパ角θaは、テーパ角θbよりも小さい角であれば特に限定されない。また、テーパ角θaとテーパ角θbの差は、例えば1~10度であり、好ましくは、1~5度である。これらを考慮して、テーパ角θbが30~50度であり、且つテーパ角θaが、当該テーパ角θbよりも1~5度小さい角度であることが特に好ましい。 Here, the taper angle θb of the pair of surfaces 8b on the small diameter side is not particularly limited as long as the tapered roller 4 can be stably held, and is, for example, 20 to 60 degrees, more preferably 30 to 50. Degrees. On the other hand, the taper angle θa of the pair of surfaces 8a on the large diameter side is not particularly limited as long as the angle is smaller than the taper angle θb. The difference between the taper angle θa and the taper angle θb is, for example, 1 to 10 degrees, and preferably 1 to 5 degrees. In consideration of these, it is particularly preferable that the taper angle θb is 30 to 50 degrees and the taper angle θa is an angle smaller by 1 to 5 degrees than the taper angle θb.
 また、隅R部10aへの応力集中をより好適に緩和すべく、隅R部10aとして凹状のぬすみ部を設けることが好ましい。ぬすみ部は、径方向断面が円弧状に形成される。ぬすみ部を設ける位置は特に限定されないが、例えば、図9に示すように、ぬすみ部16を円すいころ4の外径面に沿って、大径リング部6に設けることができる。ここで、本発明の保持器5は、テーパ角の調整により応力集中がすでに緩和されているため、従来の保持器に比べ、ぬすみ部を設ける際にぬすみ部を小さくすることができる。 Further, in order to alleviate stress concentration on the corner R portion 10a more suitably, it is preferable to provide a concave relief portion as the corner R portion 10a. The relief portion is formed in an arc shape in a radial direction cross section. Although the position where the relief portion is provided is not particularly limited, for example, as shown in FIG. 9, the relief portion 16 can be provided on the large diameter ring portion 6 along the outer diameter surface of the tapered roller 4. Here, in the cage 5 of the present invention, since stress concentration has already been alleviated by adjusting the taper angle, the relief portion can be made smaller when the relief portion is provided, as compared with the conventional cage.
 例えば、図9において、ぬすみ部16における円すいころ4の外径面に沿った軸方向長さをt1とし、大径リング部6における円すいころ4の外径面に沿った軸方向幅(t1を含む)をt2とすると、従来の保持器(テーパ角θaとテーパ角θbが同じ保持器)では、ぬすみ量は大径リング部6の軸方向長さ比(t1/t2)で10~20%程度である。これに対し、本発明の保持器は、テーパ角を変更することによって応力集中が緩和されることから、従来の保持器に比べて、小さいぬすみ量とすることができる。具体的な数値としては、ぬすみ量を大径リング部6の軸方向長さ比(t1/t2)で10%未満とすることができる。すなわち、本発明の保持器にぬすみ部を設けた場合にはぬすみ量が小さく済むため、大径リング部6の強度を維持したまま、隅R部10aの応力集中をより好適に緩和することができる。 For example, in FIG. 9, an axial length along the outer diameter surface of the tapered roller 4 in the recess 16 is t1, and an axial width (t1 along the outer diameter surface of the tapered roller 4 in the large diameter ring portion 6 Assuming that t2 is included, in the conventional cage (a cage in which the taper angle θa and the taper angle θb are the same), the relief amount is 10 to 20% in the axial length ratio (t1 / t2) of the large diameter ring portion 6 It is an extent. On the other hand, in the case of the cage according to the present invention, the stress concentration is relaxed by changing the taper angle, so that the amount of run-off can be made smaller than that of the conventional cage. As a specific numerical value, the relief amount can be made less than 10% in the axial direction length ratio (t1 / t2) of the large diameter ring portion 6. In other words, when the retainer of the present invention is provided with the relief portion, the amount of relief can be reduced, so that stress concentration in the corner R portion 10a can be more suitably alleviated while maintaining the strength of the large diameter ring portion 6. it can.
 また、上記では、大径側の隅R部10aをぬすみ部16とする場合について述べたが、小径側の隅R部10bについても同様に、ぬすみ部16を設けることができる。さらに、隅R部10aおよび隅R部10bのそれぞれに応じて、ぬすみ部16を設ける位置や形状を変更してもよい。保持器5の強度および応力分散の点から、軸方向に沿って大径リング部6にぬすみ部16を設けるとともに、軸方向に沿って小径リング部7にぬすみ部16を設けることが好ましい。 Further, although the case where the corner R portion 10a on the large diameter side is the relief portion 16 has been described above, the recess portion 16 can be similarly provided for the corner R portion 10b on the small diameter side. Further, the position and the shape of the recess 16 may be changed according to each of the corner R 10 a and the corner R 10 b. From the viewpoint of strength and stress dispersion of the cage 5, it is preferable to provide the recess 16 in the large diameter ring 6 along the axial direction and to provide the recess 16 in the small diameter ring 7 along the axial direction.
 本発明の軸受用保持器の材料として用いる樹脂組成物は、射出成形が可能であり、保持器材料として十分な耐熱性や機械的強度を有するものであれば、任意のものを使用できる。この樹脂組成物のベース樹脂となる合成樹脂としては、例えば、ポリアミド6(PA6)樹脂、ポリアミド6-6(PA66)樹脂、ポリアミド6-10(PA610)樹脂、ポリアミド6-12(PA612)樹脂、ポリアミド4-6(PA46)樹脂、ポリアミド9-T(PA9T)樹脂、ポリアミド6-T(PA6T)樹脂、ポリメタキシレンアジパミド(ポリアミドMXD-6)樹脂などのポリアミド(PA)樹脂、射出成形可能なフッ素樹脂、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン(PE)樹脂、ポリアセタール(POM)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、射出成形可能なポリイミド(PI)樹脂などが挙げられる。これらの合成樹脂の中でも、耐熱性や射出成形性に優れることから、PA樹脂を用いることが好ましい。また、これらの各合成樹脂は単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。 The resin composition used as the material of the bearing cage of the present invention can be injection molded and any material can be used as long as it has sufficient heat resistance and mechanical strength as the cage material. As a synthetic resin used as a base resin of this resin composition, polyamide 6 (PA 6) resin, polyamide 6-6 (PA 66) resin, polyamide 6-10 (PA 610) resin, polyamide 6-12 (PA 612) resin, for example Polyamide (PA) resin such as polyamide 4-6 (PA46) resin, polyamide 9-T (PA9T) resin, polyamide 6-T (PA6T) resin, polymetaxylene adipamide (polyamide MXD-6) resin, injection molding Fluoroplastics, low density polyethylene, high density polyethylene, polyethylene (PE) resin such as ultra high molecular weight polyethylene, polyacetal (POM) resin, polyphenylene sulfide (PPS) resin, polyetheretherketone (PEEK) resin, polyamide imide ( PAI) resin, polyether imide PEI) resins, and injection moldable polyimide (PI) resin. Among these synthetic resins, it is preferable to use PA resin because it is excellent in heat resistance and injection moldability. Each of these synthetic resins may be used alone or in combination of two or more kinds.
 また、保持器の弾性率などの機械的強度を向上させるため、これらの樹脂に、射出成形性を阻害しない範囲で、ガラス繊維、アラミド繊維、炭素繊維、各種鉱物性繊維(ウィスカー)などの繊維状補強材を配合することが好ましい。さらに必要に応じて、繊維状補強材以外の添加剤などを配合してもよい。この添加剤として、例えば、珪酸カルシウム、タルクなどの無機充填材、黒鉛、ポリテトラフルオロエチレン(PTFE)樹脂などの固体潤滑剤、帯電防止剤などが挙げられる。 In addition, in order to improve mechanical strength such as elastic modulus of cage, fibers such as glass fiber, aramid fiber, carbon fiber, various mineral fibers (whiskers) and the like within a range not to inhibit injection moldability to these resins. It is preferable to blend a reinforcing material. Furthermore, if necessary, additives other than the fibrous reinforcing material may be blended. Examples of this additive include inorganic fillers such as calcium silicate and talc, solid lubricants such as graphite and polytetrafluoroethylene (PTFE) resin, and antistatic agents.
 本発明の円すいころ軸受用保持器を用いた円すいころ軸受は、隅R部での保持器破損などの問題を防止できる。また、樹脂製保持器を採用することで、軸受の軽量化や長寿命化が図れる。 The tapered roller bearing using the tapered roller bearing retainer of the present invention can prevent problems such as cage breakage at corner R portions. Further, by adopting a resin cage, weight reduction and long life of the bearing can be achieved.
 以上、各図に基づき本発明の実施形態の一例を説明したが、本発明の円すいころ軸受はこれらに限定されるものではない。 As mentioned above, although an example of an embodiment of the present invention was explained based on each figure, a tapered roller bearing of the present invention is not limited to these.
実施例
 樹脂組成物を用いて、図3に示す金型で、図2に示す形状の保持器を成形した。作製した保持器において、大径側の一対の面のテーパ角θaは38度であり、小径側の一対の面のテーパ角θbは40度であった。なお、この保持器には、大径リング部と柱部との連結部となる隅R部として、ぬすみ部を設けていない。保持器の3Dモデルを用いて、落下衝撃条件で発生する応力を計算した。算出された応力の応力分布を図10に示す。
Example Using the resin composition, a cage shown in FIG. 2 was molded with a mold shown in FIG. In the produced cage, the taper angle θa of the large diameter side of the pair of surfaces was 38 degrees, and the taper angle θb of the small diameter side of the pair of surfaces was 40 degrees. The retainer does not have a relief portion as a corner R portion which is a connection portion between the large diameter ring portion and the column portion. The 3D model of the cage was used to calculate the stress generated in the drop impact condition. The stress distribution of the calculated stress is shown in FIG.
比較例
 実施例と同じ樹脂組成物を用いて、射出成形して保持器を成形した。作製した保持器において、大径側の一対の面のテーパ角θa、および、小径側の一対の面のテーパ角θbはいずれも40度であった。また、大径リング部と柱部との連結部となる隅R部として、ぬすみ部を設けた。ぬすみ部は、円すいころの外径面に沿って大径リング部に設けた。ぬすみ部における円すいころの外径面に沿った軸方向長さ(t1)は、1.6mmであり、大径リング部における円すいころの外径面に沿った軸方向幅(t2)は、9.0mmであった。ぬすみ部の上記軸方向長さの大径リング部の上記軸方向幅に対する割合(t1/t2)は、約18%であった。保持器の3Dモデルを用いて、実施例1と同じ条件で発生する応力を計算した。算出された応力の応力分布を図10に示す。
Comparative Example The same resin composition as in the example was used for injection molding to form a cage. In the produced cage, the taper angle θa of the large diameter side of the pair of surfaces and the taper angle θb of the small diameter side of the pair of surfaces were both 40 degrees. In addition, a relief portion was provided as a corner R portion to be a connection portion between the large diameter ring portion and the column portion. The relief portion was provided on the large diameter ring portion along the outer diameter surface of the tapered roller. The axial length (t1) along the outer diameter surface of the tapered roller in the relief portion is 1.6 mm, and the axial width (t2) along the outer diameter surface of the tapered roller in the large diameter ring portion is 9 It was .0 mm. The ratio (t1 / t2) of the axial length of the relief portion to the axial width of the large diameter ring portion was about 18%. The stress generated under the same conditions as Example 1 was calculated using the 3D model of the cage. The stress distribution of the calculated stress is shown in FIG.
 図10において、比較例の応力分布では、ぬすみ部の中央で最大51MPaの応力が発生した。一方、実施例の応力分布では、隅R部の中央で最大38MPaの応力が発生した。このように実施例の保持器では、比較例の保持器に比べて、隅R部での応力集中が緩和され、発生応力が約25%程度低下した。さらに、実施例の保持器は、比較例の保持器と異なりぬすみ部を有していないため、大径リング部の強度低下が抑制されており、保持器としての強度に優れる。 In FIG. 10, in the stress distribution of the comparative example, a stress of up to 51 MPa was generated at the center of the relief portion. On the other hand, in the stress distribution of the example, a stress of up to 38 MPa was generated at the center of the corner R portion. As described above, in the case of the cage of the example, the stress concentration at the corner R was relaxed and the generated stress was reduced by about 25% as compared with the case of the comparative example. Furthermore, since the cage of the example does not have a corner portion different from the cage of the comparative example, the strength reduction of the large diameter ring portion is suppressed, and the strength as the cage is excellent.
 本発明の円すいころ軸受用保持器は、隅R部での強度に優れるので、鉄道車両、自動車、産業機械などに用いられる円すいころ軸受の保持器として広く利用できる。 The cage for a tapered roller bearing of the present invention is excellent in strength at the corner R, and therefore, can be widely used as a cage for a tapered roller bearing used in railway vehicles, automobiles, industrial machines, and the like.
  1 円すいころ軸受
  2 内輪
  3 外輪
  4 円すいころ
  5 保持器
  6 大径リング部
  7 小径リング部
  8 柱部
  9 ポケット部 
  10 隅R部
  11 金型
  12 固定型
  13 可動型
  14 成形キャビティ
  15 軸受周辺部品
  16 ぬすみ部
1 tapered roller bearing 2 inner ring 3 outer ring 4 tapered roller 5 cage 6 large diameter ring portion 7 small diameter ring portion 8 column portion 9 pocket portion
Reference Signs List 10 corner R portion 11 mold 12 fixed mold 13 movable mold 14 molding cavity 15 bearing peripheral parts 16 hollow portion

Claims (5)

  1.  樹脂組成物の射出成形体である円すいころ軸受用保持器であって、
     該保持器は、大径リング部と、小径リング部と、これらを連結する複数の柱部とを備え、隣接する柱部同士の間にポケット部が形成されており、
     前記大径リング部と前記柱部、および、前記小径リング部と前記柱部は、それぞれ隅R部を形成して連結され、
     前記ポケット部を構成する前記隣接する柱部の一対の面に、射出成形による金型分割線が軸方向に沿ってそれぞれ形成され、前記一対の面は、前記金型分割線よりも大径リング部側で、且つ外径方向に向かって前記ポケット部の周方向の幅を狭めるテーパ状の一対の第1面と、前記金型分割線よりも小径リング部側で、且つ外径方向に向かって前記ポケット部の周方向の幅を狭めるテーパ状の一対の第2面とを有し、
     前記一対の第1面のテーパ角が、前記一対の第2面のテーパ角よりも小さいことを特徴とする円すいころ軸受用保持器。
    A cage for tapered roller bearings, which is an injection molded body of a resin composition, comprising:
    The cage includes a large diameter ring portion, a small diameter ring portion, and a plurality of column portions connecting these, and a pocket portion is formed between adjacent column portions,
    The large diameter ring portion and the column portion, and the small diameter ring portion and the column portion are connected by forming corner R portions,
    A mold parting line by injection molding is respectively formed along the axial direction on a pair of surfaces of the adjacent pillars constituting the pocket part, and the pair of faces are rings larger in diameter than the mold parting line A pair of tapered first surfaces for narrowing the circumferential width of the pocket toward the outer diameter direction on the part side, and on the smaller diameter ring portion side than the mold parting line and toward the outer diameter direction And a pair of tapered second surfaces for narrowing the circumferential width of the pocket portion,
    A tapered roller bearing retainer characterized in that a taper angle of the pair of first surfaces is smaller than a taper angle of the pair of second surfaces.
  2.  前記大径リング部と前記柱部との間の前記隅R部として、前記大径リング部に凹状のぬすみ部を設けたことを特徴とする請求項1記載の円すいころ軸受用保持器。 The tapered roller bearing retainer according to claim 1, wherein the large diameter ring portion is provided with a concave relief portion as the corner R portion between the large diameter ring portion and the column portion.
  3.  前記ぬすみ部の軸方向長さの、前記大径リング部の軸方向幅に対する割合が、10%未満であることを特徴とする請求項2記載の円すいころ軸受用保持器。 The tapered roller bearing retainer according to claim 2, wherein the ratio of the axial length of the relief portion to the axial width of the large diameter ring portion is less than 10%.
  4.  前記小径リング部と前記柱部との間の前記隅R部として、前記小径リング部に凹状のぬすみ部を設けたことを特徴とする請求項1記載の円すいころ軸受用保持器。 The tapered roller bearing retainer according to claim 1, wherein a concave relief portion is provided in the small diameter ring portion as the corner R portion between the small diameter ring portion and the column portion.
  5.  外周面にテーパ状の軌道面を有する内輪と、内周面にテーパ状の軌道面を有する外輪と前記内輪の軌道面と前記外輪の軌道面との間を転動する複数の円すいころと、前記円すいころをポケット部で転動自在に保持する保持器とを備える円すいころ軸受であって、
     前記保持器が、請求項1記載の円すいころ軸受用保持器であることを特徴とする円すいころ軸受。
    An inner ring having a tapered raceway surface on an outer peripheral surface, an outer ring having a tapered raceway surface on an inner peripheral surface, and a plurality of tapered rollers rolling between the raceway surface of the inner ring and the raceway surface of the outer ring; A tapered roller bearing comprising: a cage for holding the tapered roller in the pocket portion so as to roll freely;
    The tapered roller bearing according to claim 1, wherein the cage is the tapered roller bearing retainer according to claim 1.
PCT/JP2018/035766 2017-09-28 2018-09-26 Retainer for tapered roller bearing, and tapered roller bearing WO2019065768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880062093.7A CN111133210B (en) 2017-09-28 2018-09-26 Retainer for tapered roller bearing and tapered roller bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017188695A JP6875971B2 (en) 2017-09-28 2017-09-28 Cage for tapered roller bearings and tapered roller bearings
JP2017-188695 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065768A1 true WO2019065768A1 (en) 2019-04-04

Family

ID=65901902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035766 WO2019065768A1 (en) 2017-09-28 2018-09-26 Retainer for tapered roller bearing, and tapered roller bearing

Country Status (3)

Country Link
JP (1) JP6875971B2 (en)
CN (1) CN111133210B (en)
WO (1) WO2019065768A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116249841A (en) * 2020-10-06 2023-06-09 株式会社捷太格特 Tapered roller bearing and retainer
CN112443572A (en) * 2020-12-04 2021-03-05 洛阳新强联回转支承股份有限公司 Super-huge tapered roller turntable bearing with detachable small flange
CN112431853A (en) * 2020-12-04 2021-03-02 洛阳新强联回转支承股份有限公司 Super-huge tapered roller bearing without expanding and contracting basket-shaped retainer
CN113623321A (en) * 2021-07-16 2021-11-09 浙江天马轴承集团有限公司 Roller bearing and low-noise high-strength retainer thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185625A (en) * 2012-03-07 2013-09-19 Jtekt Corp Resin retainer
WO2014163177A1 (en) * 2013-04-04 2014-10-09 日本精工株式会社 Tapered roller bearing-use resin made cage and tapered roller bearing provided with such cage
WO2015129709A1 (en) * 2014-02-25 2015-09-03 Ntn株式会社 Tapered roller bearing
WO2016163527A1 (en) * 2015-04-10 2016-10-13 Ntn株式会社 Tapered roller bearing

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065191A (en) * 1976-05-13 1977-12-27 Skf Industries, Inc. Roller skew control for tapered roller bearings
JP2004176747A (en) * 2002-11-25 2004-06-24 Ntn Corp Double row tapered roller bearing unit for supporting wheel
JP4149350B2 (en) * 2003-10-15 2008-09-10 Ntn株式会社 Tapered roller bearings and cages for tapered roller bearings
JP2008038927A (en) * 2006-08-01 2008-02-21 Ntn Corp Tapered roller bearing
JP4786482B2 (en) * 2006-09-12 2011-10-05 Ntn株式会社 Tapered roller bearing
JP2008164062A (en) * 2006-12-28 2008-07-17 Ntn Corp Tapered roller bearing
DE102007018928A1 (en) * 2007-04-21 2008-10-23 Schaeffler Kg compensation device
CN102089541B (en) * 2008-07-08 2014-03-05 日本精工株式会社 Resin retainer for tapered roller bearing, and tapered roller bearing
CN101328933B (en) * 2008-08-04 2010-12-08 文鉴恒 High precision thrust force centripetal combined conical roller bearing
JP2011226495A (en) * 2010-04-15 2011-11-10 Ntn Corp Retainer for conical bearing, retainer manufacturing method, and conical bearing
JP5790033B2 (en) * 2011-03-04 2015-10-07 日本精工株式会社 Tapered roller bearing
JP2013029146A (en) * 2011-07-28 2013-02-07 Ntn Corp Holder for roller bearing, molding mold for the same, and method of manufacturing the same
US8814438B2 (en) * 2012-05-28 2014-08-26 Jtekt Corporation Rolling bearing cage, and rolling bearing including the same
CN202946555U (en) * 2012-10-15 2013-05-22 洛阳伊崧精密轴承技术开发有限公司 All-pressing cage structure and device for tapered roller bearing
DE102013212962A1 (en) * 2013-07-03 2015-01-08 Aktiebolaget Skf Bearing cage for extended grease service life
JP6369083B2 (en) * 2013-11-25 2018-08-08 株式会社ジェイテクト Split cage and roller bearing
JP6595792B2 (en) * 2015-04-10 2019-10-23 Ntn株式会社 Tapered roller bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185625A (en) * 2012-03-07 2013-09-19 Jtekt Corp Resin retainer
WO2014163177A1 (en) * 2013-04-04 2014-10-09 日本精工株式会社 Tapered roller bearing-use resin made cage and tapered roller bearing provided with such cage
WO2015129709A1 (en) * 2014-02-25 2015-09-03 Ntn株式会社 Tapered roller bearing
WO2016163527A1 (en) * 2015-04-10 2016-10-13 Ntn株式会社 Tapered roller bearing

Also Published As

Publication number Publication date
JP6875971B2 (en) 2021-05-26
CN111133210B (en) 2022-01-04
JP2019065880A (en) 2019-04-25
CN111133210A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2019065768A1 (en) Retainer for tapered roller bearing, and tapered roller bearing
US9995341B2 (en) Resin cage for tapered roller bearing and tapered roller bearing including the resin cage
US8382380B2 (en) Tapered roller bearing
US8622622B2 (en) Antifriction bearing
JP6055357B2 (en) Resin cage for tapered roller bearings
KR102544828B1 (en) tapered roller bearings
JP5876237B2 (en) Synthetic resin cage and ball bearing for ball bearings
WO2017164398A1 (en) Bearing holder made of resin and method for manufacturing same, and rolling bearing
KR102013084B1 (en) Method of manufacturing conical roller bearings and conical roller bearings
JP6512264B2 (en) Cylindrical roller bearing
JP2014059030A (en) Rolling bearing
TW201819790A (en) Rolling bearing cage and rolling bearing
JP4754431B2 (en) Tapered roller bearing
JP2006070926A (en) Retainer for tapered roller bearing
JP2007057038A (en) Conical roller bearing
JP7236902B2 (en) Resin cage and rolling bearing
JP6010923B2 (en) Tapered roller bearing
JP5154986B2 (en) Retainer for cylindrical roller bearing
JP2016200227A (en) Conical roller bearing
JP2008019937A (en) Rolling bearing
JP5360526B2 (en) Retainer for cylindrical roller bearing
JP2016080050A (en) Resin holder for bearing and manufacturing method thereof
JP4527635B2 (en) Tapered roller bearing
JP2011190860A (en) Double-row cylindrical roller bearing
JP7498593B2 (en) Wheel bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862000

Country of ref document: EP

Kind code of ref document: A1