WO2019064503A1 - Electron beam device, illumination optical system, and method for manufacturing device - Google Patents

Electron beam device, illumination optical system, and method for manufacturing device Download PDF

Info

Publication number
WO2019064503A1
WO2019064503A1 PCT/JP2017/035522 JP2017035522W WO2019064503A1 WO 2019064503 A1 WO2019064503 A1 WO 2019064503A1 JP 2017035522 W JP2017035522 W JP 2017035522W WO 2019064503 A1 WO2019064503 A1 WO 2019064503A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
light
illumination
electron beam
optical axis
Prior art date
Application number
PCT/JP2017/035522
Other languages
French (fr)
Japanese (ja)
Inventor
達郎 西根
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2017/035522 priority Critical patent/WO2019064503A1/en
Priority to TW107133978A priority patent/TW201929028A/en
Publication of WO2019064503A1 publication Critical patent/WO2019064503A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to an electron beam apparatus and a device manufacturing method, and in particular to an electron beam apparatus which irradiates light to a photoelectric element and irradiates an electron generated from the photoelectric element to a target as an electron beam, and a device using the electron beam apparatus. It relates to the manufacturing method.
  • complementary lithography has been proposed in which an immersion exposure technique using an ArF light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) are used complementarily.
  • a simple line and space pattern (hereinafter, appropriately abbreviated as an L / S pattern) is formed by utilizing double patterning or the like in immersion exposure using an ArF light source.
  • line patterns are cut or vias are formed through exposure using an electron beam.
  • an electron beam exposure apparatus provided with a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures can be used (see, for example, Patent Document 1).
  • Patent Document 1 an electron beam exposure apparatus as well as the blanking aperture system.
  • an electron beam apparatus which emits light to a photoelectric element and irradiates an electron beam generated from the photoelectric element to a target
  • An illumination optical system for illuminating the first surface
  • a pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system
  • a projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
  • the illumination optical system condenses a first light beam emitted from an illumination pupil along a first direction and a second light beam emitted from the illumination pupil along a second direction different from the first direction.
  • Oblique incident illumination is performed to the first surface, which includes a condensing optical system and is disposed such that the normal is inclined with respect to the optical axis of the illumination optical system;
  • the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing position in the optical axis direction of the second light beam.
  • an electron beam apparatus which emits light to a photoelectric element and irradiates an electron beam generated from the photoelectric element to a target
  • An illumination optical system for illuminating the first surface
  • a pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system
  • a projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element
  • the illumination optical system includes a condensing optical system which condenses a first luminous flux reaching a first position on the first surface and a second luminous flux reaching a second position on the first surface, the illumination Oblique illumination of the first surface, which is arranged such that the normal is inclined with respect to the optical axis of the optical system
  • the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing
  • an electron beam apparatus which emits light to a photoelectric element and irradiates an electron beam generated from the photoelectric element to a target
  • An illumination optical system for illuminating the first surface;
  • a pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
  • a projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
  • the illumination optical system condenses a first light beam emitted from an illumination pupil along a first direction and a second light beam emitted from the illumination pupil along a second direction different from the first direction.
  • the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing position in the optical axis direction of the second light beam.
  • an electron beam apparatus which emits light to a photoelectric element and irradiates an electron beam generated from the photoelectric element to a target
  • An illumination optical system for illuminating the first surface
  • a pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system
  • a projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element
  • the illumination optical system may be provided with an electron beam apparatus for obliquely incidentally illuminating the first surface arranged such that a normal is inclined with respect to an optical axis of the projection optical system.
  • an illumination optical system for illuminating a surface to be illuminated with light from a light source, A first light beam emitted from the illumination pupil along a first direction to a first position and a second position on the surface to be illuminated, the normal position of which is arranged to be inclined with respect to the optical axis of the illumination optical system; A focusing optical system for focusing the second light flux emitted from the illumination pupil along a second direction different from the first direction;
  • the illumination optical system includes a condensing point adjusting member which makes the condensing position of the first luminous flux different from the condensing position of the second luminous flux in the optical axis direction.
  • an illumination optical system for illuminating a surface to be illuminated with light from a light source, A first light beam which is emitted from the illumination pupil and reaches a first position on the surface to be illuminated which is disposed so that the normal is inclined with respect to the optical axis of the illumination optical system; And a focusing optical system for focusing the second luminous flux reaching the second position on the illuminated surface,
  • the illumination optical system includes a condensing point adjusting member which makes the condensing position of the first luminous flux different from the condensing position of the second luminous flux in the optical axis direction.
  • an illumination optical system for illuminating a surface to be illuminated with light from a light source
  • the first light flux emitted along the first direction from the illumination pupil and the second position different from the first direction are emitted from the illumination pupil to the first position and the second position on the illuminated surface.
  • a focusing optical system for focusing each of the The illumination optical system includes a condensing point adjusting member which makes the condensing position of the first luminous flux different from the condensing position of the second luminous flux in the optical axis direction.
  • an illumination optical system for illuminating a surface to be illuminated with light from a light source
  • a collector that collects a first light beam emitted from an illumination pupil and reaching a first position on the illuminated surface, and a second light beam emitted from the illumination pupil and reaching a second position on the illuminated surface
  • the illumination optical system includes a condensing point adjusting member which makes the condensing position of the first luminous flux different from the condensing position of the second luminous flux in the optical axis direction.
  • an illumination optical system for illuminating a surface to be illuminated with light from a light source
  • An optical integrator having a plurality of wavefront splitting elements disposed in parallel in an optical path of light from the light source and forming a plurality of light source images elongated in a first direction in an illumination pupil;
  • a condensing optical system that condenses light fluxes from the plurality of light source images on the surface to be illuminated
  • An illumination optical system for forming a plurality of rectangular illumination fields elongated in the first direction at intervals in the second direction by forming interference fringes in the second direction orthogonal to the first direction on the surface to be illuminated.
  • the illumination optical system of the fifth aspect, the sixth aspect, the seventh aspect, the eighth aspect or the ninth aspect A pattern generator having a plurality of individually controllable reflective elements; And a projection optical system in which a light receiving surface on which the plurality of reflective elements are disposed and a photoelectric conversion surface of a photoelectric element are optically conjugated.
  • the light receiving surface disposed on the light receiving surface is obliquely incident illuminated by the illumination optical system, and light from the light receiving surface is emitted to the photoelectric element through the projection optical system to generate light from the photoelectric element
  • An electron beam apparatus for irradiating an electron beam onto a target is provided.
  • a device manufacturing method comprising a lithography process, comprising: Forming the line and space pattern on the target; Using the electron beam apparatus of the first aspect, the second aspect, the third aspect, the fourth aspect or the tenth aspect, cutting of a line pattern constituting the line and space pattern
  • a device manufacturing method includes:
  • FIG. 1 schematically shows a configuration of an exposure apparatus according to a first embodiment. It is a perspective view which shows the electron beam optical unit of FIG. 1 in cross section. It is a longitudinal cross section which shows an electron beam optical unit.
  • FIGS. 4A to 4C are diagrams (parts 1 to 3) for describing the configuration of the photoelectric capsule and the procedure for attaching the lid member to the main body of the photoelectric capsule manufacturer in a factory.
  • FIG. 16 is a diagram (part 1) for describing a part of the assembly procedure of the electron beam optical unit; It is a figure (2) for demonstrating a part of assembly procedure of an electron beam optical unit.
  • FIG. 17 is a third diagram illustrating the part of the assembly procedure of the electron beam optical unit; FIG.
  • FIG. 8A is a partly omitted longitudinal sectional view showing a photoelectric device provided in a photoelectric capsule
  • FIG. 8B is a partly omitted plan view showing the photoelectric device. It is the partially omitted top view which shows a lid storage plate.
  • FIG. 5 shows a plurality of pattern projection devices in an optical unit with an electron beam optical unit.
  • FIG. 11A is a view showing the configuration of the light irradiation apparatus as viewed from the + X direction
  • FIG. 11B is a view showing the configuration of the light irradiation apparatus as viewed from the ⁇ Y direction.
  • FIG. 12A is a perspective view showing a light diffraction type light valve
  • FIG. 12B is a side view showing the light diffraction type light valve.
  • FIG. 14A is a view showing the configuration of the electron beam optical system as viewed from the + X direction
  • FIG. 14B is a view showing the configuration of the electron beam optical system as viewed from the ⁇ Y direction.
  • FIGS. 15A to 15C are diagrams for explaining the correction of the reduction ratio in the X-axis direction and the Y-axis direction by the first electrostatic lens. It is a perspective view which shows the external appearance of the 45 electron beam optical system supported by the base plate in the suspended state.
  • FIG. 20A and FIG. 20B are diagrams for explaining the correction of the shape change (rounding of four corners) of the cut pattern caused by the blur caused by the optical system and the resist blur.
  • FIGS. 20A and FIG. 20B are diagrams for explaining the correction of the shape change (rounding of four corners) of the cut pattern caused by the blur caused by the optical system and the resist blur.
  • FIGS. 21A and 21B are diagrams for explaining the correction of distortion common to a plurality of electron beam optical systems. It is a top view showing an example of a pattern generator which has a ribbon row for backup.
  • FIGS. 23A and 23B are diagrams for explaining a ribbon array for correction.
  • FIGS. 24 (A) to 24 (D) are diagrams showing configuration examples of various types of optical pattern forming units.
  • FIG. 25 (A) is an explanatory view showing a method without using an aperture
  • FIG. 25 (B) is an explanatory view showing a method using an aperture. It is a figure showing roughly the composition of the exposure device concerning a 2nd embodiment.
  • FIGS. 28A to 28E are views showing various configuration examples of the aperture integrated photoelectric device.
  • FIG. 29 is a diagram for describing a method of compensating a field curvature which an electron beam optical system has as an aberration. It is a figure which shows an example of the multi-pitch type aperture integrated photoelectric element in which the aperture row
  • 31 (A) to 31 (C) are diagrams showing a procedure for forming a cut pattern for cutting line patterns having different pitches by using the aperture integrated photoelectric device of FIG. FIG.
  • FIG. 32A is a view for explaining an example of the configuration of the separate aperture type photoelectric device
  • FIGS. 32B to 32E are views showing various configuration examples of the aperture plate.
  • FIG. 1 schematically shows a configuration of a projection optical system according to a first type of configuration.
  • FIG. 6 schematically shows a configuration of a projection optical system according to a second type of configuration. It is a figure explaining that a coma aberration generate
  • FIG. 41 is a diagram for explaining a problem that occurs when the surface to be illuminated is not perpendicular to the optical axis in the illumination optical system shown in FIG. 40.
  • FIG. 1 schematically shows the structure of an exposure apparatus 100 according to the first embodiment. Since the exposure apparatus 100 is provided with a plurality of electron beam optical systems as described later, hereinafter, the Z axis is parallel to the optical axis of the electron beam optical system, and the exposure will be described later in a plane perpendicular to the Z axis.
  • the scanning direction in which the wafer W is moved is taken as the Y-axis direction
  • the direction orthogonal to the Z-axis and Y-axis is taken as the X-axis direction
  • the rotational (tilting) directions about the X-axis, Y-axis and Z-axis are respectively ⁇ x, ⁇ y
  • the description will be made as the and ⁇ z directions.
  • the exposure apparatus 100 is supported by the stage chamber 10 installed on the floor surface F of the clean room, the stage system 14 disposed in the exposure chamber 12 inside the stage chamber 10, and the frame 16 on the floor surface F. And an optical system 18 disposed above the stage system 14.
  • the stage chamber 10 is a vacuum chamber capable of evacuating the inside thereof although illustration of both end portions in the X-axis direction is omitted in FIG. 1.
  • the stage chamber 10 includes a bottom wall 10a parallel to the XY plane disposed on the floor surface F, the above-described frame 16 which doubles as an upper wall (ceiling wall) of the stage chamber 10, and a periphery of the bottom wall 10a.
  • a peripheral wall 10b (only a part of the + Y side portion thereof is shown in FIG. 1) for supporting the frame 16 horizontally from below is provided.
  • the frame 16 and the bottom wall 10a are both formed of a plate member having a rectangular shape in a plan view, and the frame 16 is formed with an opening 16a having a circular shape in a plan view in the vicinity of the central portion thereof.
  • the second portion 19b having a small diameter of the casing 19 of the stepped electron beam optical unit 18A with a stepped external appearance of the optical system 18 is inserted into the opening 16a from above, and the first portion 19a having a large diameter of the casing 19 is , Is supported from below on the upper surface of the frame 16 around the opening 16a.
  • a seal member seals between the inner circumferential surface of the opening 16 a and the second portion 19 b of the housing 19.
  • a stage system 14 is disposed on the bottom wall 10 a of the stage chamber 10.
  • the stage system 14 is supported by a platen 22 supported on the bottom wall 10a via a plurality of vibration isolation members 20, and supported by the weight cancellation device 24 on the platen 22 and is predetermined in the X-axis direction and the Y-axis direction.
  • the wafer stage WST is movable with a stroke of, for example, 50 mm, and can be finely moved in the remaining four degrees of freedom (Z-axis, .theta.x, .theta.y and .theta.z directions), and a stage drive system 26 (FIG. In part 1, only part of them is shown (see FIG. 18) and position measurement system 28 (not shown in FIG. 1, refer to FIG. 18) for measuring positional information in the direction of 6 degrees of freedom of wafer stage WST. .
  • Wafer stage WST adsorbs and holds wafer W via an electrostatic chuck (not shown) provided on the upper surface thereof.
  • wafer stage WST is a motor having XZ cross section rectangular frame shaped members, and having YZ cross section rectangular frame shaped yoke and magnet (not shown) on the bottom of the inside (hollow portion) thereof.
  • the 30 movers 30a are integrally fixed, and a stator 30b of a motor 30 formed of a coil unit extending in the Y-axis direction is inserted into the inside (hollow portion) of the mover 30a. Both ends in the longitudinal direction of the stator 30 b are connected to an X stage (not shown) that moves in the X axis direction on the surface plate 22.
  • the X stage has a predetermined stroke in the X-axis direction integrally with the wafer stage WST by an X-stage drive system 32 (see FIG. 18) configured by a single-axis drive mechanism without magnetic flux leakage, for example, a feed screw mechanism using a ball screw.
  • the X stage drive system 32 may be configured by a uniaxial drive mechanism provided with an ultrasonic motor as a drive source. In any case, the influence of the magnetic field fluctuation due to the magnetic flux leakage on the positioning of the electron beam is negligible.
  • the motor 30 can move the mover 30a in the Y-axis direction with a predetermined stroke, for example, 50 mm, relative to the stator 30b, and can finely drive the X-axis direction, the Z-axis direction, the ⁇ x direction, the ⁇ y direction, and the ⁇ z direction Closed magnetic field type and moving magnet type motor.
  • a wafer stage drive system that drives wafer stage WST in the direction of six degrees of freedom by motor 30 is configured.
  • the wafer stage drive system will be referred to as wafer stage drive system 30 using the same reference numerals as motor 30.
  • the X stage drive system 32 and the wafer stage drive system 30 drive the wafer stage WST in the X-axis direction and the Y-axis direction with a predetermined stroke, for example, 50 mm, and the remaining four degrees of freedom (Z-axis, ⁇ x,
  • the above-described stage drive system 26 is finely driven in the ⁇ y and ⁇ z directions).
  • the X stage drive system 32 and the wafer stage drive system 30 are controlled by the main controller 110 (see FIG. 18).
  • a magnetic shield member (not shown) with an inverted U-shaped XZ cross section is provided on both ends of the X stage in the X axis direction (not shown) so as to cover the upper surface of the motor 30 and both side surfaces in the X axis direction. It is constructed between the departments.
  • the magnetic shield member is inserted into the hollow portion of wafer stage WST without interfering with the movement of mover 30a relative to stator 30b.
  • the magnetic shield member covers the upper surface and the side surface of motor 30 over the entire length of the moving stroke of mover 30a and is fixed to the X stage, so that the entire range of movement of wafer stage WST and X stage is Leakage of the magnetic flux to the upper side (the electron beam optical system side described later) can be almost certainly prevented.
  • the weight cancellation device 24 includes a metal bellows type air spring (hereinafter abbreviated as an air spring) 24a whose upper end is connected to the lower surface of the wafer stage WST and a flat plate member connected to the lower end of the air spring 24a. And a base slider 24b.
  • the base slider 24b is provided with a bearing (not shown) for spouting the air inside the air spring 24a to the upper surface of the platen 22, and the bearing surface of the pressurized air ejected from the bearing and the upper surface of the platen 22.
  • the weight cancellation device 24, the wafer stage WST (including the mover 30a), and the own weight of the wafer W are supported by the static pressure (pressure in the gap) between them.
  • compressed air is supplied to the air spring 24 a through a pipe (not shown) connected to the wafer stage WST.
  • the base slider 24b is supported in a non-contact manner on the surface plate 22 via a kind of differential pumping type of static air bearing, and the air ejected toward the surface plate 22 from the bearing portion ) Are prevented from leaking out.
  • a pair of pillars are provided sandwiching air spring 24a in the Y-axis direction, and a plate spring provided at the lower end of the pillar is connected to air spring 24a.
  • the optical system 18 includes the electron beam optical unit 18A held by the frame 16 and the optical unit 18B mounted on the electron beam optical unit 18A.
  • the electron beam optical unit 18A is shown in a perspective view in cross section. Further, FIG. 3 shows a longitudinal sectional view of the electron beam optical unit 18A. As shown in these figures, the electron beam optical unit 18A includes a housing 19 having an upper first portion 19a and a lower second portion 19b.
  • the first portion 19a of the housing 19 has a cylindrical shape with a low height, as apparent from FIG.
  • a first vacuum chamber 34 is formed inside the first portion 19 a.
  • the first vacuum chamber 34 is formed of a first plate 36 consisting of a plate member having a circular shape in plan view constituting an upper wall (ceiling wall), and a plate member having the same diameter as the first plate 36. It is divided from a second plate (hereinafter referred to as a base plate) 38 constituting a bottom wall, a cylindrical side wall portion 40 surrounding the periphery of the first plate 36 and the base plate 38, and the like.
  • a plurality of through holes 36a in the vertical direction circular in plan view are arranged at predetermined intervals in the XY two-dimensional direction.
  • the main body portion 52 of the photo capsule to be described next is inserted from above into these 45 through holes 36a with almost no gap.
  • the photoelectric capsule 50 has a cylindrical shape having an opening 52c at one end surface (lower end surface in FIG. 4A) and a hollow portion 52b inside.
  • the main body 52 is provided with a flange 52a at the other end (upper end in FIG. 4A), and a lid member 64 capable of closing the opening 52c.
  • the hollow portion 52b is a hollow portion having a shape obtained by forming a round hole with a predetermined depth from the lower end surface of the main body portion 52 and further forming a substantially conical recess on the bottom surface of the round hole.
  • the upper surface of the main body 52 including the flange 52a is a square in plan view, and the center of the square coincides with the central axis of the hollow 52b.
  • a photoelectric device 54 is provided on the top of the main body 52 at the center thereof.
  • the photoelectric device 54 is a transparent plate member (for example, quartz glass) forming the uppermost surface of the main body 52 which also serves as a vacuum partition as shown in the longitudinal sectional view of FIG. 56, and a light shielding film (aperture film) 58 made of, for example, chromium deposited on the lower surface of the plate member 56, and an alkaline photoelectric film (photoelectric conversion film) formed on the lower surface side of the plate member 56 and the light shielding film 58).
  • a transparent plate member for example, quartz glass
  • a light shielding film (aperture film) 58 made of, for example, chromium deposited on the lower surface of the plate member 56, and an alkaline photoelectric film (photoelectric conversion film) formed on
  • Alkaline photoelectric conversion layer (alkali photoelectric layer)) 60 A large number of apertures 58 a are formed in the light shielding film 58. Although only a part of the photoelectric element 54 is shown in FIG. 8A, in practice, a large number of apertures 58a are formed in the light shielding film 58 in a predetermined positional relationship (FIG. B) see). The number of apertures 58a may be the same as the number of multi beams described later, or may be more than the number of multi beams.
  • the alkaline photoelectric layer 60 is also disposed inside the aperture 58a, and the plate member 56 and the alkaline photoelectric layer 60 are in contact with each other at the aperture 58a. In the present embodiment, the plate member 56, the light shielding film 58, and the alkaline photoelectric layer 60 are integrally formed, and at least a part of the photoelectric element 54 is formed.
  • the alkali photoelectric layer 60 is a multi-alkali photocathode using two or more types of alkali metals.
  • the multialkali photocathode is a photocathode characterized by high durability, capable of generating electrons with green light having a wavelength of 500 nm band, and high quantum efficiency QE of the photoelectric effect of about 10%.
  • a material having a high conversion efficiency of 10 [mA / W] is used.
  • the electron emission surface of the alkali photoelectric layer 60 is the lower surface in FIG. 8A, that is, the surface on the opposite side to the upper surface of the plate member 56.
  • annular recessed groove with a predetermined depth is formed on the lower end surface of the annular portion of the main body 52 in plan view, and a kind of sealing member is formed in the recessed groove.
  • the O-ring 62 which is a part of the O-ring 62, is attached in a state of being partially accommodated in the recessed groove.
  • the lid member 64 is a plate member having a circular shape in plan view similar to the outer peripheral edge (outline) of the lower end face of the main body 52, and is removed in vacuum as described later. , And closes the open end of the main body 52 (see FIG. 5). That is, since the closed space (hollow portion 52 b) inside the main body 52 closed by the lid member 64 is a vacuum space, the lid member 64 is crimped to the main body 52 by the atmospheric pressure acting on the lid member 64. It is done.
  • a pair of vacuum-compatible actuators 66 are arranged in three directions of the X axis, Y axis and Z axis.
  • a lid storage plate 68 driven by the In the lid storage plate 68 as shown in FIG. 5, the round holes 68a of 45 predetermined depths are formed on the upper surface in an arrangement corresponding to the arrangement of 45 photo capsules 50, and the inside of each round hole 68a A circular through hole 68 b is formed on the bottom surface.
  • the number of round holes 68 a may not be the same as the number of photoelectric capsules 50.
  • the lid member 64 may be supported by the lid storage plate 68 without providing the round hole 68 a.
  • the lid storage plate 68 further includes an optical beam path (electrons) between the round holes 68a and the round holes 68a.
  • a circular opening 68c is formed, which may be called a beam path.
  • the opening 68c may not be provided as long as the lid storage plate 68 can be retracted from the electron beam passage.
  • the base plate 38 is formed with 45 concave portions 38a having a predetermined depth, the centers of which are positioned on the central axes of the main portions 52 of the 45 photo capsules 50, respectively.
  • the recesses 38a have a predetermined depth from the upper surface to the lower surface of the base plate 38, and a through hole 38b functioning as a throttling portion is formed on the inner bottom surface.
  • the through hole 38b is also referred to as a narrowed portion 38b.
  • the throttling portion 38b will be further described later.
  • 45 electron beam optical systems 70 whose optical axes AXe are positioned on the central axes of the main portions 52 of the 45 photoelectric capsules 50 are fixed in a suspended state.
  • the support of the electron beam optical system 70 is not limited to this, and for example, 45 electron beam optical systems 70 are supported by a support member different from the base plate 38, and the support member is the second portion 19 b of the housing 19. You may support it.
  • the electron beam optical system 70 will be described in more detail later.
  • the second portion 19b of the housing 19 has a cylindrical shape with a smaller diameter and a somewhat higher height than the first portion.
  • a second vacuum chamber 72 (see FIGS. 1 and 3) for accommodating 45 electron beam optical systems 70 is formed inside the second portion 19b.
  • the second vacuum chamber 72 includes the above-described base plate 38 forming an upper wall (ceiling wall), and a thin plate-like cooling plate 74 having a circular plan view shape forming a bottom wall.
  • a cylindrical peripheral wall portion 76 having an outer diameter substantially the same as the diameter of the cooling plate 74 and fixed to the lower end surface of the cooling plate 74.
  • the cooling plate 74 has a function of suppressing fogging, which will be described later, in addition to the cooling function.
  • the first vacuum chamber 34 and the second vacuum chamber 72 can evacuate their respective interiors (see open arrows in FIG. 2).
  • a second vacuum pump for evacuating the second vacuum chamber 72 may be provided, or a common vacuum pump may be used to perform the first process.
  • the vacuum chamber 34 and the second vacuum chamber 72 may be evacuated.
  • the degree of vacuum of the first vacuum chamber 34 and the degree of vacuum of the second vacuum chamber 72 may be different.
  • one of the first vacuum chamber 34 and the second vacuum chamber 72 may be an atmospheric pressure space, and the other may be a vacuum space.
  • the throttling portion 38 b can be provided to make the degree of vacuum of the first vacuum chamber 34 different from that of the second vacuum chamber 72, but without providing the throttling portion 38 b or the like,
  • the vacuum chamber 32 and the second vacuum chamber 72 may substantially constitute one vacuum chamber.
  • the optical unit 18B includes a lens barrel (housing) 78 mounted on the electron beam optical unit 18A, and 45 light irradiation devices (optical system and the like housed in the lens barrel 78). Can also be called) 80).
  • the 45 light irradiation devices 80 are disposed in the XY plane in an arrangement corresponding to each of the main portions 52 of the 45 photoelectric capsules 50.
  • the inside of the lens barrel 78 is an atmospheric pressure space.
  • Each of the 45 light irradiators 80 is provided corresponding to 45 photo capsules 50 (photoelectric element 54), and at least one light beam from the light irradiator 80 is alkali through the aperture 58a of the photoelectric element 54.
  • the light is irradiated to a photoelectric layer (hereinafter abbreviated as a photoelectric layer) 60.
  • the number of light irradiation devices 80 and the number of photoelectric capsules 50 may not be equal.
  • each of the 45 light irradiators 80 includes an illumination system 82, a pattern generator 84 that generates patterned light, and a projection optical system 86.
  • the pattern generator 84 may be referred to as a spatial light modulator that spatially modulates and emits the state of amplitude, phase, and polarization of light traveling in a predetermined direction.
  • the pattern generator 84 can generate, for example, an optical pattern composed of light and dark patterns.
  • FIGS. 11A and 11B show an example of the configuration of the light irradiation device 80 together with the main body 52 of the corresponding photoelectric capsule 50.
  • FIG. 11 (A) shows a configuration as viewed from the + X direction
  • FIG. 11 (B) shows a configuration as viewed from the ⁇ Y direction.
  • the illumination system 82 includes a light source unit 82a that generates illumination light (laser light) LB, and one or more X-axes of the illumination light LB.
  • a shaping optical system 82b for shaping the beam into a rectangular beam having a long cross section in the direction.
  • the light source unit 82a is a laser diode 88 that continuously oscillates a visible light as a light source or a laser light of a wavelength near, for example, a wavelength of 365 nm, and an AO deflector (AOD or light deflection element disposed on the light path of the laser light). Called) 90).
  • the AO deflector 90 functions as a switching element, and is used to intermittently emit laser light. That is, the light source unit 82a is a light source unit capable of intermittently emitting a laser beam (laser beam) LB having a wavelength of 365 nm.
  • the duty ratio of light emission of the light source unit 82a can be changed, for example, by controlling the AO polarizer 90.
  • the switching element is not limited to the AO polarizer, and may be an AOM (acousto-optic modulator).
  • the laser diode 88 itself may emit light intermittently.
  • the shaping optical system 82b includes a diffractive optical element (also referred to as DOE) 92, an illuminance distribution adjusting element 94, and a condensing element sequentially disposed on the optical path of a laser beam (hereinafter abbreviated as a beam as appropriate) LB from the light source section 82a.
  • the lens 96 is included.
  • the diffractive optical element 92 When the laser beam from the AO deflector 90 is incident on the diffractive optical element 92, a plurality of the laser beams are long in the X-axis direction at predetermined intervals in the Y-axis direction on the predetermined surface on the exit surface side of the diffractive optical element 92 The in-plane intensity distribution of the laser beam is converted such that the light intensity has a large distribution in the rectangular area (in the present embodiment, an elongated slit-like area).
  • the diffractive optical element 92 receives a plurality of rectangular beams (slit-like beams) having a rectangular cross section long in the X-axis direction aligned at predetermined intervals in the Y-axis direction by the incidence of the laser beam from the AO deflector 90.
  • a number of slit-shaped beams are generated according to the configuration of the pattern generator 84.
  • the element for converting the in-plane intensity distribution of the laser beam is not limited to the diffractive optical element, and may be a refractive optical element or a reflective optical element, or may be a spatial light modulator.
  • the illuminance distribution adjustment element 94 can adjust the illuminance separately for each divided area in each divided area obtained by dividing the light receiving surface of the pattern generator 84 into a plurality of parts when the pattern generator 84 is irradiated with a plurality of beams. It is In this embodiment, as the illuminance distribution adjusting element 94, a crystal having a non-linear optical effect in which the refractive index changes according to the applied voltage, for example, lithium tantalate (lithium tantalate (abbreviation: LT) single crystal) An element configured by arranging in parallel in a plane parallel to each other and arranging polarizers on the incident side and the outgoing side is used. In this embodiment, as schematically shown in the circle of FIG.
  • lithium tantalite crystals 94a are formed in a matrix of 2 rows and 12 columns in the XY plane at 1 mm pitch, for example.
  • the arranged illuminance distribution adjustment element 94 is used.
  • symbol 94b shows an electrode.
  • the polarizer on the output side passes only a predetermined polarization component, and thus changes the polarization state of light incident on the crystal through the polarizer on the incident side, for example, linearly polarized light By changing it to circularly polarized light, it is possible to change the intensity of the light emitted from the output side polarizer.
  • the change in polarization state can be made variable by controlling the voltage applied to the crystal. Therefore, by controlling the voltage applied to each crystal, it is possible to adjust the illuminance for each region corresponding to each crystal (a region surrounded by a two-dot chain line in FIG. 13) (see FIG. 11A). ).
  • the illuminance distribution adjusting element 94 is not limited to lithium tantalate, and can be configured using other light intensity modulation crystal (electro-optical element) such as lithium niobate (lithium niobate (abbr .: LN) single crystal). .
  • the illuminance distribution The adjusting element 94 may not be provided.
  • a spatial light modulator that spatially modulates the amplitude, phase, and polarization state of light to be emitted may be used as the illuminance distribution adjustment element 94, and a transmissive liquid crystal element, a reflective liquid crystal element, or the like may be used as an example.
  • a mirror 98 for bending an optical path is disposed on the light emission side below the condenser lens 96.
  • the condenser lens 96 condenses the plurality of cross-sectional rectangular (slit-like) beams generated by the diffractive optical element 92 in the Y-axis direction and irradiates the mirror 98.
  • the condensing lens 96 for example, a cylindrical lens long in the X-axis direction can be used.
  • the condenser lens 96 may be composed of a plurality of lenses.
  • a reflective optical member such as a focusing mirror or a diffractive optical element may be used.
  • the mirror 98 is not limited to a plane mirror, and may have a shape having a curvature. If the mirror 98 has a curvature (having a finite focal length), the function of the condenser lens 96 can also be used.
  • the mirror 98 is disposed at a predetermined angle with respect to the XY plane, and reflects a plurality of irradiated slit-like beams in the upper left direction in FIG.
  • the pattern generator 84 is disposed on the reflected light path of the plurality of slit-like beams reflected by the mirror 98. More specifically, the pattern generator 84 is disposed on the ⁇ Z side of the circuit board 102 disposed between the condenser lens 96 and the mirror 98 in the Z-axis direction.
  • the circuit board 102 is formed with an opening 102 a which becomes an optical path of a plurality of slit-like beams from the condenser lens 96 to the mirror 98.
  • the pattern generator 84 is configured by a light diffraction type light valve (GLV (registered trademark)) which is a kind of programmable spatial light modulator.
  • the light diffraction type light valve GLV is a minute structure of silicon nitride film called “ribbon” on a silicon substrate (chip) 84 a (hereinafter referred to as “ribbon”).
  • the space light modulator is formed by several thousands of scales).
  • the driving principle of GLV is as follows.
  • the GLV By electrically controlling the deflection of the ribbon 84b, the GLV functions as a programmable diffraction grating, and has high resolution, high speed (responsiveness 250 kHz to 1 MHz), high accuracy, dimming, modulation, and laser light Enable switching. GLVs are classified as micro-electro-mechanical systems (MEMS).
  • the ribbon 84 b is made of an amorphous silicon nitride film (Si 3 N 4 ) which is a kind of high temperature ceramic having strong characteristics in hardness, durability, and chemical stability. Each ribbon has a width of 2 to 4 ⁇ m and a length of 100 to 300 ⁇ m.
  • the ribbon 84b is covered with an aluminum thin film, and has the function of both a reflector and an electrode.
  • the ribbon is stretched across the common electrode 84c, and when a control voltage is supplied to the ribbon 84b from a driver (not shown in FIGS. 12A and 12B), the ribbon is bent toward the substrate 84a by static electricity. .
  • the control voltage is lost, the ribbon 84b returns to its original state due to the high tension inherent to the silicon nitride film. That is, the ribbon 84b is a kind of movable reflective element.
  • GLV GLV
  • an active ribbon whose position changes with the application of voltage
  • a bias ribbon falling to the ground is alternately arranged with a universal position
  • a type in which all are active ribbons is used in the form.
  • a pattern made of GLV on the -Z side surface of the circuit board 102 shown in FIG. A generator 84 is attached.
  • the circuit board 102 is provided with a CMOS driver (not shown) for supplying a control voltage to the ribbon 84 b.
  • CMOS driver not shown
  • a pattern generator 84 including a CMOS driver is referred to.
  • the pattern generator 84 used in the present embodiment has a ribbon row 85 having, for example, 6000 ribbons 84b, the Y axis with the longitudinal direction (the direction in which the ribbons 84b are aligned) as the X axis direction. For example, 12 rows are formed on the silicon substrate at predetermined intervals in the direction.
  • the ribbons 84b of each ribbon row 85 are stretched on the common electrode.
  • each ribbon 84 b is driven mainly by switching (on / off) of the laser light by applying and releasing the constant level voltage.
  • the applied voltage may be adjusted, for example, when the intensity of at least a part of the plurality of beams from the pattern generator 84 needs to be adjusted as described later. Fine-tuned. For example, when light of the same intensity is incident on each ribbon, a plurality of light beams having different intensities can be generated from pattern generator 84.
  • twelve slit-like beams are generated by the diffractive optical element 92, and the twelve beams form the ribbon array 85 via the illuminance distribution adjustment element 94 a, the condenser lens 96, and the mirror 98.
  • a slit-shaped beam LB long in the X-axis direction is irradiated at the center.
  • the irradiation area of the beam LB to each ribbon 84b is a square area.
  • the irradiation area of the beam LB to each ribbon 84b may not be a square area. It may be a rectangular area long in the X axis direction or long in the Y axis direction.
  • the irradiation area (illumination area of the illumination system 82) of the 12 beams on the light receiving surface of the pattern generator 84 has a length in the X axis direction of S mm and a length in the Y axis direction of T mm. It can be said that it is a rectangular area.
  • 72000 apertures 58 a are formed in the light shielding film 58 of the photoelectric element 54 of the photoelectric capsule 50 so that 72000 beams generated by the pattern generator 84 can be individually irradiated. There is.
  • the number of apertures 58a need not be the same as, for example, the number of beams that can be irradiated by the pattern generator 84.
  • a photoelectric element 54 includes apertures 58a to which 72000 beams (laser beams) correspond.
  • the number of movable elements (ribbons 84 b) included in the pattern generator 84 may be different from the number of beams generated by the pattern generator 84. For example, using a type in which an active ribbon whose position is changed by application of a voltage and a bias ribbon which is dropped to the ground and which has a universal position are alternately arranged, one by a plurality of (two) movable elements (ribbons) The beam switching may be performed. Further, the number of pattern generators 84 and the number of photoelectric capsules 50 may not be equal.
  • the projection optical system 86 has an objective lens including lenses 86a and 86b sequentially disposed on the optical path of the light beam from the pattern generator 84, as shown in FIGS. 11 (A) and 11 (B).
  • a filter 86c is disposed between the lens 86a and the lens 86b.
  • the projection magnification of the projection optical system 86 is, for example, about 1 ⁇ 4.
  • the aperture 58a is assumed to be rectangular, but may be square, or may be another shape such as a polygon or an ellipse.
  • each of the lenses 86a and 86b may be configured of a plurality of lenses.
  • the projection optical system is not limited to the refractive optical system, and may be a reflective optical system or a catadioptric optical system.
  • the projection optical system 86 projects the light from the pattern generator 84 onto the photoelectric element 54 so that light beams transmitted through at least one of the plurality of, here, 72000 apertures 58 a are transmitted to the photoelectric layer 60. Irradiated. That is, the turned-on beam from the pattern generator 84 is irradiated to the photoelectric layer 60 through the corresponding aperture 58a, and the turned-off beam is not irradiated to the corresponding aperture 58a and the photoelectric layer 60.
  • the projection optical system 86 may also be referred to as an imaging optical system. it can.
  • the projection optical system 86 is provided with an optical characteristic adjustment device 87 capable of adjusting the optical characteristic of the projection optical system 86.
  • the optical characteristic adjustment device 87 can change at least the projection magnification (magnification) in the X-axis direction by moving some of the optical elements constituting the projection optical system 86, for example, the lens 86a.
  • the optical characteristic adjustment device 87 for example, a device for changing the air pressure in the hermetic space formed between the plurality of lenses constituting the projection optical system 86 may be used.
  • the optical characteristic adjustment device 87 a device for deforming an optical member constituting the projection optical system 86 or a device for giving a heat distribution to an optical member constituting the projection optical system 86 may be used. Although it is shown in FIG. 10 that the optical characteristic adjustment device 87 is juxtaposed to only one light irradiation device 80 in the figure, in fact, all of the 45 light irradiation devices 80 have optical characteristics. An adjusting device 87 is also provided. The 45 optical characteristic adjustment devices 87 are controlled by the control unit 11 based on the instruction of the main control device 110 (see FIG. 18).
  • an intensity modulation element capable of changing the intensity of at least one of a plurality of beams generated by the pattern generator 84 and irradiated to the photoelectric layer 60 may be provided inside the projection optical system 86.
  • the changing of the intensities of the plurality of beams applied to the photoelectric layer 60 includes nulling the intensity of some of the plurality of beams.
  • the projection optical system 86 may include a phase modulation element, a polarization modulation element, or the like capable of changing the phase or polarization of at least one of the plurality of beams irradiated to the photoelectric layer 60.
  • the optical axis AXi of the optical system of the illumination system 82 and the optical axis of the projection optical system 86 are both parallel to the Z axis, but deviated (offset) by a predetermined distance in the Y axis direction.
  • the optical axis AXi of the optical system of the illumination system 82 may not be parallel to the optical axis AXo of the projection optical system.
  • FIG. 14 (A) shows a configuration as viewed from the + X direction
  • FIG. 14 (B) shows a configuration as viewed from the ⁇ Y direction
  • the electron beam optical system 70 includes an objective lens consisting of a lens barrel 104 and a pair of electromagnetic lenses 70a and 70b held by the lens barrel 104, and an electrostatic lens And a multipole 70c.
  • the objective lens of the electron beam optical system 70 and the electrostatic multipole 70 c irradiate a plurality of beams LB to the photoelectric element 54 to emit a beam of electrons (electron beams EB) emitted by photoelectric conversion of the photoelectric element 54. It is arranged on the street.
  • the pair of electromagnetic lenses 70a and 70b are disposed in the vicinity of the upper end and the lower end in the lens barrel 104, respectively, and they are separated in the vertical direction.
  • An electrostatic multipole 70c is disposed between the pair of electromagnetic lenses 70a and 70b.
  • the electrostatic multipole 70c is disposed in the beam waist portion on the beam path of the electron beam EB focused by the objective lens. For this reason, the plurality of beams EB passing through the electrostatic multipole 70c may repel each other by the coulomb force acting between them, and the magnification may change.
  • An electrostatic multipole 70 c having a second electrostatic lens 70 c 2 is provided inside the electron beam optical system 70.
  • the first electrostatic lens 70c 1 is intended to correct a change in magnification caused by the Coulomb effect caused by a change in the total amount of current, and is shown in FIG. Such biased magnification changes due to local Coulomb effects are not to be corrected.
  • Figure 15 assumes adoption of the pattern generation rule magnification change as shown in (C) is in no utmost, the Coulomb effect occurring thereon is corrected by using the first electrostatic lens 70c 1.
  • the second electrostatic lens 70c 2 corrects (bright pixel among the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch.
  • the second electrostatic lens 70c 2 is deflection control of the beam for performing the following control for the wafer W of the beam during exposure, i.e., it is also used for the irradiation position control of the beam.
  • deflection control of the electron beam is possible instead of the electrostatic multipole 70c. It is also possible to use an electrostatic deflection lens consisting of an electrostatic lens.
  • the reduction magnification of the electron beam optical system 70 is, for example, 1/50 in design without performing magnification correction.
  • Other scaling factors such as 1/30 and 1/20 may be used.
  • FIG. 16 is a perspective view showing the appearance of the 45 electron beam optical system 70 supported in a suspended state on the base plate 38.
  • An exit 104a of the electron beam is formed at the exit end of the lens barrel 104 as shown in FIGS. 14A and 14B, and the backscattered electron detection device 106 is formed below the exit 104a. Is arranged.
  • the backscattered electron detection device 106 is disposed inside a circular (or rectangular) opening 74 a formed in the cooling plate 74 so as to face the above-described outlet 104 a. More specifically, the optical axis AXe of the electron beam optical system 70 (which coincides with the central axis of the above-mentioned photo capsule 50 and the optical axis AXo of the projection optical system 86 (see FIG.
  • each of the two pairs of backscattered electron detectors 106 is constituted by, for example, a semiconductor detector, and detects a reflected component generated from a detection target mark such as an alignment mark or a reference mark on a wafer.
  • the detection signal corresponding to the detected backscattered electrons is sent to the signal processing device 108 (see FIG. 18).
  • the signal processing unit 108 amplifies the detection signals of the plurality of backscattered electron detection units 106 by an amplifier (not shown) and performs signal processing, and sends the processing result to the main control unit 110 (see FIG. 18).
  • the backscattered electron detection device 106 may or may not be provided only on a part (at least one) of the 45 electron beam optical systems 70.
  • the backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 may be fixed to the lens barrel 104 or may be attached to the cooling plate 74.
  • the base plate 38 is formed with the above-described diaphragm 38b on the optical axis AXe.
  • the throttling portion 38 b is formed of a rectangular hole elongated in the X-axis direction and formed on the inner bottom surface of the recess 38 a having a circular (or rectangular) shape in plan view and formed at a predetermined depth on the upper surface of the base plate 38.
  • the center of the arrangement region of the large number of apertures 58a provided on the upper side of the photoelectric layer 60 (here, coincides with the central axis of the main body 52 of the photoelectric capsule 50) substantially .
  • the diaphragm 38 b is formed on the base plate 38 so as to individually face the optical axis AXe of the electron beam optical system 70 of 45 as shown in FIG.
  • an extraction electrode 112 for accelerating electrons emitted from the photoelectric layer 60 is disposed between the base plate 38 and the photoelectric element 54.
  • the extraction electrode 112 can be provided, for example, around the circular opening 68c of the lid storage plate 68.
  • the extraction electrode 112 may be provided on a member other than the lid storage plate 68.
  • the lens barrel 78, the first portion 19a of the housing 19, the second portion 19b, and the stage chamber 10 are provided with an opening / closing unit for maintenance.
  • the lid member 64 is moved upward to close the opening 52c, as indicated by the upward white arrow in FIG. 4A.
  • the lid member 64 is brought into contact with the main portion 52 of the photoelectric capsule 50.
  • an upward force (pretension) is applied to the lid member 64 using a spring or other biasing member 122 in the vacuum chamber 120.
  • the O-ring 62 provided on the lower end surface of the main body 52 is completely crushed by the action of pressurization.
  • FIG. 4C shows a state in which this pressurization has been released.
  • the main body 52 and the lid member 64 are integrated to form the photo capsule 50 (the photo capsule 50 is shielded at atmospheric pressure).
  • the plurality of (at least 45) photoelectric capsules 50 are transported to the factory of the exposure apparatus manufacturer while maintaining the state of FIG. 4C.
  • annular recessed groove may be formed on the surface of the lid member 64 facing the main body 52, and the O-ring 62 may be partially embedded in the recessed groove.
  • the sealing member such as the O-ring 62 may not be provided as long as the vacuum state of the space inside the photoelectric capsule can be maintained even in the air space.
  • the vacuum compatible actuator 66 makes the lid member 64 partially inside the round hole 68a of a predetermined depth 45 of the lid storage plate 68, as shown in FIG.
  • the lid storage plate 68 is driven upward to a position where it enters.
  • evacuation of the inside of the first portion 19a and the inside of the second portion 19b of the housing 19 is performed in parallel (see FIG. 2). Also, in parallel with this, vacuuming of the inside of the stage chamber 10 is performed.
  • the lid member 64 is separated from the main body 52 by its own weight as shown in FIG. Completely housed inside the 68a.
  • the photoelectric elements 54 included in the plurality of photoelectric capsules 50 are the first vacuum chamber 34 and the outside thereof (outside of the housing 19). It functions as a partition (vacuum partition) which separates from space.
  • the outside of the first vacuum chamber 34 is at atmospheric pressure, or at a pressure slightly positive than atmospheric pressure.
  • the inside of the second portion 19b of the housing 19 may be evacuated until the high vacuum state at the same level as the first portion 19a is obtained, but the degree of vacuum is lower than that of the first portion 19a (pressure is high).
  • the vacuum may be performed up to the level of medium vacuum. In the present embodiment, this is possible because the inside of the first portion 19a and the inside of the second portion 19b are substantially separated by the narrowed portion 38b.
  • the inside of the second portion 19 a becomes the second vacuum chamber 72.
  • the inside of the second portion 19 b is evacuated to a medium vacuum state, the time required for the evacuation can be shortened.
  • the inside of the stage chamber 10 is evacuated at the same level as the inside of the second portion 19b.
  • the lid accommodating plate 68 is driven in the XY plane (and the Z-axis direction) by the vacuum compatible actuator 66, and 45 circular openings 68c formed in the lid accommodating plate 68 are It is positioned on the optical axis AXe of 45 electron beam optical systems 70, respectively.
  • FIG. 3 shows a state where the circular opening 68c is positioned on the optical axis AXe in this manner. Thereafter, necessary adjustments are made, and the assembly of the electron beam optical unit 18A is completed.
  • an optical unit 18B assembled separately is mounted on the assembled electron beam optical unit 18A (first plate 36).
  • the optical unit 18B is arranged such that each of the 45 light irradiation devices 80 inside the lens barrel 78 corresponds to each of the 45 photoelectric elements 54, that is, the optical axis AXo of the projection optical system 86 Are substantially aligned with the optical axis AXe of the electron beam optical system 70.
  • the necessary adjustment of each part mentioned above includes adjustment for achieving optical accuracy for various optical systems, adjustment for achieving mechanical accuracy for various mechanical systems, and electrical accuracy for various electric systems. Adjustments to achieve are included.
  • the length S mm in the X axis direction and the Y axis direction on the light receiving surface of the pattern generator 84 at the time of exposure is irradiated inside a rectangular area of length T mm, and the light from the pattern generator 84 is irradiated to the photoelectric element 54 by the projection optical system 86 having a reduction ratio of 1 ⁇ 4 by this irradiation, and the light is generated by this irradiation.
  • the electron beam is irradiated onto a rectangular area (exposure field) on the image plane (wafer surface aligned with the image plane) through an electron beam optical system 70 having a reduction ratio of 1/50.
  • the optical system of the exposure apparatus 100 of the present embodiment is a multi-column electron beam optical system having 45 reduction optical systems with a reduction ratio of 1/200.
  • a 300 mm wafer having a diameter of 300 mm is to be exposed, and 45 electron beam optical systems 70 are disposed to face the wafer, so the arrangement interval of the optical axes AXe of the electron beam optical system 70 is an example.
  • the exposure area handled by one electron beam optical system 70 is a rectangular area of 43 mm ⁇ 43 mm at maximum, so as described above, the movement stroke of wafer stage WST in the X-axis direction and Y-axis direction is 50 mm is enough.
  • the number of electron optical systems 70 is not limited to 45, and can be determined based on the diameter of the wafer, the stroke of the wafer stage WST, and the like.
  • FIG. 18 is a block diagram showing the input / output relationship of the main controller 110 that mainly configures the control system of the exposure apparatus 100.
  • Main controller 110 centrally controls components of exposure apparatus 100 including a microcomputer and the like shown in FIG.
  • the light irradiation device 80 connected to the control unit 11 is a laser diode 88 controlled by the control unit 11 based on an instruction from the main control unit 110, an AO deflector 90, a diffractive optical element 92, and An illumination distribution adjustment element 94 is included.
  • the electron beam optical system 70 connected to the control unit 11 is a pair of electromagnetic lenses 70 a and 70 b and electrostatic multipoles 70 c controlled by the control unit 11 based on an instruction from the main control device 110 (first The electrostatic lens 70 c 1 and the second electrostatic lens 70 c 2 ) are included.
  • reference numeral 500 indicates an exposure unit configured to include the multi-beam optical system 200 described above, the control unit 11, and the signal processing device 108. In the exposure apparatus 100, an exposure unit 500 is provided.
  • the exposure apparatus 100 adopts a rectangular (rectangular) exposure field instead of a square for the following reason.
  • FIG. 19 a square field SF and a rectangular field RF are illustrated in a circle indicating the effective area (aberration effective area) of the diameter D of the electron beam optical system.
  • the square field SF is preferable if it is intended to maximize the effective area of the electron beam optical system.
  • the field width is lost by about 30% (1 / ⁇ 2).
  • the effective area is approximately the field width. This is a great advantage for multi-columns.
  • there is a merit that mark detection sensitivity at the time of detecting an alignment mark is improved.
  • the rectangular field has a higher current density than the square field, since the total amount of electrons irradiated in the field is the same, so even if the mark is placed in a smaller area on the wafer It can detect with sufficient detection sensitivity. Also, rectangular fields are easier to manage as compared to square fields.
  • the exposure fields of both the square field SF and the rectangular field RF are set to include the optical axis AXe of the electron beam optical system.
  • the present invention is not limited to this, and the exposure field may be set within the aberration effective area so as not to include the optical axis AXe.
  • the exposure field may be set to a shape other than a rectangle (including a square), for example, an arc.
  • the illuminance unevenness in the exposure field is controlled by the main controller 110 using the illuminance distribution adjustment element 94 at the time of exposure to be described later to perform variable control of the polarization state for each crystal by controlling the applied voltage.
  • the light intensity (illuminance) for each corresponding area area on the light receiving surface of the pattern generator 84 corresponding to each crystal
  • the in-plane on the electron emission surface of the photoelectric layer 60 is consequently obtained.
  • the illuminance distribution and the corresponding illuminance distribution in the exposure field RF on the wafer surface are adjusted. That is, the intensities of the plurality of electron beams irradiated to the exposure field RF are properly adjusted.
  • the main controller 110 can generate halftones by the pattern generator 84 itself, and thus the photoelectric layer 60 is irradiated. Adjustment of the intensity distribution of the light beam on the electron emission surface of the photoelectric layer 60 and the corresponding distribution of the intensity distribution in the exposure field RF on the wafer surface, ie, dose control. It can also be done.
  • the main control device 110 may adjust the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60 by using the illuminance distribution adjusting element 94 and the pattern generator 84 in combination.
  • the intensities of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion is performed so that the amount of current
  • the adjustment of the beam intensity may be performed in the illumination system 82, may be performed by the pattern generator 84, or may be performed in the projection optical system 86.
  • the beam intensity may be adjusted.
  • the resist layer formed on the wafer is not affected only by the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60, and other factors such as forward scattering, back scattering, or fogging of electrons And so on.
  • forward scattering refers to a phenomenon in which electrons incident on the inside of the resist layer on the wafer surface are scattered in the resist layer before reaching the wafer surface
  • back scattering refers to the wafer via the resist layer It means that the electrons reaching the surface are scattered at or inside the wafer surface, re-incident in the resist layer, and scattered around.
  • “fogging” refers to a phenomenon in which reflected electrons from the surface of the resist layer are re-reflected on the bottom surface of the cooling plate 74, for example, and a dose is applied to the periphery.
  • exposure apparatus 100 adopts different correction methods for forward scattering and backscattering and fogging. ing.
  • the main controller 110 allows the pattern generator 84 (and / or the illuminance distribution adjusting element via the control unit 11 in anticipation of the influence of the forward scattered component). Adjust the in-plane illuminance distribution using 94).
  • the main controller 110 controls the illuminance distribution adjusting element 94 via the control unit 11. Use it to adjust the in-plane illuminance distribution at a certain spatial frequency.
  • the exposure apparatus 100 is used, for example, in complementary lithography.
  • a wafer on which an L / S pattern is formed is used as an exposure target by using double patterning or the like in immersion exposure using an ArF light source, and is used for forming a cut pattern for cutting the line pattern.
  • Be In the exposure apparatus 100 it is possible to form a cut pattern corresponding to each of 72000 apertures 58a formed in the light shielding film 58 of the photoelectric element 54.
  • the flow of processing on a wafer in the present embodiment is as follows.
  • the wafer W before exposure to which the electron beam resist has been applied is placed on the wafer stage WST in the stage chamber 10 and is attracted by the electrostatic chuck.
  • each electron beam optical system 70 For at least one alignment mark formed on a scribe line (street line) corresponding to each of, for example, 45 shot areas formed on wafer W on wafer stage WST, each electron beam optical system 70 The electron beam is irradiated, and the backscattered electrons from at least one alignment mark are detected by at least one of backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 , and all points alignment measurement of wafer W 1 is performed.
  • the plurality of shot areas on the wafer W 1 exposure using a 45 exposure unit 500 (multi-beam optical system 200) is started.
  • the number of exposure units 500 and the number of shot areas are the same, but may be different. For example, the number of exposure units 500 may be smaller than the number of shot areas.
  • the exposure using the ribbon row A is started on a continuous 6000-pixel region of a certain row (referred to as a K-th row) aligned in the X-axis direction on the wafer.
  • a K-th row a continuous 6000-pixel region of a certain row aligned in the X-axis direction on the wafer.
  • the beam reflected by the ribbon row A is at the home position.
  • the exposure to the same 6000 pixel region is continued while deflecting the beam in the + Y direction (or -Y direction) by making the scan of the wafer W in the + Y direction (or -Y direction) from the start of exposure follow.
  • wafer stage WST advances at a velocity V [nm / s], for example Ta x V [nm].
  • V [nm / s] for example Ta x V [nm].
  • Ta ⁇ V 96 [nm].
  • the beam is returned to the home position while the wafer stage WST scans at 24 nm in the + Y direction at a velocity V. At this time, the beam is turned off so that the resist on the wafer is not actually exposed. The turning off of the beam is performed using an AO deflector 90.
  • the continuous 6000 pixel area on the (K + 12) th row has the same position as the 6000 pixel area on the Kth row at the start of exposure. It is in.
  • the continuous (6000 K) pixel region on the (K + 12) th row is exposed while deflecting the beam to the wafer stage WST.
  • the exposure apparatus 100 is used for complementary lithography and is used for forming a cut pattern for an L / S pattern formed on the wafer W, for example, with the X-axis direction as the periodic direction.
  • a beam reflected by an arbitrary ribbon 84b can be turned on to form a cut pattern.
  • 72000 beams may or may not be simultaneously turned on.
  • main scanning drive 110 controls stage drive system 26 based on the measurement values of position measurement system 28 during scanning exposure to wafer W based on the above-described exposure sequence.
  • the light irradiation device 80 and the electron beam optical system 70 are controlled via the control unit 11 of each exposure unit 500. At this time, based on an instruction from the main control unit 110, the control unit 11 performs the above-described dose control as necessary.
  • the dose control described above is dose control performed by controlling the illuminance distribution adjusting element 94 or the pattern generator 84, or the illuminance distribution adjusting element 94 and the pattern generator 84, it can be said that the dose control is dynamic. .
  • the dose control that can be adopted by the exposure apparatus 100 is not limited to this, and the following dose control can also be adopted.
  • the cut pattern (resist pattern) CP that should be originally square (or rectangular) on the wafer is, for example, 4 due to optical system-induced blur (blur) and / or resist blur.
  • a corner may be rounded to look like a cut pattern CP '.
  • the light beam is photoelectrically transferred through a non-rectangular aperture 58a 'in which auxiliary patterns 58c are provided at four corners of the aperture 58a formed in the light shielding film 58.
  • an electron beam generated by photoelectric conversion is irradiated onto the wafer through the electron beam optical system 70 to form an irradiation area of the electron beam having a shape different from that of the non-rectangular aperture 58a 'on the wafer.
  • the shape of the irradiation area of the electron beam and the shape of the cut pattern CP to be formed on the wafer may be the same or different.
  • the shape of the aperture 58a ' is set so that the shape of the electron beam irradiation area is substantially the same as the shape of the desired cut pattern CP (for example, rectangular or square). You should decide.
  • the auxiliary pattern 58c need not be provided at all four corners of the rectangular aperture 58a, and the auxiliary pattern 58c may be provided at at least a part of the four corners of the aperture 58a.
  • the auxiliary pattern 58c may be provided at all four corners of the rectangular aperture 58a only in a part of the plurality of apertures 58a 'formed in the light shielding film 58.
  • some of the plurality of apertures formed in the light shielding film 58 may be apertures 58a ', and the remaining may be apertures 58a.
  • the shape of each aperture is determined so as to suppress rounding of the corner of the irradiation area on the wafer (target).
  • the influence of the forward scattering component can also be reduced by the aperture shape.
  • the shape of the aperture 58a ′ may be the same as the shape of the irradiation region of the electron beam.
  • the exposure apparatus 100 has a plurality of electron beam optical systems 70, for example 45, but the 45 electron beam optical systems 70 are manufactured through the same manufacturing process so as to satisfy the same specifications.
  • inherent distortion disortion aberration
  • the distortion common to the plurality of electron beam optical systems 70 cancels the distortion, as schematically shown in FIG. 21B, in the arrangement of the apertures 58a on the light shielding film 58 located on the photoelectric layer 60.
  • the correction may be made in such an arrangement as to reduce or reduce.
  • the circle in FIG. 21A indicates the aberration effective area of the electron beam optical system 70.
  • each aperture 58a is shown not as a rectangle but as a parallelogram etc. for clarity in FIG. 21 (B), in fact, the aperture 58a on the light shielding film 58 is formed as a rectangle or a square. Be done.
  • This example shows a case where barrel distortion inherent to the electron beam optical system 70 is canceled or reduced by arranging a plurality of apertures 58a on the photoelectric layer 60 along the pincushion distortion shape.
  • the distortion of the electron beam optical system 70 is not limited to the barrel distortion, and, for example, when the distortion of the electron beam optical system is pincushion distortion, a plurality of distortions may be canceled or reduced.
  • the apertures 58a may be arranged in a barrel distortion shape. Further, the positions of the plurality of light beams from the projection optical system 86 may or may not be adjusted according to the arrangement of the respective apertures 58a.
  • the exposure apparatus 100 includes the exposure unit 500 configured to include the multi-beam optical system 200, the control unit 11, and the signal processing device 108 (see FIG. 18).
  • the multi-beam optical system 200 includes a light irradiation device 80 and an electron beam optical system 70.
  • the light irradiation device 80 includes a pattern generator 84 capable of providing a plurality of individually controllable light beams, an illumination system 82 for irradiating the pattern generator 84 with illumination light, and photoelectric elements of the plurality of light beams from the pattern generator 84
  • the electron beam optical system 70 irradiates a plurality of light beams to the photoelectric element 54 and emits electrons emitted from the photoelectric element 54 to the wafer W as a plurality of electron beams. Irradiate. Therefore, according to the exposure apparatus 100, since there is no blanking aperture, the source of generation of complex distortion due to charge-up and magnetization is fundamentally eliminated and waste electrons (reflected electrons) not contributing to the exposure of the target become zero. So it becomes possible to eliminate long-term instability factors.
  • main controller 110 performs scanning (movement) of wafer stage WST holding wafer W in the Y-axis direction via stage drive system 26. Control.
  • the main control unit 110 passes n (for example, 72000) apertures 58 a of the photoelectric element 54 for each of the m (for example, 45) multi-beam optical systems 200 of the exposure unit 500.
  • the irradiation state (on state and off state) of the n beams is changed for each aperture 58a, and the illuminance distribution adjustment element 94 is used for each divided region corresponding to each crystal, or the pattern generator 84 is used. And adjust the intensity of the light beam for each beam.
  • the first electrostatic lens 70c 1 of the electrostatic multipole 70c caused by changes in the total current amount, reduction in the X-axis direction and the Y-axis direction due to the Coulomb effect magnification (changes in) Correct, fast, and individually.
  • the second electrostatic lens 70c 2 correction (light pixels of the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch Do.
  • a desired line of a fine line-and-space pattern in which the X-axis direction formed in advance in each of, for example, 45 shot areas on the wafer by double patterning using an ArF immersion exposure apparatus, for example. It becomes possible to form a cut pattern at a desired position on the top, and high precision and high throughput exposure is possible.
  • any of the plurality of apertures 58 a in each multi-beam optical system 200 Even when the beam passing through the aperture 58a is in the on state, in other words, regardless of the combination of the beams in the on state, X formed in advance on each of, for example, 45 shot areas on the wafer It is possible to form a cut pattern at a desired X position on a desired line of a fine line and space pattern in which the axial direction is a periodic direction.
  • the transportation of the photoelectric element 54 is easy, and the electron beam optical unit 18A of the photoelectric element 54 to the housing 19 It is easy to assemble.
  • the lid member 64 of each of the plurality of photoelectric capsules 50 is separated from the main body 52 by its own weight simply by evacuating the inside of the first vacuum chamber 34, and simultaneously by the lid storage plate 68 driven by the vacuum compatible actuator 66. Since it can be received and stored in the round hole 68a, the lid members 64 of the plurality of photoelectric capsules 50 can be removed in a short time.
  • a plurality of lid members 64 separately stored in the plurality of round holes 68a of the lid storage plate 68 simultaneously Only when the inside of the first vacuum chamber 34 is open to the atmosphere while pressing against the pressure 52, the pressure difference between the inside (vacuum) and the outside (atmospheric pressure) of the photoelectric capsule 50 causes the respective lid members 64 to correspond to each other. It can be integrated with the part 52. This can reliably prevent the photoelectric layer 60 from being exposed to air. Further, in a state where the lid member 64 is attached to the main body 52, the main body 52 is releasable from the first plate 36 which releasably supports the main body 52.
  • a pattern generator 184 having 13 ribbon rows 85 shown in FIG. 22 is used instead of the pattern generator 84 having 12 ribbon rows 85 shown in FIG. Also good.
  • the ribbon row located at the top in FIG. 22 (indicated as 85a for identification in FIG. 22) is any of 12 ribbon rows (main ribbon rows) 85 which are usually used.
  • the ribbon row for backup is used in place of the ribbon row 85 in which the defect has occurred.
  • a plurality of ribbon rows 85a for backup may be provided.
  • each divided partial area A ribbon row for backup may be provided.
  • the ribbons 84b of the pattern generator correspond to the apertures 58a of the photoelectric element 54 at 1: 1, that is, the ribbons 84b and the electron beam irradiated on the wafer are at 1: 1. It corresponded.
  • the present invention is not limited to this, and the light beam from one ribbon 84b of the main ribbon row 85, for example, one ribbon 84b included in the ribbon row adjacent to the backup ribbon row 85a is irradiated to the photoelectric element 54.
  • the electron beam generated thereby is irradiated to a target area (referred to as a first target area) on the wafer which is a target, and one of the ribbons 84b contained in the ribbon array 85a or the main ribbon array 85 is
  • An electron beam generated by irradiating the photoelectric device 54 with a light beam from one ribbon 84b included in another ribbon row may be configured to be able to irradiate the first target area on the wafer. That is, the electron beams generated by the photoelectric element 54 due to the irradiation of the light beams from the two ribbons 84b respectively contained in different ribbon rows may be overlapped and irradiated onto the same target area on the wafer. By this, for example, the dose amount of the target region may be in a desired state.
  • the main ribbon row 85 is less than one time the width of the ribbon 84b (the array pitch of the ribbon 84b). It is also possible to use a pattern generator to which a ribbon array 85b for correction, which is arranged shifted by a distance of.
  • the ribbon array 85b for correction shown in FIG. 23 (A) is a half of the width of the ribbon 84b (FIG. 23 (B) shown by enlarging the vicinity in the circle B of FIG. 23 (A).
  • the ribbons 84b are arranged by being shifted by half (1 ⁇ m) of the arrangement pitch of the ribbons 84b.
  • Subtle dose adjustment such as PEC (Proximity Effect Correction) may be performed using the ribbon array 85b for correction.
  • PEC Proximity Effect Correction
  • the pattern generator may have, in addition to the main ribbon row 85, a ribbon row 85a for backup and a ribbon row 85b for correction.
  • the pattern generator 84 is exemplified by the GLV.
  • the pattern generator 84 may be a reflective liquid display element or a digital micromirror device. It may be configured using a reflective spatial light modulator having a plurality of movable reflective elements such as PLV (Planer Light Valve). Alternatively, depending on the configuration of the optical system inside the light irradiation device 80, the pattern generator may be configured by various transmissive spatial light modulators.
  • the pattern generator 84 is a pattern generator capable of providing a plurality of light beams that can be individually controlled, it is not limited to the spatial light modulator, and it is possible to adjust the intensity and change the size as well as turning the beam on and off A pattern generator can be used. Also, the pattern generator 84 does not have to be capable of beam control (on / off, intensity adjustment, resizing, etc.) for individual light beams, but only for some beams or multiple beams. It may be possible for each beam.
  • FIG. 24 shows an example of the configuration of various types of optical units.
  • the optical unit shown in FIG. 24A can be called an L-type reflection type, and includes an illumination system unit IU including a plurality of illumination systems two-dimensionally arranged in a predetermined positional relationship on an XZ plane, and an XY plane.
  • a plurality of pattern generators 84 two-dimensionally arranged in a positional relationship corresponding to a plurality of illumination systems individually on one surface of the base BS inclined 45 degrees with respect to a plurality of pattern generators 84 and corresponding photoelectric elements
  • an optical unit IMU including a plurality of projection optical systems two-dimensionally arranged on the XY plane in a positional relationship.
  • the optical axes of the plurality of imaging optical systems are not shown but coincide with the optical axes of the corresponding electron beam optical systems.
  • the pattern generator 84 is configured by a reflective spatial light modulator as in the above embodiment.
  • This L-shaped reflection type has the advantage that access to the pattern generator is easy, and the restriction on the size of the light receiving surface of the pattern generator is loose as compared with the above-described embodiment and the like.
  • the optical unit shown in FIG. 24B can be called a U-shaped reflection type, and includes an illumination system unit IU including a plurality of illumination systems two-dimensionally arranged in a predetermined positional relationship on the XY plane, and an XY plane.
  • optical axes of the plurality of projection optical systems are not shown but coincide with the optical axes of the corresponding electron beam optical systems.
  • the optical unit shown in FIG. 24 (C) can be referred to as a straight cylinder transmission type, and an optical system in which an illumination system, a pattern generator 84 and a projection optical system are disposed on the same optical axis 80A) are arranged in an XY two-dimensional manner in the same housing (lens barrel) 78 in a predetermined positional relationship corresponding to a plurality of photoelectric elements.
  • the optical axes of the plurality of light irradiation devices 80A coincide with the optical axis of the corresponding electron beam optical system.
  • the pattern generator 84 it is necessary to use a transmission type spatial light modulator such as a transmission type liquid crystal display element.
  • the straight cylinder transmission type is easy to guarantee the accuracy for each axis, has a compact lens barrel size, and can cope with both of the two methods described later using FIG. 25 (A) and FIG. 15 (B) respectively. There is a merit that there is.
  • FIG. 24D schematically shows an optical unit of the same type as the optical unit 18B employed in the exposure apparatus 100 of the above embodiment.
  • the optical unit shown in FIG. 24 (D) can be called a straight cylinder reflection type, and has the same merit as the straight cylinder transmission type.
  • the light pattern image formed by the pattern generator is projected onto the photoelectric element, and further converted into an electronic image by the photoelectric element to be reduced and imaged on the wafer surface. It is good.
  • the aperture and the photoelectric layer may be integrally formed as in the above-described embodiment, or may be disposed to face each other via a predetermined clearance (a gap, a gap).
  • the photoelectric layer 60 can be arranged in various ways.
  • the extraction electrode 112 is provided around the circular opening 68c of the lid storage plate 68, but instead of or in addition to this, the position of the electron beam is measured on the lid storage plate 68 At least one of the measurement member and the sensor for detecting the electron beam may be provided.
  • a measuring member for measuring the position of the beam of the former a combination of a reflecting surface having an aperture and a detecting device for detecting reflected electrons from the reflecting surface, or a reflecting surface having a mark formed on the surface and the mark A combination with a detection device that detects reflected electrons can be used.
  • FIG. 26 schematically shows the arrangement of an exposure apparatus 1000 according to the second embodiment.
  • the same reference numeral is used, and the description thereof is omitted.
  • the exposure apparatus 1000 divides the first vacuum chamber 34 by the through holes 36 a of the first plate 36 into which the main body 52 of the photoelectric capsule 50 has been inserted.
  • the point closed in an airtight state to the outside by a vacuum partition 132 made of quartz glass or the like and the internal configuration of the first portion 19a of the housing 19 where the first vacuum chamber 34 is formed are the first Is different from the exposure apparatus 100 according to the embodiment. The following description will focus on the differences.
  • FIG. 27 shows the internal configuration of the housing 19 corresponding to one electron beam optical system 70 of the exposure apparatus 1000 according to the second embodiment.
  • the photoelectric element 136 is disposed below the vacuum barrier 132 by a predetermined distance.
  • the photoelectric conversion elements 136 are arranged in the same order as the photoelectric conversion elements 54 described above, and are made of quartz (S i O 2 ) integrally formed by the same method.
  • a light shielding film 58 and a photoelectric layer 60 are provided. At least 72000 apertures 58 a are formed in the light shielding film 58 of the photoelectric element 136 in the same arrangement as described above.
  • the extraction electrode 112 a is disposed below the photoelectric element 136 in the first vacuum chamber 34.
  • the lid housing plate 68 and the vacuum compatible actuator 66 are not provided in the first vacuum chamber 34 (see FIGS. 26 and 27).
  • the electron beam optical unit 18A according to the second embodiment includes the base plate 38, and the lower structure includes the electron beam optical system 70 inside the second vacuum chamber 72, and the first embodiment described above. It is the same as the exposure apparatus 100.
  • the configuration other than the electron beam optical unit 18A is the same as that of the exposure apparatus 100 described above.
  • the photoelectric element 136 is provided separately from the vacuum barrier 132. , May have additional features such as:
  • the field curvature component of the electron beam optical system becomes remarkable.
  • the electron beam optical system has a curvature of field as schematically shown in FIG. 29 as its aberration, as schematically shown in FIG. 29, the photoelectric layer 60 (correctly, the entire photoelectric element 136) Is bent so that a curvature in the opposite phase to the curvature component of the image plane is generated in the photoelectric layer 60, that is, the electron emission surface of the photoelectric layer 60 is curved (non-planar).
  • the amount of curvature of the electron emission surface of the photoelectric layer 60 may be variable.
  • the amount of curvature of the electron emission surface may be changed according to a change in optical characteristics (aberration, for example, curvature of field) of the electron beam optical system 70. Therefore, the amount of curvature of the electron emission surface may be made different among the plurality of photoelectric elements 136 according to the optical characteristics of the corresponding electron beam optical system. Further, FIG.
  • the photoelectric element 136 (photoelectric layer 60) is not limited to bending in one direction, but may of course be deformed three-dimensionally such as bending four corners downward. By changing the way of deformation of the photoelectric element 136, positional deviation, deformation and the like of the optical pattern image due to the spherical aberration can be effectively suppressed.
  • the position of the portion (for example, the central portion) of the electron emission surface and the other portion (for example, the peripheral portion) with respect to the direction of the optical axis AXe of the electron beam optical system 70 It will be different from each other.
  • the thickness of the photoelectric layer 60 may have a distribution so that the positions of a part (for example, the central part) of the electron emission surface and the other part (for example, the peripheral part) in the direction of the optical axis AXe may be different.
  • the electron emission surface of the photoelectric layer 60 may be curved (non-planar) even when the photoelectric element also serves as a vacuum barrier.
  • an actuator capable of driving the aperture integrated photoelectric element in the XY plane is provided. Also good.
  • an aperture integrated photoelectric element as shown in FIG. 30, a multi-pitch type in which a row of apertures 58a of pitch a and a row of apertures 58b of pitch b are formed every other row.
  • the aperture integrated photoelectric device 136a may be used.
  • a zoom function of changing the projection magnification (magnification) in the X-axis direction is used in combination with the above-described optical characteristic adjustment device 87.
  • the beam has a pitch a of a row of apertures 58a and a pitch of b It is possible to switch to the row of the apertures 58b of the light source to irradiate.
  • each of the plurality of beams may be irradiated to the area on the photoelectric element 136a including the corresponding apertures 58a or 58b. That is, the size of each of the plurality of apertures 58a or 58b on the photoelectric element 136a may be smaller than the size of the cross section of the corresponding beam.
  • a row of three or more types of apertures having different pitches is formed on the light shielding film 58 of the photoelectric conversion element in the photoelectric element 136a, and exposure is performed in the same procedure as described above, thereby cutting patterns of three or more pitches. It may be possible to cope with the formation of
  • the intensity of the beam per unit area in the surface to be irradiated of the beam (laser beam) is changed.
  • the relationship with the change may be determined, and the beam intensity may be changed (adjusted) based on the relationship.
  • the intensity of a part of the beam when the magnification is changed may be detected by a sensor, and the intensity of the beam may be changed (adjusted) based on the information of the detected intensity. In the latter case, for example, as shown in FIG.
  • the sensor 135 is provided at one end of the upper surface of the base of the photoelectric element 136, and the actuator 135 described above drives the photoelectric element 136 to make the sensor 135 desired in the XY plane. It may be configured to be movable to the position of.
  • the photoelectric element 136 is movable not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z axis parallel to the optical axis AXe You may configure it.
  • the photoelectric layer 60 has a certain area, there is no guarantee that the in-plane photoelectric conversion efficiency is uniform, and the photoelectric layer 60 has an in-plane photoelectric conversion efficiency. It is practical to think of having a distribution. Therefore, in accordance with the in-plane distribution of the photoelectric conversion efficiency of the photoelectric layer 60, the intensity of the light beam irradiated to the photoelectric element may be adjusted. That is, assuming that the photoelectric layer 60 has the first portion of the first photoelectric conversion efficiency and the second portion of the second photoelectric conversion efficiency, based on the first photoelectric conversion efficiency and the second photoelectric conversion efficiency, respectively.
  • the intensity of the beam irradiated to the first portion and the intensity of the beam irradiated to the second portion may be adjusted.
  • the intensity of the light beam irradiated to the first portion and the intensity of the light beam irradiated to the second portion are adjusted to compensate for the difference between the first photoelectric conversion efficiency and the second photoelectric conversion efficiency. Also good.
  • the aperture integrated photoelectric device 136 may be replaced by a so-called separate aperture type photoelectric device in which the aperture plate (aperture member) is separate from the photoelectric device.
  • the photoelectric device 140 having the photoelectric layer 60 formed on the lower surface (light emitting surface) of the substrate 134 and the upper side of the substrate 134 of the photoelectric device 140
  • an aperture plate 142 made of a light shielding member in which a large number of apertures 58a are formed at predetermined light (1 ⁇ m or less) clearances (gaps).
  • a drive mechanism capable of driving the aperture plate 142 in the XY plane In the case of using a separate aperture type photoelectric device, it is desirable to provide a drive mechanism capable of driving the aperture plate 142 in the XY plane.
  • a multi-pitch type aperture similar to the aperture integrated photoelectric device 136a described above is formed in the aperture plate 142, the magnification magnification function of the projection optical system 86, the photoelectric device 140 and the aperture plate 142
  • a drive mechanism capable of driving the photoelectric element 140 in the XY plane may be provided.
  • the lifetime of the photoelectric layer 60 can be increased by shifting the relative position between the aperture plate 142 and the photoelectric element 140 in the XY plane.
  • the projection optical system 86 may be configured to be movable in the XY plane with respect to the aperture plate 142.
  • the aperture plate 142 is movable not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z axis parallel to the optical axis AXe
  • the gap between the photoelectric device 140 and the aperture plate 142 may be adjustable.
  • a drive mechanism for moving the photoelectric device 140 may be provided in the case of using the separate aperture type photoelectric device. Also in this case, the lifetime of the photoelectric layer 60 can be increased by moving the photoelectric element 140 in the XY plane. Further, also when using the integrated photoelectric device described in the first embodiment, a drive mechanism for moving the photoelectric device 54 may be provided. Also in this case, the lifetime of the photoelectric layer 60 can be increased by moving the photoelectric element 54 in the XY plane.
  • the aperture of the aperture plate described above may be used in combination with the aperture of the photoelectric element. That is, an aperture plate may be disposed on the light beam incident side of the aperture integrated photoelectric device described above, and a beam passing through the aperture of the aperture plate may be incident on the photoelectric layer through the aperture of the aperture integrated photoelectric device. .
  • the aperture plate may be replaced when the above-described separate aperture type photoelectric device is used.
  • a plurality of apertures may be formed using a spatial light modulator such as a transmissive liquid crystal element instead of the aperture plate.
  • a device may be provided to change the pitch of the plurality of beams respectively illuminated onto the plurality of apertures of the same array of apertures of the integrated photoelectric element 136a or the aperture plate 142.
  • a plurality of parallel flat plates can be disposed in the optical path between the projection optical system 86 and the photoelectric element, and the pitches of the plurality of beams can be changed by changing the tilt angles.
  • the aperture integrated photoelectric element is not limited to the type shown in FIG. 28A, and for example, as shown in FIG. 28B, in the photoelectric element 136 of FIG. It is also possible to use a photoelectric device 136 b of a type in which the space is filled with the transparent film 144. In the photoelectric element 136b, instead of the transparent film 144, a part of the substrate may be filled in the space in the aperture 58a.
  • a light shielding film 58 having an aperture 58a is formed on the upper surface (light incident surface) of the substrate 134 by vapor deposition of chromium, and the lower surface (light emission surface) of the substrate 134
  • the photoelectric element 136c of the type in which the photoelectric layer 60 is formed or as shown in FIG. 28D, in the photoelectric element 136c of FIG. 28C, the type in which the space in the aperture 58a is filled with the transparent film 144.
  • the photoelectric device 136 d of can also be used.
  • FIG. 28E there is a photoelectric device 136e of a type in which the photoelectric layer 60 is formed on the lower surface of the base material 134 and the chromium film 58 having the apertures 58a is formed on the lower surface of the photoelectric layer 60.
  • the chromium film 58 in FIG. 28E has a function of shielding electrons, not light.
  • the base material 134 is not only made of quartz but also a laminate of quartz and a transparent film (single layer or multilayer) You may configure.
  • the aperture plate can be used together with the photoelectric device 140 to form the separate-aperture type photoelectric device together with the photoelectric device 140 shown in FIG. 32A, for example.
  • the aperture plate has a light shielding member having an aperture like the aperture plate 142
  • a light shielding film 58 having an aperture 58a is formed by vapor deposition of chromium on the lower surface (light emitting surface) of a base 144 made of quartz, for example.
  • the aperture plate 142a as shown in FIG.
  • a base 150 composed of a plate member 146 made of quartz and a transparent film 148, and an aperture formed by deposition of chromium on the lower surface (light emitting surface) of the base 150.
  • the aperture plate 142b has a light shielding film 58 having 58a, an aperture plate 142c in which the space in the aperture 58a is filled with the transparent film 148 in the aperture plate 142a, FIG.
  • E in the aperture plate 142a, the space in the aperture 58a is filled with a portion of the substrate 144.
  • has an aperture plate 142d can be used.
  • the aperture plates 142, 142a, 142b, 142c, 142d can be used upside down.
  • a vacuum partition is provided in the main body 52 instead of the photoelectric element 54 which also serves as the vacuum partition of the main body 52 of the photoelectric capsule 50, and a predetermined clearance is provided under the vacuum partition.
  • the various types of aperture integrated photoelectric elements or separate aperture type photoelectric elements described above may be disposed and housed inside the main body 52.
  • a drive mechanism for the aperture integrated photoelectric device 136 (136a to 136d) or a drive mechanism for moving at least one of the photoelectric device 140 and the aperture plate 142 (142a to 142d) may be provided.
  • the sizes of all the plurality of apertures 58a may not be the same, and the shapes may not be the same for all the apertures 58a.
  • the aperture 58a may be smaller than the size of the corresponding beam so that the corresponding beam is irradiated on the entire area.
  • the aperture plate 142 may not be used.
  • the wafer W is exposed by scanning exposure in which the electron beam is irradiated while moving in the Y-axis direction.
  • a first state in which a plurality of light beams can be irradiated onto the photoelectric layer 60 through the base 134 of the photoelectric element 140 at a first pitch (for example, a pitch (distance) a) in the X axis direction;
  • a second pitch for example, a pitch (space) b).
  • the function of changing the magnification of the projection optical system 86 may be used in combination.
  • an apparatus for changing the pitch (interval) of the plurality of beams emitted from the projection optical system 86 to the photoelectric element 140 may be provided. For example, by arranging a plurality of parallel flat plates in the optical path between the projection optical system 86 and the photoelectric element and changing the tilt angle, it is possible to change the pitch (distance) of the plurality of beams. Also in this case, it may be possible to cope with the formation of a cut pattern of three or more pitches.
  • the optical system provided in the exposure apparatus 100, 1000 is a multi-column type provided with a plurality of multi-beam optical systems 200
  • the present invention is not limited to this, and the optical system may be a single column type multi-beam optical system.
  • the photoelectric element or the aperture plate is used to perform the dose control, magnification control, correction of pattern imaging position deviation, correction of various aberrations such as distortion, etc. described above. The correction of various elements used, the extension of the life of the photoelectric layer, and the like are applicable.
  • an opening may be provided in the peripheral wall portion 76, and the second vacuum chamber 72 and the inside of the stage chamber 10 may be one vacuum chamber.
  • the cooling plate 74 may be removed while leaving only a part of the upper end portion of the peripheral wall portion 72, and the second vacuum chamber 72 and the inside of the stage chamber 10 may be one vacuum chamber.
  • the wafer W is independently carried on the wafer stage WST, and the wafer W is irradiated with a beam from the multi-beam optical system 200 to perform exposure while moving the wafer stage WST in the scanning direction.
  • the exposure apparatus 100 has been described, the present invention is not limited to this, and the above embodiments may be applied to the type of exposure apparatus in which the wafer W is integrated with a table (holder) that can be transported integrally with the wafer called shuttle. (Except for wafer stage WST) can be applied.
  • position measurement system 28 for measuring the position information of wafer stage WST may also be capable of measuring the position information in the direction of three degrees of freedom in the XY plane.
  • the optical system 18 is supported on the floor via the frame 16 forming the ceiling of the stage chamber 10.
  • the ceiling surface of the may be suspended and supported at, for example, three points by a suspension support mechanism having a vibration isolation function.
  • the exposure technology constituting the complementary lithography is not limited to the combination of the liquid immersion exposure technology using an ArF light source and the charged particle beam exposure technology, and, for example, the line and space pattern can be other ArF light source, KrF, etc. It may be formed by a dry exposure technique using a light source.
  • the exposure apparatuses 100 and 1000 according to each of the above embodiments form a fine pattern on a glass substrate to form a mask. It can be suitably applied when manufacturing.
  • An electronic device such as a semiconductor element is a step of designing function and performance of the device, a step of fabricating a wafer from a silicon material, exposure of the wafer by the electron beam exposure apparatus and its exposure method
  • a lithography step for drawing a pattern according to designed pattern data a development step for developing an exposed wafer, an etching step for removing exposed members in portions other than a portion where a resist remains, and etching And a resist removing step for removing the unnecessary resist, a device assembly step (including a dicing step, a bonding step, and a packaging step), an inspection step, and the like.
  • a device pattern is formed on the wafer by executing the above-described exposure method using any of the exposure apparatuses 100 and 1000 of the above-described embodiments in the lithography step.
  • the above-described complementary lithography is performed in the lithography step, and at this time, the above-described exposure method is performed using any of the exposure apparatuses 100 and 1000 of the above-described embodiments, to obtain a more highly integrated micro device. It will be possible to manufacture.
  • an exposure apparatus using an electron beam has been described.
  • the present invention is not limited to the exposure apparatus, but an apparatus that performs at least one of predetermined processing and predetermined processing on a target using an electron beam such as welding
  • the electron beam apparatus of the above embodiment can be applied to an inspection apparatus using an electron beam.
  • the photoelectric layer 60 is formed of an alkaline photoelectric conversion film.
  • the photoelectric layer is not limited to the alkaline photoelectric conversion film.
  • the photoelectric device may be configured using a photoelectric conversion film of a type.
  • shapes such as a member, an opening, and a hole, may be demonstrated using circular, a rectangle, etc., it is needless to say that it is not restricted to these shapes.
  • the reflection type pattern generator 84 since the reflection type pattern generator 84 is used, the light receiving surface of the pattern generator 84 is obliquely incident illuminated by the illumination system 82. In this case, it is required that the light reflected obliquely to the vertical direction (Z direction) in the paper surface (YZ plane) of FIG. 11A on the light receiving surface of the pattern generator 84 be effectively taken by the projection optical system 86 . In other words, it is necessary to effectively guide the reflected light from the light receiving surface of the pattern generator 84 to the photoelectric conversion surface of the photoelectric element (photoelectric conversion element) 54 via the projection optical system 86.
  • the basic configuration of a projection optical system capable of effectively capturing the reflected light from the light receiving surface of the pattern generator 84 illuminated obliquely is described below.
  • FIG. 33 schematically shows a construction of a projection optical system according to a first type of construction.
  • the same general coordinates (X, Y, Z) as in FIG. 11A are used, and the paper surface of FIG. 33 and the paper surface of FIG. 11A are the same XY plane.
  • the same global coordinates (X, Y, Z) as in FIG. 11A are used unless otherwise specified.
  • the Z direction of the general coordinates (X, Y, Z) coincides with the vertical direction of the space
  • the XY plane coincides with the horizontal plane of the space.
  • the normal to the light receiving surface 84d of the pattern generator 84 is inclined relative to the optical axis AXo of the projection optical system 86A on the paper surface (YZ plane) of FIG.
  • the normal to the photoelectric conversion surface 54a of the element 54 is also inclined to the optical axis AXo of the projection optical system 86A in the plane of FIG.
  • the light receiving surface 84d and the photoelectric conversion surface 54a are disposed optically conjugately via the projection optical system 86A, and the photoelectric conversion surface 54a is disposed horizontally.
  • the projection optical system 86A satisfies the shine proof condition with respect to the light receiving surface 84d corresponding to the object surface and the photoelectric conversion surface 54a corresponding to the image surface.
  • the light receiving surface 84d is a surface on which the reflecting surfaces of a plurality of reflective elements (corresponding to the ribbon 84b in the above embodiment) in the reference state are disposed.
  • the light receiving surface 84 d of the pattern generator 84 may be referred to as an arrangement surface on which the reflection surfaces of the plurality of reflective elements included in the pattern generator 84 are arranged.
  • the optical axis AXo of the projection optical system 86A is inclined with respect to the vertical direction (Z direction) in the plane of FIG. 33, and the light receiving surface 84d is inclined with respect to the horizontal direction (Y direction) in the plane of FIG.
  • the normal line of the light receiving surface 84d of the pattern generator 84 may be inclined with respect to the optical axis AXo of the projection optical system 86A in a plane obtained by rotating the YZ plane in FIG. 33 about the Y axis (in the ⁇ y direction). .
  • the normal line of the photoelectric conversion surface 54a of the photoelectric element 54 is also inclined with respect to the optical axis AXo of the projection optical system 86A in the plane obtained by rotating the YZ plane in FIG. Good.
  • the normal to the light receiving surface 84d of the pattern generator 84 is the Z axis in FIG. 33 rotated about the X axis (in the ⁇ x direction) and rotated about the Y axis (in the ⁇ y direction) It is also good.
  • the normal line of the photoelectric conversion surface 54a of the photoelectric element 54 may also be one in which the Z axis in FIG. 33 is rotated about the Y axis (in the ⁇ y direction).
  • the optical axis AXo of the projection optical system 86A need only be inclined from the vertical direction by a predetermined angle around the X axis (that is, in the ⁇ x direction). There is no need to make any changes to Specifically, when the magnification of the projection optical system 86A is 1/6, the inclination angle of the optical axis AXo of the projection optical system 86A is about 1.7 degrees. Further, since the photoelectric conversion surface 54a is disposed along the horizontal plane (XY plane), if the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the subsequent electron optical system (electron beam optical system) 70.
  • the optical axis AXe of the electron optical system 70 can be made to coincide in the vertical direction, and the installation of the electron optical system 70 is easy. In this case, since the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the electron optical system 70, the burden of aberration correction of the electron optical system 70 can be reduced.
  • a mirror 98 for bending an optical path is disposed on the incident side (light incident side) of the pattern generator 84.
  • a wedge prism 182e having a predetermined included angle (apex angle) is disposed on the incident side of the mirror 98.
  • the optical axis AXo of the projection optical system 86A is inclined to the vertical direction, but as shown in FIG. 34, the optical axis AXo of the projection optical system 86B is in the vertical direction (Z direction)
  • a configuration is also possible in which both the light receiving surface 84 d and the photoelectric conversion surface 54 a are arranged to be inclined with respect to the horizontal direction (Y direction).
  • the second type of configuration shown in FIG. 34 is obtained by simply rotating the first type of configuration shown in FIG. 33 by a predetermined angle around the X axis. Therefore, the light receiving surface 84 d and the photoelectric conversion surface 54 a are disposed optically conjugately via the projection optical system 86 B.
  • a plurality of lenses are disposed between the pattern generator 84 and the aperture stop AS.
  • a plurality of lenses are disposed between the aperture stop AS and the photoelectric conversion surface 54 a of the photoelectric element 54.
  • the projection optical system 86B satisfies the shine proof condition with respect to the light receiving surface 84d corresponding to the object surface and the photoelectric conversion surface 54a corresponding to the image surface.
  • the optical axis AXo extends in the vertical direction, installation of the projection optical system 86B is easy.
  • the photoelectric conversion surface 54a is inclined with respect to the horizontal plane (XY plane)
  • the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the subsequent electron optical system 70, the light of the electron optical system 70 is obtained.
  • the axis AXe is inclined relative to the vertical direction.
  • the chief ray Ch of light incident on the photoelectric conversion surface (corresponding to the photoelectric conversion surface of the alkaline photoelectric layer 60 in the above embodiment) 54a provided on the lower side of FIG. 35 is at the position of the photoelectric conversion surface 54a. They are at the same angle without depending on one another, but are not perpendicular to the photoelectric conversion surface 54a.
  • the light shielding film (pinhole) 58 provided between the transparent substrate 56 and the photoelectric conversion surface 54a is omitted for the sake of clarity of the drawing.
  • the optical path length in the transparent substrate 56 is different between the upper marginal ray UPML, the lower marginal ray UNML, and the chief ray Ch, so that coma aberration occurs.
  • the incident side of the transparent substrate 56a is used to correct coma aberration caused due to oblique incidence on the photoelectric conversion surface 54a.
  • the plane (the plane on the right side in FIG. 36) may be orthogonal to the optical axis AXo of the projection optical systems 86A and 86B to form the transparent substrate 56a in a nonparallel plane plate shape, that is, in a wedge prism shape.
  • FIG. 36 the incident side of the transparent substrate 56a is used to correct coma aberration caused due to oblique incidence on the photoelectric conversion surface 54a.
  • the plane (the plane on the right side in FIG. 36) may be orthogonal to the optical axis AXo of the projection optical systems 86A and 86B to form the transparent substrate 56a in a nonparallel plane plate shape, that
  • a window glass 56A for a vacuum partition having a form of a parallel flat plate is disposed on the incident side of the transparent substrate 56a.
  • the incident side surface of the transparent substrate 56a is not limited to be orthogonal to the optical axis AXo of the projection optical systems 86A and 86B, and the incident side surface of the transparent substrate 56a is the surface on the emission side of the transparent substrate 56a (photoelectric It may be non-parallel to the conversion surface 54a).
  • the surface on the incident side of the transparent substrate 56b and the surface on the emission side in parallel, for vacuum barriers arranged on the incident side of the transparent substrate 56b with a space.
  • the surface on the incident side of the window glass 56B (the surface on the right in FIG. 37) is orthogonal to the optical axis AXo of the projection optical systems 86A and 86B, and the normal to the surface on the emission side (the surface on the left in FIG. 37) It may be formed to be inclined with respect to the optical axis AXo in the paper of 37.
  • the transparent substrate 56b in a plane-parallel plate shape and forming the window glass 56B in a wedge prism shape.
  • the window glass 56A, 56B which is the second transparent substrate, is located at the boundary between the vacuum space of the electron optical system 70 and the external atmosphere. Note that, even when it is not necessary to configure the incident side surface of the transparent substrate 56b and the emission side surface in parallel, the incident side surface of the window glass 56B for a vacuum partition is the same as that of the projection optical systems 86A and 86B. It is also possible to make it perpendicular to the optical axis AXo, and to make the normal of the surface on the exit side (the surface on the left side in FIG. 37) inclined with respect to the optical axis AXo in the paper of FIG.
  • an aspheric optical surface having a shape capable of correcting coma aberration generated due to oblique incidence to the photoelectric conversion surface 54a may be introduced into the projection optical systems 86A and 86B.
  • the number of aspheric optical surfaces is not limited to one.
  • the coma aberration generated due to the oblique incidence on the photoelectric conversion surface 54a may be corrected by combining the method and the method of introducing the aspheric optical surface into the projection optical systems 86A and 86B.
  • the light receiving surface 84d of the pattern generator 84 is such that the normal is inclined with respect to the optical axis AXo of the projection optical system 86C in the paper surface (YZ plane) of FIG.
  • the photoelectric conversion surface 54a is disposed orthogonal to the optical axis AXo of the projection optical system 86C. Specifically, the optical axis AXo of the projection optical system 86C extends in the vertical direction (Z direction), and the photoelectric conversion surface 54a is disposed along the horizontal plane (XY plane).
  • the projection optical system 86C has at least one optical member 86Ca eccentrically arranged with respect to the optical axis AXo.
  • the projection optical system 86C has at least one optical member 86Ca eccentrically arranged with respect to the optical axis AXo.
  • a plurality of lenses are disposed between the pattern generator 84 and the aperture stop AS.
  • a plurality of lenses are disposed between the aperture stop AS and the photoelectric conversion surface 54 a of the photoelectric element 54.
  • the optical member 86Ca is decentered with respect to the optical axis AXo of the projection optical system 86C.
  • the optical axis of the optical member 86Ca may be deviated from the optical axis AXo of the projection optical system 86C (e.g., decentered in the Y direction) or may be inclined with respect to the optical axis AXo of the projection optical system 86C. It may be combined.
  • the optical axis AXo extends in the vertical direction, installation of the projection optical system 86C is easy.
  • the photoelectric conversion surface 54a is disposed along the horizontal surface, if the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the subsequent electron optical system 70, the optical axis AXe of the electron optical system 70 is The alignment can be made in the vertical direction, and the installation of the electron optical system 70 is easy. In this case, since the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the electron optical system 70, the burden of aberration correction of the electron optical system 70 can be reduced. In FIG.
  • the optical member 86Ca disposed eccentrically with respect to the optical axis AXo of the projection optical system 86C is an optical member between the aperture stop AS and the photoelectric conversion surface 54a of the photoelectric element 54.
  • the optical member between the light receiving surface 84d of the pattern generator 84 and the aperture stop AS may be decentered with respect to the optical axis AXo of the projection optical system 86C.
  • the number of optical members disposed eccentrically is not limited to one, and a plurality of optical members may be eccentrically disposed.
  • the light receiving surface 84d and the photoelectric conversion surface 54a of the pattern generator 84 have normals parallel to the optical axis AXo of the projection optical system 86D and the projection optical system 86D They are arranged separately from the optical axis AXo in the Y direction.
  • the plurality of reflective elements (eg, ribbon 84b) of the pattern generator 84 has the normal of its reflective surface parallel to the optical axis AXo of the projection optical system 86D and includes the optical axis AXo of the projection optical system 86D. It is disposed away from the optical axis AXo of the projection optical system 86D in the YZ plane.
  • the optical axis AXo of the projection optical system 86D extends in the vertical direction (Z direction), and both the light receiving surface 84d and the photoelectric conversion surface 54a are disposed along a horizontal plane (XY plane).
  • the light receiving surface 84 d and the photoelectric conversion surface 54 a are disposed optically conjugately via the projection optical system 86 D.
  • a plurality of lenses are disposed between the pattern generator 84 and the aperture stop AS.
  • a plurality of lenses are disposed between the aperture stop AS and the photoelectric conversion surface 54 a of the photoelectric element 54.
  • the projection optical system 86D is telecentric on the exit side (photoelectric conversion surface 54a side) but is non-telecentric on the incident side (light receiving surface 84d side), so the pattern generator 84 and hence the light receiving surface 84d are in the Z direction.
  • the magnification of the projection optical system 86D can be corrected (adjusted) by moving it to Further, since the photoelectric conversion surface 54a is disposed along the horizontal surface, if the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the subsequent electron optical system 70, the optical axis AXe of the electron optical system 70 is The alignment can be made in the vertical direction, and the installation of the electron optical system 70 is easy. In this case, since the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the electron optical system 70, the burden of aberration correction of the electron optical system 70 can be reduced.
  • the projection optical systems 86A to 86D according to the first to fourth types of configurations have a plurality of reflective elements, and a plurality of light beams from the pattern generator 84 that generate a plurality of light beams with light from the illumination optical system. Is projected onto the photoelectric conversion surface 54 a of the photoelectric element 54. In other words, the projection optical systems 86A to 86D make the light receiving surface 84d of the pattern generator 84 and the photoelectric conversion surface 54a optically conjugate to make a plurality of light beams from the pattern generator 84 photoelectric conversion surfaces 54a. Project to
  • the normal to the light receiving surface 84d of the pattern generator 84 is inclined with respect to the optical axis AXo in the YZ plane including the optical axis AXo of the projection optical systems 86A to 86C.
  • the pattern generator 84 is disposed away from the optical axis AXo of the projection optical system 86D.
  • the chief ray on the side of the pattern generator 84 that is, the chief ray of the reflected light from the pattern generator 84 is received in the YZ plane including the optical axis AXo of the projection optical system 86A to 86D.
  • the first to fourth types of configurations are common in that the chief ray of light incident on the photoelectric conversion surface 54a has a constant angle without depending on the position of the photoelectric conversion surface 54a.
  • the displacement of the photoelectric conversion surface 54a has less influence on the imaging performance of the projection optical systems 86A to 86D. It can be suppressed.
  • the photoelectric conversion surface 54a is displaced in the direction of the optical axis AXo, it is possible to suppress the collapse of the light pattern formed on the photoelectric conversion surface 54a.
  • the shape of the irradiation region of the electron beam formed on the wafer through the electron optical system 70 can be made into a desired shape.
  • the chief ray of light incident on the photoelectric conversion surface 54a is perpendicular to the photoelectric conversion surface 54a without depending on the position of the photoelectric conversion surface 54a.
  • the projection optical systems 86C and 86D are telecentric on the exit side, the influence of the positional deviation of the photoelectric conversion surface 54a on the imaging performance of the projection optical systems 86C and 86D can be further reduced.
  • the photoelectric conversion surface 54a is disposed along the horizontal surface. This means that the optical axis Ae of the subsequent electron optical system 70 can be aligned in the vertical direction, and the optical axis AXe can be set perpendicular to the photoelectric conversion surface 54a. As a result, the burden of aberration correction in the electron optical system 70 can be reduced, the design can be facilitated, and the mechanism can be simplified.
  • the illumination system 82 for illuminating the light receiving surface 84 d of the pattern generator 84 at oblique incidence will be described.
  • a GLV is used as the pattern generator 84, and a rectangular illumination field (slit-like illumination field) elongated in the X direction orthogonal to the paper surface (YZ plane) of FIG. It is necessary to form a plurality of) at intervals in a direction orthogonal to the X direction (Y direction when the light receiving surface 84d is disposed along the XY plane). Then, in order to perform electron beam processing, for example, electron beam exposure well, uniform illumination from an oblique direction is required without depending on the position on the light receiving surface 84 d of the pattern generator 84.
  • uniform illumination of the light receiving surface 84d means making the illuminance in each slit-like illumination field substantially uniform, making the shape of each illumination field into a desired slit shape, and illumination intensity among all the illumination fields.
  • Shape, illumination NA, etc. are meant to be uniform. It goes without saying that the illuminance, the shape, the illumination NA and the like may be dispersed within a predetermined error range among all the illumination fields.
  • the z1 axis is along the optical axis AXi of the illumination optical system 182A
  • the y1 axis is vertical to the paper surface of FIG. 40 in the plane orthogonal to the optical axis AXi Is set.
  • the x1, y1, z1 axes correspond to the X, Y, Z axes, respectively. There is.
  • the light source unit 82a has a rectangular light emitting unit elongated in the x1 direction orthogonal to the paper surface (y1z1 plane) of FIG.
  • a high coherence semiconductor laser light source can be used as the light source unit 82a.
  • the light source section 82a includes, for example, a laser diode 88 that continuously oscillates a laser beam of wavelength 365 nm and an AO deflector 90, and intermittently emits a laser beam (laser beam) of wavelength 365 nm
  • the light source part which can emit light can be used.
  • the light source unit 82a it is possible to use a light source unit that causes the laser diode 88 itself to emit light intermittently.
  • the light source unit 82a may continuously supply laser light. In this case, a shutter may be provided on the light emission side of the light source unit 82a.
  • the illumination optical system 182A includes a collimator optical system 182a for condensing light from the light source unit 82a in order from the light source unit 82a to the irradiated surface 82c orthogonal to the optical axis AXi, and an x1y1 plane orthogonal to the optical axis AXi.
  • An optical integrator 182b having a plurality of wavefront dividing elements (for example, microlenses) 182ba arranged in parallel along the optical axis and a light flux from an illumination pupil on the exit side of the optical integrator 182b are condensed to overlap on the illuminated surface 82c.
  • a Fourier transform optical system 182c The optical integrator 182b may be referred to as a fly eye lens system.
  • the Fourier transform optical system 182c may also be referred to as a focusing optical system.
  • the light from the light source unit 82a enters the optical integrator 182b as a substantially parallel light flux through the collimator optical system 182a.
  • the light flux incident on the optical integrator 182 b is wave front split by the plurality of wave front split elements 182 ba, and one light source image is formed on the emission side of each of the wave front split elements 182 ba. That is, a rectangular light source image elongated in the x1 direction is formed on the illumination pupil on the exit side of each wavefront dividing element 182ba of the optical integrator 182b. That is, a plurality of rectangular light source images elongated in the x1 direction are formed on the illumination pupil of the illumination optical system 182A.
  • the plurality of light source images formed on the illumination pupil of the illumination optical system 182A is not limited to the elongated rectangular shape, and may be, for example, an oval shape or an elliptical shape.
  • the light beams from the plurality of light source images formed on the illumination pupil of the illumination optical system 182A are condensed so as to be superimposed on the illuminated surface 82c via the Fourier transform optical system 182c. That is, the Fourier transform optical system 182c constitutes a condensing optical system which condenses the light flux from the plurality of light source images formed on the illumination pupil on the illuminated surface 82c.
  • the light beams passing through each wavefront dividing element 182ba form interference fringes in the y1 direction, and as shown in FIG. 41, a plurality of slit-shaped illumination fields 82ca elongated in the x1 direction are spaced apart in the y1 direction. It is formed.
  • the light source unit 82a has a light emitting unit whose length in the x1 direction is longer than that in the y1 direction, and its coherence is higher in the y1 direction than in the x1 direction.
  • a wavefront splitting type optical integrator 182b is used, but as shown in FIG. 42, a configuration using a diffractive optical element 182d instead of the optical integrator 182b is also possible.
  • the diffractive optical element 182 d is an optical element that diffracts the light from the light source unit 82 a and emits a plurality of light beams having discrete angles with respect to the optical axis AXi of the illumination optical system 182 B.
  • a diffractive optical element such as a Dammann diffraction grating (dammann diffraction grating) can be used.
  • the light from the light source 82a becomes a substantially parallel light flux through the collimator optical system 182a and is incident on the diffractive optical element 182d.
  • the light having passed through the diffractive optical element 182 d and a plurality of light fluxes having discrete angles with respect to the optical axis AXi are condensed at different positions on the illuminated surface 82 c by the Fourier transform optical system 182 c.
  • the Fourier transform optical system 182c constitutes a condensing optical system that condenses the plurality of light beams from the diffractive optical element 182d onto the illuminated surface 82c.
  • a plurality of slit-shaped illumination fields 82ca elongated in the x1 direction are formed at intervals in the y1 direction.
  • the diffractive optical surface of the diffractive optical element 182d is designed to form a plurality of slit-like illumination fields in the far-field region (far-field region) when substantially parallel incident light beams are incident.
  • a plurality of slit-shaped illumination areas formed in the far-field area (far-field area) are surfaces of a finite distance from the diffractive optical element, Typically, it is formed on the irradiated surface.
  • a plurality of slit-shaped illumination fields 82ca as shown in FIG. 41 are formed on the illuminated surface 82c.
  • the illuminated surface 82c is orthogonal to the optical axis AXi of the illumination optical systems 182A and 182B, it is possible to uniformly illuminate the illuminated surface 82c while forming a plurality of slit-shaped illumination areas 82ca as shown in FIG. It is relatively easy.
  • uniform illumination of the light receiving surface 84d of the pattern generator 84 from the oblique direction by the illumination system 82 is required.
  • FIG. 43 is a view for explaining the inconvenience that occurs when the illuminated surface 82c is non-perpendicular to the optical axis AXi in the illumination optical system 182A shown in FIG.
  • FIG. 43 shows the configuration from the optical integrator 182 b to the irradiated surface 82 c for clarity of the drawing, and the illustration of the collimator optical system 182 a is omitted.
  • the omission of the illustration of the collimator optical system 182a is the same in FIGS. 44 and 46 to 49 as well.
  • a position P3 at which a light beam group 303 emitted from a plurality of light source images in parallel with the optical axis AXi (emitted at a third angle) is collected coincides with the direction of the optical axis AXi.
  • the plane including the positions P1 to P3 is perpendicular to the optical axis AXi.
  • the condensing position P3 is on the irradiated surface 82c whose normal direction is inclined with respect to the optical axis AXi of the illumination optical system 182A
  • the condensing position P1 is on the rear side (or front side)
  • the condensing position P2 is located on the front side (or rear side) of the light receiving surface 82c.
  • the width of the slit-like illumination field 82ca formed at the light collecting position P3 of the illuminated surface 82c (the dimension in the y2 axis direction orthogonal to the x1 axis on the illuminated surface 82c: y2 axis is not shown)
  • the width of the slit-shaped illumination field 82ca formed at the position corresponding to the light collection positions P1 and P2 of the surface 82c to be irradiated may become large.
  • the illuminance of the slit-shaped illumination field 82ca formed at the positions corresponding to the focusing positions P1 and P2 is smaller than the illuminance of the slit-shaped illumination field 82ca formed at the condensing position P3.
  • the illuminated surface 82c can not be uniformly illuminated in terms of shape and illuminance.
  • the pupil intensity distribution related to the light flux reaching the light collecting positions P1 and P2 will be a pupil intensity distribution blurred compared to the pupil intensity distribution related to the light flux reaching the light collecting position P3.
  • the position of the condensing point of the light incident on the irradiation surface 82c should be close to the irradiation surface 82c, the irradiation surface 82c It is required to align the position of the light condensing point of the light incident on the light receiving surface 82c. In other words, it is required to make the plane defined by the condensing point of the light incident on the illuminated surface 82c coincide with the illuminated surface 82c.
  • FIG. 44 by placing a wedge prism 182e in the optical path between the Fourier transform optical system 182c and the illuminated surface 82c in the illumination optical system 182A shown in FIG. 43, the position of the condensing point approaches the illuminated surface 82c.
  • FIG. 44 by placing a wedge prism 182e in the optical path between the Fourier transform optical system 182c and the illuminated surface 82c in the illumination optical system 182A shown in FIG. 43, the position of the condensing point approaches the illuminated surface 82c.
  • the wedge prism 182e has a plane on the incident side orthogonal to the optical axis AXi and is a right angle having an index of refraction n and an included angle (apex angle) of ⁇ .
  • a triangular wedge prism 182 f is used. In this case, as shown in FIG. 45A, the illuminated surface 82c is inclined with respect to the extension axis AXx of the optical axis AXi of the illumination optical system by an amount corresponding to the depression angle ⁇ of the wedge prism 182f.
  • ⁇ ′ arcsin (n ⁇ sin ⁇ )
  • a wedge prism having a depression angle corresponding to the inclination of the illuminated surface 82c with respect to the optical axis AXi in the optical path between the Fourier transform optical system 182c and the illuminated surface 82c.
  • having a depression angle according to the inclination of the surface to be irradiated 82c with respect to the optical axis AXi may have a refractive index and a depression angle according to the inclination of the surface to be irradiated 82c with respect to the optical axis AXi.
  • the illumination optical system 182A brings the plane defined by the condensing point of each light beam closer to the illuminated surface 82c by the wedge prism 182e in the optical path between the Fourier transform optical system 182c and the illuminated surface 82c. Can.
  • the wedge prism 182e brings the position of the condensing point of the light incident on the illuminated surface 82c through the optical integrator 182b and the Fourier transform optical system 182c closer to the illuminated surface (and consequently the light receiving surface 84d of the pattern generator 84)
  • a focusing point adjusting member is configured.
  • the Fourier transform optical system 182c and the wedge prism 182e constitute a focusing optical system 182j for focusing the light flux from the plurality of light source images formed on the illumination pupil on the exit side of the optical integrator 182b onto the illuminated surface 82c. doing.
  • the wedge prism 182e as the focusing point adjusting member has a wedge angle corresponding to the inclination of the light receiving surface 82c with respect to the optical axis AXi of the illumination optical system 182A. Then, the wedge prism 182e is configured to make the position of the condensing point of each light flux approach the illuminated surface 82c, the illumination pupil of the first light flux emitted along the first direction from the illumination pupil on the exit side of the optical integrator 182b. And the light path length from the illumination pupil to the light receiving surface 82c, and the light path length from the illumination pupil to the light receiving surface 82c of the second light flux emitted from the illumination pupil along the second direction different from the first direction.
  • the thickness along the optical axis AXi of the illumination optical system 182A is the sheet of FIG.
  • a step plate 182g which changes stepwise in the vertical direction (y1 direction) of (y1z1 plane) can be used as a focusing point adjustment member.
  • the Fourier transform optical system 182c and the step plate 182g are configured to focus the light collecting optical system 182j for collecting the light flux from the plurality of light source images formed on the illumination pupil on the exit side of the optical integrator 182b.
  • the condensing point adjusting member can also be configured by combining the wedge prism 182 e and the step plate 182 g as needed.
  • the Fourier transform optical system in place of or in addition to the provision of the wedge prism 182e or the step plate 182g, the Fourier transform optical system so that the condensing point of light incident on the illuminated surface 82c approaches the illuminated surface 82c. It is also possible to eccentrically arrange 182c in the vertical direction (y1 direction) of the paper surface (y1z1 plane) of FIG. Alternatively, although not shown, the incident side surface of each of the wavefront dividing elements 182ba of the optical integrator 182b is set to the central method so that the positions of the light condensing points of the light source images approach the irradiated surface 82c. The line may be formed to be inclined with respect to the optical axis AXi of the illumination optical system 182A in the plane of FIG.
  • an illumination pupil space including the illumination pupil on the emission side of the optical integrator 182b in the light path between the optical integrator 182b and the Fourier transform optical system 182c in front of the Fourier transform optical system 182c.
  • a first aberration generating member 182ha that generates astigmatism and a second aberration generating member 182hb that generates coma are attached.
  • the first aberration generating member 182ha uses, for example, an aspheric optical surface defined by a Zernike function represented by Z5 to correct astigmatism generated due to the wedge prism 182e.
  • the second aberration generating member 182hb uses the aspheric optical surface defined by the Zernike function represented by Z7, for example, to correct the coma aberration generated due to the ⁇ prism 182e.
  • the Zernike function represented by Z5 is a function of the fifth term in the Zernike polynomial using a polar coordinate system
  • the Zernike function represented by Z7 is a function of the seventh term in the Zernike polynomial It is.
  • the first aberration generation member 182ha, the second aberration generation member 182hb, the Fourier transform optical system 182c, and the wedge prism 182e are a plurality of light source images formed in the illumination pupil on the exit side of the optical integrator 182b.
  • a condensing optical system 182 j is configured to condense the light flux from the light source on the light receiving surface 84 d of the pattern generator 84, which is the irradiated surface.
  • a haze prism 182e is used. It corrects both coma and astigmatism that are caused due to it.
  • the light condensed on the light receiving surface 84d of the pattern generator 84 which is the surface to be irradiated, forms a point image spot, and the width of each slit-like illumination field 82ca can be narrowed to a desired size and made uniform. it can.
  • the first aberration generation member 182ha and the second aberration generation member 182hb are provided in the illumination pupil space in the configuration shown in FIG. 48
  • the first aberration generation member 182ha and the second aberration generation member 182hb are separate spaces.
  • it may be provided between a plurality of optical members constituting the Fourier transform optical system 182c or between the Fourier transform optical system 182c and the illuminated surface 82c.
  • at least one optical surface of the plurality of optical members constituting the Fourier transform optical system 182c may be a surface shape that generates astigmatism, and an optical member having this optical surface may be used as the first aberration generation member 182ha.
  • At least one optical surface of the plurality of optical members constituting the Fourier transform optical system 182c has a surface shape for generating coma aberration, and the optical member having this optical surface may be used as the second aberration generation member 182hb.
  • the afocal optical system 182k arranged (or decenterable) is used. That is, as the second aberration correction member, the afocal optical system 182k further includes an illumination pupil on the exit side of the optical integrator 182b in the optical path between the optical integrator 182b and the Fourier transform optical system 182c. It is arranged in the pupil space.
  • the afocal optical system 182k further includes an illumination pupil on the exit side of the optical integrator 182b in the optical path between the optical integrator 182b and the Fourier transform optical system 182c. It is arranged in the pupil space.
  • the second aberration correction member 182k, the Fourier transform optical system 182c, and the wedge prism 182e are surfaces to be illuminated with light beams from a plurality of light source images formed on the illumination pupil on the exit side of the optical integrator 182b.
  • a condensing optical system 182 j for condensing light on the light receiving surface 84 d of the pattern generator 84 is configured.
  • the second aberration correction member consisting of the decentering afocal optical system 182k that generates coma aberration.
  • the light condensed on the light receiving surface 84d of the pattern generator 84 which is the irradiation surface, forms an elongated linear image spot in a direction (direction x1) orthogonal to the paper surface of FIG. It can be narrowed to a desired size and made uniform.
  • At least one of the optical members constituting the Fourier transform optical system 182c is decentered from the optical axis AXi, or with respect to the optical axis AXi It may be tilted to generate the required coma.
  • the decentering afocal optical system 182k shown in FIG. 49 may be used in combination with the second aberration correction member 182hb shown in FIG. 48.
  • the aberration correction member 182ha may be used in combination.
  • FIGS. 43, 44, and 46 to 49 the functions of the focusing point adjusting member and the aberration correcting member are described based on the illumination optical system 182A using the wavefront splitting type optical integrator 182b.
  • the above-described focusing point adjusting member and aberration correcting member can be applied to the illumination optical system 182B using the diffractive optical element 182d as well.
  • the wavefront-splitting optical integrator 182b in FIGS. 43, 44, and 46 to 49 may be replaced with a diffractive optical element 182d.
  • the illumination optical systems 182A and 182B include the first light beam (for example, the light beam group 301 in FIG. 43) emitted along the first direction from the illumination pupil on the exit side of the optical integrator 182b; 43 includes a focusing optical system 182 j for focusing the second light beam (for example, the light beam group 302 or 303 in FIG. 43) emitted along the second direction different from the one direction, and the normal is inclined with respect to the optical axis AXi
  • the light-receiving surface 84d of the pattern generator 84 arranged as described above is obliquely incident.
  • the focusing optical system 182 j has a focusing point adjusting member 182 e (such as 182 g) that makes the focusing position in the optical axis AXi direction of the first light flux different from the focusing position in the optical axis AXi direction of the second light flux.
  • the focusing optical system 182 j adjusts the focusing point to bring the plane including the focusing position in the optical axis AXi direction of the first light flux and the focusing position in the optical axis AXi direction of the second light flux closer to the irradiated surface. It has a member 182e.
  • the first light flux and the second light flux from the focusing optical system 182 j are focused at a second point different from the first point and the first point on the light receiving surface 84 d.
  • a wedge prism 182e having a depression angle corresponding to the inclination of the light receiving surface 84d with respect to the optical axis AXi can be used.
  • the wedge prism 182e has a function of reducing the difference between the optical path length of the first light beam from the illumination pupil on the exit side of the optical integrator 182b to the light receiving surface 84d and the optical path length of the second light beam from the illumination pupil to the light receiving surface 84d.
  • a step plate 182g in which the thickness along the optical axis AXi differs in a direction crossing the optical axis AXi (eg, y1 direction in FIG. 46) Can be used.
  • the condensing optical system 182 j includes an aberration correction member 182 h (or 182 k) that corrects an aberration generated due to a condensing point adjustment member such as the wedge prism 182 e or the step plate 182 g.
  • the aberration correction member 182h (182ha, 182hb) has an aspheric optical surface that generates at least one of coma and astigmatism.
  • the aberration correction member 182k has an afocal optical system decentered in a direction transverse to the optical axis AXi.
  • the condensing optical system 182 j is decentered with respect to the optical axis AXi so that the condensing position in the optical axis AXi direction of the first luminous flux and the condensing position in the optical axis AXi of the second luminous flux are different.
  • the center normal of the surface on the incident side of each wavefront dividing element 182ba of the optical integrator 182b is inclined with respect to the optical axis AXi at a predetermined surface (the y1z1 plane in FIG. 47).
  • the focusing position in the direction of the optical axis AXi of one light beam may be different from the focusing position in the direction of the optical axis AXi of the second light beam.
  • the illumination optical systems 182A and 182B condense the first light flux reaching the first position on the light receiving surface 84d of the pattern generator 84 and the second light flux reaching the second position on the light receiving surface 84d.
  • the light receiving surface 84d is arranged to be obliquely incident on the light receiving surface 84d that is disposed so that the normal is inclined with respect to the optical axis AXi.
  • the focusing optical system 182 j is a focusing point adjusting member that makes the focusing position in the direction of the optical axis AXi of the first light flux different from the focusing position in the direction of the optical axis AXi of the second light flux.
  • the illumination optical systems 182A and 182B have a first light flux emitted from the illumination pupil on the exit side of the optical integrator 182b along the first direction, and a second light flux different from the illumination pupil in the first direction.
  • Light condensing optical system 182 j which condenses the second light flux emitted along the direction, and the light condensing optical system 182 j is disposed in a space including the light receiving surface 84 d of the pattern generator 84, and the light of the first light flux
  • a focusing point adjusting member 182e (such as 182g) is provided to make the focusing position in the direction of the axis AXi different from the focusing position in the optical axis direction AXi of the second light flux.
  • the focusing optical system 182j makes the focusing position in the optical axis AXi direction of the first light beam different from the focusing position in the optical axis direction AXi of the second light beam. Since the member 182e (182g and the like) is provided, the condensing position of each light beam can be brought closer to the light receiving surface 84d of the pattern generator 84 by the action of the condensing point adjusting member 182e (182g and the like). It is possible to uniformly illuminate the light-receiving surface 84d disposed to be inclined with respect to the light-emitting surface, and thus to perform good electron beam processing, for example, electron beam exposure.
  • an aberration correction member that corrects an aberration caused due to the wedge prism 182e or the step plate 182g
  • the light source unit 82a, the illumination optical system 182A (or 182B), the pattern generator 84, and the projection optical system 86A (or 86B, 86C, 86D) are for emitting light to the photoelectric element 54.
  • the light irradiation device 80 is configured. That is, the illumination optical system 182A (or 182B) and the projection optical system 86A (or 86B, 86C, 86D) are optically connected with the pattern generator 84 interposed therebetween.
  • FIG. 50 schematically shows how the first to third types of projection optical systems 86A (86B, 86C) are connected to the illumination optical systems 182A (182B) according to a so-called V-shaped bending type.
  • the light from the illumination optical system 182A (182B) (not shown) is reflected by the mirror 98 for bending the optical path, and then obliquely illuminates the light receiving surface 84d of the pattern generator 84.
  • the light reflected by the light receiving surface 84d is reflected by the second light path bending mirror 99, and then irradiated to the photoelectric conversion surface 54a of the photoelectric element 54 through the projection optical system 86A (86B, 86C). .
  • the light path of light reflected by the mirror 98 and incident on the light receiving surface 84d and the light path of light reflected on the light receiving surface 84d and incident on the mirror 99 form a V-shape.
  • the mirror 99 is a deflection member disposed between the pattern generator 84 and the projection optical system 86A (86B, 86C).
  • the mirror 98 has a first reflecting surface disposed between the illumination optical system 182A (182B) and the pattern generator 84, and the mirror 99 is between the pattern generator 84 and the projection optical system 86A (86B, 86C).
  • the first reflection surface that bends the illumination light from the illumination optical system 182A (182B) to be incident on the pattern generator 84 deflects the light path of the illumination optical system non-perpendicularly, so the light receiving surface of the pattern generator 84
  • the surface to be illuminated is illuminated from a direction oblique to the normal to the light receiving surface (surface to be illuminated).
  • the second reflection surface for guiding a plurality of beams from the pattern generator 84 to the projection optical system 86A (86B, 86C) also deflects the optical path of the projection optical system non-perpendicularly.
  • FIG. 51 schematically shows how the fourth type of projection optical system 86D is connected to the illumination optical system 182A (182B) according to the V-shaped bending type.
  • FIG. 52 schematically shows how the first to third types of projection optical system 86A (86B, 86C) are connected to the illumination optical system 182A (182B) according to a so-called N-fold type.
  • the light from the illumination optical system 182A (182B) (not shown) is reflected by the mirror 98 for bending the optical path, and then obliquely illuminates the light receiving surface 84d of the pattern generator 84.
  • the light reflected by the light receiving surface 84d is incident on the projection optical system 86A (86B, 86C), and then is irradiated to the photoelectric conversion surface 54a of the photoelectric element 54.
  • An optical path of light incident on 86A (86B, 86C) forms an N-shape.
  • the mirror 98 is a deflection member disposed between the illumination optical system 182A (182B) and the pattern generator 84.
  • FIG. 53 schematically shows how the fourth type of projection optical system 86D is connected to the illumination optical system 182A (182B) according to the N-fold type.
  • the present invention can be suitably modified without departing from the scope and spirit of the invention which can be read from the claims and the entire specification, and an electron beam apparatus, an electron beam exposure apparatus and an electron beam with such modifications.
  • An inspection apparatus, an electron beam processing apparatus and a device manufacturing method using the electron beam apparatus are also included in the technical concept of the present invention.
  • Stage chamber 34 34 First vacuum chamber 50 Photoelectric capsule 52 Main body 54 Photoelectric element 58 Light shielding film 58a Aperture 58b Aperture 60 Photoelectric layer 62 O ring , 64: lid member, 66: vacuum-compatible actuator, 68: lid storage plate, 68c: circular opening, 70: electron beam optical system, 72: second vacuum chamber, 82: illumination system, 82b: molded optical system, 84 ... pattern generator, 86 ... projection optical system, 88 ... laser diode, 98 ... mirror, 100 ... exposure device, 102 ... circuit board, 102 a ... opening, 110 ... main controller, 112 ... extraction electrode, 134 ... base material, 136 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The present invention provides an electron beam device capable of minimizing wasted electrons that do not contribute to the processing of a target. The electron beam device, which irradiates a photoelectric element with light and irradiates the target with an electron beam generated by the photoelectric element, comprises: an illumination optical system that illuminates a first surface; a pattern generator that has a plurality of reflective elements arranged on the first surface and generates a plurality of light beams with the light from the illumination optical system; and a projection optical system for projecting the plurality of light beams from the pattern generator onto the photoelectric conversion surface of the photoelectric element. The illumination optical system includes a focusing optical system for converging a first beam emitted from an illumination pupil in a first direction and a second beam emitted from the illumination pupil in a second direction different from the fist direction, the illumination optical system obliquely illuminating the first surface that is arranged with the normal line tilted relative to the optical axis of the illumination optical system. The focusing optical system includes a focal point tuning member that establishes a focal position in the optical axis direction for the first beam different from a focal position in the optical axis direction for the second beam.

Description

電子ビーム装置、照明光学系、及びデバイス製造方法Electron beam apparatus, illumination optical system, and device manufacturing method
 本発明は、電子ビーム装置及びデバイス製造方法に係り、特に光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置、及び電子ビーム装置を用いるデバイス製造方法に関する。 The present invention relates to an electron beam apparatus and a device manufacturing method, and in particular to an electron beam apparatus which irradiates light to a photoelectric element and irradiates an electron generated from the photoelectric element to a target as an electron beam, and a device using the electron beam apparatus. It relates to the manufacturing method.
 近年、例えばArF光源を用いた液浸露光技術と、荷電粒子ビーム露光技術(例えば電子ビーム露光技術)とを相補的に利用するコンプリメンタリ・リソグラフィが、提案されている。コンプリメンタリ・リソグラフィでは、例えばArF光源を用いた液浸露光においてダブルパターニングなどを利用することで、単純なラインアンドスペースパターン(以下、適宜、L/Sパターンと略記する)を形成する。次いで、電子ビームを用いた露光を通じて、ラインパターンの切断、あるいはビアの形成を行う。 In recent years, for example, complementary lithography has been proposed in which an immersion exposure technique using an ArF light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) are used complementarily. In complementary lithography, for example, a simple line and space pattern (hereinafter, appropriately abbreviated as an L / S pattern) is formed by utilizing double patterning or the like in immersion exposure using an ArF light source. Next, line patterns are cut or vias are formed through exposure using an electron beam.
 コンプリメンタリ・リソグラフィでは、例えば複数のブランキング・アパーチャを用いてビームのオン・オフを行うマルチビーム光学系を備えた電子ビーム露光装置を用いることができる(例えば、特許文献1参照)。しかしながら、ブランキング・アパーチャ方式に限らず、電子ビーム露光装置の場合、改善すべき点が存在する。また、露光装置に限らず、電子ビームを用いてターゲットに対する加工若しくは処理、又は加工及び処理を行う装置、あるいは検査装置などでも、改善すべき点が存在する。 In complementary lithography, for example, an electron beam exposure apparatus provided with a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures can be used (see, for example, Patent Document 1). However, in the case of an electron beam exposure apparatus as well as the blanking aperture system, there are points to be improved. Further, there is a point to be improved not only in the exposure apparatus but also in an apparatus that performs processing or processing, processing or processing on the target using an electron beam, or an inspection apparatus.
米国特許公開第2015/0200074号公報U.S. Patent Publication No. 2015/0200074
 本発明の第1の態様によれば、光電素子に光を照射し、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置であって、
 第1面を照明する照明光学系と、
 前記第1面に配置された複数の反射素子を有し、前記照明光学系からの光で複数の光ビームを発生するパターンジェネレータと、
 前記パターンジェネレータからの前記複数の光ビームを前記光電素子の光電変換面に投影する投影光学系と、を備え、
 前記照明光学系は、照明瞳から第1方向に沿って射出される第1光束と、前記照明瞳から前記第1方向と異なる第2方向に沿って射出される第2光束とを集光する集光光学系を含み、前記照明光学系の光軸に対して法線が傾くように配置された前記第1面を斜入射照明し、
 前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を有する電子ビーム装置が、提供される。
According to a first aspect of the present invention, there is provided an electron beam apparatus which emits light to a photoelectric element and irradiates an electron beam generated from the photoelectric element to a target,
An illumination optical system for illuminating the first surface;
A pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
A projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
The illumination optical system condenses a first light beam emitted from an illumination pupil along a first direction and a second light beam emitted from the illumination pupil along a second direction different from the first direction. Oblique incident illumination is performed to the first surface, which includes a condensing optical system and is disposed such that the normal is inclined with respect to the optical axis of the illumination optical system;
In the electron beam apparatus, the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing position in the optical axis direction of the second light beam. Provided.
 本発明の第2の態様によれば、光電素子に光を照射し、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置であって、
 第1面を照明する照明光学系と、
 前記第1面に配置された複数の反射素子を有し、前記照明光学系からの光で複数の光ビームを発生するパターンジェネレータと、
 前記パターンジェネレータからの前記複数の光ビームを前記光電素子の光電変換面に投影する投影光学系と、を備え、
 前記照明光学系は、前記第1面上の第1位置に達する第1光束と、前記第1面上の第2位置に達する第2光束とを集光する集光光学系を含み、前記照明光学系の光軸に対して法線が傾くように配置された前記第1面を斜入射照明し、
 前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を有する電子ビーム装置が、提供される。
According to a second aspect of the present invention, there is provided an electron beam apparatus which emits light to a photoelectric element and irradiates an electron beam generated from the photoelectric element to a target,
An illumination optical system for illuminating the first surface;
A pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
A projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
The illumination optical system includes a condensing optical system which condenses a first luminous flux reaching a first position on the first surface and a second luminous flux reaching a second position on the first surface, the illumination Oblique illumination of the first surface, which is arranged such that the normal is inclined with respect to the optical axis of the optical system,
In the electron beam apparatus, the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing position in the optical axis direction of the second light beam. Provided.
 本発明の第3の態様によれば、光電素子に光を照射し、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置であって、
 第1面を照明する照明光学系と、
 前記第1面に配置された複数の反射素子を有し、前記照明光学系からの光で複数の光ビームを発生するパターンジェネレータと、
 前記パターンジェネレータからの前記複数の光ビームを前記光電素子の光電変換面に投影する投影光学系と、を備え、
 前記照明光学系は、照明瞳から第1方向に沿って射出される第1光束と、前記照明瞳から前記第1方向と異なる第2方向に沿って射出される第2光束とを集光する集光光学系を含み、
 前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を有する電子ビーム装置が、提供される。
According to a third aspect of the present invention, there is provided an electron beam apparatus which emits light to a photoelectric element and irradiates an electron beam generated from the photoelectric element to a target,
An illumination optical system for illuminating the first surface;
A pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
A projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
The illumination optical system condenses a first light beam emitted from an illumination pupil along a first direction and a second light beam emitted from the illumination pupil along a second direction different from the first direction. Including focusing optics,
In the electron beam apparatus, the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing position in the optical axis direction of the second light beam. Provided.
 本発明の第4の態様によれば、光電素子に光を照射し、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置であって、
 第1面を照明する照明光学系と、
 前記第1面に配置された複数の反射素子を有し、前記照明光学系からの光で複数の光ビームを発生するパターンジェネレータと、
 前記パターンジェネレータからの前記複数の光ビームを前記光電素子の光電変換面に投影する投影光学系と、を備え、
 前記照明光学系は、前記投影光学系の光軸に対して法線が傾くように配置された前記第1面を斜入射照明する電子ビーム装置が、提供される。
According to a fourth aspect of the present invention, there is provided an electron beam apparatus which emits light to a photoelectric element and irradiates an electron beam generated from the photoelectric element to a target,
An illumination optical system for illuminating the first surface;
A pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
A projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
The illumination optical system may be provided with an electron beam apparatus for obliquely incidentally illuminating the first surface arranged such that a normal is inclined with respect to an optical axis of the projection optical system.
 本発明の第5の態様によれば、光源からの光により被照射面を照明する照明光学系において、
 前記照明光学系の光軸に対して法線が傾くように配置された前記被照射面上の第1位置および第2位置に、照明瞳から第1方向に沿って射出される第1光束と、前記照明瞳から前記第1方向と異なる第2方向に沿って射出される第2光束とをそれぞれ集光する集光光学系を含み、
 前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を備える照明光学系が、提供される。
According to a fifth aspect of the present invention, in an illumination optical system for illuminating a surface to be illuminated with light from a light source,
A first light beam emitted from the illumination pupil along a first direction to a first position and a second position on the surface to be illuminated, the normal position of which is arranged to be inclined with respect to the optical axis of the illumination optical system; A focusing optical system for focusing the second light flux emitted from the illumination pupil along a second direction different from the first direction;
The illumination optical system includes a condensing point adjusting member which makes the condensing position of the first luminous flux different from the condensing position of the second luminous flux in the optical axis direction. Provided.
 本発明の第6の態様によれば、光源からの光により被照射面を照明する照明光学系において、
 照明瞳から射出されて、前記照明光学系の光軸に対して法線が傾くように配置された前記被照射面上の第1位置に達する第1光束と、前記照明瞳から射出されて前記被照射面上の第2位置に達する第2光束とを集光する集光光学系を含み、
 前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を備える照明光学系が、提供される。
According to a sixth aspect of the present invention, in an illumination optical system for illuminating a surface to be illuminated with light from a light source,
A first light beam which is emitted from the illumination pupil and reaches a first position on the surface to be illuminated which is disposed so that the normal is inclined with respect to the optical axis of the illumination optical system; And a focusing optical system for focusing the second luminous flux reaching the second position on the illuminated surface,
The illumination optical system includes a condensing point adjusting member which makes the condensing position of the first luminous flux different from the condensing position of the second luminous flux in the optical axis direction. Provided.
 本発明の第7の態様によれば、光源からの光により被照射面を照明する照明光学系において、
 前記被照射面上の第1位置および第2位置に、照明瞳から第1方向に沿って射出される第1光束と、前記照明瞳から前記第1方向と異なる第2方向に沿って射出される第2光束とをそれぞれ集光する集光光学系を含み、
 前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を備える照明光学系が、提供される。
According to a seventh aspect of the present invention, in an illumination optical system for illuminating a surface to be illuminated with light from a light source,
The first light flux emitted along the first direction from the illumination pupil and the second position different from the first direction are emitted from the illumination pupil to the first position and the second position on the illuminated surface. And a focusing optical system for focusing each of the
The illumination optical system includes a condensing point adjusting member which makes the condensing position of the first luminous flux different from the condensing position of the second luminous flux in the optical axis direction. Provided.
 本発明の第8の態様によれば、光源からの光により被照射面を照明する照明光学系において、
 照明瞳から射出されて、前記被照射面上の第1位置に達する第1光束と、前記照明瞳から射出されて前記被照射面上の第2位置に達する第2光束とを集光する集光光学系を含み、
 前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を備える照明光学系が、提供される。
According to an eighth aspect of the present invention, in an illumination optical system for illuminating a surface to be illuminated with light from a light source,
A collector that collects a first light beam emitted from an illumination pupil and reaching a first position on the illuminated surface, and a second light beam emitted from the illumination pupil and reaching a second position on the illuminated surface Including optical optics,
The illumination optical system includes a condensing point adjusting member which makes the condensing position of the first luminous flux different from the condensing position of the second luminous flux in the optical axis direction. Provided.
 本発明の第9の態様によれば、光源からの光により被照射面を照明する照明光学系において、
 前記光源からの光の光路中に並列的に配置された複数の波面分割要素を有し、第1方向に細長い複数の光源像を照明瞳に形成するオプティカルインテグレータと、
 前記複数の光源像からの光束を前記被照射面に集光する集光光学系と、を備え、
 前記被照射面において前記第1方向と直交する第2方向に干渉縞を形成することにより、前記第1方向に細長い矩形状の照野を前記第2方向に間隔を隔てて複数形成する照明光学系が、提供される。
According to a ninth aspect of the present invention, in an illumination optical system for illuminating a surface to be illuminated with light from a light source,
An optical integrator having a plurality of wavefront splitting elements disposed in parallel in an optical path of light from the light source and forming a plurality of light source images elongated in a first direction in an illumination pupil;
And a condensing optical system that condenses light fluxes from the plurality of light source images on the surface to be illuminated,
An illumination optical system for forming a plurality of rectangular illumination fields elongated in the first direction at intervals in the second direction by forming interference fringes in the second direction orthogonal to the first direction on the surface to be illuminated. A system is provided.
 本発明の第10の態様によれば、第5の態様、第6の態様、第7の態様、第8の態様、または第9の態様の照明光学系と、
 個別に制御可能な複数の反射素子を有するパターンジェネレータと、
 前記複数の反射素子が配置された受光面と光電素子の光電変換面とを光学的に共役に配置する投影光学系と、を備え、
 前記照明光学系により前記被照射面に配置された前記受光面を斜入射照明し、前記投影光学系を介して前記受光面からの光を前記光電素子に照射して、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置が、提供される。
According to a tenth aspect of the present invention, there is provided the illumination optical system of the fifth aspect, the sixth aspect, the seventh aspect, the eighth aspect or the ninth aspect;
A pattern generator having a plurality of individually controllable reflective elements;
And a projection optical system in which a light receiving surface on which the plurality of reflective elements are disposed and a photoelectric conversion surface of a photoelectric element are optically conjugated.
The light receiving surface disposed on the light receiving surface is obliquely incident illuminated by the illumination optical system, and light from the light receiving surface is emitted to the photoelectric element through the projection optical system to generate light from the photoelectric element An electron beam apparatus for irradiating an electron beam onto a target is provided.
 本発明の第11の態様によれば、リソグラフィ工程を含むデバイス製造方法であって、
 前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、
 第1の態様、第2の態様、第3の態様、第4の態様、または第10の態様の電子ビーム装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法が、提供される。
According to an eleventh aspect of the present invention, there is provided a device manufacturing method comprising a lithography process, comprising:
Forming the line and space pattern on the target;
Using the electron beam apparatus of the first aspect, the second aspect, the third aspect, the fourth aspect or the tenth aspect, cutting of a line pattern constituting the line and space pattern A device manufacturing method is provided that includes:
第1の実施形態に係る露光装置の構成を概略的に示す図である。FIG. 1 schematically shows a configuration of an exposure apparatus according to a first embodiment. 図1の電子ビーム光学ユニットを断面して示す斜視図である。It is a perspective view which shows the electron beam optical unit of FIG. 1 in cross section. 電子ビーム光学ユニットを示す縦断面である。It is a longitudinal cross section which shows an electron beam optical unit. 図4(A)~(C)は、光電カプセルの構成及び光電カプセルメーカーの工場内での蓋部材の本体部に対する装着の手順を説明するための図(その1~その3)である。FIGS. 4A to 4C are diagrams (parts 1 to 3) for describing the configuration of the photoelectric capsule and the procedure for attaching the lid member to the main body of the photoelectric capsule manufacturer in a factory. 電子ビーム光学ユニットの組み立て手順の一部について説明するための図(その1)である。FIG. 16 is a diagram (part 1) for describing a part of the assembly procedure of the electron beam optical unit; 電子ビーム光学ユニットの組み立て手順の一部について説明するための図(その2)である。It is a figure (2) for demonstrating a part of assembly procedure of an electron beam optical unit. 電子ビーム光学ユニットの組み立て手順の一部について説明するための図(その3)である。FIG. 17 is a third diagram illustrating the part of the assembly procedure of the electron beam optical unit; 図8(A)は光電カプセルに設けられた光電素子を示す一部省略した縦断面図、図8(B)は光電素子を示す一部省略した平面図である。FIG. 8A is a partly omitted longitudinal sectional view showing a photoelectric device provided in a photoelectric capsule, and FIG. 8B is a partly omitted plan view showing the photoelectric device. 蓋収納プレートを示す一部省略した平面図である。It is the partially omitted top view which shows a lid storage plate. 光学ユニット内の複数のパターン投射装置を、電子ビーム光学ユニットとともに示す図である。FIG. 5 shows a plurality of pattern projection devices in an optical unit with an electron beam optical unit. 図11(A)は、+X方向から見た光照射装置の構成を示す図、図11(B)は、-Y方向から見た光照射装置の構成を示す図である。FIG. 11A is a view showing the configuration of the light irradiation apparatus as viewed from the + X direction, and FIG. 11B is a view showing the configuration of the light irradiation apparatus as viewed from the −Y direction. 図12(A)は、光回折型ライトバルブを示す斜視図、図12(B)は、光回折型ライトバルブを示す側面図である。FIG. 12A is a perspective view showing a light diffraction type light valve, and FIG. 12B is a side view showing the light diffraction type light valve. パターンジェネレータを示す平面図である。It is a top view which shows a pattern generator. 図14(A)は、+X方向から見た電子ビーム光学系の構成を示す図、図14(B)は、-Y方向から見た電子ビーム光学系の構成を示す図である。FIG. 14A is a view showing the configuration of the electron beam optical system as viewed from the + X direction, and FIG. 14B is a view showing the configuration of the electron beam optical system as viewed from the −Y direction. 図15(A)~図15(C)は、第1静電レンズによるX軸方向及びY軸方向に関する縮小倍率の補正について説明するための図である。FIGS. 15A to 15C are diagrams for explaining the correction of the reduction ratio in the X-axis direction and the Y-axis direction by the first electrostatic lens. ベースプレートに吊り下げ状態で支持された45の電子ビーム光学系の外観を示す斜視図である。It is a perspective view which shows the external appearance of the 45 electron beam optical system supported by the base plate in the suspended state. パターンジェネレータの受光面上でのレーザビームの照射領域と、光電素子の面上でのレーザビームの照射領域と、像面(ウエハ面)上での電子ビームの照射領域(露光領域)との対応関係を示す図である。Correspondence between the irradiation area of the laser beam on the light receiving surface of the pattern generator, the irradiation area of the laser beam on the surface of the photoelectric element, and the irradiation area (exposure area) of the electron beam on the image surface (wafer surface) It is a figure which shows a relation. 露光装置の制御系を主として構成する主制御装置の入出力関係を示すブロック図である。It is a block diagram which shows the input-output relationship of the main control apparatus which mainly comprises the control system of exposure apparatus. 正方形フィールドと比べた矩形フィールドのメリットについて説明するための図である。It is a figure for demonstrating the merit of a rectangular field compared with a square field. 図20(A)及び図20(B)は、光学系起因のブラー及びレジストブラーによって生じるカットパターンの形状変化(4隅の丸まり)の補正について説明するための図である。FIG. 20A and FIG. 20B are diagrams for explaining the correction of the shape change (rounding of four corners) of the cut pattern caused by the blur caused by the optical system and the resist blur. 図21(A)及び図21(B)は、複数の電子ビーム光学系に共通のディストーションの補正について説明するための図である。FIGS. 21A and 21B are diagrams for explaining the correction of distortion common to a plurality of electron beam optical systems. バックアップ用のリボン列を有するパターンジェネレータの一例を示す平面図である。It is a top view showing an example of a pattern generator which has a ribbon row for backup. 図23(A)及び図23(B)は、補正用のリボン列について説明するための図である。FIGS. 23A and 23B are diagrams for explaining a ribbon array for correction. 図24(A)~図24(D)は、光学パターン形成ユニットの種々のタイプの構成例を示す図である。FIGS. 24 (A) to 24 (D) are diagrams showing configuration examples of various types of optical pattern forming units. 図25(A)は、アパーチャを使用しない方式を示す説明図、図25(B)は、アパーチャを使用する方式を示す説明図である。FIG. 25 (A) is an explanatory view showing a method without using an aperture, and FIG. 25 (B) is an explanatory view showing a method using an aperture. 第2の実施形態に係る露光装置の構成を概略的に示す図である。It is a figure showing roughly the composition of the exposure device concerning a 2nd embodiment. 第2の実施形態に係る露光装置の1つの電子ビーム光学系に対応する、筐体の内部の構成を示す図である。It is a figure which shows the structure inside the housing | casing corresponding to one electron beam optical system of the exposure apparatus which concerns on 2nd Embodiment. 図28(A)~図28(E)は、アパーチャ一体型光電素子の種々の構成例を示す図である。FIGS. 28A to 28E are views showing various configuration examples of the aperture integrated photoelectric device. 図29は、電子ビーム光学系が収差として有する像面湾曲を補償する方法について説明するための図である。FIG. 29 is a diagram for describing a method of compensating a field curvature which an electron beam optical system has as an aberration. 1列置きにピッチが異なるアパーチャ列が形成されたマルチピッチ型のアパーチャ一体型光電素子の一例を示す図である。It is a figure which shows an example of the multi-pitch type aperture integrated photoelectric element in which the aperture row | line | column from which a pitch differs is formed every other row. 図31(A)~図31(C)は、図30のアパーチャ一体型光電素子を用いてピッチが異なるラインパターンの切断用のカットパターンを形成する手順を示す図である。31 (A) to 31 (C) are diagrams showing a procedure for forming a cut pattern for cutting line patterns having different pitches by using the aperture integrated photoelectric device of FIG. 図32(A)は、アパーチャ別体型光電素子の構成の一例について説明するための図、図32(B)~図32(E)は、アパーチャ板の種々の構成例を示す図である。FIG. 32A is a view for explaining an example of the configuration of the separate aperture type photoelectric device, and FIGS. 32B to 32E are views showing various configuration examples of the aperture plate. 第1のタイプの構成にしたがう投影光学系の構成を概略的に示す図である。FIG. 1 schematically shows a configuration of a projection optical system according to a first type of configuration. 第2のタイプの構成にしたがう投影光学系の構成を概略的に示す図である。FIG. 6 schematically shows a configuration of a projection optical system according to a second type of configuration. 第1および第2のタイプの構成においてコマ収差が発生することを説明する図である。It is a figure explaining that a coma aberration generate | occur | produces in the 1st and 2nd type structure. 第1および第2のタイプの構成においてコマ収差を補正する第1の手法を説明する図である。It is a figure explaining the 1st method of correcting coma aberration in composition of the 1st and 2nd type. 第1および第2のタイプの構成においてコマ収差を補正する第2の手法を説明する図である。It is a figure explaining the 2nd method of correcting coma aberration in composition of the 1st and 2nd type. 第3のタイプの構成にしたがう投影光学系の構成を概略的に示す図である。It is a figure which shows roughly the structure of the projection optical system according to the structure of a 3rd type. 第4のタイプの構成にしたがう投影光学系の構成を概略的に示す図である。It is a figure which shows roughly the structure of the projection optical system according to the structure of a 4th type. 波面分割型のオプティカルインテグレータを用いた照明光学系の基本構成を概略的に示す図である。It is a figure which shows roughly the basic composition of the illumination optical system using the optical integrator of a wave-front division | segmentation type | mold. 図40の照明光学系により被照射面に形成される照度分布を概略的に示す図である。It is a figure which shows roughly the illuminance distribution formed in a to-be-irradiated surface by the illumination optical system of FIG. 回折光学素子を用いた照明光学系の基本構成を概略的に示す図である。It is a figure which shows roughly the basic composition of the illumination optical system which used the diffractive optical element. 図40に示す照明光学系において被照射面が光軸に対して非垂直な場合に発生する不都合を説明する図である。FIG. 41 is a diagram for explaining a problem that occurs when the surface to be illuminated is not perpendicular to the optical axis in the illumination optical system shown in FIG. 40. 図40に示す照明光学系において集光点調整部材として楔プリズムを用いる構成例を概略的に示す図である。It is a figure which shows roughly the example of a structure using a wedge prism as a condensing point adjustment member in the illumination optical system shown in FIG. (a)および(b)は直角三角形状の楔プリズムの作用を説明する図である。(A) And (b) is a figure explaining the effect | action of the wedge prism of right-angled triangle shape. 集光点調整部材として段差板を用いる構成例を概略的に示す図である。It is a figure showing roughly the example of composition using a level difference board as a condensing point adjustment member. 集光点調整部材として偏心配置されたフーリエ変換光学系を用いる構成例を概略的に示す図である。It is a figure showing roughly the example of composition using the Fourier-transform optical system by which eccentric arrangement was carried out as a condensing point adjustment member. 楔プリズムに起因して発生する収差を補正する第1の収差補正部材について説明する図である。It is a figure explaining the 1st Osamu difference amendment member which amends the Osamu difference which arises from a beard prism. 楔プリズムに起因して発生する収差を補正する第2の収差補正部材について説明する図である。It is a figure explaining the 2nd Osamu difference amendment member which amends the Osamu difference which arises from a beard prism. V字折り曲げタイプにしたがって第1~第3タイプの投影光学系を照明光学系に接続した様子を概略的に示す図である。It is a figure which shows roughly a mode that the 1st-3rd type projection optical system was connected to the illumination optical system according to V-shaped bending type. V字折り曲げタイプにしたがって第4タイプの投影光学系を照明光学系に接続した様子を概略的に示す図である。It is a figure which shows roughly a mode that the 4th type projection optical system was connected to the illumination optical system according to V-shaped bending type. N字折り曲げタイプにしたがって第1~第3タイプの投影光学系を照明光学系に接続した様子を概略的に示す図である。It is a figure which shows roughly a mode that the 1st-3rd type projection optical system was connected to the illumination optical system according to N character bending type. N字折り曲げタイプにしたがって第4タイプの投影光学系を照明光学系に接続した様子を概略的に示す図である。It is a figure which shows roughly a mode that the 4th type projection optical system was connected to the illumination optical system according to N-shaped bending type.
《第1の実施形態》
 以下、第1の実施形態について、図1~図25に基づいて説明する。図1には、第1の実施形態に係る露光装置100の構成が概略的に示されている。露光装置100は、後述するように複数の電子ビーム光学系を備えているので、以下、電子ビーム光学系の光軸に平行にZ軸を取り、Z軸に垂直な平面内で後述する露光時にウエハWが移動される走査方向をY軸方向とし、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸及びZ軸回りの回転(傾斜)方向を、それぞれθx、θy及びθz方向として、説明を行う。
First Embodiment
Hereinafter, the first embodiment will be described based on FIGS. 1 to 25. FIG. FIG. 1 schematically shows the structure of an exposure apparatus 100 according to the first embodiment. Since the exposure apparatus 100 is provided with a plurality of electron beam optical systems as described later, hereinafter, the Z axis is parallel to the optical axis of the electron beam optical system, and the exposure will be described later in a plane perpendicular to the Z axis. The scanning direction in which the wafer W is moved is taken as the Y-axis direction, the direction orthogonal to the Z-axis and Y-axis is taken as the X-axis direction, and the rotational (tilting) directions about the X-axis, Y-axis and Z-axis are respectively θx, θy The description will be made as the and θz directions.
 露光装置100は、クリーンルームの床面F上に設置されたステージチャンバ10と、ステージチャンバ10の内部の露光室12内に配置されたステージシステム14と、床面F上でフレーム16に支持され、ステージシステム14の上方に配置された光学システム18と、を備えている。 The exposure apparatus 100 is supported by the stage chamber 10 installed on the floor surface F of the clean room, the stage system 14 disposed in the exposure chamber 12 inside the stage chamber 10, and the frame 16 on the floor surface F. And an optical system 18 disposed above the stage system 14.
 ステージチャンバ10は、図1では、X軸方向の両端部の図示が省略されているが、その内部を真空引き可能な真空チャンバである。ステージチャンバ10は、床面F上に配置されたXY平面に平行な底壁10aと、ステージチャンバ10の上壁(天井壁)を兼ねる前述のフレーム16と、底壁10aの周囲を取り囲むとともに、フレーム16を下方から水平に支持する周壁10b(図1ではそのうちの+Y側部分の一部のみ図示)とを備えている。フレーム16及び底壁10aは、ともに平面視矩形の板部材から成り、フレーム16にはその中央部の近傍に平面視円形の開口16aが形成されている。開口16a内に光学システム18の外観が段付き円柱状の電子ビーム光学ユニット18Aの筐体19の直径が小さい第2部分19bが上方から挿入され、筐体19の直径が大きい第1部分19aが、その開口16aの周囲のフレーム16の上面に下方から支持されている。図示は省略されているが、開口16aの内周面と、筐体19の第2部分19bとの間は、シール部材によってシールされている。ステージチャンバ10の底壁10a上にステージシステム14が配置されている。 The stage chamber 10 is a vacuum chamber capable of evacuating the inside thereof although illustration of both end portions in the X-axis direction is omitted in FIG. 1. The stage chamber 10 includes a bottom wall 10a parallel to the XY plane disposed on the floor surface F, the above-described frame 16 which doubles as an upper wall (ceiling wall) of the stage chamber 10, and a periphery of the bottom wall 10a. A peripheral wall 10b (only a part of the + Y side portion thereof is shown in FIG. 1) for supporting the frame 16 horizontally from below is provided. The frame 16 and the bottom wall 10a are both formed of a plate member having a rectangular shape in a plan view, and the frame 16 is formed with an opening 16a having a circular shape in a plan view in the vicinity of the central portion thereof. The second portion 19b having a small diameter of the casing 19 of the stepped electron beam optical unit 18A with a stepped external appearance of the optical system 18 is inserted into the opening 16a from above, and the first portion 19a having a large diameter of the casing 19 is , Is supported from below on the upper surface of the frame 16 around the opening 16a. Although illustration is omitted, a seal member seals between the inner circumferential surface of the opening 16 a and the second portion 19 b of the housing 19. A stage system 14 is disposed on the bottom wall 10 a of the stage chamber 10.
 ステージシステム14は、底壁10a上に複数の防振部材20を介して支持された定盤22と、定盤22上で重量キャンセル装置24に支持され、X軸方向及びY軸方向にそれぞれ所定のストローク、例えば50mmで移動可能であるとともに、残りの4自由度方向(Z軸、θx、θy及びθz方向)に微動可能なウエハステージWSTと、ウエハステージWSTを駆動するステージ駆動系26(図1ではそのうちの一部のみ図示、図18参照)と、ウエハステージWSTの6自由度方向の位置情報を計測する位置計測系28(図1では不図示、図18参照)と、を備えている。ウエハステージWSTは、その上面に設けられた不図示の静電チャックを介してウエハWを吸着し、保持している。 The stage system 14 is supported by a platen 22 supported on the bottom wall 10a via a plurality of vibration isolation members 20, and supported by the weight cancellation device 24 on the platen 22 and is predetermined in the X-axis direction and the Y-axis direction. The wafer stage WST is movable with a stroke of, for example, 50 mm, and can be finely moved in the remaining four degrees of freedom (Z-axis, .theta.x, .theta.y and .theta.z directions), and a stage drive system 26 (FIG. In part 1, only part of them is shown (see FIG. 18) and position measurement system 28 (not shown in FIG. 1, refer to FIG. 18) for measuring positional information in the direction of 6 degrees of freedom of wafer stage WST. . Wafer stage WST adsorbs and holds wafer W via an electrostatic chuck (not shown) provided on the upper surface thereof.
 ウエハステージWSTは、図1に示されるように、XZ断面矩形枠状の部材から成り、その内部(中空部)の底面上にYZ断面矩形枠状のヨークと磁石(不図示)とを有するモータ30の可動子30aが一体的に固定され、その可動子30aの内部(中空部)にY軸方向に延びるコイルユニットから成るモータ30の固定子30bが挿入されている。固定子30bは、その長手方向の両端が、定盤22上でX軸方向に移動する不図示のXステージに接続されている。Xステージは、磁束漏れが生じない一軸駆動機構、例えばボールねじを用いた送りねじ機構によって構成されるXステージ駆動系32(図18参照)によって、ウエハステージWSTと一体でX軸方向に所定ストロークで駆動される。なお、Xステージ駆動系32を、駆動源として超音波モータを備えた一軸駆動機構によって構成しても良い。いずれにしても、磁束漏れに起因する磁場変動が電子ビームの位置決めに与える影響は無視できるレベルである。 As shown in FIG. 1, wafer stage WST is a motor having XZ cross section rectangular frame shaped members, and having YZ cross section rectangular frame shaped yoke and magnet (not shown) on the bottom of the inside (hollow portion) thereof. The 30 movers 30a are integrally fixed, and a stator 30b of a motor 30 formed of a coil unit extending in the Y-axis direction is inserted into the inside (hollow portion) of the mover 30a. Both ends in the longitudinal direction of the stator 30 b are connected to an X stage (not shown) that moves in the X axis direction on the surface plate 22. The X stage has a predetermined stroke in the X-axis direction integrally with the wafer stage WST by an X-stage drive system 32 (see FIG. 18) configured by a single-axis drive mechanism without magnetic flux leakage, for example, a feed screw mechanism using a ball screw. Driven by The X stage drive system 32 may be configured by a uniaxial drive mechanism provided with an ultrasonic motor as a drive source. In any case, the influence of the magnetic field fluctuation due to the magnetic flux leakage on the positioning of the electron beam is negligible.
 モータ30は、可動子30aを固定子30bに対して、Y軸方向に所定ストローク、例えば50mmで移動可能で、かつX軸方向、Z軸方向、θx方向、θy方向及びθz方向に微小駆動可能な閉磁界型かつムービングマグネット型のモータである。本実施形態では、モータ30によってウエハステージWSTを6自由度方向に駆動するウエハステージ駆動系が構成されている。以下、ウエハステージ駆動系をモータ30と同一の符号を用いて、ウエハステージ駆動系30と表記する。 The motor 30 can move the mover 30a in the Y-axis direction with a predetermined stroke, for example, 50 mm, relative to the stator 30b, and can finely drive the X-axis direction, the Z-axis direction, the θx direction, the θy direction, and the θz direction Closed magnetic field type and moving magnet type motor. In the present embodiment, a wafer stage drive system that drives wafer stage WST in the direction of six degrees of freedom by motor 30 is configured. Hereinafter, the wafer stage drive system will be referred to as wafer stage drive system 30 using the same reference numerals as motor 30.
 Xステージ駆動系32とウエハステージ駆動系30とによって、ウエハステージWSTをX軸方向及びY軸方向にそれぞれ所定のストローク、例えば50mmで駆動するとともに、残りの4自由度方向(Z軸、θx、θy及びθz方向)に微小駆動する前述のステージ駆動系26が構成されている。Xステージ駆動系32及びウエハステージ駆動系30は、主制御装置110によって制御される(図18参照)。 The X stage drive system 32 and the wafer stage drive system 30 drive the wafer stage WST in the X-axis direction and the Y-axis direction with a predetermined stroke, for example, 50 mm, and the remaining four degrees of freedom (Z-axis, θx, The above-described stage drive system 26 is finely driven in the θy and θz directions). The X stage drive system 32 and the wafer stage drive system 30 are controlled by the main controller 110 (see FIG. 18).
 モータ30の上面及びX軸方向の両側面を覆う状態でXZ断面逆U字状の磁気シールド部材(不図示)が、不図示のXステージのX軸方向の両端部に設けられた一対の凸部間に架設されている。この磁気シールド部材は、可動子30aの固定子30bに対する移動を妨げることがない状態で、ウエハステージWSTの中空部内に挿入されている。磁気シールド部材は、モータ30の上面及び側面を、可動子30aの移動ストロークの全長に渡って覆っており、かつXステージに固定されているので、ウエハステージWST及びXステージの移動範囲の全域で、上方(後述する電子ビーム光学系側)への磁束の漏れをほぼ確実に防止することができる。 A magnetic shield member (not shown) with an inverted U-shaped XZ cross section is provided on both ends of the X stage in the X axis direction (not shown) so as to cover the upper surface of the motor 30 and both side surfaces in the X axis direction. It is constructed between the departments. The magnetic shield member is inserted into the hollow portion of wafer stage WST without interfering with the movement of mover 30a relative to stator 30b. The magnetic shield member covers the upper surface and the side surface of motor 30 over the entire length of the moving stroke of mover 30a and is fixed to the X stage, so that the entire range of movement of wafer stage WST and X stage is Leakage of the magnetic flux to the upper side (the electron beam optical system side described later) can be almost certainly prevented.
 重量キャンセル装置24は、ウエハステージWST下面に上端が接続された金属製のベローズ型空気ばね(以下、空気ばねと略記する)24aと、空気ばね24aの下端に接続された平板状の板部材から成るベーススライダ24bと、を有している。ベーススライダ24bには、空気ばね24a内部の空気を、定盤22の上面に噴き出す軸受部(不図示)が設けられ、軸受部から噴出される加圧空気の軸受面と定盤22上面との間の静圧(隙間内圧力)により、重量キャンセル装置24、ウエハステージWST(可動子30aを含む)及びウエハWの自重が支持されている。なお、空気ばね24aには、ウエハステージWSTに接続された不図示の配管を介して圧縮空気が供給されている。ベーススライダ24bは、一種の差動排気型の空気静圧軸受を介して定盤22上に非接触で支持され、軸受部から定盤22に向かって噴出された空気が、周囲に(露光室内に)漏れ出すことが防止されている。なお、実際には、ウエハステージWSTの底面には、空気ばね24aをY軸方向に挟んで一対のピラーが設けられ、ピラーの下端に設けられた板ばねが空気ばね24aに接続されている。 The weight cancellation device 24 includes a metal bellows type air spring (hereinafter abbreviated as an air spring) 24a whose upper end is connected to the lower surface of the wafer stage WST and a flat plate member connected to the lower end of the air spring 24a. And a base slider 24b. The base slider 24b is provided with a bearing (not shown) for spouting the air inside the air spring 24a to the upper surface of the platen 22, and the bearing surface of the pressurized air ejected from the bearing and the upper surface of the platen 22. The weight cancellation device 24, the wafer stage WST (including the mover 30a), and the own weight of the wafer W are supported by the static pressure (pressure in the gap) between them. Note that compressed air is supplied to the air spring 24 a through a pipe (not shown) connected to the wafer stage WST. The base slider 24b is supported in a non-contact manner on the surface plate 22 via a kind of differential pumping type of static air bearing, and the air ejected toward the surface plate 22 from the bearing portion ) Are prevented from leaking out. Actually, on the bottom surface of wafer stage WST, a pair of pillars are provided sandwiching air spring 24a in the Y-axis direction, and a plate spring provided at the lower end of the pillar is connected to air spring 24a.
 光学系システム18は、前述したように、フレーム16に保持された電子ビーム光学ユニット18Aと、電子ビーム光学ユニット18Aの上に搭載された光学ユニット18Bと、を備えている。 As described above, the optical system 18 includes the electron beam optical unit 18A held by the frame 16 and the optical unit 18B mounted on the electron beam optical unit 18A.
 図2には、電子ビーム光学ユニット18Aが断面して斜視図にて示されている。また、図3には、電子ビーム光学ユニット18Aの縦断面図が示されている。これらの図に示されるように、電子ビーム光学ユニット18Aは、上側の第1部分19aと下側の第2部分19bとを有する筐体19を備えている。 In FIG. 2, the electron beam optical unit 18A is shown in a perspective view in cross section. Further, FIG. 3 shows a longitudinal sectional view of the electron beam optical unit 18A. As shown in these figures, the electron beam optical unit 18A includes a housing 19 having an upper first portion 19a and a lower second portion 19b.
 筐体19の第1部分19aは、図2から明らかなように、その外観は、高さの低い円柱状である。第1部分19aの内部には、例えば図1及び図3に示されるように、第1の真空室34が形成されている。第1の真空室34は、図1等に示されるように、上壁(天井壁)を構成する平面視円形の板部材から成る第1プレート36、第1プレート36と同じ直径の板部材から成り、底壁を構成する第2プレート(以下、ベースプレートと呼ぶ)38、及び第1プレート36とベースプレート38の周囲を取り囲む円筒状の側壁部40、等から区画されている。 The first portion 19a of the housing 19 has a cylindrical shape with a low height, as apparent from FIG. For example, as shown in FIGS. 1 and 3, a first vacuum chamber 34 is formed inside the first portion 19 a. As shown in FIG. 1 and the like, the first vacuum chamber 34 is formed of a first plate 36 consisting of a plate member having a circular shape in plan view constituting an upper wall (ceiling wall), and a plate member having the same diameter as the first plate 36. It is divided from a second plate (hereinafter referred to as a base plate) 38 constituting a bottom wall, a cylindrical side wall portion 40 surrounding the periphery of the first plate 36 and the base plate 38, and the like.
 第1プレート36には、図3などに示されるように、平面視円形の上下方向の貫通孔36aがXY2次元方向に所定間隔で複数、ここでは、一例として7行7列のマトリクスの4隅を除く配置で、45(=7×7-4)個形成されている。これら45個の貫通孔36aには、図3に示されるように、次に説明する光電カプセルの本体部52がほぼ隙間がない状態で上方から挿入されている。 In the first plate 36, as shown in FIG. 3 and the like, a plurality of through holes 36a in the vertical direction circular in plan view are arranged at predetermined intervals in the XY two-dimensional direction. Here, four corners of a matrix of seven rows and seven columns as an example 45 (= 7 × 7-4) are formed in the arrangement except for. As shown in FIG. 3, the main body portion 52 of the photo capsule to be described next is inserted from above into these 45 through holes 36a with almost no gap.
 光電カプセル50は、図4(A)、図5に示されるように、一端面(図4(A)における下端面)側に開口52cが形成され、内部に中空部52bを有する円柱状で、他端(図4(A)における上端)にフランジ部52aが設けられた本体部52と、開口52cを閉塞可能な蓋部材64と、を備える。中空部52bは、本体部52の下端面から所定深さで丸穴を形成し、さらにその丸穴の底面に略円錐状の凹部を形成して得られるような形状の中空部である。フランジ部52aを含む本体部52の上面は、平面視正方形であり、その正方形の中心は、中空部52bの中心軸に一致している。本体部52の上面には、その中心部に光電素子54が設けられている。光電素子54は、光電素子54の一部を示す、図8(A)の縦断面図に示されるように、真空隔壁を兼ねる本体部52の最上面を形成する透明の板部材(例えば石英ガラス)56と、その板部材56の下面に例えば蒸着されたクロムなどから成る遮光膜(アパーチャ膜)58と、板部材56及び遮光膜58の下面側に成膜されたアルカリ光電膜(光電変換膜)の層(アルカリ光電変換層(アルカリ光電層))60と、を含む。遮光膜58には、多数のアパーチャ58aが形成されている。図8(A)には、光電素子54の一部のみが示されているが、実際には、遮光膜58には、所定の位置関係で多数のアパーチャ58aが形成されている(図8(B)参照)。アパーチャ58aの数は、後述するマルチビームの数と同一であっても良いし、マルチビーム数より多くても良い。アルカリ光電層60は、アパーチャ58aの内部にも配置され、アパーチャ58aにおいて板部材56とアルカリ光電層60が接触している。本実施形態では、板部材56、遮光膜58及びアルカリ光電層60が一体的に形成され、光電素子54の少なくとも一部を形成している。 As shown in FIGS. 4A and 5, the photoelectric capsule 50 has a cylindrical shape having an opening 52c at one end surface (lower end surface in FIG. 4A) and a hollow portion 52b inside. The main body 52 is provided with a flange 52a at the other end (upper end in FIG. 4A), and a lid member 64 capable of closing the opening 52c. The hollow portion 52b is a hollow portion having a shape obtained by forming a round hole with a predetermined depth from the lower end surface of the main body portion 52 and further forming a substantially conical recess on the bottom surface of the round hole. The upper surface of the main body 52 including the flange 52a is a square in plan view, and the center of the square coincides with the central axis of the hollow 52b. A photoelectric device 54 is provided on the top of the main body 52 at the center thereof. The photoelectric device 54 is a transparent plate member (for example, quartz glass) forming the uppermost surface of the main body 52 which also serves as a vacuum partition as shown in the longitudinal sectional view of FIG. 56, and a light shielding film (aperture film) 58 made of, for example, chromium deposited on the lower surface of the plate member 56, and an alkaline photoelectric film (photoelectric conversion film) formed on the lower surface side of the plate member 56 and the light shielding film 58). (Alkaline photoelectric conversion layer (alkali photoelectric layer)) 60). A large number of apertures 58 a are formed in the light shielding film 58. Although only a part of the photoelectric element 54 is shown in FIG. 8A, in practice, a large number of apertures 58a are formed in the light shielding film 58 in a predetermined positional relationship (FIG. B) see). The number of apertures 58a may be the same as the number of multi beams described later, or may be more than the number of multi beams. The alkaline photoelectric layer 60 is also disposed inside the aperture 58a, and the plate member 56 and the alkaline photoelectric layer 60 are in contact with each other at the aperture 58a. In the present embodiment, the plate member 56, the light shielding film 58, and the alkaline photoelectric layer 60 are integrally formed, and at least a part of the photoelectric element 54 is formed.
 アルカリ光電層60は、2種類以上のアルカリ金属を用いたマルチアルカリフォトカソードである。マルチアルカリフォトカソードは、耐久性が高く、波長が500nm帯の緑色光で電子発生が可能で、光電効果の量子効率QEが10%程度と高いとされるのが特長のフォトカソードである。本実施形態では、アルカリ光電層60は、レーザ光による光電効果によって電子ビームを生成する一種の電子銃として用いられるので、変換効率が10[mA/W]の高効率のものが用いられている。なお、光電素子54では、アルカリ光電層60の電子放出面は、図8(A)における下面、すなわち板部材56の上面とは反対側の面である。 The alkali photoelectric layer 60 is a multi-alkali photocathode using two or more types of alkali metals. The multialkali photocathode is a photocathode characterized by high durability, capable of generating electrons with green light having a wavelength of 500 nm band, and high quantum efficiency QE of the photoelectric effect of about 10%. In the present embodiment, since the alkali photoelectric layer 60 is used as a kind of electron gun that generates an electron beam by the photoelectric effect of laser light, a material having a high conversion efficiency of 10 [mA / W] is used. . In the photoelectric element 54, the electron emission surface of the alkali photoelectric layer 60 is the lower surface in FIG. 8A, that is, the surface on the opposite side to the upper surface of the plate member 56.
 本体部52の平面視円環状の下端面には、図4(A)等に示されるように、所定深さの平面視円環状の凹溝が形成され、その凹溝内にシール部材の一種であるOリング62がその一部が凹溝内に収納される状態で取付けられている。 As shown in FIG. 4A, etc., an annular recessed groove with a predetermined depth is formed on the lower end surface of the annular portion of the main body 52 in plan view, and a kind of sealing member is formed in the recessed groove. The O-ring 62, which is a part of the O-ring 62, is attached in a state of being partially accommodated in the recessed groove.
 蓋部材64は、本体部52の下端面の外周縁(輪郭)と同様の平面視円形の板部材から成り、後述するようにして真空中で取り外されるが、その前の状態では、本体部52に装着され、本体部52の開口端を閉塞している(図5参照)。すなわち、蓋部材64によって閉塞された本体部52の内部の閉空間(中空部52b)は真空空間になっているため、蓋部材64は、蓋部材64に作用する大気圧によって本体部52に圧着されている。 The lid member 64 is a plate member having a circular shape in plan view similar to the outer peripheral edge (outline) of the lower end face of the main body 52, and is removed in vacuum as described later. , And closes the open end of the main body 52 (see FIG. 5). That is, since the closed space (hollow portion 52 b) inside the main body 52 closed by the lid member 64 is a vacuum space, the lid member 64 is crimped to the main body 52 by the atmospheric pressure acting on the lid member 64. It is done.
 なお、光電カプセルのメーカーで製造された光電カプセルの搬送中を含む、露光装置メーカーで蓋部材が開放されるまでの、一連の流れについては、後に詳述する。 A series of flows until the cover member is opened at the exposure apparatus manufacturer, including during transport of the photoelectric capsule manufactured by the manufacturer of the photoelectric capsule, will be described in detail later.
 電子ビーム光学ユニット18Aの説明に戻り、図5に示されるように、第1の真空室34の内部には、一対の真空対応のアクチュエータ66によって、X軸、Y軸及びZ軸方向の3方向に駆動される蓋収納プレート68が収納されている。蓋収納プレート68には、図5に示されるように、45個の光電カプセル50の配置に対応する配置で、45の所定深さの丸穴68aが上面に形成され、各丸穴68aの内部底面には、円形の貫通孔68bが形成されている。なお、丸穴68aの数は、光電カプセル50の数と同じでなくても良い。また、丸穴68aを設けずに、蓋収納プレート68で蓋部材64を支持しても良い。 Returning to the explanation of the electron beam optical unit 18A, as shown in FIG. 5, inside the first vacuum chamber 34, a pair of vacuum-compatible actuators 66 are arranged in three directions of the X axis, Y axis and Z axis. And a lid storage plate 68 driven by the In the lid storage plate 68, as shown in FIG. 5, the round holes 68a of 45 predetermined depths are formed on the upper surface in an arrangement corresponding to the arrangement of 45 photo capsules 50, and the inside of each round hole 68a A circular through hole 68 b is formed on the bottom surface. The number of round holes 68 a may not be the same as the number of photoelectric capsules 50. Further, the lid member 64 may be supported by the lid storage plate 68 without providing the round hole 68 a.
 蓋収納プレート68には、さらに、蓋収納プレート68の一部省略した平面図である図9に示されるように、丸穴68aと丸穴68aとの間に最終的に電子ビームの光路(電子ビームの通路と呼んでも良い)となる円形開口68cが形成されている。なお、蓋収納プレート68が電子ビームの通路から待避可能であれば、開口68cを設けなくても良い。 Further, as shown in FIG. 9 which is a partially omitted plan view of the lid storage plate 68, the lid storage plate 68 further includes an optical beam path (electrons) between the round holes 68a and the round holes 68a. A circular opening 68c is formed, which may be called a beam path. The opening 68c may not be provided as long as the lid storage plate 68 can be retracted from the electron beam passage.
 ベースプレート38には、図3などに示されるように、45個の光電カプセル50の本体部52それぞれの中心軸上にその中心が位置する45個の所定深さの凹部38aが形成されている。これらの凹部38aは、ベースプレート38の上面から下面より所定深さを有し、その内部底面には、絞り部として機能する貫通孔38bが形成されている。以下では、貫通孔38bを絞り部38bとも呼ぶ。絞り部38bについてはさらに後述する。 As shown in FIG. 3 and the like, the base plate 38 is formed with 45 concave portions 38a having a predetermined depth, the centers of which are positioned on the central axes of the main portions 52 of the 45 photo capsules 50, respectively. The recesses 38a have a predetermined depth from the upper surface to the lower surface of the base plate 38, and a through hole 38b functioning as a throttling portion is formed on the inner bottom surface. Hereinafter, the through hole 38b is also referred to as a narrowed portion 38b. The throttling portion 38b will be further described later.
 ベースプレート38の下面には、45個の光電カプセル50の本体部52それぞれの中心軸上にその光軸AXeが位置する45本の電子ビーム光学系70が吊り下げ状態で固定されている。なお、電子ビーム光学系70の支持はこれに限定されず、例えば45本の電子ビーム光学系70をベースプレート38とは異なる支持部材で支持し、その支持部材を、筐体19の第2部分19bで支持しても良い。電子ビーム光学系70については、後にさらに詳述する。 On the lower surface of the base plate 38, 45 electron beam optical systems 70 whose optical axes AXe are positioned on the central axes of the main portions 52 of the 45 photoelectric capsules 50 are fixed in a suspended state. The support of the electron beam optical system 70 is not limited to this, and for example, 45 electron beam optical systems 70 are supported by a support member different from the base plate 38, and the support member is the second portion 19 b of the housing 19. You may support it. The electron beam optical system 70 will be described in more detail later.
 筐体19の第2部分19bは、図1及び図2から明らかなように、その外観は、第1部分に比べて直径が小さく、高さが幾分高い円柱状である。第2部分19bの内部には、45個の電子ビーム光学系70をその内部に収容する第2の真空室72(図1及び図3参照)が形成されている。第2の真空室72は、図1及び図2に示されるように、上壁(天井壁)を構成する前述のベースプレート38と、底壁を構成する平面視円形の薄板状のクーリングプレート74と、クーリングプレート74の直径とほぼ同一の外径を有し、クーリングプレート74の下端面に固定された円筒状の周壁部76と、によって区画されている。周壁部76の上面がベースプレート38の下面に固定されることで、第1部分19aと第2部分19bとが一体化され、これによって筐体19が構成されている。クーリングプレート74は、冷却機能に加えて後述するフォギングを抑制する機能を備えている。 As apparent from FIGS. 1 and 2, the second portion 19b of the housing 19 has a cylindrical shape with a smaller diameter and a somewhat higher height than the first portion. Inside the second portion 19b, a second vacuum chamber 72 (see FIGS. 1 and 3) for accommodating 45 electron beam optical systems 70 is formed. The second vacuum chamber 72, as shown in FIGS. 1 and 2, includes the above-described base plate 38 forming an upper wall (ceiling wall), and a thin plate-like cooling plate 74 having a circular plan view shape forming a bottom wall. , And a cylindrical peripheral wall portion 76 having an outer diameter substantially the same as the diameter of the cooling plate 74 and fixed to the lower end surface of the cooling plate 74. By fixing the upper surface of the peripheral wall portion 76 to the lower surface of the base plate 38, the first portion 19a and the second portion 19b are integrated, whereby the housing 19 is configured. The cooling plate 74 has a function of suppressing fogging, which will be described later, in addition to the cooling function.
 第1の真空室34と第2の真空室72とは、それぞれの内部を真空引きすることが可能である(図2における白抜き矢印参照)。なお、第1の真空室34を真空引きする第1真空ポンプとは別に、第2の真空室72を真空引きする第2真空ポンプを備えても良いし、共通の真空ポンプを使って第1の真空室34と第2の真空室72を真空引きしても良い。また、第1の真空室34の真空度と第2の真空室72の真空度が異なっていても良い。また、メンテナンスなどのために、第1の真空室34と第2の真空室72の一方を大気圧空間にし、他方を真空空間にしても良い。本実施形態においては、絞り部38bを設けて第1の真空室34の真空度と第2の真空室72の真空度を異ならせることができるが、絞り部38bなどを設けずに、第1の真空室32と第2の真空室72とが実質的に一つの真空室となるようにしても良い。 The first vacuum chamber 34 and the second vacuum chamber 72 can evacuate their respective interiors (see open arrows in FIG. 2). In addition to the first vacuum pump for evacuating the first vacuum chamber 34, a second vacuum pump for evacuating the second vacuum chamber 72 may be provided, or a common vacuum pump may be used to perform the first process. The vacuum chamber 34 and the second vacuum chamber 72 may be evacuated. Also, the degree of vacuum of the first vacuum chamber 34 and the degree of vacuum of the second vacuum chamber 72 may be different. Further, for maintenance and the like, one of the first vacuum chamber 34 and the second vacuum chamber 72 may be an atmospheric pressure space, and the other may be a vacuum space. In the present embodiment, the throttling portion 38 b can be provided to make the degree of vacuum of the first vacuum chamber 34 different from that of the second vacuum chamber 72, but without providing the throttling portion 38 b or the like, The vacuum chamber 32 and the second vacuum chamber 72 may substantially constitute one vacuum chamber.
 光学ユニット18Bは、図1に示されるように、電子ビーム光学ユニット18Aの上に搭載された鏡筒(筐体)78と、鏡筒78内に収納された45の光照射装置(光学系と呼ぶこともできる)80と、を備えている。45の光照射装置80は、45個の光電カプセル50の本体部52のそれぞれに対応する配置でXY平面内で配置されている。鏡筒78内部は、大気圧空間である。 As shown in FIG. 1, the optical unit 18B includes a lens barrel (housing) 78 mounted on the electron beam optical unit 18A, and 45 light irradiation devices (optical system and the like housed in the lens barrel 78). Can also be called) 80). The 45 light irradiation devices 80 are disposed in the XY plane in an arrangement corresponding to each of the main portions 52 of the 45 photoelectric capsules 50. The inside of the lens barrel 78 is an atmospheric pressure space.
 45の光照射装置80のそれぞれは、45個の光電カプセル50(光電素子54)に対応して設けられ、光照射装置80からの少なくとも一つの光ビームが光電素子54のアパーチャ58aを介してアルカリ光電層(以下、光電層と略記する)60に照射される。なお、光照射装置80の数と光電カプセル50の数とは等しくなくても良い。 Each of the 45 light irradiators 80 is provided corresponding to 45 photo capsules 50 (photoelectric element 54), and at least one light beam from the light irradiator 80 is alkali through the aperture 58a of the photoelectric element 54. The light is irradiated to a photoelectric layer (hereinafter abbreviated as a photoelectric layer) 60. The number of light irradiation devices 80 and the number of photoelectric capsules 50 may not be equal.
 45の光照射装置80のそれぞれは、例えば、図10に示されるように、照明系82と、パターニングされた光を発生するパターンジェネレータ84と、投影光学系86と、を有する。パターンジェネレータ84は、所定方向へ進行する光の振幅、位相及び偏光の状態を空間的に変調して射出する空間光変調器と称しても良い。パターンジェネレータ84は、例えば明暗パターンからなる光学パターンを発生することができる。 For example, as shown in FIG. 10, each of the 45 light irradiators 80 includes an illumination system 82, a pattern generator 84 that generates patterned light, and a projection optical system 86. The pattern generator 84 may be referred to as a spatial light modulator that spatially modulates and emits the state of amplitude, phase, and polarization of light traveling in a predetermined direction. The pattern generator 84 can generate, for example, an optical pattern composed of light and dark patterns.
 図11(A)及び図11(B)には、光照射装置80の構成の一例が、対応する光電カプセル50の本体部52とともに示されている。このうち、図11(A)は、+X方向から見た構成を示し、図11(B)は、-Y方向から見た構成を示す。図11(A)及び図11(B)に示されるように、照明系82は、照明光(レーザ光)LBを発生する光源部82aと、その照明光LBを、1又は2以上のX軸方向に長い断面矩形状のビームに成形する成形光学系82bと、を有する。 11A and 11B show an example of the configuration of the light irradiation device 80 together with the main body 52 of the corresponding photoelectric capsule 50. As shown in FIG. Among these, FIG. 11 (A) shows a configuration as viewed from the + X direction, and FIG. 11 (B) shows a configuration as viewed from the −Y direction. As shown in FIGS. 11A and 11B, the illumination system 82 includes a light source unit 82a that generates illumination light (laser light) LB, and one or more X-axes of the illumination light LB. And a shaping optical system 82b for shaping the beam into a rectangular beam having a long cross section in the direction.
 光源部82aは、光源としての可視光又は近傍の波長、例えば波長365nmのレーザ光を連続発振するレーザダイオード88と、このレーザ光の光路上に配置されたAO偏向器(AOD又は光偏向素子とも呼ばれる)90とを含む。AO偏向器90は、ここでは、スイッチング素子として機能し、レーザ光を間欠発光化するのに用いられる。すなわち、光源部82aは、波長365nmのレーザ光(レーザビーム)LBを間欠的に発光可能な光源部である。なお、光源部82aの発光のデューティ比は、例えばAO偏光器90を制御することにより変更可能である。スイッチング素子としては、AO偏光器には限定されず、AOM(音響光学変調素子)であっても良い。なお、レーザダイオード88自体を間欠的に発光させても良い。 The light source unit 82a is a laser diode 88 that continuously oscillates a visible light as a light source or a laser light of a wavelength near, for example, a wavelength of 365 nm, and an AO deflector (AOD or light deflection element disposed on the light path of the laser light). Called) 90). Here, the AO deflector 90 functions as a switching element, and is used to intermittently emit laser light. That is, the light source unit 82a is a light source unit capable of intermittently emitting a laser beam (laser beam) LB having a wavelength of 365 nm. The duty ratio of light emission of the light source unit 82a can be changed, for example, by controlling the AO polarizer 90. The switching element is not limited to the AO polarizer, and may be an AOM (acousto-optic modulator). The laser diode 88 itself may emit light intermittently.
 成形光学系82bは、光源部82aからのレーザビーム(以下、適宜、ビームと略記する)LBの光路上に順次配置された回折光学素子(DOEとも呼ばれる)92、照度分布調整素子94及び集光レンズ96を含む。 The shaping optical system 82b includes a diffractive optical element (also referred to as DOE) 92, an illuminance distribution adjusting element 94, and a condensing element sequentially disposed on the optical path of a laser beam (hereinafter abbreviated as a beam as appropriate) LB from the light source section 82a. The lens 96 is included.
 回折光学素子92は、AO偏向器90からのレーザビームが入射すると、そのレーザビームが、回折光学素92の射出面側の所定面において、Y軸方向に所定間隔で並ぶX軸方向に長い複数の矩形状(本実施形態では細長いスリット状)の領域で光強度が大きい分布を持つように、レーザビームの面内強度分布を変換する。本実施形態では、回折光学素子92は、AO偏向器90からのレーザビームの入射により、Y軸方向に所定間隔で並ぶX軸方向に長い複数の断面矩形状のビーム(スリット状のビーム)を生成する。本実施形態では、詳細は後述するが、パターンジェネレータ84の構成に合わせた数のスリット状のビームを生成する。なお、レーザビームの面内強度分布を変換する素子としては、回折光学素子には限定されず、屈折光学素子や反射光学素子であっても良く、空間光変調器であっても良い。 When the laser beam from the AO deflector 90 is incident on the diffractive optical element 92, a plurality of the laser beams are long in the X-axis direction at predetermined intervals in the Y-axis direction on the predetermined surface on the exit surface side of the diffractive optical element 92 The in-plane intensity distribution of the laser beam is converted such that the light intensity has a large distribution in the rectangular area (in the present embodiment, an elongated slit-like area). In the present embodiment, the diffractive optical element 92 receives a plurality of rectangular beams (slit-like beams) having a rectangular cross section long in the X-axis direction aligned at predetermined intervals in the Y-axis direction by the incidence of the laser beam from the AO deflector 90. Generate In the present embodiment, although details will be described later, a number of slit-shaped beams are generated according to the configuration of the pattern generator 84. The element for converting the in-plane intensity distribution of the laser beam is not limited to the diffractive optical element, and may be a refractive optical element or a reflective optical element, or may be a spatial light modulator.
 照度分布調整素子94は、パターンジェネレータ84に複数のビームが照射された際に、パターンジェネレータ84の受光面を複数に分割した個々の分割領域において、分割領域毎に照度を個別に調整できるようにするものである。本実施形態では、照度分布調整素子94としては、印加電圧に応じて屈折率が変化する非線形光学効果を有する結晶、例えばリチウムタンタレート(タンタル酸リチウム(略称:LT)単結晶)を複数XY平面に平行な面内で並べ、その入射側と出射側に偏光子を配置して構成される素子が用いられる。本実施形態では、図11(A)の円内に模式的に示されるように、一例として1mmピッチでXY平面内で例えば2行12列のマトリクス状に24個のリチウムタンタレートの結晶94aが配置された照度分布調整素子94が用いられる。符号94bは、電極を示す。かかる構成の照度分布調整素子94によると、出射側の偏光子は所定の偏光成分のみを通過させるので、入射側の偏光子を介して結晶に入射した光の偏光状態を変化させる、例えば直線偏光から円偏光へ変化させることで、出射側の偏光子から射出される光の強度を変化させることができる。この場合において、偏光状態の変化は、結晶に対する印加電圧を制御することで可変にできる。したがって、個々の結晶に対する印加電圧を制御することで、個々の結晶に対応する領域(図13の二点鎖線で囲まれた領域)毎の照度の調整が可能になる(図11(A)参照)。照度分布調整素子94は、リチウムタンタレートに限らず、リチウムナイオベート(ニオブ酸リチウム(略称:LN)単結晶)などの他の光強度変調結晶(電気光学素子)を用いて構成することもできる。なお、パターンジェネレータ84、あるいはパターンジェネレータ84と光電素子54との間に配置された光学部材を使って、光電素子54に照射される少なくとも一つの光ビームの強度を調整できる場合には、照度分布調整素子94を設けなくても良い。なお、照度分布調整素子94として、射出する光の振幅、位相及び偏光の状態を空間的に変調する空間光変調器、一例としては透過型液晶素子や反射型液晶素子などを用いても良い。 The illuminance distribution adjustment element 94 can adjust the illuminance separately for each divided area in each divided area obtained by dividing the light receiving surface of the pattern generator 84 into a plurality of parts when the pattern generator 84 is irradiated with a plurality of beams. It is In this embodiment, as the illuminance distribution adjusting element 94, a crystal having a non-linear optical effect in which the refractive index changes according to the applied voltage, for example, lithium tantalate (lithium tantalate (abbreviation: LT) single crystal) An element configured by arranging in parallel in a plane parallel to each other and arranging polarizers on the incident side and the outgoing side is used. In this embodiment, as schematically shown in the circle of FIG. 11A, for example, 24 lithium tantalite crystals 94a are formed in a matrix of 2 rows and 12 columns in the XY plane at 1 mm pitch, for example. The arranged illuminance distribution adjustment element 94 is used. The code | symbol 94b shows an electrode. According to the illuminance distribution adjusting element 94 having such a configuration, the polarizer on the output side passes only a predetermined polarization component, and thus changes the polarization state of light incident on the crystal through the polarizer on the incident side, for example, linearly polarized light By changing it to circularly polarized light, it is possible to change the intensity of the light emitted from the output side polarizer. In this case, the change in polarization state can be made variable by controlling the voltage applied to the crystal. Therefore, by controlling the voltage applied to each crystal, it is possible to adjust the illuminance for each region corresponding to each crystal (a region surrounded by a two-dot chain line in FIG. 13) (see FIG. 11A). ). The illuminance distribution adjusting element 94 is not limited to lithium tantalate, and can be configured using other light intensity modulation crystal (electro-optical element) such as lithium niobate (lithium niobate (abbr .: LN) single crystal). . When the intensity of at least one light beam irradiated to the photoelectric element 54 can be adjusted using the pattern generator 84 or an optical member disposed between the pattern generator 84 and the photoelectric element 54, the illuminance distribution The adjusting element 94 may not be provided. A spatial light modulator that spatially modulates the amplitude, phase, and polarization state of light to be emitted may be used as the illuminance distribution adjustment element 94, and a transmissive liquid crystal element, a reflective liquid crystal element, or the like may be used as an example.
 本実施形態では、後述するように、パターンジェネレータ84として、反射型の空間光変調器が用いられているため、集光レンズ96下方の光射出側には光路折り曲げ用のミラー98が配置されている。集光レンズ96は、回折光学素子92で生成された複数の断面矩形状(スリット状)のビームをY軸方向に関して集光し、ミラー98に照射する。集光レンズ96としては、例えばX軸方向に長いシリンドリカルレンズなどを用いることができる。なお、集光レンズ96は複数のレンズで構成されていても良い。集光レンズの代わりに、集光ミラー等の反射光学部材や回折光学素子を用いても良い。また、ミラー98は、平面鏡に限定されず、曲率を持った形状であっても良い。ミラー98が曲率を有する(有限の焦点距離を有する)場合、集光レンズ96の機能も兼用できる。 In the present embodiment, as described later, since a reflective spatial light modulator is used as the pattern generator 84, a mirror 98 for bending an optical path is disposed on the light emission side below the condenser lens 96. There is. The condenser lens 96 condenses the plurality of cross-sectional rectangular (slit-like) beams generated by the diffractive optical element 92 in the Y-axis direction and irradiates the mirror 98. As the condensing lens 96, for example, a cylindrical lens long in the X-axis direction can be used. The condenser lens 96 may be composed of a plurality of lenses. Instead of the focusing lens, a reflective optical member such as a focusing mirror or a diffractive optical element may be used. Further, the mirror 98 is not limited to a plane mirror, and may have a shape having a curvature. If the mirror 98 has a curvature (having a finite focal length), the function of the condenser lens 96 can also be used.
 ミラー98は、XY平面に対して所定角度でに配置され、照射された複数のスリット状のビームを図11(A)における左斜め上方向に反射する。 The mirror 98 is disposed at a predetermined angle with respect to the XY plane, and reflects a plurality of irradiated slit-like beams in the upper left direction in FIG.
 パターンジェネレータ84は、ミラー98によって反射された複数のスリット状のビームの反射光路上に配置されている。詳述すると、パターンジェネレータ84は、Z軸方向に関して、集光レンズ96とミラー98との間に配置された回路基板102の-Z側の面に配置されている。ここで、回路基板102には、図11(A)に示されるように、集光レンズ96からミラー98に向かう複数のスリット状のビームの光路となる開口102aが形成されている。 The pattern generator 84 is disposed on the reflected light path of the plurality of slit-like beams reflected by the mirror 98. More specifically, the pattern generator 84 is disposed on the −Z side of the circuit board 102 disposed between the condenser lens 96 and the mirror 98 in the Z-axis direction. Here, as shown in FIG. 11A, the circuit board 102 is formed with an opening 102 a which becomes an optical path of a plurality of slit-like beams from the condenser lens 96 to the mirror 98.
 本実施形態では、パターンジェネレータ84は、プログラマブルな空間光変調器の一種である光回折型ライトバルブ(GLV(登録商標))によって構成されている。光回折型ライトバルブGLVは、図12(A)及び図12(B)に示されるように、シリコン基板(チップ)84a上に「リボン」と呼ばれるシリコン窒化膜の微細な構造体(以下、リボンと称する)84bを数千個の規模で形成した空間光変調器である。 In the present embodiment, the pattern generator 84 is configured by a light diffraction type light valve (GLV (registered trademark)) which is a kind of programmable spatial light modulator. As shown in FIGS. 12A and 12B, the light diffraction type light valve GLV is a minute structure of silicon nitride film called “ribbon” on a silicon substrate (chip) 84 a (hereinafter referred to as “ribbon”). The space light modulator is formed by several thousands of scales).
 GLVの駆動原理は、次のとおりである。 The driving principle of GLV is as follows.
 リボン84bのたわみを電気的に制御することにより、GLVはプログラム可能な回折格子として機能し、高解像度、ハイスピード(応答性250kHz~1MHz)、高い正確さで、調光、変調、レーザ光のスイッチングを可能にする。GLVは微小電気機械システム(MEMS)に分類される。リボン84bは、硬度、耐久性、化学安定性において強固な特性を持つ高温セラミックの一種である、非晶質シリコン窒化膜(Si)から作られている。各リボンの幅は2~4μmで、長さは100~300μmである。リボン84bはアルミ薄膜で覆われており、反射板と電極の両方の機能を合わせ持つ。リボンは、共通電極84cを跨いで張られており、ドライバ(図12(A)及び図12(B)では不図示)から制御電圧がリボン84bに供給されると、静電気により基板84a方向にたわむ。制御電圧が無くなると、リボン84bは、シリコン窒化膜固有の高い張力により元の状態に戻る。すなわち、リボン84bは、可動反射素子の一種である。 By electrically controlling the deflection of the ribbon 84b, the GLV functions as a programmable diffraction grating, and has high resolution, high speed (responsiveness 250 kHz to 1 MHz), high accuracy, dimming, modulation, and laser light Enable switching. GLVs are classified as micro-electro-mechanical systems (MEMS). The ribbon 84 b is made of an amorphous silicon nitride film (Si 3 N 4 ) which is a kind of high temperature ceramic having strong characteristics in hardness, durability, and chemical stability. Each ribbon has a width of 2 to 4 μm and a length of 100 to 300 μm. The ribbon 84b is covered with an aluminum thin film, and has the function of both a reflector and an electrode. The ribbon is stretched across the common electrode 84c, and when a control voltage is supplied to the ribbon 84b from a driver (not shown in FIGS. 12A and 12B), the ribbon is bent toward the substrate 84a by static electricity. . When the control voltage is lost, the ribbon 84b returns to its original state due to the high tension inherent to the silicon nitride film. That is, the ribbon 84b is a kind of movable reflective element.
 GLVには、電圧の印加により位置が変化するアクティブリボンと、グランドに落ちていて位置が普遍のバイアスリボンとが交互に並んだタイプと、全てがアクティブリボンであるタイプとがあるが、本実施形態では後者のタイプが用いられている。 There are two types of GLV: an active ribbon whose position changes with the application of voltage, and a type in which a bias ribbon falling to the ground is alternately arranged with a universal position, and a type in which all are active ribbons. The latter type is used in the form.
 本実施形態では、リボン84bが-Z側に位置し、シリコン基板84aが+Z側に位置する状態で、図11(A)等に示される回路基板102の-Z側の面にGLVから成るパターンジェネレータ84が取付けられている。回路基板102には、リボン84bに制御電圧を供給するためのCMOSドライバ(不図示)が設けられている。以下の説明では、便宜上、CMOSドライバを含んでパターンジェネレータ84と呼ぶ。 In the present embodiment, with the ribbon 84b positioned on the -Z side and the silicon substrate 84a positioned on the + Z side, a pattern made of GLV on the -Z side surface of the circuit board 102 shown in FIG. A generator 84 is attached. The circuit board 102 is provided with a CMOS driver (not shown) for supplying a control voltage to the ribbon 84 b. In the following description, for convenience, a pattern generator 84 including a CMOS driver is referred to.
 本実施形態で用いられるパターンジェネレータ84は、図13に示されるように、リボン84bを、例えば6000個有するリボン列85が、その長手方向(リボン84bの並ぶ方向)をX軸方向として、Y軸方向に所定の間隔で例えば12列、シリコン基板上に形成されている。各リボン列85のリボン84bは、共通電極の上に張られている。本実施形態では、一定レベルの電圧の印加と印加の解除とにより、主としてレーザ光のスイッチング(オン・オフ)のために、各リボン84bは、駆動される。ただし、GLVは、印加電圧に応じて回折光強度の調節が可能なので、後述するようにパターンジェネレータ84からの複数のビームの少なくとも一部の強度の調整が必要な場合などには、印加電圧が微調整される。例えば、各リボンに同じ強度の光が入射した場合に、異なる強度を持つ複数の光ビームをパターンジェネレータ84から発生することができる。 The pattern generator 84 used in the present embodiment, as shown in FIG. 13, has a ribbon row 85 having, for example, 6000 ribbons 84b, the Y axis with the longitudinal direction (the direction in which the ribbons 84b are aligned) as the X axis direction. For example, 12 rows are formed on the silicon substrate at predetermined intervals in the direction. The ribbons 84b of each ribbon row 85 are stretched on the common electrode. In the present embodiment, each ribbon 84 b is driven mainly by switching (on / off) of the laser light by applying and releasing the constant level voltage. However, since the GLV can adjust the diffracted light intensity according to the applied voltage, the applied voltage may be adjusted, for example, when the intensity of at least a part of the plurality of beams from the pattern generator 84 needs to be adjusted as described later. Fine-tuned. For example, when light of the same intensity is incident on each ribbon, a plurality of light beams having different intensities can be generated from pattern generator 84.
 本実施形態では、回折光学素子92でスリット状のビームが12本生成され、この12本のビームが、照度分布調整素子94a、集光レンズ96、及びミラー98を介して、各リボン列85の中央にX軸方向に長いスリット状のビームLBが照射される。本実施形態においては、各リボン84bに対するビームLBの照射領域は、正方形領域となる。なお、各リボン84bに対するビームLBの照射領域は、正方形領域でなくても良い。X軸方向に長い、あるいはY軸方向に長い矩形領域であっても良い。本実施形態においては、12本のビームのパターンジェネレータ84の受光面上での照射領域(照明系82の照射領域)は、X軸方向の長さがSmm、Y軸方向の長さがTmmの矩形の領域とも言える。 In the present embodiment, twelve slit-like beams are generated by the diffractive optical element 92, and the twelve beams form the ribbon array 85 via the illuminance distribution adjustment element 94 a, the condenser lens 96, and the mirror 98. A slit-shaped beam LB long in the X-axis direction is irradiated at the center. In the present embodiment, the irradiation area of the beam LB to each ribbon 84b is a square area. The irradiation area of the beam LB to each ribbon 84b may not be a square area. It may be a rectangular area long in the X axis direction or long in the Y axis direction. In this embodiment, the irradiation area (illumination area of the illumination system 82) of the 12 beams on the light receiving surface of the pattern generator 84 has a length in the X axis direction of S mm and a length in the Y axis direction of T mm. It can be said that it is a rectangular area.
 各リボン84bは独立制御可能となっているので、パターンジェネレータ84で発生される断面正方形のビームの本数は、6000×12=72000本であり、72000本のビームのスイッチング(オン・オフ)が可能である。本実施形態では、パターンジェネレータ84で発生される72000本のビームを、個別に照射可能となるように、光電カプセル50の光電素子54の遮光膜58には、72000個のアパーチャ58aが形成されている。なお、アパーチャ58aの数は、例えばパターンジェネレータ84が照射可能なビームの数と同じでなくてもよく、72000本のビーム(レーザビーム)のそれぞれが対応するアパーチャ58aを含む光電素子54(遮光膜58)上の領域に照射されれば良い。すなわち、光電素子54上の複数のアパーチャ58aそれぞれのサイズが、対応するビームの断面のサイズより小さければ良い。なお、パターンジェネレータ84が有する可動素子(リボン84b)の数と、パターンジェネレータ84で発生するビームの本数とは異なっていても良い。例えば、電圧の印加により位置が変化するアクティブリボンと、グランドに落ちていて位置が普遍のバイアスリボンとが交互に並んだタイプを用いて、複数(2つ)の可動素子(リボン)によって1本のビームのスイッチングを行っても良い。また、パターンジェネレータ84の数と光電カプセル50の数とは等しくなくても良い。 Since each ribbon 84b can be independently controlled, the number of square cross-sectional beams generated by the pattern generator 84 is 6000 × 12 = 72000, and switching (on / off) of 72000 beams is possible. It is. In the present embodiment, 72000 apertures 58 a are formed in the light shielding film 58 of the photoelectric element 54 of the photoelectric capsule 50 so that 72000 beams generated by the pattern generator 84 can be individually irradiated. There is. The number of apertures 58a need not be the same as, for example, the number of beams that can be irradiated by the pattern generator 84. A photoelectric element 54 (light shielding film) includes apertures 58a to which 72000 beams (laser beams) correspond. 58) It may be irradiated to the upper area. That is, the size of each of the plurality of apertures 58a on the photoelectric element 54 may be smaller than the size of the cross section of the corresponding beam. The number of movable elements (ribbons 84 b) included in the pattern generator 84 may be different from the number of beams generated by the pattern generator 84. For example, using a type in which an active ribbon whose position is changed by application of a voltage and a bias ribbon which is dropped to the ground and which has a universal position are alternately arranged, one by a plurality of (two) movable elements (ribbons) The beam switching may be performed. Further, the number of pattern generators 84 and the number of photoelectric capsules 50 may not be equal.
 投影光学系86は、図11(A)及び図11(B)に示されるように、パターンジェネレータ84からの光ビームの光路上に順次配置されたレンズ86a、86bを含む対物レンズを有する。レンズ86aとレンズ86bとの間には、フィルタ86cが配置されている。投影光学系86の投影倍率は、例えば約1/4である。以下では、アパーチャ58aは、矩形であるものとするが、正方形であっても良いし、多角形、楕円など、他の形状であっても良い。ここで、各レンズ86a、86bは、それぞれが複数のレンズで構成されていても良い。また、投影光学系は、屈折型光学系には限定されず、反射型光学系や反射屈折型光学系であっても良い。 The projection optical system 86 has an objective lens including lenses 86a and 86b sequentially disposed on the optical path of the light beam from the pattern generator 84, as shown in FIGS. 11 (A) and 11 (B). A filter 86c is disposed between the lens 86a and the lens 86b. The projection magnification of the projection optical system 86 is, for example, about 1⁄4. In the following, the aperture 58a is assumed to be rectangular, but may be square, or may be another shape such as a polygon or an ellipse. Here, each of the lenses 86a and 86b may be configured of a plurality of lenses. Further, the projection optical system is not limited to the refractive optical system, and may be a reflective optical system or a catadioptric optical system.
 本実施形態においては、投影光学系86は、パターンジェネレータ84からの光を光電素子54に投射することで、複数、ここでは72000個のアパーチャ58aの少なくとも一つ通過した光ビームが光電層60に照射してされる。すなわち、パターンジェネレータ84からのオンとされたビームは、対応するアパーチャ58aを介して光電層60に照射され、オフとされたビームは、対応するアパーチャ58a及び光電層60へ照射されない。なお、パターンジェネレータ84からの光の像が、例えば光電層60上(板部材56の下面、あるいはその近傍面)に結像する場合には、投影光学系86を結像光学系とも呼ぶことができる。 In the present embodiment, the projection optical system 86 projects the light from the pattern generator 84 onto the photoelectric element 54 so that light beams transmitted through at least one of the plurality of, here, 72000 apertures 58 a are transmitted to the photoelectric layer 60. Irradiated. That is, the turned-on beam from the pattern generator 84 is irradiated to the photoelectric layer 60 through the corresponding aperture 58a, and the turned-off beam is not irradiated to the corresponding aperture 58a and the photoelectric layer 60. When an image of light from the pattern generator 84 forms an image on, for example, the photoelectric layer 60 (the lower surface of the plate member 56 or a surface near the surface), the projection optical system 86 may also be referred to as an imaging optical system. it can.
 投影光学系86には、図10に示されるように、投影光学系86の光学特性を調整可能な光学特性調整装置87が、設けられている。光学特性調整装置87は、本実施形態では投影光学系86を構成する一部の光学素子、例えばレンズ86aを、動かすことで、少なくともX軸方向の投影倍率(倍率)の変更が可能である。光学特性調整装置87として、例えば投影光学系86を構成する複数のレンズ間に形成される気密空間の気圧を変更する装置を使っても良い。また、光学特性調整装置87として、投影光学系86を構成する光学部材を変形させる装置、あるいは投影光学系86を構成する光学部材に熱分布を与える装置を使っても良い。なお、図10では、図中の1つの光照射装置80にのみ光学特性調整装置87が併設されているように示されているが、実際には、45の光照射装置80の全てに光学特性調整装置87が併設されている。45の光学特性調整装置87は主制御装置110の指示に基づき、制御部11によって制御される(図18参照)。 As shown in FIG. 10, the projection optical system 86 is provided with an optical characteristic adjustment device 87 capable of adjusting the optical characteristic of the projection optical system 86. In the present embodiment, the optical characteristic adjustment device 87 can change at least the projection magnification (magnification) in the X-axis direction by moving some of the optical elements constituting the projection optical system 86, for example, the lens 86a. As the optical characteristic adjustment device 87, for example, a device for changing the air pressure in the hermetic space formed between the plurality of lenses constituting the projection optical system 86 may be used. Further, as the optical characteristic adjustment device 87, a device for deforming an optical member constituting the projection optical system 86 or a device for giving a heat distribution to an optical member constituting the projection optical system 86 may be used. Although it is shown in FIG. 10 that the optical characteristic adjustment device 87 is juxtaposed to only one light irradiation device 80 in the figure, in fact, all of the 45 light irradiation devices 80 have optical characteristics. An adjusting device 87 is also provided. The 45 optical characteristic adjustment devices 87 are controlled by the control unit 11 based on the instruction of the main control device 110 (see FIG. 18).
 なお、投影光学系86の内部にパターンジェネレータ84で発生され、光電層60に照射される複数のビームの少なくとも1つの強度を変更可能な強度変調素子を設けても良い。光電層60に照射される複数のビームの強度の変更は、複数のビームのうちの一部のビームの強度を零にすることを含む。また、投影光学系86が光電層60に照射される複数のビームの少なくとも1つの位相や偏光を変更可能な位相変調素子、偏光変調素子、などを備えていても良い。 Note that an intensity modulation element capable of changing the intensity of at least one of a plurality of beams generated by the pattern generator 84 and irradiated to the photoelectric layer 60 may be provided inside the projection optical system 86. The changing of the intensities of the plurality of beams applied to the photoelectric layer 60 includes nulling the intensity of some of the plurality of beams. In addition, the projection optical system 86 may include a phase modulation element, a polarization modulation element, or the like capable of changing the phase or polarization of at least one of the plurality of beams irradiated to the photoelectric layer 60.
 図11(A)から明らかなように、本実施形態では、照明系82が有する光学系の光軸AXiと投影光学系86の光軸(最終光学素子であるレンズ86bの光軸と一致)AXoとは、いずれもZ軸に平行であるが、Y軸方向に所定距離ずれている(オフセットしている)。なお、照明系82が有する光学系の光軸AXiと投影光学系の光軸AXoとが非平行であっても良い。 As apparent from FIG. 11A, in the present embodiment, the optical axis AXi of the optical system of the illumination system 82 and the optical axis of the projection optical system 86 (coincident with the optical axis of the lens 86b as the final optical element) AXo Are both parallel to the Z axis, but deviated (offset) by a predetermined distance in the Y axis direction. The optical axis AXi of the optical system of the illumination system 82 may not be parallel to the optical axis AXo of the projection optical system.
 図14(A)及び図14(B)には、電子ビーム光学系70の構成の一例が、対応する光電カプセル50の本体部52とともに示されている。このうち、図14(A)は、+X方向から見た構成を示し、図14(B)は、-Y方向から見た構成を示す。図14(A)及び図14(B)に示されるように、電子ビーム光学系70は、鏡筒104と鏡筒104に保持された一対の電磁レンズ70a、70bから成る対物レンズと、静電マルチポール70cとを有する。電子ビーム光学系70の対物レンズと、静電マルチポール70cは、複数のビームLBを光電素子54に照射することによって光電素子54の光電変換によって放出される電子(複数の電子ビームEB)のビーム路上に配置されている。一対の電磁レンズ70a、70bは、それぞれ鏡筒104内の上端部近傍及び下端部近傍に配置され、上下方向に関して両者は離れている。この一対の電磁レンズ70a、70b相互間に静電マルチポール70cが配置されている。静電マルチポール70cは、対物レンズによって絞られる電子ビームEBのビーム路上のビームウェスト部分に配置されている。このため、静電マルチポール70cを通過する複数のビームEBは、相互間に働くクーロン力によって互いに反発し、倍率が変化することがある。 14A and 14B, an example of the configuration of the electron beam optical system 70 is shown together with the main body 52 of the corresponding photoelectric capsule 50. Among these, FIG. 14 (A) shows a configuration as viewed from the + X direction, and FIG. 14 (B) shows a configuration as viewed from the −Y direction. As shown in FIGS. 14A and 14B, the electron beam optical system 70 includes an objective lens consisting of a lens barrel 104 and a pair of electromagnetic lenses 70a and 70b held by the lens barrel 104, and an electrostatic lens And a multipole 70c. The objective lens of the electron beam optical system 70 and the electrostatic multipole 70 c irradiate a plurality of beams LB to the photoelectric element 54 to emit a beam of electrons (electron beams EB) emitted by photoelectric conversion of the photoelectric element 54. It is arranged on the street. The pair of electromagnetic lenses 70a and 70b are disposed in the vicinity of the upper end and the lower end in the lens barrel 104, respectively, and they are separated in the vertical direction. An electrostatic multipole 70c is disposed between the pair of electromagnetic lenses 70a and 70b. The electrostatic multipole 70c is disposed in the beam waist portion on the beam path of the electron beam EB focused by the objective lens. For this reason, the plurality of beams EB passing through the electrostatic multipole 70c may repel each other by the coulomb force acting between them, and the magnification may change.
 そこで、本実施形態では、XY倍率補正用の第1静電レンズ70cと、ビームの照射位置制御(及び照射位置ずれ補正)、すなわち光学パターンの投影位置調整(及び投影位置ずれ補正)用の第2静電レンズ70cとを有する静電マルチポール70cが電子ビーム光学系70の内部に設けられている。第1静電レンズ70cは、例えば図15(A)に模式的に示されるように、X軸方向及びY軸方向に関する縮小倍率を、高速で、かつ個別に補正する。ただし、第1静電レンズ70cは、図15(B)に示されるように、総電流量の変化によって生じる、クーロン効果に起因する倍率変化を補正対象とし、図15(C)に示されるような局所的なクーロン効果に起因する偏った倍率変化は補正対象としない。図15(C)に示されるような倍率変化が極力生じないにするパターンの生成ルールの採用を前提とし、その上で発生するクーロン効果を、第1静電レンズ70cを用いて補正する。 Therefore, in this embodiment, a first electrostatic lens 70c 1 for XY magnification correction, the irradiation position control of the beam (and the irradiation position shift correction), i.e. the projection position adjustment of the optical pattern (and the projection position shift correction) for An electrostatic multipole 70 c having a second electrostatic lens 70 c 2 is provided inside the electron beam optical system 70. The first electrostatic lens 70c 1, for example as schematically shown in FIG. 15 (A), the reduction magnification in the X-axis direction and the Y-axis direction, fast, and individually corrected. However, as shown in FIG. 15B, the first electrostatic lens 70c 1 is intended to correct a change in magnification caused by the Coulomb effect caused by a change in the total amount of current, and is shown in FIG. Such biased magnification changes due to local Coulomb effects are not to be corrected. Figure 15 assumes adoption of the pattern generation rule magnification change as shown in (C) is in no utmost, the Coulomb effect occurring thereon is corrected by using the first electrostatic lens 70c 1.
 また、第2静電レンズ70cは、各種振動等に起因するビームの照射位置ずれ(光学パターンのうちの明画素、すなわち後述するカットパターンの投影位置ずれ)を一括で補正する。第2静電レンズ70cは、露光の際にビームのウエハWに対する追従制御を行う際のビームの偏向制御、すなわちビームの照射位置制御にも用いられる。なお、縮小倍率の補正を、電子ビーム光学系70以外の部分、例えば前述の投影光学系86などを用いて行う場合などには、静電マルチポール70cに代えて、電子ビームの偏向制御が可能な静電レンズから成る静電偏向レンズを用いても良い。 The second electrostatic lens 70c 2 corrects (bright pixel among the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch. The second electrostatic lens 70c 2 is deflection control of the beam for performing the following control for the wafer W of the beam during exposure, i.e., it is also used for the irradiation position control of the beam. When correction of the reduction ratio is performed using a portion other than the electron beam optical system 70, for example, the above-described projection optical system 86, etc., deflection control of the electron beam is possible instead of the electrostatic multipole 70c. It is also possible to use an electrostatic deflection lens consisting of an electrostatic lens.
 電子ビーム光学系70の縮小倍率は、倍率補正を行わない状態で、設計上例えば1/50である。1/30、1/20など、その他の倍率でも良い。 The reduction magnification of the electron beam optical system 70 is, for example, 1/50 in design without performing magnification correction. Other scaling factors such as 1/30 and 1/20 may be used.
 図16は、ベースプレート38に吊り下げ状態で支持された45の電子ビーム光学系70の外観を斜視図にて示す。 FIG. 16 is a perspective view showing the appearance of the 45 electron beam optical system 70 supported in a suspended state on the base plate 38.
 鏡筒104の射出端には、図14(A)及び図14(B)に示されるように電子ビームの出口104aが形成されており、この出口104a部分の下方には、反射電子検出装置106が配置されている。反射電子検出装置106は、クーリングプレート74に前述の出口104aに対向して形成された円形(又は矩形)の開口74aの内部に配置されている。より具体的には、電子ビーム光学系70の光軸AXe(前述の光電カプセル50の中心軸及び投影光学系86の光軸AXo(図11(A)参照)に一致)を挟みX軸方向の両側に、一対の反射電子検出装置106x、106xが設けられている。また、光軸AXeを挟みY軸方向の両側に、一対の反射電子検出装置106y、106yが設けられている。また、上記2対の反射電子検出装置106のそれぞれは、例えば半導体検出器によって構成され、ウエハ上のアライメントマーク、あるいは基準マーク等の検出対象マークから発生する反射成分、ここでは反射電子を検出し、検出した反射電子に対応する検出信号を信号処理装置108に送る(図18参照)。信号処理装置108は、複数の反射電子検出装置106の検出信号を不図示のアンプにより増幅した後に信号処理を行い、その処理結果を主制御装置110に送る(図18参照)。なお、反射電子検出装置106は、45個の電子ビーム光学系70の一部(少なくとも1つ)に設けるだけでも良いし、設けなくても良い。 An exit 104a of the electron beam is formed at the exit end of the lens barrel 104 as shown in FIGS. 14A and 14B, and the backscattered electron detection device 106 is formed below the exit 104a. Is arranged. The backscattered electron detection device 106 is disposed inside a circular (or rectangular) opening 74 a formed in the cooling plate 74 so as to face the above-described outlet 104 a. More specifically, the optical axis AXe of the electron beam optical system 70 (which coincides with the central axis of the above-mentioned photo capsule 50 and the optical axis AXo of the projection optical system 86 (see FIG. 11A)) is sandwiched between A pair of backscattered electron detectors 106x 1 and 106x 2 are provided on both sides. Further, a pair of backscattered electron detectors 106y 1 and 106y 2 are provided on both sides of the optical axis AXe in the Y-axis direction. Further, each of the two pairs of backscattered electron detectors 106 is constituted by, for example, a semiconductor detector, and detects a reflected component generated from a detection target mark such as an alignment mark or a reference mark on a wafer. The detection signal corresponding to the detected backscattered electrons is sent to the signal processing device 108 (see FIG. 18). The signal processing unit 108 amplifies the detection signals of the plurality of backscattered electron detection units 106 by an amplifier (not shown) and performs signal processing, and sends the processing result to the main control unit 110 (see FIG. 18). The backscattered electron detection device 106 may or may not be provided only on a part (at least one) of the 45 electron beam optical systems 70.
 反射電子検出装置106x1、106x2、106y1、106y2は、鏡筒104に固定されても良いし、クーリングプレート74に取付けられていても良い。 The backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 may be fixed to the lens barrel 104 or may be attached to the cooling plate 74.
 クーリングプレート74には、45の電子ビーム光学系70の鏡筒104の出口104aに個別に対向して開口74aが、45個形成され、その開口74a内に2対の反射電子検出装置106が配置されている(図2参照)。
 図14(A)及び図14(B)に示されるように、ベースプレート38には、光軸AXe上に、前述した絞り部38bが形成されている。絞り部38bは、ベースプレート38の上面に所定の深さで形成された平面視円形(又は矩形)の凹部38aの内部底面に形成された、X軸方向に長い矩形の孔から成る。また、光軸AXe上には、光電層60の上側に設けられた多数のアパーチャ58aの配置領域の中心(ここでは、光電カプセル50の本体部52の中心軸に一致)がほぼ一致している。絞り部38bは、図2に示されるように、ベースプレート38に45の電子ビーム光学系70の光軸AXeに個別に対向して形成されている。
In the cooling plate 74, 45 openings 74a are individually formed facing the exit 104a of the lens barrel 104 of the 45 electron beam optical system 70, and two pairs of the backscattered electron detecting devices 106 are disposed in the opening 74a. (See Figure 2).
As shown in FIGS. 14 (A) and 14 (B), the base plate 38 is formed with the above-described diaphragm 38b on the optical axis AXe. The throttling portion 38 b is formed of a rectangular hole elongated in the X-axis direction and formed on the inner bottom surface of the recess 38 a having a circular (or rectangular) shape in plan view and formed at a predetermined depth on the upper surface of the base plate 38. Further, on the optical axis AXe, the center of the arrangement region of the large number of apertures 58a provided on the upper side of the photoelectric layer 60 (here, coincides with the central axis of the main body 52 of the photoelectric capsule 50) substantially . The diaphragm 38 b is formed on the base plate 38 so as to individually face the optical axis AXe of the electron beam optical system 70 of 45 as shown in FIG.
 また、ベースプレート38と光電素子54との間には、光電層60から射出される電子を加速するための引き出し電極112が配置されている。なお、図14(A)及び図14(B)では、図示が省略されているが、引き出し電極112は、例えば蓋収納プレート68の円形開口68cの周囲に設けることができる。勿論、引き出し電極112を、蓋収納プレート68とは別の部材に設けても良い。 In addition, an extraction electrode 112 for accelerating electrons emitted from the photoelectric layer 60 is disposed between the base plate 38 and the photoelectric element 54. Although not shown in FIGS. 14A and 14B, the extraction electrode 112 can be provided, for example, around the circular opening 68c of the lid storage plate 68. Of course, the extraction electrode 112 may be provided on a member other than the lid storage plate 68.
 露光装置100では、前述の鏡筒78、筐体19の第1部分19a、第2部分19b、及びステージチャンバ10には、メンテナンス用の開閉部が設けられている。 In the exposure apparatus 100, the lens barrel 78, the first portion 19a of the housing 19, the second portion 19b, and the stage chamber 10 are provided with an opening / closing unit for maintenance.
 ここで、露光装置100の組み立ての流れの一例を、光電カプセルメーカーで製造された光電カプセルの搬送、及び露光装置メーカーで蓋部材が開放されるまでの一連の流れを中心として説明する。 Here, an example of the flow of assembly of the exposure apparatus 100 will be described centering on a series of flows until transport of the photoelectric capsule manufactured by the photoelectric capsule manufacturer and opening of the lid member by the exposure apparatus manufacturer.
 まず、光電カプセルメーカーの工場の真空チャンバ120内で、図4(A)中の上向きの白抜き矢印で示されるように、蓋部材64が上方に移動され、開口52cが塞がれるように、光電カプセル50の本体部52に蓋部材64を接触させる。次いで、図4(B)に示されるように、真空チャンバ120内でばねその他の付勢部材122を用いて、蓋部材64に上向きの力(与圧)が加えられる。このとき、与圧の作用により、本体部52の下端面に設けられたOリング62が完全に潰される。そして、蓋部材64に与圧を加えたままの状態で、真空チャンバ120内を大気開放すると、光電カプセル50の内部が真空であるため、大気圧によって蓋部材64が本体部52に圧着されるので。付勢部材122による与圧を解除する。図4(C)には、この与圧が解除された状態が示されている。この図4(C)の状態では、本体部52と蓋部材64とが、一体化され光電カプセル50が構成されている(大気圧で光電カプセル50がシールドされている)。上述のようにして、複数(少なくとも45個)の光電カプセル50は、図4(C)の状態を維持したまま、露光装置メーカーの工場まで輸送される。なお、蓋部材64の本体部52と対向する面に環状の凹溝を形成し、該凹溝にOリング62を一部埋め込んだ状態で取付けても良い。なお、本体部52に蓋部材64を接触させた状態で、大気空間においても光電カプセル内部の空間の真空状態を維持できるのであれば、Oリング62などのシール部材を設けなくても良い。 First, in the vacuum chamber 120 of the photoelectric capsule maker's factory, the lid member 64 is moved upward to close the opening 52c, as indicated by the upward white arrow in FIG. 4A. The lid member 64 is brought into contact with the main portion 52 of the photoelectric capsule 50. Next, as shown in FIG. 4B, an upward force (pretension) is applied to the lid member 64 using a spring or other biasing member 122 in the vacuum chamber 120. At this time, the O-ring 62 provided on the lower end surface of the main body 52 is completely crushed by the action of pressurization. Then, when the inside of the vacuum chamber 120 is opened to the atmosphere with the cover member 64 being pressurized, the cover member 64 is crimped to the main body 52 by the atmospheric pressure because the inside of the photoelectric capsule 50 is vacuum. Because The pressurization by the biasing member 122 is released. FIG. 4C shows a state in which this pressurization has been released. In the state shown in FIG. 4C, the main body 52 and the lid member 64 are integrated to form the photo capsule 50 (the photo capsule 50 is shielded at atmospheric pressure). As described above, the plurality of (at least 45) photoelectric capsules 50 are transported to the factory of the exposure apparatus manufacturer while maintaining the state of FIG. 4C. Alternatively, an annular recessed groove may be formed on the surface of the lid member 64 facing the main body 52, and the O-ring 62 may be partially embedded in the recessed groove. In the state where the lid member 64 is in contact with the main body portion 52, the sealing member such as the O-ring 62 may not be provided as long as the vacuum state of the space inside the photoelectric capsule can be maintained even in the air space.
 露光装置メーカーの工場内では、45個の光電カプセル50は、クリーンルーム内に搬送され、既に、フレーム16に組み付けられている電子ビーム光学ユニット18Aの第1プレート36に形成された45個の貫通孔36aのそれぞれに、図5中に下向きの矢印で示されるように、上方から挿入され、第1プレート36に組み付けられる。この組み付け状態では、45個の貫通孔36aには、光電カプセル50の本体部52がほぼ隙間がない状態で挿入されている。また、このとき、蓋収納プレート68は、45の所定深さの丸穴68aが、45個の光電カプセル50の真下にそれぞれ位置し、蓋部材64と蓋収納プレート68の上面との間に所定の隙間が存在する高さ位置にある。 In the exposure apparatus manufacturer's factory, 45 photoelectric capsules 50 are transported into the clean room, and 45 through holes formed in the first plate 36 of the electron beam optical unit 18A already assembled to the frame 16. Each of 36 a is inserted from above as shown by a downward arrow in FIG. 5 and assembled to the first plate 36. In this assembled state, the main body portion 52 of the photoelectric capsule 50 is inserted into the 45 through holes 36 a with almost no gap. Also, at this time, in the lid storage plate 68, 45 round holes 68a of a predetermined depth are positioned directly below the 45 photoelectric capsules 50, respectively, and are defined between the lid member 64 and the upper surface of the lid storage plate 68. At the height position where there is a gap.
 なお、フレーム16に対する電子ビーム光学ユニット18Aの組み付けに先立って、ステージシステム14の組み立て、組み立てられたステージシステム14のステージチャンバ10内への搬入、並びにステージシステム14に関する必要な調整などが行われている。 In addition, prior to the assembly of the electron beam optical unit 18A to the frame 16, the assembly of the stage system 14, the loading of the assembled stage system 14 into the stage chamber 10, and the necessary adjustment regarding the stage system 14 are performed. There is.
 光電カプセル50の、第1プレート36に対する組み付け後、真空対応アクチュエータ66によって、図6に示されるように、蓋収納プレート68の45の所定深さの丸穴68aの内部に蓋部材64が一部入り込む位置まで、蓋収納プレート68が上方に駆動される。 After the photoelectric capsule 50 is assembled to the first plate 36, the vacuum compatible actuator 66 makes the lid member 64 partially inside the round hole 68a of a predetermined depth 45 of the lid storage plate 68, as shown in FIG. The lid storage plate 68 is driven upward to a position where it enters.
 次に、筐体19の第1部分19a内部と第2部分19b内部との真空引きが並行して行われる(図2参照)。また、これと並行して、ステージチャンバ10内部の真空引きが行われる。 Next, evacuation of the inside of the first portion 19a and the inside of the second portion 19b of the housing 19 is performed in parallel (see FIG. 2). Also, in parallel with this, vacuuming of the inside of the stage chamber 10 is performed.
 このとき、筐体19の第1部分19a内部は、光電カプセル50内部と同レベルの高真空状態となるまで真空引きが行われ、第1部分19aの内部が第1の真空室34となる(図7参照)。このとき、光電カプセル50内部の気圧と外部(第1部分19a内部)の気圧とが釣り合うようになるので、図7に示されるように蓋部材64が自重によって、本体部52から離れ、丸穴68aの内部に完全に収納される。なお、筐体19の第1部分19a内部の真空引きが完了した状態では、複数の光電カプセル50のそれぞれ有する光電素子54は、第1の真空室34とその外側(筐体19の外部)の空間とを隔てる隔壁(真空隔壁)として機能する。第1の真空室34の外側は、大気圧、又は大気圧よりわずかに陽圧である。 At this time, vacuuming is performed until the inside of the first portion 19a of the housing 19 becomes a high vacuum state at the same level as the inside of the photoelectric capsule 50, and the inside of the first portion 19a becomes the first vacuum chamber 34 ( See Figure 7). At this time, since the air pressure inside the photoelectric capsule 50 and the air pressure outside (in the first portion 19a) are balanced, the lid member 64 is separated from the main body 52 by its own weight as shown in FIG. Completely housed inside the 68a. In the state in which the inside of the first portion 19 a of the housing 19 is completely evacuated, the photoelectric elements 54 included in the plurality of photoelectric capsules 50 are the first vacuum chamber 34 and the outside thereof (outside of the housing 19). It functions as a partition (vacuum partition) which separates from space. The outside of the first vacuum chamber 34 is at atmospheric pressure, or at a pressure slightly positive than atmospheric pressure.
 一方、筐体19の第2部分19b内部は、第1部分19aと同レベルの高真空状態となるまで、真空引きを行なっても良いが、第1部分19aより真空度が低い(圧力が高い)レベルの中真空状態まで真空引きを行なっても良い。本実施形態では、第1部分19a内部と第2部分19b内部とは、絞り部38bによって実質的に隔離されているので、このようなことが可能である。第2部分19b内部の真空引き完了後、第2部分19aの内部が第2の真空室72となる。第2部分19b内部を、中真空状態まで真空引きする場合には、真空引きに要する時間を短縮することが可能になる。ステージチャンバ10の内部は、第2部分19bの内部と同レベルの真空引きが行われる。 On the other hand, the inside of the second portion 19b of the housing 19 may be evacuated until the high vacuum state at the same level as the first portion 19a is obtained, but the degree of vacuum is lower than that of the first portion 19a (pressure is high The vacuum may be performed up to the level of medium vacuum. In the present embodiment, this is possible because the inside of the first portion 19a and the inside of the second portion 19b are substantially separated by the narrowed portion 38b. After completion of the evacuation in the second portion 19 b, the inside of the second portion 19 a becomes the second vacuum chamber 72. When the inside of the second portion 19 b is evacuated to a medium vacuum state, the time required for the evacuation can be shortened. The inside of the stage chamber 10 is evacuated at the same level as the inside of the second portion 19b.
 第1部分19bの真空引き完了後、真空対応アクチュエータ66によって、蓋収納プレート68がXY平面内(及びZ軸方向)に駆動され、蓋収納プレート68に形成された45個の円形開口68cが、45の電子ビーム光学系70の光軸AXe上にそれぞれ位置決めされる。図3には、このようにして、光軸AXe上に円形開口68cが位置決めされた状態が示されている。その後、必要な調整が行われ、電子ビーム光学ユニット18Aの組立が終了する。 After completion of the evacuation of the first portion 19b, the lid accommodating plate 68 is driven in the XY plane (and the Z-axis direction) by the vacuum compatible actuator 66, and 45 circular openings 68c formed in the lid accommodating plate 68 are It is positioned on the optical axis AXe of 45 electron beam optical systems 70, respectively. FIG. 3 shows a state where the circular opening 68c is positioned on the optical axis AXe in this manner. Thereafter, necessary adjustments are made, and the assembly of the electron beam optical unit 18A is completed.
 次いで、図1に示されるように、組み立てられた電子ビーム光学ユニット18A(第1プレート36)上に、予め別に組み立てられた光学ユニット18Bが、搭載される。このとき、光学ユニット18Bは、鏡筒78の内部の45の光照射装置80のそれぞれが、45の光電素子54のそれぞれに対応する配置となるように、すなわち、投影光学系86の光軸AXoが、電子ビーム光学系70の光軸AXeとほぼ一致する状態で、搭載される。そして、光学ユニット18Bに関する必要な調整及び電子ビーム光学ユニット18Aと光学ユニット18Bとの間の必要な調整、並びに光学ユニット18Bと電子ビーム光学ユニット18Aとの相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等などが行われ、露光装置100の組み立てが完了する。 Next, as shown in FIG. 1, an optical unit 18B assembled separately is mounted on the assembled electron beam optical unit 18A (first plate 36). At this time, the optical unit 18B is arranged such that each of the 45 light irradiation devices 80 inside the lens barrel 78 corresponds to each of the 45 photoelectric elements 54, that is, the optical axis AXo of the projection optical system 86 Are substantially aligned with the optical axis AXe of the electron beam optical system 70. Then, necessary adjustments for the optical unit 18B and necessary adjustments between the electron beam optical unit 18A and the optical unit 18B, and interconnection of mechanical and electrical circuits between the optical unit 18B and the electron beam optical unit 18A. Connection, piping connection of an atmospheric pressure circuit, and the like are performed, and the assembly of the exposure apparatus 100 is completed.
 なお、上述した各部の必要な調整には、各種光学系についての光学的精度を達成するための調整、各種機械系についての機械的精度を達成するための調整、各種電気系についての電気的精度を達成するための調整が含まれる。 The necessary adjustment of each part mentioned above includes adjustment for achieving optical accuracy for various optical systems, adjustment for achieving mechanical accuracy for various mechanical systems, and electrical accuracy for various electric systems. Adjustments to achieve are included.
 これまでの説明から明らかなように、本実施形態に係る露光装置100では、図17に示されるように、露光時に、パターンジェネレータ84の受光面上でX軸方向の長さSmm、Y軸方向の長さTmmの矩形の領域の内部にビームが照射され、この照射によりパターンジェネレータ84からの光が縮小倍率1/4を有する投影光学系86によって光電素子54に照射され、さらにこの照射によって生成される電子ビームが縮小倍率1/50を有する電子ビーム光学系70を介して、像面(像面に位置合わせされるウエハ面)上の矩形の領域(露光フィールド)に照射される。すなわち、本実施形態の露光装置100では、光照射装置80(投影光学系86)と、これに対応する光電素子54と、これらに対応する電子ビーム光学系70と、反射電子検出装置106と、を含んで、縮小倍率1/200の直筒型のマルチビーム光学システム200(図18参照)が構成され、このマルチビーム光学システム200を、XY平面内で前述したマトリクス状の配置で45有している。したがって、本実施形態の露光装置100の光学系は、縮小倍率1/200の縮小光学系を45有するマルチカラム電子ビーム光学系である。 As is clear from the above description, in the exposure apparatus 100 according to this embodiment, as shown in FIG. 17, the length S mm in the X axis direction and the Y axis direction on the light receiving surface of the pattern generator 84 at the time of exposure. The beam is irradiated inside a rectangular area of length T mm, and the light from the pattern generator 84 is irradiated to the photoelectric element 54 by the projection optical system 86 having a reduction ratio of 1⁄4 by this irradiation, and the light is generated by this irradiation. The electron beam is irradiated onto a rectangular area (exposure field) on the image plane (wafer surface aligned with the image plane) through an electron beam optical system 70 having a reduction ratio of 1/50. That is, in the exposure apparatus 100 of the present embodiment, the light irradiation device 80 (projection optical system 86), the corresponding photoelectric element 54, the corresponding electron beam optical system 70, the backscattered electron detection device 106, To form a straight cylinder multi-beam optical system 200 (see FIG. 18) having a reduction ratio of 1/200, and having the multi-beam optical system 200 in the above-described matrix arrangement 45 in the XY plane. There is. Therefore, the optical system of the exposure apparatus 100 of the present embodiment is a multi-column electron beam optical system having 45 reduction optical systems with a reduction ratio of 1/200.
 また、露光装置100では、直径300ミリの300ミリウエハを露光対象とし、ウエハに対向して45本の電子ビーム光学系70を配置するため、電子ビーム光学系70の光軸AXeの配置間隔を一例として43mmとしている。このようにすれば、1つの電子ビーム光学系70が受け持つ露光エリアは、最大で43mm×43mmの矩形領域となるため、前述したようにウエハステージWSTのX軸方向及びY軸方向の移動ストロークが50mmもあれば十分である。なお、電子光学系70の数は、45本に限られず、ウエハの直径、ウエハステージWSTのストローク、などに基づいて決めることができる。 Further, in the exposure apparatus 100, a 300 mm wafer having a diameter of 300 mm is to be exposed, and 45 electron beam optical systems 70 are disposed to face the wafer, so the arrangement interval of the optical axes AXe of the electron beam optical system 70 is an example. As 43mm. In this way, the exposure area handled by one electron beam optical system 70 is a rectangular area of 43 mm × 43 mm at maximum, so as described above, the movement stroke of wafer stage WST in the X-axis direction and Y-axis direction is 50 mm is enough. The number of electron optical systems 70 is not limited to 45, and can be determined based on the diameter of the wafer, the stroke of the wafer stage WST, and the like.
 図18には、露光装置100の制御系を主として構成する主制御装置110の入出力関係がブロック図にて示されている。主制御装置110は、マイクロコンピュータ等を含み、図18に示される各部を含む露光装置100の構成各部を統括的に制御する。図18において、制御部11に接続されている光照射装置80は、主制御装置110からの指示に基づき、制御部11によって制御されるレーザダイオード88、AO偏向器90、回折光学素子92、及び照度分布調整素子94を含む。また、制御部11に接続されている電子ビーム光学系70は、主制御装置110からの指示に基づき、制御部11によって制御される一対の電磁レンズ70a、70b及び静電マルチポール70c(第1静電レンズ70c及び第2静電レンズ70c)を含む。また、図18において、符号500は、前述したマルチビーム光学システム200と、制御部11と、信号処理装置108と、を含んで構成される露光ユニットを示す。露光装置100では、露光ユニット500が45設けられている。 FIG. 18 is a block diagram showing the input / output relationship of the main controller 110 that mainly configures the control system of the exposure apparatus 100. As shown in FIG. Main controller 110 centrally controls components of exposure apparatus 100 including a microcomputer and the like shown in FIG. In FIG. 18, the light irradiation device 80 connected to the control unit 11 is a laser diode 88 controlled by the control unit 11 based on an instruction from the main control unit 110, an AO deflector 90, a diffractive optical element 92, and An illumination distribution adjustment element 94 is included. Further, the electron beam optical system 70 connected to the control unit 11 is a pair of electromagnetic lenses 70 a and 70 b and electrostatic multipoles 70 c controlled by the control unit 11 based on an instruction from the main control device 110 (first The electrostatic lens 70 c 1 and the second electrostatic lens 70 c 2 ) are included. Further, in FIG. 18, reference numeral 500 indicates an exposure unit configured to include the multi-beam optical system 200 described above, the control unit 11, and the signal processing device 108. In the exposure apparatus 100, an exposure unit 500 is provided.
 ところで、露光装置100では、次のような理由により、正方形ではなく、矩形(長方形)の露光フィールドを採用している。 By the way, the exposure apparatus 100 adopts a rectangular (rectangular) exposure field instead of a square for the following reason.
 図19には、電子ビーム光学系の直径Dの有効領域(収差有効領域)を示す円内に、正方形フィールドSFと矩形フィールドRFとが図示されている。この図19から明らかなように、電子ビーム光学系の有効領域を最大限使おうとすると正方形フィールドSFが良い。ただし、正方形フィールドSFの場合、図19に示されるようにフィールド幅としては30%(1/√2)程度損をする。例えば、60:11のアスペクト比を持つ矩形フィールドRFだと有効領域がほぼフィールド幅となる。これは、マルチカラムでは大きなメリットになる。この他、アライメントマークを検出する際のマーク検出感度が向上するというメリットもある。フィールドの形状を問わず、フィールド内に照射される電子の総量は同じであるため、矩形フィールドは正方形フィールドに比べて電流密度が大きく、そのため、ウエハ上のより小さい面積にマークを配置しても十分な検出感度で検出できる。また、矩形フィールドは収差管理が正方形フィールドに比べて容易である。 In FIG. 19, a square field SF and a rectangular field RF are illustrated in a circle indicating the effective area (aberration effective area) of the diameter D of the electron beam optical system. As is apparent from FIG. 19, the square field SF is preferable if it is intended to maximize the effective area of the electron beam optical system. However, in the case of the square field SF, as shown in FIG. 19, the field width is lost by about 30% (1 / 図 2). For example, in the case of a rectangular field RF having an aspect ratio of 60:11, the effective area is approximately the field width. This is a great advantage for multi-columns. In addition to this, there is a merit that mark detection sensitivity at the time of detecting an alignment mark is improved. Regardless of the shape of the field, the rectangular field has a higher current density than the square field, since the total amount of electrons irradiated in the field is the same, so even if the mark is placed in a smaller area on the wafer It can detect with sufficient detection sensitivity. Also, rectangular fields are easier to manage as compared to square fields.
 図19では、正方形フィールドSF及び矩形フィールドRFのいずれの露光フィールドも電子ビーム光学系の光軸AXeを含むように設定されている。しかし、これに限らず、露光フィールドを光軸AXeを含まないように、収差有効領域内に設定しても良い。また、露光フィールドを、矩形(正方形を含む)以外の形状、例えば円弧状に設定しても良い。 In FIG. 19, the exposure fields of both the square field SF and the rectangular field RF are set to include the optical axis AXe of the electron beam optical system. However, the present invention is not limited to this, and the exposure field may be set within the aberration effective area so as not to include the optical axis AXe. The exposure field may be set to a shape other than a rectangle (including a square), for example, an arc.
 次に、本実施形態に係る露光装置100で、ウエハWの露光中に行われるドーズ制御について説明する。 Next, dose control performed during exposure of the wafer W in the exposure apparatus 100 according to the present embodiment will be described.
 露光フィールド内の照度ムラは、主制御装置110が、後述する露光時に、照度分布調整素子94を用いて、前述した印加電圧の制御による偏光状態の可変制御を結晶毎に行い、個々の結晶に対応する領域(個々の結晶に対応するパターンジェネレータ84の受光面上の領域)毎に光強度(照度)の制御を行うことで、結果的に光電層60の電子放出面上での面内の照度分布、及びこれに対応するウエハ面上での露光フィールドRF内の照度分布の調整を行う。すなわち、露光フィールドRFに照射される複数の電子ビームのそれぞれの強度を適正に調整する。なお、本実施形態の露光装置100では、パターンジェネレータ84がGLVによって構成されているので、主制御装置110は、パターンジェネレータ84自体で中間調を発生することができるので、光電層60に照射されるそれぞれの光ビームの強度調整により、光電層60の電子放出面上での面内の照度分布、及びこれに対応するウエハ面上での露光フィールドRF内の照度分布の調整、すなわちドーズ制御を行うこともできる。勿論、主制御装置110は、照度分布調整素子94とパターンジェネレータ84とを併用して光電層60の電子放出面上での面内の照度分布の調整を行なっても良い。 The illuminance unevenness in the exposure field is controlled by the main controller 110 using the illuminance distribution adjustment element 94 at the time of exposure to be described later to perform variable control of the polarization state for each crystal by controlling the applied voltage. By controlling the light intensity (illuminance) for each corresponding area (area on the light receiving surface of the pattern generator 84 corresponding to each crystal), the in-plane on the electron emission surface of the photoelectric layer 60 is consequently obtained. The illuminance distribution and the corresponding illuminance distribution in the exposure field RF on the wafer surface are adjusted. That is, the intensities of the plurality of electron beams irradiated to the exposure field RF are properly adjusted. In the exposure apparatus 100 of the present embodiment, since the pattern generator 84 is configured by GLV, the main controller 110 can generate halftones by the pattern generator 84 itself, and thus the photoelectric layer 60 is irradiated. Adjustment of the intensity distribution of the light beam on the electron emission surface of the photoelectric layer 60 and the corresponding distribution of the intensity distribution in the exposure field RF on the wafer surface, ie, dose control. It can also be done. Of course, the main control device 110 may adjust the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60 by using the illuminance distribution adjusting element 94 and the pattern generator 84 in combination.
 なお、光電層60の電子放出面上での面内の照度分布の調整の前提として、光電変換によって光電層60の電子放出面から生成される複数の電子ビームの強度(電子ビームの照度、ビーム電流量)がほぼ同一となるように、パターンジェネレータ84で発生され光電層60に照射される複数のビームの強度の調整が行われる。このビームの強度の調整は、照明系82内で行なっても良いし、パターンジェネレータ84で行なっても良いし、投影光学系86内で行なっても良い。ただし、光電変換によって光電層60の電子放出面から生成される複数の電子ビームの強度(電子ビームの照度、ビーム電流量)を少なくとも一部のビームについて他のビームと異ならせるように、複数のビームの強度の調整を行なっても良い。 Note that, as a premise of adjustment of the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60, the intensities of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion (illuminance of the electron beam, beams Adjustment of the intensities of the plurality of beams generated by the pattern generator 84 and irradiated to the photoelectric layer 60 is performed so that the amount of current) becomes substantially the same. The adjustment of the beam intensity may be performed in the illumination system 82, may be performed by the pattern generator 84, or may be performed in the projection optical system 86. However, in order to make the intensities (the illuminance of the electron beam, the beam current amount) of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion different from at least a part of the beams, The beam intensity may be adjusted.
なお、ウエハに形成されたレジスト層は、光電層60の電子放出面上での面内の照度分布のみの影響を受けるものではなく、その他の要因、例えば電子の前方散乱、後方散乱、あるいはフォギングなどの影響を受ける。 Note that the resist layer formed on the wafer is not affected only by the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60, and other factors such as forward scattering, back scattering, or fogging of electrons And so on.
 ここで、前方散乱とは、ウエハ表面のレジスト層内に入射した電子がウエハ表面に到達するまでの間にレジスト層内で散乱する現象を意味し、後方散乱とは、レジスト層を介してウエハ表面に到達した電子がウエハ表面またはその内部で散乱してレジスト層内に再度入射し、周囲に散乱する現象を意味する。また、フォギングとは、レジスト層の表面からの反射電子が、例えばクーリングプレート74の底面で再反射し、周囲にドーズを加える現象を指す。 Here, forward scattering refers to a phenomenon in which electrons incident on the inside of the resist layer on the wafer surface are scattered in the resist layer before reaching the wafer surface, and back scattering refers to the wafer via the resist layer It means that the electrons reaching the surface are scattered at or inside the wafer surface, re-incident in the resist layer, and scattered around. In addition, “fogging” refers to a phenomenon in which reflected electrons from the surface of the resist layer are re-reflected on the bottom surface of the cooling plate 74, for example, and a dose is applied to the periphery.
 上記の説明から明らかなように、前方散乱の影響を受ける範囲は、後方散乱及びフォギングと比べて狭いので、露光装置100では、前方散乱と、後方散乱及びフォギングとで、異なる補正方法を採用している。 As apparent from the above description, since the range affected by forward scattering is narrower than backscattering and fogging, exposure apparatus 100 adopts different correction methods for forward scattering and backscattering and fogging. ing.
 前方散乱成分の影響を軽減するためのPEC(Proximity Effect Correction)では、主制御装置110は、前方散乱成分の影響を見込んで、制御部11を介してパターンジェネレータ84(及び/又は照度分布調整素子94)を用いた面内の照度分布の調整を行う。 In PEC (Proximity Effect Correction) for reducing the influence of the forward scattered component, the main controller 110 allows the pattern generator 84 (and / or the illuminance distribution adjusting element via the control unit 11 in anticipation of the influence of the forward scattered component). Adjust the in-plane illuminance distribution using 94).
 一方、後方散乱成分の影響を軽減するためのPEC、及びフォギングの影響を軽減するためのFEC(Fogging Effect Correction)では、主制御装置110は、制御部11を介して、照度分布調整素子94を用いてある程度の空間周波数で面内の照度分布の調整を行う。 On the other hand, in PEC for reducing the influence of the backscattering component, and in FEC (Fogging Effect Correction) for reducing the influence of fogging, the main controller 110 controls the illuminance distribution adjusting element 94 via the control unit 11. Use it to adjust the in-plane illuminance distribution at a certain spatial frequency.
 ところで、本実施形態に係る露光装置100は、例えばコンプリメンタリ・リソグラフィに用いられる。この場合、例えばArF光源を用いた液浸露光においてダブルパターニングなどを利用することでL/Sパターンが形成されたウエハを露光対象とし、そのラインパターンの切断を行うためのカットパターンの形成に用いられる。露光装置100では、光電素子54の遮光膜58に形成された72000個のアパーチャ58aのそれぞれに対応するカットパターンを形成することが可能である。 The exposure apparatus 100 according to the present embodiment is used, for example, in complementary lithography. In this case, for example, a wafer on which an L / S pattern is formed is used as an exposure target by using double patterning or the like in immersion exposure using an ArF light source, and is used for forming a cut pattern for cutting the line pattern. Be In the exposure apparatus 100, it is possible to form a cut pattern corresponding to each of 72000 apertures 58a formed in the light shielding film 58 of the photoelectric element 54.
 本実施形態における、ウエハに対する処理の流れは、次の通りである。 The flow of processing on a wafer in the present embodiment is as follows.
 まず、電子線レジストが塗布された露光前のウエハWが、ステージチャンバ10内で、ウエハステージWST上に載置され、静電チャックによって吸着される。 First, the wafer W before exposure to which the electron beam resist has been applied is placed on the wafer stage WST in the stage chamber 10 and is attracted by the electrostatic chuck.
 ウエハステージWST上のウエハWに形成された例えば45個のショット領域のそれぞれに対応してスクライブライン(ストリートライン)に形成された少なくとも各1つのアライメントマークに対して、各電子ビーム光学系70から電子ビームを照射し、少なくとも各1つのアライメントマークからの反射電子が反射電子検出装置106x1、106x2、106y1、106y2の少なくとも1つで検出され、ウエハWの全点アライメント計測が行われ、この全点アライメント計測の結果に基づいて、ウエハW上の複数のショット領域に対し、45の露光ユニット500(マルチビーム光学システム200)を用いた露光が開始される。例えばコンプリメンタリ・リソグラフィの場合、ウエハW上に形成されたX軸方向を周期方向とするL/Sパターンに対するカットパターンを各マルチビーム光学システム200から射出される多数のビーム(電子ビーム)を用いて形成する際に、ウエハW(ウエハステージWST)をY軸方向に走査しつつ、各ビームの照射タイミング(オン・オフ)を制御する。なお、全点アライメント計測を行わずに、ウエハWの一部のショット領域に対応して形成されたアライメントマークの検出を行い、その結果に基づいて45のショット領域の露光を実行しても良い。また、本実施形態においては、露光ユニット500の数とショット領域の数が同じであるが、異なっていても良い。例えば、露光ユニット500の数が、ショット領域の数よりも少なくても良い。 For at least one alignment mark formed on a scribe line (street line) corresponding to each of, for example, 45 shot areas formed on wafer W on wafer stage WST, each electron beam optical system 70 The electron beam is irradiated, and the backscattered electrons from at least one alignment mark are detected by at least one of backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 , and all points alignment measurement of wafer W 1 is performed. We, this based on the results of all points alignment measurement, the plurality of shot areas on the wafer W 1, exposure using a 45 exposure unit 500 (multi-beam optical system 200) is started. For example, in the case of complementary lithography, using a plurality of beams (electron beams) emitted from each multi-beam optical system 200, cut patterns for L / S patterns formed on the wafer W and having the X-axis direction as the periodic direction. At the time of formation, the irradiation timing (on / off) of each beam is controlled while scanning the wafer W (wafer stage WST) in the Y-axis direction. Alternatively, alignment marks formed corresponding to a part of the shot areas of the wafer W may be detected without performing the all-point alignment measurement, and 45 shot areas may be exposed based on the detection result. . Further, in the present embodiment, the number of exposure units 500 and the number of shot areas are the same, but may be different. For example, the number of exposure units 500 may be smaller than the number of shot areas.
 ここで、パターンジェネレータ84を用いた露光シーケンスについて、説明を行う。ここでは、ウエハ上のある領域内に互いに隣接してXY2次元配置された多数の10nm角(アパーチャ58aを介したビームの照射領域と一致)の画素領域を仮想的に設定し、その全ての画素を露光する場合について説明する。また、ここでは、リボン列として、A、B、C、……、K、Lの12のリボン列があるものとする。 Here, an exposure sequence using the pattern generator 84 will be described. Here, pixel regions of a large number of 10 nm square (corresponding to the irradiation region of the beam passing through the aperture 58a) are virtually set adjacent to each other in a certain region on the wafer in XY two-dimensional arrangement. The case of exposing the image will be described. Here, it is assumed that there are 12 ribbon rows of A, B, C,..., K, L as ribbon rows.
 リボン列Aに着目して説明すると、ウエハ上にX軸方向に並ぶある行(第K行とする)の連続した6000画素領域に対してリボン列Aを用いた露光が開始される。この露光開始の時点では、リボン列Aで反射されるビームは、ホームポジションにあるものとする。そして、露光開始からウエハWの+Y方向(又は-Y方向)のスキャンに追従させてビームを+Y方向(又は-Y方向)に偏向しながら同一の6000画素領域に対する露光を続行する。そして、例えば時間Ta[s]でその6000画素領域の露光が完了したとすると、その間にウエハステージWSTは、速度V[nm/s]で、例えばTa×V[nm]進む。ここで、便宜上、Ta×V=96[nm]とする。 Focusing on the ribbon row A, the exposure using the ribbon row A is started on a continuous 6000-pixel region of a certain row (referred to as a K-th row) aligned in the X-axis direction on the wafer. At the start of this exposure, it is assumed that the beam reflected by the ribbon row A is at the home position. Then, the exposure to the same 6000 pixel region is continued while deflecting the beam in the + Y direction (or -Y direction) by making the scan of the wafer W in the + Y direction (or -Y direction) from the start of exposure follow. Then, if, for example, the exposure of the 6000 pixel region is completed at time Ta [s], wafer stage WST advances at a velocity V [nm / s], for example Ta x V [nm]. Here, for the sake of convenience, Ta × V = 96 [nm].
 続いて、ウエハステージWSTが速度Vで+Y方向に24nmスキャンしている間に、ビームをホームポジションに戻す。このとき、実際にウエハ上のレジストが感光されないようにビームをオフにする。このビームのオフは、AO偏向器90を用いて行われる。 Subsequently, the beam is returned to the home position while the wafer stage WST scans at 24 nm in the + Y direction at a velocity V. At this time, the beam is turned off so that the resist on the wafer is not actually exposed. The turning off of the beam is performed using an AO deflector 90.
 このとき、上記の露光開始時点からウエハステージWSTは+Y方向に120nm進んでいるので、第(K+12)行目の連続した6000画素領域が、露光開始時点における第K行の6000画素領域と同じ位置にある。 At this time, since wafer stage WST advances 120 nm in the + Y direction from the start of the above exposure, the continuous 6000 pixel area on the (K + 12) th row has the same position as the 6000 pixel area on the Kth row at the start of exposure. It is in.
 そこで、同様にして、第(K+12)行目の連続した6000画素領域を、ウエハステージWSTにビームを偏向追従させながら露光する。 Therefore, in the same manner, the continuous (6000 K) pixel region on the (K + 12) th row is exposed while deflecting the beam to the wafer stage WST.
 実際には、第K行の6000画素領域の露光と並行して、第(K+1)行~第(K+11)行それぞれの6000画素は、リボン列として、B、C、……、K、Lによって露光される。 Actually, in parallel with the exposure of the 6000 pixel area in the Kth row, 6000 pixels in each of the (K + 1) th to (K + 11) th rows are B, C,..., K, L as ribbon columns. It is exposed.
 このようにして、ウエハ上のX軸方向の長さ60μmの幅の領域については、ウエハステージWSTをY軸方向にスキャンさせながらの露光(スキャン露光)が可能であり、ウエハステージWSTを60μmX軸方向にステッピングして同様のスキャン露光を行えば、そのX軸方向に隣接する長さ60μmの幅の領域の露光が可能である。したがって、上記のスキャン露光とウエハステージのX軸方向のステッピングとを交互に繰り返すことで、ウエハ上の1つのショット領域の露光を、1つの露光ユニット500により行うことができる。また、実際には、45の露光ユニット500を用いて並行してウエハ上の互いに異なるショット領域を露光することができるので、ウエハ全面の露光が可能である。 In this manner, exposure (scan exposure) while scanning wafer stage WST in the Y-axis direction is possible for a region having a length of 60 μm on the wafer in the X-axis direction, and wafer stage WST has a 60 μm X-axis If the same scan exposure is performed by stepping in the direction, it is possible to expose a 60 μm wide area adjacent in the X-axis direction. Therefore, exposure of one shot area on the wafer can be performed by one exposure unit 500 by alternately repeating the above-described scan exposure and stepping in the X-axis direction of the wafer stage. In addition, since 45 different exposure areas on the wafer can be exposed in parallel using the 45 exposure units 500, the entire surface of the wafer can be exposed.
 なお、露光装置100は、コンプリメンタリ・リソグラフィに用いられ、ウエハW上に形成された例えばX軸方向を周期方向とするL/Sパターンに対するカットパターンの形成に用いられるので、パターンジェネレータ84で72000のリボン84bのうち、任意のリボン84bで反射するビームをオンにしてカットパターンを形成することができる。この場合に、72000本のビームが同時にオン状態とされても良いし、されなくても良い。 The exposure apparatus 100 is used for complementary lithography and is used for forming a cut pattern for an L / S pattern formed on the wafer W, for example, with the X-axis direction as the periodic direction. Of the ribbons 84b, a beam reflected by an arbitrary ribbon 84b can be turned on to form a cut pattern. In this case, 72000 beams may or may not be simultaneously turned on.
 本実施形態に係る露光装置100では、上述した露光シーケンスに基づく、ウエハWに対する走査露光中に、主制御装置110によって位置計測系28の計測値に基づいて、ステージ駆動系26が制御されるとともに、各露光ユニット500の制御部11を介して光照射装置80及び電子ビーム光学系70が制御される。この際、主制御装置110の指示に基づき、制御部11によって、前述したドーズ制御が必要に応じて行われる。 In exposure apparatus 100 according to the present embodiment, main scanning drive 110 controls stage drive system 26 based on the measurement values of position measurement system 28 during scanning exposure to wafer W based on the above-described exposure sequence. The light irradiation device 80 and the electron beam optical system 70 are controlled via the control unit 11 of each exposure unit 500. At this time, based on an instruction from the main control unit 110, the control unit 11 performs the above-described dose control as necessary.
 ところで、上で説明したドーズ制御は、照度分布調整素子94若しくはパターンジェネレータ84、又は照度分布調整素子94及びパターンジェネレータ84を制御することで行われるドーズ制御であるから、動的なドーズ制御と言える。 By the way, since the dose control described above is dose control performed by controlling the illuminance distribution adjusting element 94 or the pattern generator 84, or the illuminance distribution adjusting element 94 and the pattern generator 84, it can be said that the dose control is dynamic. .
 しかしながら、露光装置100で採用できるドーズ制御は、これに限られず、以下のようなドーズ制御をも採用することができる。 However, the dose control that can be adopted by the exposure apparatus 100 is not limited to this, and the following dose control can also be adopted.
 例えば光学系起因のブラー(ぼけ)及び/又はレジストブラーによって、図20(A)に示されるように、ウエハ上では本来正方形(又は矩形)であるべきカットパターン(レジストパターン)CPが、例えば4隅(コーナー)が丸まってカットパターンCP’のようになる場合がある。本実施形態では、図20(B)に示されるように、遮光膜58に形成されるアパーチャ58aの4隅に補助パターン58cを設けた非矩形のアパーチャ58a’を介して光ビームを光電層60に照射し、光電変換により発生した電子ビームを電子ビーム光学系70を介してウエハ上に照射することで、非矩形のアパーチャ58a’と形状の異なる形状の電子ビームの照射領域をウエハ上に形成しても良い。この場合、電子ビームの照射領域の形状と、ウエハに形成されるべきカットパターンCPの形状は、同じであっても良いし、異なっていても良い。例えば、レジストブラーの影響をほぼ無視できる場合には、電子ビームの照射領域の形状が、所望のカットパターンCPの形状(例えば、矩形あるいは正方形)とほぼ同じになるようにアパーチャ58a’の形状を決めれば良い。この場合のアパーチャ58a’の使用をドーズ制御と考えなくても良い。
 ここで、アパーチャ58a’では、矩形のアパーチャ58aの4隅の全てに補助パターン58cを設ける必要はなく、アパーチャ58aの4隅のうち、少なくとも一部にのみ補助パターン58cを設けても良い。また、遮光膜58に形成される複数のアパーチャ58a’の一部でのみ矩形のアパーチャ58aの4隅の全てに補助パターン58cを設けても良い。また、遮光膜58に形成される複数のアパーチャの一部をアパーチャ58a’とし、残りのをアパーチャ58aとしても良い。すなわち、遮光膜58に形成される複数のアパーチャ58a’の全ての形状を同一にする必要はない。なお、アパーチャの形状、大きさ等は、シミュレーション結果に基づいて設計することも可能であると思われるが、実際の露光結果に基づいて、例えば電子ビーム光学系70の特性に基づいて最適化することが望ましい。いずれにしても、ウエハ(ターゲット)上での照射領域の角部の丸まりを抑えるようにアパーチャそれぞれの形状が決定される。なお、前方散乱成分の影響もアパーチャ形状で軽減可能である。
 なお、例えば、光学系起因のブラーをほぼ無視できる場合には、アパーチャ58a’の形状と電子ビームの照射領域の形状が同じであっても良い。
For example, as shown in FIG. 20A, the cut pattern (resist pattern) CP that should be originally square (or rectangular) on the wafer is, for example, 4 due to optical system-induced blur (blur) and / or resist blur. A corner may be rounded to look like a cut pattern CP '. In the present embodiment, as shown in FIG. 20B, the light beam is photoelectrically transferred through a non-rectangular aperture 58a 'in which auxiliary patterns 58c are provided at four corners of the aperture 58a formed in the light shielding film 58. And an electron beam generated by photoelectric conversion is irradiated onto the wafer through the electron beam optical system 70 to form an irradiation area of the electron beam having a shape different from that of the non-rectangular aperture 58a 'on the wafer. You may. In this case, the shape of the irradiation area of the electron beam and the shape of the cut pattern CP to be formed on the wafer may be the same or different. For example, when the influence of resist blur can be substantially ignored, the shape of the aperture 58a 'is set so that the shape of the electron beam irradiation area is substantially the same as the shape of the desired cut pattern CP (for example, rectangular or square). You should decide. Use of the aperture 58a 'in this case may not be considered as dose control.
Here, in the aperture 58a ', the auxiliary pattern 58c need not be provided at all four corners of the rectangular aperture 58a, and the auxiliary pattern 58c may be provided at at least a part of the four corners of the aperture 58a. Alternatively, the auxiliary pattern 58c may be provided at all four corners of the rectangular aperture 58a only in a part of the plurality of apertures 58a 'formed in the light shielding film 58. Alternatively, some of the plurality of apertures formed in the light shielding film 58 may be apertures 58a ', and the remaining may be apertures 58a. That is, it is not necessary to make all the shapes of the plurality of apertures 58a 'formed in the light shielding film 58 the same. Although it is considered possible to design the shape, size, etc. of the aperture based on the simulation result, it is optimized based on, for example, the characteristics of the electron beam optical system 70 based on the actual exposure result. Is desirable. In any case, the shape of each aperture is determined so as to suppress rounding of the corner of the irradiation area on the wafer (target). The influence of the forward scattering component can also be reduced by the aperture shape.
For example, in the case where the blur caused by the optical system can be substantially ignored, the shape of the aperture 58a ′ may be the same as the shape of the irradiation region of the electron beam.
 露光装置100では、電子ビーム光学系70を複数、一例として45持っているが、その45の電子ビーム光学系70は同様の仕様を満足するように、同様の製造工程を経て製造されるため、例えば図21(A)に模式的に示されるように、露光フィールドが歪む固有のディストーション(歪曲収差)が、45の電子ビーム光学系70に共通して発生することがある。かかる複数の電子ビーム光学系70に共通のディストーションは、図21(B)に模式的に示されるように、光電層60上に位置する遮光膜58上のアパーチャ58aの配置を、上記ディストーションを打ち消すような、又は低減するような配置にして補正しても良い。なお、図21(A)の円は、電子ビーム光学系70の収差有効領域を示す。 The exposure apparatus 100 has a plurality of electron beam optical systems 70, for example 45, but the 45 electron beam optical systems 70 are manufactured through the same manufacturing process so as to satisfy the same specifications. For example, as schematically shown in FIG. 21A, inherent distortion (distortion aberration) in which the exposure field is distorted may occur commonly to the 45 electron beam optical systems 70. The distortion common to the plurality of electron beam optical systems 70 cancels the distortion, as schematically shown in FIG. 21B, in the arrangement of the apertures 58a on the light shielding film 58 located on the photoelectric layer 60. The correction may be made in such an arrangement as to reduce or reduce. The circle in FIG. 21A indicates the aberration effective area of the electron beam optical system 70.
 図21(B)には、わかりやすくするため、各アパーチャ58aが、矩形ではなく、平行四辺形などとして示されているが、実際には、遮光膜58上のアパーチャ58aは矩形又は正方形で形成される。この例は、電子ビーム光学系70に固有の樽型ディストーションを、糸巻き型ディストーション形状に沿って複数のアパーチャ58aを光電層60上に配置することで、相殺する、又は低減する場合を示している。なお、電子ビーム光学系の70のディストーションは、樽型ディストーションに限られず、例えば電子ビーム光学系の70のディストーションが糸巻き型ディストーションの場合には、その影響を打ち消す、あるいは低減するように、複数のアパーチャ58aを樽型ディストーション形状に配置しても良い。また、各アパーチャ58aの配置に合わせて投影光学系86からの複数の光ビームの位置を調整しても良いし、調整しなくても良い。 Although each aperture 58a is shown not as a rectangle but as a parallelogram etc. for clarity in FIG. 21 (B), in fact, the aperture 58a on the light shielding film 58 is formed as a rectangle or a square. Be done. This example shows a case where barrel distortion inherent to the electron beam optical system 70 is canceled or reduced by arranging a plurality of apertures 58a on the photoelectric layer 60 along the pincushion distortion shape. . Note that the distortion of the electron beam optical system 70 is not limited to the barrel distortion, and, for example, when the distortion of the electron beam optical system is pincushion distortion, a plurality of distortions may be canceled or reduced. The apertures 58a may be arranged in a barrel distortion shape. Further, the positions of the plurality of light beams from the projection optical system 86 may or may not be adjusted according to the arrangement of the respective apertures 58a.
 以上説明したように、本実施形態に係る露光装置100は、マルチビーム光学システム200と、制御部11と、信号処理装置108と、を含んで構成される露光ユニット500を45備えている(図18参照)。マルチビーム光学システム200は、光照射装置80と、電子ビーム光学系70とを含む。光照射装置80は、個別に制御可能な複数の光ビームを提供可能なパターンジェネレータ84と、パターンジェネレータ84に照明光を照射する照明系82と、パターンジェネレータ84からの複数の光ビームを光電素子54に照射する投影光学系86と、を含み、電子ビーム光学系70は、複数の光ビームを光電素子54に照射することによって光電素子54から放出される電子を複数の電子ビームとしてウエハWに照射する。したがって、露光装置100によると、ブランキング・アパーチャが無いため、チャージアップや磁化による複雑なディストーションの発生源が根本的になくなるとともに、ターゲットの露光に寄与しない無駄電子(反射電子)がゼロになるので、長期的な不安定要素を排除することが可能になる。 As described above, the exposure apparatus 100 according to the present embodiment includes the exposure unit 500 configured to include the multi-beam optical system 200, the control unit 11, and the signal processing device 108 (see FIG. 18). The multi-beam optical system 200 includes a light irradiation device 80 and an electron beam optical system 70. The light irradiation device 80 includes a pattern generator 84 capable of providing a plurality of individually controllable light beams, an illumination system 82 for irradiating the pattern generator 84 with illumination light, and photoelectric elements of the plurality of light beams from the pattern generator 84 The electron beam optical system 70 irradiates a plurality of light beams to the photoelectric element 54 and emits electrons emitted from the photoelectric element 54 to the wafer W as a plurality of electron beams. Irradiate. Therefore, according to the exposure apparatus 100, since there is no blanking aperture, the source of generation of complex distortion due to charge-up and magnetization is fundamentally eliminated and waste electrons (reflected electrons) not contributing to the exposure of the target become zero. So it becomes possible to eliminate long-term instability factors.
 また、本実施形態に係る露光装置100によると、実際のウエハの露光時には、主制御装置110は、ウエハWを保持するウエハステージWSTのY軸方向の走査(移動)をステージ駆動系26を介して制御する。これと並行して、主制御装置110は、露光ユニット500のm個(例えば45個)のマルチビーム光学システム200のそれぞれについて、光電素子54のn個(例えば72000個)のアパーチャ58aをそれぞれ通過したn本のビームの照射状態(オン状態とオフ状態)をアパーチャ58aごとにそれぞれ変化させるとともに、照度分布調整素子94を用いて個々の結晶に対応する分割領域毎に、又はパターンジェネレータ84を用いてビーム毎に光ビームの強度調整を行う。 Further, according to the exposure apparatus 100 according to the present embodiment, at the time of actual wafer exposure, main controller 110 performs scanning (movement) of wafer stage WST holding wafer W in the Y-axis direction via stage drive system 26. Control. In parallel with this, the main control unit 110 passes n (for example, 72000) apertures 58 a of the photoelectric element 54 for each of the m (for example, 45) multi-beam optical systems 200 of the exposure unit 500. The irradiation state (on state and off state) of the n beams is changed for each aperture 58a, and the illuminance distribution adjustment element 94 is used for each divided region corresponding to each crystal, or the pattern generator 84 is used. And adjust the intensity of the light beam for each beam.
 また、露光装置100では、静電マルチポール70cの第1静電レンズ70cにより、総電流量の変化によって生じる、クーロン効果に起因するX軸方向及びY軸方向に関する縮小倍率(の変化)を、高速で、かつ個別に補正する。また、露光装置100では、第2静電レンズ70cにより、各種振動等に起因するビームの照射位置ずれ(光学パターンのうちの明画素、すなわち後述するカットパターンの投影位置ずれ)を一括で補正する。 Further, in exposure apparatus 100, the first electrostatic lens 70c 1 of the electrostatic multipole 70c, caused by changes in the total current amount, reduction in the X-axis direction and the Y-axis direction due to the Coulomb effect magnification (changes in) Correct, fast, and individually. Further, in exposure apparatus 100, the second electrostatic lens 70c 2, correction (light pixels of the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch Do.
 これにより、例えばArF液浸露光装置を用いたダブルパターニングなどによりウエハ上の例えば45個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なラインアンドスペースパターンの所望のライン上の所望の位置にカットパターンを形成することが可能になり、高精度かつ高スループットな露光が可能になる。 Thereby, for example, a desired line of a fine line-and-space pattern in which the X-axis direction formed in advance in each of, for example, 45 shot areas on the wafer by double patterning using an ArF immersion exposure apparatus, for example. It becomes possible to form a cut pattern at a desired position on the top, and high precision and high throughput exposure is possible.
 したがって、本実施形態に係る露光装置100を用いて、前述したコンプリメンタリ・リソグラフィを行い、L/Sパターンの切断を行う場合に、各マルチビーム光学システム200で、複数のアパーチャ58aのうち、いずれのアパーチャ58aを通過するビームがオン状態となる場合であっても、換言すればオン状態となるビームの組み合わせの如何を問わず、ウエハ上の例えば45個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なラインアンドスペースパターンのうちの所望のライン上の所望のX位置にカットパターンを形成することが可能になる。 Therefore, when performing the above-described complementary lithography and cutting the L / S pattern using the exposure apparatus 100 according to the present embodiment, any of the plurality of apertures 58 a in each multi-beam optical system 200. Even when the beam passing through the aperture 58a is in the on state, in other words, regardless of the combination of the beams in the on state, X formed in advance on each of, for example, 45 shot areas on the wafer It is possible to form a cut pattern at a desired X position on a desired line of a fine line and space pattern in which the axial direction is a periodic direction.
 また、本実施形態に係る露光装置100では、前述の光電カプセル50が採用されていることから光電素子54の搬送が容易であるとともに、光電素子54の電子ビーム光学ユニット18Aの筐体19への組付けが容易である。また、第1の真空室34内を真空引きするだけで、複数の光電カプセル50それぞれの蓋部材64を、自重で本体部52から離し、真空対応アクチュエータ66により駆動される蓋収納プレート68によって同時に受け取り、丸穴68a内に収納することができるので、複数の光電カプセル50の蓋部材64の取り外しを短時間で行うことができる。また、電子ビーム光学ユニット18Aのメンテナンスの際などには、蓋収納プレート68の複数の丸穴68a内に個別に収納されている複数の蓋部材64を、同時に、対応する光電カプセル50の本体部52に押し付けた状態で、第1の真空室34内を大気開放するだけで、光電カプセル50の内部(真空)と外部(大気圧)との圧力差により、それぞれの蓋部材64を対応する本体部52と一体化させることができる。これにより、確実に、光電層60が空気に触れるのを阻止できる。さらに、この本体部52に蓋部材64が装着されている状態で、本体部52は、本体部52をリリース可能に支持する第1プレート36からリリース可能である。 Further, in the exposure apparatus 100 according to the present embodiment, since the photoelectric capsule 50 described above is adopted, the transportation of the photoelectric element 54 is easy, and the electron beam optical unit 18A of the photoelectric element 54 to the housing 19 It is easy to assemble. Further, the lid member 64 of each of the plurality of photoelectric capsules 50 is separated from the main body 52 by its own weight simply by evacuating the inside of the first vacuum chamber 34, and simultaneously by the lid storage plate 68 driven by the vacuum compatible actuator 66. Since it can be received and stored in the round hole 68a, the lid members 64 of the plurality of photoelectric capsules 50 can be removed in a short time. Further, at the time of maintenance of the electron beam optical unit 18A, etc., a plurality of lid members 64 separately stored in the plurality of round holes 68a of the lid storage plate 68 simultaneously Only when the inside of the first vacuum chamber 34 is open to the atmosphere while pressing against the pressure 52, the pressure difference between the inside (vacuum) and the outside (atmospheric pressure) of the photoelectric capsule 50 causes the respective lid members 64 to correspond to each other. It can be integrated with the part 52. This can reliably prevent the photoelectric layer 60 from being exposed to air. Further, in a state where the lid member 64 is attached to the main body 52, the main body 52 is releasable from the first plate 36 which releasably supports the main body 52.
 なお、上記実施形態に係る露光装置100において、図13に示されるリボン列85を12列有するパターンジェネレータ84に代えて、図22に示される、リボン列85を13列有するパターンジェネレータ184を用いても良い。パターンジェネレータ184では、図22中の最上部に位置するリボン列(図22では識別のため85aと表記されている)は、通常用いられる12列のリボン列(メインのリボン列)85のいずれかに不良が生じた際に、その不良が生じたリボン列85に代えて用いられるバックアップ用のリボン列である。バックアップ用のリボン列85aを複数設けても良い。 In the exposure apparatus 100 according to the above embodiment, a pattern generator 184 having 13 ribbon rows 85 shown in FIG. 22 is used instead of the pattern generator 84 having 12 ribbon rows 85 shown in FIG. Also good. In the pattern generator 184, the ribbon row located at the top in FIG. 22 (indicated as 85a for identification in FIG. 22) is any of 12 ribbon rows (main ribbon rows) 85 which are usually used. When a defect occurs in the above, the ribbon row for backup is used in place of the ribbon row 85 in which the defect has occurred. A plurality of ribbon rows 85a for backup may be provided.
 また、露光装置100では、照度分布調整素子94によってパターンジェネレータ84の受光面が実質的に2×12=24の部分領域に分割されている(図13参照)ので、分割された部分領域毎にバックアップ用のリボン列を設けても良い。 Further, in the exposure apparatus 100, since the light receiving surface of the pattern generator 84 is substantially divided into 2 × 12 = 24 partial areas by the illuminance distribution adjusting element 94 (see FIG. 13), each divided partial area A ribbon row for backup may be provided.
 なお、これまでの説明では、パターンジェネレータの各リボン84bと、光電素子54のアパーチャ58aとは1:1で対応する、すなわち各リボン84bとウエハ上に照射される電子ビームとは1:1で対応するものとした。しかし、これに限らず、メインのリボン列85のうちの1つのリボン列、例えばバックアップ用のリボン列85aに隣接するリボン列に含まれる1つのリボン84bからの光ビームを光電素子54に照射することによって生成された電子ビームを、ターゲットであるウエハ上のあるターゲット領域(第1ターゲット領域と称する)に照射し、例えばリボン列85aに含まれる1つのリボン84b又はメインのリボン列85のうちの他のリボン列に含まれる1つのリボン84bからの光ビームを光電素子54に照射することによって生成された電子ビームを、ウエハ上の第1ターゲット領域に照射可能に構成しても良い。すなわち、異なるリボン列にそれぞれ含まれる2つのリボン84bからの光ビームの照射に起因して光電素子54で生成された電子ビームをウエハ上の同一のターゲット領域に重畳して照射可能としても良い。これによって、例えばそのターゲット領域のドーズ量が所望状態になるようにしてもよい。 In the above description, the ribbons 84b of the pattern generator correspond to the apertures 58a of the photoelectric element 54 at 1: 1, that is, the ribbons 84b and the electron beam irradiated on the wafer are at 1: 1. It corresponded. However, the present invention is not limited to this, and the light beam from one ribbon 84b of the main ribbon row 85, for example, one ribbon 84b included in the ribbon row adjacent to the backup ribbon row 85a is irradiated to the photoelectric element 54. The electron beam generated thereby is irradiated to a target area (referred to as a first target area) on the wafer which is a target, and one of the ribbons 84b contained in the ribbon array 85a or the main ribbon array 85 is An electron beam generated by irradiating the photoelectric device 54 with a light beam from one ribbon 84b included in another ribbon row may be configured to be able to irradiate the first target area on the wafer. That is, the electron beams generated by the photoelectric element 54 due to the irradiation of the light beams from the two ribbons 84b respectively contained in different ribbon rows may be overlapped and irradiated onto the same target area on the wafer. By this, for example, the dose amount of the target region may be in a desired state.
 この他、図13に示されるパターンジェネレータ84に代えて、図23(A)に示されるように、メインのリボン列85に対して、リボン84bの幅(リボン84bの配列ピッッチ)の1倍未満の距離だけずらして配置した補正用のリボン列85bを追加したパターンジェネレータを用いても良い。図23(A)に示される補正用のリボン列85bは、図23(A)の円B内の近傍を拡大して示す図23(B)に示されるように、リボン84bの幅の半分(リボン84bの配列ピッチの半分(1μm))だけずらして配置されている。この補正用のリボン列85bを用いて、PEC(Proximity Effect Correction)等の微妙なDose調整を実施しても良い。GLV自体で中間調を作ることも可能であるが、さらに画素ずらしで補正したい場合に有効である。パターンジェネレータは、メインのリボン列85に加えて、バックアップ用のリボン列85aと補正用のリボン列85bとを、持っていても良い。 Besides this, in place of the pattern generator 84 shown in FIG. 13, as shown in FIG. 23A, the main ribbon row 85 is less than one time the width of the ribbon 84b (the array pitch of the ribbon 84b). It is also possible to use a pattern generator to which a ribbon array 85b for correction, which is arranged shifted by a distance of. The ribbon array 85b for correction shown in FIG. 23 (A) is a half of the width of the ribbon 84b (FIG. 23 (B) shown by enlarging the vicinity in the circle B of FIG. 23 (A). The ribbons 84b are arranged by being shifted by half (1 μm) of the arrangement pitch of the ribbons 84b. Subtle dose adjustment such as PEC (Proximity Effect Correction) may be performed using the ribbon array 85b for correction. Although it is possible to make halftones by the GLV itself, it is effective when it is desired to further correct by pixel shift. The pattern generator may have, in addition to the main ribbon row 85, a ribbon row 85a for backup and a ribbon row 85b for correction.
 なお、上記実施形態では、パターンジェネレータ84を、GLVで構成する場合について例示したが、これに限らず、パターンジェネレータ84を、反射型の液表示素子あるいはデジタル・マイクロミラー・デバイス(Digital Micromirror Device)、PLV(Planer Light Valve)などの複数の可動反射素子を有する反射型の空間光変調器を用いて構成しても良い。あるいは、光照射装置80内部の光学系の構成によっては、各種の透過型の空間光変調器によってパターンジェネレータを構成しても良い。パターンジェネレータ84は、個別に制御可能な複数の光ビームを提供可能なパターンジェネレータであれば、空間光変調器に限らず、ビームのオン・オフは勿論、強度の調整、サイズの変更が可能なパターンジェネレータを用いることができる。また、パターンジェネレータ84は、ビームの制御(オン・オフ、強度の調整、サイズの変更など)が、必ずしも個々の光ビームについて可能である必要はなく、一部のビームについてのみ可能、あるいは複数のビーム毎に可能であっても良い。 In the above embodiment, the pattern generator 84 is exemplified by the GLV. However, the present invention is not limited thereto. The pattern generator 84 may be a reflective liquid display element or a digital micromirror device. It may be configured using a reflective spatial light modulator having a plurality of movable reflective elements such as PLV (Planer Light Valve). Alternatively, depending on the configuration of the optical system inside the light irradiation device 80, the pattern generator may be configured by various transmissive spatial light modulators. If the pattern generator 84 is a pattern generator capable of providing a plurality of light beams that can be individually controlled, it is not limited to the spatial light modulator, and it is possible to adjust the intensity and change the size as well as turning the beam on and off A pattern generator can be used. Also, the pattern generator 84 does not have to be capable of beam control (on / off, intensity adjustment, resizing, etc.) for individual light beams, but only for some beams or multiple beams. It may be possible for each beam.
 したがって、上記実施形態の光学ユニット18Bに相当する、光学ユニットの構成は、種々考えられる。図24には、種々のタイプの光学ユニットの構成例が示されている。図24(A)に示される光学ユニットは、L型反射タイプと呼ぶことができ、XZ平面上に所定の位置関係で2次元配置された複数の照明系を含む照明系ユニットIUと、XY平面に対して45度傾斜したベースBSの一面に複数の照明系に個別に対応する位置関係で2次元配置された複数のパターンジェネレータ84と、複数のパターンジェネレータ84及び対応する光電素子に個別に対応する位置関係でXY平面上で2次元配置された複数の投影光学系を含む光学ユニットIMUと、を備えている。複数の結像光学系それぞれの光軸は、図示は省略されているが、対応する電子ビーム光学系の光軸に一致している。この場合、パターンジェネレータ84は、上記実施形態と同様に反射型の空間光変調器で構成される。このL型反射タイプは、パターンジェネレータに対するアクセスが容易であり、パターンジェネレータの受光面のサイズに対する制約が前述した実施形態などに比べて緩やかであるという利点がある。 Therefore, various configurations of the optical unit corresponding to the optical unit 18B of the above embodiment can be considered. FIG. 24 shows an example of the configuration of various types of optical units. The optical unit shown in FIG. 24A can be called an L-type reflection type, and includes an illumination system unit IU including a plurality of illumination systems two-dimensionally arranged in a predetermined positional relationship on an XZ plane, and an XY plane. A plurality of pattern generators 84 two-dimensionally arranged in a positional relationship corresponding to a plurality of illumination systems individually on one surface of the base BS inclined 45 degrees with respect to a plurality of pattern generators 84 and corresponding photoelectric elements And an optical unit IMU including a plurality of projection optical systems two-dimensionally arranged on the XY plane in a positional relationship. The optical axes of the plurality of imaging optical systems are not shown but coincide with the optical axes of the corresponding electron beam optical systems. In this case, the pattern generator 84 is configured by a reflective spatial light modulator as in the above embodiment. This L-shaped reflection type has the advantage that access to the pattern generator is easy, and the restriction on the size of the light receiving surface of the pattern generator is loose as compared with the above-described embodiment and the like.
 図24(B)に示される光学ユニットは、U型反射タイプと呼ぶことができ、XY平面上に所定の位置関係で2次元配置された複数の照明系を含む照明系ユニットIUと、XY平面に対して-45度傾斜したベースBSの一面に複数の照明系に個別に対応する位置関係で2次元配置された複数の反射型の空間光変調器84と、XY平面に対して45度傾斜したベースBSの一面に複数の空間光変調器84に対応する位置関係で2次元配置された複数の反射型の空間光変調器84と、複数の空間光変調器84及び対応する光電素子に個別に対応する位置関係でXY平面上で2次元配置された複数の投影光学系を含む光学ユニットIMUと、を備えている。複数の投影光学系それぞれの光軸は、図示は省略されているが、対応する電子ビーム光学系の光軸に一致している。この場合、例えば一方の反射型の空間光変調器84をパターンジェネレータとして用いるものとすると、他方の空間光変調器84を、前述した照度分布調整素子94と同等以上の分解能を有する照度分布調整装置として用いることができる。 The optical unit shown in FIG. 24B can be called a U-shaped reflection type, and includes an illumination system unit IU including a plurality of illumination systems two-dimensionally arranged in a predetermined positional relationship on the XY plane, and an XY plane. a plurality of reflection type spatial light modulator 84 1 of two-dimensionally arranged in a positional relationship corresponding individually to a plurality of illumination systems on one surface of the base BS 1 which is inclined -45 degrees relative to, 45 with respect to the XY plane a degree inclined base BS plurality of reflection type spatial light modulator 842 of two-dimensionally arranged in a positional relationship corresponding to a plurality of spatial light modulators 84 1 to a surface of 2, a plurality of spatial light modulator 84 2, and And an optical unit IMU including a plurality of projection optical systems two-dimensionally arranged on the XY plane in a positional relationship individually corresponding to the corresponding photoelectric elements. The optical axes of the plurality of projection optical systems are not shown but coincide with the optical axes of the corresponding electron beam optical systems. In this case, for example, it shall be used one reflective spatial light modulator 84 2 as a pattern generator, and the other of the spatial light modulator 84 1, the illuminance distribution with a resolution equal to or more than the illuminance distribution adjusting element 94 described above It can be used as a regulator.
 図24(C)に示される光学ユニットは、直筒透過型タイプと呼ぶことができ、照明系とパターンジェネレータ84と投影光学系とが同一の光軸上に配置されて成る光学系(光照射装置80A)が、複数、複数の光電素子に対応する所定の位置関係で同一の筐体(鏡筒)78内でXY2次元配置されている。複数の光照射装置80Aの光軸は、対応する電子ビーム光学系の光軸と一致している。この直筒透過型タイプでは、パターンジェネレータ84は、透過型の空間光変調器、例えば透過型の液晶表示素子などを用いる必要がある。直筒透過型タイプは、各軸毎の精度保証がし易い、鏡筒サイズがコンパクト、並びに図25(A)及び図15(B)をそれぞれ用いて後述する、2つの方式の両者に対応可能であるというメリットがある。 The optical unit shown in FIG. 24 (C) can be referred to as a straight cylinder transmission type, and an optical system in which an illumination system, a pattern generator 84 and a projection optical system are disposed on the same optical axis 80A) are arranged in an XY two-dimensional manner in the same housing (lens barrel) 78 in a predetermined positional relationship corresponding to a plurality of photoelectric elements. The optical axes of the plurality of light irradiation devices 80A coincide with the optical axis of the corresponding electron beam optical system. In this direct cylinder transmission type, as the pattern generator 84, it is necessary to use a transmission type spatial light modulator such as a transmission type liquid crystal display element. The straight cylinder transmission type is easy to guarantee the accuracy for each axis, has a compact lens barrel size, and can cope with both of the two methods described later using FIG. 25 (A) and FIG. 15 (B) respectively. There is a merit that there is.
 図24(D)は、上記実施形態の露光装置100で採用した光学ユニット18Bと同様のタイプの光学ユニットを、簡略化して示す。この図24(D)に示される光学ユニットは、直筒反射型タイプと呼ぶことができ、直筒透過型タイプと同様のメリットがある。 FIG. 24D schematically shows an optical unit of the same type as the optical unit 18B employed in the exposure apparatus 100 of the above embodiment. The optical unit shown in FIG. 24 (D) can be called a straight cylinder reflection type, and has the same merit as the straight cylinder transmission type.
 上述の実施形態では、アパーチャ58を介して光電層60に光を照射しているが、アパーチャを用いなくても良い。
 例えば図25(A)に示されるように、パターンジェネレータで形成した光パターン像を光電素子上に投影し、さらに光電素子で電子像に変換してウエハ面上に縮小して結像するようにしても良い。
In the above-mentioned embodiment, although light is irradiated to photoelectric layer 60 via aperture 58, it is not necessary to use an aperture.
For example, as shown in FIG. 25A, the light pattern image formed by the pattern generator is projected onto the photoelectric element, and further converted into an electronic image by the photoelectric element to be reduced and imaged on the wafer surface. It is good.
 上述の実施形態では、図25(B)に示されるように、複数のアパーチャを介して光電層に光を照射している。このようにアパーチャを用いることで、パターンジェネレータと光電素子との間の投影光学系の収差などの影響をうけずに、所望の断面形状を有する光ビームを光電層に入射させることできる。なお、アパーチャと光電層とは、前述した実施形態のように一体的に形成されていても良いし、所定のクリアランス(隙間、ギャップ)を介して対向配置されていても良い。 In the above-described embodiment, as shown in FIG. 25B, light is emitted to the photoelectric layer through the plurality of apertures. By using the aperture in this manner, a light beam having a desired cross-sectional shape can be made incident on the photoelectric layer without being affected by the aberration of the projection optical system between the pattern generator and the photoelectric element. The aperture and the photoelectric layer may be integrally formed as in the above-described embodiment, or may be disposed to face each other via a predetermined clearance (a gap, a gap).
 なお、上記実施形態では、真空隔壁を兼ねる透明の板部材56とアパーチャ58aが形成された遮光膜58と光電層60とが一体である場合について説明したが、真空隔壁と、遮光膜(アパーチャ膜)と、光電層とは、種々の配置が可能である。 In the above embodiment, the case where the light shielding film 58 in which the transparent plate member 56 also serving as the vacuum partition, the aperture 58a is formed, and the photoelectric layer 60 are integrated is described. ) And the photoelectric layer can be arranged in various ways.
 なお、上記実施形態では、蓋収納プレート68の円形開口68cの周囲に引き出し電極112を設ける場合について例示したが、これに代えて、あるいはこれに加えて蓋収納プレート68に電子ビームの位置を計測する計測部材及び電子ビームを検出するセンサの少なくとも一方を設けても良い。前者のビームの位置を計測する計測部材としては、開口を有する反射面と該反射面からの反射電子を検出する検出装置との組合せ、あるいは表面にマークが形成された反射面とそのマークから発生する反射電子を検出する検出装置との組合せなどを用いることができる。 In the above embodiment, the extraction electrode 112 is provided around the circular opening 68c of the lid storage plate 68, but instead of or in addition to this, the position of the electron beam is measured on the lid storage plate 68 At least one of the measurement member and the sensor for detecting the electron beam may be provided. As a measuring member for measuring the position of the beam of the former, a combination of a reflecting surface having an aperture and a detecting device for detecting reflected electrons from the reflecting surface, or a reflecting surface having a mark formed on the surface and the mark A combination with a detection device that detects reflected electrons can be used.
《第2の実施形態》
 図26には、第2の実施形態に係る露光装置1000の構成が概略的に示されている。ここで、前述した第1の実施形態に係る露光装置100と同一若しくは同等の構成については同一の符号を用いるとともにその説明を省略する。
Second Embodiment
FIG. 26 schematically shows the arrangement of an exposure apparatus 1000 according to the second embodiment. Here, with regard to the same or equivalent configuration as that of the exposure apparatus 100 according to the first embodiment described above, the same reference numeral is used, and the description thereof is omitted.
 露光装置1000は、前述の第1の実施形態に係る露光装置100において、光電カプセル50の本体部52が挿入されていた第1プレート36の貫通孔36aが第1の真空室34を区画する、石英ガラスなどから成る真空隔壁132によって外部に対して気密状態で閉塞されている点及び第1の真空室34が形成される筐体19の第1部分19aの内部の構成が、前述した第1の実施形態に係る露光装置100と相違する。以下、相違点を中心として説明する。 In the exposure apparatus 100 according to the first embodiment described above, the exposure apparatus 1000 divides the first vacuum chamber 34 by the through holes 36 a of the first plate 36 into which the main body 52 of the photoelectric capsule 50 has been inserted. The point closed in an airtight state to the outside by a vacuum partition 132 made of quartz glass or the like and the internal configuration of the first portion 19a of the housing 19 where the first vacuum chamber 34 is formed are the first Is different from the exposure apparatus 100 according to the embodiment. The following description will focus on the differences.
 図27には、本第2の実施形態に係る露光装置1000の1つの電子ビーム光学系70に対応する、筐体19の内部の構成が、示されている。図27に示されるように、真空隔壁132から所定距離下方には、光電素子136が配置されている。光電素子136は、図28(A)に示されるように、前述の光電素子54と同様の順序で配置され、同様の手法によって一体的に形成された石英(S)から成る基材134、遮光膜58及び光電層60を備えている。光電素子136の遮光膜58には、前述と同様の配置で、少なくとも72000個のアパーチャ58aが形成されている。 FIG. 27 shows the internal configuration of the housing 19 corresponding to one electron beam optical system 70 of the exposure apparatus 1000 according to the second embodiment. As shown in FIG. 27, the photoelectric element 136 is disposed below the vacuum barrier 132 by a predetermined distance. As shown in FIG. 28A, the photoelectric conversion elements 136 are arranged in the same order as the photoelectric conversion elements 54 described above, and are made of quartz (S i O 2 ) integrally formed by the same method. A light shielding film 58 and a photoelectric layer 60 are provided. At least 72000 apertures 58 a are formed in the light shielding film 58 of the photoelectric element 136 in the same arrangement as described above.
 図27に戻り、第1の真空室34内部の光電素子136の下方には、引き出し電極112aが配置されている。 Referring back to FIG. 27, the extraction electrode 112 a is disposed below the photoelectric element 136 in the first vacuum chamber 34.
 露光装置1000では、光電カプセル50は用いられていないため、第1の真空室34内に蓋収納プレート68及び真空対応アクチュエータ66は、設けられていない(図26及び図27参照)。 In the exposure apparatus 1000, since the photoelectric capsule 50 is not used, the lid housing plate 68 and the vacuum compatible actuator 66 are not provided in the first vacuum chamber 34 (see FIGS. 26 and 27).
 本第2の実施形態に係る電子ビーム光学ユニット18Aは、ベースプレート38を含み、その下方の構成は、第2の真空室72内部の電子ビーム光学系70を含み、前述した第1の実施形態に係る露光装置100と同様である。また、電子ビーム光学ユニット18A以外の構成も、前述した露光装置100と同様である。 The electron beam optical unit 18A according to the second embodiment includes the base plate 38, and the lower structure includes the electron beam optical system 70 inside the second vacuum chamber 72, and the first embodiment described above. It is the same as the exposure apparatus 100. The configuration other than the electron beam optical unit 18A is the same as that of the exposure apparatus 100 described above.
 このようにして構成された露光装置1000では、前述した第1の実施形態に係る露光装置100と同等の効果を得ることができる他、真空隔壁132とは別に光電素子136が設けられているため、以下のような追加の機能を持っても良い。 In the exposure apparatus 1000 configured in this way, in addition to the same effects as the exposure apparatus 100 according to the first embodiment described above can be obtained, the photoelectric element 136 is provided separately from the vacuum barrier 132. , May have additional features such as:
 すなわち、電子ビーム光学系の数を増やすため、鏡筒の経を小さくしていくと、電子ビーム光学系の像面湾曲成分が顕著になる。例えば図29に模式的に示されるような像面湾曲を電子ビーム光学系がその収差として持つ場合、図29に模式的に示されるように、光電層60(正しくは、光電素子136の全体)を、像面の湾曲成分と逆位相の湾曲が光電層60に生じるように撓ませる、すなわち光電層60の電子放出面を湾曲させる(非平面にする)。これにより、電子ビーム光学系70の像面湾曲の少なくとも一部を補償し、像面湾曲に起因する電子ビーム像の位置ずれ、ぼけ(デフォーカス)等を抑制する。なお、光電層60の電子放出面の湾曲量を、可変にしても良い。例えば、電子ビーム光学系70の光学特性(収差、例えば像面湾曲)の変化に応じて、電子放出面の湾曲量を変えても良い。したがって、対応する電子ビーム光学系の光学特性にそれぞれ応じて、複数の光電素子136相互間で電子放出面の湾曲量を異ならせても良い。また、図29では、光電層60に+Z方向に(投影光学系60に向かって)凸の湾曲を生じさせる場合の例が示されているが、これは-Z方向に凸の像面湾曲を電子ビーム光学系がその収差として保つ場合を仮定したため、この像面湾曲の影響を相殺する、又は低減する湾曲を光電層60に与えるためである。したがって、+Z方向に凸の像面湾曲を電子ビーム光学系がその収差として保つ場合、光電層60に-Z方向に凸の湾曲を生じさせる必要がある。 That is, when the lens barrel is made smaller to increase the number of electron beam optical systems, the field curvature component of the electron beam optical system becomes remarkable. For example, when the electron beam optical system has a curvature of field as schematically shown in FIG. 29 as its aberration, as schematically shown in FIG. 29, the photoelectric layer 60 (correctly, the entire photoelectric element 136) Is bent so that a curvature in the opposite phase to the curvature component of the image plane is generated in the photoelectric layer 60, that is, the electron emission surface of the photoelectric layer 60 is curved (non-planar). Thereby, at least a part of the curvature of field of the electron beam optical system 70 is compensated, and the positional deviation of the electron beam image, the blur (defocus) and the like due to the curvature of field are suppressed. The amount of curvature of the electron emission surface of the photoelectric layer 60 may be variable. For example, the amount of curvature of the electron emission surface may be changed according to a change in optical characteristics (aberration, for example, curvature of field) of the electron beam optical system 70. Therefore, the amount of curvature of the electron emission surface may be made different among the plurality of photoelectric elements 136 according to the optical characteristics of the corresponding electron beam optical system. Further, FIG. 29 shows an example in the case of causing a convex curvature in the + Z direction (toward the projection optical system 60) in the photoelectric layer 60, but this corresponds to a curvature of field convex in the −Z direction. Since it is assumed that the electron beam optical system holds as its aberration, this is to give the photoelectric layer 60 a curvature which cancels out or reduces the influence of the curvature of field. Therefore, when the electron beam optical system maintains the field curvature convex in the + Z direction as its aberration, it is necessary to cause the photoelectric layer 60 to generate a convex curvature in the −Z direction.
 なお、本第2の実施形態に係る露光装置1000においても、前述した露光装置100と同様に、X軸方向に長い矩形の露光フィールドが採用されているので、図29中に短い両矢印で示されるように、1方向の曲げ(一軸回りの曲げ、すなわちX軸方向に関して湾曲する、XZ断面内での曲げ)でも効果が高い。なお、光電素子136(光電層60)を1方向の曲げに限らず、4隅を下方に撓ませるなど3次元的に変形させても勿論良い。光電素子136の変形のさせ方を変えることで、球面収差に起因する光学パターン像の位置ずれ、変形等を効果的に抑制することができる。光電層60の電子放出面を湾曲させると、その電子放出面の一部(例えば中央部)と、他部(例えば周辺部)とで、電子ビーム光学系70の光軸AXeの方向に関して位置が互いに異なることになる。
 なお、光電層60の厚みに分布を持たせて、電子放出面の一部(例えば中央部)と、他部(例えば周辺部)の光軸AXeの方向の位置が異なるようにしても良い。
 また、第1実施形態のように、光電素子が真空隔壁を兼ねる場合にも、光電層60の電子放出面を湾曲(非平面)にしても良い。
Also in exposure apparatus 1000 according to the second embodiment, as in exposure apparatus 100 described above, since a rectangular exposure field long in the X-axis direction is employed, a short double arrow is shown in FIG. Thus, bending in one direction (bending around a single axis, ie bending in the X-axis direction, bending in the XZ cross section) is also effective. The photoelectric element 136 (photoelectric layer 60) is not limited to bending in one direction, but may of course be deformed three-dimensionally such as bending four corners downward. By changing the way of deformation of the photoelectric element 136, positional deviation, deformation and the like of the optical pattern image due to the spherical aberration can be effectively suppressed. When the electron emission surface of the photoelectric layer 60 is curved, the position of the portion (for example, the central portion) of the electron emission surface and the other portion (for example, the peripheral portion) with respect to the direction of the optical axis AXe of the electron beam optical system 70 It will be different from each other.
The thickness of the photoelectric layer 60 may have a distribution so that the positions of a part (for example, the central part) of the electron emission surface and the other part (for example, the peripheral part) in the direction of the optical axis AXe may be different.
Also, as in the first embodiment, the electron emission surface of the photoelectric layer 60 may be curved (non-planar) even when the photoelectric element also serves as a vacuum barrier.
 また、光電素子136のようなアパーチャが光電層と一体的に設けられたいわばアパーチャ一体型の光電素子を用いる場合、そのアパーチャ一体型光電素子を、XY平面内で駆動可能なアクチュエータを設けることとしても良い。この場合には、例えば、アパーチャ一体型光電素子として、図30に示されるように、1列置きにピッチaのアパーチャ58aの列と、ピッチbのアパーチャ58bの列とが形成されたマルチピッチ型のアパーチャ一体型光電素子136aを用いても良い。ただし、この場合には、前述した光学特性調整装置87を用いて、X軸方向の投影倍率(倍率)を変更するズーム機能を併用する。かかる場合には、図31(A)に示されるように、アパーチャ一体型光電素子136aのアパーチャ58aの列にビームを照射する状態から、光学特性調整装置87を用いて、投影光学系86のX軸方向の倍率を拡大し、図31(B)中の両矢印で示されるように、複数のビームを全体的にX軸方向に拡大した後、図31(C)中の白抜き矢印で示されるように+Y方向に、アパーチャ一体型光電素子136aを駆動することで、ビームをアパーチャ58bの列に照射することが可能になる。これにより、ピッチが異なるラインパターンの切断用のカットパターン形成が可能になる。ただし、ビームのサイズ、形状によっては、必ずしも投影光学系86のズーム機能を用いなくても、アパーチャ一体型光電素子136aを駆動するのみでも、ビームをピッチがaのアパーチャ58aの列とピッチがbのアパーチャ58bの列とに切り換えて照射することが可能になる。要は、切り換えの前後のいずれの状態においても、複数のビーム(レーザビーム)のそれぞれが対応するアパーチャ58a又は58bを含む光電素子136a上の領域に照射されれば良い。すなわち、光電素子136a上の複数のアパーチャ58a又は58bそれぞれのサイズが、対応するビームの断面のサイズより小さければ良い。 Also, in the case of using a so-called aperture-integrated photoelectric element in which an aperture such as the photoelectric element 136 is integrally provided with the photoelectric layer, an actuator capable of driving the aperture integrated photoelectric element in the XY plane is provided. Also good. In this case, for example, as an aperture integrated photoelectric element, as shown in FIG. 30, a multi-pitch type in which a row of apertures 58a of pitch a and a row of apertures 58b of pitch b are formed every other row. The aperture integrated photoelectric device 136a may be used. However, in this case, a zoom function of changing the projection magnification (magnification) in the X-axis direction is used in combination with the above-described optical characteristic adjustment device 87. In such a case, as shown in FIG. 31A, from the state in which the beam is irradiated to the row of the apertures 58a of the aperture integrated photoelectric device 136a, X of the projection optical system 86 is generated using the optical characteristic adjustment device 87. After magnifying the magnification in the axial direction and expanding the plurality of beams in the X-axis direction as a whole, as indicated by the double arrows in FIG. 31 (B), it is indicated by the outline arrows in FIG. By driving the aperture integrated photoelectric element 136a in the + Y direction so that the beam can be emitted to the row of the apertures 58b. This makes it possible to form a cut pattern for cutting line patterns having different pitches. However, depending on the size and shape of the beam, even if the zoom function of the projection optical system 86 is not necessarily used or the aperture integrated photoelectric element 136a is only driven, the beam has a pitch a of a row of apertures 58a and a pitch of b It is possible to switch to the row of the apertures 58b of the light source to irradiate. The point is that in any of the states before and after switching, each of the plurality of beams (laser beams) may be irradiated to the area on the photoelectric element 136a including the corresponding apertures 58a or 58b. That is, the size of each of the plurality of apertures 58a or 58b on the photoelectric element 136a may be smaller than the size of the cross section of the corresponding beam.
 なお、光電素子136aにピッチが互いに異なる3種類以上のアパーチャの列を光電変換素子の遮光膜58上に形成し、上述と同様の手順で露光を行うことで、3つ以上のピッチのカットパターンの形成に対応可能にしても良い。 A row of three or more types of apertures having different pitches is formed on the light shielding film 58 of the photoelectric conversion element in the photoelectric element 136a, and exposure is performed in the same procedure as described above, thereby cutting patterns of three or more pitches. It may be possible to cope with the formation of
 上述したように、投影光学系86の倍率を変更すると、ビーム(レーザビーム)の被照射面内の単位面積当たりのビームの強度が変わるので、予めシミュレーションなどで、倍率の変化とビームの強度の変化との関係を求めておき、その関係に基づいて、ビームの強度を変更(調整)することとしても良い。あるいは、倍率を変更したときの一部のビームの強度をセンサで検出し、その検出された強度の情報に基づいてビームの強度を変更(調整)することとしても良い。後者の場合、例えば図27に示されるように、光電素子136の基材の上面の一端部にセンサ135を設け、上述したアクチュエータによって光電素子136を駆動することでセンサ135をXY平面内の所望の位置に移動可能に構成しても良い。なお、光電素子136は、XY平面内での移動のみでなく、光軸AXeに平行なZ軸方向に移動可能、XY平面に対して傾斜可能、光軸AXeに平行なZ軸回りに回転可能に構成しても良い。 As described above, when the magnification of the projection optical system 86 is changed, the intensity of the beam per unit area in the surface to be irradiated of the beam (laser beam) is changed. The relationship with the change may be determined, and the beam intensity may be changed (adjusted) based on the relationship. Alternatively, the intensity of a part of the beam when the magnification is changed may be detected by a sensor, and the intensity of the beam may be changed (adjusted) based on the information of the detected intensity. In the latter case, for example, as shown in FIG. 27, the sensor 135 is provided at one end of the upper surface of the base of the photoelectric element 136, and the actuator 135 described above drives the photoelectric element 136 to make the sensor 135 desired in the XY plane. It may be configured to be movable to the position of. The photoelectric element 136 is movable not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z axis parallel to the optical axis AXe You may configure it.
 ところで、これまでは、特に説明しなかったが、光電層60は、ある程度の面積を有するため、その面内の光電変換効率が均一である保証はなく、光電層60は光電変換効率の面内分布を有すると考えるのが実際的である。したがって、光電層60の光電変換効率の面内分布に応じて、光電素子に照射される光ビームの強度の調整を行なっても良い。すなわち、光電層60が第1の光電変換効率の第1部分と第2の光電変換効率の第2部分とを有するとすると、第1の光電変換効率及び第2の光電変換効率にそれぞれ基づいて、第1部分に照射されるビームの強度及び第2部分に照射されるビームの強度を調整することとしても良い。あるいは、第1の光電変換効率と第2の光電変換効率との違いを補償するように第1部分に照射される光ビームの強度と第2部分に照射される光ビームの強度を調整しても良い。 By the way, although not particularly described above, since the photoelectric layer 60 has a certain area, there is no guarantee that the in-plane photoelectric conversion efficiency is uniform, and the photoelectric layer 60 has an in-plane photoelectric conversion efficiency. It is practical to think of having a distribution. Therefore, in accordance with the in-plane distribution of the photoelectric conversion efficiency of the photoelectric layer 60, the intensity of the light beam irradiated to the photoelectric element may be adjusted. That is, assuming that the photoelectric layer 60 has the first portion of the first photoelectric conversion efficiency and the second portion of the second photoelectric conversion efficiency, based on the first photoelectric conversion efficiency and the second photoelectric conversion efficiency, respectively. The intensity of the beam irradiated to the first portion and the intensity of the beam irradiated to the second portion may be adjusted. Alternatively, the intensity of the light beam irradiated to the first portion and the intensity of the light beam irradiated to the second portion are adjusted to compensate for the difference between the first photoelectric conversion efficiency and the second photoelectric conversion efficiency. Also good.
 また、本第2の実施形態に係る露光装置1000において、アパーチャ一体型光電素子136に代えて、アパーチャ板(アパーチャ部材)が光電素子と別体であるいわばアパーチャ別体型光電素子を用いても良い。図32(A)に示されるアパーチャ別体型光電素子138は、基材134の下面(光射出面)に光電層60が形成されて成る光電素子140と、光電素子140の基材134の上方(光入射面側)に例えば1μ以下の所定のクリアランス(間隙、ギャップ)隔てて配置された多数のアパーチャ58aが形成された遮光部材から成るアパーチャ板142とを含む。
 アパーチャ別体型光電素子を用いる場合、アパーチャ板142をXY平面内で駆動可能な駆動機構を設けることが望ましい。かかる場合には、前述したアパーチャ一体型光電素子136aと同様のマルチピッチ型のアパーチャを、アパーチャ板142に形成し、投影光学系86の倍率の拡大機能と、光電素子140とアパーチャ板142とを、両者の位置関係を維持した状態で駆動する機能とを用いることで、前述と同様の手順で、ピッチが異なるラインパターンの切断用のカットパターンの形成が可能になる。これに加えて、光電素子140をXY平面内で駆動可能な駆動機構を設けても良い。例えば、光電素子140及びアパーチャ板142の一方のみを駆動することで、アパーチャ板142と光電素子140とのXY平面内の相対位置をずらすことで、光電層60の長寿命化を図ることができる。なお、アパーチャ板142に対して投影光学系86をXY平面内で移動可能に構成しても良い。また、アパーチャ板142は、XY平面内での移動のみでなく、光軸AXeに平行なZ軸方向に移動可能、XY平面に対して傾斜可能、光軸AXeに平行なZ軸回りに回転可能に構成しても良く、光電素子140とアパーチャ板142とのギャップを調整可能としても良い。
 なお、アパーチャ別体型光電素子を用いる場合、光電素子140を移動する駆動機構だけを設けるようにしても良い。この場合も、光電素子140をXY平面内で移動することによって、光電層60の長寿命化を図ることができる。
 また、第1実施形態で説明した一体型光電素子を用いる場合にも、光電素子54を移動する駆動機構を設けても良い。この場合も、光電素子54をXY平面内で移動することによって、光電層60の長寿命化を図ることができる。
Further, in the exposure apparatus 1000 according to the second embodiment, the aperture integrated photoelectric device 136 may be replaced by a so-called separate aperture type photoelectric device in which the aperture plate (aperture member) is separate from the photoelectric device. . In the separate-aperture type photoelectric device 138 shown in FIG. 32A, the photoelectric device 140 having the photoelectric layer 60 formed on the lower surface (light emitting surface) of the substrate 134 and the upper side of the substrate 134 of the photoelectric device 140 And an aperture plate 142 made of a light shielding member in which a large number of apertures 58a are formed at predetermined light (1 μm or less) clearances (gaps).
In the case of using a separate aperture type photoelectric device, it is desirable to provide a drive mechanism capable of driving the aperture plate 142 in the XY plane. In such a case, a multi-pitch type aperture similar to the aperture integrated photoelectric device 136a described above is formed in the aperture plate 142, the magnification magnification function of the projection optical system 86, the photoelectric device 140 and the aperture plate 142 By using the function of driving in a state in which the positional relationship between the two is maintained, it is possible to form a cut pattern for cutting line patterns having different pitches in the same procedure as described above. In addition to this, a drive mechanism capable of driving the photoelectric element 140 in the XY plane may be provided. For example, by driving only one of the photoelectric element 140 and the aperture plate 142, the lifetime of the photoelectric layer 60 can be increased by shifting the relative position between the aperture plate 142 and the photoelectric element 140 in the XY plane. . The projection optical system 86 may be configured to be movable in the XY plane with respect to the aperture plate 142. The aperture plate 142 is movable not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z axis parallel to the optical axis AXe The gap between the photoelectric device 140 and the aperture plate 142 may be adjustable.
In the case of using the separate aperture type photoelectric device, only a drive mechanism for moving the photoelectric device 140 may be provided. Also in this case, the lifetime of the photoelectric layer 60 can be increased by moving the photoelectric element 140 in the XY plane.
Further, also when using the integrated photoelectric device described in the first embodiment, a drive mechanism for moving the photoelectric device 54 may be provided. Also in this case, the lifetime of the photoelectric layer 60 can be increased by moving the photoelectric element 54 in the XY plane.
 なお、上述したアパーチャ板のアパーチャと、光電素子のアパーチャとを併用しても良い。すなわち、前述したアパーチャ一体型光電素子の光ビームの入射側に、アパーチャ板を配置し、アパーチャ板のアパーチャを介したビームをアパーチャ一体型光電素子のアパーチャを介して光電層に入射させても良い。
 なお、ピッチが異なるラインパターンの切断用のカットパターンの形成に際して、上述のアパーチャ別体型光電素子を用いる場合、アパーチャ板を交換しても良い。
 また、上述のアパーチャ別体型光電素子を用いる場合、アパーチャ板の代わりに、透過型液晶素子などの空間光変調器を使って複数のアパーチャを形成しても良い。
The aperture of the aperture plate described above may be used in combination with the aperture of the photoelectric element. That is, an aperture plate may be disposed on the light beam incident side of the aperture integrated photoelectric device described above, and a beam passing through the aperture of the aperture plate may be incident on the photoelectric layer through the aperture of the aperture integrated photoelectric device. .
When forming a cut pattern for cutting line patterns having different pitches, the aperture plate may be replaced when the above-described separate aperture type photoelectric device is used.
Further, in the case of using the separate aperture type photoelectric element described above, a plurality of apertures may be formed using a spatial light modulator such as a transmissive liquid crystal element instead of the aperture plate.
 なお、上では、ピッチが異なるラインパターンの切断用のカットパターンの形成に際して、投影光学系86の倍率の拡大機能を用いる場合について説明したが、倍率の変更の代わりに、投影光学系86からアパーチャ一体型光電素子136a又はアパーチャ板142の同一のアパーチャ列の複数のアパーチャにそれぞれ照射される複数のビームのピッチを変更する装置を設けても良い。例えば、投影光学系86と光電素子との間の光路中に、複数の平行平板を配置して、その傾斜角を変えることで複数のビームのピッチを変更することができる。 In the above, the case of using the magnification enlargement function of the projection optical system 86 in forming the cut patterns for cutting line patterns having different pitches has been described, but instead of changing the magnification, the aperture from the projection optical system 86 is used. A device may be provided to change the pitch of the plurality of beams respectively illuminated onto the plurality of apertures of the same array of apertures of the integrated photoelectric element 136a or the aperture plate 142. For example, a plurality of parallel flat plates can be disposed in the optical path between the projection optical system 86 and the photoelectric element, and the pitches of the plurality of beams can be changed by changing the tilt angles.
 なお、アパーチャ一体型光電素子としては、図28(A)に示されるタイプに限らず、例えば図28(B)に示されるように、図28(A)の光電素子136において、アパーチャ58a内の空間が透明膜144で埋められたタイプの光電素子136bを用いることもできる。光電素子136bにおいて、透明膜144の代わりに、基材の一部がアパーチャ58a内の空間を埋めるようにすることもできる。 The aperture integrated photoelectric element is not limited to the type shown in FIG. 28A, and for example, as shown in FIG. 28B, in the photoelectric element 136 of FIG. It is also possible to use a photoelectric device 136 b of a type in which the space is filled with the transparent film 144. In the photoelectric element 136b, instead of the transparent film 144, a part of the substrate may be filled in the space in the aperture 58a.
 この他、図28(C)に示されるように、基材134の上面(光入射面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58を形成し、基材134の下面(光射出面)に光電層60を形成したタイプの光電素子136c、あるいは図28(D)に示されるように、図28(C)の光電素子136cにおいて、アパーチャ58a内の空間が透明膜144で埋められたタイプの光電素子136dを用いることもできる。 Besides, as shown in FIG. 28C, a light shielding film 58 having an aperture 58a is formed on the upper surface (light incident surface) of the substrate 134 by vapor deposition of chromium, and the lower surface (light emission surface) of the substrate 134 In the photoelectric element 136c of the type in which the photoelectric layer 60 is formed, or as shown in FIG. 28D, in the photoelectric element 136c of FIG. 28C, the type in which the space in the aperture 58a is filled with the transparent film 144. The photoelectric device 136 d of can also be used.
 この他、図28(E)に示されるように、基材134の下面に光電層60を形成し、光電層60の下面にアパーチャ58aを有するクロム膜58を形成したタイプの光電素子136eが存在する。なお、図28(E)のクロム膜58は、光ではなく、電子を遮蔽する役目を有している。 Besides, as shown in FIG. 28E, there is a photoelectric device 136e of a type in which the photoelectric layer 60 is formed on the lower surface of the base material 134 and the chromium film 58 having the apertures 58a is formed on the lower surface of the photoelectric layer 60. Do. The chromium film 58 in FIG. 28E has a function of shielding electrons, not light.
 これまでに説明したアパーチャ一体型光電素子136、136a、136b、136c、136d、136eのいずれにおいても、基材134を石英のみでなく、石英と透明膜(単層、又は多層)の積層体によって構成しても良い。 In any of the aperture-integrated photoelectric devices 136, 136a, 136b, 136c, 136d, and 136e described above, the base material 134 is not only made of quartz but also a laminate of quartz and a transparent film (single layer or multilayer) You may configure.
 なお、アパーチャ別体型光電素子を、例えば図32(A)に示される光電素子140とともに構成するために光電素子140とともに用いることができる、アパーチャ板は、アパーチャ板142のようにアパーチャを有する遮光部材のみから成るタイプに限らず、基材と遮光膜とが一体のアパーチャ板を用いることもできる。このタイプのアパーチャ板としては、例えば図32(B)に示されるように、例えば石英から成る基材144の下面(光射出面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58が形成されたアパーチャ板142a、図32(C)に示されるように、石英から成る板部材146と透明膜148とから成る基材150と、この基材150の下面(光射出面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58が形成されたアパーチャ板142b、図32(D)に示されるように、アパーチャ板142aにおいて、アパーチャ58a内の空間が透明膜148で埋められたアパーチャ板142c、図32(E)に示されるように、アパーチャ板142aにおいて、アパーチャ58a内の空間が、基材144の一部によって埋められているアパーチャ板142dを用いることができる。なお、アパーチャ板142、142a、142b、142c,142dは、いずれも上下反転して用いることもできる。 The aperture plate can be used together with the photoelectric device 140 to form the separate-aperture type photoelectric device together with the photoelectric device 140 shown in FIG. 32A, for example. The aperture plate has a light shielding member having an aperture like the aperture plate 142 It is also possible to use an aperture plate in which the base material and the light shielding film are integrated, as well as the type consisting only of them. As an aperture plate of this type, for example, as shown in FIG. 32B, a light shielding film 58 having an aperture 58a is formed by vapor deposition of chromium on the lower surface (light emitting surface) of a base 144 made of quartz, for example. As shown in the aperture plate 142a, as shown in FIG. 32C, a base 150 composed of a plate member 146 made of quartz and a transparent film 148, and an aperture formed by deposition of chromium on the lower surface (light emitting surface) of the base 150. As shown in FIG. 32D, the aperture plate 142b has a light shielding film 58 having 58a, an aperture plate 142c in which the space in the aperture 58a is filled with the transparent film 148 in the aperture plate 142a, FIG. As shown in E), in the aperture plate 142a, the space in the aperture 58a is filled with a portion of the substrate 144. And has an aperture plate 142d can be used. The aperture plates 142, 142a, 142b, 142c, 142d can be used upside down.
 なお、前述した第1の実施形態において、光電カプセル50の本体部52の真空隔壁を兼ねる光電素子54に代えて、本体部52に真空隔壁を設け、その真空隔壁の下に所定のクリアランスを介して前述した種々のタイプのアパーチャ一体型光電素子、又はアパーチャ別体型光電素子を配置し、本体部52の内部に収納しても良い。アパーチャ一体型光電素子136(136a~136d)の駆動機構、又は光電素子140とアパーチャ板142(142a~142d)との少なくとも一方を移動する駆動機構を設けても良い。 In the first embodiment described above, a vacuum partition is provided in the main body 52 instead of the photoelectric element 54 which also serves as the vacuum partition of the main body 52 of the photoelectric capsule 50, and a predetermined clearance is provided under the vacuum partition. The various types of aperture integrated photoelectric elements or separate aperture type photoelectric elements described above may be disposed and housed inside the main body 52. A drive mechanism for the aperture integrated photoelectric device 136 (136a to 136d) or a drive mechanism for moving at least one of the photoelectric device 140 and the aperture plate 142 (142a to 142d) may be provided.
 また、これまでは、光電素子54、136、136a~136e及びアパーチャ板142、142a~142dの複数のアパーチャ58aは、全てが同一サイズ、同一形状であることを前提として説明を行っているが、複数のアパーチャ58aの全てのサイズが同一でなくても良いし、形状も全てのアパーチャ58aで同一でなくても良い。要は、アパーチャ58aは、対応するビームがその全域に照射されるように、その対応するビームのサイズより小さければ良い。 Also, so far, the description has been made on the premise that the photoelectric elements 54, 136, 136a to 136e and the plurality of apertures 58a of the aperture plates 142, 142a to 142d all have the same size and the same shape, The sizes of all the plurality of apertures 58a may not be the same, and the shapes may not be the same for all the apertures 58a. In short, the aperture 58a may be smaller than the size of the corresponding beam so that the corresponding beam is irradiated on the entire area.
 なお、第2の実施形態に係る露光装置1000において、アパーチャ板142を使わなくても良い。この場合も、前述と同様、ウエハWは、Y軸方向に移動しながら電子ビームが照射される走査露光によって露光される。この場合、X軸方向に第1のピッチ(例えばピッチ(間隔)a)で複数の光ビームを光電素子140の基材134を介して光電層60に照射可能な第1状態と、X軸方向に第2のピッチ(例えばピッチ(間隔)b)で複数の光ビームを光電素子140の基材134を介して光電層60に照射可能な第2状態との一方から他方へ切り換えることで、ピッチが異なるラインパターンの切断用のカットパターン形成が可能になる。この場合も、投影光学系86の倍率の変更機能を併用しても良い。この場合も、倍率の変更の代わりに、投影光学系86から光電素子140に照射される複数のビームのピッチ(間隔)を変更する装置を設けても良い。例えば、投影光学系86と光電素子との間の光路中に、複数の平行平板を配置して、その傾斜角を変えることで複数のビームのピッチ(間隔)を変更することができる。この場合も、3つ以上のピッチのカットパターンの形成に対応可能にしても良い。 In the exposure apparatus 1000 according to the second embodiment, the aperture plate 142 may not be used. Also in this case, as described above, the wafer W is exposed by scanning exposure in which the electron beam is irradiated while moving in the Y-axis direction. In this case, a first state in which a plurality of light beams can be irradiated onto the photoelectric layer 60 through the base 134 of the photoelectric element 140 at a first pitch (for example, a pitch (distance) a) in the X axis direction; By switching from one to the other in the second state in which a plurality of light beams can be irradiated to the photoelectric layer 60 through the base material 134 of the photoelectric device 140 at a second pitch (for example, a pitch (space) b). It is possible to form a cut pattern for cutting different line patterns. Also in this case, the function of changing the magnification of the projection optical system 86 may be used in combination. Also in this case, instead of changing the magnification, an apparatus for changing the pitch (interval) of the plurality of beams emitted from the projection optical system 86 to the photoelectric element 140 may be provided. For example, by arranging a plurality of parallel flat plates in the optical path between the projection optical system 86 and the photoelectric element and changing the tilt angle, it is possible to change the pitch (distance) of the plurality of beams. Also in this case, it may be possible to cope with the formation of a cut pattern of three or more pitches.
 また、上記第1及び第2の実施形態(以下、各実施形態と称する)では、露光装置100、1000が備える光学系が、複数のマルチビーム光学システム200を備えるマルチカラムタイプである場合について説明したが、これに限らず、光学系は、シングルカラムタイプのマルチビーム光学系であっても良い。かかるシングルカラムタイプのマルチビーム光学系であっても、上で説明したドーズ制御、倍率制御、パターンの結像位置ずれの補正、ディストーション等の各種の収差の補正などは、光電素子又はアパーチャ板を用いた各種要素の補正、光電層の長寿命化などは適用可能である。 Further, in the first and second embodiments (hereinafter referred to as each embodiment), the case where the optical system provided in the exposure apparatus 100, 1000 is a multi-column type provided with a plurality of multi-beam optical systems 200 will be described. However, the present invention is not limited to this, and the optical system may be a single column type multi-beam optical system. Even with such a single column type multi-beam optical system, the photoelectric element or the aperture plate is used to perform the dose control, magnification control, correction of pattern imaging position deviation, correction of various aberrations such as distortion, etc. described above. The correction of various elements used, the extension of the life of the photoelectric layer, and the like are applicable.
 なお、上記各実施形態において、周壁部76に開口を設けて、第2の真空室72とステージチャンバ10の内部とを1つの真空室としても良い。あるいは、周壁部72の上端部の一部のみを残すとともに、クーリングプレート74を取り去って、第2の真空室72とステージチャンバ10の内部とを1つの真空室としても良い。 In each of the above embodiments, an opening may be provided in the peripheral wall portion 76, and the second vacuum chamber 72 and the inside of the stage chamber 10 may be one vacuum chamber. Alternatively, the cooling plate 74 may be removed while leaving only a part of the upper end portion of the peripheral wall portion 72, and the second vacuum chamber 72 and the inside of the stage chamber 10 may be one vacuum chamber.
 また、上記各実施形態では、ウエハWが単独でウエハステージWST上に搬送され、そのウエハステージWSTを走査方向に移動しつつ、マルチビーム光学システム200からウエハWにビームを照射して露光を行う露光装置100について説明したが、これに限らず、ウエハWがシャトルと呼ばれるウエハと一体で搬送可能なテーブル(ホルダ)と一体でステージ上で交換されるタイプの露光装置にも、上記各実施形態(ウエハステージWSTを除く)は適用が可能である。 Further, in each of the above embodiments, the wafer W is independently carried on the wafer stage WST, and the wafer W is irradiated with a beam from the multi-beam optical system 200 to perform exposure while moving the wafer stage WST in the scanning direction. Although the exposure apparatus 100 has been described, the present invention is not limited to this, and the above embodiments may be applied to the type of exposure apparatus in which the wafer W is integrated with a table (holder) that can be transported integrally with the wafer called shuttle. (Except for wafer stage WST) can be applied.
 また、上記各実施形態では、ウエハステージWSTが、Xステージに対して6自由度方向に移動可能な場合について説明したが、これに限らず、ウエハステージWSTはXY平面内でのみ移動可能であっても良い。この場合、ウエハステージWSTの位置情報を計測する位置計測系28も、XY平面内の3自由度方向に関する位置情報を計測可能であっても良い。 In each of the above embodiments, the case where wafer stage WST can be moved in the direction of six degrees of freedom with respect to X stage has been described, but not limited to this, wafer stage WST can be moved only in the XY plane It is good. In this case, position measurement system 28 for measuring the position information of wafer stage WST may also be capable of measuring the position information in the direction of three degrees of freedom in the XY plane.
 上記各実施形態では、光学システム18が、ステージチャンバ10の天井部を構成するフレーム16を介して床面上に支持される場合について説明したが、これに限らず、クリーンルームの天井面又は真空チャンバの天井面に、防振機能を備えた吊り下げ支持機構によって例えば3点で吊り下げ支持されていても良い。 In the above embodiments, the optical system 18 is supported on the floor via the frame 16 forming the ceiling of the stage chamber 10. However, the present invention is not limited thereto. The ceiling surface of the may be suspended and supported at, for example, three points by a suspension support mechanism having a vibration isolation function.
 また、コンプリメンタリ・リソグラフィを構成する露光技術は、ArF光源を用いた液浸露光技術と、荷電粒子ビーム露光技術との組み合わせに限られず、例えば、ラインアンドスペースパターンをArF光源やKrF等のその他の光源を用いたドライ露光技術で形成しても良い。 Further, the exposure technology constituting the complementary lithography is not limited to the combination of the liquid immersion exposure technology using an ArF light source and the charged particle beam exposure technology, and, for example, the line and space pattern can be other ArF light source, KrF, etc. It may be formed by a dry exposure technique using a light source.
 なお、上記各実施形態では、ターゲットが半導体素子製造用のウエハである場合について説明したが、上記各実施形態に係る露光装置100、1000は、ガラス基板上に微細なパターンを形成してマスクを製造する際にも好適に適用できる。 In each of the above embodiments, the case where the target is a wafer for manufacturing semiconductor devices has been described. However, the exposure apparatuses 100 and 1000 according to each of the above embodiments form a fine pattern on a glass substrate to form a mask. It can be suitably applied when manufacturing.
 半導体素子などの電子デバイス(マイクロデバイス)は、デバイスの機能・性能設計を行うステップ、シリコン材料からウエハを製作するステップ、前述した実施形態に係る電子ビーム露光装置及びその露光方法によりウエハに対する露光(設計されたパターンデータに従ったパターンの描画)を行うリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記各実施形態の露光装置100、1000のいずれかを用いて前述の露光方法を実行することで、ウエハ上にデバイスパターンが形成されるので、高集積度のマイクロデバイスを生産性良く(歩留まり良く)製造することができる。特に、リソグラフィステップで、前述したコンプリメンタリ・リソグラフィを行い、その際に上記各実施形態の露光装置100、1000のいずれかを用いて前述の露光方法を実行することで、より集積度の高いマイクロデバイスを製造することが可能になる。 An electronic device (micro device) such as a semiconductor element is a step of designing function and performance of the device, a step of fabricating a wafer from a silicon material, exposure of the wafer by the electron beam exposure apparatus and its exposure method A lithography step for drawing a pattern according to designed pattern data, a development step for developing an exposed wafer, an etching step for removing exposed members in portions other than a portion where a resist remains, and etching And a resist removing step for removing the unnecessary resist, a device assembly step (including a dicing step, a bonding step, and a packaging step), an inspection step, and the like. In this case, a device pattern is formed on the wafer by executing the above-described exposure method using any of the exposure apparatuses 100 and 1000 of the above-described embodiments in the lithography step. Can be manufactured with high productivity (high yield). In particular, the above-described complementary lithography is performed in the lithography step, and at this time, the above-described exposure method is performed using any of the exposure apparatuses 100 and 1000 of the above-described embodiments, to obtain a more highly integrated micro device. It will be possible to manufacture.
 なお、上記各実施形態では、電子ビームを使用する露光装置について説明したが、露光装置に限らず、溶接など電子ビームを用いてターゲットに対する所定の加工及び所定の処理の少なくとも一方を行う装置、あるいは電子ビームを用いる検査装置などにも上記実施形態の電子ビーム装置は適用することができる。 In each of the above embodiments, an exposure apparatus using an electron beam has been described. However, the present invention is not limited to the exposure apparatus, but an apparatus that performs at least one of predetermined processing and predetermined processing on a target using an electron beam such as welding The electron beam apparatus of the above embodiment can be applied to an inspection apparatus using an electron beam.
 なお、上記各実施形態では、光電層60がアルカリ光電変換膜によって形成される場合について説明したが、電子ビーム装置の種類、用途によっては、光電層として、アルカリ光電変換膜に限らず、その他の種類の光電変換膜を用いて光電素子を構成しても良い。
 また、上述の各実施形態では、部材、開口、穴などの形状を、円形、矩形などを用いて説明している場合があるが、これらの形状に限られないことは言うまでもない。
In each of the above embodiments, the case where the photoelectric layer 60 is formed of an alkaline photoelectric conversion film has been described. However, depending on the type of electron beam apparatus and application, the photoelectric layer is not limited to the alkaline photoelectric conversion film. The photoelectric device may be configured using a photoelectric conversion film of a type.
Moreover, in the above-mentioned each embodiment, although shapes, such as a member, an opening, and a hole, may be demonstrated using circular, a rectangle, etc., it is needless to say that it is not restricted to these shapes.
 上述の実施形態では、図11(A)などに示すように、反射型のパターンジェネレータ84を用いているので、照明系82によりパターンジェネレータ84の受光面を斜入射照明している。この場合、パターンジェネレータ84の受光面で図11(A)の紙面(YZ平面)において鉛直方向(Z方向)に対して斜めに反射された光を投影光学系86で有効に取り込むことが求められる。別の表現をすれば、パターンジェネレータ84の受光面からの反射光を、投影光学系86を介して光電素子(光電変換素子)54の光電変換面まで有効に導く必要がある。以下、斜入射照明されたパターンジェネレータ84の受光面からの反射光を有効に取り込むことのできる投影光学系の基本構成について説明する。 In the above embodiment, as shown in FIG. 11A and the like, since the reflection type pattern generator 84 is used, the light receiving surface of the pattern generator 84 is obliquely incident illuminated by the illumination system 82. In this case, it is required that the light reflected obliquely to the vertical direction (Z direction) in the paper surface (YZ plane) of FIG. 11A on the light receiving surface of the pattern generator 84 be effectively taken by the projection optical system 86 . In other words, it is necessary to effectively guide the reflected light from the light receiving surface of the pattern generator 84 to the photoelectric conversion surface of the photoelectric element (photoelectric conversion element) 54 via the projection optical system 86. The basic configuration of a projection optical system capable of effectively capturing the reflected light from the light receiving surface of the pattern generator 84 illuminated obliquely is described below.
 図33は、第1のタイプの構成にしたがう投影光学系の構成を概略的に示す図である。図33では、図11(A)と同じ全体座標(X,Y,Z)を用いており、図33の紙面と図11(A)の紙面とは互いに同じXY平面である。以下、他の関連する図においても、特記しない限り、図11(A)と同じ全体座標(X,Y,Z)を用いている。そして、理解を容易するために、全体座標(X,Y,Z)のZ方向が空間の鉛直方向と一致し、XY平面が空間の水平面と一致しているものとする。 FIG. 33 schematically shows a construction of a projection optical system according to a first type of construction. In FIG. 33, the same general coordinates (X, Y, Z) as in FIG. 11A are used, and the paper surface of FIG. 33 and the paper surface of FIG. 11A are the same XY plane. Hereinafter, in the other related drawings, the same global coordinates (X, Y, Z) as in FIG. 11A are used unless otherwise specified. Then, in order to facilitate understanding, it is assumed that the Z direction of the general coordinates (X, Y, Z) coincides with the vertical direction of the space, and the XY plane coincides with the horizontal plane of the space.
 第1のタイプの構成では、図33に示すように、パターンジェネレータ84の受光面84dの法線が図33の紙面(YZ平面)において投影光学系86Aの光軸AXoに対して傾き、且つ光電素子54の光電変換面54aの法線も図33の紙面において投影光学系86Aの光軸AXoに対して傾くように配置されている。そして、受光面84dと光電変換面54aとは投影光学系86Aを介して光学的に共役に配置され、光電変換面54aは水平に配置されている。なお、図33では、投影光学系86Aは、開口絞りASを挟んで2つのレンズのみ図示しているが、実際には、パターンジェネレータ84と開口絞りASとの間には複数のレンズが配置され、開口絞りASと光電素子54の光電変換面54aとの間には複数のレンズが配置されている。 In the first type of configuration, as shown in FIG. 33, the normal to the light receiving surface 84d of the pattern generator 84 is inclined relative to the optical axis AXo of the projection optical system 86A on the paper surface (YZ plane) of FIG. The normal to the photoelectric conversion surface 54a of the element 54 is also inclined to the optical axis AXo of the projection optical system 86A in the plane of FIG. The light receiving surface 84d and the photoelectric conversion surface 54a are disposed optically conjugately via the projection optical system 86A, and the photoelectric conversion surface 54a is disposed horizontally. In FIG. 33, only two lenses of the projection optical system 86A sandwiching the aperture stop AS are shown, but in actuality, a plurality of lenses are disposed between the pattern generator 84 and the aperture stop AS. A plurality of lenses are disposed between the aperture stop AS and the photoelectric conversion surface 54 a of the photoelectric element 54.
 すなわち、投影光学系86Aは、その物体面に対応する受光面84dおよび像面に対応する光電変換面54aに関してシャインプルーフの条件を満足している。なお、パターンジェネレータ84として光回折型ライトバルブGLVを用いる場合、受光面84dとは基準状態にある複数の反射素子(上述の実施形態ではリボン84bに対応)の反射面が配置される面である。なお、パターンジェネレータ84の受光面84dを、パターンジェネレータ84が有する複数の反射素子の反射面が配置される配置面と称してもよい。その結果、投影光学系86Aの光軸AXoは図33の紙面において鉛直方向(Z方向)に対して傾いており、受光面84dは図33の紙面において水平方向(Y方向)に対して傾いている。なお、パターンジェネレータ84の受光面84dの法線は、図33におけるYZ平面をY軸廻りに(θy方向に)回転させた面において投影光学系86Aの光軸AXoに対して傾いていてもよい。このときには、光電素子54の光電変換面54aの法線も図33におけるYZ平面をY軸廻りに(θy方向に)回転させた面において投影光学系86Aの光軸AXoに対して傾いていればよい。言い換えると、パターンジェネレータ84の受光面84dの法線は、図33におけるZ軸をX軸廻りに(θx方向に)回転させ、且つY軸廻りに(θy方向に)回転させたものであってもよい。また、光電素子54の光電変換面54aの法線も、図33におけるZ軸をY軸廻りに(θy方向に)回転させたものであってもよい。 That is, the projection optical system 86A satisfies the shine proof condition with respect to the light receiving surface 84d corresponding to the object surface and the photoelectric conversion surface 54a corresponding to the image surface. When the light diffraction type light valve GLV is used as the pattern generator 84, the light receiving surface 84d is a surface on which the reflecting surfaces of a plurality of reflective elements (corresponding to the ribbon 84b in the above embodiment) in the reference state are disposed. . The light receiving surface 84 d of the pattern generator 84 may be referred to as an arrangement surface on which the reflection surfaces of the plurality of reflective elements included in the pattern generator 84 are arranged. As a result, the optical axis AXo of the projection optical system 86A is inclined with respect to the vertical direction (Z direction) in the plane of FIG. 33, and the light receiving surface 84d is inclined with respect to the horizontal direction (Y direction) in the plane of FIG. There is. The normal line of the light receiving surface 84d of the pattern generator 84 may be inclined with respect to the optical axis AXo of the projection optical system 86A in a plane obtained by rotating the YZ plane in FIG. 33 about the Y axis (in the θy direction). . At this time, if the normal line of the photoelectric conversion surface 54a of the photoelectric element 54 is also inclined with respect to the optical axis AXo of the projection optical system 86A in the plane obtained by rotating the YZ plane in FIG. Good. In other words, the normal to the light receiving surface 84d of the pattern generator 84 is the Z axis in FIG. 33 rotated about the X axis (in the θx direction) and rotated about the Y axis (in the θy direction) It is also good. Further, the normal line of the photoelectric conversion surface 54a of the photoelectric element 54 may also be one in which the Z axis in FIG. 33 is rotated about the Y axis (in the θy direction).
 図33に示す第1のタイプの構成では、投影光学系86Aの光軸AXoを鉛直方向からX軸廻りに(すなわちθx方向に)所定の角度だけ傾けて設置するだけでよく、投影光学系自体の構成に変化を加える必要は無い。具体的に、投影光学系86Aの倍率が1/6である場合、投影光学系86Aの光軸AXoの傾き角度は約1.7度である。また、光電変換面54aが水平面(XY平面)に沿って配置されているので、後続の電子光学系(電子ビーム光学系)70の光軸AXeに対して光電変換面54aを垂直に設定すれば、電子光学系70の光軸AXeを鉛直方向に一致させることができ、電子光学系70の設置が容易である。この場合、電子光学系70の光軸AXeに対して光電変換面54aが垂直に設定されているので、電子光学系70の収差補正の負担を低減させることができる。 In the first type of configuration shown in FIG. 33, the optical axis AXo of the projection optical system 86A need only be inclined from the vertical direction by a predetermined angle around the X axis (that is, in the θx direction). There is no need to make any changes to Specifically, when the magnification of the projection optical system 86A is 1/6, the inclination angle of the optical axis AXo of the projection optical system 86A is about 1.7 degrees. Further, since the photoelectric conversion surface 54a is disposed along the horizontal plane (XY plane), if the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the subsequent electron optical system (electron beam optical system) 70. The optical axis AXe of the electron optical system 70 can be made to coincide in the vertical direction, and the installation of the electron optical system 70 is easy. In this case, since the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the electron optical system 70, the burden of aberration correction of the electron optical system 70 can be reduced.
 図33では、パターンジェネレータ84の入射側(光入射側)に、光路折り曲げ用のミラー98が配置されている。また、ミラー98の入射側には、所定の楔角(頂角)を有する楔プリズム182eが配置されている。投影光学系86Aと照明光学系との間(厳密にはパターンジェネレータ84と照明光学系との間)に配置された偏向部材としてのミラー98、および照明光学系の集光点調整部材としての楔プリズム182eの作用については後述する。 In FIG. 33, a mirror 98 for bending an optical path is disposed on the incident side (light incident side) of the pattern generator 84. In addition, on the incident side of the mirror 98, a wedge prism 182e having a predetermined included angle (apex angle) is disposed. A mirror 98 as a deflecting member disposed between the projection optical system 86A and the illumination optical system (strictly, between the pattern generator 84 and the illumination optical system), and an eyelid as a focusing point adjustment member of the illumination optical system The action of the prism 182 e will be described later.
 第1のタイプの構成では、投影光学系86Aの光軸AXoを鉛直方向に対して傾けているが、図34に示すように、投影光学系86Bの光軸AXoを鉛直方向(Z方向)に一致させ、受光面84dおよび光電変換面54aをともに水平方向(Y方向)に対して傾けて配置する構成も可能である。図34に示す第2のタイプの構成は、図33に示す第1のタイプの構成を単にX軸廻りに所定の角度だけ回転させることにより得られる。したがって、受光面84dと光電変換面54aとは、投影光学系86Bを介して光学的に共役に配置されている。なお、図34では、投影光学系86Bは、開口絞りASを挟んで2つのレンズのみ図示しているが、実際には、パターンジェネレータ84と開口絞りASとの間には複数のレンズが配置され、開口絞りASと光電素子54の光電変換面54aとの間には複数のレンズが配置されている。 In the first type of configuration, the optical axis AXo of the projection optical system 86A is inclined to the vertical direction, but as shown in FIG. 34, the optical axis AXo of the projection optical system 86B is in the vertical direction (Z direction) A configuration is also possible in which both the light receiving surface 84 d and the photoelectric conversion surface 54 a are arranged to be inclined with respect to the horizontal direction (Y direction). The second type of configuration shown in FIG. 34 is obtained by simply rotating the first type of configuration shown in FIG. 33 by a predetermined angle around the X axis. Therefore, the light receiving surface 84 d and the photoelectric conversion surface 54 a are disposed optically conjugately via the projection optical system 86 B. Although only two lenses of the projection optical system 86B are illustrated with the aperture stop AS interposed in FIG. 34, actually, a plurality of lenses are disposed between the pattern generator 84 and the aperture stop AS. A plurality of lenses are disposed between the aperture stop AS and the photoelectric conversion surface 54 a of the photoelectric element 54.
 また、投影光学系86Bは、その物体面に対応する受光面84dおよび像面に対応する光電変換面54aに関してシャインプルーフの条件を満足している。第2のタイプの構成では、光軸AXoが鉛直方向に延びているので、投影光学系86Bの設置が容易である。ただし、光電変換面54aが水平面(XY平面)に対して傾いているので、後続の電子光学系70の光軸AXeに対して光電変換面54aを垂直に設定すれば、電子光学系70の光軸AXeが鉛直方向に対して傾くことになる。 Further, the projection optical system 86B satisfies the shine proof condition with respect to the light receiving surface 84d corresponding to the object surface and the photoelectric conversion surface 54a corresponding to the image surface. In the second type of configuration, since the optical axis AXo extends in the vertical direction, installation of the projection optical system 86B is easy. However, since the photoelectric conversion surface 54a is inclined with respect to the horizontal plane (XY plane), if the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the subsequent electron optical system 70, the light of the electron optical system 70 is obtained. The axis AXe is inclined relative to the vertical direction.
 第1のタイプの構成および第2のタイプの構成では、図35に示すように、平行平面板状の透明基板(上述の実施形態における透明な板部材56に対応)56の射出側(光射出側:図35の下側)に設けられた光電変換面(上述の実施形態におけるアルカリ光電層60の光電変換面に対応)54aに入射する光の主光線Chは、光電変換面54aの位置に依存することなく互いに同じ角度であるが、光電変換面54aに対して非垂直である。なお、図35では、図面の明瞭化のために、透明基板56と光電変換面54aとの間に設けられた遮光膜(ピンホール)58の図示を省略している。 In the first type of configuration and the second type of configuration, as shown in FIG. 35, the emission side (light emission) of a plane-parallel plate-like transparent substrate (corresponding to the transparent plate member 56 in the above embodiment) 56 Side: The chief ray Ch of light incident on the photoelectric conversion surface (corresponding to the photoelectric conversion surface of the alkaline photoelectric layer 60 in the above embodiment) 54a provided on the lower side of FIG. 35 is at the position of the photoelectric conversion surface 54a. They are at the same angle without depending on one another, but are not perpendicular to the photoelectric conversion surface 54a. In FIG. 35, the light shielding film (pinhole) 58 provided between the transparent substrate 56 and the photoelectric conversion surface 54a is omitted for the sake of clarity of the drawing.
 この場合、例えば上側周辺光線UPMLと下側周辺光線UNMLと主光線Chとの間で透明基板56における光路長が異なるため、コマ収差が発生する。第1のタイプの構成および第2のタイプの構成において、光電変換面54aへの斜入射に起因して発生するコマ収差を補正するには、図36に示すように、透明基板56aの入射側の面(図36中右側の面)を投影光学系86A,86Bの光軸AXoと直交させて、透明基板56aを非平行平面板状に、すなわち楔プリズム状に形成すれば良い。なお、図36において、透明基板56aの入射側には、平行平面板の形態を有する真空隔壁用の窓ガラス56Aが配置されている。なお、透明基板56aの入射側の面を投影光学系86A,86Bの光軸AXoと直交させる場合には限定されず、透明基板56aの入射側の面を透明基板56aの射出側の面(光電変換面54a)に対して非平行としても良い。 In this case, for example, the optical path length in the transparent substrate 56 is different between the upper marginal ray UPML, the lower marginal ray UNML, and the chief ray Ch, so that coma aberration occurs. In the first type of configuration and the second type of configuration, as shown in FIG. 36, the incident side of the transparent substrate 56a is used to correct coma aberration caused due to oblique incidence on the photoelectric conversion surface 54a. The plane (the plane on the right side in FIG. 36) may be orthogonal to the optical axis AXo of the projection optical systems 86A and 86B to form the transparent substrate 56a in a nonparallel plane plate shape, that is, in a wedge prism shape. In FIG. 36, on the incident side of the transparent substrate 56a, a window glass 56A for a vacuum partition having a form of a parallel flat plate is disposed. The incident side surface of the transparent substrate 56a is not limited to be orthogonal to the optical axis AXo of the projection optical systems 86A and 86B, and the incident side surface of the transparent substrate 56a is the surface on the emission side of the transparent substrate 56a (photoelectric It may be non-parallel to the conversion surface 54a).
 あるいは、図37に示すように、透明基板56bの入射側の面と射出側の面とを平行に構成する必要がある場合、透明基板56bの入射側に間隔を隔てて配置された真空隔壁用の窓ガラス56Bの入射側の面(図37中右側の面)が投影光学系86A,86Bの光軸AXoと直交し、その射出側の面(図37中左側の面)の法線が図37の紙面において光軸AXoに対して傾くように形成しても良い。換言すれば、透明基板56bを平行平面板状に形成し、窓ガラス56Bを楔プリズム状に形成することにより、光電変換面54aへの斜入射に起因して発生するコマ収差を補正しても良い。第2の透明基板である窓ガラス56A,56Bは、電子光学系70の真空空間と外部雰囲気との境界に位置している。なお、透明基板56bの入射側の面と射出側の面とを平行に構成する必要がない場合であっても、真空隔壁用の窓ガラス56Bの入射側の面を投影光学系86A,86Bの光軸AXoと直交させ、その射出側の面(図37中左側の面)の法線を図37の紙面において光軸AXoに対して傾くように形成しても良い。 Alternatively, as shown in FIG. 37, when it is necessary to configure the surface on the incident side of the transparent substrate 56b and the surface on the emission side in parallel, for vacuum barriers arranged on the incident side of the transparent substrate 56b with a space. The surface on the incident side of the window glass 56B (the surface on the right in FIG. 37) is orthogonal to the optical axis AXo of the projection optical systems 86A and 86B, and the normal to the surface on the emission side (the surface on the left in FIG. 37) It may be formed to be inclined with respect to the optical axis AXo in the paper of 37. In other words, even if the coma aberration generated due to the oblique incidence on the photoelectric conversion surface 54a is corrected by forming the transparent substrate 56b in a plane-parallel plate shape and forming the window glass 56B in a wedge prism shape. good. The window glass 56A, 56B, which is the second transparent substrate, is located at the boundary between the vacuum space of the electron optical system 70 and the external atmosphere. Note that, even when it is not necessary to configure the incident side surface of the transparent substrate 56b and the emission side surface in parallel, the incident side surface of the window glass 56B for a vacuum partition is the same as that of the projection optical systems 86A and 86B. It is also possible to make it perpendicular to the optical axis AXo, and to make the normal of the surface on the exit side (the surface on the left side in FIG. 37) inclined with respect to the optical axis AXo in the paper of FIG.
 また、図示を省略するが、光電変換面54aへの斜入射に起因して発生するコマ収差を補正できる形状を有する非球面形状の光学面を投影光学系86A,86Bに導入しても良い。この非球面形状の光学面の数は1つには限定されない。透明基板56bを楔プリズム状に形成する図36の手法と非球面形状の光学面を投影光学系86A,86Bに導入する手法とを組み合わせたり、窓ガラス56Bを楔プリズム状に形成する図37の手法と非球面形状の光学面を投影光学系86A,86Bに導入する手法とを組み合わせたりして、光電変換面54aへの斜入射に起因して発生するコマ収差を補正しても良い。 Although not shown, an aspheric optical surface having a shape capable of correcting coma aberration generated due to oblique incidence to the photoelectric conversion surface 54a may be introduced into the projection optical systems 86A and 86B. The number of aspheric optical surfaces is not limited to one. The method of FIG. 36 in which the transparent substrate 56b is formed in a wedge prism shape and the method of introducing an aspheric optical surface into the projection optical systems 86A and 86B are combined, or the window glass 56B is formed in a wedge prism shape in FIG. The coma aberration generated due to the oblique incidence on the photoelectric conversion surface 54a may be corrected by combining the method and the method of introducing the aspheric optical surface into the projection optical systems 86A and 86B.
 第3のタイプの構成では、図38に示すように、パターンジェネレータ84の受光面84dは、その法線が図38の紙面(YZ平面)において投影光学系86Cの光軸AXoに対して傾くように配置されているが、光電変換面54aは投影光学系86Cの光軸AXoと直交するように配置されている。具体的には、投影光学系86Cの光軸AXoは鉛直方向(Z方向)に延びており、光電変換面54aは水平面(XY平面)に沿って配置されている。そして、受光面84dと光電変換面54aとの間に光学的な共役関係を確保するために、投影光学系86Cはその光軸AXoに関して偏心配置された少なくとも1つの光学部材86Caを有する。なお、図38では、投影光学系86Cは、開口絞りASを挟んで2つのレンズのみ図示しているが、実際には、パターンジェネレータ84と開口絞りASとの間には複数のレンズが配置され、開口絞りASと光電素子54の光電変換面54aとの間には複数のレンズが配置されている。 In the third type of configuration, as shown in FIG. 38, the light receiving surface 84d of the pattern generator 84 is such that the normal is inclined with respect to the optical axis AXo of the projection optical system 86C in the paper surface (YZ plane) of FIG. The photoelectric conversion surface 54a is disposed orthogonal to the optical axis AXo of the projection optical system 86C. Specifically, the optical axis AXo of the projection optical system 86C extends in the vertical direction (Z direction), and the photoelectric conversion surface 54a is disposed along the horizontal plane (XY plane). Then, in order to ensure an optical conjugate relationship between the light receiving surface 84d and the photoelectric conversion surface 54a, the projection optical system 86C has at least one optical member 86Ca eccentrically arranged with respect to the optical axis AXo. Although only two lenses of the projection optical system 86C are shown with the aperture stop AS interposed in FIG. 38, actually, a plurality of lenses are disposed between the pattern generator 84 and the aperture stop AS. A plurality of lenses are disposed between the aperture stop AS and the photoelectric conversion surface 54 a of the photoelectric element 54.
 すなわち、光学部材86Caは、投影光学系86Cの光軸AXoに対して偏心配置されている。光学部材86Caの光軸は、投影光学系86Cの光軸AXoから外れて(例えばY方向に偏心して)いてもよく、投影光学系86Cの光軸AXoに対して傾いていてもよく、これらが組み合わされていてもよい。第3のタイプの構成では、光軸AXoが鉛直方向に延びているので、投影光学系86Cの設置が容易である。また、光電変換面54aが水平面に沿って配置されているので、後続の電子光学系70の光軸AXeに対して光電変換面54aを垂直に設定すれば、電子光学系70の光軸AXeを鉛直方向に一致させることができ、電子光学系70の設置が容易である。この場合、電子光学系70の光軸AXeに対して光電変換面54aが垂直に設定されているので、電子光学系70の収差補正の負担を低減させることができる。
 なお、図38では、投影光学系86Cの光軸AXoに対して偏心配置されている光学部材86Caは、開口絞りASと光電素子54の光電変換面54aとの間の光学部材であるが、これに代えて、或いは加えて、パターンジェネレータ84の受光面84dと開口絞りASとの間の光学部材を投影光学系86Cの光軸AXoに対して偏心配置してもよい。また、偏心配置する光学部材の数は1つには限定されず、複数の光学部材を偏心配置してもよい。
That is, the optical member 86Ca is decentered with respect to the optical axis AXo of the projection optical system 86C. The optical axis of the optical member 86Ca may be deviated from the optical axis AXo of the projection optical system 86C (e.g., decentered in the Y direction) or may be inclined with respect to the optical axis AXo of the projection optical system 86C. It may be combined. In the third type of configuration, since the optical axis AXo extends in the vertical direction, installation of the projection optical system 86C is easy. Further, since the photoelectric conversion surface 54a is disposed along the horizontal surface, if the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the subsequent electron optical system 70, the optical axis AXe of the electron optical system 70 is The alignment can be made in the vertical direction, and the installation of the electron optical system 70 is easy. In this case, since the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the electron optical system 70, the burden of aberration correction of the electron optical system 70 can be reduced.
In FIG. 38, the optical member 86Ca disposed eccentrically with respect to the optical axis AXo of the projection optical system 86C is an optical member between the aperture stop AS and the photoelectric conversion surface 54a of the photoelectric element 54. Instead of or in addition to the above, the optical member between the light receiving surface 84d of the pattern generator 84 and the aperture stop AS may be decentered with respect to the optical axis AXo of the projection optical system 86C. Further, the number of optical members disposed eccentrically is not limited to one, and a plurality of optical members may be eccentrically disposed.
 第4のタイプの構成では、図39に示すように、パターンジェネレータ84の受光面84dおよび光電変換面54aは、その法線が投影光学系86Dの光軸AXoに平行で且つ投影光学系86Dの光軸AXoからそれぞれY方向に離れて配置されている。別の表現をすると、パターンジェネレータ84の複数の反射素子(例えばリボン84b)は、その反射面の法線が投影光学系86Dの光軸AXoに平行で且つ投影光学系86Dの光軸AXoを含むYZ面において投影光学系86Dの光軸AXoから離れて配置されている。そして、投影光学系86Dの光軸AXoは鉛直方向(Z方向)に延びており、受光面84dおよび光電変換面54aはともに水平面(XY平面)に沿って配置されている。受光面84dと光電変換面54aとは、投影光学系86Dを介して光学的に共役に配置されている。なお、図39では、投影光学系86Dは、開口絞りASを挟んで2つのレンズのみ図示しているが、実際には、パターンジェネレータ84と開口絞りASとの間には複数のレンズが配置され、開口絞りASと光電素子54の光電変換面54aとの間には複数のレンズが配置されている。 In the fourth type of configuration, as shown in FIG. 39, the light receiving surface 84d and the photoelectric conversion surface 54a of the pattern generator 84 have normals parallel to the optical axis AXo of the projection optical system 86D and the projection optical system 86D They are arranged separately from the optical axis AXo in the Y direction. Stated differently, the plurality of reflective elements (eg, ribbon 84b) of the pattern generator 84 has the normal of its reflective surface parallel to the optical axis AXo of the projection optical system 86D and includes the optical axis AXo of the projection optical system 86D. It is disposed away from the optical axis AXo of the projection optical system 86D in the YZ plane. The optical axis AXo of the projection optical system 86D extends in the vertical direction (Z direction), and both the light receiving surface 84d and the photoelectric conversion surface 54a are disposed along a horizontal plane (XY plane). The light receiving surface 84 d and the photoelectric conversion surface 54 a are disposed optically conjugately via the projection optical system 86 D. Although only two lenses of the projection optical system 86D are illustrated with the aperture stop AS interposed in FIG. 39, actually, a plurality of lenses are disposed between the pattern generator 84 and the aperture stop AS. A plurality of lenses are disposed between the aperture stop AS and the photoelectric conversion surface 54 a of the photoelectric element 54.
 第4のタイプの構成では、光軸AXoが鉛直方向に延びているので、投影光学系86Dの設置が容易である。また、投影光学系86Dの射出側(光電変換面54a側)ではテレセントリックであるが、入射側(受光面84d側)では非テレセントリックであるため、パターンジェネレータ84を、ひいてはその受光面84dをZ方向に移動させることにより、投影光学系86Dの倍率を補正(調整)することができる。また、光電変換面54aが水平面に沿って配置されているので、後続の電子光学系70の光軸AXeに対して光電変換面54aを垂直に設定すれば、電子光学系70の光軸AXeを鉛直方向に一致させることができ、電子光学系70の設置が容易である。この場合、電子光学系70の光軸AXeに対して光電変換面54aが垂直に設定されているので、電子光学系70の収差補正の負担を低減させることができる。 In the fourth type of configuration, since the optical axis AXo extends in the vertical direction, installation of the projection optical system 86D is easy. In addition, the projection optical system 86D is telecentric on the exit side (photoelectric conversion surface 54a side) but is non-telecentric on the incident side (light receiving surface 84d side), so the pattern generator 84 and hence the light receiving surface 84d are in the Z direction. The magnification of the projection optical system 86D can be corrected (adjusted) by moving it to Further, since the photoelectric conversion surface 54a is disposed along the horizontal surface, if the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the subsequent electron optical system 70, the optical axis AXe of the electron optical system 70 is The alignment can be made in the vertical direction, and the installation of the electron optical system 70 is easy. In this case, since the photoelectric conversion surface 54a is set perpendicular to the optical axis AXe of the electron optical system 70, the burden of aberration correction of the electron optical system 70 can be reduced.
 第1~第4のタイプの構成にしたがう投影光学系86A~86Dは、複数の反射素子を有し、照明光学系からの光で複数の光ビームを発生するパターンジェネレータ84からの複数の光ビームを、光電素子54の光電変換面54aに投影する。別の表現をすれば、投影光学系86A~86Dは、パターンジェネレータ84の受光面84dと光電変換面54aとを光学的に共役にして、パターンジェネレータ84からの複数の光ビームを光電変換面54aに投影する。 The projection optical systems 86A to 86D according to the first to fourth types of configurations have a plurality of reflective elements, and a plurality of light beams from the pattern generator 84 that generate a plurality of light beams with light from the illumination optical system. Is projected onto the photoelectric conversion surface 54 a of the photoelectric element 54. In other words, the projection optical systems 86A to 86D make the light receiving surface 84d of the pattern generator 84 and the photoelectric conversion surface 54a optically conjugate to make a plurality of light beams from the pattern generator 84 photoelectric conversion surfaces 54a. Project to
 第1~第3のタイプの構成では、パターンジェネレータ84の受光面84dの法線は、投影光学系86A~86Cの光軸AXoを含むYZ平面において光軸AXoに対して傾いている。第4のタイプの構成では、パターンジェネレータ84は、投影光学系86Dの光軸AXoから離れて配置されている。ただし、第1~第4のタイプの構成では、パターンジェネレータ84側の主光線、すなわちパターンジェネレータ84からの反射光の主光線が、投影光学系86A~86Dの光軸AXoを含むYZ平面において受光面54aの法線に対して傾いている点で共通している。その結果、斜入射照明されたパターンジェネレータ84の受光面84dからの反射光を、投影光学系86A~86Dを介して光電変換面54aまで有効に導くことが、ひいては受光面84dからの反射光を投影光学系86A~86Dへ有効に取り込むことができる。 In the first to third types of configurations, the normal to the light receiving surface 84d of the pattern generator 84 is inclined with respect to the optical axis AXo in the YZ plane including the optical axis AXo of the projection optical systems 86A to 86C. In the fourth type of configuration, the pattern generator 84 is disposed away from the optical axis AXo of the projection optical system 86D. However, in the first to fourth types of configurations, the chief ray on the side of the pattern generator 84, that is, the chief ray of the reflected light from the pattern generator 84 is received in the YZ plane including the optical axis AXo of the projection optical system 86A to 86D. It is common in that it is inclined with respect to the normal to the surface 54a. As a result, it is possible to effectively guide the reflected light from the light receiving surface 84d of the pattern generator 84, which is obliquely illuminated, to the photoelectric conversion surface 54a via the projection optical systems 86A to 86D, and consequently the reflected light from the light receiving surface 84d. It can be effectively incorporated into the projection optical systems 86A to 86D.
 また、第1~第4のタイプの構成では、光電変換面54aに入射する光の主光線が光電変換面54aの位置に依存することなく一定の角度である点で共通している。その結果、光電変換面54aが投影光学系86A~86Dの光軸AXoの方向に位置ずれしても、光電変換面54aの位置ずれが投影光学系86A~86Dの結像性能に与える影響を小さく抑えることができる。言い換えると、光電変換面54aが光軸AXoの方向に位置ずれしても、光電変換面54a上に形成される光パターンの崩れを抑えることができる。ひいては、電子光学系70を介してウエハ上に形成される電子ビームの照射領域の形状を所望の形状にすることができる。特に、第3および第4のタイプの構成では、光電変換面54aに入射する光の主光線が光電変換面54aの位置に依存することなく光電変換面54aに垂直である。このように、投影光学系86C,86Dが射出側でテレセントリックであるため、光電変換面54aの位置ずれが投影光学系86C,86Dの結像性能に与える影響をさらに小さく抑えることができる。 The first to fourth types of configurations are common in that the chief ray of light incident on the photoelectric conversion surface 54a has a constant angle without depending on the position of the photoelectric conversion surface 54a. As a result, even if the photoelectric conversion surface 54a is displaced in the direction of the optical axis AXo of the projection optical systems 86A to 86D, the displacement of the photoelectric conversion surface 54a has less influence on the imaging performance of the projection optical systems 86A to 86D. It can be suppressed. In other words, even if the photoelectric conversion surface 54a is displaced in the direction of the optical axis AXo, it is possible to suppress the collapse of the light pattern formed on the photoelectric conversion surface 54a. As a result, the shape of the irradiation region of the electron beam formed on the wafer through the electron optical system 70 can be made into a desired shape. In particular, in the third and fourth types of configurations, the chief ray of light incident on the photoelectric conversion surface 54a is perpendicular to the photoelectric conversion surface 54a without depending on the position of the photoelectric conversion surface 54a. As described above, since the projection optical systems 86C and 86D are telecentric on the exit side, the influence of the positional deviation of the photoelectric conversion surface 54a on the imaging performance of the projection optical systems 86C and 86D can be further reduced.
 また、上述したように、第1、第3および第4のタイプの構成では、光電変換面54aが水平面に沿って配置されている。このことは、後続の電子光学系70の光軸Aeを鉛直方向に一致させて、その光軸AXeを光電変換面54aに対して垂直に設定することができることを意味している。その結果、電子光学系70での収差補正の負担を軽くして、その設計を容易し、機構を簡素化することができる。 Further, as described above, in the first, third and fourth types of configurations, the photoelectric conversion surface 54a is disposed along the horizontal surface. This means that the optical axis Ae of the subsequent electron optical system 70 can be aligned in the vertical direction, and the optical axis AXe can be set perpendicular to the photoelectric conversion surface 54a. As a result, the burden of aberration correction in the electron optical system 70 can be reduced, the design can be facilitated, and the mechanism can be simplified.
 次に、パターンジェネレータ84の受光面84dを斜入射照明する照明系82について説明する。上述の実施形態では、パターンジェネレータ84としてGLVを用いており、その受光面84dにおいて図11(A)の紙面(YZ平面)と直交するX方向に細長い矩形状の照野(スリット状の照野)を、X方向と直交する方向(受光面84dがXY平面に沿って配置されている場合にはY方向)に間隔を隔てて複数形成する必要がある。そして、電子ビーム処理、例えば電子ビーム露光を良好に行うために、パターンジェネレータ84の受光面84d上の位置に依存することなく斜め方向から均一照明することが求められる。ここで、受光面84dを均一照明することは、各スリット状の照野内の照度をほぼ均一にすること、各照野の形状を所望のスリット状にすること、すべての照野の間で照度、形状、照明NAなどを均一化することなどを意味している。なお、すべての照野の間で照度、形状、照明NAなどが所定の誤差の範囲内でばらついていてもよいことは言うまでもない。 Next, the illumination system 82 for illuminating the light receiving surface 84 d of the pattern generator 84 at oblique incidence will be described. In the above embodiment, a GLV is used as the pattern generator 84, and a rectangular illumination field (slit-like illumination field) elongated in the X direction orthogonal to the paper surface (YZ plane) of FIG. It is necessary to form a plurality of) at intervals in a direction orthogonal to the X direction (Y direction when the light receiving surface 84d is disposed along the XY plane). Then, in order to perform electron beam processing, for example, electron beam exposure well, uniform illumination from an oblique direction is required without depending on the position on the light receiving surface 84 d of the pattern generator 84. Here, uniform illumination of the light receiving surface 84d means making the illuminance in each slit-like illumination field substantially uniform, making the shape of each illumination field into a desired slit shape, and illumination intensity among all the illumination fields. , Shape, illumination NA, etc. are meant to be uniform. It goes without saying that the illuminance, the shape, the illumination NA and the like may be dispersed within a predetermined error range among all the illumination fields.
 以下、理解を容易にするために、照明系82の光軸AXiと直交する被照射面に複数のスリット状の照野を間隔を隔てて形成する照明光学系の基本構成について説明する。図40に示す照明光学系182Aには、光源部82aからレーザ光が間欠的に供給される。図40では、照明光学系182Aの光軸AXiに沿ってz1軸を、光軸AXiと直交する面において図40の紙面の鉛直方向にy1軸を、図40の紙面と直交する方向にx1軸を設定している。この局所座標(x1,y1,z1)と図11(A)の全体座標(X,Y,Z)との間において、x1,y1,z1軸が、X,Y,Z軸にそれぞれ対応している。 Hereinafter, in order to facilitate understanding, a basic configuration of an illumination optical system will be described in which a plurality of slit-shaped illumination fields are formed on the surface to be illuminated orthogonal to the optical axis AXi of the illumination system 82 at intervals. Laser light is intermittently supplied to the illumination optical system 182A shown in FIG. 40 from the light source unit 82a. In FIG. 40, the z1 axis is along the optical axis AXi of the illumination optical system 182A, the y1 axis is vertical to the paper surface of FIG. 40 in the plane orthogonal to the optical axis AXi Is set. Between the local coordinates (x1, y1, z1) and the general coordinates (X, Y, Z) in FIG. 11A, the x1, y1, z1 axes correspond to the X, Y, Z axes, respectively. There is.
 光源部82aは、図40の紙面(y1z1平面)と直交するx1方向に細長い矩形状の発光部を有する。光源部82aとして、例えば、高コヒーレンスの半導体レーザ光源を用いることができる。具体的には、前述したように、光源部82aとして、例えば波長365nmのレーザ光を連続発振するレーザダイオード88と、AO偏向器90とを含み、波長365nmのレーザ光(レーザビーム)を間欠的に発光可能な光源部を用いることができる。あるいは、光源部82aとして、レーザダイオード88自体を間欠的に発光させる光源部を用いることができる。なお、光源部82aは連続的にレーザ光を供給するものであってもよい。この場合、光源部82aの射出側にシャッタを設けてもよい。 The light source unit 82a has a rectangular light emitting unit elongated in the x1 direction orthogonal to the paper surface (y1z1 plane) of FIG. For example, a high coherence semiconductor laser light source can be used as the light source unit 82a. Specifically, as described above, the light source section 82a includes, for example, a laser diode 88 that continuously oscillates a laser beam of wavelength 365 nm and an AO deflector 90, and intermittently emits a laser beam (laser beam) of wavelength 365 nm The light source part which can emit light can be used. Alternatively, as the light source unit 82a, it is possible to use a light source unit that causes the laser diode 88 itself to emit light intermittently. The light source unit 82a may continuously supply laser light. In this case, a shutter may be provided on the light emission side of the light source unit 82a.
 照明光学系182Aは、光源部82aから光軸AXiと直交する被照射面82cに向かって順に、光源部82aからの光を集光するコリメータ光学系182aと、光軸AXiと直交するx1y1平面に沿って並列的に配置された複数の波面分割要素(例えば微小レンズ)182baを有するオプティカルインテグレータ182bと、オプティカルインテグレータ182bの射出側の照明瞳からの光束を被照射面82cにおいて重畳させるように集光するフーリエ変換光学系182cとを有する。なお、オプティカルインテグレータ182bをフライアイレンズ系と称してもよい。また、フーリエ変換光学系182cは集光光学系と称してもよい。 The illumination optical system 182A includes a collimator optical system 182a for condensing light from the light source unit 82a in order from the light source unit 82a to the irradiated surface 82c orthogonal to the optical axis AXi, and an x1y1 plane orthogonal to the optical axis AXi. An optical integrator 182b having a plurality of wavefront dividing elements (for example, microlenses) 182ba arranged in parallel along the optical axis and a light flux from an illumination pupil on the exit side of the optical integrator 182b are condensed to overlap on the illuminated surface 82c. And a Fourier transform optical system 182c. The optical integrator 182b may be referred to as a fly eye lens system. The Fourier transform optical system 182c may also be referred to as a focusing optical system.
 照明光学系182Aでは、光源部82aからの光が、コリメータ光学系182aを介して、ほぼ平行な光束となってオプティカルインテグレータ182bに入射する。オプティカルインテグレータ182bに入射した光束は、複数の波面分割要素182baにより波面分割され、各波面分割要素182baの射出側にはそれぞれ1つの光源像が形成される。すなわち、オプティカルインテグレータ182bの各波面分割要素182baの射出側の照明瞳には、x1方向に細長い矩形状の光源像が形成される。すなわち、照明光学系182Aの照明瞳には、x1方向に細長い矩形状の光源像が複数形成される。なお、照明光学系182Aの照明瞳に形成される複数の光源像は、細長い矩形状のものに限定されず、例えば長丸形状や楕円形状であってもよい。 In the illumination optical system 182A, the light from the light source unit 82a enters the optical integrator 182b as a substantially parallel light flux through the collimator optical system 182a. The light flux incident on the optical integrator 182 b is wave front split by the plurality of wave front split elements 182 ba, and one light source image is formed on the emission side of each of the wave front split elements 182 ba. That is, a rectangular light source image elongated in the x1 direction is formed on the illumination pupil on the exit side of each wavefront dividing element 182ba of the optical integrator 182b. That is, a plurality of rectangular light source images elongated in the x1 direction are formed on the illumination pupil of the illumination optical system 182A. The plurality of light source images formed on the illumination pupil of the illumination optical system 182A is not limited to the elongated rectangular shape, and may be, for example, an oval shape or an elliptical shape.
 照明光学系182Aの照明瞳に形成された複数の光源像からの光束は、フーリエ変換光学系182cを介して被照射面82cで重畳されるように集光する。すなわち、フーリエ変換光学系182cは、照明瞳に形成された複数の光源像からの光束を被照射面82cに集光する集光光学系を構成している。その結果、各波面分割要素182baを経た光束がy1方向に干渉縞を形成することにより、図41に示すように、x1方向に細長い複数のスリット状の照野82caがy1方向に間隔を隔てて形成される。このように、光源部82aは、x1方向の長さがy1方向よりも長い発光部を有し、その可干渉性はx1方向よりもy1方向の方が高い。 The light beams from the plurality of light source images formed on the illumination pupil of the illumination optical system 182A are condensed so as to be superimposed on the illuminated surface 82c via the Fourier transform optical system 182c. That is, the Fourier transform optical system 182c constitutes a condensing optical system which condenses the light flux from the plurality of light source images formed on the illumination pupil on the illuminated surface 82c. As a result, the light beams passing through each wavefront dividing element 182ba form interference fringes in the y1 direction, and as shown in FIG. 41, a plurality of slit-shaped illumination fields 82ca elongated in the x1 direction are spaced apart in the y1 direction. It is formed. As described above, the light source unit 82a has a light emitting unit whose length in the x1 direction is longer than that in the y1 direction, and its coherence is higher in the y1 direction than in the x1 direction.
 図40に示す照明光学系182Aでは、波面分割型のオプティカルインテグレータ182bを用いているが、図42に示すように、オプティカルインテグレータ182bに代えて回折光学素子182dを用いる構成も可能である。回折光学素子182dは、光源部82aからの光を回折して、照明光学系182Bの光軸AXiに対する角度が離散的に異なる複数の光束を射出する光学素子である。回折光学素子182dとして、例えばダマン回折格子(dammann回折格子)のような回折光学素子を用いることができる。 In the illumination optical system 182A shown in FIG. 40, a wavefront splitting type optical integrator 182b is used, but as shown in FIG. 42, a configuration using a diffractive optical element 182d instead of the optical integrator 182b is also possible. The diffractive optical element 182 d is an optical element that diffracts the light from the light source unit 82 a and emits a plurality of light beams having discrete angles with respect to the optical axis AXi of the illumination optical system 182 B. As the diffractive optical element 182d, for example, a diffractive optical element such as a Dammann diffraction grating (dammann diffraction grating) can be used.
 図42に示す照明光学系182Bでは、光源部82aからの光がコリメータ光学系182aを介して、ほぼ平行な光束となって回折光学素子182dに入射する。回折光学素子182dを経た光、光軸AXiに対する角度が離散的に異なる複数の光束は、フーリエ変換光学系182cによってそれぞれ被照射面82cにおける異なる位置に集光される。この場合、フーリエ変換光学系182cは、回折光学素子182dからの複数の光束を被照射面82cに集光する集光光学系を構成している。その結果、図41に示すように、x1方向に細長い複数のスリット状の照野82caが、y1方向に間隔を隔てて形成される。換言すれば、回折光学素子182dの回折光学面は、ほぼ平行な入射光束が入射したときに、ファーフィールド領域(遠視野領域)に複数のスリット状の照野を形成するように設計されており、この回折光学素子182dをフーリエ変換光学系182cと組み合わせて用いることにより、ファーフィールド領域(遠視野領域)に形成されている複数のスリット状の照野は、回折光学素子から有限距離の面、典型的には被照射面に形成される。この結果、被照射面82cに図41に示すような複数のスリット状の照野82caが形成される。 In the illumination optical system 182B shown in FIG. 42, the light from the light source 82a becomes a substantially parallel light flux through the collimator optical system 182a and is incident on the diffractive optical element 182d. The light having passed through the diffractive optical element 182 d and a plurality of light fluxes having discrete angles with respect to the optical axis AXi are condensed at different positions on the illuminated surface 82 c by the Fourier transform optical system 182 c. In this case, the Fourier transform optical system 182c constitutes a condensing optical system that condenses the plurality of light beams from the diffractive optical element 182d onto the illuminated surface 82c. As a result, as shown in FIG. 41, a plurality of slit-shaped illumination fields 82ca elongated in the x1 direction are formed at intervals in the y1 direction. In other words, the diffractive optical surface of the diffractive optical element 182d is designed to form a plurality of slit-like illumination fields in the far-field region (far-field region) when substantially parallel incident light beams are incident. By using the diffractive optical element 182d in combination with the Fourier transform optical system 182c, a plurality of slit-shaped illumination areas formed in the far-field area (far-field area) are surfaces of a finite distance from the diffractive optical element, Typically, it is formed on the irradiated surface. As a result, a plurality of slit-shaped illumination fields 82ca as shown in FIG. 41 are formed on the illuminated surface 82c.
 被照射面82cが照明光学系182A,182Bの光軸AXiと直交している場合、図41に示すような複数のスリット状の照野82caを形成しつつ被照射面82cを均一照明することは比較的容易である。しかしながら、上述の実施形態では、反射型のパターンジェネレータ84の前後で光路を分離するために、照明系82によりパターンジェネレータ84の受光面84dを斜め方向から均一照明することが求められる。換言すれば、被照射面である受光面84dの前後で光路分離を実現するために、照明系82の光軸AXiに対して非垂直な被照射面を斜め方向から均一照明することが求められる。 When the illuminated surface 82c is orthogonal to the optical axis AXi of the illumination optical systems 182A and 182B, it is possible to uniformly illuminate the illuminated surface 82c while forming a plurality of slit-shaped illumination areas 82ca as shown in FIG. It is relatively easy. However, in the above embodiment, in order to separate the light path before and after the reflective pattern generator 84, uniform illumination of the light receiving surface 84d of the pattern generator 84 from the oblique direction by the illumination system 82 is required. In other words, in order to achieve optical path separation before and after the light receiving surface 84d which is the surface to be irradiated, it is required to uniformly illuminate the surface to be irradiated that is not perpendicular to the optical axis AXi of the illumination system 82 .
 図43は、図40に示す照明光学系182Aにおいて被照射面82cが光軸AXiに対して非垂直な場合に発生する不都合を説明する図である。ただし、図43では、図面の明瞭化のために、オプティカルインテグレータ182bから被照射面82cまでの構成を示し、コリメータ光学系182aの図示を省略している。コリメータ光学系182aの図示を省略している点は、関連する図44、図46~図49においても同様である。 FIG. 43 is a view for explaining the inconvenience that occurs when the illuminated surface 82c is non-perpendicular to the optical axis AXi in the illumination optical system 182A shown in FIG. However, FIG. 43 shows the configuration from the optical integrator 182 b to the irradiated surface 82 c for clarity of the drawing, and the illustration of the collimator optical system 182 a is omitted. The omission of the illustration of the collimator optical system 182a is the same in FIGS. 44 and 46 to 49 as well.
 図43では、オプティカルインテグレータ182bの射出側の照明瞳に形成された複数の光源像から第1角度および第2角度で射出される光線群301,302がそれぞれ集光される位置P1およびP2と、複数の光源像から光軸AXiと平行に射出される(第3角度で射出される)光線群303が集光される位置P3とが、光軸AXi方向に沿って一致している。言い換えると、位置P1~P3を含む平面が光軸AXiと垂直である。その結果、照明光学系182Aの光軸AXiに対して法線方向が傾いた被照射面82c上に集光位置P3があるとき、集光位置P1は被照射面82cよりも後側(または前側)に位置し、集光位置P2は被照射面82cよりも前側(または後側)に位置することになる。 In FIG. 43, positions P1 and P2 at which the light beam groups 301 and 302 emitted at the first angle and the second angle are collected from a plurality of light source images formed in the illumination pupil on the emission side of the optical integrator 182b, A position P3 at which a light beam group 303 emitted from a plurality of light source images in parallel with the optical axis AXi (emitted at a third angle) is collected coincides with the direction of the optical axis AXi. In other words, the plane including the positions P1 to P3 is perpendicular to the optical axis AXi. As a result, when the condensing position P3 is on the irradiated surface 82c whose normal direction is inclined with respect to the optical axis AXi of the illumination optical system 182A, the condensing position P1 is on the rear side (or front side) ), And the condensing position P2 is located on the front side (or rear side) of the light receiving surface 82c.
 この場合、被照射面82cの集光位置P3に形成されるスリット状の照野82caの幅(被照射面82c上においてx1軸と直交するy2軸方向の寸法:y2軸は不図示)に比して、被照射面82cの集光位置P1およびP2に対応する位置に形成されるスリット状の照野82caの幅が大きくなる恐れがある。このことは、集光位置P3に形成されるスリット状の照野82caの照度よりも、集光位置P1およびP2に対応する位置に形成されるスリット状の照野82caの照度が小さくなることを意味し、ひいては形状および照度の観点において被照射面82cを均一照明することができない恐れがあることを意味している。さらに、集光位置P1およびP2に到達する光束に関連する瞳強度分布が、集光位置P3に到達する光束に関連する瞳強度分布に比べてぼけた瞳強度分布となる恐れがある。 In this case, the width of the slit-like illumination field 82ca formed at the light collecting position P3 of the illuminated surface 82c (the dimension in the y2 axis direction orthogonal to the x1 axis on the illuminated surface 82c: y2 axis is not shown) As a result, there is a possibility that the width of the slit-shaped illumination field 82ca formed at the position corresponding to the light collection positions P1 and P2 of the surface 82c to be irradiated may become large. This means that the illuminance of the slit-shaped illumination field 82ca formed at the positions corresponding to the focusing positions P1 and P2 is smaller than the illuminance of the slit-shaped illumination field 82ca formed at the condensing position P3. This means that there is a possibility that the illuminated surface 82c can not be uniformly illuminated in terms of shape and illuminance. Furthermore, there is a possibility that the pupil intensity distribution related to the light flux reaching the light collecting positions P1 and P2 will be a pupil intensity distribution blurred compared to the pupil intensity distribution related to the light flux reaching the light collecting position P3.
 このように、光軸AXiに対して傾いた被照射面82cを均一照明するには、被照射面82cに入射する光の集光点の位置を被照射面82cに近づけること、被照射面82cに入射する光の集光点の位置を被照射面82cに合わせて揃えることが求められる。言い換えると、被照射面82cに入射する光の集光点で規定される平面を被照射面82cと一致させることが求められる。図44は、図43に示す照明光学系182Aにおいてフーリエ変換光学系182cと被照射面82cとの間の光路中に楔プリズム182eを付設することにより集光点の位置を被照射面82cに近づける様子を示す図である。 As described above, in order to uniformly illuminate the irradiation surface 82c tilted with respect to the optical axis AXi, the position of the condensing point of the light incident on the irradiation surface 82c should be close to the irradiation surface 82c, the irradiation surface 82c It is required to align the position of the light condensing point of the light incident on the light receiving surface 82c. In other words, it is required to make the plane defined by the condensing point of the light incident on the illuminated surface 82c coincide with the illuminated surface 82c. In FIG. 44, by placing a wedge prism 182e in the optical path between the Fourier transform optical system 182c and the illuminated surface 82c in the illumination optical system 182A shown in FIG. 43, the position of the condensing point approaches the illuminated surface 82c. FIG.
 以下、図45(a)および図45(b)を参照して、楔プリズム182eの光学的な作用を説明する。図45(a)および(b)では、説明の理解を容易にするために、光軸AXiと直交する入射側の面を有し且つ屈折率がnで楔角(頂角)がαの直角三角形状の楔プリズム182fを用いている。この場合、図45(a)に示すように、被照射面82cは、楔プリズム182fの楔角αの分だけ、照明光学系の光軸AXiの延長軸AXxに対して傾斜する。楔プリズム182fの作用により折り曲げられた光軸AXiの楔プリズム182fの射出側の面の法線に対する角度(射出角)α’は、α’=arcsin(n×sinα)で表され、楔プリズム182fの後側の光軸AXiに対する被照射面82cの法線の傾斜角もα’になる。 The optical action of the wedge prism 182e will be described below with reference to FIGS. 45 (a) and 45 (b). In FIGS. 45 (a) and 45 (b), in order to facilitate the understanding of the explanation, it has a plane on the incident side orthogonal to the optical axis AXi and is a right angle having an index of refraction n and an included angle (apex angle) of α. A triangular wedge prism 182 f is used. In this case, as shown in FIG. 45A, the illuminated surface 82c is inclined with respect to the extension axis AXx of the optical axis AXi of the illumination optical system by an amount corresponding to the depression angle α of the wedge prism 182f. The angle (exit angle) α ′ of the optical axis AXi bent by the action of the chisel prism 182 f with respect to the normal to the surface on the exit side of the chisel prism 182 f is represented by α ′ = arcsin (n × sin α), and the chisel prism 182 f The inclination angle of the normal to the illuminated surface 82c with respect to the optical axis AXi on the rear side also becomes α ′.
 このように、図44の照明光学系182Aでは、フーリエ変換光学系182cと被照射面82cとの間の光路中に、光軸AXiに対する被照射面82cの傾きに応じた楔角を有する楔プリズム182eを付設することにより、光軸AXiを所要の角度だけ折り曲げて、各光束の集光点の位置を被照射面82cに近づけることができる。ここで、光軸AXiに対する被照射面82cの傾きに応じた楔角を有するとは、光軸AXiに対する被照射面82cの傾きに応じた屈折率と楔角とを有するとしてもよい。言い換えると、照明光学系182Aは、フーリエ変換光学系182cと被照射面82cとの間の光路中の楔プリズム182eによって、各光束の集光点によって規定される平面を被照射面82cに近づけることができる。この場合、楔プリズム182eは、オプティカルインテグレータ182bおよびフーリエ変換光学系182cを経て被照射面82cに入射する光の集光点の位置を被照射面(ひいてはパターンジェネレータ84の受光面84d)82cに近づける集光点調整部材を構成している。また、フーリエ変換光学系182cと楔プリズム182eとは、オプティカルインテグレータ182bの射出側の照明瞳に形成された複数の光源像からの光束を被照射面82cに集光する集光光学系182jを構成している。 Thus, in the illumination optical system 182A of FIG. 44, a wedge prism having a depression angle corresponding to the inclination of the illuminated surface 82c with respect to the optical axis AXi in the optical path between the Fourier transform optical system 182c and the illuminated surface 82c. By attaching 182 e, it is possible to bend the optical axis AXi by a required angle and to bring the position of the condensing point of each light flux closer to the light receiving surface 82 c. Here, having a depression angle according to the inclination of the surface to be irradiated 82c with respect to the optical axis AXi may have a refractive index and a depression angle according to the inclination of the surface to be irradiated 82c with respect to the optical axis AXi. In other words, the illumination optical system 182A brings the plane defined by the condensing point of each light beam closer to the illuminated surface 82c by the wedge prism 182e in the optical path between the Fourier transform optical system 182c and the illuminated surface 82c. Can. In this case, the wedge prism 182e brings the position of the condensing point of the light incident on the illuminated surface 82c through the optical integrator 182b and the Fourier transform optical system 182c closer to the illuminated surface (and consequently the light receiving surface 84d of the pattern generator 84) A focusing point adjusting member is configured. Further, the Fourier transform optical system 182c and the wedge prism 182e constitute a focusing optical system 182j for focusing the light flux from the plurality of light source images formed on the illumination pupil on the exit side of the optical integrator 182b onto the illuminated surface 82c. doing.
 このように、集光点調整部材としての楔プリズム182eは、照明光学系182Aの光軸AXiに対する被照射面82cの傾きに応じた楔角を有する。そして、楔プリズム182eは、各光束の集光点の位置を被照射面82cに近づけるために、オプティカルインテグレータ182bの射出側の照明瞳から第1方向に沿って射出される第1光束の照明瞳から被照射面82cまでの光路長と、照明瞳から第1方向と異なる第2方向に沿って射出される第2光束の照明瞳から被照射面82cまでの光路長とを揃える機能を有する。なお、楔プリズム182eでは、第1光束の照明瞳から被照射面82cまでの光路長と、第2光束の照明瞳から被照射面82cまでの光路長とを完全に揃える必要はなく、これら第1光束の照明瞳から被照射面82cまでの光路長と、第2光束の照明瞳から被照射面82cまでの光路長との差を小さくすればよいことは言うまでもない。 As described above, the wedge prism 182e as the focusing point adjusting member has a wedge angle corresponding to the inclination of the light receiving surface 82c with respect to the optical axis AXi of the illumination optical system 182A. Then, the wedge prism 182e is configured to make the position of the condensing point of each light flux approach the illuminated surface 82c, the illumination pupil of the first light flux emitted along the first direction from the illumination pupil on the exit side of the optical integrator 182b. And the light path length from the illumination pupil to the light receiving surface 82c, and the light path length from the illumination pupil to the light receiving surface 82c of the second light flux emitted from the illumination pupil along the second direction different from the first direction. In the wedge prism 182e, there is no need to completely align the optical path length from the illumination pupil of the first light flux to the illuminated surface 82c and the optical path length from the illumination pupil of the second light flux to the illuminated surface 82c. It goes without saying that the difference between the optical path length from the illumination pupil of one luminous flux to the illuminated surface 82c and the optical path length from the illumination pupil of the second luminous flux to the illuminated surface 82c may be reduced.
 なお、図46に示すように、被照射面82cの傾きに応じた楔角を有する楔プリズム182eに代えて或いは加えて、照明光学系182Aの光軸AXiに沿った厚さが図46の紙面(y1z1平面)の鉛直方向(y1方向)に段階的に変化する段差板182gを集光点調整部材として用いることができる。この場合、フーリエ変換光学系182cと段差板182gとは、オプティカルインテグレータ182bの射出側の照明瞳に形成された複数の光源像からの光束を被照射面82cに集光する集光光学系182jを構成している。必要に応じて、楔プリズム182eと段差板182gとを組み合わせて集光点調整部材を構成することもできる。 As shown in FIG. 46, instead of or in addition to the wedge prism 182e having a depression angle corresponding to the inclination of the illuminated surface 82c, the thickness along the optical axis AXi of the illumination optical system 182A is the sheet of FIG. A step plate 182g which changes stepwise in the vertical direction (y1 direction) of (y1z1 plane) can be used as a focusing point adjustment member. In this case, the Fourier transform optical system 182c and the step plate 182g are configured to focus the light collecting optical system 182j for collecting the light flux from the plurality of light source images formed on the illumination pupil on the exit side of the optical integrator 182b. Configured. The condensing point adjusting member can also be configured by combining the wedge prism 182 e and the step plate 182 g as needed.
 あるいは、図47に示すように、楔プリズム182eまたは段差板182gの付設に代えて或いは加えて、被照射面82cに入射する光の集光点が被照射面82cに近づくようにフーリエ変換光学系182cを図47の紙面(y1z1平面)の鉛直方向(y1方向)に偏心配置することもできる。あるいは、図示を省略するが、複数の光源像からの光の集光点の位置が被照射面82cに近づくように、オプティカルインテグレータ182bの各波面分割要素182baの入射側の面を、その中心法線が図43の紙面において照明光学系182Aの光軸AXiに対して傾くように形成しても良い。 Alternatively, as shown in FIG. 47, in place of or in addition to the provision of the wedge prism 182e or the step plate 182g, the Fourier transform optical system so that the condensing point of light incident on the illuminated surface 82c approaches the illuminated surface 82c. It is also possible to eccentrically arrange 182c in the vertical direction (y1 direction) of the paper surface (y1z1 plane) of FIG. Alternatively, although not shown, the incident side surface of each of the wavefront dividing elements 182ba of the optical integrator 182b is set to the central method so that the positions of the light condensing points of the light source images approach the irradiated surface 82c. The line may be formed to be inclined with respect to the optical axis AXi of the illumination optical system 182A in the plane of FIG.
 ただし、図45(b)に示すように光線追跡を行うと、楔プリズム182eに起因してコマ収差および非点収差が発生することがわかる。楔プリズム182eに起因してコマ収差や非点収差が発生すると、各スリット状の照野82caについて所望の照度、所望の形状などが得られなくなり、ひいては均一照明が困難になってしまう恐れがある。そこで、集光点調整部材として楔プリズム182e(または段差板182g)を用いる場合、楔プリズム182eなどに起因して発生するコマ収差や非点収差を補正しても良い。以下、図48および図49を参照して、楔プリズム182e(または段差板182g)に起因して発生する収差を補正する収差補正部材について説明する。 However, when ray tracing is performed as shown in FIG. 45 (b), it is understood that coma and astigmatism occur due to the wedge prism 182e. If coma and astigmatism occur due to the wedge prism 182e, desired illuminance, desired shape, etc. can not be obtained for each slit-like illumination field 82ca, which may make uniform illumination difficult. . Therefore, when the wedge prism 182e (or the step plate 182g) is used as the focusing point adjustment member, coma and astigmatism generated due to the wedge prism 182e and the like may be corrected. Hereinafter, with reference to FIGS. 48 and 49, an aberration correction member that corrects an aberration generated due to the wedge prism 182e (or the step plate 182g) will be described.
 図48に示す構成では、フーリエ変換光学系182cの前側に、さらに詳細にはオプティカルインテグレータ182bとフーリエ変換光学系182cとの間の光路中においてオプティカルインテグレータ182bの射出側の照明瞳を含む照明瞳空間に、非点収差を発生させる第1収差発生部材182haと、コマ収差を発生させる第2収差発生部材182hbとを付設している。第1収差発生部材182haは、楔プリズム182eに起因して発生する非点収差を補正するために、例えばZ5で表されるツェルニケ関数で規定される非球面形状の光学面を用いて非点収差を発生させる。また、第2収差発生部材182hbは、楔プリズム182eに起因して発生するコマ収差を補正するために、例えばZ7で表されるツェルニケ関数で規定される非球面形状の光学面を用いてコマ収差を発生させる。 In the configuration shown in FIG. 48, an illumination pupil space including the illumination pupil on the emission side of the optical integrator 182b in the light path between the optical integrator 182b and the Fourier transform optical system 182c in front of the Fourier transform optical system 182c. In addition, a first aberration generating member 182ha that generates astigmatism and a second aberration generating member 182hb that generates coma are attached. The first aberration generating member 182ha uses, for example, an aspheric optical surface defined by a Zernike function represented by Z5 to correct astigmatism generated due to the wedge prism 182e. Generate Further, the second aberration generating member 182hb uses the aspheric optical surface defined by the Zernike function represented by Z7, for example, to correct the coma aberration generated due to the 楔 prism 182e. Generate
 具体的に、Z5で表されるツェルニケ関数とは極座標系を用いるツェルニケ(Zernike)多項式における第5項にかかる関数であり、Z7で表されるツェルニケ関数とはツェルニケ多項式における第7項にかかる関数である。ツェルニケ関数やツェルニケ多項式の詳細については、例えば米国特許第7,405,803号公報などを参照することができる。図48において、第1収差発生部材182haと、第2収差発生部材182hbと、フーリエ変換光学系182cと、楔プリズム182eとは、オプティカルインテグレータ182bの射出側の照明瞳に形成された複数の光源像からの光束を被照射面であるパターンジェネレータ84の受光面84dに集光する集光光学系182jを構成している。 Specifically, the Zernike function represented by Z5 is a function of the fifth term in the Zernike polynomial using a polar coordinate system, and the Zernike function represented by Z7 is a function of the seventh term in the Zernike polynomial It is. For details of the Zernike function and the Zernike polynomial, reference can be made, for example, to US Pat. No. 7,405,803. In FIG. 48, the first aberration generation member 182ha, the second aberration generation member 182hb, the Fourier transform optical system 182c, and the wedge prism 182e are a plurality of light source images formed in the illumination pupil on the exit side of the optical integrator 182b. A condensing optical system 182 j is configured to condense the light flux from the light source on the light receiving surface 84 d of the pattern generator 84, which is the irradiated surface.
 図48に示す構成では、非点収差を発生させる第1収差発生部材182haと、コマ収差を発生させる第2収差発生部材182hbとからなる第1の収差補正部材182hを用いて、楔プリズム182eに起因して発生するコマ収差および非点収差の双方を補正している。その結果、被照射面であるパターンジェネレータ84の受光面84dに集光する光が点像スポットを形成し、ひいては各スリット状の照野82caの幅を所望の寸法まで狭めて均一にすることができる。なお、図48に示す構成では、第1収差発生部材182haと第2収差発生部材182hbとを照明瞳空間に設けたが、第1収差発生部材182haと第2収差発生部材182hbとは別の空間、例えばフーリエ変換光学系182cを構成する複数の光学部材の間やフーリエ変換光学系182cと被照射面82cとの間に設けてもよい。また、フーリエ変換光学系182cを構成する複数の光学部材のうちの少なくとも1つの光学面を、非点収差を発生させる面形状として、この光学面を有する光学部材を第1収差発生部材182haとしてもよく、フーリエ変換光学系182cを構成する複数の光学部材のうちの少なくとも1つの光学面をコマ収差を発生させる面形状として、この光学面を有する光学部材を第2収差発生部材182hbとしてもよい。 In the configuration shown in FIG. 48, by using a first aberration correction member 182h consisting of a first aberration generation member 182ha that generates astigmatism and a second aberration generation member 182hb that generates coma, a haze prism 182e is used. It corrects both coma and astigmatism that are caused due to it. As a result, the light condensed on the light receiving surface 84d of the pattern generator 84, which is the surface to be irradiated, forms a point image spot, and the width of each slit-like illumination field 82ca can be narrowed to a desired size and made uniform. it can. Although the first aberration generation member 182ha and the second aberration generation member 182hb are provided in the illumination pupil space in the configuration shown in FIG. 48, the first aberration generation member 182ha and the second aberration generation member 182hb are separate spaces. For example, it may be provided between a plurality of optical members constituting the Fourier transform optical system 182c or between the Fourier transform optical system 182c and the illuminated surface 82c. Further, at least one optical surface of the plurality of optical members constituting the Fourier transform optical system 182c may be a surface shape that generates astigmatism, and an optical member having this optical surface may be used as the first aberration generation member 182ha. Preferably, at least one optical surface of the plurality of optical members constituting the Fourier transform optical system 182c has a surface shape for generating coma aberration, and the optical member having this optical surface may be used as the second aberration generation member 182hb.
 図49に示す構成では、図48の第1の収差補正部材182hに代えて、コマ収差を発生させる第3収差発生部材として、図49の紙面(y1z1平面)の鉛直方向(y1方向)に偏心配置された(あるいは偏心可能な)アフォーカル光学系182kを用いている。すなわち、アフォーカル光学系182kは、第2の収差補正部材として、オプティカルインテグレータ182bとフーリエ変換光学系182cとの間の光路中に、さらに詳細にはオプティカルインテグレータ182bの射出側の照明瞳を含む照明瞳空間に配置されている。図49において、第2の収差補正部材182kと、フーリエ変換光学系182cと、楔プリズム182eとは、オプティカルインテグレータ182bの射出側の照明瞳に形成された複数の光源像からの光束を被照射面であるパターンジェネレータ84の受光面84dに集光する集光光学系182jを構成している。 In the configuration shown in FIG. 49, it is decentered in the vertical direction (y1 direction) of the paper surface (y1z1 plane) of FIG. 49 as a third aberration generation member which generates coma aberration instead of the first aberration correction member 182h of FIG. The afocal optical system 182k arranged (or decenterable) is used. That is, as the second aberration correction member, the afocal optical system 182k further includes an illumination pupil on the exit side of the optical integrator 182b in the optical path between the optical integrator 182b and the Fourier transform optical system 182c. It is arranged in the pupil space. In FIG. 49, the second aberration correction member 182k, the Fourier transform optical system 182c, and the wedge prism 182e are surfaces to be illuminated with light beams from a plurality of light source images formed on the illumination pupil on the exit side of the optical integrator 182b. A condensing optical system 182 j for condensing light on the light receiving surface 84 d of the pattern generator 84 is configured.
 図49に示す構成では、コマ収差を発生させる偏心アフォーカル光学系182kからなる第2の収差補正部材を用いて、楔プリズム182eに起因して発生するコマ収差だけを補正しているが、被照射面であるパターンジェネレータ84の受光面84dに集光する光が図49の紙面と直交する方向(x1方向)に細長い線状像スポットを形成し、ひいては各スリット状の照野82caの幅を所望の寸法まで狭めて均一にすることができる。なお、偏心アフォーカル光学系182kに代えて或いは加えて、フーリエ変換光学系182cを構成する複数の光学部材のうちの少なくとも1つの光学部材を、光軸AXiから偏心させる、或いは光軸AXiに対して傾斜させて、所要のコマ収差を発生させてもよい。なお、図49に示す偏心アフォーカル光学系182kと、図48の第2の収差補正部材182hbとを組み合わせて用いてもよく、図49に示す偏心アフォーカル光学系182kと、図48の第1の収差補正部材182haとを組み合わせて用いてもよい。 In the configuration shown in FIG. 49, only the coma aberration generated due to the wedge prism 182e is corrected using the second aberration correction member consisting of the decentering afocal optical system 182k that generates coma aberration. The light condensed on the light receiving surface 84d of the pattern generator 84, which is the irradiation surface, forms an elongated linear image spot in a direction (direction x1) orthogonal to the paper surface of FIG. It can be narrowed to a desired size and made uniform. Note that, instead of or in addition to the eccentric afocal optical system 182k, at least one of the optical members constituting the Fourier transform optical system 182c is decentered from the optical axis AXi, or with respect to the optical axis AXi It may be tilted to generate the required coma. The decentering afocal optical system 182k shown in FIG. 49 may be used in combination with the second aberration correction member 182hb shown in FIG. 48. The decentering afocal optical system 182k shown in FIG. The aberration correction member 182ha may be used in combination.
 なお、図43、図44、図46~図49では、波面分割型のオプティカルインテグレータ182bを用いる照明光学系182Aに基づいて、集光点調整部材および収差補正部材の作用を説明しているが、回折光学素子182dを用いる照明光学系182Bに対しても同様に、上述した集光点調整部材や収差補正部材を適用することができる。この場合、図43、図44、図46~図49における波面分割型のオプティカルインテグレータ182bを回折光学素子182dに置き換えて理解すればよい。 In FIGS. 43, 44, and 46 to 49, the functions of the focusing point adjusting member and the aberration correcting member are described based on the illumination optical system 182A using the wavefront splitting type optical integrator 182b. The above-described focusing point adjusting member and aberration correcting member can be applied to the illumination optical system 182B using the diffractive optical element 182d as well. In this case, the wavefront-splitting optical integrator 182b in FIGS. 43, 44, and 46 to 49 may be replaced with a diffractive optical element 182d.
 以上のように、照明光学系182A,182Bは、オプティカルインテグレータ182bの射出側の照明瞳から第1方向に沿って射出される第1光束(例えば図43における光線群301)と、照明瞳から第1方向と異なる第2方向に沿って射出される第2光束(例えば図43における光線群302または303)とを集光する集光光学系182jを含み、光軸AXiに対して法線が傾くように配置されたパターンジェネレータ84の受光面84dを斜入射照明する。集光光学系182jは、第1光束の光軸AXi方向の集光位置と、第2光束の光軸AXi方向の集光位置とを異ならせる集光点調整部材182e(182gなど)を有する。言い換えると、集光光学系182jは、第1光束の光軸AXi方向の集光位置と、第2光束の光軸AXi方向の集光位置とを含む平面を被照射面に近づける集光点調整部材182eを有する。 As described above, the illumination optical systems 182A and 182B include the first light beam (for example, the light beam group 301 in FIG. 43) emitted along the first direction from the illumination pupil on the exit side of the optical integrator 182b; 43 includes a focusing optical system 182 j for focusing the second light beam (for example, the light beam group 302 or 303 in FIG. 43) emitted along the second direction different from the one direction, and the normal is inclined with respect to the optical axis AXi The light-receiving surface 84d of the pattern generator 84 arranged as described above is obliquely incident. The focusing optical system 182 j has a focusing point adjusting member 182 e (such as 182 g) that makes the focusing position in the optical axis AXi direction of the first light flux different from the focusing position in the optical axis AXi direction of the second light flux. In other words, the focusing optical system 182 j adjusts the focusing point to bring the plane including the focusing position in the optical axis AXi direction of the first light flux and the focusing position in the optical axis AXi direction of the second light flux closer to the irradiated surface. It has a member 182e.
 集光光学系182jからの第1光束および第2光束は、受光面84d上の第1点および第1点と異なる第2点に集光される。集光点調整部材として、光軸AXiに対する受光面84dの傾きに応じた楔角を有する楔プリズム182eを用いることができる。楔プリズム182eは、オプティカルインテグレータ182bの射出側の照明瞳から受光面84dまでの第1光束の光路長と、照明瞳から受光面84dまでの第2光束の光路長との差を小さくする機能を有する。 The first light flux and the second light flux from the focusing optical system 182 j are focused at a second point different from the first point and the first point on the light receiving surface 84 d. As the focusing point adjusting member, a wedge prism 182e having a depression angle corresponding to the inclination of the light receiving surface 84d with respect to the optical axis AXi can be used. The wedge prism 182e has a function of reducing the difference between the optical path length of the first light beam from the illumination pupil on the exit side of the optical integrator 182b to the light receiving surface 84d and the optical path length of the second light beam from the illumination pupil to the light receiving surface 84d. Have.
 集光点調整部材としての楔プリズム182eに代えて、あるいは楔プリズム182eに加えて、光軸AXiに沿った厚さが光軸AXiを横切る方向(例えば図46ではy1方向)で異なる段差板182gを用いることができる。集光光学系182jは、楔プリズム182eや段差板182gのような集光点調整部材に起因して発生する収差を補正する収差補正部材182h(または182k)を有する。収差補正部材182h(182ha,182hb)は、コマ収差および非点収差のうちの少なくとも一方を発生させる非球面形状の光学面を有する。収差補正部材182kは、光軸AXiを横切る方向に偏心したアフォーカル光学系を有する。 Instead of or in addition to the wedge prism 182e as a focusing point adjusting member, a step plate 182g in which the thickness along the optical axis AXi differs in a direction crossing the optical axis AXi (eg, y1 direction in FIG. 46) Can be used. The condensing optical system 182 j includes an aberration correction member 182 h (or 182 k) that corrects an aberration generated due to a condensing point adjustment member such as the wedge prism 182 e or the step plate 182 g. The aberration correction member 182h (182ha, 182hb) has an aspheric optical surface that generates at least one of coma and astigmatism. The aberration correction member 182k has an afocal optical system decentered in a direction transverse to the optical axis AXi.
 あるいは、集光光学系182jは、第1光束の光軸AXi方向の集光位置と、第2光束の光軸AXi方向の集光位置とを異ならせるように、光軸AXiに対して偏心配置されている少なくとも1つの光学部材182c、具体的には光軸AXiを横切る方向(例えば図47ではy1方向)に偏心配置されたフーリエ変換光学系182cを有する。あるいは、集光光学系182jにおいて、オプティカルインテグレータ182bの各波面分割要素182baの入射側の面の中心法線を、所定面(図47ではy1z1平面)において光軸AXiに対して傾けることにより、第1光束の光軸AXi方向の集光位置と、第2光束の光軸AXi方向の集光位置とを異ならせても良い。 Alternatively, the condensing optical system 182 j is decentered with respect to the optical axis AXi so that the condensing position in the optical axis AXi direction of the first luminous flux and the condensing position in the optical axis AXi of the second luminous flux are different. At least one optical member 182c, specifically, Fourier transform optical system 182c eccentrically disposed in a direction crossing the optical axis AXi (for example, the y1 direction in FIG. 47). Alternatively, in the focusing optical system 182j, the center normal of the surface on the incident side of each wavefront dividing element 182ba of the optical integrator 182b is inclined with respect to the optical axis AXi at a predetermined surface (the y1z1 plane in FIG. 47). The focusing position in the direction of the optical axis AXi of one light beam may be different from the focusing position in the direction of the optical axis AXi of the second light beam.
 別の表現をすると、照明光学系182A,182Bは、パターンジェネレータ84の受光面84d上の第1位置に達する第1光束と、受光面84d上の第2位置に達する第2光束とを集光する集光光学系182jを含み、光軸AXiに対して法線が傾くように配置された受光面84dを斜入射照明する。そして、集光光学系182jは、第1光束の光軸AXi方向の集光位置と、第2光束の光軸AXi方向の集光位置とを異ならせる集光点調整部材として、光軸AXiに対して受光面84dの法線が傾く方向に頂角(楔角)を持つ楔プリズム182eを有する。 In other words, the illumination optical systems 182A and 182B condense the first light flux reaching the first position on the light receiving surface 84d of the pattern generator 84 and the second light flux reaching the second position on the light receiving surface 84d. The light receiving surface 84d is arranged to be obliquely incident on the light receiving surface 84d that is disposed so that the normal is inclined with respect to the optical axis AXi. The focusing optical system 182 j is a focusing point adjusting member that makes the focusing position in the direction of the optical axis AXi of the first light flux different from the focusing position in the direction of the optical axis AXi of the second light flux. There is a wedge prism 182e having an apex angle (depression angle) in a direction in which the normal to the light receiving surface 84d is inclined.
 また、別の表現をすると、照明光学系182A,182Bは、オプティカルインテグレータ182bの射出側の照明瞳から第1方向に沿って射出される第1光束と、照明瞳から第1方向と異なる第2方向に沿って射出される第2光束とを集光する集光光学系182jを含み、集光光学系182jは、パターンジェネレータ84の受光面84dを含む空間に配置されて、第1光束の光軸AXi方向の集光位置と第2光束の光軸方向AXiの集光位置とを異ならせる集光点調整部材182e(182gなど)を有する。 In other words, the illumination optical systems 182A and 182B have a first light flux emitted from the illumination pupil on the exit side of the optical integrator 182b along the first direction, and a second light flux different from the illumination pupil in the first direction. Light condensing optical system 182 j which condenses the second light flux emitted along the direction, and the light condensing optical system 182 j is disposed in a space including the light receiving surface 84 d of the pattern generator 84, and the light of the first light flux A focusing point adjusting member 182e (such as 182g) is provided to make the focusing position in the direction of the axis AXi different from the focusing position in the optical axis direction AXi of the second light flux.
 上述の照明光学系182A,182Bでは、集光光学系182jが第1光束の光軸AXi方向の集光位置と、第2光束の光軸方向AXiの集光位置とを異ならせる集光点調整部材182e(182gなど)を備えているので、この集光点調整部材182e(182gなど)の作用により各光束の集光位置をパターンジェネレータ84の受光面84dに近づけることができ、ひいては光軸AXiに対して傾くように配置された受光面84dを均一照明すること、ひいては良好な電子ビーム処理、例えば電子ビーム露光を行うことが可能になる。 In the above-described illumination optical systems 182A and 182B, focusing point adjustment in which the focusing optical system 182j makes the focusing position in the optical axis AXi direction of the first light beam different from the focusing position in the optical axis direction AXi of the second light beam. Since the member 182e (182g and the like) is provided, the condensing position of each light beam can be brought closer to the light receiving surface 84d of the pattern generator 84 by the action of the condensing point adjusting member 182e (182g and the like). It is possible to uniformly illuminate the light-receiving surface 84d disposed to be inclined with respect to the light-emitting surface, and thus to perform good electron beam processing, for example, electron beam exposure.
 また、上述の照明光学系182A,182Bでは、集光点調整部材として楔プリズム182eや段差板182gを用いる場合に、楔プリズム182eや段差板182gに起因して発生する収差を補正する収差補正部材182h(または182k)を集光光学系182jに付設することにより、光軸AXiに対して傾くように配置された受光面84dをさらに均一照明すること、ひいてはさらに良好な電子ビーム処理、例えば電子ビーム露光を行うことが可能になる。 Further, in the above-described illumination optical systems 182A and 182B, when using the wedge prism 182e or the step plate 182g as a focusing point adjustment member, an aberration correction member that corrects an aberration caused due to the wedge prism 182e or the step plate 182g By attaching 182 h (or 182 k) to the focusing optical system 182 j, it is possible to further uniformly illuminate the light receiving surface 84 d disposed to be inclined with respect to the optical axis AXi, and thus to achieve better electron beam processing, eg, electron beam It becomes possible to perform exposure.
 前述したように、光源部82aと、照明光学系182A(または182B)と、パターンジェネレータ84と、投影光学系86A(または86B,86C,86D)とは、光電素子54に光を照射するための光照射装置80を構成する。すなわち、照明光学系182A(または182B)と、投影光学系86A(または86B,86C,86D)とは、パターンジェネレータ84を挟んで光学的に接続される。 As described above, the light source unit 82a, the illumination optical system 182A (or 182B), the pattern generator 84, and the projection optical system 86A (or 86B, 86C, 86D) are for emitting light to the photoelectric element 54. The light irradiation device 80 is configured. That is, the illumination optical system 182A (or 182B) and the projection optical system 86A (or 86B, 86C, 86D) are optically connected with the pattern generator 84 interposed therebetween.
 図50は、いわゆるV字折り曲げタイプにしたがって、第1~第3タイプの投影光学系86A(86B,86C)を照明光学系182A(182B)に接続した様子を概略的に示す図である。図50の構成例では、図示を省略した照明光学系182A(182B)からの光が、光路折り曲げ用のミラー98で反射された後に、パターンジェネレータ84の受光面84dを斜入射照明する。受光面84dで反射された光は、第2の光路折り曲げ用のミラー99で反射された後に、投影光学系86A(86B,86C)を介して、光電素子54の光電変換面54aに照射される。 FIG. 50 schematically shows how the first to third types of projection optical systems 86A (86B, 86C) are connected to the illumination optical systems 182A (182B) according to a so-called V-shaped bending type. In the configuration example of FIG. 50, the light from the illumination optical system 182A (182B) (not shown) is reflected by the mirror 98 for bending the optical path, and then obliquely illuminates the light receiving surface 84d of the pattern generator 84. The light reflected by the light receiving surface 84d is reflected by the second light path bending mirror 99, and then irradiated to the photoelectric conversion surface 54a of the photoelectric element 54 through the projection optical system 86A (86B, 86C). .
 この構成例では、ミラー98で反射されて受光面84dに入射する光の光路と、受光面84dで反射されてミラー99に入射する光の光路とが、V字を形成している。ミラー99は、パターンジェネレータ84と投影光学系86A(86B,86C)との間に配置された偏向部材である。そして、ミラー98は照明光学系182A(182B)とパターンジェネレータ84との間に配置された第1反射面を有し、ミラー99はパターンジェネレータ84と投影光学系86A(86B,86C)との間に配置された第2反射面を有する。ここで、照明光学系182A(182B)からの照明光を折り曲げてパターンジェネレータ84に入射させる第1反射面は、照明光学系の光路を非垂直に偏向しているため、パターンジェネレータ84の受光面(被照射面)は、受光面(被照射面)の法線に対して斜め方向から照明されることになる。そして、パターンジェネレータ84からの複数のビームを投影光学系86A(86B,86C)に導く第2反射面も、投影光学系の光路を非垂直に偏向しているため、パターンジェネレータ84の受光面(投影光学系の物体面)からの複数のビームも、受光面(物体面)の法線に対して斜め方向に射出する。
 同様に、図51は、V字折り曲げタイプにしたがって、第4タイプの投影光学系86Dを照明光学系182A(182B)に接続した様子を概略的に示している。
In this configuration example, the light path of light reflected by the mirror 98 and incident on the light receiving surface 84d and the light path of light reflected on the light receiving surface 84d and incident on the mirror 99 form a V-shape. The mirror 99 is a deflection member disposed between the pattern generator 84 and the projection optical system 86A (86B, 86C). The mirror 98 has a first reflecting surface disposed between the illumination optical system 182A (182B) and the pattern generator 84, and the mirror 99 is between the pattern generator 84 and the projection optical system 86A (86B, 86C). And a second reflective surface disposed on the Here, the first reflection surface that bends the illumination light from the illumination optical system 182A (182B) to be incident on the pattern generator 84 deflects the light path of the illumination optical system non-perpendicularly, so the light receiving surface of the pattern generator 84 The surface to be illuminated is illuminated from a direction oblique to the normal to the light receiving surface (surface to be illuminated). The second reflection surface for guiding a plurality of beams from the pattern generator 84 to the projection optical system 86A (86B, 86C) also deflects the optical path of the projection optical system non-perpendicularly. A plurality of beams from the object plane of the projection optical system are also emitted obliquely to the normal to the light receiving surface (object plane).
Similarly, FIG. 51 schematically shows how the fourth type of projection optical system 86D is connected to the illumination optical system 182A (182B) according to the V-shaped bending type.
 図52は、いわゆるN字折り曲げタイプにしたがって、第1~第3タイプの投影光学系86A(86B,86C)を照明光学系182A(182B)に接続した様子を概略的に示す図である。図52の構成例では、図示を省略した照明光学系182A(182B)からの光が、光路折り曲げ用のミラー98で反射された後に、パターンジェネレータ84の受光面84dを斜入射照明する。受光面84dで反射された光は、投影光学系86A(86B,86C)に入射した後に、光電素子54の光電変換面54aに照射される。 FIG. 52 schematically shows how the first to third types of projection optical system 86A (86B, 86C) are connected to the illumination optical system 182A (182B) according to a so-called N-fold type. In the configuration example of FIG. 52, the light from the illumination optical system 182A (182B) (not shown) is reflected by the mirror 98 for bending the optical path, and then obliquely illuminates the light receiving surface 84d of the pattern generator 84. The light reflected by the light receiving surface 84d is incident on the projection optical system 86A (86B, 86C), and then is irradiated to the photoelectric conversion surface 54a of the photoelectric element 54.
 この構成例では、照明光学系182A(182B)からミラー98に入射する光の光路と、ミラー98で反射されて受光面84dに入射する光の光路と、受光面84dで反射されて投影光学系86A(86B,86C)に入射する光の光路とが、N字を形成している。ミラー98は、照明光学系182A(182B)とパターンジェネレータ84との間に配置された偏向部材である。同様に、図53は、N字折り曲げタイプにしたがって、第4タイプの投影光学系86Dを照明光学系182A(182B)に接続した様子を概略的に示している。
 なお、本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電子ビーム装置、電子ビーム露光装置、電子ビーム検査装置、電子ビーム加工装置及び電子ビーム装置を用いるデバイス製造方法もまた本発明の技術思想に含まれる。
In this configuration example, the optical path of light entering the mirror 98 from the illumination optical system 182A (182B), the optical path of light reflected by the mirror 98 and incident on the light receiving surface 84d, and the projection optical system reflected by the light receiving surface 84d An optical path of light incident on 86A (86B, 86C) forms an N-shape. The mirror 98 is a deflection member disposed between the illumination optical system 182A (182B) and the pattern generator 84. Similarly, FIG. 53 schematically shows how the fourth type of projection optical system 86D is connected to the illumination optical system 182A (182B) according to the N-fold type.
The present invention can be suitably modified without departing from the scope and spirit of the invention which can be read from the claims and the entire specification, and an electron beam apparatus, an electron beam exposure apparatus and an electron beam with such modifications. An inspection apparatus, an electron beam processing apparatus and a device manufacturing method using the electron beam apparatus are also included in the technical concept of the present invention.
 10…ステージチャンバ、34…第1の真空室、50…光電カプセル、52…本体部、54…光電素子、58…遮光膜、58a…アパーチャ、58b…アパーチャ、60…光電層、62…Oリング、64…蓋部材、66…真空対応アクチュエータ、68…蓋収納プレート、68c…円形開口、70…電子ビーム光学系、72…第2の真空室、82…照明系、82b…成形光学系、84…パターンジェネレータ、86…投影光学系、88…レーザダイオード、98…ミラー、100…露光装置、102…回路基板、102a…開口、110…主制御装置、112…引き出し電極、134…基材、136…光電素子、140…光電素子、142…アパーチャ部材、144…基材、EB…電子ビーム、LB…レーザビーム、W…ウエハ、WST…ウエハステージ。
86A~86D 投影光学系
182A,182B 照明光学系
182a コリメータ光学系
182b オプティカルインテグレータ
182c フーリエ変換光学系
182d 回折光学素子
182e,182f 楔プリズム
182g 段差板
182h(182ha,182hb) 第1の収差補正部材
182j 集光光学系
182k 第2の収差補正部材
DESCRIPTION OF SYMBOLS 10 Stage chamber 34 34 First vacuum chamber 50 Photoelectric capsule 52 Main body 54 Photoelectric element 58 Light shielding film 58a Aperture 58b Aperture 60 Photoelectric layer 62 O ring , 64: lid member, 66: vacuum-compatible actuator, 68: lid storage plate, 68c: circular opening, 70: electron beam optical system, 72: second vacuum chamber, 82: illumination system, 82b: molded optical system, 84 ... pattern generator, 86 ... projection optical system, 88 ... laser diode, 98 ... mirror, 100 ... exposure device, 102 ... circuit board, 102 a ... opening, 110 ... main controller, 112 ... extraction electrode, 134 ... base material, 136 ... Photoelectric element, 140 ... Photoelectric element, 142 ... Aperture member, 144 ... Base material, EB ... Electron beam, LB ... Laser beam, W ... Wafer, WST ... C Ha stage.
86A to 86D Projection optical system 182A, 182B Illumination optical system 182a Collimator optical system 182b Optical integrator 182c Fourier transform optical system 182d Diffractive optical element 182e, 182f 楔 prism 182g Step plate 182h (182ha, 182hb) First aberration correction member 182j Collection Optical optical system 182k Second aberration correction member

Claims (57)

  1. 光電素子に光を照射し、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置であって、
     第1面を照明する照明光学系と、
     前記第1面に配置された複数の反射素子を有し、前記照明光学系からの光で複数の光ビームを発生するパターンジェネレータと、
     前記パターンジェネレータからの前記複数の光ビームを前記光電素子の光電変換面に投影する投影光学系と、を備え、
     前記照明光学系は、照明瞳から第1方向に沿って射出される第1光束と、前記照明瞳から前記第1方向と異なる第2方向に沿って射出される第2光束とを集光する集光光学系を含み、前記照明光学系の光軸に対して法線が傾くように配置された前記第1面を斜入射照明し、
     前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を有する電子ビーム装置。
    An electron beam apparatus which emits light to a photoelectric element and irradiates a target with an electron beam generated from the photoelectric element,
    An illumination optical system for illuminating the first surface;
    A pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
    A projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
    The illumination optical system condenses a first light beam emitted from an illumination pupil along a first direction and a second light beam emitted from the illumination pupil along a second direction different from the first direction. Oblique incident illumination is performed to the first surface, which includes a condensing optical system and is disposed such that the normal is inclined with respect to the optical axis of the illumination optical system;
    The electron beam apparatus according to claim 1, wherein the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing position in the optical axis direction of the second light beam.
  2. 前記集光光学系からの前記第1光束および前記第2光束は、前記第1面上の第1点および前記第1点と異なる第2点に集光される請求項1に記載の電子ビーム装置。 The electron beam according to claim 1, wherein the first light flux and the second light flux from the focusing optical system are focused at a first point on the first surface and a second point different from the first point. apparatus.
  3. 前記集光点調整部材は、前記第1面の傾きに応じた楔角の楔プリズムを有する請求項1または2に記載の電子ビーム装置。 The electron beam apparatus according to claim 1, wherein the focusing point adjusting member has a wedge prism with a depression angle corresponding to the inclination of the first surface.
  4. 前記楔プリズムは、前記照明瞳から前記第1面までの前記第1光束の光路長と、前記照明瞳から前記第1面までの前記第2光束の光路長とを揃える請求項3に記載の電子ビーム装置。 The wedge lens according to claim 3, wherein an optical path length of the first light flux from the illumination pupil to the first surface and an optical path length of the second light flux from the illumination pupil to the first surface are equalized. Electron beam device.
  5. 前記集光点調整部材は、前記照明光学系の光軸に沿った厚さが前記光軸を横切る方向で異なる段差板を有する請求項1または2に記載の電子ビーム装置。 The electron beam apparatus according to claim 1, wherein the focusing point adjusting member has a step plate whose thickness along the optical axis of the illumination optical system differs in a direction crossing the optical axis.
  6. 前記集光光学系は、前記集光点調整部材に起因して発生する収差を補正する収差補正部材を有する請求項1乃至5のいずれか1項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 5, wherein the focusing optical system includes an aberration correction member that corrects an aberration generated due to the focusing point adjustment member.
  7. 前記収差補正部材は、コマ収差および非点収差のうちの少なくとも一方を発生させる非球面形状の光学面を有する請求項6に記載の電子ビーム装置。 The electron beam apparatus according to claim 6, wherein the aberration correction member has an aspheric optical surface that generates at least one of coma and astigmatism.
  8. 前記収差補正部材は、前記照明光学系の光軸を横切る方向に偏心したアフォーカル光学系を有する請求項6または7に記載の電子ビーム装置。 The electron beam apparatus according to claim 6, wherein the aberration correction member has an afocal optical system decentered in a direction crossing an optical axis of the illumination optical system.
  9. 前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせるように前記照明光学系の光軸に対して偏心配置されている少なくとも1つの光学部材を有する請求項1または2に記載の電子ビーム装置。 The condensing optical system is arranged with respect to the optical axis of the illumination optical system such that the condensing position in the optical axis direction of the first light beam and the condensing position in the optical axis direction of the second light beam are different. The electron beam apparatus according to claim 1, further comprising at least one optical member disposed eccentrically.
  10. 前記第1面は、前記照明光学系の光軸と前記光軸を横切る方向とを含む第2面において、その法線が前記照明光学系の光軸に対して傾くように配置され、
     前記光学部材は、前記横切る方向に偏心配置されている請求項9に記載の電子ビーム装置。
    The first surface is disposed in a second surface including an optical axis of the illumination optical system and a direction crossing the optical axis such that a normal thereof is inclined with respect to the optical axis of the illumination optical system.
    The electron beam apparatus according to claim 9, wherein the optical member is eccentrically disposed in the transverse direction.
  11. 前記第1面は、前記照明光学系の光軸と前記光軸を横切る方向とを含む第2面において、その法線が前記照明光学系の光軸に対して傾くように配置され、
     光源からの光の光路中に並列的に配置された複数の波面分割要素を有し、第3方向に細長い複数の光源像を照明瞳に形成するオプティカルインテグレータの各波面分割要素の入射側の面は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせるように、その中心法線が前記第2面において前記照明光学系の光軸に対して傾いている請求項1または2に記載の電子ビーム装置。
    The first surface is disposed in a second surface including an optical axis of the illumination optical system and a direction crossing the optical axis such that a normal thereof is inclined with respect to the optical axis of the illumination optical system.
    A surface on the incident side of each wavefront splitting element of an optical integrator having a plurality of wavefront splitting elements arranged in parallel in the optical path of light from a light source and forming a plurality of light source images elongated in the third direction on the illumination pupil The illumination optical system has a central normal line on the second surface such that the condensing position in the optical axis direction of the first luminous flux and the condensing position in the optical axis direction of the second luminous flux are different. The electron beam apparatus according to claim 1 or 2, which is inclined with respect to the optical axis of
  12. 光電素子に光を照射し、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置であって、
     第1面を照明する照明光学系と、
     前記第1面に配置された複数の反射素子を有し、前記照明光学系からの光で複数の光ビームを発生するパターンジェネレータと、
     前記パターンジェネレータからの前記複数の光ビームを前記光電素子の光電変換面に投影する投影光学系と、を備え、
     前記照明光学系は、前記第1面上の第1位置に達する第1光束と、前記第1面上の第2位置に達する第2光束とを集光する集光光学系を含み、前記照明光学系の光軸に対して法線が傾くように配置された前記第1面を斜入射照明し、
     前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を有する電子ビーム装置。
    An electron beam apparatus which emits light to a photoelectric element and irradiates a target with an electron beam generated from the photoelectric element,
    An illumination optical system for illuminating the first surface;
    A pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
    A projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
    The illumination optical system includes a condensing optical system which condenses a first luminous flux reaching a first position on the first surface and a second luminous flux reaching a second position on the first surface, the illumination Oblique illumination of the first surface, which is arranged such that the normal is inclined with respect to the optical axis of the optical system,
    The electron beam apparatus according to claim 1, wherein the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing position in the optical axis direction of the second light beam.
  13. 前記集光点調整部材は、前記照明光学系の光軸に対して前記第1面の前記法線が傾く方向に頂角を持つ楔プリズムを有する請求項1乃至4および12のいずれか1項に記載の電子ビーム装置。 The said condensing point adjustment member has a wedge prism which has a vertex angle in the direction which the said normal line of the said 1st surface inclines with respect to the optical axis of the said illumination optical system. Electron beam apparatus according to claim 1.
  14. 光電素子に光を照射し、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置であって、
     第1面を照明する照明光学系と、
     前記第1面に配置された複数の反射素子を有し、前記照明光学系からの光で複数の光ビームを発生するパターンジェネレータと、
     前記パターンジェネレータからの前記複数の光ビームを前記光電素子の光電変換面に投影する投影光学系と、を備え、
     前記照明光学系は、照明瞳から第1方向に沿って射出される第1光束と、前記照明瞳から前記第1方向と異なる第2方向に沿って射出される第2光束とを集光する集光光学系を含み、
     前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を有する電子ビーム装置。
    An electron beam apparatus which emits light to a photoelectric element and irradiates a target with an electron beam generated from the photoelectric element,
    An illumination optical system for illuminating the first surface;
    A pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
    A projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
    The illumination optical system condenses a first light beam emitted from an illumination pupil along a first direction and a second light beam emitted from the illumination pupil along a second direction different from the first direction. Including focusing optics,
    The electron beam apparatus according to claim 1, wherein the focusing optical system includes a focusing point adjusting member that makes the focusing position in the optical axis direction of the first light beam different from the focusing position in the optical axis direction of the second light beam.
  15. 前記集光点調整部材は、前記第1面を含む空間に配置される請求項1乃至14のいずれか1項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 14, wherein the focusing point adjusting member is disposed in a space including the first surface.
  16. 光電素子に光を照射し、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置であって、
     第1面を照明する照明光学系と、
     前記第1面に配置された複数の反射素子を有し、前記照明光学系からの光で複数の光ビームを発生するパターンジェネレータと、
     前記パターンジェネレータからの前記複数の光ビームを前記光電素子の光電変換面に投影する投影光学系と、を備え、
     前記照明光学系は、前記投影光学系の光軸に対して法線が傾くように配置された前記第1面を斜入射照明する電子ビーム装置。
    An electron beam apparatus which emits light to a photoelectric element and irradiates a target with an electron beam generated from the photoelectric element,
    An illumination optical system for illuminating the first surface;
    A pattern generator having a plurality of reflecting elements disposed on the first surface, and generating a plurality of light beams by the light from the illumination optical system;
    A projection optical system for projecting the plurality of light beams from the pattern generator onto a photoelectric conversion surface of the photoelectric element;
    The said illumination optical system is an electron beam apparatus which carries out oblique incidence illumination of the said 1st surface arrange | positioned so that a normal may incline with respect to the optical axis of the said projection optical system.
  17. 前記照明光学系は、前記照明光学系の光軸に対して法線が傾くように配置された前記第1面を斜入射照明する請求項14乃至16のいずれか1項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 14 to 16, wherein the illumination optical system obliquely incidentally illuminates the first surface arranged such that a normal is inclined with respect to the optical axis of the illumination optical system. .
  18. 前記照明光学系は、光源からの光の光路中に並列的に配置された複数の波面分割要素を有し、第3方向に細長い複数の光源像を照明瞳に形成するオプティカルインテグレータと、前記複数の光源像からの光束を前記第1面に集光する集光光学系と、を備え、前記第1面において前記第3方向と直交する第4方向に干渉縞を形成することにより、前記第3方向に細長い矩形状の照野を前記第4方向に間隔を隔てて複数形成する請求項1乃至17のいずれか1項に記載の電子ビーム装置。 The illumination optical system includes a plurality of wavefront splitting elements disposed in parallel in an optical path of light from a light source, and an optical integrator that forms a plurality of light source images elongated in a third direction in an illumination pupil, and the plurality And a focusing optical system for focusing a light flux from the light source image on the first surface, and forming interference fringes in a fourth direction orthogonal to the third direction on the The electron beam apparatus according to any one of claims 1 to 17, wherein a plurality of rectangular illumination fields elongated in three directions are formed at intervals in the fourth direction.
  19. 前記照明光学系は、光源からの光を回折して、前記照明光学系の光軸に対する角度が離散的に異なる複数の光束を射出する回折光学素子と、
     前記回折光学素子からの前記複数の光束を前記第1面に集光する集光光学系と、を備え、
     第3方向に細長い矩形状の照野を前記第1面において前記第3方向と直交する第4方向に間隔を隔てて複数形成する請求項1乃至17のいずれか1項に記載の電子ビーム装置。
    The illumination optical system diffracts light from a light source and emits a plurality of light beams discretely different in angle to the optical axis of the illumination optical system;
    And a focusing optical system for focusing the plurality of light fluxes from the diffractive optical element on the first surface,
    The electron beam apparatus according to any one of claims 1 to 17, wherein a plurality of rectangular illumination fields elongated in a third direction are formed at intervals in a fourth direction orthogonal to the third direction on the first surface. .
  20. 前記パターンジェネレータからの反射光の主光線は、前記投影光学系の光軸を含む第2面において前記第1面の法線に対して傾いている請求項1乃至19のいずれか1項に記載の電子ビーム装置。 The principal ray of the reflected light from the pattern generator according to any one of claims 1 to 19, wherein a second surface including the optical axis of the projection optical system is inclined with respect to a normal to the first surface. Electron beam device.
  21. 前記第1面および前記光電変換面は、その法線が前記第2面において前記投影光学系の光軸に対してそれぞれ傾くように配置されている請求項20に記載の電子ビーム装置。 21. The electron beam apparatus according to claim 20, wherein the first surface and the photoelectric conversion surface are arranged such that the normals thereof are inclined with respect to the optical axis of the projection optical system at the second surface.
  22. 前記投影光学系は、前記第1面および前記光電変換面に関してシャインプルーフの条件を満足している請求項21に記載の電子ビーム装置。 22. The electron beam apparatus according to claim 21, wherein the projection optical system satisfies a shineproof condition with respect to the first surface and the photoelectric conversion surface.
  23. 前記光電変換面は水平に配置され、前記投影光学系の光軸は鉛直方向に対して傾いている請求項21または22に記載の電子ビーム装置。 23. The electron beam apparatus according to claim 21, wherein the photoelectric conversion surface is disposed horizontally, and the optical axis of the projection optical system is inclined with respect to the vertical direction.
  24. 前記投影光学系の光軸は鉛直方向に延びており、前記第1面および前記光電変換面は水平方向に対して傾いている請求項21または22に記載の電子ビーム装置。 23. The electron beam apparatus according to claim 21, wherein the optical axis of the projection optical system extends in the vertical direction, and the first surface and the photoelectric conversion surface are inclined with respect to the horizontal direction.
  25. 前記光電変換面は、透明基板の射出側の面に形成され、
     前記透明基板の入射側の面は前記投影光学系の光軸と直交している請求項21乃至24のいずれか1項に記載の電子ビーム装置。
    The photoelectric conversion surface is formed on the surface on the light emission side of the transparent substrate,
    The electron beam apparatus according to any one of claims 21 to 24, wherein a surface on the incident side of the transparent substrate is orthogonal to an optical axis of the projection optical system.
  26. 前記光電変換面は、平行平面板の形態を有する透明基板の射出側の面に形成され、
     前記透明基板の入射側には第2の透明基板が配置され、該第2の透明基板の入射側の面は前記投影光学系の光軸と直交し、その射出側の面の法線は前記投影光学系の光軸に対して傾いている請求項21乃至24のいずれか1項に記載の電子ビーム装置。
    The photoelectric conversion surface is formed on a surface on the light emission side of a transparent substrate having a form of a parallel flat plate,
    A second transparent substrate is disposed on the incident side of the transparent substrate, the surface on the incident side of the second transparent substrate is orthogonal to the optical axis of the projection optical system, and the normal to the surface on the emission side is the above 25. The electron beam apparatus according to any one of claims 21 to 24, which is inclined with respect to the optical axis of the projection optical system.
  27. 前記光電素子から発生する電子ビームをターゲットに照射する電子光学系を備え、
     前記第2の透明基板は、前記電子光学系の真空空間と外部雰囲気との境界に位置する請求項26に記載の電子ビーム装置。
    An electron optical system for irradiating a target with an electron beam generated from the photoelectric element;
    The electron beam apparatus according to claim 26, wherein the second transparent substrate is located at a boundary between a vacuum space of the electron optical system and an external atmosphere.
  28. 前記投影光学系は、少なくとも1つの非球面形状の光学面を有する請求項25乃至27のいずれか1項に記載の電子ビーム装置。 The electron beam device according to any one of claims 25 to 27, wherein the projection optical system has at least one aspheric optical surface.
  29. 前記光電変換面は、透明基板の射出側の面に形成され、
     前記少なくとも1つの非球面形状の光学面は、前記透明基板によって発生する収差を低減する請求項28に記載の電子ビーム装置。
    The photoelectric conversion surface is formed on the surface on the light emission side of the transparent substrate,
    29. The electron beam device according to claim 28, wherein the at least one aspheric optical surface reduces aberrations generated by the transparent substrate.
  30. 前記光電変換面は、前記投影光学系の光軸と直交するように配置され、
     前記投影光学系は、前記投影光学系の光軸に関して偏心配置された少なくとも1つの光学部材を有する請求項20に記載の電子ビーム装置。
    The photoelectric conversion surface is disposed to be orthogonal to the optical axis of the projection optical system.
    21. The electron beam apparatus according to claim 20, wherein the projection optical system comprises at least one optical member eccentrically arranged with respect to an optical axis of the projection optical system.
  31. 前記第1面は、その法線が前記第2面において前記投影光学系の光軸に対して傾くように配置され、
     前記光学部材は、前記投影光学系の光軸に対して偏心配置されている請求項30に記載の電子ビーム装置。
    The first surface is disposed such that its normal is inclined with respect to the optical axis of the projection optical system at the second surface,
    31. The electron beam apparatus according to claim 30, wherein the optical member is decentered with respect to the optical axis of the projection optical system.
  32. 前記少なくとも1つの光学部材の光軸は、前記投影光学系の光軸から偏心している請求項30または31に記載の電子ビーム装置。 32. The electron beam apparatus according to claim 30, wherein an optical axis of the at least one optical member is decentered from an optical axis of the projection optical system.
  33. 前記少なくとも1つの光学部材の光軸は、前記投影光学系の光軸に対して傾いている請求項30乃至32のいずれか1項に記載の電子ビーム装置。 33. The electron beam apparatus according to any one of claims 30 to 32, wherein an optical axis of the at least one optical member is inclined with respect to an optical axis of the projection optical system.
  34. 前記パターンジェネレータの前記複数の反射素子は、その法線が前記投影光学系の光軸に平行で且つ前記第2面において前記投影光学系の光軸からそれぞれ離れて配置されている請求項20に記載の電子ビーム装置。 21. The image forming apparatus according to claim 20, wherein the plurality of reflecting elements of the pattern generator are disposed such that the normals thereof are parallel to the optical axis of the projection optical system and away from the optical axis of the projection optical system in the second plane. Electron beam apparatus as described.
  35. 前記光源は、前記第3方向の長さが前記第4方向よりも長い発光部を有する請求項18乃至34のいずれか1項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 18 to 34, wherein the light source has a light emitting portion whose length in the third direction is longer than that in the fourth direction.
  36.  前記光源の可干渉性は、前記第3方向よりも前記第4方向の方が高い請求項35に記載の電子ビーム装置。 36. The electron beam device according to claim 35, wherein the coherence of the light source is higher in the fourth direction than in the third direction.
  37. 前記照明光学系と前記投影光学系との間に配置された偏向部材を有する請求項1乃至36のいずれか1項に記載の電子ビーム装置。 The electron beam apparatus according to any one of claims 1 to 36, further comprising a deflection member disposed between the illumination optical system and the projection optical system.
  38. 前記偏向部材は、前記パターンジェネレータと前記投影光学系との間に配置される請求項37に記載の電子ビーム装置。 The electron beam apparatus according to claim 37, wherein the deflection member is disposed between the pattern generator and the projection optical system.
  39. 前記偏向部材は、前記照明光学系と前記パターンジェネレータとの間に配置される第1反射面と、前記パターンジェネレータと前記投影光学系との間に配置される第2反射面とを備える請求項37に記載の電子ビーム装置。 The deflection member includes a first reflection surface disposed between the illumination optical system and the pattern generator, and a second reflection surface disposed between the pattern generator and the projection optical system. The electron beam apparatus of 37.
  40. 光源からの光により被照射面を照明する照明光学系において、
     前記照明光学系の光軸に対して法線が傾くように配置された前記被照射面上の第1位置および第2位置に、照明瞳から第1方向に沿って射出される第1光束と、前記照明瞳から前記第1方向と異なる第2方向に沿って射出される第2光束とをそれぞれ集光する集光光学系を含み、
     前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を備える照明光学系。
    In an illumination optical system for illuminating a surface to be illuminated with light from a light source,
    A first light beam emitted from the illumination pupil along a first direction to a first position and a second position on the surface to be illuminated, the normal position of which is arranged to be inclined with respect to the optical axis of the illumination optical system; A focusing optical system for focusing the second light flux emitted from the illumination pupil along a second direction different from the first direction;
    The illumination optical system according to claim 1, wherein the condensing optical system includes a condensing point adjusting member that makes the condensing position of the first luminous flux in the optical axis direction different from the condensing position of the second luminous flux in the optical axis direction.
  41. 光源からの光により被照射面を照明する照明光学系において、
     照明瞳から射出されて、前記照明光学系の光軸に対して法線が傾くように配置された前記被照射面上の第1位置に達する第1光束と、前記照明瞳から射出されて前記被照射面上の第2位置に達する第2光束とを集光する集光光学系を含み、
     前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を備える照明光学系。
    In an illumination optical system for illuminating a surface to be illuminated with light from a light source,
    A first light beam which is emitted from the illumination pupil and reaches a first position on the surface to be illuminated which is disposed so that the normal is inclined with respect to the optical axis of the illumination optical system; And a focusing optical system for focusing the second luminous flux reaching the second position on the illuminated surface,
    The illumination optical system according to claim 1, wherein the condensing optical system includes a condensing point adjusting member that makes the condensing position of the first luminous flux in the optical axis direction different from the condensing position of the second luminous flux in the optical axis direction.
  42. 光源からの光により被照射面を照明する照明光学系において、
     前記被照射面上の第1位置および第2位置に、照明瞳から第1方向に沿って射出される第1光束と、前記照明瞳から前記第1方向と異なる第2方向に沿って射出される第2光束とをそれぞれ集光する集光光学系を含み、
     前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を備える照明光学系。
    In an illumination optical system for illuminating a surface to be illuminated with light from a light source,
    The first light flux emitted along the first direction from the illumination pupil and the second position different from the first direction are emitted from the illumination pupil to the first position and the second position on the illuminated surface. And a focusing optical system for focusing each of the
    The illumination optical system according to claim 1, wherein the condensing optical system includes a condensing point adjusting member that makes the condensing position of the first luminous flux in the optical axis direction different from the condensing position of the second luminous flux in the optical axis direction.
  43. 光源からの光により被照射面を照明する照明光学系において、
     照明瞳から射出されて、前記被照射面上の第1位置に達する第1光束と、前記照明瞳から射出されて前記被照射面上の第2位置に達する第2光束とを集光する集光光学系を含み、
     前記集光光学系は、前記第1光束の光軸方向の集光位置と、前記第2光束の前記光軸方向の集光位置とを異ならせる集光点調整部材を備える照明光学系。
    In an illumination optical system for illuminating a surface to be illuminated with light from a light source,
    A collector that collects a first light beam emitted from an illumination pupil and reaching a first position on the illuminated surface, and a second light beam emitted from the illumination pupil and reaching a second position on the illuminated surface Including optical optics,
    The illumination optical system according to claim 1, wherein the condensing optical system includes a condensing point adjusting member that makes the condensing position of the first luminous flux in the optical axis direction different from the condensing position of the second luminous flux in the optical axis direction.
  44. 前記照明光学系は、前記照明光学系の光軸に対して法線が傾くように配置された第1面を斜入射照明する請求項40乃至43のいずれか1項に記載の照明光学系。 The illumination optical system according to any one of claims 40 to 43, wherein the illumination optical system performs oblique incident illumination on a first surface arranged such that a normal is inclined with respect to the optical axis of the illumination optical system.
  45. 光源からの光により被照射面を照明する照明光学系において、
     前記光源からの光の光路中に並列的に配置された複数の波面分割要素を有し、第1方向に細長い複数の光源像を照明瞳に形成するオプティカルインテグレータと、
     前記複数の光源像からの光束を前記被照射面に集光する集光光学系と、を備え、
     前記被照射面において前記第1方向と直交する第2方向に干渉縞を形成することにより、前記第1方向に細長い矩形状の照野を前記第2方向に間隔を隔てて複数形成する照明光学系。
    In an illumination optical system for illuminating a surface to be illuminated with light from a light source,
    An optical integrator having a plurality of wavefront splitting elements disposed in parallel in an optical path of light from the light source and forming a plurality of light source images elongated in a first direction in an illumination pupil;
    And a condensing optical system that condenses light fluxes from the plurality of light source images on the surface to be illuminated,
    An illumination optical system for forming a plurality of rectangular illumination fields elongated in the first direction at intervals in the second direction by forming interference fringes in the second direction orthogonal to the first direction on the surface to be illuminated. system.
  46. 前記被照射面は、前記照明光学系の光軸と前記第2方向とを含む所定面において、その法線が前記照明光学系の光軸に対して傾くように配置され、
     前記集光光学系は、前記オプティカルインテグレータから第3方向に沿って射出される第1光束と前記オプティカルインテグレータから前記第3方向と異なる第4方向に沿って射出される第2光束とを集光し、前記第1光束の光軸方向の集光位置と前記第2光束の光軸方向の集光位置とを異ならせる集光点調整部材を有する請求項45に記載の照明光学系。
    The surface to be illuminated is disposed such that the normal thereof is inclined with respect to the optical axis of the illumination optical system in a predetermined plane including the optical axis of the illumination optical system and the second direction.
    The condensing optical system condenses a first light beam emitted from the optical integrator along a third direction and a second light beam emitted from the optical integrator along a fourth direction different from the third direction. The illumination optical system according to claim 45, further comprising a condensing point adjusting member for differentiating the condensing position in the optical axis direction of the first luminous flux and the condensing position in the optical axis direction of the second luminous flux.
  47. 前記集光光学系からの前記第1光束および前記第2光束は、前記被照射面上の第1点および前記第1点と異なる第2点に集光される請求項40乃至46のいずれか1項に記載の照明光学系。 47. The method according to any one of claims 40 to 46, wherein the first light flux and the second light flux from the focusing optical system are focused at a first point on the surface to be illuminated and a second point different from the first point. The illumination optical system according to item 1.
  48. 前記集光点調整部材は、前記被照射面の傾きに応じた楔角の楔プリズムを有する請求項40乃至44および46のいずれか1項に記載の照明光学系。 The illumination optical system according to any one of claims 40 to 44 and 46, wherein the focusing point adjusting member has a wedge prism with a depression angle corresponding to the inclination of the light receiving surface.
  49. 前記楔プリズムは、前記照明瞳から前記被照射面までの前記第1光束の光路長と、前記照明瞳から前記被照射面までの前記第2光束の光路長とを揃える請求項48に記載の照明光学系。 49. The apparatus according to claim 48, wherein the wedge prism aligns the optical path length of the first light beam from the illumination pupil to the light receiving surface and the optical path length of the second light beam from the illumination pupil to the light receiving surface. Illumination optical system.
  50. 前記集光点調整部材は、前記照明光学系の光軸に沿った厚さが前記第2方向で異なる段差板を有する請求項40乃至44、46、48、および49のいずれか1項に記載の照明光学系。 50. The light collecting point adjusting member according to any one of claims 40 to 44, 46, 48, and 49, having a step plate whose thickness along the optical axis of the illumination optical system differs in the second direction. Illumination optics.
  51. 前記集光光学系は、前記集光点調整部材に起因して発生する収差を補正する収差補正部材を有する請求項40乃至44、46、48乃至50のいずれか一項に記載の照明光学系。 51. The illumination optical system according to any one of claims 40 to 44, 46, 48 to 50, wherein the focusing optical system includes an aberration correction member that corrects an aberration generated due to the focusing point adjustment member. .
  52. 前記収差補正部材は、コマ収差および非点収差のうちの少なくとも一方を発生させる非球面形状の光学面を有する請求項51に記載の照明光学系。 52. The illumination optical system according to claim 51, wherein the aberration correction member has an aspheric optical surface that generates at least one of coma and astigmatism.
  53. 前記収差補正部材は、前記照明光学系の光軸に対して偏心したアフォーカル光学系を有する請求項51または52に記載の照明光学系。 The illumination optical system according to claim 51, wherein the aberration correction member has an afocal optical system decentered with respect to the optical axis of the illumination optical system.
  54. 前記被照射面は、前記照明光学系の光軸と前記第2方向とを含む所定面において、その法線が前記照明光学系の光軸に対して傾くように配置され、
     前記集光光学系は、前記オプティカルインテグレータから第3方向に沿って射出される第1光束と前記オプティカルインテグレータから前記第3方向と異なる第4方向に沿って射出される第2光束とを集光し、前記第1光束の光軸方向の集光位置と前記第2光束の光軸方向の集光位置とを異ならせるように前記第2方向に偏心配置されている少なくとも1つの光学部材を有する請求項40乃至44、46,48乃至53のいずれか1項に記載の照明光学系。
    The surface to be illuminated is disposed such that the normal thereof is inclined with respect to the optical axis of the illumination optical system in a predetermined plane including the optical axis of the illumination optical system and the second direction.
    The condensing optical system condenses a first light beam emitted from the optical integrator along a third direction and a second light beam emitted from the optical integrator along a fourth direction different from the third direction. And at least one optical member eccentrically disposed in the second direction so as to make the condensing position in the optical axis direction of the first luminous flux different from the condensing position in the optical axis direction of the second luminous flux The illumination optical system according to any one of claims 40 to 44, 46, 48 to 53.
  55. 前記被照射面は、前記照明光学系の光軸と前記第2方向とを含む所定面において、その法線が前記照明光学系の光軸に対して傾くように配置され、
     前記集光光学系は、前記オプティカルインテグレータから第3方向に沿って射出される第1光束と前記オプティカルインテグレータから前記第3方向と異なる第4方向に沿って射出される第2光束とを集光し、
     前記オプティカルインテグレータの各波面分割要素の入射側の面は、前記第1光束の光軸方向の集光位置と前記第2光束の光軸方向の集光位置とを異ならせるように、その中心法線が前記所定面において前記照明光学系の光軸に対して傾いている請求項40乃至44、46、48乃至54のいずれか1項に記載の照明光学系。
    The surface to be illuminated is disposed such that the normal thereof is inclined with respect to the optical axis of the illumination optical system in a predetermined plane including the optical axis of the illumination optical system and the second direction.
    The condensing optical system condenses a first light beam emitted from the optical integrator along a third direction and a second light beam emitted from the optical integrator along a fourth direction different from the third direction. And
    The incident side surface of each wavefront dividing element of the optical integrator has its center method so that the condensing position in the optical axis direction of the first light beam and the condensing position in the optical axis direction of the second light beam are different. The illumination optical system according to any one of claims 40 to 44, 46, 48 to 54, wherein the line is inclined with respect to the optical axis of the illumination optical system at the predetermined plane.
  56. 請求項40乃至55のいずれか1項に記載の照明光学系と、
     個別に制御可能な複数の反射素子を有するパターンジェネレータと、
     前記複数の反射素子が配置された受光面と光電素子の光電変換面とを光学的に共役に配置する投影光学系と、を備え、
     前記照明光学系により前記被照射面に配置された前記受光面を斜入射照明し、前記投影光学系を介して前記受光面からの光を前記光電素子に照射して、前記光電素子から発生する電子ビームをターゲットに照射する電子ビーム装置。
    An illumination optical system according to any one of claims 40 to 55;
    A pattern generator having a plurality of individually controllable reflective elements;
    And a projection optical system in which a light receiving surface on which the plurality of reflective elements are disposed and a photoelectric conversion surface of a photoelectric element are optically conjugated.
    The light receiving surface disposed on the light receiving surface is obliquely incident illuminated by the illumination optical system, and light from the light receiving surface is emitted to the photoelectric element through the projection optical system to generate light from the photoelectric element Electron beam apparatus that irradiates an electron beam to a target
  57. リソグラフィ工程を含むデバイス製造方法であって、
     前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、
     請求項1~39および56のいずれか1項に記載の電子ビーム装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法。
    A device manufacturing method including a lithography process, comprising:
    Forming the line and space pattern on the target;
    56. A method of manufacturing a device, comprising: using the electron beam apparatus according to any one of claims 1 to 39 and 56, cutting a line pattern constituting the line and space pattern.
PCT/JP2017/035522 2017-09-29 2017-09-29 Electron beam device, illumination optical system, and method for manufacturing device WO2019064503A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/035522 WO2019064503A1 (en) 2017-09-29 2017-09-29 Electron beam device, illumination optical system, and method for manufacturing device
TW107133978A TW201929028A (en) 2017-09-29 2018-09-27 Electron beam device, illumination optical system, and method for manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035522 WO2019064503A1 (en) 2017-09-29 2017-09-29 Electron beam device, illumination optical system, and method for manufacturing device

Publications (1)

Publication Number Publication Date
WO2019064503A1 true WO2019064503A1 (en) 2019-04-04

Family

ID=65901654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035522 WO2019064503A1 (en) 2017-09-29 2017-09-29 Electron beam device, illumination optical system, and method for manufacturing device

Country Status (2)

Country Link
TW (1) TW201929028A (en)
WO (1) WO2019064503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340927A (en) * 2020-02-18 2021-09-03 Ict半导体集成电路测试有限公司 Charged particle beam device with interferometer for height measurement
US11798783B2 (en) 2020-01-06 2023-10-24 Asml Netherlands B.V. Charged particle assessment tool, inspection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123447A1 (en) * 2005-05-17 2006-11-23 Kyoto University Electron beam exposure device
JP2010014765A (en) * 2008-07-01 2010-01-21 Nikon Corp Projection optical system, exposure device and device manufacturing method
JP2016188953A (en) * 2015-03-30 2016-11-04 株式会社ニコン Illumination optical system, illumination method, exposure apparatus, exposure method, and method for manufacturing device
JP2017054131A (en) * 2013-11-22 2017-03-16 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system of microlithographic projection exposure apparatus
JP2017083903A (en) * 2008-08-28 2017-05-18 株式会社ニコン Illumination optical system, aligner, exposure method, and process for fabricating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123447A1 (en) * 2005-05-17 2006-11-23 Kyoto University Electron beam exposure device
JP2010014765A (en) * 2008-07-01 2010-01-21 Nikon Corp Projection optical system, exposure device and device manufacturing method
JP2017083903A (en) * 2008-08-28 2017-05-18 株式会社ニコン Illumination optical system, aligner, exposure method, and process for fabricating device
JP2017054131A (en) * 2013-11-22 2017-03-16 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system of microlithographic projection exposure apparatus
JP2016188953A (en) * 2015-03-30 2016-11-04 株式会社ニコン Illumination optical system, illumination method, exposure apparatus, exposure method, and method for manufacturing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11798783B2 (en) 2020-01-06 2023-10-24 Asml Netherlands B.V. Charged particle assessment tool, inspection method
US11984295B2 (en) 2020-01-06 2024-05-14 Asml Netherlands B.V. Charged particle assessment tool, inspection method
CN113340927A (en) * 2020-02-18 2021-09-03 Ict半导体集成电路测试有限公司 Charged particle beam device with interferometer for height measurement

Also Published As

Publication number Publication date
TW201929028A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
JP5287114B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
KR100681852B1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5286744B2 (en) Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5854084B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2001168000A (en) Method for manufacturing aligner and method for manufacturing micro-device using the aligner manufactured by the manufacturing method
JP2018061048A (en) Charged particle lithography system including alignment sensor and beam measurement sensor
WO2019064503A1 (en) Electron beam device, illumination optical system, and method for manufacturing device
WO2018155537A1 (en) Electron beam apparatus and exposure method, and device production method
WO2019064502A1 (en) Electron beam device and device manufacturing method
WO2018155545A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155539A1 (en) Electron beam apparatus and device production method, and photoelectric element holding container
WO2019064511A1 (en) Electron beam apparatus, and device manufacturing method
WO2018155538A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155543A1 (en) Electronic beam apparatus and device production method
WO2018155542A1 (en) Electron beam apparatus and exposure method, and device production method
WO2018155540A1 (en) Electron beam apparatus and exposure method, and device production method
TW201921411A (en) Electron beam apparatus and device manufacturing method
TW201921404A (en) Electron beam apparatus and device manufacturing method
TW201923830A (en) Electron beam apparatus and device manufacturing method
WO2019064508A1 (en) Electron beam apparatus, exposure method, and device manufacturing method
WO2019064507A1 (en) Electron beam apparatus, exposure method, and device manufacturing method
WO2003094212A1 (en) Alignment system, alignment method and production method for semiconductor device
JP2011114041A (en) Luminous flux splitting apparatus, spatial optical modulation unit, lighting optical system, exposure apparatus, and device manufacturing method
WO2019064520A1 (en) Electron beam apparatus, and device manufacturing method
JP2023148840A (en) Illumination optical system, exposure device and article production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP