WO2019065186A1 - Cylinder head, internal combustion engine, and method for manufacturing cylinder head - Google Patents

Cylinder head, internal combustion engine, and method for manufacturing cylinder head Download PDF

Info

Publication number
WO2019065186A1
WO2019065186A1 PCT/JP2018/033464 JP2018033464W WO2019065186A1 WO 2019065186 A1 WO2019065186 A1 WO 2019065186A1 JP 2018033464 W JP2018033464 W JP 2018033464W WO 2019065186 A1 WO2019065186 A1 WO 2019065186A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder head
valve seat
groove
head according
alloy
Prior art date
Application number
PCT/JP2018/033464
Other languages
French (fr)
Japanese (ja)
Inventor
貴晴 鈴木
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2019065186A1 publication Critical patent/WO2019065186A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/20Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/34Preliminary treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads

Definitions

  • the present invention relates to a cylinder head.
  • the present invention also relates to a method of manufacturing an internal combustion engine provided with a cylinder head and a cylinder head.
  • the cylinder head of an internal combustion engine is generally formed of an aluminum alloy. At the downstream end of the intake and exhaust ports of the cylinder head are provided valve seats for receiving the valves.
  • valve seat is exposed to high temperatures and repetitively loaded from the valve during operation of the internal combustion engine. Therefore, the valve seat is often formed of an iron-based alloy excellent in high temperature strength and wear resistance.
  • the structure which press-fits the valve seat processed precisely is adopted in many cases.
  • the thermal expansion coefficient of an aluminum alloy is larger than that of an iron-based alloy, the pressing force of a pressed-in valve seat becomes smaller as the temperature of the cylinder head becomes higher. Since there is a risk that the valve seat may fall off when the tension force is reduced, a fixed amount of press-fit allowance for the valve seat is secured.
  • Patent Document 1 proposes a technique which has a high degree of freedom in port design and can firmly connect a valve seat to a cylinder head.
  • a valve seat base material formed of an iron-based sintered alloy and having a metal film (for example, a copper film) on the surface is joined to a cylinder head made of an aluminum alloy by resistance welding.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a cylinder head in which falling off of a valve seat is more reliably prevented.
  • a cylinder head according to an embodiment of the present invention is a cylinder head main body having an intake port and an exhaust port, and is a cylinder head main body formed of an aluminum alloy and a valve seat formed of an iron-based alloy And a valve seat resistance-welded to the downstream end of the port, the valve seat having at least one groove extending in the circumferential direction of the valve seat at a portion contacting the cylinder head body.
  • the at least one groove is a single groove.
  • the one groove is disposed in a port-side half portion vertically divided from a valve contact surface middle point of the valve seat.
  • the at least one groove is two grooves.
  • the two grooves are respectively disposed in a port side half and a combustion chamber side half vertically divided from a middle point of a valve contact surface of the valve seat.
  • the depth of the at least one groove is 0.1 mm or more and 0.3 mm or less.
  • the at least one groove includes an undercut surface, and the undercut surface is formed at an outer peripheral end formed at one end in the radial direction and at the other end in the radial direction.
  • the inner peripheral end is formed at the same position as the outer peripheral end in the axial direction of the valve seat or at a position closer to the combustion chamber than the outer peripheral end in the axial direction of the valve seat It is formed.
  • each of the at least one groove is defined by a first groove surface and a second groove surface, and a cross section along a radial direction of the valve seat is substantially triangular.
  • an angle between the first groove surface and the second groove surface is 45 ° or more and 75 ° or less.
  • the bottom of each of the at least one groove has a rounded shape.
  • the radius of curvature of the rounded shape is 0.02 mm or more and 0.15 mm or less.
  • the solidus temperature of the aluminum alloy is 520 ° C. or more and 580 ° C. or less.
  • the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
  • the volume resistivity of the iron-based sintered alloy is higher than the volume resistivity of the aluminum alloy.
  • the volume resistivity of the iron-based sintered alloy at room temperature is 10 ⁇ cm or more and 38 ⁇ cm or less.
  • the valve seat has a copper plating layer or a copper alloy plating layer formed on a portion not in contact with the cylinder head body.
  • the aluminum alloy in the vicinity of the interface between the valve seat and the cylinder head main body, the aluminum alloy intrudes into pores of the iron-based sintered alloy.
  • valve seat is thicker at the intake port side than at the combustion chamber side.
  • the cylinder head according to the present invention has an Fe—Al based intermetallic compound layer having a thickness of 10 nm or more and 700 nm or less in the vicinity of the interface between the valve seat and the cylinder head main body.
  • An internal combustion engine includes a cylinder head having any of the configurations described above.
  • a method of manufacturing a cylinder head according to an embodiment of the present invention is a method of manufacturing a cylinder head including a cylinder head main body having an intake port and an exhaust port, and a valve seat disposed at the downstream end of the intake port.
  • the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
  • the step (C) is performed in a state in which a copper layer or a copper alloy layer is interposed between the valve seat and the cylinder head body.
  • the step (C) is performed such that the temperature of the portion of the valve seat in contact with the cylinder head body does not exceed the melting point of the iron-based alloy.
  • the valve seat is resistance-welded to the downstream end of the intake port.
  • the design freedom of the port can be increased compared to the conventional configuration in which the valve seat is press-fit into the cylinder head body.
  • the valve seat can be firmly joined to the cylinder head body.
  • the valve seat has at least one groove extending in the circumferential direction of the valve seat at a portion in contact with the cylinder head body.
  • the groove is filled with an aluminum alloy which is a material of the cylinder head body. In other words, the groove is engaged with the projection of the cylinder head body. Therefore, by providing such a groove, even if the valve seat is not sufficiently joined to the cylinder head main body (when the valve seat is separated from the cylinder head main body), the valve seat falls off. Can be prevented.
  • a cylinder head is provided in which the valve seat is more reliably prevented from falling off.
  • FIG. 1 is a cross-sectional view schematically showing a cylinder head 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the vicinity of a valve seat 20 of the cylinder head 1 in an enlarged manner.
  • FIG. 2 is a cross-sectional view showing the vicinity of a valve seat 20 of the cylinder head 1 in an enlarged manner.
  • FIG. 5 is an enlarged cross-sectional view showing the vicinity of a groove 21 of a valve seat 20.
  • FIG. 5 is an enlarged cross-sectional view showing the vicinity of a groove 21 of a valve seat 20.
  • FIG. 2 is a cross-sectional view schematically showing a valve seat 20.
  • (A) And (b) is the front view and side view which each show resistance welding machine 200 typically.
  • FIG. 6 is a cross-sectional view showing a state in which the upper electrode 209 of the resistance welder 200 is in contact with the valve seat 20.
  • FIG. 5 is a cross-sectional view showing a state in which the valve seat 20 is superimposed on the cylinder head main body 10 (state before bonding).
  • FIG. 6 is a cross-sectional view showing an initial state when joining the valve seat 20 to the cylinder head main body 10;
  • FIG. 6 is a cross-sectional view showing a state at the time of joining when the valve seat 20 is joined to the cylinder head main body 10;
  • (A), (b) and (c) is a figure which shows the state of the contact interface vicinity of the valve seat 20 and the cylinder head main body 10 in the case of resistance welding in a time series.
  • FIG. 2 is a cross-sectional view schematically showing a valve seat 20. It is a figure for demonstrating the method of a peeling test. It is a graph which shows the result of a exfoliation test about the case where valve seat 20 has slot 21 (when slot 21 is two), and the case where it does not have.
  • 1 is a cross-sectional view schematically showing an internal combustion engine 100 provided with a cylinder head 1;
  • FIG. 1 shows a cylinder head 1 in the present embodiment.
  • FIG. 1 is a cross-sectional view schematically showing a cylinder head 1 in the present embodiment.
  • the intake valve 61 and the exhaust valve 62 are shown together.
  • the cylinder head 1 of the present embodiment includes a cylinder head main body 10 and a valve seat 20.
  • the cylinder head body 10 is formed of an aluminum alloy.
  • the cylinder head body 10 is formed by casting (that is, a cast product) from an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less.
  • an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less for example, an Al-Si-Cu-based, Al-Si-Mg-based or Al-Si-Cu-Mg-based aluminum alloy can be used.
  • the cylinder head body 10 has an intake port 11 and an exhaust port 12.
  • an intake valve 61 is disposed at the intake port 11 and an exhaust valve 62 is disposed at the exhaust port 12.
  • the recess 10 a formed on the lower surface of the cylinder head body 10 constitutes a part of the combustion chamber.
  • the valve seat 20 is provided at the downstream end of the intake port 11. More specifically, the valve seat 20 is resistance welded to the downstream end of the intake port 11. The method of joining the valve seat 20 to the cylinder head body 10 by resistance welding will be described in detail later.
  • the valve seat 20 is generally annular as a whole.
  • the valve seat 20 is formed of an iron-based alloy. In the present embodiment, the valve seat 20 is formed of an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
  • the cylinder head 1 of the present embodiment also includes a valve seat 30 provided at the downstream end of the exhaust port 12 in addition to the valve seat 20 provided at the downstream end of the intake port 11.
  • FIG. 2 is an enlarged cross-sectional view showing a region in the vicinity of the valve seat 20 in FIG. 1 (a region R1 surrounded by a circle in FIG. 1).
  • the valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 in a portion in contact with the cylinder head body 10.
  • the valve seat 20 is formed with two grooves 21A and 21B.
  • Each of the two grooves 21A and 21B is typically formed over the entire circumference of the valve seat 20 (that is, in an annular shape).
  • combustion chamber side 20b located on the combustion chamber side of the valve seat 20 is referred to as “combustion chamber based on the vertical dividing line of the middle point of the valve contact surface 20c (position of half the length of the valve contact surface 20c)
  • the half 20 a is called “side half”
  • the half 20 a located on the side opposite to the combustion chamber side (sometimes called “port side”) is called “port half”.
  • Each of the grooves 21A and 21B is filled with an aluminum alloy which is a material of the cylinder head body 10.
  • the cylinder head body 10 has, at a portion in contact with the valve seat 20, a convex portion engaged with the grooves 21A and 21B of the valve seat 20.
  • the valve seat 20 is resistance-welded to the downstream end of the intake port 11.
  • the design freedom of the port can be increased compared to the conventional configuration in which the valve seat is press-fit into the cylinder head body.
  • the valve seat 20 can be firmly joined to the cylinder head body 10 by a mechanism which will be described in detail later.
  • the valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 in a portion in contact with the cylinder head main body 10.
  • the groove 21 is filled with the aluminum alloy that is the material of the cylinder head main body 10, in other words, the groove 21 is engaged with the convex portion of the cylinder head main body 10. Therefore, even if the joint force between the valve seat 20 and the cylinder head main body 10 is reduced by providing such a groove 21 (when the valve seat 20 is separated from the cylinder head main body 10), the valve It is possible to prevent the sheet 20 from falling off.
  • the valve seat 20 may have one groove 21 or may have three or more grooves 21 in a portion in contact with the cylinder head body 10.
  • FIG. 3 shows an example of a configuration in which the valve seat 20 has one groove 21.
  • one groove 21 is disposed in the port side half 20 a of the valve seat 20.
  • the number of grooves 21 be large. That is, as in the example shown in FIG. 3, the configuration with two grooves 21 as in the example shown in FIG. 2 is preferable to the configuration with one groove 21. Although it can be said that the configuration of three or more grooves 21 is preferable to the configuration of two from the viewpoint of preventing the valve seat 20 from falling off, if the number of grooves 21 is too large, The groove 21 may be too close to the contact point of the cylinder head body 10, so that energization may not be performed preferably. Therefore, from the viewpoint of suitably performing resistance welding, it is preferable that the number of grooves 21 is two or less.
  • the groove 21 be disposed in the port side half 20 a of the valve seat 20. Since the port side half 20a of the valve seat 20 receives more vertical load from the intake valve 61 than the combustion chamber side half 20b, peeling of the valve seat 20 occurs on the combustion chamber side half at the port side half 20a. It is more likely to occur than at 20b. In the case where the number of the grooves 21 is one, by arranging the groove 21 in the port side half portion 20 a of the valve seat 20, the effect of preventing the falling off becomes high.
  • the groove 21 is defined by the first groove surface 21 a and the second groove surface 21 b.
  • the cross section of the groove 21 along the radial direction of the valve seat 20 is substantially triangular.
  • the depth d of the groove 21 is not particularly limited. However, if the depth d of the groove 21 is too small, the effect of the drop prevention may be reduced. Therefore, the depth d of the groove 21 is preferably 0.1 mm or more. If the depth d of the groove 21 is too large, it may be difficult to fill the groove 21 with an aluminum alloy, or the thickness of the valve seat 20 may be locally reduced to cause a crack. Therefore, the depth d of the groove 21 is preferably 0.3 mm or less.
  • the groove 21 preferably has a shape that is easily caught by the protrusion of the cylinder head main body 10.
  • the groove 21 is undercut with respect to the axis (central axis) Bc of the valve seat 20 (that is, it is hooked when trying to lower the valve seat 20 along the axis Bc) Is preferred.
  • the groove 21 preferably includes an undercut surface.
  • the first groove surface 21 a is an undercut surface.
  • the first groove surface 21a which is an undercut surface, is formed at an outer peripheral end 21a1 formed at one end in the radial direction and at the other end in the radial direction and an inner periphery formed inward in the radial direction than the outer peripheral end 21a1.
  • the inner peripheral end 21a2 is formed at the same position as the outer peripheral end 21a1 or at a position closer to the combustion chamber than the outer peripheral end 21a1 in the direction of the axis Bc.
  • angle alpha there is no restriction in particular in angle alpha which the 1st slot side 21a and the 2nd slot side 21b make.
  • the angle ⁇ is preferably 45 ° or more. If the angle ⁇ between the first groove surface 21a and the second groove surface 21b is too large, the groove 21 may not be easily caught by the convex portion of the cylinder head main body 10 (the undercut is eliminated). Therefore, the angle ⁇ is preferably 75 ° or less.
  • FIG. 21 Another example of the shape of the groove 21 is shown in FIG.
  • the bottom of the groove 21 does not have to be a sharp corner as schematically shown in FIG. 4 and may have a rounded shape as shown in FIG.
  • the rounded shape of the bottom of the groove 21 facilitates filling the groove 21 with the aluminum alloy that is the material of the cylinder head body 10.
  • the radius of curvature of the radius of the bottom of the groove 21 is preferably 0.02 mm or more and 0.15 mm or less.
  • the valve seat 30 provided at the downstream end of the exhaust port 12 may have the same configuration as the valve seat 20 provided at the downstream end of the intake port 11, or may have a different configuration. Good.
  • the valve seat 30 does not have to be resistance welded to the downstream end of the exhaust port 12 and may be press-fit.
  • a cylinder head body 10 formed of an aluminum alloy is prepared.
  • a cast product formed by casting from an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less is prepared as the cylinder head body 10.
  • an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less for example, an Al-Si-Cu-based, Al-Si-Mg-based or Al-Si-Cu-Mg-based aluminum alloy can be used.
  • valve seat 20 formed of an iron-based alloy is prepared separately from preparing the cylinder head body 10.
  • the valve seat 20 is formed of an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
  • FIG. 6 shows an example of the valve seat 20 prepared.
  • the portion on the combustion chamber side is shown as the upper side, and the portion on the port side is the lower side.
  • the valve seat 20 has two grooves 21 extending in the circumferential direction of the valve seat 20 in a portion (specifically, the outer peripheral surface 20 o) in contact with the cylinder head body 10.
  • the outer peripheral surface 20o of the valve seat 20 is inclined such that the outer diameter of the valve seat 20 decreases toward the port side.
  • the outer peripheral surface 20 o of the valve seat 20 is formed to be a convex curved surface.
  • the inner peripheral surface 20i of the valve seat 20 is substantially parallel to the axis Bc from the inner peripheral end of the inclined surface 20i1 and the inner peripheral side of the inclined surface 20i1 inclined such that the inner diameter of the valve seat 20 decreases toward the port side. And an axially extending surface 20i2.
  • the valve seat 20 has a copper alloy plated layer (or copper plated layer) 22 on the surface thereof.
  • the thickness of the copper alloy plating layer 22 is, for example, 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the valve seat 20 prepared in this process may differ in the shape from the valve seat 20 in the completed cylinder head 1. This is because finish processing and the like are performed as described later.
  • valve seat 20 is joined to the downstream end of the intake port 11 by resistance welding.
  • this bonding step is performed by using a copper alloy between the valve seat 20 and the cylinder head body 10. It will be carried out with the layer (or copper layer) interposed. Hereinafter, this bonding step will be described more specifically.
  • FIGS. 7A and 7B are a front view and a side view schematically showing the resistance welder 200, respectively.
  • the resistance welder 200 includes a base 201, a lower platen 202 fixed to a lower portion of the base 201, and an upper platen disposed above the lower platen 202. And 203.
  • the upper platen 203 is vertically movable, and can approach and separate from the lower platen 202.
  • the cylinder device 204 is attached to the upper portion of the base 201 so that the axis line is in the vertical direction, and the upper platen 203 is fixed to the lower end of the rod 204 a of the cylinder device 204.
  • the lower platen 202 and the upper platen 203 are supplied with power from a power feeding device (not shown) via the conductive members 202a and 203a, respectively.
  • the conductive member 203 a connected to the upper platen 203 is configured to be deformed or raised and lowered according to the raising and lowering operation of the upper platen 203.
  • the upper platen 203 functions as an anode
  • the lower platen 202 functions as a cathode.
  • a reflective member 205 is fixed to the front of the upper platen 203.
  • a laser displacement gauge 206 is attached to the top of the base 201. The laser displacement meter 206 reflects the laser light on the reflecting member 205 and measures the displacement amount of the upper platen 203 from the distance to the reflecting member 205.
  • the lower electrode 207 is fixed on the lower platen 202, and the cylinder head body 10 is mounted on the lower electrode 207.
  • the lower surface (the surface on which the recess 10a is formed) is directed upward, and the axis at the downstream end of the intake port 11 coincides with the axis of the rod 204a of the cylinder device 204.
  • the guide rod 208 is inserted into the valve guide hole 11 a of the intake port 11.
  • the guide rod 208 has a metal round rod 208a and an insulating layer (for example, an alumina layer) 208b formed on the outer peripheral surface of the round rod 208a, and is positioned by the stopper 208c in a state fitted to the valve guide hole 11a. It is held.
  • the valve seat 20 is stacked on the downstream end of the intake port 11, and the upper electrode 209 is placed on the valve seat 20.
  • the upper electrode 209 has a cylindrical shape, and a hole 209a in which the guide rod 208 is fitted is formed in the shaft portion thereof.
  • a tapered surface 209b in contact with the inclined surface 20i1 of the valve seat 20 and a positioning circumferential surface 209c in contact with the axially extending surface 20i2 over the entire circumference are formed.
  • a magnetic body 209d for magnetically attracting the valve seat 20 is provided at the lower end portion of the upper electrode 209.
  • the upper electrode 209 By fitting the guide rod 208 into the hole 209 a of the upper electrode 209, the upper electrode 209 is positioned coaxially with the downstream end of the intake port 11 of the cylinder head body 10. Further, by bringing the tapered surface 209 b and the circumferential surface 209 c of the upper electrode 209 into contact with the valve seat 20, the valve seat 20 is positioned so as to be coaxial with the downstream end of the intake port 11.
  • the cylinder device 204 is driven to lower the upper platen 203 so as to be in close contact with the upper electrode 209. At this time, the lower surface of the upper platen 203 and the upper surface of the upper electrode 209 are parallel to each other.
  • the cylinder device 204 is driven to lower the upper platen 203 further, and the valve seat 20 is pressed against the cylinder head body 10 with a constant pressing force via the upper electrode 209.
  • the pressing force is set to be relatively weak at the beginning of the bonding process and then relatively strong.
  • FIG. 9 The state at this time (that is, before bonding) is shown in FIG. As shown in FIG. 9, the outer peripheral surface (which is a convex curved surface) 20o of the valve seat 20 is in contact with the cylinder head body 10, and the area of the portion where these contact is extremely small. Therefore, when electricity is supplied, local heat is generated because the electrical resistance is large at this portion.
  • the composition in the vicinity of the interface is the copper contained in the copper alloy plated layer 22 and the aluminum alloy which is the material of the cylinder head main body 10
  • a eutectic alloy As a eutectic alloy, a liquid phase of a copper-rich aluminum alloy is generated.
  • the state at this time is shown in FIG.
  • the aluminum oxide film and foreign matter are swept away to the outside of the contact portion by the eutectic alloy La which has been liquid phased.
  • the aluminum alloy of the cylinder head body 10 in the vicinity of the eutectic alloy layer is plastically flowed by the pressure of the valve seat 20 and the temperature rise due to heat generation. causes (plastic deformation). Therefore, the valve seat 20 starts to sink into the cylinder head body 10, and when joining is completed, substantially the entire outer peripheral surface 20o of the valve seat 20 is buried in the cylinder head body 10 as shown in FIG. At this time, the groove 21 of the valve seat 20 is filled with the aluminum alloy which is the material of the cylinder head body 10.
  • valve seat 20 can be joined to the downstream end of the intake port 11 of the cylinder head body 10 by resistance welding.
  • the cylinder head 1 can be obtained by finishing and removing unnecessary portions.
  • the valve seat 20 can be firmly joined to the cylinder head main body 10.
  • an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less is preferable to use as the aluminum alloy.
  • the volume resistivity of the iron-based sintered alloy which is the material of the valve seat 20 is made higher than the volume resistivity of the aluminum alloy which is the material of the cylinder head body 10, and the bonding process is performed in the cylinder head body of the valve seat 20. It is preferable to carry out so that the temperature of the part which contacts 10 does not become more than the melting point of the material of the valve seat 20. Thereby, the valve seat 20 can be prevented from being melted and damaged at the time of joining by resistance welding.
  • the volume resistivity of the iron-based sintered alloy which is the material of the valve seat 20 is preferably 10 ⁇ cm or more and 38 ⁇ cm or less.
  • the volume resistivity referred to here is that at room temperature (for example, 25 ° C.).
  • the valve seat 20 When the cylinder head 1 is manufactured using the valve seat 20 having the copper alloy plated layer (or copper plated layer) 22 on the surface, the valve seat 20 does not contact the cylinder head main body 10 in the completed cylinder head 1 It will have a copper alloy plating layer (or copper plating layer) 22 in the part. The remaining copper alloy plated layer (or copper plated layer) 22 provides an antirust effect.
  • FIGS. 12 and 13 show the state near the contact interface between the valve seat 20 and the cylinder head body 10 at the time of resistance welding in time series.
  • FIG. 12 (a), (c) and 13 (b) correspond to the states shown in FIGS. 9, 10 and 11, respectively.
  • This effect is due to the fact that the metal material infiltrated into the iron-based sintered alloy and the metal material of the plating layer (film) formed on the surface of the valve seat 20 are the same (both copper or copper alloy). It can be said that it is a unique effect to be obtained.
  • valve seat 20 prepared when manufacturing the cylinder head 1 is not limited to what was illustrated in FIG.
  • a valve seat 20 as shown in FIG. 14 may be prepared.
  • the valve seat 20 shown in FIG. 14 differs from the example shown in FIG. 6 in that it is thicker on the port side than on the combustion chamber side. By making the valve seat 20 thick on the port side, it is possible to increase the calorific value on the port side. By setting the thickness distribution of the valve seat 20 according to the specification of the intake port 11, etc., bonding by resistance welding can be suitably performed.
  • an Fe—Al based intermetallic compound layer (for example, FeAl 3 layer) is formed in the vicinity of the interface between the valve seat 20 and the cylinder head body 10.
  • the thickness of the intermetallic compound layer is, for example, 10 nm or more and 700 nm or less. Therefore, the junction structure according to the present embodiment (which can be said to be a metallurgical junction structure) can be distinguished from a mechanical junction structure (such as a caulking method) by the presence of such an intermetallic compound layer.
  • FIG. 15 shows the method of peeling test.
  • the peeling test was performed by applying a tensile load in a direction away from the cylinder head body 10 to the valve seat 20 after bonding. Specifically, after a portion of the intake port 10 directly above the valve seat 20 has been subjected to spot facing processing, a jig 70 is hooked on the port side end (inner peripheral side edge) of the valve seat 20 and this jig is used. 70 was pulled by a tensile tester, and the load at peeling was measured.
  • FIG. 16 shows the results of the peeling test.
  • the results of “with grooves” shown in FIG. 16 are for the case where there are two grooves 21 (the structure shown in FIG. 6). It can be seen from FIG. 16 that when the groove 21 is present, the load at which the peeling starts is larger (that is, it is difficult to be peeled) as compared with the case where the groove 21 is not present. Further, it can also be understood that even if the grooves 21 are present, even after the peeling starts, it is difficult to achieve complete peeling. As described above, it was confirmed that the valve seat 20 has the groove 21 so that the peeling and the detachment of the valve seat 20 are suitably suppressed.
  • the cylinder head 1 of the present embodiment is suitably used for various internal combustion engines (engines) because the valve seat 20 is more reliably prevented from falling off as described above.
  • An example of an internal combustion engine provided with the cylinder head 1 of the present embodiment is shown in FIG.
  • An internal combustion engine 100 shown in FIG. 17 includes a cylinder head 1, a cylinder (cylinder block) 30, and a crankcase 35. Further, the internal combustion engine 100 further includes a piston 40, a crankshaft 45, and a connecting rod (connecting rod) 50.
  • the cylinder 30 has a cylinder wall 32 that defines a cylinder bore 31.
  • the cylinder 30 is formed of an aluminum alloy.
  • the cylinder head 1 is provided on a cylinder 30.
  • the cylinder head 1 together with the cylinder wall 32 and the piston 40 defines a combustion chamber 60.
  • the crankcase 35 is provided on the side opposite to the cylinder head 1 with respect to the cylinder 30.
  • the crankcase 35 may be separate from the cylinder 30, or may be integrally formed with the cylinder 30.
  • the piston 40 is accommodated in the cylinder bore 31.
  • the piston 40 is provided to reciprocate in the cylinder bore 31.
  • the piston 40 is formed of an aluminum alloy.
  • the crankshaft 45 is accommodated in the crankcase 35.
  • the crankshaft 45 has a crank pin 46 and a crank arm 47.
  • the connecting rod 50 has a rod-like rod body 51, a small end 52 provided at one end of the rod body 51, and a large end 53 provided at the other end of the rod body 51.
  • the connecting rod 50 connects the piston 40 and the crankshaft 45. Specifically, the piston pin 48 of the piston 40 is inserted into the through hole (piston pin hole) of the small end 52, and the crank pin of the crankshaft 45 is inserted into the through hole (crank pin hole) of the large end 53. 46 is inserted, whereby the piston 40 and the crankshaft 45 are connected.
  • a bearing 56 is provided between the inner peripheral surface of the large end portion 53 and the crankpin 46.
  • the internal combustion engine 100 may be provided in a vehicle, a ship, or an aircraft, or may be provided in other means of transportation.
  • the vehicle may be an on-snow vehicle traveling on snow, a land vehicle traveling on land, or any other vehicle.
  • Land vehicles include two-wheeled vehicles, three-wheeled vehicles, and four-wheeled vehicles.
  • a straddle-type vehicle belongs to both snow vehicles and land vehicles.
  • the cylinder head 1 is the cylinder head body 10 having the intake port 11 and the exhaust port 12 and formed of the cylinder head body 10 formed of aluminum alloy and iron-based alloy And the valve seat 20 resistance-welded to the downstream end of the intake port 11.
  • the valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 at a portion in contact with the cylinder head body 10.
  • the valve seat 20 is resistance-welded to the downstream end of the intake port 11.
  • the design freedom of the port can be increased.
  • the valve seat 20 can be firmly joined to the cylinder head body 10 by using resistance welding.
  • the valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 in a portion in contact with the cylinder head body 10.
  • the groove 21 is filled with an aluminum alloy which is a material of the cylinder head body 10. In other words, the groove 21 is engaged with the projection of the cylinder head body 10. Therefore, even if the valve seat 20 is not sufficiently joined to the cylinder head body 10 by providing such a groove 21 (when the valve seat 20 is peeled off from the cylinder head body 10) And the valve seat 20 can be prevented from coming off.
  • At least one groove 21 is a single groove 21.
  • one groove 21 is disposed in the port side half 20 a vertically divided from the middle point of the valve contact surface 20 c of the valve seat 20.
  • the groove 21 When the groove 21 is one, it is preferable that the groove 21 be disposed in the port side half 20 a of the valve seat 20. Since the port side half 20a of the valve seat 20 receives more vertical load from the intake valve 61 than the combustion chamber side half 20b, peeling of the valve seat 20 occurs on the combustion chamber side half at the port side half 20a. It is more likely to occur than at 20b. In the case where the number of the grooves 21 is one, by arranging the groove 21 in the port side half portion 20 a of the valve seat 20, the effect of preventing the falling off becomes high.
  • At least one groove 21 is two grooves 21.
  • the two grooves 21 are respectively disposed in the port side half 20 a and the combustion chamber side half 20 b vertically divided from the middle point of the valve contact surface 20 c of the valve seat 20.
  • the depth d of at least one groove 21 is 0.1 mm or more and 0.3 mm or less.
  • the depth d of the groove 21 is preferably 0.1 mm or more. If the depth d of the groove 21 is too large, it may be difficult to fill the groove 21 with an aluminum alloy, or the thickness of the valve seat 20 may be locally reduced to cause a crack. Therefore, the depth d of the groove 21 is preferably 0.3 mm or less.
  • At least one groove 21 includes an undercut surface 21a, and the undercut surface 21a is formed at an outer peripheral end 21a1 formed at one end in the radial direction and at the other end in the radial direction And an inner peripheral end 21a2 formed radially inward of the end 21a1, the inner peripheral end 21a2 being at the same position as the outer peripheral end 21a1 in the axial line Bc direction of the valve seat 20 or the combustion chamber than the outer peripheral end 21a1 It is formed in the position near.
  • the groove 21 preferably has a shape that is easily caught by the protrusion of the cylinder head main body 10.
  • the groove 21 is undercut with respect to the axis (central axis) Bc of the valve seat 20 (that is, it is hooked when trying to lower the valve seat 20 along the axis Bc) Is preferred. That is, it is preferable that the groove 21 includes the undercut surface 21a.
  • Undercut surface 21a includes an outer peripheral end 21a1 formed at one end in the radial direction, and an inner peripheral end 21a2 formed at the other end in the radial direction and further inward in the radial direction than the outer peripheral end 21a1.
  • the inner peripheral end 21a2 is formed at the same position as the outer peripheral end 21a1 or at a position closer to the combustion chamber than the outer peripheral end 21a1 in the direction of the axis Bc.
  • each of the at least one groove 21 is defined by the first groove surface 21a and the second groove surface 21b, and the cross section along the radial direction of the valve seat 20 is substantially triangular.
  • an angle ⁇ between the first groove surface 21 a and the second groove surface 21 b is 45 ° or more and 75 ° or less.
  • the angle ⁇ is preferably 45 ° or more. If the angle ⁇ between the first groove surface 21a and the second groove surface 21b is too large, the groove 21 may not be easily caught by the convex portion of the cylinder head main body 10 (the undercut is eliminated). Therefore, the angle ⁇ is preferably 75 ° or less.
  • each of the at least one groove 21 has a rounded shape.
  • the rounded shape of the bottom of the groove 21 facilitates filling the groove 21 with the aluminum alloy that is the material of the cylinder head body 10.
  • the radius of curvature of the rounded shape is 0.02 mm or more and 0.15 mm or less.
  • the radius of curvature of the R-shaped bottom of the groove 21 is too small, the effect of the R-shaped may not be obtained sufficiently. If the radius of curvature of the R-shaped is too large, the groove 21 may be formed on the convex portion of the cylinder head body 10 There is a risk that it will be difficult to get caught (it will not be undercut). Therefore, the radius of curvature of the rounded shape of the bottom of the groove 21 is preferably 0.02 mm or more and 0.15 mm or less.
  • the solidus temperature of the aluminum alloy is 520 ° C. or more and 580 ° C. or less.
  • an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less is preferable to use as the aluminum alloy.
  • the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
  • the volume resistivity of the iron-based sintered alloy is higher than the volume resistivity of the aluminum alloy.
  • the joining by resistance welding is performed by the cylinder head body of the valve seat 20 It can be carried out so that the temperature of the portion in contact with 10 does not exceed the melting point of the material of the valve seat 20. Thereby, the valve seat 20 can be prevented from being melted and damaged at the time of joining by resistance welding.
  • the volume resistivity of the iron-based sintered alloy at room temperature is 10 ⁇ cm or more and 38 ⁇ cm or less.
  • the volume resistivity of the iron-based sintered alloy which is the material of the valve seat 20 is preferably 10 ⁇ cm or more and 38 ⁇ cm or less.
  • valve seat 20 has a copper plating layer or a copper alloy plating layer 22 formed on a portion not in contact with the cylinder head body 10.
  • valve seat 20 When the valve seat 20 has a copper alloy plated layer (or copper plated layer) 22 on the surface, the joint by resistance welding is a copper alloy layer (or copper layer) between the valve seat 20 and the cylinder head body 10 It will be carried out in the state where it intervened. Thus, the valve seat 20 can be firmly joined to the cylinder head body 10.
  • the aluminum alloy in the vicinity of the interface between the valve seat 20 and the cylinder head body 10, the aluminum alloy intrudes into the pores 20v of the iron-based sintered alloy.
  • the anchor effect improves the bonding strength.
  • valve seat 20 is thicker at the intake port 11 side than at the combustion chamber side.
  • valve seat 20 By making the valve seat 20 thick on the intake port 11 side, it is possible to increase the amount of heat generation on the intake port 11 side.
  • bonding by resistance welding can be suitably performed.
  • the cylinder head 1 according to the present invention has an Fe—Al intermetallic compound layer having a thickness of 10 nm or more and 700 nm or less in the vicinity of the interface between the valve seat 20 and the cylinder head body 10.
  • the joint structure by resistance welding is a mechanical joint structure due to the presence of an intermetallic compound layer (for example, an Fe-Al intermetallic compound layer having a thickness of 10 nm to 700 nm). It can be distinguished from (such as caulking).
  • an intermetallic compound layer for example, an Fe-Al intermetallic compound layer having a thickness of 10 nm to 700 nm. It can be distinguished from (such as caulking).
  • An internal combustion engine 100 includes a cylinder head 1 having any of the configurations described above.
  • a method of manufacturing a cylinder head 1 includes a cylinder head main body 10 having an intake port 11 and an exhaust port 12 and a valve seat 20 disposed at the downstream end of the intake port 11.
  • a manufacturing method of the cylinder head main body 10 formed of an aluminum alloy a step (B) of preparing a valve seat 20 formed of an iron-based alloy, and a downstream side of the intake port 11 And (C) joining the valve seat 20 by resistance welding at the end.
  • the valve seat 20 prepared in the step (B) has at least one groove 21 extending in the circumferential direction of the valve seat 20 at a portion in contact with the cylinder head body 10.
  • the valve seat 20 is joined to the downstream end of the intake port 11 by resistance welding. Thereby, compared with the case where the valve seat 20 is press-fit into the cylinder head body 10, the design freedom of the port can be increased. Moreover, the valve seat 20 can be firmly joined to the cylinder head body 10 by using resistance welding. Furthermore, in the method of manufacturing the cylinder head 1 according to the embodiment of the present invention, the provided valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 in a portion contacting the cylinder head main body 10 . The groove 21 is filled with an aluminum alloy which is a material of the cylinder head body 10.
  • the groove 21 engages with the protrusion of the cylinder head body 10. Therefore, even if the valve seat 20 is not sufficiently joined to the cylinder head body 10 by providing such a groove 21 (when the valve seat 20 is peeled off from the cylinder head body 10) And the valve seat 20 can be prevented from coming off.
  • the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
  • step (C) is performed with a copper layer or a copper alloy layer interposed between the valve seat 20 and the cylinder head body 10.
  • the valve seat 20 is firmly joined to the cylinder head body 10 by performing the joining step by resistance welding in a state in which the copper alloy layer (or copper layer) is interposed between the valve seat 20 and the cylinder head body 10. It can.
  • step (C) is performed such that the temperature of the portion of the valve seat 20 in contact with the cylinder head body 10 does not exceed the melting point of the iron-based alloy.
  • the valve seat 20 By performing the joining step by resistance welding so that the temperature of the portion of the valve seat 20 in contact with the cylinder head body 10 does not exceed the melting point of the material of the valve seat 20, the valve seat 20 can be prevented from melting.
  • a cylinder head is provided in which the valve seat is more reliably prevented from falling off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

A cylinder head (1) according to an embodiment of the present invention is provided with: a cylinder head body (10) having an intake port (11) and an exhaust port (12), the cylinder head body being formed of an aluminum alloy; and a valve seat formed of an iron-based alloy and resistance-welded to a downstream end portion of the intake port (11). The valve seat (20) has at least one groove (21), which extends in the circumferential direction of the valve seat (20), on a portion contacting the cylinder head body (10).

Description

シリンダヘッド、内燃機関およびシリンダヘッドの製造方法Cylinder head, internal combustion engine and method of manufacturing cylinder head
 本発明は、シリンダヘッドに関する。また、本発明は、シリンダヘッドを備えた内燃機関やシリンダヘッドの製造方法にも関する。 The present invention relates to a cylinder head. The present invention also relates to a method of manufacturing an internal combustion engine provided with a cylinder head and a cylinder head.
 内燃機関のシリンダヘッドは、一般に、アルミニウム合金から形成される。シリンダヘッドの吸気ポートおよび排気ポートの下流端部には、バルブを受けるためのバルブシートが設けられる。 The cylinder head of an internal combustion engine is generally formed of an aluminum alloy. At the downstream end of the intake and exhaust ports of the cylinder head are provided valve seats for receiving the valves.
 バルブシートは、内燃機関の運転中、高温に晒されるとともにバルブから繰り返し荷重を受ける。そのため、バルブシートは、高温強度および耐摩耗性に優れた鉄系合金から形成されることが多い。 The valve seat is exposed to high temperatures and repetitively loaded from the valve during operation of the internal combustion engine. Therefore, the valve seat is often formed of an iron-based alloy excellent in high temperature strength and wear resistance.
 バルブシートをシリンダヘッドに取り付けるための構成としては、シリンダヘッドに下孔加工を行ってから、精度良く加工されたバルブシートを圧入する構成が採用されることが多い。一般的に、鉄系合金よりもアルミニウム合金の方が熱膨張係数が大きいので、圧入されたバルブシートの緊迫力は、シリンダヘッドが高温になるにつれて小さくなっていく。緊迫力が小さくなるとバルブシートが脱落するおそれがあるので、バルブシートの圧入代は一定量確保されている。 As a structure for attaching a valve seat to a cylinder head, after carrying out the lower hole processing to a cylinder head, the structure which press-fits the valve seat processed precisely is adopted in many cases. Generally, since the thermal expansion coefficient of an aluminum alloy is larger than that of an iron-based alloy, the pressing force of a pressed-in valve seat becomes smaller as the temperature of the cylinder head becomes higher. Since there is a risk that the valve seat may fall off when the tension force is reduced, a fixed amount of press-fit allowance for the valve seat is secured.
 しかしながら、ポートを設計する上で、バルブシートの圧入代が小さいほどポートの設計自由度が高くなる。近年の内燃機関は、高出力化および小型化が進んでいるので、ポートの設計自由度をさらに向上させる技術が望まれている。 However, in designing the port, the smaller the valve seat press-in allowance, the higher the freedom of port design. As the internal combustion engine in recent years has been increased in output and size, a technique for further improving the port design freedom is desired.
 特許文献1には、ポートの設計自由度が高く、且つ、シリンダヘッドにバルブシートを強固に接合し得る技術が提案されている。特許文献1の技術では、アルミニウム合金製のシリンダヘッドに対し、鉄系焼結合金から形成され、表面に金属皮膜(例えば銅皮膜)を有するバルブシート母材が抵抗溶接によって接合される。 Patent Document 1 proposes a technique which has a high degree of freedom in port design and can firmly connect a valve seat to a cylinder head. In the technique of Patent Document 1, a valve seat base material formed of an iron-based sintered alloy and having a metal film (for example, a copper film) on the surface is joined to a cylinder head made of an aluminum alloy by resistance welding.
特開平8-296417号公報Unexamined-Japanese-Patent No. 8-296417
 特許文献1の技術により、ポートの設計自由度を高くするとともに、シリンダヘッドにバルブシートを強固に接合することができるものの、バルブシートの脱落をいっそう確実に防止できることが望まれている。 Although the design freedom of the port can be enhanced and the valve seat can be firmly joined to the cylinder head by the technique of Patent Document 1, it is desirable that the valve seat can be more reliably prevented from falling off.
 本発明は、上記問題に鑑みてなされたものであり、その目的は、バルブシートの脱落がより確実に防止されるシリンダヘッドを提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a cylinder head in which falling off of a valve seat is more reliably prevented.
 本発明の実施形態によるシリンダヘッドは、吸気ポートおよび排気ポートを有するシリンダヘッド本体であって、アルミニウム合金から形成されたシリンダヘッド本体と、鉄系合金から形成されたバルブシートであって、前記吸気ポートの下流端部に抵抗溶接されたバルブシートと、を備え、前記バルブシートは、前記シリンダヘッド本体に接触する部分に、前記バルブシートの周方向に延びる少なくとも1本の溝を有する。 A cylinder head according to an embodiment of the present invention is a cylinder head main body having an intake port and an exhaust port, and is a cylinder head main body formed of an aluminum alloy and a valve seat formed of an iron-based alloy And a valve seat resistance-welded to the downstream end of the port, the valve seat having at least one groove extending in the circumferential direction of the valve seat at a portion contacting the cylinder head body.
 ある実施形態において、前記少なくとも1本の溝は、1本の溝である。 In one embodiment, the at least one groove is a single groove.
 ある実施形態において、前記1本の溝は、前記バルブシートのバルブ接触面中点より鉛直分割したポート側半部に配置されている。 In one embodiment, the one groove is disposed in a port-side half portion vertically divided from a valve contact surface middle point of the valve seat.
 ある実施形態において、前記少なくとも1本の溝は、2本の溝である。 In one embodiment, the at least one groove is two grooves.
 ある実施形態において、前記2本の溝は、前記バルブシートのバルブ接触面中点より鉛直分割したポート側半部および燃焼室側半部にそれぞれ配置されている。 In one embodiment, the two grooves are respectively disposed in a port side half and a combustion chamber side half vertically divided from a middle point of a valve contact surface of the valve seat.
 ある実施形態において、前記少なくとも1本の溝の深さは、0.1mm以上0.3mm以下である。 In one embodiment, the depth of the at least one groove is 0.1 mm or more and 0.3 mm or less.
 ある実施形態において、前記少なくとも1本の溝は、アンダーカット面を含み、前記アンダーカット面は、径方向の一端に形成された外周端と、径方向の他端に形成されると共に前記外周端よりも径方向内方に形成された内周端と、を含み、前記内周端は、前記バルブシートの軸線方向において、前記外周端と同じ位置または前記外周端よりも燃焼室に近い位置に形成されている。 In one embodiment, the at least one groove includes an undercut surface, and the undercut surface is formed at an outer peripheral end formed at one end in the radial direction and at the other end in the radial direction. The inner peripheral end is formed at the same position as the outer peripheral end in the axial direction of the valve seat or at a position closer to the combustion chamber than the outer peripheral end in the axial direction of the valve seat It is formed.
 ある実施形態において、前記少なくとも1本の溝のそれぞれは、第1溝面および第2溝面によって規定され、前記バルブシートの径方向に沿った断面が略三角形状である。 In one embodiment, each of the at least one groove is defined by a first groove surface and a second groove surface, and a cross section along a radial direction of the valve seat is substantially triangular.
 ある実施形態において、前記第1溝面と前記第2溝面とのなす角が45°以上75°以下である。 In one embodiment, an angle between the first groove surface and the second groove surface is 45 ° or more and 75 ° or less.
 ある実施形態において、前記少なくとも1本の溝のそれぞれの底は、アール形状を有する。 In one embodiment, the bottom of each of the at least one groove has a rounded shape.
 ある実施形態において、前記アール形状の曲率半径は、0.02mm以上0.15mm以下である。 In one embodiment, the radius of curvature of the rounded shape is 0.02 mm or more and 0.15 mm or less.
 ある実施形態において、前記アルミニウム合金の固相線温度が520℃以上580℃以下である。 In one embodiment, the solidus temperature of the aluminum alloy is 520 ° C. or more and 580 ° C. or less.
 ある実施形態において、前記鉄系合金は、銅または銅合金が溶浸された鉄系焼結合金である。 In one embodiment, the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
 ある実施形態において、前記鉄系焼結合金の体積抵抗率は、前記アルミニウム合金の体積抵抗率よりも高い。 In one embodiment, the volume resistivity of the iron-based sintered alloy is higher than the volume resistivity of the aluminum alloy.
 ある実施形態において、室温における前記鉄系焼結合金の体積抵抗率は、10μΩcm以上38μΩcm以下である。 In one embodiment, the volume resistivity of the iron-based sintered alloy at room temperature is 10 μΩcm or more and 38 μΩcm or less.
 ある実施形態において、前記バルブシートは、前記シリンダヘッド本体に接触しない部分に形成された銅めっき層または銅合金めっき層を有する。 In one embodiment, the valve seat has a copper plating layer or a copper alloy plating layer formed on a portion not in contact with the cylinder head body.
 ある実施形態において、前記バルブシートと前記シリンダヘッド本体との界面近傍において、前記鉄系焼結合金の空孔に前記アルミニウム合金が入り込んでいる。 In one embodiment, in the vicinity of the interface between the valve seat and the cylinder head main body, the aluminum alloy intrudes into pores of the iron-based sintered alloy.
 ある実施形態において、前記バルブシートは、前記吸気ポート側において燃焼室側においてよりも肉厚である。 In one embodiment, the valve seat is thicker at the intake port side than at the combustion chamber side.
 ある実施形態において、本発明によるシリンダヘッドは、前記バルブシートと前記シリンダヘッド本体との界面近傍に、10nm以上700nm以下の厚さを有するFe-Al系の金属間化合物層を有する。 In one embodiment, the cylinder head according to the present invention has an Fe—Al based intermetallic compound layer having a thickness of 10 nm or more and 700 nm or less in the vicinity of the interface between the valve seat and the cylinder head main body.
 本発明の実施形態による内燃機関は、上述したいずれかの構成を有するシリンダヘッドを備える。 An internal combustion engine according to an embodiment of the present invention includes a cylinder head having any of the configurations described above.
 本発明の実施形態によるシリンダヘッドの製造方法は、吸気ポートおよび排気ポートを有するシリンダヘッド本体と、前記吸気ポートの下流端部に配置されたバルブシートとを備えたシリンダヘッドの製造方法であって、アルミニウム合金から形成された前記シリンダヘッド本体を用意する工程(A)と、鉄系合金から形成された前記バルブシートを用意する工程(B)と、前記吸気ポートの下流端部に、前記バルブシートを抵抗溶接により接合する工程(C)と、を包含し、前記工程(B)において用意される前記バルブシートは、前記シリンダヘッド本体に接触する部分に、前記バルブシートの周方向に延びる少なくとも1本の溝を有する。 A method of manufacturing a cylinder head according to an embodiment of the present invention is a method of manufacturing a cylinder head including a cylinder head main body having an intake port and an exhaust port, and a valve seat disposed at the downstream end of the intake port. A step (A) of preparing the cylinder head body formed of an aluminum alloy, a step (B) of preparing the valve seat formed of an iron-based alloy, and the valve at the downstream end of the intake port Bonding the sheets by resistance welding (C), wherein the valve seat prepared in the step (B) extends at least in the circumferential direction of the valve seat to a portion in contact with the cylinder head body. It has one groove.
 ある実施形態において、前記鉄系合金は、銅または銅合金が溶浸された鉄系焼結合金である。 In one embodiment, the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
 ある実施形態において、前記工程(C)は、前記バルブシートと前記シリンダヘッド本体との間に銅層または銅合金層を介在させた状態で行われる。 In one embodiment, the step (C) is performed in a state in which a copper layer or a copper alloy layer is interposed between the valve seat and the cylinder head body.
 ある実施形態において、前記工程(C)は、前記バルブシートの前記シリンダヘッド本体に接触する部分の温度が前記鉄系合金の融点以上とならないように行われる。 In one embodiment, the step (C) is performed such that the temperature of the portion of the valve seat in contact with the cylinder head body does not exceed the melting point of the iron-based alloy.
 本発明の実施形態によるシリンダヘッドでは、吸気ポートの下流端部にバルブシートが抵抗溶接されている。これにより、バルブシートがシリンダヘッド本体に圧入される従来の構成に比べ、ポートの設計自由度を高くすることができる。また、抵抗溶接を用いることにより、バルブシートをシリンダヘッド本体に対して強固に接合することができる。さらに、本発明の実施形態によるシリンダヘッドでは、バルブシートが、シリンダヘッド本体に接触する部分に、バルブシートの周方向に延びる少なくとも1本の溝を有する。この溝内には、シリンダヘッド本体の材料であるアルミニウム合金が充満する。言い換えると、溝は、シリンダヘッド本体の凸部と係合している。そのため、このような溝が設けられていることにより、万一バルブシートのシリンダヘッド本体との接合が不十分となった場合(バルブシートがシリンダヘッド本体から剥がれた場合)でも、バルブシートの脱落を防止することができる。 In the cylinder head according to the embodiment of the present invention, the valve seat is resistance-welded to the downstream end of the intake port. Thereby, the design freedom of the port can be increased compared to the conventional configuration in which the valve seat is press-fit into the cylinder head body. Further, by using resistance welding, the valve seat can be firmly joined to the cylinder head body. Furthermore, in the cylinder head according to the embodiment of the present invention, the valve seat has at least one groove extending in the circumferential direction of the valve seat at a portion in contact with the cylinder head body. The groove is filled with an aluminum alloy which is a material of the cylinder head body. In other words, the groove is engaged with the projection of the cylinder head body. Therefore, by providing such a groove, even if the valve seat is not sufficiently joined to the cylinder head main body (when the valve seat is separated from the cylinder head main body), the valve seat falls off. Can be prevented.
 本発明の実施形態によると、バルブシートの脱落がより確実に防止されるシリンダヘッドが提供される。 According to an embodiment of the present invention, a cylinder head is provided in which the valve seat is more reliably prevented from falling off.
本発明の実施形態によるシリンダヘッド1を模式的に示す断面図である。1 is a cross-sectional view schematically showing a cylinder head 1 according to an embodiment of the present invention. シリンダヘッド1のバルブシート20近傍を拡大して示す断面図である。FIG. 2 is a cross-sectional view showing the vicinity of a valve seat 20 of the cylinder head 1 in an enlarged manner. シリンダヘッド1のバルブシート20近傍を拡大して示す断面図である。FIG. 2 is a cross-sectional view showing the vicinity of a valve seat 20 of the cylinder head 1 in an enlarged manner. バルブシート20の溝21近傍を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing the vicinity of a groove 21 of a valve seat 20. バルブシート20の溝21近傍を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing the vicinity of a groove 21 of a valve seat 20. バルブシート20を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a valve seat 20. (a)および(b)は、それぞれ抵抗溶接機200を模式的に示す正面図および側面図である。(A) And (b) is the front view and side view which each show resistance welding machine 200 typically. 抵抗溶接機200の上側電極209をバルブシート20に接触させた状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which the upper electrode 209 of the resistance welder 200 is in contact with the valve seat 20. バルブシート20をシリンダヘッド本体10に重ねた状態(接合前の状態)を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the valve seat 20 is superimposed on the cylinder head main body 10 (state before bonding). バルブシート20をシリンダヘッド本体10に接合する際の初期状態を示す断面図である。FIG. 6 is a cross-sectional view showing an initial state when joining the valve seat 20 to the cylinder head main body 10; バルブシート20をシリンダヘッド本体10に接合する際の接合完了時の状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state at the time of joining when the valve seat 20 is joined to the cylinder head main body 10; (a)、(b)および(c)は、抵抗溶接の際のバルブシート20とシリンダヘッド本体10との接触界面近傍の状態を時系列で示す図である。(A), (b) and (c) is a figure which shows the state of the contact interface vicinity of the valve seat 20 and the cylinder head main body 10 in the case of resistance welding in a time series. (a)および(b)は、抵抗溶接の際のバルブシート20とシリンダヘッド本体10との接触界面近傍の状態を時系列で示す図である。(A) And (b) is a figure which shows the state of the contact interface vicinity of the valve seat 20 and the cylinder head main body 10 in the case of resistance welding in a time series. バルブシート20を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a valve seat 20. 剥離試験の方法を説明するための図である。It is a figure for demonstrating the method of a peeling test. バルブシート20が溝21を有する場合(溝21が2本の場合)と有しない場合とについて、剥離試験の結果を示すグラフである。It is a graph which shows the result of a exfoliation test about the case where valve seat 20 has slot 21 (when slot 21 is two), and the case where it does not have. シリンダヘッド1を備えた内燃機関100を模式的に示す断面図である。1 is a cross-sectional view schematically showing an internal combustion engine 100 provided with a cylinder head 1;
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments.
 図1に、本実施形態におけるシリンダヘッド1を示す。図1は、本実施形態におけるシリンダヘッド1を模式的に示す断面図である。なお、図1には、吸気バルブ61および排気バルブ62が併せて示されている。 FIG. 1 shows a cylinder head 1 in the present embodiment. FIG. 1 is a cross-sectional view schematically showing a cylinder head 1 in the present embodiment. In FIG. 1, the intake valve 61 and the exhaust valve 62 are shown together.
 本実施形態のシリンダヘッド1は、図1に示すように、シリンダヘッド本体10と、バルブシート20とを備える。 As shown in FIG. 1, the cylinder head 1 of the present embodiment includes a cylinder head main body 10 and a valve seat 20.
 シリンダヘッド本体10は、アルミニウム合金から形成されている。本実施形態では、シリンダヘッド本体10は、固相線温度が520℃以上580℃以下のアルミニウム合金から鋳造により形成されている(つまり鋳造品である)。固相線温度が520℃以上580℃以下のアルミニウム合金としては、例えば、Al-Si-Cu系やAl-Si-Mg系またはAl-Si-Cu-Mg系のアルミニウム合金を用いることができる。 The cylinder head body 10 is formed of an aluminum alloy. In the present embodiment, the cylinder head body 10 is formed by casting (that is, a cast product) from an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less. As an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less, for example, an Al-Si-Cu-based, Al-Si-Mg-based or Al-Si-Cu-Mg-based aluminum alloy can be used.
 シリンダヘッド本体10は、吸気ポート11および排気ポート12を有する。内燃機関として組み立てられた状態において、吸気ポート11には吸気バルブ61が配置され、排気ポート12には排気バルブ62が配置される。シリンダヘッド本体10の下面に形成された凹部10aは、燃焼室の一部を構成する。 The cylinder head body 10 has an intake port 11 and an exhaust port 12. In the assembled state as an internal combustion engine, an intake valve 61 is disposed at the intake port 11 and an exhaust valve 62 is disposed at the exhaust port 12. The recess 10 a formed on the lower surface of the cylinder head body 10 constitutes a part of the combustion chamber.
 バルブシート20は、吸気ポート11の下流端部に設けられている。より具体的には、バルブシート20は、吸気ポート11の下流端部に抵抗溶接されている。バルブシート20をシリンダヘッド本体10に抵抗溶接により接合する方法については、後に詳述する。バルブシート20は、全体として略円環状である。バルブシート20は、鉄系合金から形成されている。本実施形態では、バルブシート20は、銅または銅合金が溶浸された鉄系焼結合金から形成されている。 The valve seat 20 is provided at the downstream end of the intake port 11. More specifically, the valve seat 20 is resistance welded to the downstream end of the intake port 11. The method of joining the valve seat 20 to the cylinder head body 10 by resistance welding will be described in detail later. The valve seat 20 is generally annular as a whole. The valve seat 20 is formed of an iron-based alloy. In the present embodiment, the valve seat 20 is formed of an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
 なお、本実施形態のシリンダヘッド1は、吸気ポート11の下流端部に設けられたバルブシート20に加え、排気ポート12の下流端部に設けられたバルブシート30も備えている。 The cylinder head 1 of the present embodiment also includes a valve seat 30 provided at the downstream end of the exhaust port 12 in addition to the valve seat 20 provided at the downstream end of the intake port 11.
 以下、図2を参照しながら、バルブシート20およびその近傍の構造を説明する。図2は、図1中のバルブシート20近傍の領域(図1中の円で囲まれた領域R1)を拡大して示す断面図である。 Hereinafter, the valve seat 20 and the structure in the vicinity thereof will be described with reference to FIG. FIG. 2 is an enlarged cross-sectional view showing a region in the vicinity of the valve seat 20 in FIG. 1 (a region R1 surrounded by a circle in FIG. 1).
 バルブシート20は、図2に示すように、シリンダヘッド本体10に接触する部分に、バルブシート20の周方向に延びる少なくとも1本の溝21を有する。図2に示す例では、バルブシート20には、2本の溝21Aおよび21Bが形成されている。2本の溝21Aおよび21Bのそれぞれは、典型的には、バルブシート20の全周にわたって(つまり円環状に)形成されている。 As shown in FIG. 2, the valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 in a portion in contact with the cylinder head body 10. In the example shown in FIG. 2, the valve seat 20 is formed with two grooves 21A and 21B. Each of the two grooves 21A and 21B is typically formed over the entire circumference of the valve seat 20 (that is, in an annular shape).
 2本の溝21のうちの一方21Aは、バルブシート20のポート側半部20aに配置されており、他方21Bは、バルブシート20の燃焼室側半部20bに配置されている。本願明細書では、バルブ接触面20cの中点(バルブ接触面20cの長さの半分の位置)の鉛直分割線を基準として、バルブシート20の燃焼室側に位置する半部20bを「燃焼室側半部」と呼び、燃焼室側とは反対側(ポート側と呼ぶこともある)に位置する半部20aを「ポート側半部」と呼ぶ。 One of the two grooves 21 is disposed in the port half 20 a of the valve seat 20, and the other 21 B is disposed in the combustion chamber half 20 b of the valve seat 20. In the specification of the present application, the combustion chamber side 20b located on the combustion chamber side of the valve seat 20 is referred to as “combustion chamber based on the vertical dividing line of the middle point of the valve contact surface 20c (position of half the length of the valve contact surface 20c) The half 20 a is called “side half”, and the half 20 a located on the side opposite to the combustion chamber side (sometimes called “port side”) is called “port half”.
 溝21Aおよび21Bのそれぞれ内には、シリンダヘッド本体10の材料であるアルミニウム合金が充満している。言い換えると、シリンダヘッド本体10は、バルブシート20に接触する部分に、バルブシート20の溝21Aおよび21Bに係合する凸部を有している。 Each of the grooves 21A and 21B is filled with an aluminum alloy which is a material of the cylinder head body 10. In other words, the cylinder head body 10 has, at a portion in contact with the valve seat 20, a convex portion engaged with the grooves 21A and 21B of the valve seat 20.
 上述したように、本実施形態のシリンダヘッド1では、吸気ポート11の下流端部にバルブシート20が抵抗溶接されている。これにより、バルブシートがシリンダヘッド本体に圧入される従来の構成に比べ、ポートの設計自由度を高くすることができる。また、抵抗溶接を用いることにより、後に詳述するようなメカニズムにより、バルブシート20をシリンダヘッド本体10に対して強固に接合することができる。 As described above, in the cylinder head 1 of the present embodiment, the valve seat 20 is resistance-welded to the downstream end of the intake port 11. Thereby, the design freedom of the port can be increased compared to the conventional configuration in which the valve seat is press-fit into the cylinder head body. Further, by using resistance welding, the valve seat 20 can be firmly joined to the cylinder head body 10 by a mechanism which will be described in detail later.
 さらに、本実施形態のシリンダヘッド1では、バルブシート20が、シリンダヘッド本体10に接触する部分に、バルブシート20の周方向に延びる少なくとも1本の溝21を有する。既に説明したように、溝21内には、シリンダヘッド本体10の材料であるアルミニウム合金が充満しており、言い換えると、溝21は、シリンダヘッド本体10の凸部と係合している。そのため、このような溝21が設けられていることにより、万一バルブシート20のシリンダヘッド本体10との接合力が低下した場合(バルブシート20がシリンダヘッド本体10から剥がれた場合)でも、バルブシート20の脱落を防止することができる。 Furthermore, in the cylinder head 1 of the present embodiment, the valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 in a portion in contact with the cylinder head main body 10. As described above, the groove 21 is filled with the aluminum alloy that is the material of the cylinder head main body 10, in other words, the groove 21 is engaged with the convex portion of the cylinder head main body 10. Therefore, even if the joint force between the valve seat 20 and the cylinder head main body 10 is reduced by providing such a groove 21 (when the valve seat 20 is separated from the cylinder head main body 10), the valve It is possible to prevent the sheet 20 from falling off.
 図2には、溝21が2本の場合を例示しているが、溝21の本数は2に限定されるものではない。バルブシート20は、シリンダヘッド本体10に接触する部分に、1本の溝21を有していてもよいし、3本以上の溝21を有していてもよい。 Although the case where the number of grooves 21 is two is illustrated in FIG. 2, the number of grooves 21 is not limited to two. The valve seat 20 may have one groove 21 or may have three or more grooves 21 in a portion in contact with the cylinder head body 10.
 図3に、バルブシート20が1本の溝21を有する構成の例を示す。図3に示す例では、1本の溝21が、バルブシート20のポート側半部20aに配置されている。 FIG. 3 shows an example of a configuration in which the valve seat 20 has one groove 21. In the example shown in FIG. 3, one groove 21 is disposed in the port side half 20 a of the valve seat 20.
 バルブシート20の脱落をより確実に防止する観点からは、溝21の本数が多いことが好ましい。つまり、図3に示す例のように溝21が1本の構成よりも、図2に示す例のように溝21が2本の構成の方が好ましい。なお、バルブシート20の脱落防止の観点からは、溝21が2本の構成よりも3本以上の構成が好ましいともいえるが、溝21の数が多すぎると、抵抗接合初期にバルブシート20とシリンダヘッド本体10の接触点に溝21が近接しすぎて通電が好適に行えないおそれがある。そのため、抵抗溶接を好適に行う観点からは、溝21は2本以下であることが好ましい。 From the viewpoint of more reliably preventing the valve seat 20 from falling off, it is preferable that the number of grooves 21 be large. That is, as in the example shown in FIG. 3, the configuration with two grooves 21 as in the example shown in FIG. 2 is preferable to the configuration with one groove 21. Although it can be said that the configuration of three or more grooves 21 is preferable to the configuration of two from the viewpoint of preventing the valve seat 20 from falling off, if the number of grooves 21 is too large, The groove 21 may be too close to the contact point of the cylinder head body 10, so that energization may not be performed preferably. Therefore, from the viewpoint of suitably performing resistance welding, it is preferable that the number of grooves 21 is two or less.
 溝21が2本の場合、図2に例示したように、2本の溝21がバルブシート20のポート側半部20aおよび燃焼室側半部20bにそれぞれ配置されていると、バルブシート20の脱落を防止する効果が高い。また、2本の溝21の一方21Aが、ポート側半部20aのさらに上半分に配置されており、他方21Bが、燃焼室側半部20bのさらに下半分に配置されていることがより好ましい。 In the case where two grooves 21 are provided, as illustrated in FIG. 2, when two grooves 21 are respectively disposed in the port side half 20 a and the combustion chamber side half 20 b of the valve seat 20, Highly effective in preventing falling off. Further, it is more preferable that one 21A of the two grooves 21 is disposed in the upper half of the port half 20a and the other 21B is disposed in the lower half of the combustion chamber half 20b. .
 溝21が1本の場合、図3に示したように、溝21はバルブシート20のポート側半部20aに配置されていることが好ましい。バルブシート20のポート側半部20aは、吸気バルブ61からの鉛直荷重を、燃焼室側半部20bよりも多く受けるので、バルブシート20の剥離は、ポート側半部20aにおいて燃焼室側半部20bにおいてよりも発生しやすいことがある。溝21が1本の場合には、溝21をバルブシート20のポート側半部20aに配置することで、脱落防止の効果が高くなる。 In the case where one groove 21 is provided, as shown in FIG. 3, it is preferable that the groove 21 be disposed in the port side half 20 a of the valve seat 20. Since the port side half 20a of the valve seat 20 receives more vertical load from the intake valve 61 than the combustion chamber side half 20b, peeling of the valve seat 20 occurs on the combustion chamber side half at the port side half 20a. It is more likely to occur than at 20b. In the case where the number of the grooves 21 is one, by arranging the groove 21 in the port side half portion 20 a of the valve seat 20, the effect of preventing the falling off becomes high.
 続いて、図4を参照しながら、バルブシート20の溝21の好ましい構成を説明する。 Subsequently, with reference to FIG. 4, a preferable configuration of the groove 21 of the valve seat 20 will be described.
 図4に示す例では、溝21は、第1溝面21aおよび第2溝面21bによって規定される。溝21の、バルブシート20の径方向に沿った断面は、略三角形状である。 In the example shown in FIG. 4, the groove 21 is defined by the first groove surface 21 a and the second groove surface 21 b. The cross section of the groove 21 along the radial direction of the valve seat 20 is substantially triangular.
 溝21の深さdに特に制限はない。ただし、溝21の深さdが小さすぎると、脱落防止の効果が小さくなるおそれがある。そのため、溝21の深さdは、0.1mm以上であることが好ましい。また、溝21の深さdが大きすぎると、溝21内にアルミニウム合金を充満させにくかったり、バルブシート20の厚さが局所的に小さくなりすぎて亀裂の原因となったりするおそれがある。そのため、溝21の深さdは、0.3mm以下であることが好ましい。 The depth d of the groove 21 is not particularly limited. However, if the depth d of the groove 21 is too small, the effect of the drop prevention may be reduced. Therefore, the depth d of the groove 21 is preferably 0.1 mm or more. If the depth d of the groove 21 is too large, it may be difficult to fill the groove 21 with an aluminum alloy, or the thickness of the valve seat 20 may be locally reduced to cause a crack. Therefore, the depth d of the groove 21 is preferably 0.3 mm or less.
 バルブシート20の脱落の防止をより確実に行う観点からは、溝21は、シリンダヘッド本体10の凸部に引っ掛かりやすい形状であることが好ましい。具体的には、溝21は、バルブシート20の軸線(中心軸)Bcに対してアンダーカットとなる(つまり軸線Bcに沿ってバルブシート20を下げようとしたときに引っ掛かるような)形状を有することが好ましい。具体的には、溝21が、アンダーカット面を含むことが好ましい。図4に示す例では、第1溝面21aがアンダーカット面である。アンダーカット面である第1溝面21aは、径方向の一端に形成された外周端21a1と、径方向の他端に形成されると共に外周端21a1よりも径方向内方に形成された内周端21a2とを含んでおり、内周端21a2は、軸線Bc方向において、外周端21a1と同じ位置または外周端21a1よりも燃焼室に近い位置に形成されている。 From the viewpoint of more reliably preventing the valve seat 20 from falling off, the groove 21 preferably has a shape that is easily caught by the protrusion of the cylinder head main body 10. Specifically, the groove 21 is undercut with respect to the axis (central axis) Bc of the valve seat 20 (that is, it is hooked when trying to lower the valve seat 20 along the axis Bc) Is preferred. Specifically, the groove 21 preferably includes an undercut surface. In the example shown in FIG. 4, the first groove surface 21 a is an undercut surface. The first groove surface 21a, which is an undercut surface, is formed at an outer peripheral end 21a1 formed at one end in the radial direction and at the other end in the radial direction and an inner periphery formed inward in the radial direction than the outer peripheral end 21a1. The inner peripheral end 21a2 is formed at the same position as the outer peripheral end 21a1 or at a position closer to the combustion chamber than the outer peripheral end 21a1 in the direction of the axis Bc.
 第1溝面21aと第2溝面21bとのなす角αに特に制限はない。ただし、第1溝面21aと第2溝面21bとのなす角αが小さすぎると、溝21内にアルミニウム合金を充満させにくいことがある。そのため、角αは45°以上であることが好ましい。また、第1溝面21aと第2溝面21bとのなす角αが大きすぎると、溝21がシリンダヘッド本体10の凸部に引っ掛かりにくくなる(アンダーカットでなくなる)おそれがある。そのため、角αは75°以下であることが好ましい。 There is no restriction in particular in angle alpha which the 1st slot side 21a and the 2nd slot side 21b make. However, if the angle α between the first groove surface 21 a and the second groove surface 21 b is too small, it may be difficult to fill the groove 21 with the aluminum alloy. Therefore, the angle α is preferably 45 ° or more. If the angle α between the first groove surface 21a and the second groove surface 21b is too large, the groove 21 may not be easily caught by the convex portion of the cylinder head main body 10 (the undercut is eliminated). Therefore, the angle α is preferably 75 ° or less.
 図5に、溝21の形状の他の例を示す。溝21の底は、図4に模式的に示しているようなピン角(sharp corner)である必要はなく、図5に示すように、アール形状を有していてもよい。溝21の底がアール形状を有することにより、シリンダヘッド本体10の材料であるアルミニウム合金を、溝21内に充満させやすくなる。 Another example of the shape of the groove 21 is shown in FIG. The bottom of the groove 21 does not have to be a sharp corner as schematically shown in FIG. 4 and may have a rounded shape as shown in FIG. The rounded shape of the bottom of the groove 21 facilitates filling the groove 21 with the aluminum alloy that is the material of the cylinder head body 10.
 溝21の底のアール形状の曲率半径に特に制限はない。ただし、アール形状の曲率半径が小さすぎると、アール形状による効果が十分に得られないおそれがあり、アール形状の曲率半径が大きすぎると、溝21がシリンダヘッド本体10の凸部に引っ掛かりにくくなる(アンダーカットでなくなる)おそれがある。そのため、溝21の底のアール形状の曲率半径は、具体的には、0.02mm以上0.15mm以下であることが好ましい。 There is no particular limitation on the radius of curvature of the radius of the bottom of the groove 21. However, if the radius of curvature of the rounded shape is too small, the effect of the rounded shape may not be obtained sufficiently, and if the radius of curvature of the rounded shape is too large, the groove 21 is less likely to be caught by the convex portion of the cylinder head body 10 There is a risk that it will not be undercut. Therefore, the radius of curvature of the rounded shape of the bottom of the groove 21 is preferably 0.02 mm or more and 0.15 mm or less.
 なお、排気ポート12の下流端部に設けられるバルブシート30は、吸気ポート11の下流端部に設けられるバルブシート20と同じ構成を有していてもよいし、異なる構成を有していてもよい。バルブシート30は、排気ポート12の下流端部に抵抗溶接される必要はなく、圧入されていてもよい。 The valve seat 30 provided at the downstream end of the exhaust port 12 may have the same configuration as the valve seat 20 provided at the downstream end of the intake port 11, or may have a different configuration. Good. The valve seat 30 does not have to be resistance welded to the downstream end of the exhaust port 12 and may be press-fit.
 続いて、本実施形態のシリンダヘッド1の製造方法を説明する。 Subsequently, a method of manufacturing the cylinder head 1 of the present embodiment will be described.
 まず、アルミニウム合金から形成されたシリンダヘッド本体10を用意する。本実施形態では、シリンダヘッド本体10として、固相線温度が520℃以上580℃以下のアルミニウム合金から鋳造により形成された鋳造品を用意する。固相線温度が520℃以上580℃以下のアルミニウム合金としては、例えば、Al-Si-Cu系やAl-Si-Mg系またはAl-Si-Cu-Mg系のアルミニウム合金を用いることができる。 First, a cylinder head body 10 formed of an aluminum alloy is prepared. In the present embodiment, a cast product formed by casting from an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less is prepared as the cylinder head body 10. As an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less, for example, an Al-Si-Cu-based, Al-Si-Mg-based or Al-Si-Cu-Mg-based aluminum alloy can be used.
 また、シリンダヘッド本体10を用意するのとは別途に、鉄系合金から形成されたバルブシート20を用意する。本実施形態では、バルブシート20は、銅または銅合金が溶浸された鉄系焼結合金から形成されている。 Further, separately from preparing the cylinder head body 10, a valve seat 20 formed of an iron-based alloy is prepared. In the present embodiment, the valve seat 20 is formed of an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
 図6に、用意されるバルブシート20の例を示す。図6では、完成したシリンダヘッド1において燃焼室側となる部分が上側、ポート側となる部分が下側となるように図示している。図6に示す例では、バルブシート20は、シリンダヘッド本体10に接触する部分(具体的には外周面20o)に、バルブシート20の周方向に延びる2本の溝21を有する。バルブシート20の外周面20oは、ポート側に向かうにつれてバルブシート20の外径が小さくなるように傾斜している。また、バルブシート20の外周面20oは、凸曲面となるように形成されている。一方、バルブシート20の内周面20iは、ポート側に向かうにつれてバルブシート20の内径が小さくなるように傾斜した傾斜面20i1と、傾斜面20i1の内周側端部から軸線Bcと略平行に延在する軸方向延在面20i2とから構成される。 FIG. 6 shows an example of the valve seat 20 prepared. In FIG. 6, in the completed cylinder head 1, the portion on the combustion chamber side is shown as the upper side, and the portion on the port side is the lower side. In the example shown in FIG. 6, the valve seat 20 has two grooves 21 extending in the circumferential direction of the valve seat 20 in a portion (specifically, the outer peripheral surface 20 o) in contact with the cylinder head body 10. The outer peripheral surface 20o of the valve seat 20 is inclined such that the outer diameter of the valve seat 20 decreases toward the port side. Further, the outer peripheral surface 20 o of the valve seat 20 is formed to be a convex curved surface. On the other hand, the inner peripheral surface 20i of the valve seat 20 is substantially parallel to the axis Bc from the inner peripheral end of the inclined surface 20i1 and the inner peripheral side of the inclined surface 20i1 inclined such that the inner diameter of the valve seat 20 decreases toward the port side. And an axially extending surface 20i2.
 また、図6に示す例では、バルブシート20は、その表面に銅合金めっき層(または銅めっき層)22を有する。銅合金めっき層22の厚さは、例えば0.1μm以上30μm以下である。なお、この工程において用意されるバルブシート20は、完成したシリンダヘッド1におけるバルブシート20とはその形状が異なり得る。後述するように、仕上げ加工等が行われるからである。 Further, in the example shown in FIG. 6, the valve seat 20 has a copper alloy plated layer (or copper plated layer) 22 on the surface thereof. The thickness of the copper alloy plating layer 22 is, for example, 0.1 μm or more and 30 μm or less. In addition, the valve seat 20 prepared in this process may differ in the shape from the valve seat 20 in the completed cylinder head 1. This is because finish processing and the like are performed as described later.
 続いて、吸気ポート11の下流端部に、バルブシート20を抵抗溶接により接合する。本実施形態では、バルブシート20がその表面に銅合金めっき層(または銅めっき層)22を有しているために、この接合工程は、バルブシート20とシリンダヘッド本体10との間に銅合金層(または銅層)を介在させた状態で行われることになる。以下、この接合工程をより具体的に説明する。 Subsequently, the valve seat 20 is joined to the downstream end of the intake port 11 by resistance welding. In the present embodiment, since the valve seat 20 has the copper alloy plated layer (or copper plated layer) 22 on its surface, this bonding step is performed by using a copper alloy between the valve seat 20 and the cylinder head body 10. It will be carried out with the layer (or copper layer) interposed. Hereinafter, this bonding step will be described more specifically.
 まず、図7を参照しながら、接合工程に用いられる抵抗溶接機(プレス装置)200を説明する。図7(a)および(b)は、それぞれ抵抗溶接機200を模式的に示す正面図および側面図である。 First, a resistance welding machine (press device) 200 used in the bonding step will be described with reference to FIG. 7. FIGS. 7A and 7B are a front view and a side view schematically showing the resistance welder 200, respectively.
 抵抗溶接機200は、図7(a)および(b)に示すように、基台201と、基台201の下部に固定された下部プラテン202と、下部プラテン202の上方に配置された上部プラテン203とを備える。上部プラテン203は、昇降自在に設けられており、下部プラテン202に対して接近および離隔することができる。基台201の上部には、軸線が上下方向を向くようにシリンダ装置204が取り付けられており、上部プラテン203は、このシリンダ装置204のロッド204aの下端に固定されている。 As shown in FIGS. 7A and 7B, the resistance welder 200 includes a base 201, a lower platen 202 fixed to a lower portion of the base 201, and an upper platen disposed above the lower platen 202. And 203. The upper platen 203 is vertically movable, and can approach and separate from the lower platen 202. The cylinder device 204 is attached to the upper portion of the base 201 so that the axis line is in the vertical direction, and the upper platen 203 is fixed to the lower end of the rod 204 a of the cylinder device 204.
 下部プラテン202および上部プラテン203は、それぞれ導電部材202aおよび203aを介して給電装置(不図示)から給電される。上部プラテン203に接続された導電部材203aは、上部プラテン203の昇降動作に応じて変形または昇降するように構成されている。また、ここでは、上部プラテン203が陽極として機能し、下部プラテン202が陰極として機能する。 The lower platen 202 and the upper platen 203 are supplied with power from a power feeding device (not shown) via the conductive members 202a and 203a, respectively. The conductive member 203 a connected to the upper platen 203 is configured to be deformed or raised and lowered according to the raising and lowering operation of the upper platen 203. Here, the upper platen 203 functions as an anode, and the lower platen 202 functions as a cathode.
 上部プラテン203の前部には、反射部材205が固定されている。基台201の上部には、レーザ変位計206が取り付けられている。レーザ変位計206は、反射部材205にレーザ光を反射させて反射部材205との距離から上部プラテン203の変位量を測定する。 A reflective member 205 is fixed to the front of the upper platen 203. A laser displacement gauge 206 is attached to the top of the base 201. The laser displacement meter 206 reflects the laser light on the reflecting member 205 and measures the displacement amount of the upper platen 203 from the distance to the reflecting member 205.
 抵抗溶接を行う際には、まず、下部プラテン202上に下側電極207を固定し、この下側電極207上にシリンダヘッド本体10を載置する。このとき、シリンダヘッド本体10は、その下面(凹部10aが形成されている面)が上方に向き、且つ、吸気ポート11の下流端部における軸線がシリンダ装置204のロッド204aの軸線と一致するように配置する。 When the resistance welding is performed, first, the lower electrode 207 is fixed on the lower platen 202, and the cylinder head body 10 is mounted on the lower electrode 207. At this time, in the cylinder head body 10, the lower surface (the surface on which the recess 10a is formed) is directed upward, and the axis at the downstream end of the intake port 11 coincides with the axis of the rod 204a of the cylinder device 204. Place on
 次に、図8に示すように、吸気ポート11のバルブガイド穴11aにガイド棒208を挿入する。ガイド棒208は、金属製の丸棒208aと、丸棒208aの外周面に形成された絶縁層(例えばアルミナ層)208bとを有し、バルブガイド穴11aに嵌合した状態でストッパー208cによって位置決め保持される。 Next, as shown in FIG. 8, the guide rod 208 is inserted into the valve guide hole 11 a of the intake port 11. The guide rod 208 has a metal round rod 208a and an insulating layer (for example, an alumina layer) 208b formed on the outer peripheral surface of the round rod 208a, and is positioned by the stopper 208c in a state fitted to the valve guide hole 11a. It is held.
 続いて、バルブシート20を吸気ポート11の下流端部に重ね、バルブシート20に上側電極209を載せる。この上側電極209は、円柱状であり、その軸部にガイド棒208が嵌合する孔209aが形成されている。上側電極209の下端部には、バルブシート20の傾斜面20i1に接するテーパ面209bと、軸方向延在面20i2に全周にわたって接する位置決め用周面209cとが形成されている。また、上側電極209の下端部には、バルブシート20を磁気吸着するための磁性体209dが設けられている。 Subsequently, the valve seat 20 is stacked on the downstream end of the intake port 11, and the upper electrode 209 is placed on the valve seat 20. The upper electrode 209 has a cylindrical shape, and a hole 209a in which the guide rod 208 is fitted is formed in the shaft portion thereof. At the lower end of the upper electrode 209, a tapered surface 209b in contact with the inclined surface 20i1 of the valve seat 20 and a positioning circumferential surface 209c in contact with the axially extending surface 20i2 over the entire circumference are formed. Further, at the lower end portion of the upper electrode 209, a magnetic body 209d for magnetically attracting the valve seat 20 is provided.
 上側電極209の孔209aに、ガイド棒208を嵌合させることにより、上側電極209がシリンダヘッド本体10の吸気ポート11の下流端部と同軸上に位置決めされる。また、上側電極209のテーパ面209bおよび周面209cをバルブシート20に接触させることにより、バルブシート20が吸気ポート11の下流端部と同軸となるように位置決めされる。 By fitting the guide rod 208 into the hole 209 a of the upper electrode 209, the upper electrode 209 is positioned coaxially with the downstream end of the intake port 11 of the cylinder head body 10. Further, by bringing the tapered surface 209 b and the circumferential surface 209 c of the upper electrode 209 into contact with the valve seat 20, the valve seat 20 is positioned so as to be coaxial with the downstream end of the intake port 11.
 その後、シリンダ装置204を駆動して上部プラテン203を下降させ、上側電極209に密着させる。このとき、上部プラテン203の下面と上側電極209の上面とが互いに平行となるようにする。 Thereafter, the cylinder device 204 is driven to lower the upper platen 203 so as to be in close contact with the upper electrode 209. At this time, the lower surface of the upper platen 203 and the upper surface of the upper electrode 209 are parallel to each other.
 次に、シリンダ装置204を駆動して上部プラテン203をさらに下降させ、上側電極209を介してバルブシート20を一定の押圧力でシリンダヘッド本体10に押し付ける。押圧力は、接合工程の初期において相対的に弱く、その後相対的に強くなるように設定される。 Next, the cylinder device 204 is driven to lower the upper platen 203 further, and the valve seat 20 is pressed against the cylinder head body 10 with a constant pressing force via the upper electrode 209. The pressing force is set to be relatively weak at the beginning of the bonding process and then relatively strong.
 押圧の開始から所定の時間経過後に、上部プラテン203および下部プラテン202に電圧を印加し、これら両プラテンの間、すなわち、上側電極209、バルブシート20、シリンダヘッド本体10および下側電極207に電流を流す。このとき、電流は上側電極209からシリンダヘッド本体10へ向けて流れる。 After a predetermined time has elapsed from the start of pressing, a voltage is applied to upper platen 203 and lower platen 202, and current is applied between these two platens, ie, upper electrode 209, valve seat 20, cylinder head body 10 and lower electrode 207. Flow. At this time, current flows from the upper electrode 209 toward the cylinder head body 10.
 このとき(つまり接合前)の状態を図9に示す。図9に示すように、バルブシート20の外周面(凸曲面である)20oがシリンダヘッド本体10に当接しており、これらが接触する部分の面積は非常に小さい。そのため、通電が行われるとこの部分で電気抵抗が大きいために局部発熱する。 The state at this time (that is, before bonding) is shown in FIG. As shown in FIG. 9, the outer peripheral surface (which is a convex curved surface) 20o of the valve seat 20 is in contact with the cylinder head body 10, and the area of the portion where these contact is extremely small. Therefore, when electricity is supplied, local heat is generated because the electrical resistance is large at this portion.
 この発熱により、バルブシート20とシリンダヘッド本体10との接触界面の温度が上昇すると、界面近傍の組成が、銅合金めっき層22に含まれる銅とシリンダヘッド本体10の材料であるアルミニウム合金との共晶合金となり、銅リッチなアルミニウム合金の液相が生成される。このときの状態(接合初期)を図10に示す。図10に示すように、液相化した共晶合金Laによって、アルミニウム酸化膜や異物が接触部の外側に押し流される。 When the temperature of the contact interface between the valve seat 20 and the cylinder head main body 10 rises due to this heat generation, the composition in the vicinity of the interface is the copper contained in the copper alloy plated layer 22 and the aluminum alloy which is the material of the cylinder head main body 10 As a eutectic alloy, a liquid phase of a copper-rich aluminum alloy is generated. The state at this time (initial stage of bonding) is shown in FIG. As shown in FIG. 10, the aluminum oxide film and foreign matter are swept away to the outside of the contact portion by the eutectic alloy La which has been liquid phased.
 その後、接触界面の温度がさらに上昇すると、共晶合金層の近傍のシリンダヘッド本体10のアルミニウム合金は、バルブシート20が押し付けられていることと発熱によって昇温されていることとによって、塑性流動(塑性変形)を起こす。そのため、バルブシート20がシリンダヘッド本体10内に沈み込み始め、接合完了時には、図11に示すようにバルブシート20の外周面20oの略全体がシリンダヘッド本体10内に埋没した状態となる。また、このとき、バルブシート20の溝21内には、シリンダヘッド本体10の材料であるアルミニウム合金が充満している。 Thereafter, when the temperature of the contact interface is further increased, the aluminum alloy of the cylinder head body 10 in the vicinity of the eutectic alloy layer is plastically flowed by the pressure of the valve seat 20 and the temperature rise due to heat generation. Causes (plastic deformation). Therefore, the valve seat 20 starts to sink into the cylinder head body 10, and when joining is completed, substantially the entire outer peripheral surface 20o of the valve seat 20 is buried in the cylinder head body 10 as shown in FIG. At this time, the groove 21 of the valve seat 20 is filled with the aluminum alloy which is the material of the cylinder head body 10.
 このようにして、バルブシート20を、シリンダヘッド本体10の吸気ポート11の下流端部に抵抗溶接により接合することができる。 Thus, the valve seat 20 can be joined to the downstream end of the intake port 11 of the cylinder head body 10 by resistance welding.
 その後、仕上げ加工を行って不要部分を削除することにより、シリンダヘッド1を得ることができる。上述したメカニズムによる接合を行うと、特許文献1にも記載されているように、シリンダヘッド本体10にバルブシート20を強固に接合することができる。 Thereafter, the cylinder head 1 can be obtained by finishing and removing unnecessary portions. When joining by the mechanism described above is performed, as described in Patent Document 1, the valve seat 20 can be firmly joined to the cylinder head main body 10.
 抵抗溶接による接合を好適に行う観点からは、アルミニウム合金として、固相線温度が520℃以上580℃以下のアルミニウム合金を用いることが好ましい。 From the viewpoint of suitably performing joining by resistance welding, it is preferable to use an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less as the aluminum alloy.
 また、バルブシート20の材料である鉄系焼結合金の体積抵抗率を、シリンダヘッド本体10の材料であるアルミニウム合金の体積抵抗率よりも高くし、接合工程を、バルブシート20のシリンダヘッド本体10に接触する部分の温度がバルブシート20の材料の融点以上とならないように行うことが好ましい。これにより、抵抗溶接による接合時にバルブシート20が溶損することを防止できる。バルブシート20の材料である鉄系焼結合金の体積抵抗率は、好ましくは、10μΩcm以上38μΩcm以下である。ここでいう体積抵抗率は、室温(たとえば25℃)のものである。 Further, the volume resistivity of the iron-based sintered alloy which is the material of the valve seat 20 is made higher than the volume resistivity of the aluminum alloy which is the material of the cylinder head body 10, and the bonding process is performed in the cylinder head body of the valve seat 20. It is preferable to carry out so that the temperature of the part which contacts 10 does not become more than the melting point of the material of the valve seat 20. Thereby, the valve seat 20 can be prevented from being melted and damaged at the time of joining by resistance welding. The volume resistivity of the iron-based sintered alloy which is the material of the valve seat 20 is preferably 10 μΩcm or more and 38 μΩcm or less. The volume resistivity referred to here is that at room temperature (for example, 25 ° C.).
 なお、表面に銅合金めっき層(または銅めっき層)22を有するバルブシート20を用いてシリンダヘッド1を製造した場合、完成したシリンダヘッド1において、バルブシート20は、シリンダヘッド本体10に接触しない部分に銅合金めっき層(または銅めっき層)22を有することになる。残存している銅合金めっき層(または銅めっき層)22により、防錆効果が得られる。 When the cylinder head 1 is manufactured using the valve seat 20 having the copper alloy plated layer (or copper plated layer) 22 on the surface, the valve seat 20 does not contact the cylinder head main body 10 in the completed cylinder head 1 It will have a copper alloy plating layer (or copper plating layer) 22 in the part. The remaining copper alloy plated layer (or copper plated layer) 22 provides an antirust effect.
 また、上述したメカニズムにより接合が行われると、バルブシート20とシリンダヘッド本体10との界面近傍において、鉄系焼結合金の空孔にアルミニウム合金が入り込むという現象が発生する。以下、図12および図13を参照しながら、この現象を説明する。図12(a)、(b)、(c)および図13(a)、(b)は、抵抗溶接の際のバルブシート20とシリンダヘッド本体10との接触界面近傍の状態を時系列で示す図である。図12(a)、(c)および図13(b)は、それぞれ図9、図10および図11に示した状態に相当する。 In addition, when bonding is performed by the above-described mechanism, a phenomenon occurs in which an aluminum alloy intrudes into the pores of the iron-based sintered alloy in the vicinity of the interface between the valve seat 20 and the cylinder head main body 10. Hereinafter, this phenomenon will be described with reference to FIGS. 12 and 13. 12 (a), (b), (c) and FIGS. 13 (a) and (b) show the state near the contact interface between the valve seat 20 and the cylinder head body 10 at the time of resistance welding in time series. FIG. 12 (a), (c) and 13 (b) correspond to the states shown in FIGS. 9, 10 and 11, respectively.
 図12(a)、(b)、(c)および図13(a)、(b)からわかるように、抵抗溶接時に、バルブシート20とシリンダヘッド本体10の温度上昇が生じ、銅リッチなアルミニウム合金の液相が生成される。このとき、銅合金めっき層22中の銅だけでなく、バルブシート20の材料である鉄系焼結合金の空孔20v中に溶浸していた銅も流動する。そのため、空孔20v中に、塑性流動したアルミニウム合金が入り込む。空孔20v中にアルミニウム合金が入り込んだ構造20vaが形成されると、そのアンカー効果によって、接合強度が向上する。この効果は、鉄系焼結合金に溶浸された金属材料と、バルブシート20の表面に形成されためっき層(皮膜)の金属材料とが同種(いずれも銅または銅合金)であることによって得られる特有の効果といえる。 As can be seen from FIGS. 12 (a), (b) and (c) and FIGS. 13 (a) and (b), the temperature of the valve seat 20 and the cylinder head body 10 rises during resistance welding, and copper rich aluminum A liquid phase of the alloy is formed. At this time, not only copper in the copper alloy plating layer 22 but also copper infiltrated into the pores 20v of the iron-based sintered alloy which is the material of the valve seat 20 also flows. Therefore, the plastically flowed aluminum alloy intrudes into the holes 20v. When the structure 20va in which the aluminum alloy intrudes into the holes 20v is formed, the anchor effect improves the bonding strength. This effect is due to the fact that the metal material infiltrated into the iron-based sintered alloy and the metal material of the plating layer (film) formed on the surface of the valve seat 20 are the same (both copper or copper alloy). It can be said that it is a unique effect to be obtained.
 なお、シリンダヘッド1を製造する際に用意されるバルブシート20の形状は、図6に例示したものに限定されない。例えば、図14に示すようなバルブシート20が用意されてもよい。図14に示すバルブシート20は、ポート側において燃焼室側においてよりも肉厚である点において、図6に示す例と異なる。バルブシート20をポート側において肉厚とすることにより、ポート側の発熱量を多くすることができる。吸気ポート11の仕様等に応じてバルブシート20の肉厚分布を設定することにより、抵抗溶接による接合を好適に行うことができる。 In addition, the shape of the valve seat 20 prepared when manufacturing the cylinder head 1 is not limited to what was illustrated in FIG. For example, a valve seat 20 as shown in FIG. 14 may be prepared. The valve seat 20 shown in FIG. 14 differs from the example shown in FIG. 6 in that it is thicker on the port side than on the combustion chamber side. By making the valve seat 20 thick on the port side, it is possible to increase the calorific value on the port side. By setting the thickness distribution of the valve seat 20 according to the specification of the intake port 11, etc., bonding by resistance welding can be suitably performed.
 また、上述したメカニズムにより接合が行われると、バルブシート20とシリンダヘッド本体10との界面近傍に、Fe-Al系の金属間化合物層(例えばFeAl3層)が形成される。この金属間化合物層の厚さは、例えば10nm以上700nm以下である。従って、本実施形態による接合構造(冶金的な接合構造といえる)は、このような金属間化合物層の存在により、機械的な接合構造(かしめ法など)と区別され得る。 Further, when bonding is performed by the above-described mechanism, an Fe—Al based intermetallic compound layer (for example, FeAl 3 layer) is formed in the vicinity of the interface between the valve seat 20 and the cylinder head body 10. The thickness of the intermetallic compound layer is, for example, 10 nm or more and 700 nm or less. Therefore, the junction structure according to the present embodiment (which can be said to be a metallurgical junction structure) can be distinguished from a mechanical junction structure (such as a caulking method) by the presence of such an intermetallic compound layer.
 続いて、本実施形態のようにバルブシート20が溝21を有する場合と、有しない場合とについて、剥離試験を行った結果を説明する。 Then, the result of having conducted the exfoliation test about the case where valve seat 20 has slot 21 like this embodiment, and the case where it does not have it is explained.
 図15に、剥離試験の方法を示す。図15に示すように、剥離試験は、接合後のバルブシート20に、シリンダヘッド本体10から離れる方向に引張り荷重を加えることによって行った。具体的には、吸気ポート10の、バルブシート20直上の部分にザグリ加工を行った上で、バルブシート20のポート側端部(内周側縁部)に治具70を引っ掛けてこの治具70を引張り試験機で引張り、剥離時の荷重を測定した。 FIG. 15 shows the method of peeling test. As shown in FIG. 15, the peeling test was performed by applying a tensile load in a direction away from the cylinder head body 10 to the valve seat 20 after bonding. Specifically, after a portion of the intake port 10 directly above the valve seat 20 has been subjected to spot facing processing, a jig 70 is hooked on the port side end (inner peripheral side edge) of the valve seat 20 and this jig is used. 70 was pulled by a tensile tester, and the load at peeling was measured.
 図16に、剥離試験の結果を示す。なお、図16に示す「溝あり」の結果は、溝21が2本の場合(図6に示した構成)についてのものである。図16から、溝21がある場合、溝21がない場合と比べ、剥離が始まる荷重が大きくなっている(つまり剥がれにくくなっている)ことがわかる。また、溝21がある場合、いったん剥離が始まった後も、完全な剥離になかなか至らないこともわかる。このように、バルブシート20が溝21を有することによって、バルブシート20の剥離や脱落が好適に抑制されることが確認された。 FIG. 16 shows the results of the peeling test. The results of “with grooves” shown in FIG. 16 are for the case where there are two grooves 21 (the structure shown in FIG. 6). It can be seen from FIG. 16 that when the groove 21 is present, the load at which the peeling starts is larger (that is, it is difficult to be peeled) as compared with the case where the groove 21 is not present. Further, it can also be understood that even if the grooves 21 are present, even after the peeling starts, it is difficult to achieve complete peeling. As described above, it was confirmed that the valve seat 20 has the groove 21 so that the peeling and the detachment of the valve seat 20 are suitably suppressed.
 本実施形態のシリンダヘッド1は、上述したようにバルブシート20の脱落がより確実に防止されるので、各種の内燃機関(エンジン)に好適に用いられる。本実施形態のシリンダヘッド1を備えた内燃機関の例を図17に示す。 The cylinder head 1 of the present embodiment is suitably used for various internal combustion engines (engines) because the valve seat 20 is more reliably prevented from falling off as described above. An example of an internal combustion engine provided with the cylinder head 1 of the present embodiment is shown in FIG.
 図17に示す内燃機関100は、シリンダヘッド1と、シリンダ(シリンダブロック)30と、クランクケース35とを備える。また、内燃機関100は、ピストン40と、クランクシャフト45と、コンロッド(コネクティングロッド)50とをさらに備える。 An internal combustion engine 100 shown in FIG. 17 includes a cylinder head 1, a cylinder (cylinder block) 30, and a crankcase 35. Further, the internal combustion engine 100 further includes a piston 40, a crankshaft 45, and a connecting rod (connecting rod) 50.
 シリンダ30は、シリンダボア31を画定するシリンダ壁32を有する。シリンダ30は、アルミニウム合金から形成されている。 The cylinder 30 has a cylinder wall 32 that defines a cylinder bore 31. The cylinder 30 is formed of an aluminum alloy.
 シリンダヘッド1は、シリンダ30上に設けられている。シリンダヘッド1は、シリンダ壁32およびピストン40とともに燃焼室60を画定する。 The cylinder head 1 is provided on a cylinder 30. The cylinder head 1 together with the cylinder wall 32 and the piston 40 defines a combustion chamber 60.
 クランクケース35は、シリンダ30に対してシリンダヘッド1とは反対側に位置するように設けられている。クランクケース35は、シリンダ30と別体であってもよいし、シリンダ30と一体に形成されていてもよい。 The crankcase 35 is provided on the side opposite to the cylinder head 1 with respect to the cylinder 30. The crankcase 35 may be separate from the cylinder 30, or may be integrally formed with the cylinder 30.
 ピストン40は、シリンダボア31内に収容されている。ピストン40は、シリンダボア31内を往復運動し得るように設けられている。ピストン40は、アルミニウム合金から形成されている。 The piston 40 is accommodated in the cylinder bore 31. The piston 40 is provided to reciprocate in the cylinder bore 31. The piston 40 is formed of an aluminum alloy.
 クランクシャフト45は、クランクケース35内に収容されている。クランクシャフト45は、クランクピン46およびクランクアーム47を有している。 The crankshaft 45 is accommodated in the crankcase 35. The crankshaft 45 has a crank pin 46 and a crank arm 47.
 コンロッド50は、棒状のロッド本体部51と、ロッド本体部51の一端に設けられた小端部52と、ロッド本体部51の他端に設けられた大端部53とを有する。コンロッド50は、ピストン40とクランクシャフト45とを連結する。具体的には、小端部52の貫通孔(ピストンピン孔)にピストン40のピストンピン48が挿入されているとともに、大端部53の貫通孔(クランクピン孔)にクランクシャフト45のクランクピン46が挿入されており、そのことによってピストン40とクランクシャフト45とが連結されている。大端部53の内周面とクランクピン46との間には、軸受け56が設けられている。 The connecting rod 50 has a rod-like rod body 51, a small end 52 provided at one end of the rod body 51, and a large end 53 provided at the other end of the rod body 51. The connecting rod 50 connects the piston 40 and the crankshaft 45. Specifically, the piston pin 48 of the piston 40 is inserted into the through hole (piston pin hole) of the small end 52, and the crank pin of the crankshaft 45 is inserted into the through hole (crank pin hole) of the large end 53. 46 is inserted, whereby the piston 40 and the crankshaft 45 are connected. A bearing 56 is provided between the inner peripheral surface of the large end portion 53 and the crankpin 46.
 内燃機関100は、車両、船舶、または航空機に備えられてもよいし、これら以外の輸送手段に備えられてもよい。車両は、雪上を走行する雪上車両または陸上を走行する陸上車両であってもよいし、これら以外の車両であってもよい。陸上車両は、二輪車、三輪車、および四輪車を含む。鞍乗型車両は、雪上車両および陸上車両のいずれにも属する。 The internal combustion engine 100 may be provided in a vehicle, a ship, or an aircraft, or may be provided in other means of transportation. The vehicle may be an on-snow vehicle traveling on snow, a land vehicle traveling on land, or any other vehicle. Land vehicles include two-wheeled vehicles, three-wheeled vehicles, and four-wheeled vehicles. A straddle-type vehicle belongs to both snow vehicles and land vehicles.
 上述したように、本発明の実施形態によるシリンダヘッド1は、吸気ポート11および排気ポート12を有するシリンダヘッド本体10であって、アルミニウム合金から形成されたシリンダヘッド本体10と、鉄系合金から形成されたバルブシート20であって、吸気ポート11の下流端部に抵抗溶接されたバルブシート20と、を備える。バルブシート20は、シリンダヘッド本体10に接触する部分に、バルブシート20の周方向に延びる少なくとも1本の溝21を有する。 As described above, the cylinder head 1 according to the embodiment of the present invention is the cylinder head body 10 having the intake port 11 and the exhaust port 12 and formed of the cylinder head body 10 formed of aluminum alloy and iron-based alloy And the valve seat 20 resistance-welded to the downstream end of the intake port 11. The valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 at a portion in contact with the cylinder head body 10.
 本発明の実施形態によるシリンダヘッド1では、吸気ポート11の下流端部にバルブシート20が抵抗溶接されている。これにより、バルブシート20がシリンダヘッド本体10に圧入される従来の構成に比べ、ポートの設計自由度を高くすることができる。また、抵抗溶接を用いることにより、バルブシート20をシリンダヘッド本体10に対して強固に接合することができる。さらに、本発明の実施形態によるシリンダヘッド1では、バルブシート20が、シリンダヘッド本体10に接触する部分に、バルブシート20の周方向に延びる少なくとも1本の溝21を有する。この溝21内には、シリンダヘッド本体10の材料であるアルミニウム合金が充満する。言い換えると、溝21は、シリンダヘッド本体10の凸部と係合している。そのため、このような溝21が設けられていることにより、万一バルブシート20のシリンダヘッド本体10との接合が不十分となった場合(バルブシート20がシリンダヘッド本体10から剥がれた場合)でも、バルブシート20の脱落を防止することができる。 In the cylinder head 1 according to the embodiment of the present invention, the valve seat 20 is resistance-welded to the downstream end of the intake port 11. As a result, compared with the conventional configuration in which the valve seat 20 is press-fit into the cylinder head body 10, the design freedom of the port can be increased. Moreover, the valve seat 20 can be firmly joined to the cylinder head body 10 by using resistance welding. Furthermore, in the cylinder head 1 according to the embodiment of the present invention, the valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 in a portion in contact with the cylinder head body 10. The groove 21 is filled with an aluminum alloy which is a material of the cylinder head body 10. In other words, the groove 21 is engaged with the projection of the cylinder head body 10. Therefore, even if the valve seat 20 is not sufficiently joined to the cylinder head body 10 by providing such a groove 21 (when the valve seat 20 is peeled off from the cylinder head body 10) And the valve seat 20 can be prevented from coming off.
 ある実施形態において、少なくとも1本の溝21は、1本の溝21である。 In one embodiment, at least one groove 21 is a single groove 21.
 ある実施形態において、1本の溝21は、バルブシート20のバルブ接触面20c中点より鉛直分割したポート側半部20aに配置されている。 In one embodiment, one groove 21 is disposed in the port side half 20 a vertically divided from the middle point of the valve contact surface 20 c of the valve seat 20.
 溝21が1本の場合、溝21は、バルブシート20のポート側半部20aに配置されていることが好ましい。バルブシート20のポート側半部20aは、吸気バルブ61からの鉛直荷重を、燃焼室側半部20bよりも多く受けるので、バルブシート20の剥離は、ポート側半部20aにおいて燃焼室側半部20bにおいてよりも発生しやすいことがある。溝21が1本の場合には、溝21をバルブシート20のポート側半部20aに配置することで、脱落防止の効果が高くなる。 When the groove 21 is one, it is preferable that the groove 21 be disposed in the port side half 20 a of the valve seat 20. Since the port side half 20a of the valve seat 20 receives more vertical load from the intake valve 61 than the combustion chamber side half 20b, peeling of the valve seat 20 occurs on the combustion chamber side half at the port side half 20a. It is more likely to occur than at 20b. In the case where the number of the grooves 21 is one, by arranging the groove 21 in the port side half portion 20 a of the valve seat 20, the effect of preventing the falling off becomes high.
 ある実施形態において、少なくとも1本の溝21は、2本の溝21である。 In one embodiment, at least one groove 21 is two grooves 21.
 ある実施形態において、2本の溝21は、バルブシート20のバルブ接触面20c中点より鉛直分割したポート側半部20aおよび燃焼室側半部20bにそれぞれ配置されている。 In one embodiment, the two grooves 21 are respectively disposed in the port side half 20 a and the combustion chamber side half 20 b vertically divided from the middle point of the valve contact surface 20 c of the valve seat 20.
 溝21が2本の場合、2本の溝21がバルブシート20のポート側半部20aおよび燃焼室側半部20bにそれぞれ配置されていると、バルブシート20の脱落を防止する効果が高い。 When the two grooves 21 are arranged in the port side half 20a and the combustion chamber side half 20b of the valve seat 20, respectively, the effect of preventing the valve seat 20 from falling off is high.
 ある実施形態において、少なくとも1本の溝21の深さdは、0.1mm以上0.3mm以下である。 In one embodiment, the depth d of at least one groove 21 is 0.1 mm or more and 0.3 mm or less.
 溝21の深さdが小さすぎると、脱落防止の効果が小さくなるおそれがある。そのため、溝21の深さdは、0.1mm以上であることが好ましい。また、溝21の深さdが大きすぎると、溝21内にアルミニウム合金を充満させにくかったり、バルブシート20の厚さが局所的に小さくなりすぎて亀裂の原因となったりするおそれがある。そのため、溝21の深さdは、0.3mm以下であることが好ましい。 If the depth d of the groove 21 is too small, the effect of the drop prevention may be reduced. Therefore, the depth d of the groove 21 is preferably 0.1 mm or more. If the depth d of the groove 21 is too large, it may be difficult to fill the groove 21 with an aluminum alloy, or the thickness of the valve seat 20 may be locally reduced to cause a crack. Therefore, the depth d of the groove 21 is preferably 0.3 mm or less.
 ある実施形態において、少なくとも1本の溝21は、アンダーカット面21aを含み、アンダーカット面21aは、径方向の一端に形成された外周端21a1と、径方向の他端に形成されると共に外周端21a1よりも径方向内方に形成された内周端21a2と、を含み、内周端21a2は、バルブシート20の軸線Bc方向において、外周端21a1と同じ位置または外周端21a1よりも燃焼室に近い位置に形成されている。 In one embodiment, at least one groove 21 includes an undercut surface 21a, and the undercut surface 21a is formed at an outer peripheral end 21a1 formed at one end in the radial direction and at the other end in the radial direction And an inner peripheral end 21a2 formed radially inward of the end 21a1, the inner peripheral end 21a2 being at the same position as the outer peripheral end 21a1 in the axial line Bc direction of the valve seat 20 or the combustion chamber than the outer peripheral end 21a1 It is formed in the position near.
 バルブシート20の脱落の防止をより確実に行う観点からは、溝21は、シリンダヘッド本体10の凸部に引っ掛かりやすい形状であることが好ましい。具体的には、溝21は、バルブシート20の軸線(中心軸)Bcに対してアンダーカットとなる(つまり軸線Bcに沿ってバルブシート20を下げようとしたときに引っ掛かるような)形状を有することが好ましい。つまり、溝21が、アンダーカット面21aを含むことが好ましい。アンダーカット面21aは、径方向の一端に形成された外周端21a1と、径方向の他端に形成されると共に外周端21a1よりも径方向内方に形成された内周端21a2とを含んでおり、内周端21a2は、軸線Bc方向において、外周端21a1と同じ位置または外周端21a1よりも燃焼室に近い位置に形成されている。 From the viewpoint of more reliably preventing the valve seat 20 from falling off, the groove 21 preferably has a shape that is easily caught by the protrusion of the cylinder head main body 10. Specifically, the groove 21 is undercut with respect to the axis (central axis) Bc of the valve seat 20 (that is, it is hooked when trying to lower the valve seat 20 along the axis Bc) Is preferred. That is, it is preferable that the groove 21 includes the undercut surface 21a. Undercut surface 21a includes an outer peripheral end 21a1 formed at one end in the radial direction, and an inner peripheral end 21a2 formed at the other end in the radial direction and further inward in the radial direction than the outer peripheral end 21a1. The inner peripheral end 21a2 is formed at the same position as the outer peripheral end 21a1 or at a position closer to the combustion chamber than the outer peripheral end 21a1 in the direction of the axis Bc.
 ある実施形態において、少なくとも1本の溝21のそれぞれは、第1溝面21aおよび第2溝面21bによって規定され、バルブシート20の径方向に沿った断面が略三角形状である。 In one embodiment, each of the at least one groove 21 is defined by the first groove surface 21a and the second groove surface 21b, and the cross section along the radial direction of the valve seat 20 is substantially triangular.
 ある実施形態において、第1溝面21aと第2溝面21bとのなす角αが45°以上75°以下である。 In an embodiment, an angle α between the first groove surface 21 a and the second groove surface 21 b is 45 ° or more and 75 ° or less.
 第1溝面21aと第2溝面21bとのなす角αが小さすぎると、溝21内にアルミニウム合金を充満させにくいことがある。そのため、角αは45°以上であることが好ましい。また、第1溝面21aと第2溝面21bとのなす角αが大きすぎると、溝21がシリンダヘッド本体10の凸部に引っ掛かりにくくなる(アンダーカットでなくなる)おそれがある。そのため、角αは75°以下であることが好ましい。 If the angle α between the first groove surface 21 a and the second groove surface 21 b is too small, it may be difficult to fill the groove 21 with the aluminum alloy. Therefore, the angle α is preferably 45 ° or more. If the angle α between the first groove surface 21a and the second groove surface 21b is too large, the groove 21 may not be easily caught by the convex portion of the cylinder head main body 10 (the undercut is eliminated). Therefore, the angle α is preferably 75 ° or less.
 ある実施形態において、少なくとも1本の溝21のそれぞれの底は、アール形状を有する。 In one embodiment, the bottom of each of the at least one groove 21 has a rounded shape.
 溝21の底がアール形状を有することにより、シリンダヘッド本体10の材料であるアルミニウム合金を、溝21内に充満させやすくなる。 The rounded shape of the bottom of the groove 21 facilitates filling the groove 21 with the aluminum alloy that is the material of the cylinder head body 10.
 ある実施形態において、アール形状の曲率半径は、0.02mm以上0.15mm以下である。 In one embodiment, the radius of curvature of the rounded shape is 0.02 mm or more and 0.15 mm or less.
 溝21の底のアール形状の曲率半径が小さすぎると、アール形状による効果が十分に得られないおそれがあり、アール形状の曲率半径が大きすぎると、溝21がシリンダヘッド本体10の凸部に引っ掛かりにくくなる(アンダーカットでなくなる)おそれがある。そのため、溝21の底のアール形状の曲率半径は、具体的には、0.02mm以上0.15mm以下であることが好ましい。 If the radius of curvature of the R-shaped bottom of the groove 21 is too small, the effect of the R-shaped may not be obtained sufficiently. If the radius of curvature of the R-shaped is too large, the groove 21 may be formed on the convex portion of the cylinder head body 10 There is a risk that it will be difficult to get caught (it will not be undercut). Therefore, the radius of curvature of the rounded shape of the bottom of the groove 21 is preferably 0.02 mm or more and 0.15 mm or less.
 ある実施形態において、アルミニウム合金の固相線温度が520℃以上580℃以下である。 In one embodiment, the solidus temperature of the aluminum alloy is 520 ° C. or more and 580 ° C. or less.
 抵抗溶接による接合を好適に行う観点からは、アルミニウム合金として、固相線温度が520℃以上580℃以下のアルミニウム合金を用いることが好ましい。 From the viewpoint of suitably performing joining by resistance welding, it is preferable to use an aluminum alloy having a solidus temperature of 520 ° C. or more and 580 ° C. or less as the aluminum alloy.
 ある実施形態において、鉄系合金は、銅または銅合金が溶浸された鉄系焼結合金である。 In one embodiment, the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
 ある実施形態において、鉄系焼結合金の体積抵抗率は、アルミニウム合金の体積抵抗率よりも高い。 In one embodiment, the volume resistivity of the iron-based sintered alloy is higher than the volume resistivity of the aluminum alloy.
 バルブシート20の材料である鉄系焼結合金の体積抵抗率を、シリンダヘッド本体10の材料であるアルミニウム合金の体積抵抗率よりも高くすると、抵抗溶接による接合を、バルブシート20のシリンダヘッド本体10に接触する部分の温度がバルブシート20の材料の融点以上とならないように行うことができる。これにより、抵抗溶接による接合時にバルブシート20が溶損することを防止できる。 When the volume resistivity of the iron-based sintered alloy which is the material of the valve seat 20 is made higher than the volume resistivity of the aluminum alloy which is the material of the cylinder head body 10, the joining by resistance welding is performed by the cylinder head body of the valve seat 20 It can be carried out so that the temperature of the portion in contact with 10 does not exceed the melting point of the material of the valve seat 20. Thereby, the valve seat 20 can be prevented from being melted and damaged at the time of joining by resistance welding.
 ある実施形態において、室温における鉄系焼結合金の体積抵抗率は、10μΩcm以上38μΩcm以下である。 In one embodiment, the volume resistivity of the iron-based sintered alloy at room temperature is 10 μΩcm or more and 38 μΩcm or less.
 バルブシート20の材料である鉄系焼結合金の体積抵抗率は、好ましくは、10μΩcm以上38μΩcm以下である。 The volume resistivity of the iron-based sintered alloy which is the material of the valve seat 20 is preferably 10 μΩcm or more and 38 μΩcm or less.
 ある実施形態において、バルブシート20は、シリンダヘッド本体10に接触しない部分に形成された銅めっき層または銅合金めっき層22を有する。 In one embodiment, the valve seat 20 has a copper plating layer or a copper alloy plating layer 22 formed on a portion not in contact with the cylinder head body 10.
 バルブシート20がその表面に銅合金めっき層(または銅めっき層)22を有していると、抵抗溶接による接合は、バルブシート20とシリンダヘッド本体10との間に銅合金層(または銅層)を介在させた状態で行われることになる。これにより、シリンダヘッド本体10にバルブシート20を強固に接合し得る。 When the valve seat 20 has a copper alloy plated layer (or copper plated layer) 22 on the surface, the joint by resistance welding is a copper alloy layer (or copper layer) between the valve seat 20 and the cylinder head body 10 It will be carried out in the state where it intervened. Thus, the valve seat 20 can be firmly joined to the cylinder head body 10.
 ある実施形態において、バルブシート20とシリンダヘッド本体10との界面近傍において、鉄系焼結合金の空孔20vにアルミニウム合金が入り込んでいる。 In one embodiment, in the vicinity of the interface between the valve seat 20 and the cylinder head body 10, the aluminum alloy intrudes into the pores 20v of the iron-based sintered alloy.
 鉄系焼結合金の空孔20vにアルミニウム合金が入り込んだ構造20vaが形成されると、そのアンカー効果によって、接合強度が向上する。 When the structure 20va in which the aluminum alloy intrudes into the pores 20v of the iron-based sintered alloy is formed, the anchor effect improves the bonding strength.
 ある実施形態において、バルブシート20は、吸気ポート11側において燃焼室側においてよりも肉厚である。 In one embodiment, the valve seat 20 is thicker at the intake port 11 side than at the combustion chamber side.
 バルブシート20を吸気ポート11側において肉厚とすることにより、吸気ポート11側の発熱量を多くすることができる。吸気ポート11の仕様等に応じてバルブシート20の肉厚分布を設定することにより、抵抗溶接による接合を好適に行うことができる。 By making the valve seat 20 thick on the intake port 11 side, it is possible to increase the amount of heat generation on the intake port 11 side. By setting the thickness distribution of the valve seat 20 according to the specification of the intake port 11, etc., bonding by resistance welding can be suitably performed.
 ある実施形態において、本発明によるシリンダヘッド1は、バルブシート20とシリンダヘッド本体10との界面近傍に、10nm以上700nm以下の厚さを有するFe-Al系の金属間化合物層を有する。 In one embodiment, the cylinder head 1 according to the present invention has an Fe—Al intermetallic compound layer having a thickness of 10 nm or more and 700 nm or less in the vicinity of the interface between the valve seat 20 and the cylinder head body 10.
 抵抗溶接による接合構造(冶金的な接合構造といえる)は、金属間化合物層(例えば10nm以上700nm以下の厚さを有するFe-Al系の金属間化合物層)の存在により、機械的な接合構造(かしめ法など)と区別され得る。 The joint structure by resistance welding (a metallurgical joint structure) is a mechanical joint structure due to the presence of an intermetallic compound layer (for example, an Fe-Al intermetallic compound layer having a thickness of 10 nm to 700 nm). It can be distinguished from (such as caulking).
 本発明の実施形態による内燃機関100は、上述したいずれかの構成を有するシリンダヘッド1を備える。 An internal combustion engine 100 according to an embodiment of the present invention includes a cylinder head 1 having any of the configurations described above.
 本発明の実施形態によるシリンダヘッド1の製造方法は、吸気ポート11および排気ポート12を有するシリンダヘッド本体10と、吸気ポート11の下流端部に配置されたバルブシート20とを備えたシリンダヘッド1の製造方法であって、アルミニウム合金から形成されたシリンダヘッド本体10を用意する工程(A)と、鉄系合金から形成されたバルブシート20を用意する工程(B)と、吸気ポート11の下流端部に、バルブシート20を抵抗溶接により接合する工程(C)と、を包含する。工程(B)において用意されるバルブシート20は、シリンダヘッド本体10に接触する部分に、バルブシート20の周方向に延びる少なくとも1本の溝21を有する。 A method of manufacturing a cylinder head 1 according to an embodiment of the present invention includes a cylinder head main body 10 having an intake port 11 and an exhaust port 12 and a valve seat 20 disposed at the downstream end of the intake port 11. A manufacturing method of the cylinder head main body 10 formed of an aluminum alloy, a step (B) of preparing a valve seat 20 formed of an iron-based alloy, and a downstream side of the intake port 11 And (C) joining the valve seat 20 by resistance welding at the end. The valve seat 20 prepared in the step (B) has at least one groove 21 extending in the circumferential direction of the valve seat 20 at a portion in contact with the cylinder head body 10.
 本発明の実施形態によるシリンダヘッド1の製造方法では、吸気ポート11の下流端部にバルブシート20を抵抗溶接により接合する。これにより、バルブシート20がシリンダヘッド本体10に圧入される場合に比べ、ポートの設計自由度を高くすることができる。また、抵抗溶接を用いることにより、バルブシート20をシリンダヘッド本体10に対して強固に接合することができる。さらに、本発明の実施形態によるシリンダヘッド1の製造方法では、用意されるバルブシート20が、シリンダヘッド本体10に接触する部分に、バルブシート20の周方向に延びる少なくとも1本の溝21を有する。この溝21内には、シリンダヘッド本体10の材料であるアルミニウム合金が充満する。言い換えると、溝21は、シリンダヘッド本体10の凸部と係合する。そのため、このような溝21が設けられていることにより、万一バルブシート20のシリンダヘッド本体10との接合が不十分となった場合(バルブシート20がシリンダヘッド本体10から剥がれた場合)でも、バルブシート20の脱落を防止することができる。 In the method of manufacturing the cylinder head 1 according to the embodiment of the present invention, the valve seat 20 is joined to the downstream end of the intake port 11 by resistance welding. Thereby, compared with the case where the valve seat 20 is press-fit into the cylinder head body 10, the design freedom of the port can be increased. Moreover, the valve seat 20 can be firmly joined to the cylinder head body 10 by using resistance welding. Furthermore, in the method of manufacturing the cylinder head 1 according to the embodiment of the present invention, the provided valve seat 20 has at least one groove 21 extending in the circumferential direction of the valve seat 20 in a portion contacting the cylinder head main body 10 . The groove 21 is filled with an aluminum alloy which is a material of the cylinder head body 10. In other words, the groove 21 engages with the protrusion of the cylinder head body 10. Therefore, even if the valve seat 20 is not sufficiently joined to the cylinder head body 10 by providing such a groove 21 (when the valve seat 20 is peeled off from the cylinder head body 10) And the valve seat 20 can be prevented from coming off.
 ある実施形態において、鉄系合金は、銅または銅合金が溶浸された鉄系焼結合金である。 In one embodiment, the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
 ある実施形態において、工程(C)は、バルブシート20とシリンダヘッド本体10との間に銅層または銅合金層を介在させた状態で行われる。 In one embodiment, step (C) is performed with a copper layer or a copper alloy layer interposed between the valve seat 20 and the cylinder head body 10.
 抵抗溶接による接合工程が、バルブシート20とシリンダヘッド本体10との間に銅合金層(または銅層)を介在させた状態で行われることにより、シリンダヘッド本体10にバルブシート20を強固に接合し得る。 The valve seat 20 is firmly joined to the cylinder head body 10 by performing the joining step by resistance welding in a state in which the copper alloy layer (or copper layer) is interposed between the valve seat 20 and the cylinder head body 10. It can.
 ある実施形態において、工程(C)は、バルブシート20のシリンダヘッド本体10に接触する部分の温度が鉄系合金の融点以上とならないように行われる。 In one embodiment, step (C) is performed such that the temperature of the portion of the valve seat 20 in contact with the cylinder head body 10 does not exceed the melting point of the iron-based alloy.
 抵抗溶接による接合工程を、バルブシート20のシリンダヘッド本体10に接触する部分の温度がバルブシート20の材料の融点以上とならないように行うことにより、バルブシート20が溶損することを防止できる。 By performing the joining step by resistance welding so that the temperature of the portion of the valve seat 20 in contact with the cylinder head body 10 does not exceed the melting point of the material of the valve seat 20, the valve seat 20 can be prevented from melting.
 本発明の実施形態によると、バルブシートの脱落がより確実に防止されるシリンダヘッドが提供される。 According to an embodiment of the present invention, a cylinder head is provided in which the valve seat is more reliably prevented from falling off.
 1:シリンダヘッド、10:シリンダヘッド本体、11:吸気ポート、12:排気ポート、20:バルブシート、20a:バルブシートのポート側半部、20b:バルブシートの燃焼室側半部、20i:バルブシートの内周面、20o:バルブシートの外周面、20v:空孔、21:溝、21a:第1溝面、21b:第2溝面、Bc:バルブシートの軸線、22:銅合金めっき層、100:内燃機関 1: Cylinder head, 10: Cylinder head body, 11: Intake port, 12: Exhaust port, 20: Valve seat, 20a: Port side half of valve seat, 20b: Combustion side of valve seat half, 20i: Valve Inner surface of seat, 20o: Outer peripheral surface of valve seat, 20v: Hole, 21: groove, 21a: first groove surface, 21b: second groove surface, Bc: valve seat axis, 22: copper alloy plated layer , 100: internal combustion engine

Claims (24)

  1.  吸気ポートおよび排気ポートを有するシリンダヘッド本体であって、アルミニウム合金から形成されたシリンダヘッド本体と、
     鉄系合金から形成されたバルブシートであって、前記吸気ポートの下流端部に抵抗溶接されたバルブシートと、
    を備え、
     前記バルブシートは、前記シリンダヘッド本体に接触する部分に、前記バルブシートの周方向に延びる少なくとも1本の溝を有する、シリンダヘッド。
    A cylinder head body having an intake port and an exhaust port, the cylinder head body formed of an aluminum alloy,
    A valve seat formed of an iron-based alloy, the valve seat being resistance-welded to the downstream end of the intake port;
    Equipped with
    The cylinder head has at least one groove extending in the circumferential direction of the valve seat at a portion in contact with the cylinder head body.
  2.  前記少なくとも1本の溝は、1本の溝である、請求項1に記載のシリンダヘッド。 The cylinder head according to claim 1, wherein the at least one groove is a single groove.
  3.  前記1本の溝は、前記バルブシートのバルブ接触面中点より鉛直分割したポート側半部に配置されている、請求項2に記載のシリンダヘッド。 The cylinder head according to claim 2, wherein the one groove is disposed in a port side half vertically divided from a valve contact surface middle point of the valve seat.
  4.  前記少なくとも1本の溝は、2本の溝である、請求項1に記載のシリンダヘッド。 The cylinder head according to claim 1, wherein the at least one groove is two grooves.
  5.  前記2本の溝は、前記バルブシートのバルブ接触面中点より鉛直分割したポート側半部および燃焼室側半部にそれぞれ配置されている、請求項4に記載のシリンダヘッド。 The cylinder head according to claim 4, wherein the two grooves are respectively disposed in a port side half and a combustion chamber side half vertically divided from a valve contact surface middle point of the valve seat.
  6.  前記少なくとも1本の溝の深さは、0.1mm以上0.3mm以下である、請求項1から5のいずれかに記載のシリンダヘッド。 The cylinder head according to any one of claims 1 to 5, wherein a depth of the at least one groove is 0.1 mm or more and 0.3 mm or less.
  7.  前記少なくとも1本の溝は、アンダーカット面を含み、
     前記アンダーカット面は、径方向の一端に形成された外周端と、径方向の他端に形成されると共に前記外周端よりも径方向内方に形成された内周端と、を含み、
     前記内周端は、前記バルブシートの軸線方向において、前記外周端と同じ位置または前記外周端よりも燃焼室に近い位置に形成されている、請求項1から6のいずれかに記載のシリンダヘッド。
    The at least one groove includes an undercut surface,
    The undercut surface includes an outer peripheral end formed at one end in the radial direction, and an inner peripheral end formed at the other end in the radial direction and further inward in the radial direction than the outer peripheral end.
    The cylinder head according to any one of claims 1 to 6, wherein the inner peripheral end is formed at the same position as the outer peripheral end or a position closer to the combustion chamber than the outer peripheral end in the axial direction of the valve seat. .
  8.  前記少なくとも1本の溝のそれぞれは、第1溝面および第2溝面によって規定され、前記バルブシートの径方向に沿った断面が略三角形状である、請求項1から7のいずれかに記載のシリンダヘッド。 Each of the at least one groove is defined by a first groove surface and a second groove surface, and a cross section along a radial direction of the valve seat is substantially triangular. Cylinder head.
  9.  前記第1溝面と前記第2溝面とのなす角が45°以上75°以下である、請求項8に記載のシリンダヘッド。 The cylinder head according to claim 8, wherein an angle between the first groove surface and the second groove surface is 45 ° or more and 75 ° or less.
  10.  前記少なくとも1本の溝のそれぞれの底は、アール形状を有する、請求項8または9に記載のシリンダヘッド。 The cylinder head according to claim 8 or 9, wherein the bottom of each of the at least one groove has a rounded shape.
  11.  前記アール形状の曲率半径は、0.02mm以上0.15mm以下である、請求項10に記載のシリンダヘッド。 The cylinder head according to claim 10, wherein the radius of curvature of the rounded shape is 0.02 mm or more and 0.15 mm or less.
  12.  前記アルミニウム合金の固相線温度が520℃以上580℃以下である、請求項1から11のいずれかに記載のシリンダヘッド。 The cylinder head according to any one of claims 1 to 11, wherein a solidus temperature of the aluminum alloy is 520 ° C or more and 580 ° C or less.
  13.  前記鉄系合金は、銅または銅合金が溶浸された鉄系焼結合金である、請求項1から12のいずれかに記載のシリンダヘッド。 The cylinder head according to any one of claims 1 to 12, wherein the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
  14.  前記鉄系焼結合金の体積抵抗率は、前記アルミニウム合金の体積抵抗率よりも高い、請求項1から13のいずれかに記載のシリンダヘッド。 The cylinder head according to any one of claims 1 to 13, wherein a volume resistivity of the iron-based sintered alloy is higher than a volume resistivity of the aluminum alloy.
  15.  室温における前記鉄系焼結合金の体積抵抗率は、10μΩcm以上38μΩcm以下である、請求項14に記載のシリンダヘッド。 The cylinder head according to claim 14, wherein the volume resistivity of the iron-based sintered alloy at room temperature is 10 μΩcm or more and 38 μΩcm or less.
  16.  前記バルブシートは、前記シリンダヘッド本体に接触しない部分に形成された銅めっき層または銅合金めっき層を有する、請求項13から15のいずれかに記載のシリンダヘッド。 The cylinder head according to any one of claims 13 to 15, wherein the valve seat has a copper plating layer or a copper alloy plating layer formed on a portion not in contact with the cylinder head body.
  17.  前記バルブシートと前記シリンダヘッド本体との界面近傍において、前記鉄系焼結合金の空孔に前記アルミニウム合金が入り込んでいる、請求項13から16のいずれかに記載のシリンダヘッド。 The cylinder head according to any one of claims 13 to 16, wherein the aluminum alloy intrudes into the pores of the iron-based sintered alloy in the vicinity of the interface between the valve seat and the cylinder head body.
  18.  前記バルブシートは、前記吸気ポート側において燃焼室側においてよりも肉厚である、請求項1から17のいずれかに記載のシリンダヘッド。 The cylinder head according to any one of claims 1 to 17, wherein the valve seat is thicker at the intake port side than at the combustion chamber side.
  19.  前記バルブシートと前記シリンダヘッド本体との界面近傍に、10nm以上700nm以下の厚さを有するFe-Al系の金属間化合物層を有する、請求項1から18のいずれかに記載のシリンダヘッド。 The cylinder head according to any one of claims 1 to 18, further comprising an Fe-Al based intermetallic compound layer having a thickness of 10 nm to 700 nm in the vicinity of the interface between the valve seat and the cylinder head body.
  20.  請求項1から19のいずれかに記載のシリンダヘッドを備えた内燃機関。 An internal combustion engine comprising the cylinder head according to any one of claims 1 to 19.
  21.  吸気ポートおよび排気ポートを有するシリンダヘッド本体と、前記吸気ポートの下流端部に配置されたバルブシートとを備えたシリンダヘッドの製造方法であって、
     アルミニウム合金から形成された前記シリンダヘッド本体を用意する工程(A)と、
     鉄系合金から形成された前記バルブシートを用意する工程(B)と、
     前記吸気ポートの下流端部に、前記バルブシートを抵抗溶接により接合する工程(C)と、
    を包含し、
     前記工程(B)において用意される前記バルブシートは、前記シリンダヘッド本体に接触する部分に、前記バルブシートの周方向に延びる少なくとも1本の溝を有する、シリンダヘッドの製造方法。
    A method of manufacturing a cylinder head comprising: a cylinder head body having an intake port and an exhaust port; and a valve seat disposed at a downstream end of the intake port,
    Providing the cylinder head body formed of an aluminum alloy (A);
    Providing the valve seat formed of an iron-based alloy (B);
    Bonding the valve seat to the downstream end of the intake port by resistance welding (C);
    To include
    The method for manufacturing a cylinder head, wherein the valve seat prepared in the step (B) has at least one groove extending in the circumferential direction of the valve seat in a portion in contact with the cylinder head body.
  22.  前記鉄系合金は、銅または銅合金が溶浸された鉄系焼結合金である、請求項21に記載のシリンダヘッドの製造方法。 The method for manufacturing a cylinder head according to claim 21, wherein the iron-based alloy is an iron-based sintered alloy in which copper or a copper alloy is infiltrated.
  23.  前記工程(C)は、前記バルブシートと前記シリンダヘッド本体との間に銅層または銅合金層を介在させた状態で行われる、請求項22に記載のシリンダヘッドの製造方法。 The method for manufacturing a cylinder head according to claim 22, wherein the step (C) is performed in a state where a copper layer or a copper alloy layer is interposed between the valve seat and the cylinder head body.
  24.  前記工程(C)は、前記バルブシートの前記シリンダヘッド本体に接触する部分の温度が前記鉄系合金の融点以上とならないように行われる、請求項21から23のいずれかに記載のシリンダヘッドの製造方法。 The cylinder head according to any one of claims 21 to 23, wherein the step (C) is performed such that the temperature of the portion of the valve seat in contact with the cylinder head body does not exceed the melting point of the iron-based alloy. Production method.
PCT/JP2018/033464 2017-09-28 2018-09-10 Cylinder head, internal combustion engine, and method for manufacturing cylinder head WO2019065186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017189217 2017-09-28
JP2017-189217 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065186A1 true WO2019065186A1 (en) 2019-04-04

Family

ID=65903524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033464 WO2019065186A1 (en) 2017-09-28 2018-09-10 Cylinder head, internal combustion engine, and method for manufacturing cylinder head

Country Status (1)

Country Link
WO (1) WO2019065186A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843503A (en) * 2020-06-26 2021-12-28 通用汽车环球科技运作有限责任公司 Method of attaching a valve seat insert to an aluminum cylinder head

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734965A (en) * 1993-07-20 1995-02-03 Yamaha Motor Co Ltd Joining structure of valve seat
JPH0913919A (en) * 1995-06-28 1997-01-14 Yamaha Motor Co Ltd Cylinder head for engine
US20110203555A1 (en) * 2010-02-19 2011-08-25 Ford Global Technologies, Llc Valve Seat Insert
US20130061827A1 (en) * 2011-09-09 2013-03-14 GM Global Technology Operations LLC Cylinder head system and method of forming same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734965A (en) * 1993-07-20 1995-02-03 Yamaha Motor Co Ltd Joining structure of valve seat
JPH0913919A (en) * 1995-06-28 1997-01-14 Yamaha Motor Co Ltd Cylinder head for engine
US20110203555A1 (en) * 2010-02-19 2011-08-25 Ford Global Technologies, Llc Valve Seat Insert
US20130061827A1 (en) * 2011-09-09 2013-03-14 GM Global Technology Operations LLC Cylinder head system and method of forming same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843503A (en) * 2020-06-26 2021-12-28 通用汽车环球科技运作有限责任公司 Method of attaching a valve seat insert to an aluminum cylinder head
CN113843503B (en) * 2020-06-26 2024-05-10 通用汽车环球科技运作有限责任公司 Method of attaching a valve seat insert to an aluminum cylinder head

Similar Documents

Publication Publication Date Title
JP3752830B2 (en) Joined metal member and method of joining the member
US5586530A (en) Valve seat insert
US6536397B2 (en) Bonding structure of valve seat and method of making the same
US5649358A (en) Method of making a valve seat
JP3740858B2 (en) Joined metal member and method of joining the member
US5765520A (en) Cylinder head for engine
JPH0979014A (en) Manufacture of cylinder head for engine
JPH09122924A (en) Resistance joining method between different materials
WO2019065186A1 (en) Cylinder head, internal combustion engine, and method for manufacturing cylinder head
US5970614A (en) Method for forming valve seats
US5761806A (en) Method of bonding valve seat
US5778531A (en) Method of manufacturing cylinder head for engine
JP3752866B2 (en) Joining metal member joining method
US5794337A (en) Valve seat and test procedure
US8672018B2 (en) Cylinder head and method
JP3270937B2 (en) Engine cylinder head structure
JP3393227B2 (en) Valve seat
JP3752834B2 (en) Method for joining metal members
JP3752833B2 (en) Method for joining metal members
JP7095334B2 (en) cylinder head
JP4013297B2 (en) Method for joining metal members
JP3752831B2 (en) Method for joining metal members
CN113843503B (en) Method of attaching a valve seat insert to an aluminum cylinder head
EP0740055B1 (en) Method of bonding a valve seat
JPH0979012A (en) Manufacture of cylinder head for engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP