WO2019065176A1 - 車両用システム及びタグ通信方法 - Google Patents

車両用システム及びタグ通信方法 Download PDF

Info

Publication number
WO2019065176A1
WO2019065176A1 PCT/JP2018/033406 JP2018033406W WO2019065176A1 WO 2019065176 A1 WO2019065176 A1 WO 2019065176A1 JP 2018033406 W JP2018033406 W JP 2018033406W WO 2019065176 A1 WO2019065176 A1 WO 2019065176A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
tag
vehicle
time
wireless
Prior art date
Application number
PCT/JP2018/033406
Other languages
English (en)
French (fr)
Inventor
道治 山本
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018049194A external-priority patent/JP7047506B2/ja
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to SG11202002283UA priority Critical patent/SG11202002283UA/en
Priority to US16/647,874 priority patent/US11244129B2/en
Priority to CN201880059028.9A priority patent/CN111095376B/zh
Priority to EP18862099.1A priority patent/EP3690848B1/en
Publication of WO2019065176A1 publication Critical patent/WO2019065176A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/04Arrangements for transmitting signals characterised by the use of a wireless electrical link using magnetically coupled devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • G06K7/10376Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being adapted for being moveable
    • G06K7/10405Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being adapted for being moveable the interrogation device including an arrangement for sensing environmental parameters, such as a temperature or acceleration sensor, e.g. used as an on/off trigger or as a warning means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/01Details
    • G06K7/016Synchronisation of sensing process
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/08Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • G08C15/06Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the present invention relates to a vehicle system and a tag communication method for performing communication between a roadside wireless tag and a vehicle side.
  • a navigation system for a vehicle that executes wireless communication with a wireless tag installed in a manhole or the like on a road surface and acquires highly accurate position information
  • This navigation system is provided with a database storing position information representing the installation position of each wireless tag.
  • the navigation device refers to this database and acquires position information associated with the tag ID acquired from the wireless tag.
  • the system using the wireless tag has the following problems. That is, since it is necessary to strengthen transmission radio waves and increase the frequency of communication so that communication with the radio tag can be performed with high reliability without losing it while the vehicle is traveling, mutual interference or interference of radio waves is likely to occur. Communication with the side may be unstable.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a vehicle system and a tag communication method for communicating with a wireless tag with high reliability.
  • One aspect of the present invention is a system for a vehicle that communicates wirelessly with a wireless tag attached to a magnetic marker laid on a road, A marker detection unit that detects the magnetic marker by sensing magnetism; A wireless communication unit that executes communication processing with the wireless tag to acquire tag information; A communication start time point setting unit that sets a communication start time point for causing the wireless communication unit to start communication processing; The communication start time point setting unit sets the communication start time point on the basis of a detection time point at which the marker detection unit detects the magnetic marker,
  • the wireless communication unit may be configured to start the communication process at the start of the communication, and to terminate the communication process when tag information can be acquired from the wireless tag.
  • One aspect of the present invention is a vehicle including a wireless communication unit that performs wireless communication with a wireless tag attached to a magnetic marker installed on a road and acquires tag information from the wireless tag.
  • the present invention is a tag communication method for starting the communication process when reaching the communication start time and then ending the communication process when tag information can be acquired from the wireless tag.
  • the communication start time point is set based on the detection time point of the magnetic marker. Then, the communication process started at the communication start time point ends immediately when the tag information can be acquired.
  • the transmission time and transmission frequency of radio waves from the wireless tag and the wireless communication unit It can be shortened or reduced. Thereby, the possibility of radio wave interference and interference can be suppressed, and the reliability of communication between the wireless tag and the vehicle can be improved.
  • the block diagram of the system for vehicles The block diagram which shows the electric constitution of the system for vehicles.
  • the flowchart which shows the whole operation
  • Explanatory drawing of the communication start time set to a tag reader.
  • the graph which shows the time change of the magnetic measurement value by a sensor array.
  • Example 1 This example is an example related to a tag communication method for reading tag information from an RF-ID tag (Radio Frequency IDentification Tag, wireless tag) 15 attached to a magnetic marker 10 and the vehicle system 1. The contents will be described with reference to FIGS. 1 to 9.
  • RF-ID tag Radio Frequency IDentification Tag, wireless tag
  • the vehicular system 1 wirelessly reads tag information from a measurement unit 2 which is an example of a marker detection unit for detecting the magnetic marker 10, and an RF-ID tag 15 attached to the magnetic marker 10.
  • a tag reader 34 forming an example of a unit, and a control unit 32 for controlling the measurement unit 2 and the tag reader 34 are included.
  • the vehicle system 1 acquires position data of the magnetic marker 10 via the ID code (identification code) of the RF-ID tag 15, and specifies the position of the vehicle where the vehicle is located.
  • the vehicle system 1 is combined with the navigation system 6.
  • the navigation system 6 is a system including a navigation ECU 61 for realizing a navigation function and a map database (map DB) 65 for storing detailed three-dimensional map data (3D map data).
  • the navigation ECU 61 executes map display of the surroundings, route guidance by screen display, voice output and the like using the vehicle position specified by the vehicle system 1.
  • the magnetic marker 10 is a road marker to be laid on the road surface 100S of the road on which the vehicle 5 travels, as shown in FIG.
  • the magnetic markers 10 are arranged at intervals of, for example, 10 m along the center of the lanes (symbol 100 in FIG. 1) divided by the left and right lane marks.
  • the magnetic marker 10 (FIG. 3) has a columnar shape with a diameter of 20 mm and a height of 28 mm, and can be accommodated in a hole provided on the road surface 100S.
  • the magnetic marker 10 is laid in a state of being accommodated in a hole drilled on the road surface 100S.
  • the magnetic marker 10 can exert magnetism with a magnetic flux density of 8 ⁇ T (8 ⁇ 10 ⁇ 6 T, T: Tesla) at a height of 250 mm at the upper limit of 100 to 250 mm assumed as the mounting height of the measurement unit 2.
  • an RF-ID tag 15 for outputting information by radio is stacked and arranged.
  • the RF-ID tag 15 is a passive tag, operates by wireless external power supply, and transmits tag information including an ID code.
  • the magnetic marker 10 is laid on the road so that the RF-ID tag 15 is positioned above.
  • the RF-ID tag 15 (FIG. 4) is an electronic component in which an IC chip 157 is mounted on the surface of a tag sheet 150 cut out of, for example, PET (PolyEthylene Terephthalate) film.
  • the print pattern of the antenna 153 is provided on the surface of the tag sheet 150.
  • the RF-ID tag 15 operates with the power extracted from the radio wave received by the antenna 153, superimposes tag information on the radio wave reflected by the antenna 153, and returns it.
  • the measurement unit 2 is a unit in which a sensor array 21 including a magnetic sensor Cn and an IMU (Inertial Measurement Unit) 22 that enables positioning by inertial navigation are integrated.
  • a sensor array 21 including a magnetic sensor Cn and an IMU (Inertial Measurement Unit) 22 that enables positioning by inertial navigation are integrated.
  • the measurement unit 2 is a rod-like unit that is long in the vehicle width direction, and is attached, for example, inside the front bumper of the vehicle in a posture to face the road surface 100S.
  • the mounting height of the measurement unit 2 with respect to the road surface 100S is 200 mm.
  • the sensor array 21 of the measurement unit 2 incorporates 15 magnetic sensors Cn (n is an integer from 1 to 15) arranged in a straight line along the vehicle width direction as shown in FIG. And a detection processing circuit 212.
  • 15 magnetic sensors Cn are arranged at equal intervals of 10 cm.
  • the sensor array 21 is installed such that the central magnetic sensor C8 is located at the center of the vehicle 5 in the vehicle width direction.
  • the magnetic sensor Cn is a sensor that detects magnetism using a known MI effect (Magnet Impedance Effect) that the impedance of a magnetic sensitive body such as an amorphous wire changes sensitively in response to an external magnetic field.
  • the magnetic sensor Cn can measure the magnitude of the magnetic component acting in the longitudinal direction of the amorphous wire.
  • a magnetic sensor Cn is incorporated in the sensor array 21 so as to detect a magnetic component in the traveling direction of the vehicle 5.
  • the magnetic sensor Cn is a high sensitivity sensor having a measurement range of magnetic flux density of ⁇ 0.6 mT and a magnetic flux resolution in the measurement range of 0.02 ⁇ T.
  • the period of the magnetic measurement by each magnetic sensor Cn of the measurement unit 2 is set to 3 kHz so as to correspond to the high-speed travel of the vehicle.
  • the magnetic marker 10 can exert magnetism with a magnetic flux density of 8 ⁇ T or more in the range 100 to 250 mm assumed as the mounting height of the magnetic sensor Cn. If it is the magnetic marker 10 which acts on magnetism with a magnetic flux density of 8 ⁇ T or more, it can be detected with high reliability using the magnetic sensor Cn having a magnetic flux resolution of 0.02 ⁇ T.
  • the detection processing circuit 212 (FIG. 2) of the sensor array 21 is an arithmetic circuit that executes marker detection processing and the like for detecting the magnetic marker 10. Although not shown, the detection processing circuit 212 uses a CPU (central processing unit) for executing various operations, and memory elements such as a ROM (read only memory) and a RAM (random access memory). It is configured.
  • a CPU central processing unit
  • memory elements such as a ROM (read only memory) and a RAM (random access memory). It is configured.
  • the detection processing circuit 212 executes sensor detection processing by acquiring sensor signals output from each magnetic sensor Cn at a 3 kHz cycle.
  • the marker detection process in addition to the detection of the magnetic marker 10, measurement of the lateral displacement amount of the vehicle 5 with respect to the detected magnetic marker 10 is performed.
  • the detection result of the marker detection process is input to the control unit 32 as needed.
  • the IMU 22 incorporated in the measurement unit 2 is an inertial navigation unit that estimates the relative position of the vehicle 5 by inertial navigation.
  • the IMU 22 includes a two-axis magnetic sensor 221 which is an electronic compass for measuring an azimuth, a two-axis acceleration sensor 222 for measuring an acceleration, and a two-axis gyro sensor 223 for measuring an angular velocity.
  • the tag reader 34 is a communication unit provided with a wireless antenna 340.
  • the tag reader 34 is disposed on the rear side of the vehicle 5 with respect to the sensor array 21 disposed on the front side of the vehicle 5 and the distance between the sensor array 21 and the tag reader 34 is span S. (See Figure 1).
  • the span S is, for example, 3.5 m.
  • the tag reader 34 executes a communication process by radio with the RF-ID tag 15 disposed in a stacked manner on the surface of the magnetic marker 10. For example, in this communication processing using the 900 MHz band, power necessary for the operation of the RF-ID tag 15 is wirelessly transmitted (power feeding processing), and reading of tag information from the RF-ID tag 15 is executed. Then, when the reading of the tag information is completed and the tag information can be acquired, the tag reader 34 immediately shuts off the communication and ends the communication process.
  • the tag information includes an ID code (of the RF-ID tag 15) that allows the corresponding magnetic marker 10 to be identified.
  • the control unit 32 is a unit that controls the measurement unit 2 and the tag reader 34 and specifies the vehicle position (the position of the vehicle 5) in real time.
  • the control unit 32 inputs the identified vehicle position to the navigation ECU 61 that configures the navigation system 6.
  • the control unit 32 has a function as a communication start time point setting unit that sets a communication start time point for causing the tag reader 34 to execute wireless communication based on the detection time point of the magnetic marker 10.
  • the control unit 32 includes an electronic substrate (not shown) on which a memory element such as a ROM or a RAM is mounted in addition to a CPU that executes various calculations.
  • a database for storing position data representing a laying position (absolute position) of the magnetic marker 10 is provided in a recording area formed by a memory element or the like.
  • the ID code of the RF-ID tag 15 is linked and the position data of each magnetic marker 10 is stored.
  • the storage area is further provided with a storage unit for storing a span S which is an interval between the sensor array 21 and the tag reader 34.
  • the storage unit stores a value of 3.5 m as the span S.
  • the value of the span S is read from the storage unit by the control unit 32 having a function as an acquisition unit, and is used for arithmetic processing for setting a communication start time.
  • the method in which the control unit 32 specifies the vehicle position is different between when the vehicle 5 reaches the magnetic marker 10 and when the vehicle 5 is positioned between the adjacent magnetic markers 10.
  • the control unit 32 refers to a database using an ID code included in tag information read out from the RF-ID tag 15 provided and acquires position data of the corresponding magnetic marker 10 Identify your vehicle position.
  • the relative position from the reference position is estimated by inertial navigation with the vehicle position specified at the time of detection of the latest magnetic marker 10 as the reference position.
  • control unit 32 calculates the displacement amount by second-order integration of the measured acceleration by the IMU 22 incorporated in the measurement unit 2. Then, the relative position is estimated by integrating the displacement amount along the change in the traveling direction of the vehicle 5 detected by the two-axis gyro sensor 223 and the measurement direction. The control unit 32 specifies a position obtained by adding the relative position to the reference position as the vehicle position.
  • the navigation ECU 61 When the navigation ECU 61 takes in the vehicle position from the control unit 32, the navigation ECU 61 refers to the map DB 65 to read map data of the surrounding area and causes the display device (not shown) to display the map data. Furthermore, if the route is set in advance, the navigation ECU 61 displays or outputs route guidance such as “Turn right at the intersection 300 M ahead” according to the location of the vehicle position in the route.
  • (2) marker detection processing and (3) tag information reading processing are (1) processing executed during system operation (FIG. 5).
  • the marker detection process is a process for detecting the magnetic marker 10 magnetically.
  • the tag information reading process is a process of reading tag information from the RF-ID tag 15 by wireless communication.
  • the control unit 32 hits the span S by dividing the span S (m) of the sensor array 21 and the tag reader 34 by the vehicle speed (vehicle speed) V (m / sec).
  • the required time ⁇ ta required to pass the distance is determined.
  • the required time ⁇ ta is added to time t1 at which the sensor array 21 detects the magnetic marker 10.
  • the vehicle speed V (m / sec) can be obtained by integrating the measured acceleration by the IMU 22 incorporated in the measurement unit 2.
  • the control unit 32 subtracts an interval time ⁇ tb obtained by dividing the reference distance 1 (m) by the vehicle speed V (m / sec) from time t2 (t2- ⁇ tb), that is, the tag reader 34 is 1m before the magnetic marker 10.
  • the time to arrive at is set as the above communication start time.
  • the predetermined time which is an elapsed time from the detection time of the magnetic marker 10 to the communication start time is a time obtained by subtracting ⁇ tb from ⁇ ta, that is, a reference distance (1 m) from the span S (3.5 m).
  • the predetermined time depends on the vehicle speed V (m / sec), and becomes shorter as the vehicle speed is higher and longer as the vehicle speed is lower.
  • the reference distance can be appropriately changed in consideration of the size of a communication area or the like in which the tag reader 34 can communicate with the RF-ID tag 15.
  • a required time required to pass a distance obtained by subtracting 1 m which is a reference distance from the span S can be obtained.
  • the time of the time which added this required time to time t1 which is a magnetic marker 10 detection time can be set up as a communication start time.
  • This communication start time is the same time as the communication start time in FIG.
  • the setting mode of such communication start time is also included in the mode of setting the communication start time based on the time when the distance from the span S is traveled from the detection time by the time required for the vehicle to travel.
  • the control unit 32 After reading the tag information by the tag reader 34, the control unit 32 acquires position data of the magnetic marker 10 via the ID code included in the read tag information, identifies the position of the vehicle based on the position data, and outputs To do (S107). Specifically, the control unit 32 specifies the vehicle position by subtracting the lateral displacement amount measured at the time of detection of the magnetic marker 10 from the position (laying position of the magnetic marker 10) represented by the position data.
  • the marker detection process is a process performed by the sensor array 21 of the measurement unit 2 under the control of the control unit 32. As described above, the sensor array 21 executes marker detection processing at a cycle of 3 kHz using the magnetic sensor Cn.
  • the magnetic sensor Cn is configured to measure the magnetic component in the traveling direction of the vehicle 5. For example, when the magnetic sensor Cn moves in the direction of movement and passes right above the magnetic marker 10, the magnetic measurement value in the direction of movement is inverted in polarity between before and after the magnetic marker 10 as shown in FIG. It changes to cross zero at a position just above ten. Therefore, when the vehicle 5 is traveling, it is determined that the measurement unit 2 is positioned directly above the magnetic marker 10 when the zero crossing Zc whose polarity is reversed is generated for the magnetism in the traveling direction detected by any of the magnetic sensors Cn. it can. The detection processing circuit 212 determines that the magnetic marker 10 is detected when the measurement unit 2 is thus positioned directly above the magnetic marker 10 and a zero cross of the magnetic measurement value in the traveling direction occurs.
  • the detection processing circuit 212 detects the extreme value of the distribution (magnetic distribution in the vehicle width direction) of the magnetic measurement values of each magnetic sensor Cn when the measurement unit 2 is positioned directly above the magnetic marker 10. Identify the location of The detection processing circuit 212 detects the deviation between the position of the extreme value in the vehicle width direction and the position of the magnetic sensor C 8 that falls on the center in the vehicle width direction as a lateral displacement amount of the vehicle 5 with respect to the magnetic marker 10.
  • the tag information reading process is a communication process executed by the tag reader 34 to read tag information from the RF-ID tag 15 attached to the magnetic marker 10.
  • the tag reader 34 starts the tag information reading process (communication process) under the control of the control unit 32. After that, the tag reader 34 ends the tag information reading process as soon as the reading of the tag information can be completed.
  • the tag reader 34 starts transmission of radio waves in response to the start of the tag information reading process.
  • the tag reader 34 transmits radio waves in the order of the radio wave of the preamble, the radio wave which has modulated the READ command, and the carrier radio wave which is not modulated as shown in FIG.
  • the RF-ID tag 15 rectifies the radio wave of the preamble and stores the power necessary for the initial operation of the IC. Then, the radio wave including the READ command is demodulated to acquire the READ command, and the tag information is returned (Answer) by superimposing the data on the reflected wave of the non-modulated carrier radio wave.
  • the tag reader 34 When the tag reader 34 reads the tag information from the RF-ID tag 15, the tag reader 34 inputs the tag information to the control unit 32, cuts off the communication with the RF-ID tag 15, and ends the tag information reading process.
  • the tag information includes the ID code of the RF-ID tag 15.
  • the control unit 32 having acquired the tag information refers to the above-mentioned database storing the position data of each magnetic marker 10 by linking the ID code of the RF-ID tag 15. Then, position data of the magnetic marker 10 corresponding to the ID code included in the tag information is acquired, and the position data of the vehicle is specified using the position data as described above.
  • the communication start time point is set on the basis of the detection time point of the magnetic marker 10, and as soon as the reading of the tag information is completed, the tag information reading process by the tag reader 34 ends immediately. Therefore, in the vehicle system 1, by limiting radio wave transmission from the tag reader 34 to a short time, it is possible to alleviate the congestion of radio waves and to reduce mutual interference between the tag readers 34. As a result, the certainty of communication between the tag reader 34 and the RF-ID tag 15 can be improved, and omission of tag information can be reduced.
  • the presence of the RF-ID tag 15 is determined according to the detection of the magnetic marker 10.
  • the need for extensive searching by tag reader 34 is reduced. Therefore, in the vehicle system 1, it is possible to suppress the communication output on the tag reader 34 side.
  • the suppression of the communication output on the tag reader 34 side is effective in reducing mutual interference with the tag reader 34 of another vehicle.
  • a tag reader 34 that reads tag information with respect to the measurement unit 2 (sensor array 21) that detects the magnetic marker 10 is disposed behind the vehicle 5. Therefore, based on the detection time of the magnetic marker 10, the communication start time may be set with a time delay from the detection time. Since there is a time margin from the detection time point to the communication start time point, it is possible to ease the specification of the processing speed required for the control unit 32 that sets the communication start time point. If the required processing speed can be reduced, the control unit 32 can be configured by a relatively simple circuit, and the hardware cost can be reduced.
  • a limit period starting from the communication start time and ending from the forced end time As shown in FIG. 9, it is also possible to set a limit period starting from the communication start time and ending from the forced end time.
  • a time (t2- ⁇ tb) obtained by subtracting an interval time ⁇ tb obtained by dividing the reference distance 1 (m) by the vehicle speed V (m / sec) from time t2 is set as the communication start time doing.
  • the time (t2 + ⁇ tb) obtained by adding the interval time ⁇ tb to the time t2 is set as a forced termination time point at which the communication process is forcibly terminated (forced termination time point setting unit).
  • the communication process may be ended immediately in the middle of the limit period.
  • the communication process may be forcibly terminated regardless of whether or not the tag information can be read.
  • the tag reader 34 can shut off the communication, and the radio wave transmission continues unnecessarily. It can be avoided in advance. If unnecessary transmission of radio waves by the tag reader 34 is suppressed, congestion of radio waves can be alleviated.
  • the time length of the above-mentioned limit period that is, the time from the communication start time to the forcible end time depends on the vehicle speed, and becomes shorter as the vehicle speed is higher and longer as the vehicle speed is lower.
  • tag information including the ID code of the RF-ID tag 15 is illustrated, and a configuration for referring to a database using this ID code and acquiring position data of the corresponding magnetic marker is illustrated.
  • the data size can be configured smaller than the position data. Therefore, if this configuration is adopted, the data size of the tag information can be suppressed, and the time required for communication between the RF-ID tag 15 and the vehicle can be shortened.
  • the position data of the magnetic marker in the tag information.
  • various information may be added or replaced, such as lane information such as traveling lanes and passing lanes, road information such as bifurcation and merging, and traffic information such as speed limit and one-way traffic. good.
  • Example 2 In this example, based on the vehicle system of the first embodiment, the configuration is changed so as to set the communication start time with the RF-ID tag 15 by using the interval of the magnetic markers 10 in the traveling direction of the vehicle. is there.
  • This content will be described with reference to FIG. 5, FIG. 6, and FIG. 5 and 6 are the diagrams referred to in the first embodiment.
  • the tag reader 34 is integrally incorporated, and the tag reader 34 is disposed at the same position as the sensor array 21 in the front-rear direction (traveling direction) of the vehicle 5 It is arranged.
  • the magnetic markers 10 to which the RF-ID tags 15 are attached are arranged at intervals of 10 m along the center of the lane 100. That is, the span M of the magnetic markers 10 adjacent in the traveling direction of the vehicle is 10 m.
  • the span M is stored by the control unit 32 as a storage unit, and is read by the control unit 32 as an acquisition unit.
  • the overall operation of the vehicular system 1 of this example can be described using the flow chart of FIG. 5 referred to in the first embodiment. Furthermore, the contents of the arithmetic processing in step S103 for setting the communication start time can also be described using FIG. 6 referred to in the first embodiment.
  • the magnetic marker determined to be detected in S102 in FIG. 5 is the same as the magnetic marker to which the RF-ID tag 15 targeted for the tag information reading process of S104 is attached.
  • the magnetic marker according to S102 and the magnetic marker according to S104 are different.
  • the magnetic marker according to S104 is disposed forward of the magnetic marker according to S102 in the traveling direction of the vehicle.
  • the magnetic marker according to S104 is newly detected after the detection of the magnetic marker according to S102.
  • the required time ⁇ ta in FIG. 6 is a time obtained by dividing the span M (m) which is the interval of the magnetic markers 10 by the vehicle speed V (m / sec). This ⁇ ta is the time required to pass the distance that falls on span M.
  • the section time ⁇ tb is a time obtained by dividing the reference distance 1 (m) by the vehicle speed V (m / sec), as in the first embodiment.
  • the reference distance may be 1 (m) as in the first embodiment, or may be changed as appropriate.
  • the vehicle speed V (m / sec) can be obtained by integrating the measured acceleration by the IMU incorporated in the measurement unit, as in the first embodiment.
  • the time at which the traveling vehicle reaches the next magnetic marker Predict t2.
  • the time point of (t2- ⁇ tb) obtained by subtracting the above-mentioned interval time ⁇ tb from this time t2 is set as the communication start time point.
  • the time point of (t2- ⁇ tb) is a time point when the vehicle is predicted to reach a position ahead of the next magnetic marker by the reference distance.
  • the point at which the vehicle is predicted to reach a position ahead of the next magnetic marker by the reference distance can also be obtained directly without having to go through the calculation of the required time ⁇ ta and the time t2. .
  • the required time obtained by dividing the distance obtained by subtracting the reference distance from the span M by the vehicle speed V is added to the time t1 which is the detection time of the magnetic marker according to S102 in FIG. It is possible to ask.
  • the setting mode of such communication start time is also included in the mode of setting the communication start time based on the time when the vehicle reaches the next magnetic marker.
  • the control unit 32 stores the span M in advance, A configuration in which the unit 32 reads the span M is illustrated.
  • the acquisition unit may be configured to acquire the span M by using data or the like stored in a database that stores position data indicating the installation position of the magnetic marker 10.
  • data of the span M with the magnetic marker 10 adjacent in the longitudinal direction forward of the road may be stored in the database.
  • the control unit 32 as an acquisition unit refers to the database using the ID code read from the RF-ID tag 15, and the adjacent magnetic markers 10 together with the data of the laying position of the corresponding magnetic markers 10. Data of span M with can be acquired.
  • information representing the adjacency relationship of magnetic markers disposed along a lane (road) may be included in the database.
  • the adjacent relation is, for example, a relation of being adjacent to each other along a lane.
  • the span M which is the separation distance between the two installation positions can be calculated.
  • This reference example is different from the configuration of the vehicle system 1 and is an example of a configuration in which the tag reader repeatedly transmits radio waves without setting a communication period starting from the communication start time to search for an RF-ID tag. .
  • the technical problems that may occur when this configuration is adopted will be described.
  • the communication start time point at which the tag reader 34 transmits a radio wave is set, and the communication period starting from this communication start time point ends as soon as the reading of the tag information is completed. Do. With such a vehicle system 1, the communication period by the tag reader 34 can be suppressed to a short time, and mutual interference between tag readers can be effectively reduced.
  • Vehicle System 10 Magnetic Marker 100 Lane 15 RF-ID Tag (Wireless Tag) 2 Measurement unit (marker detection unit) 21 sensor array 32 control unit (communication start point setting unit) 34 Tag reader (wireless communication unit) 5 vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Traffic Control Systems (AREA)

Abstract

道路に敷設された磁気マーカ(10)を検出すると共に、磁気マーカ(10)に取り付けられた無線タグ(15)と無線で通信を行う車両用システム(1)であって、磁気を感知することにより磁気マーカ(10)を検出する計測ユニット(2)と、無線タグ(15)との間で通信処理を実行するタグリーダ(34)と、タグリーダ(34)による通信処理の始期である通信開始時点を設定する制御ユニット(32)と、を備え、制御ユニット(32)は、計測ユニット(2)が磁気マーカ(10)を検出した検出時点を基準とした所定の時間経過後を通信開始時点として設定し、タグリーダ(34)は、無線タグ(15)から情報を読み取り次第、通信を終了することで通信時間を短縮する。

Description

車両用システム及びタグ通信方法
 本発明は、道路側の無線タグと車両側との通信を行うための車両用システム及びタグ通信方法に関する。
 従来より、例えば、路面のマンホール等に設置された無線タグとの間で無線通信を実行し、精度の高い位置情報を取得する車両用のナビゲーションシステムが提案されている(例えば、特許文献1参照。)。このナビゲーションシステムは、各無線タグの敷設位置を表す位置情報を格納したデータベースを備えている。ナビゲーション装置は、このデータベースを参照し、無線タグから取得したタグIDがひも付けられた位置情報を取得する。
 このように道路に敷設された無線タグを活用すれば、例えばトンネルやビルの谷間などGPS(Global Positioning System)電波を十分に受信できない走行状況にあっても、車両位置を取得できる。これにより、走行環境によらない高精度のナビゲーションを実現できる。
特開2010-216955号公報
 しかしながら、前記無線タグを利用するシステムでは、次のような問題がある。すなわち、車両の走行中に取りこぼしなく確実性高く無線タグと通信できるよう、送信電波を強くしたり通信の実行頻度を高める必要があるため、電波の相互干渉や混信が起こり易く、無線タグと車両側との通信が不安定に陥るおそれがある。
 本発明は、前記従来の問題点に鑑みてなされたものであり、無線タグと信頼性高く通信するための車両用システム及びタグ通信方法を提供しようとするものである。
 本発明の一態様は、道路に敷設された磁気マーカに取り付けられた無線タグと無線で通信を行う車両用システムであって、
 磁気を感知することにより前記磁気マーカを検出するマーカ検出部と、
 前記無線タグとの間で通信処理を実行してタグ情報を取得する無線通信部と、
 該無線通信部に通信処理を開始させる通信開始時点を設定する通信開始時点設定部と、を備え、
 該通信開始時点設定部は、前記マーカ検出部が前記磁気マーカを検出した検出時点を基準として前記通信開始時点を設定し、
 前記無線通信部は、該通信開始時点で前記通信処理を開始し、前記無線タグからタグ情報を取得できたときに前記通信処理を終了するように構成されている車両用システムにある。
 本発明の一態様は、道路に敷設された磁気マーカに取り付けられた無線タグとの間で無線通信を実行し、該無線タグからタグ情報を取得する無線通信部を備える車両において、該無線通信部を制御して該無線タグとの間で通信処理を実行させるタグ通信方法であって、
 前記磁気マーカが検出された時点を基準として前記無線通信部に前記通信処理を開始させる通信開始時点を設定し、
 前記通信開始時点に到達したときに前記通信処理を開始した後、前記無線タグからタグ情報を取得できたときに該通信処理を終了するタグ通信方法にある。
 本発明の車両用システムあるいはタグ通信方法では、磁気マーカの検出時点を基準として通信開始時点が設定される。そして、この通信開始時点で開始される通信処理は、タグ情報を取得できたときに直ぐに終了する。このように通信開始時点で通信処理を開始した後、無線タグからタグ情報を取得できたときに直ちに通信処理を終了させれば、無線タグや無線通信部からの電波の送信時間や送信頻度を短縮あるいは低減できる。これにより、電波干渉や混信のおそれを抑制でき、無線タグと車両側との通信の信頼性を向上できる。
車両用システムの構成図。 車両用システムの電気的な構成を示すブロック図。 RF-IDタグが取り付けられた磁気マーカを示す図。 RF-IDタグの正面図。 車両用システムの全体動作を示すフロー図。 タグリーダに設定される通信開始時点の説明図。 センサアレイによる磁気計測値の時間的な変化を示すグラフ。 RF-IDタグとタグリーダとのコマンドシーケンスの説明図。 タグリーダに設定される限度期間の説明図。 磁気マーカの配置間隔であるスパンMを示す説明図。
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例は、磁気マーカ10に取り付けられたRF-IDタグ(Radio Frequency IDentification Tag、無線タグ)15からタグ情報を読み取るためのタグ通信方法及び車両用システム1に関する例である。この内容について、図1~図9を用いて説明する。
 車両用システム1は、図1及び図2のごとく、磁気マーカ10を検出するマーカ検出部の一例をなす計測ユニット2、磁気マーカ10に取り付けられたRF-IDタグ15からタグ情報を読み取る無線通信部の一例をなすタグリーダ34、計測ユニット2やタグリーダ34を制御する制御ユニット32を含めて構成されている。車両用システム1は、RF-IDタグ15のIDコード(識別コード)を介して磁気マーカ10の位置データを取得し、車両が所在する位置である自車位置を特定する。
 本例では、この車両用システム1をナビゲーションシステム6に組み合わせている。ナビゲーションシステム6は、ナビゲーション機能を実現するナビECU61と、詳細な3次元地図データ(3Dマップデータ)を格納する地図データベース(地図DB)65と、を含んで構成されたシステムである。ナビECU61は、車両用システム1が特定した自車位置を利用して、周辺の地図表示や、画面表示や音声出力等による経路案内等を実行する。
 以下、道路に敷設される磁気マーカ10を概説した後、計測ユニット2、タグリーダ34、制御ユニット32の内容を説明する。
 磁気マーカ10は、図1のごとく、車両5が走行する道路の路面100Sに敷設される道路マーカである。磁気マーカ10は、左右のレーンマークで区分された車線(図1中の符号100)の中央に沿って例えば10m間隔で配置されている。
 磁気マーカ10(図3)は、直径20mm、高さ28mmの柱状をなし、路面100Sに設けた孔への収容が可能である。磁気マーカ10をなす磁石は、磁性材料である酸化鉄の磁粉を基材である高分子材料中に分散させた等方性フェライトプラスチックマグネットであり、最大エネルギー積(BHmax)=6.4kJ/mという特性を備えている。この磁気マーカ10は、路面100Sに穿設された孔に収容された状態で敷設される。
 本例の磁気マーカ10の仕様の一部を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この磁気マーカ10は、計測ユニット2の取付け高さとして想定する範囲100~250mmの上限の250mm高さにおいて、8μT(8×10-6T、T:テスラ)の磁束密度の磁気を作用できる。
 略円柱状の磁気マーカ10の一方の端面には、図3及び図4のごとく、無線により情報を出力するRF-IDタグ15が積層配置されている。このRF-IDタグ15は、パッシブ型のタグであり、無線による外部給電により動作し、IDコードを含むタグ情報を送信する。なお、磁気マーカ10は、RF-IDタグ15が上方に位置するように道路に敷設される。
 RF-IDタグ15(図4)は、例えばPET(PolyEthylene Terephthalate)フィルムから切り出したタグシート150の表面にICチップ157を実装した電子部品である。タグシート150の表面には、アンテナ153の印刷パターンが設けられている。RF-IDタグ15は、アンテナ153による受信電波から取り出した電力により動作し、アンテナ153による反射電波にタグ情報を重畳して返信する。
 次に、車両5が備える計測ユニット2、タグリーダ34、制御ユニット32について説明する。
 計測ユニット2は、図2のごとく、磁気センサCnを含むセンサアレイ21と、慣性航法による測位を可能にするIMU(Inertial Measurement Unit)22と、が一体化されたユニットである。
 計測ユニット2は、車幅方向に長い棒状のユニットであり、例えば車両のフロントバンパーの内側に路面100Sと対面する姿勢で取り付けられる。本例の車両5の場合、路面100Sを基準とした計測ユニット2の取付け高さが200mmとなっている。
 計測ユニット2のセンサアレイ21は、図2のごとく、車幅方向に沿って一直線上に配列された15個の磁気センサCn(nは1~15の整数)と、図示しないCPU等を内蔵した検出処理回路212と、を備えている。なお、センサアレイ21では、15個の磁気センサCnが10cmの等間隔で配置されている。センサアレイ21は、中央の磁気センサC8が車幅方向における車両5の中心に位置するように設置される。
 磁気センサCnは、アモルファスワイヤなどの感磁体のインピーダンスが外部磁界に応じて敏感に変化するという公知のMI効果(Magnet Impedance Effect)を利用して磁気を検出するセンサである。磁気センサCnは、アモルファスワイヤの長手方向に作用する磁気成分の大きさを計測可能である。本例では、車両5の進行方向の磁気成分を検出できるように磁気センサCnがセンサアレイ21に組み込まれている。
 磁気センサCnは、磁束密度の測定レンジが±0.6mTであって、測定レンジ内の磁束分解能が0.02μTという高感度のセンサである。本例では、車両の高速走行に対応できるよう、計測ユニット2の各磁気センサCnによる磁気計測の周期が3kHzに設定されている。
 磁気センサCnの仕様の一部を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記のように、磁気マーカ10は、磁気センサCnの取付け高さとして想定する範囲100~250mmにおいて8μT以上の磁束密度の磁気を作用できる。磁束密度8μT以上の磁気を作用する磁気マーカ10であれば、磁束分解能が0.02μTの磁気センサCnを用いて確実性高く検出可能である。
 センサアレイ21の検出処理回路212(図2)は、磁気マーカ10を検出するためのマーカ検出処理などを実行する演算回路である。図示は省略するが、この検出処理回路212は、各種の演算を実行するCPU(central processing unit)のほか、ROM(read only memory)やRAM(random access memory)などのメモリ素子等を利用して構成されている。
 検出処理回路212は、各磁気センサCnが出力するセンサ信号を3kHz周期で取得してマーカ検出処理を実行する。マーカ検出処理では、磁気マーカ10の検出に加えて、検出した磁気マーカ10に対する車両5の横ずれ量の計測が行われる。なお、このマーカ検出処理の検出結果は随時、制御ユニット32に入力される。
 計測ユニット2に組み込まれたIMU22は、慣性航法により車両5の相対位置を推定する慣性航法ユニットである。IMU22は、方位を計測する電子コンパスである2軸磁気センサ221と、加速度を計測する2軸加速度センサ222と、角速度を計測する2軸ジャイロセンサ223と、を備えている。
 続いてタグリーダ34は、無線アンテナ340を備える通信ユニットである。本例の車両用システム1では、車両5の前側に配置されたセンサアレイ21に対してタグリーダ34が車両5の後ろ側に配置され、センサアレイ21とタグリーダ34との間隔がスパンSとなっている(図1参照。)。本例では、スパンSが例えば3.5mとなっている。
 タグリーダ34は、磁気マーカ10の表面に積層配置されたRF-IDタグ15との間で無線による通信処理を実行する。例えば900MHz帯を利用するこの通信処理では、RF-IDタグ15の動作に必要な電力が無線で送電され(給電処理)、RF-IDタグ15からのタグ情報の読み取りが実行される。そして、タグリーダ34は、タグ情報の読み取りが完了してタグ情報を取得できたときに直ちに通信を遮断し、通信処理を終了する。タグ情報には、対応する磁気マーカ10を特定可能とする(RF-IDタグ15の)IDコードが含まれている。
 制御ユニット32は、計測ユニット2やタグリーダ34を制御すると共に、自車位置(車両5の位置)をリアルタイムで特定するユニットである。制御ユニット32は、ナビゲーションシステム6を構成するナビECU61に、特定した自車位置を入力する。この制御ユニット32は、磁気マーカ10の検出時点を基準として、タグリーダ34に無線通信を実行させる通信開始時点を設定する通信開始時点設定部としての機能を備えている。
 制御ユニット32は、各種の演算を実行するCPUのほか、ROMやRAMなどのメモリ素子等が実装された電子基板(図示略)を備えている。メモリ素子等がなす記録領域には、磁気マーカ10の敷設位置(絶対位置)を表す位置データを格納するデータベースが設けられている。このデータベースでは、RF-IDタグ15のIDコードをひも付けて各磁気マーカ10の位置データが格納されている。この記憶領域には、さらに、センサアレイ21とタグリーダ34との間隔であるスパンSを記憶する記憶部が設けられている。本例では、この記憶部がスパンSとして3.5mの値を記憶している。このスパンSの値は、取得部としての機能を有する制御ユニット32により記憶部から読み出され、通信開始時点を設定するための演算処理に利用される。
 なお、制御ユニット32が自車位置を特定する方法は、磁気マーカ10に車両5が到達したときと、隣り合う磁気マーカ10の中間に車両5が位置するときと、で相違している。制御ユニット32は、磁気マーカ10の検出時には、付設されたRF-IDタグ15から読み出すタグ情報に含まれるIDコードを利用してデータベースを参照し、対応する磁気マーカ10の位置データを取得して自車位置を特定する。一方、隣り合う磁気マーカ10の中間に車両5が位置するときには、直近の磁気マーカ10の検出時に特定された自車位置を基準位置とし、慣性航法により基準位置からの相対位置を推定する。
 具体的には、制御ユニット32は、計測ユニット2に組み込まれたIMU22による計測加速度の二階積分により変位量を演算する。そして、2軸ジャイロセンサ223により検出された車両5の進行方向変化や計測方位に沿って変位量を積算することで相対位置を推定する。制御ユニット32は、この相対位置を上記の基準位置に足し合わせた位置を自車位置として特定する。
 ナビECU61は、制御ユニット32から自車位置を取り込むと、地図DB65を参照して周辺の地図データを読み込み、図示しないディスプレイ装置に表示させる。さらに、予め経路が設定されていれば、ナビECU61は、経路中の自車位置の所在に応じて、例えば「300M先の交差点を右折です。」等の経路案内を表示あるいは音声出力する。
 次に、(1)車両用システム1のシステム動作、(2)センサアレイ21によるマーカ検出処理、(3)タグリーダ34による通信処理であるタグ情報読取処理、の内容を順番に説明する。ここで、(2)マーカ検出処理及び(3)タグ情報読取処理は、(1)システム動作(図5)中に実行される処理である。(2)マーカ検出処理は、磁気マーカ10を磁気的に検出するための処理である。(3)タグ情報読取処理は、無線通信によりRF-IDタグ15からタグ情報を読み取る処理である。
(1)車両用システム1のシステム動作
 車両用システム1では、図5のごとく、車両5の走行中に、センサアレイ21による後述の(2)マーカ検出処理が繰り返し実行される(S101→S102:NO)。センサアレイ21により磁気マーカ10が検出されたき(S102:YES)、制御ユニット32は、磁気マーカ10の検出時点を基準とした所定の時間経過後の時点を、RF-IDタグ15との通信を開始する通信開始時点として設定する(S103)。
 具体的には、制御ユニット32は、図6のごとく、車速(車両の速度)V(m/秒)によりセンサアレイ21とタグリーダ34とのスパンS(m)を除算することで、スパンSに当たる距離の通過に要する所要時間δtaを求める。そして、センサアレイ21による磁気マーカ10の検出の時点である時刻t1にこの所要時間δtaを加算する。このように時刻t1に所要時間δtaを加算すれば、車両の後ろ側に配置されたタグリーダ34が磁気マーカ10の真上を通過する時刻t2を予測できる。なお、車速V(m/秒)は、計測ユニット2に組み込まれたIMU22による計測加速度の積分により求めることができる。
 制御ユニット32は、基準距離である1(m)を車速V(m/秒)で除算した区間時間δtbを時刻t2から差し引いた時刻(t2-δtb)、すなわちタグリーダ34が磁気マーカ10の手前1mに到達する時刻、を上記の通信開始時点として設定する。ここで、磁気マーカ10の検出時点からこの通信開始時点に至る経過時間である前記所定の時間は、δtaからδtbを差し引いた時間、すなわち上記のスパンS(3.5m)から基準距離(1m)を差し引いた距離(S-1)を車速V(m/秒)の車両が通過するのに要する時間、である。この所定の時間は、車速V(m/秒)に依存しており、車速が高いほど短くなり、車速が低いほど長くなる時間となっている。
 なお、基準距離については、タグリーダ34がRF-IDタグ15と通信可能な距離的な範囲である通信エリア等の大きさを考慮して適宜変更可能である。
 なお、スパンSから基準距離である1mを差し引いた距離の通過に要する所要時間を求めることも良い。この所要時間を、磁気マーカ10検出時点である時刻t1に加算した時刻の時点を、通信開始時点に設定できる。この通信開始時点は、図6中の通信開始時点と同じ時点である。このような通信開始時点の設定態様についても、スパンSの距離を車両が走行するのに要する時間の分だけ前記検出時点から経過した時点に基づいて通信開始時点を設定する態様に包含される。
 上記のように設定された通信開始時点に到達するとタグリーダ34による通信処理(後述のタグ情報読取処理)が開始され、RF-IDタグ15からのタグ情報の読み取りが実行される(S104)。そして、タグリーダ34は、タグ情報の読み取りが完了したら(S105:YES)、直ちにタグ情報読取処理を終了する(S106)。このようにタグ情報の読み取りに応じて直ちにタグ情報読取処理が終了すれば、電波の送信時間を短くできるので、電波の相互干渉や混信を確実に防止できる。
 タグリーダ34によるタグ情報の読み取り後、制御ユニット32は、読み取ったタグ情報に含まれるIDコードを介して磁気マーカ10の位置データを取得し、この位置データに基づいて自車位置を特定して出力する(S107)。具体的には、制御ユニット32は、磁気マーカ10の検出時に計測された横ずれ量を、位置データが表す位置(磁気マーカ10の敷設位置)から差し引くことにより自車位置を特定する。
(2)マーカ検出処理
 マーカ検出処理は、制御ユニット32の制御により、計測ユニット2のセンサアレイ21が実行する処理である。センサアレイ21は、上記の通り、磁気センサCnを用いて3kHzの周期でマーカ検出処理を実行する。
 上記のごとく、磁気センサCnは、車両5の進行方向の磁気成分を計測するように構成されている。例えばこの磁気センサCnが、進行方向に移動して磁気マーカ10の真上を通過するとき、進行方向の磁気計測値は、図7のごとく磁気マーカ10の前後で正負が反転すると共に、磁気マーカ10の真上の位置でゼロを交差するように変化する。したがって、車両5の走行中では、いずれかの磁気センサCnが検出する進行方向の磁気について、その正負が反転するゼロクロスZcが生じたとき、計測ユニット2が磁気マーカ10の真上に位置すると判断できる。検出処理回路212は、このように計測ユニット2が磁気マーカ10の真上に位置し進行方向の磁気計測値のゼロクロスが生じたときに磁気マーカ10を検出したと判断する。
 なお、検出処理回路212は、計測ユニット2が磁気マーカ10の真上に位置するときの各磁気センサCnの磁気計測値の分布(車幅方向の磁気分布)のうち、極値の車幅方向の位置を特定する。検出処理回路212は、極値の車幅方向の位置と、車幅方向の中心に当たる磁気センサC8の位置と、の偏差を、磁気マーカ10に対する車両5の横ずれ量として検出する。
(3)タグ情報読取処理
 タグ情報読取処理は、磁気マーカ10に取り付けられたRF-IDタグ15からタグ情報を読み取るためにタグリーダ34が実行する通信処理である。磁気マーカ10の検出時に制御ユニット32が設定する上記の通信開始時点(図6参照。)において、制御ユニット32の制御によりタグリーダ34がタグ情報読取処理(通信処理)を開始する。その後、タグリーダ34は、タグ情報の読み取りを完了でき次第、タグ情報読取処理を終了する。
 タグ情報読取処理の開始に応じてタグリーダ34が電波の送信を開始する。タグリーダ34は、図8のごとく、プリアンブルの電波、READコマンドを変調した電波、無変調のキャリア電波、の順番で電波を送信する。RF-IDタグ15は、プリアンブルの電波を整流してICの初期動作に必要な電力を蓄える。そして、READコマンドを含む電波を復調してREADコマンドを取得し、無変調のキャリア電波の反射波にデータを重畳することでタグ情報を返信(Answer)する。
 タグリーダ34は、RF-IDタグ15からタグ情報を読み取ると、制御ユニット32にそのタグ情報を入力すると共に、RF-IDタグ15との間の通信を遮断してタグ情報読取処理を終了させる。上記の通り、タグ情報には、RF-IDタグ15のIDコードが含まれている。このタグ情報を取得した制御ユニット32は、RF-IDタグ15のIDコードをひも付けて各磁気マーカ10の位置データを格納する上記のデータベースを参照する。そして、タグ情報に含まれるIDコードに対応する磁気マーカ10の位置データを取得し、上記の通りこの位置データを利用して自車位置を特定する。
 以上のように車両用システム1では、磁気マーカ10の検出時点を基準として通信開始時点が設定され、タグ情報の読み取りが完了次第、タグリーダ34によるタグ情報読取処理が直ぐに終了する。したがって、この車両用システム1では、タグリーダ34からの電波送信を短時間に制限することで電波の混み具合を緩和でき、タグリーダ34間の相互干渉を低減できる。これによりタグリーダ34とRF-IDタグ15との通信の確実性を向上でき、タグ情報の取りこぼしを低減できる。
 さらに、この車両用システム1の場合、磁気マーカ10の検出に応じてRF-IDタグ15の存在が確定する。事前に存在が判っているRF-IDタグ15については、タグリーダ34による広範囲なサーチの必要性が少ない。それ故、車両用システム1では、タグリーダ34側の通信出力の抑制が可能である。タグリーダ34側の通信出力の抑制は、他車両のタグリーダ34との相互干渉の低減に有効である。
 本例の車両用システム1では、磁気マーカ10を検出する計測ユニット2(センサアレイ21)に対してタグ情報を読み取るタグリーダ34が車両5の後ろ側に配置されている。そのため、磁気マーカ10の検出時点を基準として、この検出時点から時間的に遅れて通信開始時点を設定すれば良い。検出時点から通信開始時点までには時間的な余裕があるため、通信開始時点を設定する制御ユニット32に必要な処理速度の仕様を緩和できる。必要な処理速度を低くできれば、比較的シンプルな回路により制御ユニット32を構成でき、ハードウェアコストを低減できる。
 図9に示すように、通信開始時点を始期とし強制終了時点を終期とする限度期間を設定することも良い。ここでは、図6の場合と同様、基準距離である1(m)を車速V(m/秒)で除算した区間時間δtbを時刻t2から差し引いた時刻(t2-δtb)を通信開始時点に設定している。一方、この区間時間δtbを時刻t2に加算した時刻(t2+δtb)を、通信処理を強制終了させる強制終了時点に設定している(強制終了時点設定部)。通信開始時点を始期とするこの限度期間において、タグ情報の読み取りが完了した場合には限度期間の途中で直ちに通信処理を終了させると良い。一方、強制終了時点に達した場合には、タグ情報を読み取りできたか否かに関わらず通信処理を強制的に終了させると良い。このように構成すれば、例えば何らかのトラブルによりタグ情報の読み取りができずにRF-IDタグ15を通過してしまった場合にタグリーダ34が通信を遮断でき、無用に電波送信が継続される状況を未然に回避できる。タグリーダ34による無駄な電波送信を抑制すれば、電波の混雑を緩和できる。なお、上記の限度期間の時間長、すなわち通信開始時点から強制終了時点までの時間は、車速に依存しており、車速が高いほど短時間となり、車速が低いほど長くなる。
 なお、車両の前後方向において計測ユニット2とタグリーダ34とを間隔を空けて配置する構成のほか、前後方向における同じ位置に両者を配置する構成が考えられる。この構成の場合には、計測ユニット2で磁気マーカ10が検出されたとき、通信処理が遅延することなく開始されるように構成すると良い。なお、RF-IDタグ15の読み取りが完了次第、通信処理を終了する点は前記と同様である。
 本例では、RF-IDタグ15のIDコードを含むタグ情報を例示すると共に、このIDコードを利用してデータベースを参照し、対応する磁気マーカの位置データを取得する構成を例示している。一般に、IDコードであれば、位置データと比べてデータサイズを小さく構成できる。それ故、この構成を採用すれば、タグ情報のデータサイズを抑制でき、RF-IDタグ15と車両間の通信に要する時間を短縮できる。もちろん通信時間に余裕があれば、磁気マーカの位置データをタグ情報に含めることも良い。さらに、タグ情報について、走行車線や追越車線等の車線情報や、分岐・合流等の道路情報、制限速度や一方通行などの交通情報など、各種の情報を追加しても良いし置き換えても良い。
(実施例2)
 本例は、実施例1の車両用システムに基づき、車両の進行方向における磁気マーカ10の間隔を利用して、RF-IDタグ15との通信開始時点を設定するように構成を変更した例である。この内容について、図5、図6、図10を参照して説明する。なお、図5、図6は、実施例1で参照した図である。
 本例の車両用システム1を構成する計測ユニット2では、図10のごとく、タグリーダ34が一体的に組み込まれ、車両5の前後方向(進行方向)において、センサアレイ21と同じ位置にタグリーダ34が配置されている。RF-IDタグ15が取り付けられた磁気マーカ10は、車線100の中央に沿って10m間隔で配置されている。つまり、車両の進行方向において隣り合う磁気マーカ10のスパンMが10mとなっている。このスパンMは、記憶部としての制御ユニット32により記憶されており、取得部としての制御ユニット32により読み出される。
 本例の車両用システム1の全体動作は、実施例1で参照した図5のフロー図を利用して説明可能である。さらに、通信開始時点を設定するためのステップS103の演算処理の内容についても、実施例1で参照した図6を利用して説明可能である。
 ただし、実施例1と本例とでは、次に説明する相違点がある。すなわち、実施例1では、図5中のS102で検出したと判断された磁気マーカと、S104のタグ情報読取処理の対象のRF-IDタグ15が取り付けられた磁気マーカと、が同じものである一方、本例の場合、S102に係る磁気マーカと、S104に係る磁気マーカと、が別のものである。S104に係る磁気マーカは、S102に係る磁気マーカに対して車両の進行方向における前方に配置されたものである。S104に係る磁気マーカは、S102に係る磁気マーカの検出後に新たに検出される。
 このような相違点に起因し、図5中のS103の演算処理の内容が実施例1とは相違している。本例の場合、図6中の所要時間δtaは、磁気マーカ10の間隔であるスパンM(m)を車速V(m/秒)で除算した時間である。このδtaは、スパンMに当たる距離を通過するのに要する所要時間となっている。一方、区間時間δtbについては、実施例1と同様、基準距離である1(m)を車速V(m/秒)で除算した時間となっている。この基準距離については、実施例1と同様の1(m)であっても良いし、適宜、変更可能である。なお、車速V(m/秒)は、実施例1と同様、計測ユニットに組み込まれたIMUによる計測加速度の積分により求めることができる。
 本例においては、図5中のS102に係る磁気マーカ10の検出時点である時刻t1に上記の所要時間δtaを加算することで、走行中の車両が次の磁気マーカに到達する時点である時刻t2を予測する。そして、この時刻t2から上記の区間時間δtbを差し引いた(t2-δtb)の時点が、通信開始時点として設定される。この(t2―δtb)の時点は、次の磁気マーカよりも基準距離の分だけ手前の位置に車両が到達すると予測される時点である。
 なお、次の磁気マーカよりも基準距離の分だけ手前の位置に車両が到達すると予測される時点については、所要時間δtaや時刻t2の算出を経由することなく、直接、求めることも可能である。例えばスパンMから基準距離を差し引いた距離を車速Vで除算した所要時間を、図5中のS102に係る磁気マーカの検出時点である時刻t1に加算すれば、(t2―δtb)の時点を直接、求めることが可能である。このような通信開始時点の設定態様についても、車両が次の磁気マーカに到達する時点に基づいて通信開始時点を設定する態様に包含される。
 本例では、RF-IDタグ15が取り付けられた磁気マーカ10が車線(道路)に沿ってスパンMで連続的に配置されていると共に、制御ユニット32がスパンMを予め記憶しており、制御ユニット32がスパンMを読み出す構成を例示している。この構成に代えて、磁気マーカ10の敷設位置を表す位置データを格納するデータベースに格納されたデータ等を利用してスパンMを取得するように取得部を構成しても良い。
 例えば、磁気マーカ10の敷設位置に加えて、道路の長手方向前方、すなわち車両の進行方向前方に隣り合う磁気マーカ10とのスパンMのデータを、データベースに格納すると良い。この場合には、取得部としての制御ユニット32は、RF-IDタグ15から読み出したIDコードを利用してデータベースを参照し、対応する磁気マーカ10の敷設位置のデータと共に、隣り合う磁気マーカ10とのスパンMのデータを取得できる。
 さらに例えば、車線(道路)に沿って配置された磁気マーカの隣接関係を表す情報を、データベースに含めることも良い。隣接関係とは、例えば車線に沿って隣り合っている等の関係である。この場合には、ある磁気マーカが検出されたとき、隣接関係を表す情報を利用して、車両の進行方向前方に隣り合う次の磁気マーカを特定できる。データベースを参照して検出した磁気マーカの敷設位置と、次の磁気マーカの敷設位置と、を読み出せば、2点の敷設位置の離間距離であるスパンMを演算できる。
 なお、スパンMが長くなると、最初の磁気マーカを検出した後の車速の変化等に起因し、車両が次の磁気マーカに到達する時点の予測精度が低下するおそれがある。すなわち、スパンMが長くなると、車両が次の磁気マーカに到達すると制御ユニットが予測する時点と、実際に車両が到達する時点と、の差分である時間的な誤差が拡大するおそれがある。そこで、時々刻々の車速V(m/秒)を積分することで車両の移動距離を算出することも良い。最初の磁気マーカを検出した後の車両の移動距離が、スパンMから基準距離を差し引いた距離に達したときの時点を通信開始時点に設定し、直ちに通信処理を開始することも良い。
 なお、その他の構成及び作用効果については実施例1と同様である。
(参考例)
 この参考例は、車両用システム1の構成とは相違し、通信開始時点を始期とした通信期間を設定することなくタグリーダが繰り返し電波を送信し、RF-IDタグを探索する構成の例である。この構成を採用した場合に起こり得る技術的な課題を説明する。
 市街地の道路などでは、タグリーダからの電波が届く範囲に存在する車両の台数が多くなり、電波の混信が問題となってくる。電波の混信を抑制するためには、例えば電波の多チャンネル化等が図られる。しかし、無線通信に利用可能な電波資源には限りがあり、多チャンネル化にも限界がある。そこで、多くの国や域や組織等では、タグリーダが電波送信を継続できる期間を制限するための法規や、他のタグリーダが電波を受信している最中での電波の送信開始を規制する法規等が定められている。
 このような法規の下では、タグリーダが電波を送信しない待機期間の設定が不可避である。この待機期間が長ければ、その期間の継続中にタグリーダがRF-IDタグを通過してしまい、タグ情報の取りこぼしが発生する頻度が高くなる。交通量の多い市街地で渋滞が発生した場合には、車両の密度が一層高くなり、タグ情報の取りこぼしのおそれが一層高まる。このような状態において通信の信頼性を確保するためには、電波の混信の影響を受け難い特別な通信回路や処理回路、指向性の高い特別なアンテナ等が必要となる。この場合には、車両側、インフラ側双方のシステムコストが上昇する可能性が高い。
 これに対して、実施例1の車両用システム1では、タグリーダ34が電波を送信する通信開始時点が設定され、タグ情報の読み取りを完了でき次第、この通信開始時点を始期とする通信期間が終了する。このような車両用システム1であれば、タグリーダ34による通信期間を短時間に抑えることができ、タグリーダ間の相互干渉を効果的に低減できる。
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して上記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。
 1 車両用システム
 10 磁気マーカ
 100 車線
 15 RF-IDタグ(無線タグ)
 2 計測ユニット(マーカ検出部)
 21 センサアレイ
 32 制御ユニット(通信開始時点設定部)
 34 タグリーダ(無線通信部)
 5 車両

Claims (10)

  1.  道路に敷設された磁気マーカに取り付けられた無線タグと無線で通信を行う車両用システムであって、
     磁気を感知することにより前記磁気マーカを検出するマーカ検出部と、
     前記無線タグとの間で通信処理を実行してタグ情報を取得する無線通信部と、
     該無線通信部に通信処理を開始させる通信開始時点を設定する通信開始時点設定部と、を備え、
     該通信開始時点設定部は、前記マーカ検出部が前記磁気マーカを検出した検出時点を基準として前記通信開始時点を設定し、
     前記無線通信部は、該通信開始時点で前記通信処理を開始し、前記無線タグからタグ情報を取得できたときに前記通信処理を終了するように構成されている車両用システム。
  2.  請求項1において、前記検出時点から前記通信開始時点までの時間は、車両が走行する速度である車速に依存しており、車速が高いほど短くなり、車速が低いほど長くなる車両用システム。
  3.  請求項1又は2において、前記無線通信部による通信処理を終了させる強制終了時点を設定する強制終了時点設定部を備え、
     前記無線通信部は、前記タグ情報を取得できたか否かに関わらず、前記強制終了時点で前記通信処理を終了するように構成されている車両用システム。
  4.  請求項1~3のいずれか1項において、前記無線通信部による通信処理は、動作に必要な電力を前記無線タグに供給する給電処理を含む処理である車両用システム。
  5.  請求項1~4のいずれか1項において、前記マーカ検出部と前記無線通信部とは、該マーカ検出部を前側にして車両の前後方向にスパンSの間隔を空けて配置されており、
     前記通信開始時点設定部は、前記スパンSの距離を車両が走行するのに要する時間の分だけ前記検出時点から経過した時点に基づいて前記通信開始時点を設定する車両用システム。
  6.  請求項1~4のいずれか1項において、前記マーカ検出部と前記無線通信部とは、該マーカ検出部を前側にして車両の前後方向にスパンSの間隔を空けて配置されており、
     前記通信開始時点設定部は、前記スパンSの距離から基準距離を差し引いた距離を車両が走行するのに要する時間の分だけ前記検出時点から経過した時点を、前記通信開始時点として設定する車両用システム。
  7.  請求項1~4のいずれか1項において、車両が走行する道路の長手方向に沿って前記無線タグが取り付けられた磁気マーカが複数配置されており、
     前記通信開始時点設定部は、道路に沿う車両の走行中において、前記検出時点の経過後に次に検出されると予測される磁気マーカの位置に車両が到達している時点に基づいて前記通信開始時点を設定する車両用システム。
  8.  請求項1~4のいずれか1項において、道路の長手方向に沿って前記無線タグが取り付けられた磁気マーカが、スパンMの間隔で配置されており、
     前記通信開始時点設定部は、前記スパンMの距離から基準距離を差し引いた距離を車両が走行するのに要する時間の分だけ前記検出時点から経過した時点を、前記通信開始時点として設定する車両用システム。
  9.  道路に敷設された磁気マーカに取り付けられた無線タグとの間で無線通信を実行し、該無線タグからタグ情報を取得する無線通信部を備える車両において、該無線通信部を制御して該無線タグとの間で通信処理を実行させるタグ通信方法であって、
     前記磁気マーカが検出された時点を基準として前記無線通信部に前記通信処理を開始させる通信開始時点を設定し、
     前記通信開始時点に到達したときに前記通信処理を開始した後、前記無線タグからタグ情報を取得できたときに該通信処理を終了するタグ通信方法。
  10.  請求項9において、前記通信処理は、動作に必要な電力を前記無線タグに供給する給電処理を含んでいるタグ通信方法。
PCT/JP2018/033406 2017-09-28 2018-09-10 車両用システム及びタグ通信方法 WO2019065176A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202002283UA SG11202002283UA (en) 2017-09-28 2018-09-10 Vehicular system and tag communication method
US16/647,874 US11244129B2 (en) 2017-09-28 2018-09-10 Vehicular system and tag communication method
CN201880059028.9A CN111095376B (zh) 2017-09-28 2018-09-10 车辆用***以及标签通信方法
EP18862099.1A EP3690848B1 (en) 2017-09-28 2018-09-10 Vehicular system and tag communication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017188677 2017-09-28
JP2017-188677 2017-09-28
JP2018049194A JP7047506B2 (ja) 2017-09-28 2018-03-16 車両用システム及びタグ通信方法
JP2018-049194 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019065176A1 true WO2019065176A1 (ja) 2019-04-04

Family

ID=65901770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033406 WO2019065176A1 (ja) 2017-09-28 2018-09-10 車両用システム及びタグ通信方法

Country Status (3)

Country Link
US (1) US11244129B2 (ja)
CN (1) CN111095376B (ja)
WO (1) WO2019065176A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928307B2 (ja) * 2017-03-28 2021-09-01 愛知製鋼株式会社 マーカ検出システム及びマーカ検出方法
JP6965815B2 (ja) * 2018-04-12 2021-11-10 愛知製鋼株式会社 マーカ検出システム、及びマーカ検出システムの運用方法
US11604476B1 (en) * 2018-10-05 2023-03-14 Glydways Inc. Road-based vehicle guidance system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314540A (ja) * 1995-03-14 1996-11-29 Toyota Motor Corp 車両走行誘導システム
JPH1021492A (ja) * 1996-07-08 1998-01-23 Toyota Motor Corp 車両走行誘導システム
JP2002063683A (ja) * 2000-08-23 2002-02-28 Public Works Research Institute Ministry Of Land Infrastructure & Transport 磁気・電波複合型道路マーカシステム
WO2008035433A1 (fr) * 2006-09-22 2008-03-27 Fujitsu Limited Unité mobile et procédé de commande
JP2010216955A (ja) 2009-03-16 2010-09-30 Nippon Telegr & Teleph Corp <Ntt> 車両位置提示方法、及びカーナビゲーション装置
JP2017084269A (ja) * 2015-10-30 2017-05-18 東芝テック株式会社 読取装置および読取方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314873B2 (ja) * 1991-01-04 2002-08-19 サイエンティフィック ジェネリックス リミテッド 遠隔読取可能データ記憶器及び装置
US5185825A (en) * 1991-10-03 1993-02-09 The Furukawa Electric Co., Ltd. Optical switching connector
DE69815640T2 (de) * 1997-11-28 2003-12-04 Matsushita Electric Industrial Co., Ltd. Verfahren und Gerät zur Detektion von magnetostriktiven Resonatoren sowie Verkehrssystem
US6728629B2 (en) 2000-11-24 2004-04-27 National Institute For Land And Infrastructure Management, Ministry Of Land, Infrastructure And Transport On-road reference point positional data delivery device
RU2514025C1 (ru) * 2012-11-16 2014-04-27 Игорь Юрьевич Мацур Индукционная система обнаружения и идентификации транспортных средств, индукционный регистрационный номерной знак и индукционный считыватель
JP6247647B2 (ja) * 2015-01-09 2017-12-13 株式会社東芝 無線通信システムおよび無線通信装置
JP6615625B2 (ja) * 2016-01-22 2019-12-04 東芝テック株式会社 無線タグ通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314540A (ja) * 1995-03-14 1996-11-29 Toyota Motor Corp 車両走行誘導システム
JPH1021492A (ja) * 1996-07-08 1998-01-23 Toyota Motor Corp 車両走行誘導システム
JP2002063683A (ja) * 2000-08-23 2002-02-28 Public Works Research Institute Ministry Of Land Infrastructure & Transport 磁気・電波複合型道路マーカシステム
WO2008035433A1 (fr) * 2006-09-22 2008-03-27 Fujitsu Limited Unité mobile et procédé de commande
JP2010216955A (ja) 2009-03-16 2010-09-30 Nippon Telegr & Teleph Corp <Ntt> 車両位置提示方法、及びカーナビゲーション装置
JP2017084269A (ja) * 2015-10-30 2017-05-18 東芝テック株式会社 読取装置および読取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690848A4

Also Published As

Publication number Publication date
CN111095376A (zh) 2020-05-01
CN111095376B (zh) 2022-05-10
US11244129B2 (en) 2022-02-08
US20200285822A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
CN110419067B (zh) 标识器***
JP6946695B2 (ja) マーカシステム
CN110402311B (zh) 磁性标识器的施工方法及作业***
CN112204352B (zh) 陀螺仪传感器的校正方法
JP7421111B2 (ja) ジャイロセンサの補正方法
CN111108344B (zh) 位置捕捉***以及位置捕捉方法
JP2018036797A (ja) 車両用システム及び進路推定方法
WO2019065176A1 (ja) 車両用システム及びタグ通信方法
KR20170112862A (ko) Gps 및 uwb 기술을 접목하여 차량의 위치를 감지하는 측위 시스템 및 방법
JP7047506B2 (ja) 車両用システム及びタグ通信方法
CN110709906A (zh) 标识器***及运用方法
EP2889198A1 (en) System and method for detecting change in route by means of image recognition information
WO2019156194A1 (ja) 車両用システム
JP2014016919A (ja) 交通情報提供システム及び交通情報提供方法
JP7381939B2 (ja) 3次元構造推定方法及び3次元構造推定システム
WO2022270365A1 (ja) 車両用システム
WO2022210201A1 (ja) 情報取得方法及び車両用システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018862099

Country of ref document: EP

Effective date: 20200428