WO2019065515A1 - Pressure-sensitive sensor - Google Patents

Pressure-sensitive sensor Download PDF

Info

Publication number
WO2019065515A1
WO2019065515A1 PCT/JP2018/035110 JP2018035110W WO2019065515A1 WO 2019065515 A1 WO2019065515 A1 WO 2019065515A1 JP 2018035110 W JP2018035110 W JP 2018035110W WO 2019065515 A1 WO2019065515 A1 WO 2019065515A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
comb
electrode
pressure sensor
upper electrode
Prior art date
Application number
PCT/JP2018/035110
Other languages
French (fr)
Japanese (ja)
Inventor
正弘 千葉
Original Assignee
キヤノン化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン化成株式会社 filed Critical キヤノン化成株式会社
Publication of WO2019065515A1 publication Critical patent/WO2019065515A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/50Adjustable resistors structurally combined with switching arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch

Definitions

  • the present invention relates to a pressure sensitive sensor whose resistance value changes in response to an applied pressure or load.
  • Patent Document 1 discloses that a pressure-sensitive resistor made of resin is provided between electrodes as a pressure-sensitive sensor whose resistance value (electric resistance value) changes in accordance with an applied pressure or load. .
  • this pressure-sensitive sensor when pressure or load is applied to the electrode, the contact area between the electrode and the pressure-sensitive resistor changes, and the resistance value changes accordingly.
  • Patent Document 2 discloses a variable resistance switch in which a metal plate in which both end portions are fixed to a push button so as to bend in a U shape and a flat metal plate are opposed to each other.
  • this variable resistance switch when pressure or load is applied to the push button, the short circuit distance at which each metal plate is shorted changes, and the resistance value changes accordingly.
  • Patent Document 3 discloses a switch device in which one end of a linear elastic member is fixed to a push button, and the other end is in contact with fixed contacts arranged in parallel on a substrate.
  • this switch device when pressure or load is applied to the push button, the number of fixing members in contact with the elastic member changes, and on / off is detected in stages according to the number.
  • An object of the present invention is to provide a pressure sensor capable of continuously detecting pressure or load.
  • the present invention it is possible to reduce the film thickness and expand the detection area while suppressing the increase in size while suppressing the drift, and furthermore, the durability is high, and the pressure or the load is continuously detected. It is possible.
  • FIG. 1 is a perspective view showing a pressure-sensitive sensor according to a first embodiment of the present invention
  • FIG. 2 is a transparent top view showing the pressure-sensitive sensor according to the first embodiment of the present invention
  • FIG. 3 is a longitudinal sectional view taken along the line SS in FIGS.
  • a convex portion 1 a functioning as a push button for applying a load to the pressure sensor 100 is provided on the upper surface of the upper substrate 1 (the surface opposite to the surface facing the lower substrate 2). It is desirable that the convex portion 1 a be provided at the central portion of the upper substrate 1.
  • the upper substrate 1 may be formed in a flat plate shape without including the convex portion 1 a.
  • the upper substrate 1 has a rectangular shape.
  • the lower substrate 2 has a rectangular first portion 2a facing the upper substrate 1 and a second portion 2b extending outward from the first portion 2a.
  • the spacers 3 are disposed along the outer periphery of the first portion 2 a of the lower substrate 2 and the upper substrate 1 as shown in FIG. Further, the spacer 3 is provided with a gap 3 a at one place, and the second portion 2 b of the lower substrate 2 extends outward from the portion where the spacer 3 a of the spacer 3 is provided.
  • An upper electrode 11 is provided on the lower surface (surface facing the lower substrate 2) of the upper substrate 1, and a lower electrode 12 is provided on the upper surface (surface facing the upper substrate 1) of the lower substrate 2.
  • the upper electrode 11 and the lower electrode 12 are provided in a portion surrounded by the spacer 3.
  • the upper electrode 11 and the lower electrode 12 are provided to face each other.
  • the upper electrode 11 and the lower electrode 12 do not contact with each other in the state where no load is applied to the pressure sensor 100, and are opposed to each other at an interval. May be provided to be in contact with each other when no voltage is applied.
  • FIG. 3 shows the non-load pressure sensor 100 in which no load is applied to the pressure sensor 100. In FIG. 2, the upper electrode 11 is not shown.
  • FIG. 4 is a perspective view showing the configuration of the upper electrode 11, and FIG. 5 is a top view showing the configuration of the upper electrode 11.
  • the upper electrode 11 shown in FIGS. 4 and 5 is formed of a rectangular frame 21 and an upper comb-tooth portion 22 which is a pair of comb-tooth shaped members facing each other.
  • the pair of upper comb teeth 22 extend from each of the pair of sides of the frame 21 facing each other (in the direction toward the inside of the frame 21). Thereby, one end of each tooth 23 of the pair of upper comb teeth 22 is connected by the frame 21.
  • Each tooth portion 23 of the upper comb-tooth portion 22 is formed of a plate member having a rectangular shape as viewed from above (Z direction) in the present embodiment, and is provided substantially parallel to each other.
  • the pair of upper comb teeth 22 penetrate each other. That is, the pair of upper comb teeth 22 is formed such that the teeth 23 of one upper comb teeth 22 enter the recess 24 of the other upper comb teeth 22. Therefore, the teeth 23 of one upper comb teeth 22 and the teeth 23 of the other upper comb 22 intersect with the Y direction, which is the extension direction of the teeth 23 (more specifically, It is formed to be adjacent to the substantially orthogonal (including orthogonal) X direction.
  • the recessed part 24 shows the space of the both sides of each tooth part 23. As shown in FIG.
  • the teeth 23 of the upper comb teeth 22 are bent toward the lower electrode 12 at or near the root 25 connected to the frame 21. Thereby, the upper comb-tooth portion 22 is bent to the lower electrode 12 side, and is inclined to the lower electrode 12 side from the root portion 25 to the tip portion 26.
  • the bending angle (tilt angle) of the teeth 23 is preferably 0.1 ° to 10 °. In the present embodiment, the bending angle is approximately 3 degrees. In the present embodiment, the teeth 23 have a linear shape when viewed from the side.
  • the upper electrode 11 described above that is, the frame portion 21 and the upper comb-tooth portion 22 is formed of a conductive elastic body which is an elastic body having conductivity. Therefore, each tooth 23 of the upper comb tooth 22 is electrically connected via the frame 21.
  • the frame portion 21 and the upper comb-tooth portion 22 be integrally formed as illustrated, the separately formed frame portion 21 and the upper comb-tooth portion 22 may be joined. In that case, a joining means is not specifically limited, For example, they are welding, screwing, etc.
  • the frame portion 21 and the upper comb portion 22 are formed separately, the frame portion 21 and the upper comb portion 22 are preferably formed of the same material as each other, but are formed of different materials. It is also good. If the respective teeth 23 of the upper comb teeth 22 can be connected and electrically connected, a member having another shape such as a U-shaped frame is used instead of the rectangular frame 21. It may be used.
  • the lower electrode 12 is a comb-like member having a plurality of teeth 32 provided at positions opposed to the respective teeth 23 of the upper comb teeth 22 of the upper electrode 11, as shown in FIG. It has a comb-tooth portion 31. Since the upper comb teeth 22 are provided in a pair facing each other, the lower comb teeth 31 are also formed of a pair of members facing each other.
  • the lower comb-tooth portion 31 is formed of a semiconductive resistor.
  • the linear resistivity of the lower comb teeth 31 is preferably 10 ⁇ / mm to 10 4 ⁇ / mm.
  • the line resistivity indicates the resistance value per unit length.
  • Each tooth portion 32 of the pair of lower comb teeth 31 is electrically connected by a conductive wire 33.
  • conductive wire 33 the conductive wire electrically connecting each tooth portion 32 of one lower comb portion 31 and each tooth portion 32 of the other lower comb portion 31 are electrically connected Conductive wire.
  • the conductive wire 33 is provided on the lower substrate 2 and extends from the gap 3a of the spacer 3 along the second portion 2b of the lower substrate 2, and the connection terminal 33a (see FIG. 1) is formed at the end thereof. .
  • the connection terminal 33a is electrically connected to an external device (not shown), and a voltage is applied from the external device to the lower electrode 12 through the connection terminal 33a and the conductive wire 33 when the pressure sensor 100 is driven.
  • FIG. 6 is a diagram for explaining the operation of the pressure sensor 100. As shown in FIG. In FIG. 6, no load is applied to the pressure sensor 100 (6-1), a weak load is applied (6-2), and a strong load is applied. A see-through side view and a see-through top view of the pressure sensor 100 in the loaded state (6-3) are shown. In FIG. 6, the number of teeth of the upper comb teeth 22 (lower comb teeth 31) is two for simplification of the description.
  • the upper comb teeth 22 of the upper electrode 11 and the lower comb teeth 31 of the lower electrode 12 are And are formed so as not to touch each other. Therefore, the resistance value of the pressure sensor 100 is infinite.
  • the upper substrate 1 bends according to the load F1, and accordingly, the upper comb teeth 22 of the upper electrode 11 Then, as shown in (6-2), it comes in contact with the lower comb-tooth portion 31 of the lower electrode 12. At this time, since the upper comb-tooth portion 22 is inclined toward the lower electrode 12 from the root 25 to the tip 26, the upper comb-tooth 22 contacts the lower comb-tooth 31 from the tip 26 side.
  • the effective distances A and B which are the distances from the connection between the tooth 32 and the conductive wire 33 in each tooth 32 of the lower comb 31 to the contact between the tooth 32 and the upper comb 22, are shown below.
  • the pressure sensor 100 has a resistance value R (A + B) according to the sum A + B of the effective distances A and B.
  • the resistance value changes in accordance with the applied load.
  • the resistance value of the pressure sensor 100 is actually a value obtained by adding the resistance value according to the effective distance described above and the resistance value of the upper electrode 11 or the conductive wire 33, the description will be simplified here. In order to realize this, the resistance value of the upper electrode 11 and the conductive wire 33 is considered to be zero because the resistance value is constant.
  • the upper electrode 11 is made of a hard material capable of reducing drift, a thickness suitable for repeated use (deformation), and a low value suitable for the resistance value change of the pressure sensor 100. It is desirable to have a resistance value or the like.
  • a conductive metal plate for a leaf spring, or a metal or resin plate coated with a conductive paint is desirable, and the tensile strength of the upper electrode 11 is 70 MPa or more, and the thickness is Is preferably 0.1 mm to 1 mm, and the volume resistivity is preferably 10 ⁇ m or less.
  • the number of teeth 23 is preferably 3 or more. This is because the load applied to each tooth portion 23 is well balanced when a load is applied, and the position to which the load is applied deviates from the central portion of the upper substrate 1, and as a result, the load This is because the variation in the change in resistance value of each tooth 23 is reduced even when the load direction to which is applied is deviated from the Z direction (the direction orthogonal to the pressure sensor 100). From the viewpoint of the balance of the load, it is better for the number of teeth 23 to be larger.
  • the width W D (see FIG. 2) of the teeth 32 of the lower comb portion 31 is preferably wider than the width W U (see FIG. 4) of the teeth 23 of the upper comb portion 22. This is because the load is applied to the pressure sensor 100 even if the positional relationship between the tooth 32 and the tooth 23 in the in-plane direction (direction in the XY plane) of the pressure sensor 100 occurs. This is because the contact between the upper electrode 11 and the lower electrode 12 can be made more reliably.
  • the upper electrode 11 includes the upper comb-tooth portion 22 which is a pair of comb-tooth shaped members facing each other, and one end of each tooth portion 23 of the upper comb-tooth portion 22
  • the upper comb-tooth portion 22 is bent toward the lower electrode 12 side.
  • the lower electrode 12 is formed of a semiconductive resistor, and has a lower comb-tooth portion 31 which is a pair of comb-tooth shaped members provided at a position facing the upper comb-tooth portion 22.
  • the width W D of the tooth portion 32 of the lower comb portion 31 is wider than the width W U of the tooth portion 23 of the upper comb portion 22, the contact between the upper electrode 11 and the lower electrode 12 Can be done more reliably. Further, since the number of the tooth portions 23 of the upper comb teeth portion 22 is three or more, it is possible to reduce the variation in the resistance value change.
  • FIG. 7 is a top view showing the configuration of the upper electrode 11a of the pressure sensor 100 according to the second embodiment of the present invention.
  • the upper electrode 11a shown in FIG. 7 is different from the upper electrode 11 of the first embodiment shown in FIG. 5 in that it has a tooth portion 23a instead of the tooth portion 23 of the upper comb portion 22.
  • the other structure of the pressure sensor 100 of this embodiment is the same as that of 1st Embodiment.
  • the tip 26 of the tooth 23a is thinner than the root 25, the tip 26 of the tooth 23a of the upper comb teeth 22 is easily deformed even when the load is small. Easy to touch. For this reason, it becomes possible to detect a minute load, and it becomes possible to widen the detection area which can detect a load.
  • FIG. 8 is a longitudinal sectional view showing the configuration of the upper electrode 11 b of the pressure-sensitive sensor 100 according to the third embodiment of the present invention.
  • the upper electrode 11b shown in FIG. 8 is different from the upper electrode 11 shown in FIG. 3 in that it has teeth 23b instead of the teeth 23 of the upper comb teeth 22.
  • the other structure of the pressure sensor 100 of this embodiment is the same as that of 1st Embodiment.
  • the teeth 23 in the first embodiment shown in FIG. 3 have a linear shape when viewed from the side, but the teeth 23 b shown in FIG. 8 expand toward the lower electrode 12 when viewed from the side. And a curved shape (more specifically, an R shape).
  • the upper substrate 1 has flexibility and is deformed when a load is applied, whereby the applied load is obtained.
  • the upper substrate 1 needs to have a strength not to abut on the upper comb-tooth portion 22 of the upper electrode 11 when a load is applied.
  • the spacer 3 is not particularly limited as described above, but desirably has flexibility and elasticity.
  • the upper substrate 1 may be made of a non-flexible member. In this case, of course, the spacer 3 needs to have flexibility and elasticity to transmit the load applied to the upper substrate 1 to the upper electrode 11
  • the material and material of the lower substrate 2 are appropriately selected according to the place where the pressure sensor 100 is installed, and the like.
  • the detection range of the load in the pressure sensor 100 changes in accordance with the thickness of the upper electrode 11. Specifically, the thinner the upper electrode 11, the higher the detection accuracy. For this reason, it is desirable to determine the thickness of the upper electrode 11 according to the desired detection range. In addition, as the thickness of the upper electrode 11 increases, the occurrence of drift can be suppressed.
  • the pressure sensor 100 can be thinner as the bending angle of the teeth 23 is smaller.
  • FIG. 9 is a longitudinal sectional view showing the structure of a pressure-sensitive sensor 100 according to a fifth embodiment of the present invention
  • FIG. 10 is an exploded perspective view showing the structure of the pressure-sensitive sensor 100 according to the fifth embodiment of the present invention.
  • the pressure-sensitive sensor 100 according to the present embodiment shown in FIGS. 9 and 10 differs from the pressure-sensitive sensor 100 according to the first embodiment described with reference to FIGS. 1 to 6 in that it further includes a pressing member 4. Further, in the pressure-sensitive sensor 100 according to the present embodiment, the upper substrate 1 and the upper electrode 11 are bonded to each other by the adhesive layer 5.
  • the pressure-sensitive adhesive layer 5 is a layer formed of a pressure-sensitive adhesive, and can be formed, for example, by using a double-sided tape or the like. In FIG. 10, the upper part of the pressure sensor 100, specifically, the configuration of the upper substrate 1, the pressing member 4, the pressure-sensitive adhesive layer 5, and the upper electrode 11 is shown.
  • the spacer 3 is provided between the upper substrate 1 and the lower substrate 2, but in the present embodiment, the spacer 3 is provided between the pressing member 4 and the lower substrate 2.
  • the lower substrate 2 is supported at an interval.
  • the upper substrate 1 is provided on the lower surface (the surface facing the lower substrate 2) of the pressing member 4.
  • the pressing member 4 and the upper substrate 1 may not be bonded to each other, or may be bonded to each other.
  • the bonding method at the time of bonding is also not particularly limited.
  • a convex portion 4 a functioning as a push button for applying a load to the pressure sensor 100 is provided on the upper surface of the pressing member 4 (the surface opposite to the surface facing the lower substrate 2). It is desirable that the convex portion 4 a be provided at the central portion of the pressing member 4.
  • the pressing member 4 may be formed in a flat plate shape without including the convex portion 4 a. Further, in the present embodiment, the upper substrate 1 is not provided with the convex portion 1a shown in FIG.
  • the pressure-sensitive adhesive layer 5 is a first pressure-sensitive adhesive layer for bonding the upper substrate 1 and the upper electrode 11. Specifically, the pressure-sensitive adhesive layer 5 is provided on at least a part of the frame portion 21 of the upper electrode 11, and bonds the upper substrate 1 and the frame portion 21 of the upper electrode 11.
  • the pressing member 4 has flexibility, and transmits the load applied to the upper substrate 1 to the upper electrode 11 by being deformed. Therefore, in the present embodiment, even when the upper substrate 1 is formed of a non-flexible member, the spacer 3 transmits the load applied to the upper substrate 1 to the upper electrode 11. There is no need to have flexibility and elasticity.
  • the flexible pressing member 4 having the upper substrate 1 on the lower surface and the lower substrate 2 are opposed by the spacer 3 with an interval. Therefore, the upper substrate 1 is not provided with flexibility, and furthermore, the spacer 3 does not need to be provided with flexibility and elasticity. Therefore, the pressure can easily be adjusted without precisely adjusting the characteristics of the upper substrate 1 and the spacer 3. It becomes possible to detect.
  • the upper substrate 1 and the upper electrode 11 are joined via the adhesive layer 5 provided along the frame 21 of the upper electrode 11. Therefore, since the upper substrate 1 and the upper electrode 11 can be bonded with a simple configuration, the configuration of the pressure sensor 100 can be simplified.
  • the pressure sensor 100 shown in FIGS. 11 and 12 has a bonding method for bonding the upper substrate 1 and the upper electrode 11 as compared with the pressure sensor 100 of the fifth embodiment shown in FIGS. 9 and 10. It is different.
  • the upper substrate 1 and the upper electrode 11 are bonded to each other via the PET film 6 which is an elastic film. Specifically, the upper substrate 1 and the PET film 6 are bonded to each other through the adhesive layer 7, and the PET film 6 and the upper electrode 11 are bonded to each other through the adhesive layer 8.
  • the upper part of the pressure sensor 100 specifically, the configuration of the upper substrate 1, the pressing member 4, the PET film 6, the pressure-sensitive adhesive layers 7 and 8, and the upper electrode 11 is shown.
  • the PET film 6 is a flexible elastic membrane.
  • the PET film 6 has substantially the same shape as the upper substrate 1.
  • the pressure-sensitive adhesive layer 7 is a second pressure-sensitive adhesive layer for bonding the upper substrate 1 and the PET film 6.
  • the pressure-sensitive adhesive layer 7 is provided at a substantially central portion in the Y direction which is the second direction in the upper substrate 1 and the PET film 6 along the X direction which is the first direction.
  • the pressure-sensitive adhesive layer 8 is a third pressure-sensitive adhesive layer for bonding the PET film 6 and the upper electrode 11.
  • the pressure-sensitive adhesive layer 8 is provided along the X direction at each of both ends of the PET film 6 and the upper electrode 11 in the Y direction. Therefore, the adhesive layer 8 is provided along a portion of the frame 21 of the upper electrode 11 extending in the X direction, and bonds the frame 21 of the upper electrode 11 and the PET film 6 to each other.
  • 13A and 13B are diagrams for explaining the operation of the pressure sensor 100 according to the present embodiment.
  • 13A and 13B respectively show perspective side views of the no-load pressure sensor 100 in which no load is applied and the pressure sensor 100 in a load state in which a load is applied.
  • the load F When the load F is applied to the convex portion 4 a of the pressure member 4 of the pressure sensor 100, the load F is the pressure member 4, the upper substrate 1, the pressure sensitive adhesive layer 7, the PET film 6, and the pressure sensitive adhesive layer 8. It is transmitted to the upper electrode 11 via Then, the upper electrode 11 bends according to the load F1, and accordingly, the upper comb portion 22 of the upper electrode 11 is lowered to contact with the lower comb portion 31 of the lower electrode 12 as shown in FIG. 13B.
  • the pressure-sensitive adhesive layer 7 for bonding the upper substrate 1 and the PET film 6 is provided along the X direction substantially at the center of the upper substrate 1 in the Y direction.
  • a pressure-sensitive adhesive layer 8 for joining the upper electrode 11 and the upper electrode 11 is provided along the X direction at each end of the upper electrode 11 in the Y direction. Therefore, since the pressure-sensitive adhesive layers 7 and 8 can be suppressed from being deformed along the bending of the upper electrode 11, the generation of hysteresis in the pressure-sensitive adhesive layers 7 and 8 can be suppressed. Become. As a result, it becomes possible to suppress the difference between the time of loading of the load and the time of unloading in the detection value of the pressure sensor 100.
  • Example 1 As Example 1, a pressure-sensitive sensor 100 having the configuration of the first embodiment was created as follows.
  • a plate of stainless steel (SUS304-CSP) 0.3 mm thick is prepared as a material of the upper electrode 11, and the stainless steel plate is punched out, and the upper comb teeth 22 having four teeth 23 and a frame 21 was integrally formed. Then, the upper electrode 11 was manufactured by bending the root portion 25 of the tooth portion 23 toward the lower electrode 12 by about 3 °.
  • a PET (PolyEthylene Terephthalate: polyethylene terephthalate) sheet having a thickness of 250 ⁇ m is prepared as the lower substrate 2, and the linear resistivity is 1 k ⁇ / mm at a position facing each tooth 23 of the upper electrode 11 of the lower substrate 2.
  • the carbon paste was applied in a comb-tooth shape to form a lower electrode 12 (a pair of lower comb-tooth portions 31).
  • the length of the lower electrode 12 (carbon paste) was made shorter than the length of the teeth 23 of the upper electrode 11, and the width was made wider than the width of the teeth 23 of the upper electrode 11.
  • the conductive wire 33 was formed of a conductive silver paste so that one side of each of the tooth portions 32 of the pair of lower comb teeth 31 was electrically connected.
  • the upper electrode 11 was attached to the upper substrate 1, and the upper substrate 1 and the lower substrate 2 were connected using the spacer 3 so as to face each other at an interval.
  • Example 2 As a material of the upper electrode 11, a plate of aluminum (A1050) having a thickness of 0.3 mm was prepared. The other points are the same as in the first embodiment.
  • Example 3 As a material of the upper electrode 11, a plate of carbon tool steel material (SK85-CSP) having a thickness of 0.3 mm was prepared. The other points are the same as in the first embodiment.
  • Example 5 A carbon paste having a linear resistivity of 10 k ⁇ / mm was applied to the lower substrate 2 in a comb-tooth shape to form a lower electrode 12.
  • the other points are the same as in the first embodiment.
  • Example 6 As a material of the upper electrode 11, a plate of aluminum (A1050) having a thickness of 0.1 mm was prepared. The other points are the same as in the first embodiment.
  • Example 7 The same stainless steel plate as in Example 1 prepared as the material of the upper electrode 11 was punched out to integrally form the upper comb teeth 22 and the frame 21 with two teeth 23. The other points are the same as in the first embodiment.
  • Example 8 The same stainless steel plate as in Example 1 prepared as the material of the upper electrode 11 was punched out to integrally form the upper comb teeth 22 and the frame 21 with three teeth 23. The other points are the same as in the first embodiment.
  • Example 9 The same stainless steel plate as in Example 1 prepared as the material of the upper electrode 11 was punched out to integrally form the upper comb teeth 22 and the frame 21 with five teeth 23. The other points are the same as in the first embodiment.
  • Example 10 The width of the carbon paste (the teeth 32 of the lower comb portion 31) applied to the lower substrate 2 was narrower than the width of the teeth 23 of the upper electrode 11, contrary to Example 1. The other points are the same as in the first embodiment.
  • Example 11 The same stainless steel plate as in Example 1 is prepared as the material of the upper electrode 11a, and the stainless steel plate is punched out, and four substantially triangular teeth whose width gradually decreases from the root 25 toward the tip 26 are prepared.
  • the upper comb-tooth portion 22 having the portion 23a and the frame portion 21 are integrally formed. The other points are the same as in the first embodiment.
  • the pressure sensor 100 of the eleventh embodiment corresponds to the pressure sensor 100 of the second embodiment.
  • Example 12 After integrally forming the upper comb-tooth portion 22 and the frame portion 21 in the same manner as in Example 1, a curved R-shaped tooth portion 23 b is formed so as to expand toward the lower electrode 12 side.
  • the other points are the same as in the first embodiment.
  • the pressure sensor of the twelfth embodiment corresponds to the pressure sensor 100 of the third embodiment.
  • Example 13 As a material of the upper electrode 11, a plate of PBT resin coated with a conductive material having a thickness of 0.3 mm was prepared. The other points are the same as in the first embodiment.
  • Example 14 A carbon paste having a linear resistivity of 13 k ⁇ / mm was applied to the lower substrate 2 in a comb-tooth shape to form a lower electrode 12.
  • the other points are the same as in the first embodiment.
  • Example 15 As a material of the upper electrode 11, a plate of aluminum (A1050) having a thickness of 0.05 mm was prepared. The other points are the same as in the first embodiment.
  • Example 16 As a material of the upper electrode 11, a plate of carbon tool steel material (SK85-CSP) having a thickness of 1.0 mm was prepared. The other points are the same as in the first embodiment.
  • the tensile strength of the upper comb-tooth portion 22 is 500 MPa in Examples 1, 4, 5, 7 to 12, and 14, and Examples 2 and 6, In the case of 15, it is 70 MPa, in the case of Examples 3 and 16, 800 MPa, and in the case of Example 13, it is 50 MPa.
  • Comparative example As a comparative example, a conventional pressure-sensitive sensor in which a pressure-sensitive resistor made of resin is provided between the electrodes was used.
  • the conventional pressure sensor the pressure sensor described in JP-A-2014-20954 is used.
  • a load of 8 N is applied to the pressure sensor, and the ratio of the difference between the resistance value Re after 30 minutes to the initial value Ri of the resistance value detected by the pressure sensor and the initial value Ri “
  • indicates that the drift value is less than 1%
  • indicates that the drift value is less than 3%
  • indicates that the drift value is less than 5%
  • x indicates that the drift value is 5% or more.
  • ⁇ [%]" of the fluctuation width of the difference between each resistance value Ry and the resistance value Rid on the ideal straight line with respect to the resistance value Rid was measured as a straight line value.
  • the ratio of the load corresponding to the minimum value of the resistance value when the load was increased to the pressure sensor and the load ratio corresponding to the maximum value of the resistance value was measured as the detection area value.
  • indicates that the detection range is 5 times or more.
  • the load which is the maximum of the detection area and the power consumption when a voltage of 5 V was applied to the pressure sensor were measured.
  • indicates that the power consumption is less than 10 mW
  • indicates that the power consumption is less than 25 mW.
  • the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
  • FIG. 14 is a longitudinal sectional view showing an example of the pressure sensor 100 without using the spacer 3.
  • the pressure sensor 100 has a hollow case 9, and the upper substrate 1 is provided on the upper surface inside the case 9, and the lower surface of the case 9 is used as the lower substrate 2.
  • the lower substrates 2 are opposed to each other at an interval. In this case, it is desirable to expose at least a part of the upper surface of the upper substrate 1 from the case 9 by providing the opening 9 a on the upper surface of the case 9 as shown in the example.
  • the upper substrate 1 has flexibility, and transmits an applied load to the upper electrode 11 by being deformed by itself.
  • the upper substrate 1 needs to have such strength that it does not abut on the upper comb-tooth portion 22 of the upper electrode 11 when a load is applied.

Abstract

Provided is a pressure-sensitive sensor which can suppress drift and can be configured as a thin film and have an expanded detection region without increasing in size, and which furthermore has good durability and can detect pressure and load continuously. A pressure-sensitive sensor 100 has an upper electrode 11 and a lower electrode 12 facing the upper electrode with a gap therebetween. The upper electrode 11 has: a pair of upper comb tooth parts 22 which are comb tooth-shaped members that face each other; and a frame part 21 which connects one end of each of tooth portions 23 of the upper comb tooth parts 22, wherein the upper comb tooth parts 22 are bent downward toward the lower electrode 12. The lower electrode 12 is formed of a semi-conductive resistor, and has a pair of lower comb tooth parts 31 that are comb tooth-shaped members provided at a position facing the upper comb tooth parts 22.

Description

感圧センサPressure sensor
 本発明は、印加された圧力または荷重に応じて抵抗値が変化する感圧センサに関する。 The present invention relates to a pressure sensitive sensor whose resistance value changes in response to an applied pressure or load.
 印加された圧力または荷重に応じて抵抗値(電気抵抗値)が変化する感圧センサとして、樹脂で形成された感圧抵抗体を電極の間に設けたものが特許文献1に開示されている。この感圧センサでは、圧力または荷重が電極に印加されると、電極と感圧抵抗体との接触面積が変化し、それに伴い、抵抗値が変化する。 Patent Document 1 discloses that a pressure-sensitive resistor made of resin is provided between electrodes as a pressure-sensitive sensor whose resistance value (electric resistance value) changes in accordance with an applied pressure or load. . In this pressure-sensitive sensor, when pressure or load is applied to the electrode, the contact area between the electrode and the pressure-sensitive resistor changes, and the resistance value changes accordingly.
 また、特許文献2には、U字状に撓むように両端部を押しボタンに固定した金属板と平面状の金属板とを対向させた可変抵抗スイッチが開示されている。この可変抵抗スイッチでは、押しボタンに圧力または荷重が印加されると、各金属板が短絡する短絡距離が変化し、それに伴い、抵抗値が変化する。 Further, Patent Document 2 discloses a variable resistance switch in which a metal plate in which both end portions are fixed to a push button so as to bend in a U shape and a flat metal plate are opposed to each other. In this variable resistance switch, when pressure or load is applied to the push button, the short circuit distance at which each metal plate is shorted changes, and the resistance value changes accordingly.
 また、特許文献3には、線状の弾性部材の一端を押しボタンに固定し、他端を基板上に並設された固定接点に当接させたスイッチ装置が開示されている。このスイッチ装置では、押しボタンに圧力または荷重が印加されると、弾性部材と接触する固定部材の数が変化し、その数に応じて段階的にオン・オフが検知されている。 Further, Patent Document 3 discloses a switch device in which one end of a linear elastic member is fixed to a push button, and the other end is in contact with fixed contacts arranged in parallel on a substrate. In this switch device, when pressure or load is applied to the push button, the number of fixing members in contact with the elastic member changes, and on / off is detected in stages according to the number.
特開2000-82608号公報Japanese Patent Laid-Open No. 2000-82608 実開昭61-77520号公報Japanese Utility Model Publication No. 61-77520 実開平5-34621号公報Japanese Utility Model Application Publication No. 5-34621
 特許文献1に記載の感圧センサでは、感圧抵抗体の材料として、金属などと比べて硬度の低い樹脂が使用されているため、圧力または荷重が印加され続けると、感圧抵抗体が時間とともに変形してしまい、その結果、抵抗値が時間とともに変化するドリフトと呼ばれる現象が生じてしまう。 In the pressure sensor described in Patent Document 1, a resin having a hardness lower than that of metal or the like is used as the material of the pressure sensor, and therefore, when pressure or load is continuously applied, the pressure sensor takes time. As a result, a phenomenon called drift occurs in which the resistance value changes with time.
 特許文献2に記載の可変抵抗スイッチでは、U字状に撓んだ金属板の最下点の両側が平面状の金属板と略均等に接触するため、圧力または荷重に対する短絡距離の変化が大きく、圧力または荷重に対する抵抗値の変化が大きくなってしまう。このため、抵抗値が変化する抵抗変化範囲を広くして、圧力または荷重を検出する検出域を広くしようとすると、大型化を招いてしまう。特に薄型化を図るほど、圧力または荷重に対する短絡距離の変化が大きくなるため、大型化を抑制しつつ、薄型化を図ることが難しい。 In the variable resistance switch described in Patent Document 2, since both sides of the lowermost point of the U-shaped bent metal plate contact the flat metal plate substantially equally, the change of the short circuit distance to the pressure or the load is large. , The change in resistance value against pressure or load becomes large. For this reason, if an attempt is made to widen the resistance change range in which the resistance value changes and widen the detection area for detecting the pressure or the load, an increase in size is caused. In particular, as the reduction in thickness is achieved, the change in the short circuit distance with respect to pressure or load increases, so it is difficult to achieve reduction in thickness while suppressing enlargement.
 特許文献3に記載のスイッチ装置では、線状の弾性部材の一端のみが押しボタンに固定されているため、押しボタンに係る負荷が偏り、その結果、押しボタンにかじりなどが発生する恐れがあり、耐久性に問題がある。また、弾性部材と接触する固定部材の数に応じてオン・オフが検知されるため、検出値の変化が段階的になってしまう。そのため、圧力または荷重を連続的に検出することができないという問題もある。 In the switch device described in Patent Document 3, since only one end of the linear elastic member is fixed to the push button, the load on the push button is uneven, and as a result, the push button may be scratched or the like. , There is a problem with durability. In addition, since on / off is detected according to the number of fixing members in contact with the elastic member, the change of the detection value becomes stepwise. Therefore, there is also a problem that pressure or load can not be detected continuously.
 本発明は、上記の問題を鑑みてなされたものであり、ドリフトを抑制しつつ、大型化を抑制しながら薄膜化および検出域の拡大を図ることが可能であり、さらに耐久性が高く、かつ、圧力または荷重を連続的に検出することが可能な感圧センサを提供することを目的とする。 The present invention has been made in view of the above problems, and while suppressing the drift, it is possible to reduce the film thickness and the detection area while suppressing the enlargement, and the durability is high. An object of the present invention is to provide a pressure sensor capable of continuously detecting pressure or load.
 本発明による感圧センサは、上部電極と、前記上部電極と間隔を空けて対向する下部電極とを有する感圧センサであって、前記上部電極は、互いに対向する1対の櫛歯形状の部材である上部櫛歯部と、前記上部櫛歯部の各歯部の一端を連結する枠部と、を有し、前記上部櫛歯部は、下部電極側に曲がっており、前記下部電極は、半導電抵抗体で形成され、かつ、前記上部櫛歯部と対向する位置に設けられた1対の櫛歯形状の部材である下部櫛歯部を有する。 The pressure-sensitive sensor according to the present invention is a pressure-sensitive sensor having an upper electrode and a lower electrode facing the upper electrode with a gap, and the upper electrode is a pair of comb-shaped members facing each other. An upper comb tooth portion, and a frame portion connecting one end of each tooth portion of the upper comb tooth portion, and the upper comb tooth portion is bent toward the lower electrode, and the lower electrode is It has a lower comb-tooth portion which is formed of a semiconductive resistor and which is a pair of comb-tooth shaped members provided at a position facing the upper comb-tooth portion.
 本発明によれば、ドリフトを抑制しつつ、大型化を抑制しながら薄膜化および検出域の拡大を図ることが可能であり、さらに耐久性が高く、かつ、圧力または荷重を連続的に検出することが可能である。 According to the present invention, it is possible to reduce the film thickness and expand the detection area while suppressing the increase in size while suppressing the drift, and furthermore, the durability is high, and the pressure or the load is continuously detected. It is possible.
本発明の第1の実施形態の感圧センサを示す斜視図である。It is a perspective view showing a pressure sensitive sensor of a 1st embodiment of the present invention. 本発明の第1の実施形態の感圧センサを示す透視上面図である。It is a see-through top view showing a pressure sensitive sensor of a 1st embodiment of the present invention. 図1および図2のSS線に沿った縦断面図である。FIG. 3 is a longitudinal sectional view taken along the line SS in FIGS. 1 and 2; 本発明の第1の実施形態の上部電極の構成を示す斜視図である。It is a perspective view which shows the structure of the upper electrode of the 1st Embodiment of this invention. 本発明の第1の実施形態の上部電極の構成を示す上面図である。It is a top view which shows the structure of the upper electrode of the 1st Embodiment of this invention. 本発明の第1の実施形態の感圧センサの動作を説明するための図である。It is a figure for demonstrating the operation | movement of the pressure sensor of the 1st Embodiment of this invention. 本発明の第2の実施形態の上部電極の構成を示す上面図である。It is a top view which shows the structure of the upper electrode of the 2nd Embodiment of this invention. 本発明の第3の実施形態の上部電極の構成を示す斜視図である。It is a perspective view which shows the structure of the upper electrode of the 3rd Embodiment of this invention. 本発明の第5の実施形態の感圧センサの構成を示す縦断面図であるIt is a longitudinal cross-sectional view which shows the structure of the pressure sensitive sensor of the 5th Embodiment of this invention. 本発明の第5の実施形態の感圧センサの上部の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the upper part of the pressure sensor of 5th Embodiment of this invention. 本発明の第6の実施形態の感圧センサの構成を示す縦断面図であるIt is a longitudinal cross-sectional view which shows the structure of the pressure sensitive sensor of the 6th Embodiment of this invention. 本発明の第6の実施形態の感圧センサの上部の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the upper part of the pressure sensor of 6th Embodiment of this invention. 本発明の第6の実施形態の感圧センサの動作を説明するための図である。It is a figure for demonstrating the operation | movement of the pressure sensor of the 6th Embodiment of this invention. 本発明の第6の実施形態の感圧センサの動作を説明するための図である。It is a figure for demonstrating the operation | movement of the pressure sensor of the 6th Embodiment of this invention. 本発明の他の実施形態の感圧センサを示す縦断面図である。It is a longitudinal cross-sectional view which shows the pressure sensitive sensor of other embodiment of this invention.
 以下、本発明の実施形態について図面を参照して説明する。なお、各図面において同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, components having the same function may be denoted by the same reference numerals, and the description thereof may be omitted.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の感圧センサを示す斜視図であり、図2は、本発明の第1の実施形態の感圧センサを示す透視上面図であり、図3は、図1および図2のSS線に沿った縦断面図である。
First Embodiment
FIG. 1 is a perspective view showing a pressure-sensitive sensor according to a first embodiment of the present invention, FIG. 2 is a transparent top view showing the pressure-sensitive sensor according to the first embodiment of the present invention, and FIG. 3 is a longitudinal sectional view taken along the line SS in FIGS.
 図1~図3に示す感圧センサ100は、上部基板1と下部基板2とがスペーサー3によって間隔を空けて互いに対向した構成を有する。なお、図2では、上部基板1を除いた構成が示されている。 The pressure-sensitive sensor 100 shown in FIGS. 1 to 3 has a configuration in which the upper substrate 1 and the lower substrate 2 face each other at an interval by the spacer 3. Note that FIG. 2 shows a configuration in which the upper substrate 1 is removed.
 上部基板1および下部基板2は、それぞれ絶縁材料で形成されている。スペーサー3は、上部基板1と下部基板2の間に所望の間隔が空けられる部材であれば特に限定されない。なお、以下では、説明の簡略を図るために、感圧センサ100に対して印加する圧力または荷重を単に荷重と表記する。 The upper substrate 1 and the lower substrate 2 are each formed of an insulating material. The spacer 3 is not particularly limited as long as it is a member capable of providing a desired space between the upper substrate 1 and the lower substrate 2. In the following, in order to simplify the description, the pressure or load applied to the pressure sensor 100 is simply referred to as a load.
 上部基板1の上面(下部基板2と対向する面とは反対側の面)には、感圧センサ100に対して荷重を印加するための押しボタンとして機能する凸部1aが設けられている。凸部1aは、上部基板1の中央部に設けられることが望ましい。なお、上部基板1は、凸部1aを備えず、平板状に形成されてもよい。 A convex portion 1 a functioning as a push button for applying a load to the pressure sensor 100 is provided on the upper surface of the upper substrate 1 (the surface opposite to the surface facing the lower substrate 2). It is desirable that the convex portion 1 a be provided at the central portion of the upper substrate 1. The upper substrate 1 may be formed in a flat plate shape without including the convex portion 1 a.
 図示の例では、上部基板1は矩形形状を有する。下部基板2は、上部基板1と対向する矩形形状の第1の部分2aと、第1の部分2aから外側に延びる第2の部分2bとを有する。スペーサー3は、図2に示すように下部基板2の第1の部分2aおよび上部基板1の外周に沿って配置されている。また、スペーサー3には、間隙3aが1か所設けられており、下部基板2の第2の部分2bは、スペーサー3の間隙3aが設けられた箇所から外側に向かって延びている。 In the illustrated example, the upper substrate 1 has a rectangular shape. The lower substrate 2 has a rectangular first portion 2a facing the upper substrate 1 and a second portion 2b extending outward from the first portion 2a. The spacers 3 are disposed along the outer periphery of the first portion 2 a of the lower substrate 2 and the upper substrate 1 as shown in FIG. Further, the spacer 3 is provided with a gap 3 a at one place, and the second portion 2 b of the lower substrate 2 extends outward from the portion where the spacer 3 a of the spacer 3 is provided.
 上部基板1の下面(下部基板2と対向する面)には、上部電極11が設けられ、下部基板2の上面(上部基板1と対向する面)には、下部電極12が設けられている。上部電極11および下部電極12は、スペーサー3で囲まれた部分に設けられている。また、上部電極11および下部電極12は、対向するように設けられる。本実施形態では、上部電極11および下部電極12は、感圧センサ100に荷重が印加されていない状態では、互いに接触せず、互いに間隔を空けて対向しているが、感圧センサ100に荷重が印加されていない状態で互いに接触するように設けられてもよい。図3は、感圧センサ100に荷重が印加されていない無荷重状態の感圧センサ100が示されている。なお、図2では、上部電極11は図示されていない。 An upper electrode 11 is provided on the lower surface (surface facing the lower substrate 2) of the upper substrate 1, and a lower electrode 12 is provided on the upper surface (surface facing the upper substrate 1) of the lower substrate 2. The upper electrode 11 and the lower electrode 12 are provided in a portion surrounded by the spacer 3. The upper electrode 11 and the lower electrode 12 are provided to face each other. In the present embodiment, the upper electrode 11 and the lower electrode 12 do not contact with each other in the state where no load is applied to the pressure sensor 100, and are opposed to each other at an interval. May be provided to be in contact with each other when no voltage is applied. FIG. 3 shows the non-load pressure sensor 100 in which no load is applied to the pressure sensor 100. In FIG. 2, the upper electrode 11 is not shown.
 図4は、上部電極11の構成を示す斜視図であり、図5は、上部電極11の構成を示す上面図である。図4および図5に示す上部電極11は、矩形状の枠部21と、互いに対向する1対の櫛歯形状の部材である上部櫛歯部22とで形成されている。1対の上部櫛歯部22は、枠部21の互いに対向する1対の辺のそれぞれから、互いに向き合う向き(枠部21の内側に向かう向きに)に延びている。これにより、1対の上部櫛歯部22の各歯部23の一端が枠部21によって連結される。上部櫛歯部22の各歯部23は、本実施形態では、上方(Z方向)から見て矩形状を有する板部材で形成され、互いに略平行に設けられている。 FIG. 4 is a perspective view showing the configuration of the upper electrode 11, and FIG. 5 is a top view showing the configuration of the upper electrode 11. As shown in FIG. The upper electrode 11 shown in FIGS. 4 and 5 is formed of a rectangular frame 21 and an upper comb-tooth portion 22 which is a pair of comb-tooth shaped members facing each other. The pair of upper comb teeth 22 extend from each of the pair of sides of the frame 21 facing each other (in the direction toward the inside of the frame 21). Thereby, one end of each tooth 23 of the pair of upper comb teeth 22 is connected by the frame 21. Each tooth portion 23 of the upper comb-tooth portion 22 is formed of a plate member having a rectangular shape as viewed from above (Z direction) in the present embodiment, and is provided substantially parallel to each other.
 1対の上部櫛歯部22は、互いに入り込んでいる。すなわち、1対の上部櫛歯部22は、一方の上部櫛歯部22の歯部23が他方の上部櫛歯部22の凹部24に入り込むように形成される。したがって、一方の上部櫛歯部22の歯部23と他方の上部櫛歯部22の歯部23とが、歯部23が延びる延在方向であるY方向とは交差(より具体的には、略直交(直交を含む))するX方向に隣接するように形成される。なお、凹部24は、各歯部23の両側の空間を示す。 The pair of upper comb teeth 22 penetrate each other. That is, the pair of upper comb teeth 22 is formed such that the teeth 23 of one upper comb teeth 22 enter the recess 24 of the other upper comb teeth 22. Therefore, the teeth 23 of one upper comb teeth 22 and the teeth 23 of the other upper comb 22 intersect with the Y direction, which is the extension direction of the teeth 23 (more specifically, It is formed to be adjacent to the substantially orthogonal (including orthogonal) X direction. In addition, the recessed part 24 shows the space of the both sides of each tooth part 23. As shown in FIG.
 上部櫛歯部22の歯部23は、枠部21と接続する根元部25またはその付近で下部電極12側に折り曲げられている。これにより、上部櫛歯部22は、下部電極12側に曲がり、根元部25から先端部26に向けて下部電極12側に傾斜している。歯部23の折り曲げ角度(傾斜角度)は、0.1°~10°が好ましい。本実施形態では、折り曲げ角度は、略3°である。なお、本実施形態では、歯部23は、側面から見て直線形状を有している。 The teeth 23 of the upper comb teeth 22 are bent toward the lower electrode 12 at or near the root 25 connected to the frame 21. Thereby, the upper comb-tooth portion 22 is bent to the lower electrode 12 side, and is inclined to the lower electrode 12 side from the root portion 25 to the tip portion 26. The bending angle (tilt angle) of the teeth 23 is preferably 0.1 ° to 10 °. In the present embodiment, the bending angle is approximately 3 degrees. In the present embodiment, the teeth 23 have a linear shape when viewed from the side.
 歯部23の数は、1対の上部櫛歯部22全体で2つ以上あればよく、3つ以上あることが望ましい。本実施形態では、歯部23の数は、1対の上部櫛歯部22のそれぞれに2つ、すなわち、1対の上部櫛歯部22全体で4つある。以下、歯部23の数は、特に断りのない限り、1対の上部櫛歯部22全体での歯部23の数を表す。 The number of the teeth 23 may be two or more in the entire pair of upper comb teeth 22, preferably three or more. In the present embodiment, the number of the teeth 23 is two in each of the pair of upper comb teeth 22, that is, four in the entire pair of upper comb teeth 22. Hereinafter, the number of teeth 23 indicates the number of teeth 23 in the entire pair of upper comb teeth 22 unless otherwise noted.
 以上説明した上部電極11、つまり枠部21および上部櫛歯部22は、導電性を有する弾性体である導電弾性体で形成される。したがって、上部櫛歯部22の各歯部23は、枠部21を介して電気的に接続される。枠部21と上部櫛歯部22は、図示したように一体形成されることが望ましいが、別々に形成された枠部21と上部櫛歯部22とが接合されてもよい。その際、接合手段は、特に限定されず、例えば、溶接やビス止めなどである。また、枠部21と上部櫛歯部22とが別々に形成される場合、枠部21および上部櫛歯部22は、互いに同じ材料で形成されることが望ましいが、互いに異なる材料で形成されてもよい。また、上部櫛歯部22の各歯部23を連結して電気的に接続できるのであれば、矩形状の枠部21の代わりに、コの字形状の枠部などの他の形状の部材が用いられてもよい。 The upper electrode 11 described above, that is, the frame portion 21 and the upper comb-tooth portion 22 is formed of a conductive elastic body which is an elastic body having conductivity. Therefore, each tooth 23 of the upper comb tooth 22 is electrically connected via the frame 21. Although it is desirable that the frame portion 21 and the upper comb-tooth portion 22 be integrally formed as illustrated, the separately formed frame portion 21 and the upper comb-tooth portion 22 may be joined. In that case, a joining means is not specifically limited, For example, they are welding, screwing, etc. When the frame portion 21 and the upper comb portion 22 are formed separately, the frame portion 21 and the upper comb portion 22 are preferably formed of the same material as each other, but are formed of different materials. It is also good. If the respective teeth 23 of the upper comb teeth 22 can be connected and electrically connected, a member having another shape such as a U-shaped frame is used instead of the rectangular frame 21. It may be used.
 下部電極12は、図2に示したように、上部電極11の上部櫛歯部22の各歯部23と対向する位置に設けられた複数の歯部32を有する櫛歯状の部材である下部櫛歯部31を有する。上部櫛歯部22が互いに対向して1対設けられているため、下部櫛歯部31も互いに対向する1対の部材からなる。下部櫛歯部31は、半導電性抵抗体で形成される。下部櫛歯部31の線抵抗率は、10Ω/mm~10Ω/mmであることが望ましい。線抵抗率とは、単位長さ当たりの抵抗値を示す。 The lower electrode 12 is a comb-like member having a plurality of teeth 32 provided at positions opposed to the respective teeth 23 of the upper comb teeth 22 of the upper electrode 11, as shown in FIG. It has a comb-tooth portion 31. Since the upper comb teeth 22 are provided in a pair facing each other, the lower comb teeth 31 are also formed of a pair of members facing each other. The lower comb-tooth portion 31 is formed of a semiconductive resistor. The linear resistivity of the lower comb teeth 31 is preferably 10 Ω / mm to 10 4 Ω / mm. The line resistivity indicates the resistance value per unit length.
 1対の下部櫛歯部31の各歯部32は、導電線33によって電気的に接続されている。導電線33としては、具体的には、一方の下部櫛歯部31の各歯部32を電気的に接続する導電線と、他方の下部櫛歯部31の各歯部32を電気的に接続する導電線とがある。導電線33は、下部基板2上に設けられ、スペーサー3の間隙3aから下部基板2の第2の部分2bに沿って延び、その端部に接続端子33a(図1参照)が形成されている。接続端子33aは、外部装置(図示せず)と電気的に接続され、感圧センサ100の駆動時には、外部装置から接続端子33aおよび導電線33を介して下部電極12に電圧が印加される。 Each tooth portion 32 of the pair of lower comb teeth 31 is electrically connected by a conductive wire 33. Specifically, as conductive wire 33, the conductive wire electrically connecting each tooth portion 32 of one lower comb portion 31 and each tooth portion 32 of the other lower comb portion 31 are electrically connected Conductive wire. The conductive wire 33 is provided on the lower substrate 2 and extends from the gap 3a of the spacer 3 along the second portion 2b of the lower substrate 2, and the connection terminal 33a (see FIG. 1) is formed at the end thereof. . The connection terminal 33a is electrically connected to an external device (not shown), and a voltage is applied from the external device to the lower electrode 12 through the connection terminal 33a and the conductive wire 33 when the pressure sensor 100 is driven.
 図6は、感圧センサ100の動作を説明するための図である。図6では、感圧センサ100に対して荷重が印加されていない無荷重状態(6-1)、弱い荷重が印加されている弱荷重状態(6-2)、強い荷重が印加されている強荷重状態(6-3)の感圧センサ100の透視側面図および透視上面図が示されている。なお、図6では、説明の簡略化のため、上部櫛歯部22(下部櫛歯部31)の歯部の数は2つとしている。 FIG. 6 is a diagram for explaining the operation of the pressure sensor 100. As shown in FIG. In FIG. 6, no load is applied to the pressure sensor 100 (6-1), a weak load is applied (6-2), and a strong load is applied. A see-through side view and a see-through top view of the pressure sensor 100 in the loaded state (6-3) are shown. In FIG. 6, the number of teeth of the upper comb teeth 22 (lower comb teeth 31) is two for simplification of the description.
 感圧センサ100に対して荷重が印加されていない無荷重状態の場合、(6-1)に示すように、上部電極11の上部櫛歯部22と下部電極12の下部櫛歯部31とは、互いに接触しないように形成されている。このため、感圧センサ100の抵抗値は無限大となる。 In the no-load state where no load is applied to the pressure sensor 100, as shown in (6-1), the upper comb teeth 22 of the upper electrode 11 and the lower comb teeth 31 of the lower electrode 12 are And are formed so as not to touch each other. Therefore, the resistance value of the pressure sensor 100 is infinite.
 感圧センサ100の上部基板1の凸部1aに弱い荷重F1が印加された弱荷重状態の場合、上部基板1が荷重F1に応じて撓み、それに伴い、上部電極11の上部櫛歯部22が下がり、(6-2)に示すように、下部電極12の下部櫛歯部31と接触する。このとき、上部櫛歯部22は、根元部25から先端部26に向けて下部電極12側に傾斜しているため、先端部26の方から下部櫛歯部31と接触する。下部櫛歯部31の各歯部32おける、歯部32と導電線33との接続部から歯部32と上部櫛歯部22との接触部までの距離である有効距離をそれぞれAおよびBとすると、感圧センサ100は、その有効距離AおよびBの和A+Bに応じた抵抗値R(A+B)を有することになる。 In the weak load state where a weak load F1 is applied to the convex portion 1a of the upper substrate 1 of the pressure sensor 100, the upper substrate 1 bends according to the load F1, and accordingly, the upper comb teeth 22 of the upper electrode 11 Then, as shown in (6-2), it comes in contact with the lower comb-tooth portion 31 of the lower electrode 12. At this time, since the upper comb-tooth portion 22 is inclined toward the lower electrode 12 from the root 25 to the tip 26, the upper comb-tooth 22 contacts the lower comb-tooth 31 from the tip 26 side. The effective distances A and B, which are the distances from the connection between the tooth 32 and the conductive wire 33 in each tooth 32 of the lower comb 31 to the contact between the tooth 32 and the upper comb 22, are shown below. Then, the pressure sensor 100 has a resistance value R (A + B) according to the sum A + B of the effective distances A and B.
 さらに(6-2)に示した荷重F1よりも大きい荷重F2が上部基板1の凸部1aが印加された強荷重状態の場合、(6-3)に示すように上部基板1がさらに撓む。これにより、上部櫛歯部22と下部櫛歯部31とが接触する長さ(歯部23が延びるY方向の長さ)が(6-2)の場合よりも長くなる。このため、下部櫛歯部31の各歯部32おける有効距離をそれぞれaおよびbとすると、その有効距離の和a+bは、(6-2)で示した弱荷重状態の有効距離の和A+Bよりも短くなる。このため、有効距離aおよびbの和に応じた感圧センサ100の抵抗値R(a+b)は、弱荷重状態における感圧センサ100の抵抗値R(A+B)よりも小さくなる。 Furthermore, in the case of a heavy load state where the convex portion 1a of the upper substrate 1 is applied with a load F2 larger than the load F1 shown in (6-2), the upper substrate 1 is further bent as shown in (6-3) . As a result, the length (the length in the Y direction in which the teeth 23 extend) in which the upper comb teeth 22 and the lower comb teeth 31 contact is longer than in the case of (6-2). Therefore, assuming that the effective distances at the respective teeth 32 of the lower comb teeth 31 are a and b, respectively, the sum a + b of the effective distances is calculated from the sum A + B of the effective distances in the weak load state shown in (6-2) Also become shorter. Therefore, the resistance value R (a + b) of the pressure sensor 100 according to the sum of the effective distances a and b is smaller than the resistance value R (A + B) of the pressure sensor 100 in the low load state.
 したがって、感圧センサ100では、印加された荷重に応じて抵抗値が変化することとなる。なお、このとき、印加された荷重に応じて有効距離が連続的に変化するため、荷重に応じて抵抗値も連続的に変化する。また、感圧センサ100の抵抗値は、実際には、上述した有効距離に応じた抵抗値と、上部電極11や導電線33の抵抗値を加えた値となるが、ここでは、説明を簡略化するため、上部電極11や導電線33の抵抗値が一定であるため、ゼロとみなした。 Therefore, in the pressure sensor 100, the resistance value changes in accordance with the applied load. At this time, since the effective distance changes continuously according to the applied load, the resistance value also changes continuously according to the load. Moreover, although the resistance value of the pressure sensor 100 is actually a value obtained by adding the resistance value according to the effective distance described above and the resistance value of the upper electrode 11 or the conductive wire 33, the description will be simplified here. In order to realize this, the resistance value of the upper electrode 11 and the conductive wire 33 is considered to be zero because the resistance value is constant.
 上記構成を有する感圧センサ100では、上部電極11として、ドリフトを軽減させることが可能な硬い材質、繰り返しの使用(変形)に適した厚さ、感圧センサ100の抵抗値変化に適した低抵抗値などを有することが望ましい。具体的には、上部電極11の材料としては、板バネ用の導電性金属板、または、導電性塗料を塗布した金属または樹脂板などが望ましく、上部電極11の引張強度は70MPa以上、厚さは0.1mm~1mm、体積抵抗率は10μΩm以下であることが望ましい。 In the pressure sensor 100 having the above configuration, the upper electrode 11 is made of a hard material capable of reducing drift, a thickness suitable for repeated use (deformation), and a low value suitable for the resistance value change of the pressure sensor 100. It is desirable to have a resistance value or the like. Specifically, as the material of the upper electrode 11, a conductive metal plate for a leaf spring, or a metal or resin plate coated with a conductive paint is desirable, and the tensile strength of the upper electrode 11 is 70 MPa or more, and the thickness is Is preferably 0.1 mm to 1 mm, and the volume resistivity is preferably 10 μΩm or less.
 歯部23の数は、3以上が望ましい。これは、荷重が印加された場合に、各歯部23に印加される荷重のバランスが良いためであり、荷重が印加された位置が上部基板1の中央部からずれてしまい、その結果、荷重が印加される荷重方向がZ方向(感圧センサ100に対して直交した方向)からずれた場合でも、各歯部23における抵抗値変化のばらつきが低減されるためである。かかる荷重のバランスの観点からは、歯部23の数は多いほどよい。 The number of teeth 23 is preferably 3 or more. This is because the load applied to each tooth portion 23 is well balanced when a load is applied, and the position to which the load is applied deviates from the central portion of the upper substrate 1, and as a result, the load This is because the variation in the change in resistance value of each tooth 23 is reduced even when the load direction to which is applied is deviated from the Z direction (the direction orthogonal to the pressure sensor 100). From the viewpoint of the balance of the load, it is better for the number of teeth 23 to be larger.
 また、下部櫛歯部31の歯部32の幅W(図2参照)は、上部櫛歯部22の歯部23の幅W(図4参照)よりも広いことが望ましい。これは、歯部32と歯部23の感圧センサ100の面内方向(XY平面内の方向)の位置関係にずれが生じた場合でも、感圧センサ100に荷重が印加された際に、上部電極11と下部電極12との接触をより確実に行うことができるためである。 The width W D (see FIG. 2) of the teeth 32 of the lower comb portion 31 is preferably wider than the width W U (see FIG. 4) of the teeth 23 of the upper comb portion 22. This is because the load is applied to the pressure sensor 100 even if the positional relationship between the tooth 32 and the tooth 23 in the in-plane direction (direction in the XY plane) of the pressure sensor 100 occurs. This is because the contact between the upper electrode 11 and the lower electrode 12 can be made more reliably.
 以上説明したように本実施形態によれば、上部電極11は、互いに対向する1対の櫛歯形状の部材である上部櫛歯部22と、上部櫛歯部22の各歯部23の一端を連結する枠部21とを有し、上部櫛歯部22は下部電極12側に曲がっている。下部電極12は、半導電抵抗体で形成され、かつ、上部櫛歯部22と対向する位置に設けられた1対の櫛歯形状の部材である下部櫛歯部31を有する。 As described above, according to the present embodiment, the upper electrode 11 includes the upper comb-tooth portion 22 which is a pair of comb-tooth shaped members facing each other, and one end of each tooth portion 23 of the upper comb-tooth portion 22 The upper comb-tooth portion 22 is bent toward the lower electrode 12 side. The lower electrode 12 is formed of a semiconductive resistor, and has a lower comb-tooth portion 31 which is a pair of comb-tooth shaped members provided at a position facing the upper comb-tooth portion 22.
 上記構成を有することにより、上部電極11および下部電極12の間に硬度の低い感圧抵抗体などを設けなくてもよくなるため、ドリフトを抑制することが可能になる。また、上部櫛歯部22が下部電極12側に曲がっている構成であるため、荷重が印加された際に、上部櫛歯部22の片側と下部櫛歯部31とが接触するため、荷重に対する短絡距離の変化を小さくすることが可能になり、大型化を抑制しながら薄型化および検出域拡大を図ることが可能になる。また、上部櫛歯部22は、互いに対向する1対の構成を有するため、上部櫛歯部22を支持する上部基板1に係る負荷を均一化することが可能になる。このため、かじりなどの発生を抑制し、耐久性を高くすることができる。さらに上部櫛歯部22と下部櫛歯部31の接触距離を荷重に応じて連続的に変化させることが可能になるため、荷重を連続的に検出することが可能になる。 By having the above configuration, it is not necessary to provide a pressure-sensitive resistor or the like with low hardness between the upper electrode 11 and the lower electrode 12, so that it is possible to suppress the drift. Further, since the upper comb teeth 22 are bent toward the lower electrode 12, one side of the upper comb teeth 22 and the lower comb teeth 31 contact with each other when a load is applied. It becomes possible to make the change of short circuit distance small, and it becomes possible to aim at thickness reduction and detection area expansion, controlling enlargement. In addition, since the upper comb teeth 22 have a pair of configurations facing each other, it is possible to make the load on the upper substrate 1 supporting the upper comb teeth 22 uniform. For this reason, generation | occurrence | production of a galling etc. can be suppressed and durability can be made high. Furthermore, since the contact distance between the upper comb teeth 22 and the lower comb teeth 31 can be changed continuously according to the load, the load can be detected continuously.
 したがって、本実施形態の感圧センサ100では、ドリフトを抑制しつつ、大型化を抑制しながら薄膜化および検出域の拡大を図ることが可能であり、さらに耐久性が高く、かつ、圧力または荷重を連続的に検出することが可能になる。 Therefore, in the pressure-sensitive sensor 100 according to the present embodiment, it is possible to reduce the thickness and to enlarge the detection area while suppressing the increase in size while suppressing the drift, and the durability is high, and the pressure or the load is high. Can be detected continuously.
 また、本実施形態では、1対の上部櫛歯部22が互いに入り込んでいるため、大型化をさらに抑制することが可能になる。 Further, in the present embodiment, since the pair of upper comb teeth 22 enter each other, the increase in size can be further suppressed.
 また、本実施形態では、感圧センサ100は、1対の上部櫛歯部22を連結する枠部21を有し、1対の上部櫛歯部22と枠部21とは一体形成されている。このため、耐久性が高い上部電極11を容易に作成することが可能になる。 Further, in the present embodiment, the pressure sensor 100 has the frame portion 21 connecting the pair of upper comb teeth 22 and the pair of upper comb teeth 22 and the frame 21 are integrally formed. . Therefore, the upper electrode 11 having high durability can be easily formed.
 また、本実施形態では、下部櫛歯部31の歯部32の幅Wは、上部櫛歯部22の歯部23の幅Wよりも広いため、上部電極11と下部電極12との接触をより確実に行うことが可能になる。また、上部櫛歯部22の歯部23の数は3以上であるため、抵抗値変化のばらつきを低減することが可能になる。 Further, in the present embodiment, since the width W D of the tooth portion 32 of the lower comb portion 31 is wider than the width W U of the tooth portion 23 of the upper comb portion 22, the contact between the upper electrode 11 and the lower electrode 12 Can be done more reliably. Further, since the number of the tooth portions 23 of the upper comb teeth portion 22 is three or more, it is possible to reduce the variation in the resistance value change.
 (第2の実施形態)
 図7は、本発明の第2の実施形態の感圧センサ100の上部電極11aの構成を示す上面図である。図7に示す上部電極11aは、図5で示した第1の実施形態の上部電極11と比較して、上部櫛歯部22の歯部23の代わりに、歯部23aを有する点で異なる。なお、本実施形態の感圧センサ100の他の構成は、第1の実施形態と同様である。
Second Embodiment
FIG. 7 is a top view showing the configuration of the upper electrode 11a of the pressure sensor 100 according to the second embodiment of the present invention. The upper electrode 11a shown in FIG. 7 is different from the upper electrode 11 of the first embodiment shown in FIG. 5 in that it has a tooth portion 23a instead of the tooth portion 23 of the upper comb portion 22. In addition, the other structure of the pressure sensor 100 of this embodiment is the same as that of 1st Embodiment.
 図5に示した第1の実施形態における歯部23は、矩形状であったが、図7に示す歯部23aは、先端部26が根元部25よりも細くなっている。より具体的には、歯部23aは、上方から見て、根元部25から先端部26に向けて幅が徐々に細くなる略三角形状に形成されている。このとき、下部櫛歯部31の歯部32の幅Wは、上部櫛歯部22の歯部23aの幅の最大値、つまり、歯部23aの根元部25の幅WUMよりも広いことが望ましい。 The teeth 23 in the first embodiment shown in FIG. 5 are rectangular, but the tip 26 of the teeth 23 a shown in FIG. 7 is thinner than the root 25. More specifically, the teeth 23a are formed in a substantially triangular shape whose width gradually decreases from the root 25 toward the tip 26 when viewed from above. At this time, the width W D of the teeth 32 of the lower comb teeth 31 is wider than the maximum value of the width of the teeth 23 a of the upper comb teeth 22, that is, the width W UM of the root 25 of the teeth 23 a. Is desirable.
 本実施形態では、歯部23aの先端部26が根元部25よりも細いため、荷重が小さい場合でも、上部櫛歯部22の歯部23aの先端部26が変形しやすく、下部櫛歯部31に接触しやすい。このため、微小の荷重を検出することが可能になり、荷重を検出できる検出域を広くすることが可能になる。 In this embodiment, since the tip 26 of the tooth 23a is thinner than the root 25, the tip 26 of the tooth 23a of the upper comb teeth 22 is easily deformed even when the load is small. Easy to touch. For this reason, it becomes possible to detect a minute load, and it becomes possible to widen the detection area which can detect a load.
 (第3の実施形態)
 図8は、本発明の第3の実施形態の感圧センサ100の上部電極11bの構成を示す縦断面図である。図8に示す上部電極11bは、図3に示した上部電極11と比較して、上部櫛歯部22における歯部23の代わりに、歯部23bを有する点で異なる。なお、本実施形態の感圧センサ100の他の構成は、第1の実施形態と同様である。
Third Embodiment
FIG. 8 is a longitudinal sectional view showing the configuration of the upper electrode 11 b of the pressure-sensitive sensor 100 according to the third embodiment of the present invention. The upper electrode 11b shown in FIG. 8 is different from the upper electrode 11 shown in FIG. 3 in that it has teeth 23b instead of the teeth 23 of the upper comb teeth 22. In addition, the other structure of the pressure sensor 100 of this embodiment is the same as that of 1st Embodiment.
 図3に示した第1の実施形態における歯部23は、側面から見て直線形状を有していたが、図8に示す歯部23bは、側面から見て、下部電極12側に膨らむように湾曲した曲線形状(より具体的には、R形状)を有する。 The teeth 23 in the first embodiment shown in FIG. 3 have a linear shape when viewed from the side, but the teeth 23 b shown in FIG. 8 expand toward the lower electrode 12 when viewed from the side. And a curved shape (more specifically, an R shape).
 本実施形態では、歯部23bが下部電極12側に膨らむように湾曲しているため、荷重が小さい場合でも、歯部23bの先端部が変形しやすく、下部櫛歯部31に接触しやすい。このため、微小の荷重を検出することが可能になり、荷重を検出できる検出域を広くすることが可能になる。 In the present embodiment, since the teeth 23 b are curved so as to expand toward the lower electrode 12, even if the load is small, the tip of the teeth 23 b is easily deformed and easily contacts the lower comb teeth 31. For this reason, it becomes possible to detect a minute load, and it becomes possible to widen the detection area which can detect a load.
 (第4の実施形態)
 本実施形態では、各部の構成についてより詳細に説明する。
Fourth Embodiment
In the present embodiment, the configuration of each part will be described in more detail.
 第1~第3の実施形態では、図6に示したように示したように、上部基板1は、可撓性を有し、荷重が印加された際に変形することで、印加された荷重を上部電極11に伝えている。このとき、当然ながら、上部基板1は、荷重が印加された際に、上部電極11の上部櫛歯部22と当接しない程度の強度を有する必要がある。また、スペーサー3は、上述したように特に限定されないが、柔軟性および弾性を有することが望ましい。なお、上部基板1は、可撓性を有さない部材で構成されてもよい。この場合、当然ながら、スペーサー3は、上部基板1に対して印加された荷重を上部電極11に伝えるために柔軟性および弾性を有する必要がある In the first to third embodiments, as shown in FIG. 6, the upper substrate 1 has flexibility and is deformed when a load is applied, whereby the applied load is obtained. To the upper electrode 11. At this time, as a matter of course, the upper substrate 1 needs to have a strength not to abut on the upper comb-tooth portion 22 of the upper electrode 11 when a load is applied. Also, the spacer 3 is not particularly limited as described above, but desirably has flexibility and elasticity. The upper substrate 1 may be made of a non-flexible member. In this case, of course, the spacer 3 needs to have flexibility and elasticity to transmit the load applied to the upper substrate 1 to the upper electrode 11
 上部基板1と上部電極11とは、互いに接合されなくてもよいし、互いに接合されてもよい。上部基板1と上部電極11とを互いに接合しない場合、感圧センサ100の構成の簡易化を図ることが可能になる。一方、上部基板1と上部電極11とを互いに接合する場合、上部基板1と上部電極11との位置ずれを抑制することが可能になる。したがって、感圧センサ100に対して荷重が繰り返し印加されても、上部基板1と上部電極11との位置がずれて、感圧センサ100の特性に影響が生じることを抑制することが可能になる。 The upper substrate 1 and the upper electrode 11 may not be bonded to each other, or may be bonded to each other. When the upper substrate 1 and the upper electrode 11 are not bonded to each other, the configuration of the pressure sensor 100 can be simplified. On the other hand, when the upper substrate 1 and the upper electrode 11 are bonded to each other, it is possible to suppress the positional deviation between the upper substrate 1 and the upper electrode 11. Therefore, even if a load is repeatedly applied to pressure-sensitive sensor 100, it is possible to suppress the occurrence of an influence on the characteristics of pressure-sensitive sensor 100 due to the positional deviation between upper substrate 1 and upper electrode 11. .
 上部基板1と上部電極11とを互いに接合する場合、その接合方法については特に限定されない。例えば、上部基板1と上部電極11とは、粘着剤や、熱硬化性接着剤のような接着剤などを用いて互いに接合される。粘着剤を用いる場合、特に両面テープなどを用いることにより、上部基板1と上部電極11とを容易に接合することが可能になるため、感圧センサ100を容易に製造することが可能になる。また、接着剤を用いる場合、一般的に接着剤は粘着剤と比べてヒステリシスが発生しくにため、負荷の荷重時と除荷時で検出値に差が生じることを抑制することが可能になる。また、上部基板1と上部電極11とは、PET(polyethylene terephthalate:ポリエチレンテレフタラート)フィルムのような柔軟性を有する弾性体膜を介して接合されてもよい When the upper substrate 1 and the upper electrode 11 are bonded to each other, the bonding method is not particularly limited. For example, the upper substrate 1 and the upper electrode 11 are bonded to each other using an adhesive or an adhesive such as a thermosetting adhesive. In the case of using an adhesive, particularly by using a double-sided tape or the like, the upper substrate 1 and the upper electrode 11 can be easily joined, so that the pressure sensor 100 can be easily manufactured. When an adhesive is used, the adhesive generally generates hysteresis compared to the pressure-sensitive adhesive, which makes it possible to suppress a difference in detection value between when the load is applied and when it is unloaded. . Also, the upper substrate 1 and the upper electrode 11 may be bonded via a flexible elastic film such as a PET (polyethylene terephthalate) film.
 下部基板2の材質や材料は、感圧センサ100が設置される場所などに応じて適宜選択される。 The material and material of the lower substrate 2 are appropriately selected according to the place where the pressure sensor 100 is installed, and the like.
 感圧センサ100における荷重の検出範囲は、上部電極11の厚さに応じて変化する。具体的には、上部電極11が薄くなるほど、検出精度を高くすることができる。このため、上部電極11の厚さは、所望の検出範囲に応じて決定することが望ましい。また、反対に上部電極11の厚さが厚くなるほど、ドリフトの発生を抑制することができる。 The detection range of the load in the pressure sensor 100 changes in accordance with the thickness of the upper electrode 11. Specifically, the thinner the upper electrode 11, the higher the detection accuracy. For this reason, it is desirable to determine the thickness of the upper electrode 11 according to the desired detection range. In addition, as the thickness of the upper electrode 11 increases, the occurrence of drift can be suppressed.
 また、上部電極11における上部櫛歯部22の歯部23の折り曲げ角度が大きいほど、上部電極11の加工が容易になり、さらには検出範囲を広くすることが可能になる。また、反対に歯部23の折り曲げ角度が小さいほど、感圧センサ100を薄くすることが可能になる。 Further, as the bending angle of the teeth 23 of the upper comb teeth 22 in the upper electrode 11 is larger, the processing of the upper electrode 11 is facilitated, and the detection range can be further widened. In addition, the pressure sensor 100 can be thinner as the bending angle of the teeth 23 is smaller.
 (第5の実施形態)
 図9は、本発明の第5の実施形態の感圧センサ100の構成を示す縦断面図であり、図10は、本発明の第5の実施形態の感圧センサ100の構成を示す分解斜視図である。
Fifth Embodiment
FIG. 9 is a longitudinal sectional view showing the structure of a pressure-sensitive sensor 100 according to a fifth embodiment of the present invention, and FIG. 10 is an exploded perspective view showing the structure of the pressure-sensitive sensor 100 according to the fifth embodiment of the present invention. FIG.
 図9および図10に示す本実施形態の感圧センサ100は、図1~図6で説明した第1の実施形態の感圧センサ100と比較して、押圧部材4をさらに備える点で異なる。また、本実施形態の感圧センサ100では、上部基板1と上部電極11とが粘着剤層5で互いに接合されている。粘着剤層5は、粘着剤で形成された層であり、例えば、両面テープなどを用いることで形成することができる。図10では、感圧センサ100の上部、具体的には、上部基板1、押圧部材4、粘着剤層5および上部電極11の構成が示されている。 The pressure-sensitive sensor 100 according to the present embodiment shown in FIGS. 9 and 10 differs from the pressure-sensitive sensor 100 according to the first embodiment described with reference to FIGS. 1 to 6 in that it further includes a pressing member 4. Further, in the pressure-sensitive sensor 100 according to the present embodiment, the upper substrate 1 and the upper electrode 11 are bonded to each other by the adhesive layer 5. The pressure-sensitive adhesive layer 5 is a layer formed of a pressure-sensitive adhesive, and can be formed, for example, by using a double-sided tape or the like. In FIG. 10, the upper part of the pressure sensor 100, specifically, the configuration of the upper substrate 1, the pressing member 4, the pressure-sensitive adhesive layer 5, and the upper electrode 11 is shown.
 第1の実施形態では、スペーサー3は、上部基板1と下部基板2の間に設けられていたが、本実施形態では、押圧部材4と下部基板2との間に設けられ、押圧部材4と下部基板2とを間隔を空けて支持する。上部基板1は押圧部材4の下面(下部基板2と対向する面)に設けられている。押圧部材4と上部基板1とは、互いに接合されていなくてもよいし、互いに接合されてもよい。接合された際の接合方法も特に限定されない。 In the first embodiment, the spacer 3 is provided between the upper substrate 1 and the lower substrate 2, but in the present embodiment, the spacer 3 is provided between the pressing member 4 and the lower substrate 2. The lower substrate 2 is supported at an interval. The upper substrate 1 is provided on the lower surface (the surface facing the lower substrate 2) of the pressing member 4. The pressing member 4 and the upper substrate 1 may not be bonded to each other, or may be bonded to each other. The bonding method at the time of bonding is also not particularly limited.
 押圧部材4の上面(下部基板2と対向する面とは反対側の面)には、感圧センサ100に対して荷重を印加するための押しボタンとして機能する凸部4aが設けられている。凸部4aは、押圧部材4の中央部に設けられることが望ましい。なお、押圧部材4は、凸部4aを備えず、平板状に形成されてもよい。また、本実施形態では、上部基板1は、図1に示した凸部1aを備えていない。 A convex portion 4 a functioning as a push button for applying a load to the pressure sensor 100 is provided on the upper surface of the pressing member 4 (the surface opposite to the surface facing the lower substrate 2). It is desirable that the convex portion 4 a be provided at the central portion of the pressing member 4. The pressing member 4 may be formed in a flat plate shape without including the convex portion 4 a. Further, in the present embodiment, the upper substrate 1 is not provided with the convex portion 1a shown in FIG.
 粘着剤層5は、上部基板1と上部電極11とを接合する第1の粘着剤層である。粘着剤層5は、具体的には、上部電極11の枠部21の少なくとも一部に設けられ、上部基板1と上部電極11の枠部21とを接合する。 The pressure-sensitive adhesive layer 5 is a first pressure-sensitive adhesive layer for bonding the upper substrate 1 and the upper electrode 11. Specifically, the pressure-sensitive adhesive layer 5 is provided on at least a part of the frame portion 21 of the upper electrode 11, and bonds the upper substrate 1 and the frame portion 21 of the upper electrode 11.
 押圧部材4は、可撓性を有し、変形することで上部基板1に対して印加された荷重を上部電極11に伝えている。このため、本実施形態では、上部基板1は、可撓性を有さない部材で構成された場合でも、スペーサー3は、上部基板1に対して印加された荷重を上部電極11に伝えるために柔軟性および弾性を有する必要がない。 The pressing member 4 has flexibility, and transmits the load applied to the upper substrate 1 to the upper electrode 11 by being deformed. Therefore, in the present embodiment, even when the upper substrate 1 is formed of a non-flexible member, the spacer 3 transmits the load applied to the upper substrate 1 to the upper electrode 11. There is no need to have flexibility and elasticity.
 以上説明したように本実施形態によれば、上部基板1を下面に備えた可撓性を有する押圧部材4と下部基板2とがスペーサー3によって間隔を空けて対向している。したがって、上部基板1に可撓性を設けず、さらにスペーサー3に柔軟性および弾性を設けなくてもよくなるため、上部基板1やスペーサー3の特性を精密に調整しなくても、容易に圧力を検出することが可能になる。 As described above, according to the present embodiment, the flexible pressing member 4 having the upper substrate 1 on the lower surface and the lower substrate 2 are opposed by the spacer 3 with an interval. Therefore, the upper substrate 1 is not provided with flexibility, and furthermore, the spacer 3 does not need to be provided with flexibility and elasticity. Therefore, the pressure can easily be adjusted without precisely adjusting the characteristics of the upper substrate 1 and the spacer 3. It becomes possible to detect.
 また、本実施形態では、上部基板1と上部電極11とが上部電極11の枠部21に沿って設けられた粘着剤層5を介して接合される。このため、上部基板1と上部電極11とを簡単な構成で接合させることが可能になるため、感圧センサ100の構成を簡単化することが可能になる。 Further, in the present embodiment, the upper substrate 1 and the upper electrode 11 are joined via the adhesive layer 5 provided along the frame 21 of the upper electrode 11. Therefore, since the upper substrate 1 and the upper electrode 11 can be bonded with a simple configuration, the configuration of the pressure sensor 100 can be simplified.
 (第6の実施形態)
 図11は、本発明の第6の実施形態の感圧センサ100の構成を示す縦断面図であり、図12は、本発明の第6の実施形態の感圧センサ100の構成を示す分解斜視図である。
Sixth Embodiment
FIG. 11 is a longitudinal sectional view showing the configuration of a pressure-sensitive sensor 100 according to a sixth embodiment of the present invention, and FIG. 12 is an exploded perspective view showing the configuration of the pressure-sensitive sensor 100 according to the sixth embodiment FIG.
 図11および図12に示す感圧センサ100は、図9および図10に示した第5の実施形態の感圧センサ100と比較して、上部基板1と上部電極11とを接合する接合方法が異なる。本実施形態では、上部基板1と上部電極11とが弾性体膜であるPETフィルム6を介して互いに接合されている。具体的には、上部基板1とPETフィルム6とが粘着剤層7を介して互いに接合され、PETフィルム6と上部電極11が粘着剤層8を介して互いに接合されている。なお、図12では、感圧センサ100の上部、具体的には、上部基板1、押圧部材4、PETフィルム6、粘着剤層7、8および上部電極11の構成が示されている。 The pressure sensor 100 shown in FIGS. 11 and 12 has a bonding method for bonding the upper substrate 1 and the upper electrode 11 as compared with the pressure sensor 100 of the fifth embodiment shown in FIGS. 9 and 10. It is different. In the present embodiment, the upper substrate 1 and the upper electrode 11 are bonded to each other via the PET film 6 which is an elastic film. Specifically, the upper substrate 1 and the PET film 6 are bonded to each other through the adhesive layer 7, and the PET film 6 and the upper electrode 11 are bonded to each other through the adhesive layer 8. In FIG. 12, the upper part of the pressure sensor 100, specifically, the configuration of the upper substrate 1, the pressing member 4, the PET film 6, the pressure-sensitive adhesive layers 7 and 8, and the upper electrode 11 is shown.
 PETフィルム6は、柔軟性を有する弾性体膜である。PETフィルム6は、上部基板1と略同じ形状を有する。 The PET film 6 is a flexible elastic membrane. The PET film 6 has substantially the same shape as the upper substrate 1.
 粘着剤層7は、上部基板1とPETフィルム6を接合する第2の粘着剤層である。粘着剤層7は、上部基板1およびPETフィルム6における第2の方向であるY方向の略中央部に、第1の方向であるX方向に沿って設けられている。 The pressure-sensitive adhesive layer 7 is a second pressure-sensitive adhesive layer for bonding the upper substrate 1 and the PET film 6. The pressure-sensitive adhesive layer 7 is provided at a substantially central portion in the Y direction which is the second direction in the upper substrate 1 and the PET film 6 along the X direction which is the first direction.
 粘着剤層8は、PETフィルム6と上部電極11とを接合する第3の粘着剤層である。粘着剤層8は、PETフィルム6および上部電極11のY方向の両端部のそれぞれに、X方向に沿って設けられている。したがって、粘着剤層8は、上部電極11の枠部21におけるX方向に延びる部分に沿って設けられ、上部電極11の枠部21とPETフィルム6とを互いに接合している。 The pressure-sensitive adhesive layer 8 is a third pressure-sensitive adhesive layer for bonding the PET film 6 and the upper electrode 11. The pressure-sensitive adhesive layer 8 is provided along the X direction at each of both ends of the PET film 6 and the upper electrode 11 in the Y direction. Therefore, the adhesive layer 8 is provided along a portion of the frame 21 of the upper electrode 11 extending in the X direction, and bonds the frame 21 of the upper electrode 11 and the PET film 6 to each other.
 図13Aおよび図13Bは、本実施形態における感圧センサ100の動作を説明するための図である。図13Aおよび図13Bには、荷重が印加されていない無荷重状態の感圧センサ100と、荷重が印加されている荷重状態の感圧センサ100との透視側面図がそれぞれ示されている。 13A and 13B are diagrams for explaining the operation of the pressure sensor 100 according to the present embodiment. 13A and 13B respectively show perspective side views of the no-load pressure sensor 100 in which no load is applied and the pressure sensor 100 in a load state in which a load is applied.
 感圧センサ100に対して荷重が印加されていない無荷重状態の場合、本実施形態では、図13Aに示すように、上部電極11の上部櫛歯部22と下部電極12の下部櫛歯部31とは、互いに接触しないように形成されている。 In the no load state where no load is applied to the pressure sensor 100, in this embodiment, as shown in FIG. 13A, the upper comb teeth 22 of the upper electrode 11 and the lower comb teeth 31 of the lower electrode 12 And are formed so as not to contact each other.
 感圧センサ100の押圧部材4の凸部4aに荷重Fが印加された荷重状態の場合、荷重Fは、押圧部材4、上部基板1、粘着剤層7、PETフィルム6、粘着剤層8を介して上部電極11に伝わる。そして、上部電極11が荷重F1に応じて撓み、それに伴い、上部電極11の上部櫛歯部22が下がり、図13Bに示すように、下部電極12の下部櫛歯部31と接触する。 When the load F is applied to the convex portion 4 a of the pressure member 4 of the pressure sensor 100, the load F is the pressure member 4, the upper substrate 1, the pressure sensitive adhesive layer 7, the PET film 6, and the pressure sensitive adhesive layer 8. It is transmitted to the upper electrode 11 via Then, the upper electrode 11 bends according to the load F1, and accordingly, the upper comb portion 22 of the upper electrode 11 is lowered to contact with the lower comb portion 31 of the lower electrode 12 as shown in FIG. 13B.
 このとき、上部基板1と上部電極11とがPETフィルム6を介して接合されているため、粘着剤層8が上部電極11の変形に追従して変形することを抑制することが可能になる。したがって、粘着剤層8が両端部などで大きく変形することでヒステリシスが発生してしまうことを抑制することが可能になる。 At this time, since the upper substrate 1 and the upper electrode 11 are bonded via the PET film 6, it is possible to suppress the pressure-sensitive adhesive layer 8 from being deformed following the deformation of the upper electrode 11. Therefore, it is possible to suppress the occurrence of hysteresis due to the pressure-sensitive adhesive layer 8 being greatly deformed at both ends and the like.
 以上説明したように本実施形態によれば、上部基板1とPETフィルム6とを接合する粘着剤層7が、上部基板1におけるY方向の略中央部にX方向に沿って設けられ、PETフィルム6と上部電極11とを接合する粘着剤層8が、上部電極11におけるY方向の両端部のそれぞれにX方向に沿って設けられる。このため、粘着剤層7および8が上部電極11の撓みに沿って変形することを抑制することが可能になるため、粘着剤層7および8においてヒステリシスが発生することを抑制することが可能になる。その結果、感圧センサ100の検出値において負荷の荷重時と除荷時とで差が生じることを抑制することが可能になる。 As described above, according to the present embodiment, the pressure-sensitive adhesive layer 7 for bonding the upper substrate 1 and the PET film 6 is provided along the X direction substantially at the center of the upper substrate 1 in the Y direction. A pressure-sensitive adhesive layer 8 for joining the upper electrode 11 and the upper electrode 11 is provided along the X direction at each end of the upper electrode 11 in the Y direction. Therefore, since the pressure-sensitive adhesive layers 7 and 8 can be suppressed from being deformed along the bending of the upper electrode 11, the generation of hysteresis in the pressure-sensitive adhesive layers 7 and 8 can be suppressed. Become. As a result, it becomes possible to suppress the difference between the time of loading of the load and the time of unloading in the detection value of the pressure sensor 100.
 (実施例1)
 実施例1として第1の実施形態の構成を有する感圧センサ100を以下のように作成した。
Example 1
As Example 1, a pressure-sensitive sensor 100 having the configuration of the first embodiment was created as follows.
 上部電極11の材料として、厚みが0.3mmのステンレス(SUS304-CSP)の板を用意し、そのステンレスの板を打ち抜いて、歯部23の数が4本の上部櫛歯部22と枠部21を一体形成した。そして、歯部23の根元部25を下部電極12側に約3°曲げることで上部電極11を製造した。 A plate of stainless steel (SUS304-CSP) 0.3 mm thick is prepared as a material of the upper electrode 11, and the stainless steel plate is punched out, and the upper comb teeth 22 having four teeth 23 and a frame 21 was integrally formed. Then, the upper electrode 11 was manufactured by bending the root portion 25 of the tooth portion 23 toward the lower electrode 12 by about 3 °.
 また、厚みが250μmのPET(PolyEthylene Terephthalate:ポリエチレンテレフタレート)シートを下部基板2として用意し、その下部基板2の上部電極11の各歯部23と対向する位置に、線抵抗率が1kΩ/mmのカーボンペーストを櫛歯形状に塗布して下部電極12(1対の下部櫛歯部31)として形成した。このとき、下部電極12(カーボンペースト)の長さを上部電極11の歯部23の長さよりも短くし、幅を上部電極11の歯部23の幅よりも広くした。そして、1対の下部櫛歯部31のそれぞれの歯部32の片側が電気的に接続されるように導電性の銀ペーストで導電線33を形成した。 In addition, a PET (PolyEthylene Terephthalate: polyethylene terephthalate) sheet having a thickness of 250 μm is prepared as the lower substrate 2, and the linear resistivity is 1 kΩ / mm at a position facing each tooth 23 of the upper electrode 11 of the lower substrate 2. The carbon paste was applied in a comb-tooth shape to form a lower electrode 12 (a pair of lower comb-tooth portions 31). At this time, the length of the lower electrode 12 (carbon paste) was made shorter than the length of the teeth 23 of the upper electrode 11, and the width was made wider than the width of the teeth 23 of the upper electrode 11. Then, the conductive wire 33 was formed of a conductive silver paste so that one side of each of the tooth portions 32 of the pair of lower comb teeth 31 was electrically connected.
 さらに上部電極11を上部基板1に貼り付け、スペーサー3を用いて上部基板1と下部基板2とを間隔を開けて互いに対向するように接続した。 Further, the upper electrode 11 was attached to the upper substrate 1, and the upper substrate 1 and the lower substrate 2 were connected using the spacer 3 so as to face each other at an interval.
 (実施例2)
 上部電極11の材料として、厚みが0.3mmのアルミニウム(A1050)の板を用意した。他の点は、実施例1と同様である。
(Example 2)
As a material of the upper electrode 11, a plate of aluminum (A1050) having a thickness of 0.3 mm was prepared. The other points are the same as in the first embodiment.
 (実施例3)
 上部電極11の材料として、厚みが0.3mmの炭素工具鋼鋼材(SK85―CSP)の板を用意した。他の点は、実施例1と同様である。
(Example 3)
As a material of the upper electrode 11, a plate of carbon tool steel material (SK85-CSP) having a thickness of 0.3 mm was prepared. The other points are the same as in the first embodiment.
 (実施例4)
 下部基板2に対して線抵抗率が0.5kΩ/mmのカーボンペーストを櫛歯形状に塗布して下部電極12として形成した。他の点は、実施例1と同様である。
(Example 4)
A carbon paste having a linear resistivity of 0.5 kΩ / mm was applied to the lower substrate 2 in a comb-tooth shape to form a lower electrode 12. The other points are the same as in the first embodiment.
 (実施例5)
 下部基板2に対して線抵抗率が10kΩ/mmのカーボンペーストを櫛歯形状に塗布して下部電極12として形成した。他の点は、実施例1と同様である。
(Example 5)
A carbon paste having a linear resistivity of 10 kΩ / mm was applied to the lower substrate 2 in a comb-tooth shape to form a lower electrode 12. The other points are the same as in the first embodiment.
 (実施例6)
 上部電極11の材料として、厚みが0.1mmのアルミニウム(A1050)の板を用意した。他の点は、実施例1と同様である。
(Example 6)
As a material of the upper electrode 11, a plate of aluminum (A1050) having a thickness of 0.1 mm was prepared. The other points are the same as in the first embodiment.
 (実施例7)
 上部電極11の材料として用意した実施例1と同じステンレスの板を打ち抜いて、歯部23の数が2本の上部櫛歯部22と枠部21を一体形成した。他の点は、実施例1と同様である。
(Example 7)
The same stainless steel plate as in Example 1 prepared as the material of the upper electrode 11 was punched out to integrally form the upper comb teeth 22 and the frame 21 with two teeth 23. The other points are the same as in the first embodiment.
 (実施例8)
 上部電極11の材料として用意した実施例1と同じステンレスの板を打ち抜いて、歯部23の数が3本の上部櫛歯部22と枠部21を一体形成した。他の点は、実施例1と同様である。
(Example 8)
The same stainless steel plate as in Example 1 prepared as the material of the upper electrode 11 was punched out to integrally form the upper comb teeth 22 and the frame 21 with three teeth 23. The other points are the same as in the first embodiment.
 (実施例9)
 上部電極11の材料として用意した実施例1と同じステンレスの板を打ち抜いて、歯部23の数が5本の上部櫛歯部22と枠部21を一体形成した。他の点は、実施例1と同様である。
(Example 9)
The same stainless steel plate as in Example 1 prepared as the material of the upper electrode 11 was punched out to integrally form the upper comb teeth 22 and the frame 21 with five teeth 23. The other points are the same as in the first embodiment.
 (実施例10)
 下部基板2に塗布するカーボンペースト(下部櫛歯部31のの歯部32)の幅を、実施例1とは逆に、上部電極11の歯部23の幅よりも狭くした。他の点は、実施例1と同様である。
(Example 10)
The width of the carbon paste (the teeth 32 of the lower comb portion 31) applied to the lower substrate 2 was narrower than the width of the teeth 23 of the upper electrode 11, contrary to Example 1. The other points are the same as in the first embodiment.
 (実施例11)
 上部電極11aの材料として実施例1と同じステンレスの板を用意し、そのステンレスの板を打ち抜いて、根元部25から先端部26に向けて幅が徐々に細くなる略三角形状の4本の歯部23aを有する上部櫛歯部22と枠部21を一体形成した。他の点は、実施例1と同様である。なお、実施例11の感圧センサ100は、第2の実施形態の感圧センサ100に対応する。
(Example 11)
The same stainless steel plate as in Example 1 is prepared as the material of the upper electrode 11a, and the stainless steel plate is punched out, and four substantially triangular teeth whose width gradually decreases from the root 25 toward the tip 26 are prepared. The upper comb-tooth portion 22 having the portion 23a and the frame portion 21 are integrally formed. The other points are the same as in the first embodiment. The pressure sensor 100 of the eleventh embodiment corresponds to the pressure sensor 100 of the second embodiment.
 (実施例12)
 実施例1と同様に上部櫛歯部22と枠部21を一体形成した後で、下部電極12側に膨らむように湾曲したR形状の歯部23bを形成した。他の点は、実施例1と同様である。なお、この実施例12の感圧センサは、第3の実施形態の感圧センサ100に対応する。
(Example 12)
After integrally forming the upper comb-tooth portion 22 and the frame portion 21 in the same manner as in Example 1, a curved R-shaped tooth portion 23 b is formed so as to expand toward the lower electrode 12 side. The other points are the same as in the first embodiment. The pressure sensor of the twelfth embodiment corresponds to the pressure sensor 100 of the third embodiment.
 (実施例13)
 上部電極11の材料として、厚みが0.3mmの導電材を塗布したPBT樹脂の板を用意した。他の点は、実施例1と同様である。
(Example 13)
As a material of the upper electrode 11, a plate of PBT resin coated with a conductive material having a thickness of 0.3 mm was prepared. The other points are the same as in the first embodiment.
 (実施例14)
 下部基板2に対して線抵抗率が13kΩ/mmのカーボンペーストを櫛歯形状に塗布して下部電極12として形成した。他の点は、実施例1と同様である。
(Example 14)
A carbon paste having a linear resistivity of 13 kΩ / mm was applied to the lower substrate 2 in a comb-tooth shape to form a lower electrode 12. The other points are the same as in the first embodiment.
 (実施例15)
 上部電極11の材料として、厚みが0.05mmのアルミニウム(A1050)の板を用意した。他の点は、実施例1と同様である。
(Example 15)
As a material of the upper electrode 11, a plate of aluminum (A1050) having a thickness of 0.05 mm was prepared. The other points are the same as in the first embodiment.
 (実施例16)
 上部電極11の材料として、厚みが1.0mmの炭素工具鋼鋼材(SK85―CSP)の板を用意した。他の点は、実施例1と同様である。
(Example 16)
As a material of the upper electrode 11, a plate of carbon tool steel material (SK85-CSP) having a thickness of 1.0 mm was prepared. The other points are the same as in the first embodiment.
 なお、実施例1~16で作成した感圧センサ100において、上部櫛歯部22の引張強度は、実施例1、4、5、7~12、14の場合、500MPa、実施例2、6、15の場合、70MPa、実施例3および16の場合、800MPa、実施例13の場合、50MPaとなる。 In the pressure-sensitive sensor 100 prepared in Examples 1 to 16, the tensile strength of the upper comb-tooth portion 22 is 500 MPa in Examples 1, 4, 5, 7 to 12, and 14, and Examples 2 and 6, In the case of 15, it is 70 MPa, in the case of Examples 3 and 16, 800 MPa, and in the case of Example 13, it is 50 MPa.
 (比較例)
 比較例として、樹脂で形成された感圧抵抗体を電極の間に設けた従来の感圧センサを用いた。ここでは、この従来の感圧センサとして、特開2014-20954公報に記載の感圧センサ用いている。
(Comparative example)
As a comparative example, a conventional pressure-sensitive sensor in which a pressure-sensitive resistor made of resin is provided between the electrodes was used. Here, as the conventional pressure sensor, the pressure sensor described in JP-A-2014-20954 is used.
 実施例1~16および比較例の感圧センサに対してドリフト、ノイズ、直線性、検出域および消費電力について評価し、その評価結果を表1および表2に併せて示した。 The drift, noise, linearity, detection area, and power consumption of the pressure-sensitive sensors of Examples 1 to 16 and Comparative Example were evaluated, and the evaluation results are shown in Table 1 and Table 2.
 ドリフトの評価では、感圧センサに対して8Nの荷重を印加し、感圧センサにより検出された抵抗値の初期値Riに対する30分後の抵抗値Reと初期値Riの差の比率「|1-(Re÷Ri)×100|[%]」をドリフト値として測定した。表1および表2において、◎はドリフト値が1%未満、○はドリフト値が3%未満、△はドリフト値が5%未満、×はドリフト値が5%以上であることをそれぞれ示す。 In the drift evaluation, a load of 8 N is applied to the pressure sensor, and the ratio of the difference between the resistance value Re after 30 minutes to the initial value Ri of the resistance value detected by the pressure sensor and the initial value Ri “| -(Re と し て Ri) × 100 | [%] "was measured as a drift value. In Tables 1 and 2, ◎ indicates that the drift value is less than 1%, ○ indicates that the drift value is less than 3%, Δ indicates that the drift value is less than 5%, and x indicates that the drift value is 5% or more.
 ノイズの評価では、感圧センサに対して8Nの荷重と5Vの電圧を印加し、0.1秒ごとに抵抗値Rx(x=0.1,0.2,…,60)を測定した。そして、抵抗値Rxの1分間の平均値Ravに対する抵抗値Rxと平均値Ravの差の振れ幅(比率)の最大値「Max{|1-(Rx÷Rav)×100|}[%]」をノイズ値として測定した。表1および表2において、◎はノイズ値が1%未満、○はノイズ値が3%未満、△はノイズ値が5%未満であることをそれぞれ示す。 In the evaluation of noise, a load of 8 N and a voltage of 5 V were applied to the pressure sensor, and the resistance value Rx (x = 0.1, 0.2,..., 60) was measured every 0.1 seconds. Then, the maximum value “Max {| 1− (Rx ÷ Rav) × 100 |} [%]” of the fluctuation width (ratio) of the difference between the resistance value Rx and the average value Rav with respect to the average value Rav for one minute of the resistance value Rx. Was measured as a noise value. In Tables 1 and 2, ◎ indicates that the noise value is less than 1%, ○ indicates that the noise value is less than 3%, and Δ indicates that the noise value is less than 5%.
 直線性の評価では、感圧センサに対して1Nから8Nまで荷重を増加させたときの抵抗値Ry(y=1,2,…,8)を測定し、その抵抗値Ryの理想直線上の抵抗値Ridに対する各抵抗値Ryと理想直線上の抵抗値Ridとの差の振れ幅の最大値「Max{|1-(Ry÷Rid)×100|}[%]」を直線値として測定した。なお、理想直線は、抵抗値Ry(y=1,2,…,8)から最小二乗法を用いて算出した近似直線である。表1および表2において、◎は直線値が1.5%未満、○は直線値が3%未満、×は直線値が3%以上であることをそれぞれ示す。 In the evaluation of the linearity, the resistance value Ry (y = 1, 2,..., 8) when the load is increased from 1N to 8N with respect to the pressure sensor is measured, and the resistance value Ry on the ideal straight line The maximum value "Max {| 1-(Ry ÷ Rid) x 100 |} [%]" of the fluctuation width of the difference between each resistance value Ry and the resistance value Rid on the ideal straight line with respect to the resistance value Rid was measured as a straight line value. . The ideal straight line is an approximate straight line calculated using the least squares method from the resistance values Ry (y = 1, 2,..., 8). In Tables 1 and 2, ◎ indicates that the linear value is less than 1.5%, ○ indicates that the linear value is less than 3%, and x indicates that the linear value is 3% or more.
 検出域の評価では、感圧センサに対して荷重を増加させたときの抵抗値の最小値に対応する荷重と抵抗値の最大値に対応する荷重の比率を検出域値として測定した。表1および表2において、◎は検出域値が5倍以上であることを示す。 In the evaluation of the detection area, the ratio of the load corresponding to the minimum value of the resistance value when the load was increased to the pressure sensor and the load ratio corresponding to the maximum value of the resistance value was measured as the detection area value. In Tables 1 and 2, ◎ indicates that the detection range is 5 times or more.
 消費電力の評価では、感圧センサに対して検出域の最大となる荷重と5Vの電圧を印加した時の消費電力を測定した。表1および2において、◎は消費電力が10mW未満、○は消費電力が25mW未満であることをそれぞれ示す。 In the evaluation of the power consumption, the load which is the maximum of the detection area and the power consumption when a voltage of 5 V was applied to the pressure sensor were measured. In Tables 1 and 2, ◎ indicates that the power consumption is less than 10 mW, and ○ indicates that the power consumption is less than 25 mW.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示されたように、全ての実施例において比較例よりも性能が向上している。 As shown in Tables 1 and 2, in all the examples, the performance is improved over the comparative example.
 以上説明した各実施形態および各実施例において、図示した構成は単なる一例であって、本発明は当該構成に何ら限定されるものではない。 In the embodiments and examples described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
 例えば、上部基板1と下部基板2は、間隔を空けた状態で互いに対向することができれば、スペーサー3を用いなくてもよい。図14は、スペーサー3を用いない感圧センサ100の例を示す縦断面図である。図14に示す例では、感圧センサ100が中空のケース9を有し、ケース9の内側の上面に上部基板1を設け、ケース9の下面を下部基板2として用いることで、上部基板1と下部基板2を、間隔を空けて互いに対向させている。この場合、図示の例のように、ケース9の上面に開口9aを設けることで、上部基板1の上面の少なくとも一部をケース9から露出させることが望ましい。また、上部基板1は、可撓性を有し、自ら変形することで、印加された荷重を上部電極11に伝える。上部基板1は、荷重が印加された際に、上部電極11の上部櫛歯部22と当接しない程度の強度を有する必要がある。 For example, the spacer 3 may not be used as long as the upper substrate 1 and the lower substrate 2 can face each other with a space therebetween. FIG. 14 is a longitudinal sectional view showing an example of the pressure sensor 100 without using the spacer 3. In the example shown in FIG. 14, the pressure sensor 100 has a hollow case 9, and the upper substrate 1 is provided on the upper surface inside the case 9, and the lower surface of the case 9 is used as the lower substrate 2. The lower substrates 2 are opposed to each other at an interval. In this case, it is desirable to expose at least a part of the upper surface of the upper substrate 1 from the case 9 by providing the opening 9 a on the upper surface of the case 9 as shown in the example. In addition, the upper substrate 1 has flexibility, and transmits an applied load to the upper electrode 11 by being deformed by itself. The upper substrate 1 needs to have such strength that it does not abut on the upper comb-tooth portion 22 of the upper electrode 11 when a load is applied.
 この出願は2017年9月27日に出願された日本国特許出願番号2017-186141、および2018年7月20日に出願された日本国特許出願番号2018-136772の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。 This application claims the priority of Japanese Patent Application No. 2017-186141 filed on September 27, 2017, and Japanese Patent Application No. 2018-136772 filed on July 20, 2018. , The contents of which are incorporated herein by reference.
 1 上部基板
 2 下部基板
 2a 第1の部分
 2b 第2の部分
 3 スペーサー
 4 押圧部材
 5、7、8 粘着剤層
 6 PETフィルム
 9 ケース
 11、11a、11b 上部電極
 12 下部電極
 21 枠部
 22 上部櫛歯部
 23、23a、23b 歯部
 24 凹部
 25 根元部
 26 先端部
 31 下部櫛歯部
 32 歯部
 33 導電線
 33a 接続端子
 100 感圧センサ
Reference Signs List 1 upper substrate 2 lower substrate 2a first portion 2b second portion 3 spacer 4 pressing member 5, 7, 8 adhesive layer 6 PET film 9 case 11, 11a, 11b upper electrode 12 lower electrode 21 frame portion 22 upper comb Tooth portion 23, 23a, 23b Tooth portion 24 Concave portion 25 Root portion 26 Tip portion 31 Lower comb tooth portion 32 Tooth portion 33 Conductive wire 33a Connection terminal 100 Pressure sensor

Claims (14)

  1.  上部電極と、前記上部電極と間隔を空けて対向する下部電極とを有する感圧センサであって、
     前記上部電極は、互いに対向する1対の櫛歯形状の部材である上部櫛歯部と、前記上部櫛歯部の各歯部の一端を連結する枠部と、を有し、前記上部櫛歯部は、下部電極側に曲がっており、
     前記下部電極は、半導電抵抗体で形成され、かつ、前記上部櫛歯部と対向する位置に設けられた1対の櫛歯形状の部材である下部櫛歯部を有する、感圧センサ。
    What is claimed is: 1. A pressure-sensitive sensor comprising: an upper electrode; and a lower electrode opposed to the upper electrode with a gap.
    The upper electrode has an upper comb-tooth portion which is a pair of comb-tooth shaped members facing each other, and a frame portion connecting one end of each tooth portion of the upper comb-tooth portion, The part is bent to the lower electrode side,
    The pressure-sensitive sensor, wherein the lower electrode is formed of a semiconductive resistor, and has a lower comb-tooth portion which is a pair of comb-tooth shaped members provided at a position facing the upper comb-tooth portion.
  2.  前記1対の上部櫛歯部は、互いに入り込んでいる、請求項1に記載の感圧センサ。 The pressure sensitive sensor according to claim 1, wherein the pair of upper comb teeth are intrusive with each other.
  3.  前記1対の上部櫛歯部と前記枠部とが一体形成されている、請求項1または2に記載の感圧センサ。 The pressure sensor according to claim 1, wherein the pair of upper comb teeth and the frame are integrally formed.
  4.  前記下部櫛歯部の各歯部の幅は、前記上部櫛歯部の各歯部の幅よりも広い、請求項1~3のいずれか一項に記載の感圧センサ。 The pressure sensor according to any one of claims 1 to 3, wherein a width of each tooth of the lower comb portion is wider than a width of each tooth of the upper comb portion.
  5.  前記1対の上部櫛歯部の歯部の数は、全体で3以上である、請求項1~4のいずれか一項に記載の感圧センサ。 The pressure sensor according to any one of claims 1 to 4, wherein the number of teeth of the pair of upper comb teeth is 3 or more in total.
  6.  前記上部櫛歯部は、根元部において0.1°から10°の角度で曲がっている、請求項1~5のいずれか一項に記載の感圧センサ。 The pressure sensor according to any one of claims 1 to 5, wherein the upper comb-tooth portion is bent at an angle of 0.1 ° to 10 ° at a root portion.
  7.  前記上部櫛歯部の引張強度は、70MPa以上である、請求項1~6のいずれか一項に記載の感圧センサ。 The pressure sensor according to any one of claims 1 to 6, wherein a tensile strength of the upper comb teeth portion is 70 MPa or more.
  8.  前記上部櫛歯部の各歯部の厚さは、0.1mm~1mmである、請求項1~7のいずれか一項に記載の感圧センサ。 The pressure sensor according to any one of claims 1 to 7, wherein a thickness of each tooth portion of the upper comb portion is 0.1 mm to 1 mm.
  9.  前記下部櫛歯部の単位長さ当たりの抵抗値は、10Ω/mm~10Ω/mmである、請求項1~8のいずれか一項に記載の感圧センサ。 The pressure sensor according to any one of claims 1 to 8, wherein a resistance value per unit length of the lower comb portion is 10 Ω / mm to 10 4 Ω / mm.
  10.  前記上部櫛歯部は、前記下部電極側に膨らむように湾曲している、請求項1~9のいずれか一項に記載の感圧センサ。 The pressure sensor according to any one of claims 1 to 9, wherein the upper comb portion is curved so as to expand toward the lower electrode.
  11.  前記上部櫛歯部の各歯部は、先端部が根元部よりも細い、請求項1~10のいずれか一項に記載の感圧センサ。 The pressure-sensitive sensor according to any one of claims 1 to 10, wherein each tooth portion of the upper comb-tooth portion has a tip portion thinner than a root portion.
  12.  前記上部電極を下面に備えた上部基板と、
     前記下部電極を上面に備えた下部基板と、
     前記上部基板を下面に備えた、可撓性を有する押圧部材と、
     前記下部基板と前記押圧部材とを間隔を空けて支持するスペーサーとを有する請求項1~11のいずれか一項に記載の感圧センサ。
    An upper substrate provided with the upper electrode on the lower surface;
    A lower substrate provided on the upper surface with the lower electrode;
    A flexible pressing member having the upper substrate on the lower surface;
    The pressure sensor according to any one of claims 1 to 11, further comprising: a spacer for supporting the lower substrate and the pressing member at an interval.
  13.  前記上部基板と前記上部電極とを接合する第1の粘着剤層をさらに有し、
     前記第1の粘着剤層は、前記上部電極の枠部に沿って設けられている、請求項12に記載の感圧センサ。
    It further has a first pressure-sensitive adhesive layer for bonding the upper substrate and the upper electrode,
    The pressure sensor according to claim 12, wherein the first pressure-sensitive adhesive layer is provided along the frame of the upper electrode.
  14.  前記上部基板と前記上部電極との間に設けられた弾性体膜と、
     前記上部基板と前記弾性体膜とを接合する第2の粘着剤層と、
     前記弾性体膜と前記上部電極とを接合する第3の粘着剤層と、をさらに有し、
     前記第2の粘着剤層は、前記上部基板における前記上部櫛歯部の歯部が並んだ第1の方向とは略直交する第2の方向の略中央部に、前記第1の方向に沿って設けられ、
     前記第3の粘着剤層は、前記上部電極における前記第2の方向の両端部のそれぞれに、前記第1の方向に沿って設けられている、請求項12に記載の感圧センサ。
    An elastic film provided between the upper substrate and the upper electrode;
    A second pressure-sensitive adhesive layer bonding the upper substrate and the elastic film;
    It further has a third pressure-sensitive adhesive layer that bonds the elastic film and the upper electrode,
    The second pressure-sensitive adhesive layer extends along the first direction at a substantially central portion in a second direction substantially orthogonal to the first direction in which the teeth of the upper comb teeth in the upper substrate are aligned. Provided,
    The pressure-sensitive sensor according to claim 12, wherein the third pressure-sensitive adhesive layer is provided along each of the first direction at both ends of the upper electrode in the second direction.
PCT/JP2018/035110 2017-09-27 2018-09-21 Pressure-sensitive sensor WO2019065515A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-186141 2017-09-27
JP2017186141 2017-09-27
JP2018136772A JP6454439B1 (en) 2017-09-27 2018-07-20 Pressure sensor
JP2018-136772 2018-07-20

Publications (1)

Publication Number Publication Date
WO2019065515A1 true WO2019065515A1 (en) 2019-04-04

Family

ID=65020386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035110 WO2019065515A1 (en) 2017-09-27 2018-09-21 Pressure-sensitive sensor

Country Status (3)

Country Link
JP (1) JP6454439B1 (en)
TW (1) TWI679405B (en)
WO (1) WO2019065515A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116324357A (en) * 2020-12-16 2023-06-23 株式会社藤仓 Pressure-sensitive sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445151B2 (en) * 2001-03-26 2010-04-07 シチズン電子株式会社 Touch panel
JP5411227B2 (en) * 2005-07-29 2014-02-12 スリーエム イノベイティブ プロパティズ カンパニー Comb-shaped force switch and sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106293290B (en) * 2015-06-10 2023-08-29 宸鸿科技(厦门)有限公司 Touch control device
CN205562090U (en) * 2016-01-07 2016-09-07 常州二维光电科技有限公司 Pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445151B2 (en) * 2001-03-26 2010-04-07 シチズン電子株式会社 Touch panel
JP5411227B2 (en) * 2005-07-29 2014-02-12 スリーエム イノベイティブ プロパティズ カンパニー Comb-shaped force switch and sensor

Also Published As

Publication number Publication date
JP2019061950A (en) 2019-04-18
JP6454439B1 (en) 2019-01-16
TWI679405B (en) 2019-12-11
TW201920921A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
US5157372A (en) Flexible potentiometer
TWI338125B (en) Arrayed electrostatic capacitance sensor
US7248142B2 (en) Thin deflectable resistor
US7277004B2 (en) Bi-directional deflectable resistor
JP2007315875A (en) Pressure-sensitive sensor
JP2013037791A (en) Connection structure of circuit board and terminal fitting
CN110703935B (en) Touch panel
WO2019059100A1 (en) Vibration unit
JPWO2018181641A1 (en) Transducer and vibration presenting device using the same
US9972768B2 (en) Actuator structure and method
WO2019065515A1 (en) Pressure-sensitive sensor
JPH11195820A (en) Piezoelectric actuator
EP2487934A1 (en) Piezoelectric film ultrasonic sensor electrode
JP2001330522A (en) Load sensor
JP2008159538A (en) Pressure detecting sensor and panel switch using pressure detection sensor
JP2015232490A (en) Pressure sensitive sensor and input device using the same
KR102389249B1 (en) Pressure sensor including aligned carbon nanotube sheet and method of manufacturing the same
JP2000148383A (en) Input device
JP6882096B2 (en) Piezoelectric power generator
JP7207146B2 (en) Vibration device and electronic equipment
JP2019196909A (en) Pressure-sensitive device, hand, and robot
WO2016103887A1 (en) Pressure sensor
WO2023223879A1 (en) Deformation amount detection device
JP2024065855A (en) Tactile Sensor
JP2023059604A (en) piezoelectric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861755

Country of ref document: EP

Kind code of ref document: A1