WO2019064434A1 - Semiconductor device production method, substrate processing device and program - Google Patents

Semiconductor device production method, substrate processing device and program Download PDF

Info

Publication number
WO2019064434A1
WO2019064434A1 PCT/JP2017/035241 JP2017035241W WO2019064434A1 WO 2019064434 A1 WO2019064434 A1 WO 2019064434A1 JP 2017035241 W JP2017035241 W JP 2017035241W WO 2019064434 A1 WO2019064434 A1 WO 2019064434A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
substrate
temperature
processing
Prior art date
Application number
PCT/JP2017/035241
Other languages
French (fr)
Japanese (ja)
Inventor
將 堀田
堀井 貞義
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2019545495A priority Critical patent/JP6815529B2/en
Priority to SG11202000375RA priority patent/SG11202000375RA/en
Priority to PCT/JP2017/035241 priority patent/WO2019064434A1/en
Publication of WO2019064434A1 publication Critical patent/WO2019064434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device, a substrate processing apparatus, and a program.
  • a substrate processing step of processing a film formed on the surface of a substrate may be performed by supplying a processing gas containing hydrogen peroxide to the substrate as one step of a manufacturing process of a semiconductor device (for example, a patent) Reference 1 and 2).
  • An object of the present invention is to provide a technology capable of improving the quality of an oxide film treated with hydrogen peroxide.
  • FIG. 1 It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus suitably used by one Embodiment of this invention, and is a figure which shows a processing furnace part by a longitudinal cross-sectional view.
  • FIG. 1 It is a schematic block diagram of the controller of the substrate processing apparatus suitably used by one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram.
  • (A) and (b) are each a flow chart showing an example of the pre-processing step. It is a flowchart which shows an example of the substrate processing process implemented after a pre-processing process.
  • a processing furnace 202 is provided with a reaction tube 203.
  • the reaction tube 203 is, for example, quartz is made of a heat resistant material such as (SiO 2) or silicon carbide (SiC), having a first gas supply port 242a and the second gas supply port 242c on the upper end, furnace opening at a lower end ( It is constituted as a cylindrical member which has an opening).
  • a processing chamber 201 is formed in the hollow portion of the reaction tube 203.
  • the processing chamber 201 is configured to be able to accommodate a plurality of wafers 200 as substrates.
  • a seal cap 219 is provided as a lid capable of airtightly closing the lower end opening of the reaction tube 203.
  • the seal cap 219 is made of, for example, a nonmetal material such as quartz, and is formed in a disk shape.
  • a rotation mechanism 267 is installed below the seal cap 219.
  • the rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lift mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transfer mechanism that carries the wafer 200 into and out of the processing chamber 201 by moving the seal cap 219 up and down.
  • the boat 217 as a substrate support supports a plurality of, for example, 25 to 200 wafers 200 in a horizontal posture and vertically aligned with multiple centers aligned with one another, ie, It is configured to arrange at intervals.
  • the boat 217 is made of, for example, a heat-resistant material such as quartz or SiC, and includes a top plate 217 a and a bottom plate 217 b at the top and bottom.
  • the heat insulator 218 supported in a horizontal posture and in multiple stages below the boat 217 is made of, for example, a heat resistant material such as quartz or SiC.
  • a heater 207 as a heating unit is provided outside the reaction tube 203.
  • the heater 207 is vertically installed so as to surround the wafer storage area in the processing chamber 201.
  • the heater 207 heats the wafer 200 stored in the wafer storage area to a predetermined temperature, and also functions as a liquefaction suppressing mechanism that applies thermal energy to the gas supplied into the processing chamber 201 to suppress the liquefaction thereof. It functions as an excitation mechanism that heat activates this gas.
  • a temperature sensor 263 as a temperature detection unit is provided along the inner wall of the reaction tube 203. The output of the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263.
  • a first gas supply pipe 232a and a third gas supply pipe 232c are connected to the first gas supply port 242a and the second gas supply port 242c provided at the upper end of the reaction tube 203, respectively.
  • the first gas supply pipe 232a is provided with a gas generator 250a, a mass flow controller (MFC) 241a which is a flow rate controller (flow rate control unit), and a valve 243a which is an open / close valve.
  • a first process gas supply system for supplying a first process gas such as an H 2 O 2 -containing gas described later is mainly configured by the first gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • the first process gas supply system may include a gas generator 250a.
  • the gas generator 250 a heats, for example, hydrogen peroxide solution as a liquid source to a predetermined temperature (vaporization temperature) within a range of 120 to 200 ° C. under substantially atmospheric pressure, and vaporizes or atomizes it.
  • the hydrogen peroxide solution is an aqueous solution obtained by dissolving hydrogen peroxide (H 2 O 2 ) which is liquid at normal temperature in water (H 2 O) as a solvent.
  • H 2 O 2 and H 2 O are respectively contained in predetermined concentrations in the gas obtained by vaporizing the hydrogen peroxide solution.
  • this gas is also referred to as an H 2 O 2 containing gas.
  • the processing gas used in the first reforming step described later is also referred to as a first processing gas
  • the processing gas used in the second reforming step described later is also referred to as a second processing gas.
  • H 2 O 2 contained in the processing gas is a kind of active oxygen, which is unstable and easily releases oxygen (O), and generates hydroxy radical (OH radical) having a very strong oxidizing power. Therefore, the H 2 O 2 -containing gas acts as a strong oxidizing agent (O source) in the substrate processing step described later.
  • the oxygen (O 2 ) gas as the carrier gas for vaporization is supplied to the gas generator 250 a together with the hydrogen peroxide solution. Hydrogenated water is atomized.
  • the flow rate of the carrier gas for vaporization is, for example, about 100 to 500 times the flow rate of the hydrogen peroxide solution.
  • a gas similar to an oxygen-containing gas described later may be used, and a nitrogen (N 2 ) gas or a rare gas such as Ar gas, He gas, or Ne gas may be used.
  • An oxygen-containing gas supply source 251c, an MFC 241c, and a valve 243c are provided in the third gas supply pipe 232c.
  • the oxygen-containing gas supply system may include an oxygen-containing gas supply source 251c.
  • an inert gas supply pipe 232 d is connected to the downstream side of the valve 243 c of the third gas supply pipe 232 c and to the upstream side of the second gas supply port 242 c.
  • An inert gas supply source 251 d, an MFC 241 d, and a valve 243 d are provided in the inert gas supply pipe 232 d.
  • An inert gas supply system for supplying an inert gas such as N 2 gas is mainly configured by the inert gas supply pipe 232 d, the MFC 241 d and the valve 243 d.
  • the inert gas supply system may include an inert gas supply source 251d.
  • a gas nozzle 242b configured to extend from the lower side wall of the reaction tube 203 inside the reaction tube 203 in the vertical direction to the vicinity of the upper end of the boat 217.
  • the gas nozzle 242 b is made of quartz or the like.
  • the gas nozzle 242 b is provided with one or more gas supply holes.
  • the second gas supply pipe 232 b is connected to the upstream end of the gas nozzle 242 b.
  • a second process gas supply source 251b, an MFC 241b, and a valve 243b are provided in the second gas supply pipe 232b.
  • a second process gas supply system for supplying a second process gas such as an ammonia (NH 3 ) gas described later is mainly configured by the second gas supply pipe 232 b, the MFC 241 b and the valve 243 c.
  • the second process gas supply system may include a second process gas supply source 251b.
  • An exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201 is connected to the lower side wall of the reaction pipe 203.
  • a vacuum pump 246 as an evacuation apparatus is connected to the exhaust pipe 231 via a pressure sensor 245 as a pressure detector for detecting the pressure in the processing chamber 201 and an APC valve 244 as a pressure regulator.
  • the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop inside the processing chamber 201 by opening and closing the valve in a state where the vacuum pump 246 is operated, and further, in a state where the vacuum pump 246 is operated,
  • the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • the controller 121 which is a control unit is configured as a computer including a CPU 121a, a RAM 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as a touch panel or the like is connected to the controller 121.
  • the storage device 121 c is configured by a flash memory, an HDD, or the like.
  • a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which the procedure and conditions of the substrate processing described later are described are readably stored.
  • the process recipe is a combination of processes that causes the controller 121 to execute each procedure described later so as to obtain a predetermined result, and functions as a program.
  • the process recipe, the control program and the like are collectively referred to simply as a program.
  • the process recipe is simply referred to as a recipe.
  • program When the term "program" is used in the present specification, it may include only a single recipe, may include only a single control program, or may include both of them.
  • the RAM 121 b is configured as a memory area in which programs and data read by the CPU 121 a are temporarily stored.
  • the I / O port 121d is connected to the MFCs 241a to 241d, the valves 243a to 243d, the gas generator 250a, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, the boat elevator 115, etc. It is done.
  • the CPU 121a is configured to read out and execute the control program from the storage device 121c, and to read out the recipe from the storage device 121c in response to the input of the operation command from the input / output device 122 or the like.
  • the CPU 121a is based on the gas generation operation by the gas generator 250a, the flow adjustment operation by the MFCs 241a to 241d, the opening / closing operation of the valves 243a to 243d, the opening / closing operation of the APC valve 244, and the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 installs the above program stored in an external storage device (for example, a magnetic disk such as HDD, an optical disk such as CD, an optical magnetic disk such as MO, a semiconductor memory such as USB memory) 123 in a computer Can be configured by
  • the storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media.
  • recording medium when the term "recording medium" is used in the present specification, when only the storage device 121c is included, only the external storage device 123 may be included, or both of them may be included.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • a polysilazane (PHPS) application process and a pre-bake process are sequentially performed on the wafer 200.
  • PHPS polysilazane
  • a coating solution containing polysilazane (polysilazane solution) is coated on the surface of the wafer 200 using a method such as spin coating.
  • the solvent is removed from the film by heating the wafer 200 on which the coating film is formed.
  • the solvent can be volatilized from the coating by heating the wafer 200 having the coating formed thereon at a processing temperature (pre-bake temperature) within the range of 70 to 250 ° C., for example. This heat treatment is preferably performed at about 150.degree.
  • the coating film formed on the surface of the wafer 200 becomes a polysilazane film which is a film having a silazane bond (-Si-N-) through a pre-baking process.
  • this film contains nitrogen (N) and hydrogen (H) in addition to silicon (Si), and further contains carbon (C) and other impurities. There is. Also, the molecular structure of this film is irregular in bonding between atoms, and the film density is relatively low.
  • a processing gas containing H 2 O 2 is supplied to a polysilazane film formed on the wafer 200 under a predetermined temperature condition to form a silicon oxide film (SiO 2 film). Reform (oxidize) to
  • a concavo-convex structure which is a fine structure is formed on the surface of the wafer 200, and the coating liquid is supplied so as to fill at least the recess (groove), and the filled coating is heated in the prebaking step.
  • a polysilazane film which is a silicon-containing film is formed in the groove. Therefore, in particular, the thickness of the polysilazane film formed in the groove is equal to or larger than the depth of the groove, and is, for example, 4 ⁇ m or more.
  • the inside of the processing chamber 201 that is, the space in which the wafer 200 exists is evacuated to, for example, about 1 Pa by the vacuum pump 246.
  • the valve 243 c is opened, and the O 2 gas as the oxygen-containing gas is supplied into the processing chamber 201 from the gas supply port 242 c while adjusting the flow rate with the MFC 241 c.
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and based on the measured pressure information, the APC valve 244 performs feedback so that the pressure in the processing chamber 201 becomes a predetermined pressure (reforming pressure). It is controlled.
  • the heater 207 heats the wafer 200 so that the temperature of the wafer 200 reaches a first temperature which is a predetermined temperature.
  • the degree of energization of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the wafer 200 reaches the first temperature.
  • the feedback control for the heater 207 is continuously performed at least until the processing on the wafer 200 is completed, in accordance with the target temperature set in each process.
  • the rotation of the wafer 200 by the rotation mechanism 267 is started. Both the operation of the vacuum pump 246 and the heating and rotation of the wafer 200 are continuously performed until the processing on the wafer 200 is completed.
  • the pressure in the processing chamber 201 is maintained in the same range as the reforming pressure, or in the range of atmospheric pressure, slight depressurization, and slight pressurization until the completion of the second reforming step described later. Ru.
  • ⁇ H 2 O 2 concentration of liquid raw material 20 to 40%, preferably 25 to 35%
  • Flow rate of liquid material 1.0 to 10 sccm, preferably 1.6 to 8 sccm
  • Flow rate of O 2 gas 0 to 20 SLM, preferably 5 to 10 SLM
  • Reforming pressure 700 to 1000 hPa (Atmospheric pressure, slight pressure reduction or slight pressure increase)
  • the temperature of the wafer 200 (first temperature): 40 to 120 ° C., preferably 40 to 80 ° C.
  • the flow rate of the O 2 gas in the above item refers to the processing chamber via the O 2 gas as the carrier gas for vaporization supplied to the gas generator 250 a and the third gas supply pipe 232 c of the oxygen-containing gas supply system.
  • the first processing gas is supplied to the wafer 200 under the above-described conditions, and the state is maintained on the wafer 200 for a predetermined first time (for example, a time in the range of 20 to 720 minutes). It becomes possible to modify (oxidize) a polysilazane film as a silicon-containing film into a SiO 2 film. That is, the O component contained in the first process gas can be added to the polysilazane film, and impurities such as the N component, C component, and H component contained in the polysilazane film can be desorbed from this film It becomes.
  • H 2 O 2 contained in the first process gas has a very strong oxidizing power as described above. Therefore, even when the first temperature is set to the above-described low temperature condition, it is possible to advance the oxidation treatment on the polysilazane film at a practical rate.
  • the first temperature it is possible to suppress the curing (condensation) of the surface of the polysilazane film by performing the first modification step.
  • the H 2 O 2 component and the H 2 O component contained in the first processing gas are not only in the surface of the polysilazane film but also in the film (in the thickness direction). Can be made to penetrate. As a result, it becomes possible to obtain not only the surface of this film but also the deep part of the effect of the above-mentioned modification.
  • the temperature of the wafer 200 reaches, for example, 200 ° C. or more, the surface of the polysilazane film becomes significantly hardened, and it is difficult to allow the H 2 O 2 component or H 2 O component to penetrate into the film to give a modification effect. It is known that Therefore, the temperature of the wafer 200 is desirably less than 200 ° C., particularly when the film thickness of the polysilazane film is large.
  • the valve 243 a is closed to stop the supply of the first process gas to the wafer 200.
  • the valve 243 c is kept open until the next temperature raising step is started, and the O 2 gas supply is continued.
  • the valve 243 c is opened, and the O 2 gas supply is continued until the next temperature raising step is started.
  • the wafer 200 is dried while supplying O 2 gas to the wafer 200.
  • This step is preferably performed in a state in which the temperature of the wafer 200 is set to a second temperature which is a predetermined temperature higher than the above-described first temperature. Thereby, drying of the wafer 200 can be promoted.
  • ammonium chloride (NH 4 Cl) which is a by-product desorbed from the polysilazane film from the surface and the film of the film modified by performing the first modification step
  • impurities such as outgas resulting from the solvent and impurities resulting from H 2 O 2 can be removed while suppressing reattachment to the wafer 200.
  • a film having a structure not including Si and O should be formed as in the molecular structure shown in FIG.
  • the membrane surface H 2 O is film having a structure or adsorbed is formed. This tendency is particularly remarkable when the reforming process is performed under the low temperature condition of 120 ° C. or less as in the present embodiment. Therefore, in the present embodiment, the film characteristics are improved by further performing the next temperature raising step and the second reforming step.
  • the phenomenon that OH groups and water in the film and the surface of the SiO 2 film may remain are those commonly found in the SiO 2 film which has been processed film or modifying the low temperature Also for these films, the reforming effect by the next temperature raising step and the second reforming step can be expected similarly.
  • Heating process After a predetermined time has passed and the drying process is completed, the supply of O 2 gas to the wafer 200 is stopped, and the temperature of the wafer 200 is raised to a third temperature which is a predetermined temperature equal to or higher than the second temperature. If the second and third temperatures are equal, the temperature of the wafer 200 is maintained. Further, the valve 243 d is opened, and supply of the inert gas N 2 gas into the processing chamber 201 is started through the gas supply pipes 232 d and 232 c. As a result, the atmosphere in the processing chamber 201 is replaced (purged) with N 2 gas.
  • an NH 3 gas as a gas of a compound having an NH group having a molecular structure smaller than the diameter of the O-Si-O ring structure of the SiO 2 film to be processed is supplied to the wafer 200 in this embodiment. , OH group attached or coordinated to the Si-O chain.
  • the NH group includes at least one of an imino group (imide group) and an amino group
  • a compound having an NH group is, for example, methylamine (CH 3 NH) other than NH 3 2 ), dimethylamine ((CH 3 ) 2 NH), trimethylamine ((CH 3 ) 3 N) and the like.
  • the flow rate of NH 3 gas as the second process gas in the second reforming step is, for example, 5 to 10 SLM, and the flow rate ratio to the simultaneously supplied N 2 gas is, for example, about 1: 1.
  • the third temperature which is the processing temperature of the second reforming step, is a predetermined temperature in the range of 150 to 400 ° C., for example.
  • the third temperature is desirably 400 ° C. or less in consideration of the influence of the heat history on the devices and the like formed on the wafer 200.
  • the second reforming step is performed using a gas containing a compound having an NH group, particularly under low temperature conditions of 300 ° C. or less. It is possible to get.
  • the third temperature is less than 150 ° C., it is difficult to obtain a sufficient effect of removing OH groups and the like in the film. Therefore, it is particularly desirable that the third temperature be a predetermined temperature in the range of 150 to 300.degree.
  • the water concentration of the impurity is of less than 0.1% (e.g., 0.0001%).
  • the water concentration is 0.1% or more, the removal effect of the OH group and the like in the second reforming step is saturated in a short time, and it is difficult to obtain a sufficient effect.
  • the valve 243 b is closed to stop the supply of the second processing gas to the wafer 200, (N 2 into the processing chamber 201 in the second reforming step).
  • the N 2 gas supply is also stopped), and the inside of the processing chamber 201 is evacuated to, for example, about 1 Pa.
  • the valve 243 d is opened to supply N 2 gas into the processing chamber 201, and the inside thereof is returned to the atmospheric pressure.
  • the concentration of the second processing gas remaining in the processing chamber 201 can be reduced to 1 ppm or less even when evacuation to about 1 Pa is performed.
  • the inside of the processing chamber 201 becomes atmospheric pressure and a predetermined time has elapsed, the inside of the processing chamber 201 is cooled to a predetermined transportable temperature.
  • the seal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is carried out of the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217.
  • FIGS. 5 to 8 Effects of the Present Embodiment
  • FIGS. 5 to 8 show the evaluation results of the example according to the present embodiment and the comparative example.
  • the polysilazane film formed on the surface of the wafer 200 by the above-described pretreatment process is subjected to the reforming process using the first process gas containing H 2 O 2 A SiO 2 film was formed by application.
  • the main differences between the following comparative examples and examples of the substrate processing step and the processing conditions are (a) wafer temperature in the first reforming step, (b) temperature raising step and second step There are two points of the presence or absence of the implementation of the reforming step, or the processing conditions thereof, and the other points are the same as the substrate processing step and the processing conditions in the first embodiment described above.
  • Comparative Example 1 Wafer temperature (first temperature) and processing time (first time) in first reforming step: 80 ° C., 60 minutes (b) Temperature raising step and second reforming step: not performed [ Comparative Example 2] (A) Wafer temperature (first temperature) and processing time (first time) in first reforming step: 80 ° C., 60 minutes (b) Temperature raising step and second reforming step: Wafer temperature 200 C., supply only N 2 gas (in place of NH 3 gas) as the second process gas for 60 minutes [Comparative Example 3] (A) Wafer temperature (first temperature) and processing time (first time) in first reforming step: 200 ° C., 60 minutes (b) Temperature raising step and second reforming step: not performed [ Example] (A) Wafer temperature (first temperature) and processing time (first time) in first reforming step: 80 ° C., 60 minutes (b) Temperature raising step and second reforming step: Wafer temperature (first temperature) and processing time (first time) in first reforming step: 80 ° C., 60 minutes
  • FIGS. 5 and 6 each show the result of analyzing the composition of the SiO 2 film formed according to each of the comparative examples and the examples using a Fourier transform infrared spectrophotometer (FTIR).
  • the vertical axis is the amount of infrared absorption
  • the horizontal axis is the wave number.
  • the horizontal axis position and height of the peak of the waveform indicate the components contained in the film and the amount thereof.
  • the height of the peaks arising 900cm around -1, and around 3000 ⁇ 3500 cm -1 indicates the amount of OH groups contained in the film.
  • 5 and 6 show the vicinity of 2700 ⁇ 3900cm -1, which peak appears showing the OH group, the waveform in the vicinity of 600 ⁇ 1100 cm -1, respectively.
  • Comparative Example 1 Referring to the waveform of Comparative Example 1 displayed by a solid line, 900 cm around -1, and each peak around 3000 ⁇ 3500 cm -1 it is observed. That is, it can be seen that the SiO 2 film formed by Comparative Example 1 in which the temperature raising step and the second reforming step were not performed contains a large amount of OH groups.
  • FIGS. 7 and 8 show the results of FTIR analysis of the composition of the SiO 2 film formed according to Comparative Examples 1 and 3 and Example.
  • the waveform of Comparative Example 3 is indicated by a broken line, and the waveform of the example is indicated by a dotted line.
  • the waveform of the waveform of Comparative Example 3 and Example around 900 cm -1 indicating the content of OH groups, and 3000 ⁇ 3500 cm -1 vicinity of the height of the peaks is observed to be nearly the same Ru. That is, by performing the reforming process using NH 3 gas as the second reforming step as in the present embodiment, the first reforming process is performed under the condition that the temperature of the wafer is as low as 80 ° C. Even in the case, it was confirmed that the low content of the OH group in the film can be realized, which is equivalent to the case of performing the first reforming process by heating the temperature of the substrate to 200 ° C.
  • the first modification treatment (that is, H 2 O 2 ) of the polysilazane film formed on the surface of the wafer in the above-described pretreatment process under the condition that the temperature of the wafer is heated to 200 ° C. as in Comparative Example 3
  • the reforming treatment is carried out using a contained gas, the surface layer of the polysilazane film solidifies first, and there is a problem that a sufficient reforming effect can not be applied to a portion 4 ⁇ m or more deep from the surface.
  • the depth of the film formed in the first reforming step is obtained by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • Compositional analysis in the longitudinal direction confirmed that the modifying effect on the polysilazane film extended to a portion in the depth direction of 4 ⁇ m or more from the surface.
  • the temperature of the wafer in the first reforming step is 120 ° C. or less as in this embodiment, it is presumed that a sufficient reforming effect can be given to a depth of 4 ⁇ m or more.
  • the present embodiment has a clear superiority to Comparative Example 3 in that sufficient modification processing can be performed to a deeper portion (at least 4 ⁇ m) of the processing target film.
  • the temperature of the wafer in the first modification step of this embodiment is preferably at most 200 ° C., and more preferably 120 ° C. or less. It is further desirable that the temperature be 80 ° C. or less.
  • the first modification step for the polysilazane film is performed under low temperature conditions of 120 ° C. or less as in this embodiment (Comparative Example In the case of (1), when performed at 80 ° C., there is a problem that the amount of OH groups contained in the film is increased as compared with the case of performing the temperature condition such as 200 ° C.
  • the polysilazane film can be sufficiently reformed to a depth of 4 ⁇ m or more from the surface, but the OH group in the film can be obtained by performing the second reforming step of the present embodiment.
  • the same SiO 2 film as that of Comparative Example 3 can be obtained also in terms of the content concentration of
  • the combination of the first modification process and the second modification process in this embodiment is a polysilazane film having a thickness of 4 ⁇ m or more (or another silazane bond-containing film which causes similar curing under high temperature conditions) to be a SiO 2 film
  • a polysilazane film having a thickness of 4 ⁇ m or more or another silazane bond-containing film which causes similar curing under high temperature conditions
  • the polysilazane film formed in the above-described pretreatment process has a relatively low film density as compared to a silicon-containing film or the like formed under other high temperature conditions. . Therefore, the NH group component of the gas containing the compound having the NH group used in the second reforming step of the present embodiment is particularly easily introduced into the polysilazane film. Therefore, even when the film thickness is large (for example, the film thickness is at least 400 nm or more), it is possible to apply the modification to the polysilazane film in that the modification effect of the second modification step can be provided to the deep portion in the film. Application of the embodiment is suitable.
  • this invention is not limited to this.
  • the other film containing Si, N, and H in particular, another film having a silazane bond
  • another silicon-containing film formed by the CVD method is subjected to the first modification.
  • a processing step including the quality step and the second reforming step can be applied.
  • Examples of forming a silicon-containing film by the CVD method include an example of forming a plasma-polymerized film using trisilylamine (TSA) gas and NH 3 gas, or organic silane (especially tetraethoxysilane (TEOS)) gas and O There is an example in which a SiO 2 film is formed using three gases.
  • TSA trisilylamine
  • NH 3 NH 3
  • organic silane especially tetraethoxysilane (TEOS)
  • the present invention is not limited to this mode.
  • the present invention also relates to an aspect in which, after subjecting the substrate to be treated to the treatment according to the first reforming step, the treatment to the substrate to be treated is subjected to the treatment according to the second reforming step in another processing chamber (treatment space).
  • a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at once has been described.
  • the present invention is not limited to the above-described embodiment, and can also be applied to the case of forming a film using, for example, a sheet-fed substrate processing apparatus that processes one or several substrates at a time.
  • the example of forming the film using the substrate processing apparatus having the hot wall type processing furnace has been described.
  • the present invention is not limited to the above-described embodiment, and can be applied to the case of forming a film using a substrate processing apparatus having a cold wall type processing furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

Provided is a technique comprising a first step of supplying a first processing gas containing hydrogen peroxide to a substrate having a silicon-containing film formed on the surface thereof, to modify the silicon-containing film into a silicon oxide film, and a second step of supplying to the substrate, after the first step, a second processing gas containing a compound having an NH group, thereby modifying the silicon oxide film. The present technique allows the quality of substrate processing that is performed using hydrogen peroxide to be improved.

Description

[規則26に基づく補充 29.11.2017] 半導体装置の製造方法、基板処理装置及びプログラム[Repletion based on rule 26. 29.11. 2017] Semiconductor device manufacturing method, substrate processing apparatus and program
 本発明は、半導体装置の製造方法、基板処理装置およびプログラムに関する。 The present invention relates to a method of manufacturing a semiconductor device, a substrate processing apparatus, and a program.
 半導体装置の製造工程の一工程として、基板に対して過酸化水素を含む処理ガスを供給することで、基板の表面に形成された膜を処理する基板処理工程が行われることがある(例えば特許文献1,2参照)。 A substrate processing step of processing a film formed on the surface of a substrate may be performed by supplying a processing gas containing hydrogen peroxide to the substrate as one step of a manufacturing process of a semiconductor device (for example, a patent) Reference 1 and 2).
国際公開第2014/069826号International Publication No. 2014/069826 国際公開第2013/070343号International Publication No. 2013/070343
 本発明の目的は、過酸化水素を用いて処理された酸化膜の品質を向上させることが可能な技術を提供することにある。 An object of the present invention is to provide a technology capable of improving the quality of an oxide film treated with hydrogen peroxide.
 本発明の一態様によれば、
 シリコン含有膜が表面に形成された基板に対して過酸化水素を含有する第1処理ガスを供給することにより、前記シリコン含有膜をシリコン酸化膜に改質する第1工程と、
 前記第1工程の後、前記基板に対してNH基を有する化合物を含む第2処理ガスを供給することにより、前記シリコン酸化膜を改質する第2工程と、
 を有する技術が提供される。
According to one aspect of the invention:
A first process of reforming the silicon-containing film into a silicon oxide film by supplying a first processing gas containing hydrogen peroxide to a substrate having a silicon-containing film formed on the surface;
After the first step, supplying a second processing gas containing a compound having an NH group to the substrate to reform the silicon oxide film;
Technology is provided.
 本発明によれば、過酸化水素を用いて行う基板処理の品質を向上させることが可能となる。 According to the present invention, it is possible to improve the quality of substrate processing performed using hydrogen peroxide.
本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus suitably used by one Embodiment of this invention, and is a figure which shows a processing furnace part by a longitudinal cross-sectional view. 本発明の一実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of the substrate processing apparatus suitably used by one Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. (a)(b)はそれぞれ、事前処理工程の一例を示すフロー図である。(A) and (b) are each a flow chart showing an example of the pre-processing step. 事前処理工程の後に実施される基板処理工程の一例を示すフロー図である。It is a flowchart which shows an example of the substrate processing process implemented after a pre-processing process. 比較例1、2及び実施例により形成された膜の組成をフーリエ変換赤外分光光度計(FTIR)で分析した結果を示す図の1つである。It is one of the figures which show the result of having analyzed the composition of the film | membrane formed by Comparative Example 1, 2 and an Example with a Fourier-transform infrared spectrophotometer (FTIR). 比較例1、2及び実施例により形成された膜の組成をFTIRで分析した結果を示す図の1つである。It is one of the figures which show the result of having analyzed the composition of the film | membrane formed by Comparative Example 1, 2 and an Example by FTIR. 比較例1、3及び実施例により形成された膜の組成をFTIRで分析した結果を示す図の1つである。It is one of the figures which show the result of having analyzed the composition of the film | membrane formed by Comparative Example 1, 3 and an Example by FTIR. 比較例1、3及び実施例により形成された膜の組成をFTIRで分析した結果を示す図の1つである。It is one of the figures which show the result of having analyzed the composition of the film | membrane formed by Comparative Example 1, 3 and an Example by FTIR. 事前処理工程により形成されたポリシラザン膜の分子構造を示す図である。It is a figure which shows the molecular structure of the polysilazane film | membrane formed of the pre-processing process. ポリシラザン膜を改質(酸化)処理して得られる理想的な膜の分子構造を示す図である。It is a figure which shows the molecular structure of the ideal film | membrane obtained by the modification | reformation (oxidation) process of a polysilazane film | membrane. ポリシラザン膜を改質(酸化)処理して得られる実際の膜の分子構造を示す図である。It is a figure which shows the molecular structure of the actual film | membrane obtained by the modification (oxidation) process of a polysilazane film | membrane.
<本発明の第1の実施形態>
 以下、本発明の第1の実施形態について、図1、2、図3(a)、図4を用いて説明する。
First Embodiment of the Present Invention
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1, 2, 3 (a), and 4.
(1)基板処理装置の構成
 図1に示すように、処理炉202は反応管203を備えている。反応管203は、例えば石英(SiO)や炭化シリコン(SiC)等の耐熱性材料により構成され、上端に第1ガス供給ポート242aと第2ガス供給ポート242cを有し、下端に炉口(開口)を有する円筒部材として構成されている。反応管203の筒中空部には、処理室201が形成される。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。
(1) Configuration of Substrate Processing Apparatus As shown in FIG. 1, a processing furnace 202 is provided with a reaction tube 203. The reaction tube 203 is, for example, quartz is made of a heat resistant material such as (SiO 2) or silicon carbide (SiC), having a first gas supply port 242a and the second gas supply port 242c on the upper end, furnace opening at a lower end ( It is constituted as a cylindrical member which has an opening). A processing chamber 201 is formed in the hollow portion of the reaction tube 203. The processing chamber 201 is configured to be able to accommodate a plurality of wafers 200 as substrates.
 反応管203の下方には、反応管203の下端開口を気密に閉塞可能な蓋部としてのシールキャップ219が設けられている。シールキャップ219は、例えば石英等の非金属材料により構成され、円盤状に形成されている。シールキャップ219の下方には、回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送機構として構成されている。 Below the reaction tube 203, a seal cap 219 is provided as a lid capable of airtightly closing the lower end opening of the reaction tube 203. The seal cap 219 is made of, for example, a nonmetal material such as quartz, and is formed in a disk shape. Below the seal cap 219, a rotation mechanism 267 is installed. The rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lift mechanism installed outside the reaction tube 203. The boat elevator 115 is configured as a transfer mechanism that carries the wafer 200 into and out of the processing chamber 201 by moving the seal cap 219 up and down.
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成され、上下に天板217a、底板217bを備えている。ボート217の下部に水平姿勢で多段に支持された断熱体218は、例えば石英やSiC等の耐熱性材料により構成されている。 The boat 217 as a substrate support supports a plurality of, for example, 25 to 200 wafers 200 in a horizontal posture and vertically aligned with multiple centers aligned with one another, ie, It is configured to arrange at intervals. The boat 217 is made of, for example, a heat-resistant material such as quartz or SiC, and includes a top plate 217 a and a bottom plate 217 b at the top and bottom. The heat insulator 218 supported in a horizontal posture and in multiple stages below the boat 217 is made of, for example, a heat resistant material such as quartz or SiC.
 反応管203の外側には、加熱部としてのヒータ207が設けられている。ヒータ207は、処理室201内におけるウエハ収容領域を囲うように垂直に据え付けられている。ヒータ207は、ウエハ収容領域に収容されたウエハ200を所定の温度に加熱する他、処理室201内へ供給されたガスに熱エネルギーを付与してその液化を抑制する液化抑制機構として機能したり、このガスを熱で活性化させる励起機構として機能したりする。処理室201内には、反応管203の内壁に沿って、温度検出部としての温度センサ263が設けられている。温度センサ263により検出された温度情報に基づいて、ヒータ207の出力が調整される。 Outside the reaction tube 203, a heater 207 as a heating unit is provided. The heater 207 is vertically installed so as to surround the wafer storage area in the processing chamber 201. The heater 207 heats the wafer 200 stored in the wafer storage area to a predetermined temperature, and also functions as a liquefaction suppressing mechanism that applies thermal energy to the gas supplied into the processing chamber 201 to suppress the liquefaction thereof. It functions as an excitation mechanism that heat activates this gas. In the processing chamber 201, a temperature sensor 263 as a temperature detection unit is provided along the inner wall of the reaction tube 203. The output of the heater 207 is adjusted based on the temperature information detected by the temperature sensor 263.
 反応管203の上端に設けられた第1ガス供給ポート242aと第2ガス供給ポート242cには、第1ガス供給管232aと第3ガス供給管232cがそれぞれ接続されている。 A first gas supply pipe 232a and a third gas supply pipe 232c are connected to the first gas supply port 242a and the second gas supply port 242c provided at the upper end of the reaction tube 203, respectively.
 第1ガス供給管232aには、ガス発生器250a、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a、および、開閉弁であるバルブ243aが設けられている。主に、第1ガス供給管232a、MFC241a、バルブ243aにより、後述するH含有ガス等の第1処理ガスを供給するための第1処理ガス供給系が構成される。第1処理ガス供給系はガス発生器250aを含んでもよい。 The first gas supply pipe 232a is provided with a gas generator 250a, a mass flow controller (MFC) 241a which is a flow rate controller (flow rate control unit), and a valve 243a which is an open / close valve. A first process gas supply system for supplying a first process gas such as an H 2 O 2 -containing gas described later is mainly configured by the first gas supply pipe 232a, the MFC 241a, and the valve 243a. The first process gas supply system may include a gas generator 250a.
 ガス発生器250aは、液体原料としての過酸化水素水を例えば略大気圧下で120~200℃の範囲内の所定の温度(気化温度)に加熱する等し、これを気化或いはミスト化させることによって処理ガスを発生させるように構成されている。ここで過酸化水素水とは、常温で液体である過酸化水素(H)を、溶媒としての水(HO)中に溶解させることで得られる水溶液のことである。過酸化水素水を気化させることで得られたガス中には、HおよびHOがそれぞれ所定の濃度で含まれる。以下、このガスを、H含有ガスとも称する。また、後述する第1改質工程で用いる処理ガスを第1処理ガスとも称し、後述する第2改質工程で用いる処理ガスを第2処理ガスとも称する。処理ガス中に含まれるHは、活性酸素の一種であり、不安定であって酸素(O)を放出しやすく、非常に強い酸化力を持つヒドロキシラジカル(OHラジカル)を生成させる。そのため、H含有ガスは、後述する基板処理工程において、強力な酸化剤(Oソース)として作用する。 The gas generator 250 a heats, for example, hydrogen peroxide solution as a liquid source to a predetermined temperature (vaporization temperature) within a range of 120 to 200 ° C. under substantially atmospheric pressure, and vaporizes or atomizes it. To generate a processing gas. Here, the hydrogen peroxide solution is an aqueous solution obtained by dissolving hydrogen peroxide (H 2 O 2 ) which is liquid at normal temperature in water (H 2 O) as a solvent. H 2 O 2 and H 2 O are respectively contained in predetermined concentrations in the gas obtained by vaporizing the hydrogen peroxide solution. Hereinafter, this gas is also referred to as an H 2 O 2 containing gas. Further, the processing gas used in the first reforming step described later is also referred to as a first processing gas, and the processing gas used in the second reforming step described later is also referred to as a second processing gas. H 2 O 2 contained in the processing gas is a kind of active oxygen, which is unstable and easily releases oxygen (O), and generates hydroxy radical (OH radical) having a very strong oxidizing power. Therefore, the H 2 O 2 -containing gas acts as a strong oxidizing agent (O source) in the substrate processing step described later.
 なお、本実施形態では、過酸化水素水を気化或いはミスト化する際に、気化用キャリアガスとしての、酸素(O)ガスを過酸化水素水と共にガス発生器250aに供給することで、過酸化水素水を霧化している。気化用キャリアガスの流量は、例えば過酸化水素水の流量の100~500倍程度である。気化用キャリアガスとしては、後述の酸素含有ガスと同様のガスを用いてもよく、窒素(N)ガス又は、Arガス,Heガス,Neガスなどの希ガスを用いてもよい。 In the present embodiment, when the hydrogen peroxide solution is vaporized or atomized, the oxygen (O 2 ) gas as the carrier gas for vaporization is supplied to the gas generator 250 a together with the hydrogen peroxide solution. Hydrogenated water is atomized. The flow rate of the carrier gas for vaporization is, for example, about 100 to 500 times the flow rate of the hydrogen peroxide solution. As the carrier gas for vaporization, a gas similar to an oxygen-containing gas described later may be used, and a nitrogen (N 2 ) gas or a rare gas such as Ar gas, He gas, or Ne gas may be used.
 第3ガス供給管232cには、酸素含有ガス供給源251c、MFC241c、およびバルブ243cが設けられている。主に、第3ガス供給管232c、MFC241c、バルブ243cにより、Oガス、オゾン(O)ガス、亜酸化窒素(NO)ガス等の酸素含有ガスを供給するための酸素含有ガス供給系が構成される。酸素含有ガス供給系は酸素含有ガス供給源251cを含んでもよい。 An oxygen-containing gas supply source 251c, an MFC 241c, and a valve 243c are provided in the third gas supply pipe 232c. An oxygen-containing gas supply system for supplying an oxygen-containing gas such as an O 2 gas, an ozone (O 3 ) gas, or a nitrous oxide (NO) gas mainly by the third gas supply pipe 232 c, the MFC 241 c and the valve 243 c Configured The oxygen-containing gas supply system may include an oxygen-containing gas supply source 251c.
 また、第3ガス供給管232cのバルブ243cよりも下流側であって、第2ガス供給ポート242cよりも上流側には、不活性ガス供給管232dが接続されている。不活性ガス供給管232dには、不活性ガス供給源251d、MFC241d、およびバルブ243dが設けられている。主に、不活性ガス供給管232d、MFC241d、バルブ243dにより、Nガス等の不活性ガスを供給するための不活性ガス供給系が構成される。不活性ガス供給系は不活性ガス供給源251dを含んでもよい。 Further, an inert gas supply pipe 232 d is connected to the downstream side of the valve 243 c of the third gas supply pipe 232 c and to the upstream side of the second gas supply port 242 c. An inert gas supply source 251 d, an MFC 241 d, and a valve 243 d are provided in the inert gas supply pipe 232 d. An inert gas supply system for supplying an inert gas such as N 2 gas is mainly configured by the inert gas supply pipe 232 d, the MFC 241 d and the valve 243 d. The inert gas supply system may include an inert gas supply source 251d.
 反応管203の内側には、反応管203の側壁下方から反応管203の内側を垂直方向にボート217の上端近傍まで伸びるように構成されたガスノズル242bが設けられている。ガスノズル242bは石英等により構成されている。ガスノズル242bには1又は複数のガス供給孔が開設されている。 Inside the reaction tube 203, there is provided a gas nozzle 242b configured to extend from the lower side wall of the reaction tube 203 inside the reaction tube 203 in the vertical direction to the vicinity of the upper end of the boat 217. The gas nozzle 242 b is made of quartz or the like. The gas nozzle 242 b is provided with one or more gas supply holes.
 ガスノズル242bの上流端には、第2ガス供給管232bが接続されている。第2ガス供給管232bには、第2処理ガス供給源251b、MFC241b、および、バルブ243bが設けられている。主に、第2ガス供給管232b、MFC241b、バルブ243cにより、後述するアンモニア(NH)ガス等の第2処理ガスを供給するための第2処理ガス供給系が構成される。第2処理ガス供給系は第2処理ガス供給源251bを含んでもよい。 The second gas supply pipe 232 b is connected to the upstream end of the gas nozzle 242 b. A second process gas supply source 251b, an MFC 241b, and a valve 243b are provided in the second gas supply pipe 232b. A second process gas supply system for supplying a second process gas such as an ammonia (NH 3 ) gas described later is mainly configured by the second gas supply pipe 232 b, the MFC 241 b and the valve 243 c. The second process gas supply system may include a second process gas supply source 251b.
 反応管203の側壁下方には、処理室201内の雰囲気を排気する排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器としての圧力センサ245および圧力調整器としてのAPCバルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、さらに、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。 An exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201 is connected to the lower side wall of the reaction pipe 203. A vacuum pump 246 as an evacuation apparatus is connected to the exhaust pipe 231 via a pressure sensor 245 as a pressure detector for detecting the pressure in the processing chamber 201 and an APC valve 244 as a pressure regulator. The APC valve 244 can perform vacuum evacuation and vacuum evacuation stop inside the processing chamber 201 by opening and closing the valve in a state where the vacuum pump 246 is operated, and further, in a state where the vacuum pump 246 is operated, The pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245. An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system.
 図2に示すように、制御部であるコントローラ121は、CPU121a、RAM121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介してCPU121aとデータ交換可能なように構成されている。コントローラ121には、タッチパネル等として構成された入出力装置122が接続されている。 As shown in FIG. 2, the controller 121 which is a control unit is configured as a computer including a CPU 121a, a RAM 121b, a storage device 121c, and an I / O port 121d. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via the internal bus 121e. An input / output device 122 configured as a touch panel or the like is connected to the controller 121.
 記憶装置121cはフラッシュメモリやHDD等により構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域として構成されている。 The storage device 121 c is configured by a flash memory, an HDD, or the like. In the storage device 121c, a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which the procedure and conditions of the substrate processing described later are described are readably stored. The process recipe is a combination of processes that causes the controller 121 to execute each procedure described later so as to obtain a predetermined result, and functions as a program. Hereinafter, the process recipe, the control program and the like are collectively referred to simply as a program. Also, the process recipe is simply referred to as a recipe. When the term "program" is used in the present specification, it may include only a single recipe, may include only a single control program, or may include both of them. The RAM 121 b is configured as a memory area in which programs and data read by the CPU 121 a are temporarily stored.
 I/Oポート121dは、MFC241a~241d、バルブ243a~243d、ガス発生器250a、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。 The I / O port 121d is connected to the MFCs 241a to 241d, the valves 243a to 243d, the gas generator 250a, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, the boat elevator 115, etc. It is done.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、ガス発生器250aによるガス生成動作、MFC241a~241dによる流量調整動作、バルブ243a~243dの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。 The CPU 121a is configured to read out and execute the control program from the storage device 121c, and to read out the recipe from the storage device 121c in response to the input of the operation command from the input / output device 122 or the like. The CPU 121a is based on the gas generation operation by the gas generator 250a, the flow adjustment operation by the MFCs 241a to 241d, the opening / closing operation of the valves 243a to 243d, the opening / closing operation of the APC valve 244, and the pressure sensor 245 so as to follow the contents of the read recipe. Pressure adjustment operation by APC valve 244, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor 263, rotation and rotation speed adjustment operation of boat 217 by rotation mechanism 267, elevation of boat 217 by boat elevator 115 It is configured to control operations and the like.
 コントローラ121は、外部記憶装置(例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 installs the above program stored in an external storage device (for example, a magnetic disk such as HDD, an optical disk such as CD, an optical magnetic disk such as MO, a semiconductor memory such as USB memory) 123 in a computer Can be configured by The storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media. When the term "recording medium" is used in the present specification, when only the storage device 121c is included, only the external storage device 123 may be included, or both of them may be included. The program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)事前処理工程及び基板処理工程
 続いて、半導体装置の製造工程の一工程としてウエハ200に対して実施される事前処理工程と、基板処理工程についてそれぞれ以下説明する。
(2) Pre-Treatment Process and Substrate Processing Process Subsequently, the pre-treatment process and the substrate processing process performed on the wafer 200 as one process of the manufacturing process of the semiconductor device will be respectively described below.
(2-1)事前処理工程
 ウエハ200に対して基板処理工程を実施する前に行われる事前処理工程について、図3(a)を用いて説明する。
(2-1) Pre-Processing Process The pre-processing process performed before the substrate processing process is performed on the wafer 200 will be described with reference to FIG.
 図3(a)に示すように、本工程では、ウエハ200に対して、ポリシラザン(PHPS)塗布工程、プリベーク工程を順に実施する。PHPS塗布工程では、ウエハ200の表面上に、ポリシラザンを含む塗布液(ポリシラザン溶液)をスピンコーティング法等の手法を用いて塗布する。プリベーク工程では、塗膜が形成されたウエハ200を加熱処理することにより、この膜から溶剤を除去する。塗膜が形成されたウエハ200を、例えば70~250℃の範囲内の処理温度(プリベーク温度)で加熱処理することにより、塗膜中から溶剤を揮発させることができる。この加熱処理は、好ましくは150℃程度で行われる。 As shown in FIG. 3A, in this process, a polysilazane (PHPS) application process and a pre-bake process are sequentially performed on the wafer 200. In the PHPS coating process, a coating solution containing polysilazane (polysilazane solution) is coated on the surface of the wafer 200 using a method such as spin coating. In the pre-baking step, the solvent is removed from the film by heating the wafer 200 on which the coating film is formed. The solvent can be volatilized from the coating by heating the wafer 200 having the coating formed thereon at a processing temperature (pre-bake temperature) within the range of 70 to 250 ° C., for example. This heat treatment is preferably performed at about 150.degree.
 ウエハ200の表面に形成された塗膜は、プリベーク工程を経ることで、シラザン結合(-Si-N-)を有する膜であるポリシラザン膜となる。図9に示す分子構造のように、この膜には、シリコン(Si)の他、窒素(N)、水素(H)が含まれ、さらに、炭素(C)や他の不純物が混ざっている場合がある。また、またこの膜の分子構造は、原子間の結合が不規則であり、膜密度が比較的低い。後述する基板処理工程では、ウエハ200上に形成されたポリシラザン膜に対し、所定の温度条件下でHを含む処理ガスを供給することで、この膜をシリコン酸化膜(SiO膜)へと改質(酸化)する。 The coating film formed on the surface of the wafer 200 becomes a polysilazane film which is a film having a silazane bond (-Si-N-) through a pre-baking process. As in the molecular structure shown in FIG. 9, this film contains nitrogen (N) and hydrogen (H) in addition to silicon (Si), and further contains carbon (C) and other impurities. There is. Also, the molecular structure of this film is irregular in bonding between atoms, and the film density is relatively low. In a substrate processing step described later, a processing gas containing H 2 O 2 is supplied to a polysilazane film formed on the wafer 200 under a predetermined temperature condition to form a silicon oxide film (SiO 2 film). Reform (oxidize) to
本実施形態では、ウエハ200の表面上には微細構造である凹凸構造が形成されており、塗布液を少なくとも凹部(溝)に充填するように供給し、充填された塗膜にプリベーク工程で加熱処理を施すことにより、溝内にシリコン含有膜であるポリシラザン膜を形成する。したがって、特に溝内に形成されたポリシラザン膜の厚さは、溝の深さ以上の大きさであって、例えば4μm以上となっている。 In this embodiment, a concavo-convex structure which is a fine structure is formed on the surface of the wafer 200, and the coating liquid is supplied so as to fill at least the recess (groove), and the filled coating is heated in the prebaking step. By performing the treatment, a polysilazane film which is a silicon-containing film is formed in the groove. Therefore, in particular, the thickness of the polysilazane film formed in the groove is equal to or larger than the depth of the groove, and is, for example, 4 μm or more.
(3)基板処理工程
 続いて、上述の基板処理装置を用いて実施される基板処理工程の一例について、図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作は、コントローラ121により制御される。
(3) Substrate Processing Step Subsequently, an example of a substrate processing step performed using the above-described substrate processing apparatus will be described with reference to FIG. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
(基板搬入工程)
 事前処理工程において表面にポリシラザン膜が形成された複数枚のウエハ200が、ボート217に装填される。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入される。この状態で、シールキャップ219は反応管203の下端をシールした状態となる。
(Board loading process)
A plurality of wafers 200 having a polysilazane film formed on the surface in the pretreatment process are loaded into the boat 217. Thereafter, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201. In this state, the seal cap 219 seals the lower end of the reaction tube 203.
(圧力・温度調整工程)
 まず、処理室201内、すなわち、ウエハ200が存在する空間が真空ポンプ246によって、例えば1Pa程度まで真空排気される。次に、バルブ243cを開き、MFC241cで流量調整しながら、ガス供給ポート242cから酸素含有ガスとしてのOガスを処理室201内に供給する。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244が、処理室内201内の圧力が所定の圧力(改質圧力)となるようにフィードバック制御される。また、ウエハ200の温度が所定の温度である第1温度となるように、ヒータ207によって加熱される。この際、ウエハ200が第1温度となるように、温度センサ263が検出した温度情報に基づいてヒータ207への通電具合がフィードバック制御される。ヒータ207に対するフィードバック制御は、各工程で設定される目標温度に応じて、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。また、回転機構267によるウエハ200の回転を開始する。真空ポンプ246の稼働、ウエハ200の加熱および回転は、いずれも、ウエハ200に対する処理が終了するまでの間は継続して行われる。また、本実施形態では、後述の第2改質工程の終了までは、処理室201内の圧力は改質圧力と同じ、又は大気圧、微減圧及び微加圧のいずれかの範囲に維持される。
(Pressure and temperature adjustment process)
First, the inside of the processing chamber 201, that is, the space in which the wafer 200 exists is evacuated to, for example, about 1 Pa by the vacuum pump 246. Next, the valve 243 c is opened, and the O 2 gas as the oxygen-containing gas is supplied into the processing chamber 201 from the gas supply port 242 c while adjusting the flow rate with the MFC 241 c. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and based on the measured pressure information, the APC valve 244 performs feedback so that the pressure in the processing chamber 201 becomes a predetermined pressure (reforming pressure). It is controlled. Further, the heater 207 heats the wafer 200 so that the temperature of the wafer 200 reaches a first temperature which is a predetermined temperature. At this time, the degree of energization of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the wafer 200 reaches the first temperature. The feedback control for the heater 207 is continuously performed at least until the processing on the wafer 200 is completed, in accordance with the target temperature set in each process. Further, the rotation of the wafer 200 by the rotation mechanism 267 is started. Both the operation of the vacuum pump 246 and the heating and rotation of the wafer 200 are continuously performed until the processing on the wafer 200 is completed. Further, in the present embodiment, the pressure in the processing chamber 201 is maintained in the same range as the reforming pressure, or in the range of atmospheric pressure, slight depressurization, and slight pressurization until the completion of the second reforming step described later. Ru.
(第1改質工程)
 ウエハ200が第1温度に到達し、ボート217が所望とする回転速度に到達したら、バルブ243aを開き、MFC241a、第1ガス供給管232aを介した処理室201内へのH含有ガス(第1処理ガス)の供給を開始する。処理室201内へ供給された第1処理ガスは、処理室201内の下方に向かって流れ、排気管231を介して処理室201の外部へ排出される。このとき、ウエハ200に対して第1処理ガスが供給される。このとき、バルブ243cを開き、MFC241cで流量調整しながら、第3ガス供給管232cを介した処理室201内へのOガスの供給を行うようにしてもよい。処理室201内に供給される第1処理ガスのH濃度は、ガス発生器250aに供給する気化用キャリアガスの流量や液体原料の流量を変えることで調整してもよい。
(First reforming step)
When the wafer 200 reaches the first temperature and the boat 217 reaches the desired rotation speed, the valve 243a is opened, and the H 2 O 2 -containing gas introduced into the processing chamber 201 via the MFC 241a and the first gas supply pipe 232a. The supply of (first process gas) is started. The first process gas supplied into the process chamber 201 flows downward in the process chamber 201 and is discharged to the outside of the process chamber 201 through the exhaust pipe 231. At this time, the first processing gas is supplied to the wafer 200. At this time, the valve 243 c may be opened to supply the O 2 gas into the processing chamber 201 through the third gas supply pipe 232 c while adjusting the flow rate with the MFC 241 c. The H 2 O 2 concentration of the first process gas supplied into the process chamber 201 may be adjusted by changing the flow rate of the carrier gas for vaporization supplied to the gas generator 250 a and the flow rate of the liquid source.
 第1改質工程における処理条件としては、以下が例示される。
 ・液体原料のH濃度:20~40%、好ましくは25~35%
 ・液体原料の流量:1.0~10sccm、好ましくは1.6~8sccm
 ・Oガスの流量:0~20SLM、好ましくは5~10SLM
 ・改質圧力:700~1000hPa(大気圧、微減圧および微加圧のうちいずれか)
 ・ウエハ200の温度(第1温度):40~120℃、好ましくは40~80℃
 なお、上記項目中のOガスの流量とは、ガス発生器250aに供給される気化用キャリアガスとしてのOガスと、酸素含有ガス供給系の第3ガス供給管232cを介して処理室201内に供給される酸素含有ガスとしてのOガスの総流量である。
The following are illustrated as processing conditions in the first reforming step.
・ H 2 O 2 concentration of liquid raw material: 20 to 40%, preferably 25 to 35%
· Flow rate of liquid material: 1.0 to 10 sccm, preferably 1.6 to 8 sccm
Flow rate of O 2 gas: 0 to 20 SLM, preferably 5 to 10 SLM
· Reforming pressure: 700 to 1000 hPa (Atmospheric pressure, slight pressure reduction or slight pressure increase)
The temperature of the wafer 200 (first temperature): 40 to 120 ° C., preferably 40 to 80 ° C.
Note that the flow rate of the O 2 gas in the above item refers to the processing chamber via the O 2 gas as the carrier gas for vaporization supplied to the gas generator 250 a and the third gas supply pipe 232 c of the oxygen-containing gas supply system. The total flow rate of O 2 gas as an oxygen-containing gas supplied into the chamber 201.
 上述の条件下でウエハ200に対して第1処理ガスを供給し、この状態を所定の第1時間(例えば20~720分の範囲内の時間)維持することにより、ウエハ200上に形成されていたシリコン含有膜としてのポリシラザン膜をSiO膜へと改質(酸化)することが可能となる。すなわち、第1処理ガスに含まれるO成分をポリシラザン膜中に添加することができ、また、ポリシラザン膜に含まれるN成分、C成分、H成分等の不純物をこの膜から脱離させることが可能となる。 The first processing gas is supplied to the wafer 200 under the above-described conditions, and the state is maintained on the wafer 200 for a predetermined first time (for example, a time in the range of 20 to 720 minutes). It becomes possible to modify (oxidize) a polysilazane film as a silicon-containing film into a SiO 2 film. That is, the O component contained in the first process gas can be added to the polysilazane film, and impurities such as the N component, C component, and H component contained in the polysilazane film can be desorbed from this film It becomes.
 第1処理ガスに含まれるHは、上述したように非常に強い酸化力を有する。そのため、第1温度を上述の低温条件とする場合であっても、ポリシラザン膜に対する酸化処理を実用的なレートで進行させることが可能となる。 H 2 O 2 contained in the first process gas has a very strong oxidizing power as described above. Therefore, even when the first temperature is set to the above-described low temperature condition, it is possible to advance the oxidation treatment on the polysilazane film at a practical rate.
 また、第1温度を上述の低温条件とすることにより、第1改質工程を行うことによるポリシラザン膜の表面の硬化(凝縮)を抑制することが可能となる。このため、第1改質工程では、第1処理ガスに含まれるH成分やHO成分を、ポリシラザン膜の表面だけでなく、その膜中に(厚さ方向に向けて)効率的に浸透させることが可能となる。結果として、上述した改質の効果を、この膜の表面だけでなく、深部においても得ることが可能となる。 Further, by setting the first temperature to the above-described low temperature condition, it is possible to suppress the curing (condensation) of the surface of the polysilazane film by performing the first modification step. For this reason, in the first reforming step, the H 2 O 2 component and the H 2 O component contained in the first processing gas are not only in the surface of the polysilazane film but also in the film (in the thickness direction). Can be made to penetrate. As a result, it becomes possible to obtain not only the surface of this film but also the deep part of the effect of the above-mentioned modification.
 特に、ウエハ200の温度が例えば200℃以上になると、ポリシラザン膜の表面の硬化が顕著となり、膜中へH成分やHO成分を浸透させて改質の効果を与えることが困難となることが分かっている。従ってウエハ200の温度は、特にポリシラザン膜の膜厚が大きい場合、200℃未満であることが望ましい。 In particular, when the temperature of the wafer 200 reaches, for example, 200 ° C. or more, the surface of the polysilazane film becomes significantly hardened, and it is difficult to allow the H 2 O 2 component or H 2 O component to penetrate into the film to give a modification effect. It is known that Therefore, the temperature of the wafer 200 is desirably less than 200 ° C., particularly when the film thickness of the polysilazane film is large.
(乾燥工程)
 第1時間が経過し、第1処理ガスによるポリシラザン膜の改質処理が終了したら、バルブ243aを閉じ、ウエハ200に対する第1処理ガスの供給を停止する。第1改質工程で第3ガス供給管232cからOガスを供給していた場合、次の昇温工程を開始するまでバルブ243cを開いたままとし、Oガスの供給を継続する。第1改質工程で第3ガス供給管232cからOガスを供給していない場合、バルブ243cを開き、次の昇温工程を開始するまでOガスの供給を継続する。そして、ウエハ200に対してOガスを供給しながらウエハ200を乾燥させる。この工程は、ウエハ200の温度を上述の第1温度より高い所定の温度である第2温度とした状態で実行するのが好ましい。これにより、ウエハ200の乾燥を促進させることが可能となる。
(Drying process)
After the first time passes and the modification process of the polysilazane film by the first process gas is completed, the valve 243 a is closed to stop the supply of the first process gas to the wafer 200. When the O 2 gas is supplied from the third gas supply pipe 232 c in the first reforming step, the valve 243 c is kept open until the next temperature raising step is started, and the O 2 gas supply is continued. When the O 2 gas is not supplied from the third gas supply pipe 232 c in the first reforming step, the valve 243 c is opened, and the O 2 gas supply is continued until the next temperature raising step is started. Then, the wafer 200 is dried while supplying O 2 gas to the wafer 200. This step is preferably performed in a state in which the temperature of the wafer 200 is set to a second temperature which is a predetermined temperature higher than the above-described first temperature. Thereby, drying of the wafer 200 can be promoted.
 ウエハ200をこのように乾燥させることにより、第1改質工程を行うことで改質された膜の表面や膜中から、ポリシラザン膜から脱離した副生成物である塩化アンモニウム(NHCl)、C、H等の他、溶媒に起因するアウトガス等の不純物や、Hに起因する不純物を、ウエハ200への再付着を抑制させながら除去することができる。 By drying the wafer 200 in this manner, ammonium chloride (NH 4 Cl) which is a by-product desorbed from the polysilazane film from the surface and the film of the film modified by performing the first modification step In addition to C, H, etc., impurities such as outgas resulting from the solvent and impurities resulting from H 2 O 2 can be removed while suppressing reattachment to the wafer 200.
 ここで、第1改質工程及び乾燥工程を行うことにより、理想的には図10に示す分子構造のように、Si及びO以外を含まない構造を有する膜が形成されるはずである。しかしながら、本実施形態における第1改質工程のようにウエハの温度を低温とする条件下で改質処理を行う場合、実際には図11に示す分子構造のように、O-Si-Oの環状構造に-OH結合があったり、-OH基にHOが吸着していたり、膜表面にHOが吸着していたりする構造を有する膜が形成される。本実施形態のように、ウエハの温度を120℃以下の低温条件下で改質処理を行う場合、この傾向は特に顕著である。そこで本実施形態では、次の昇温工程及び第2改質工程を更に行うことにより膜特性の向上を図っている。 Here, by performing the first modification step and the drying step, ideally, a film having a structure not including Si and O should be formed as in the molecular structure shown in FIG. However, when the reforming process is performed under the condition that the temperature of the wafer is low as in the first reforming step in the present embodiment, in fact, as in the molecular structure shown in FIG. or have -OH bonded to a cyclic structure, or have H 2 O is adsorbed to -OH groups, the membrane surface H 2 O is film having a structure or adsorbed is formed. This tendency is particularly remarkable when the reforming process is performed under the low temperature condition of 120 ° C. or less as in the present embodiment. Therefore, in the present embodiment, the film characteristics are improved by further performing the next temperature raising step and the second reforming step.
 なお、上述のように、SiO膜の膜中や表面にOH基や水分が残留してしまう現象は、低温条件下において成膜もしくは改質処理されたSiO膜において一般的に見られるものであり、これらの膜に対しても同様に、次の昇温工程及び第2改質工程による改質効果が期待できる。 As described above, the phenomenon that OH groups and water in the film and the surface of the SiO 2 film may remain are those commonly found in the SiO 2 film which has been processed film or modifying the low temperature Also for these films, the reforming effect by the next temperature raising step and the second reforming step can be expected similarly.
(昇温工程)
 所定時間が経過し、乾燥工程が終了した後、ウエハ200に対するOガスの供給を停止するとともに、ウエハ200の温度を第2温度以上の所定の温度である第3温度へと昇温させる。第2温度と第3温度が等しい場合、ウエハ200の温度は維持される。また、バルブ243dを開き、ガス供給管232d及び232cを介して不活性ガスであるNガスの処理室201内への供給を開始する。これにより、処理室201内の雰囲気をNガスにより置換(パージ)する。
(Heating process)
After a predetermined time has passed and the drying process is completed, the supply of O 2 gas to the wafer 200 is stopped, and the temperature of the wafer 200 is raised to a third temperature which is a predetermined temperature equal to or higher than the second temperature. If the second and third temperatures are equal, the temperature of the wafer 200 is maintained. Further, the valve 243 d is opened, and supply of the inert gas N 2 gas into the processing chamber 201 is started through the gas supply pipes 232 d and 232 c. As a result, the atmosphere in the processing chamber 201 is replaced (purged) with N 2 gas.
(第2改質工程)
 ウエハ200の温度が第3温度に到達して安定したら、バルブ243bを開き、MFC241b、第2ガス供給管232b、ガスノズル242bを介した処理室201内へのNHガス(第2処理ガス)の供給を開始する。処理室201内へ供給された第2処理ガスは、排気管231を介して処理室201の外部へ排出される。このとき、ウエハ200に対して第2処理ガスが供給される。ウエハ200に対する第2処理ガスの供給は、例えば5~480分、望ましくは10~60分の範囲内の所定の第2時間の間維持される。また、第2改質工程では、バルブ243dを開いたままとし、処理室201内へのNガス供給は継続されることが好ましい。
(Second reforming step)
When the temperature of the wafer 200 reaches the third temperature and becomes stable, the valve 243 b is opened to set the NH 3 gas (second processing gas) into the processing chamber 201 via the MFC 241 b, the second gas supply pipe 232 b, and the gas nozzle 242 b. Start supplying. The second process gas supplied into the process chamber 201 is exhausted to the outside of the process chamber 201 through the exhaust pipe 231. At this time, the second processing gas is supplied to the wafer 200. The supply of the second processing gas to the wafer 200 is maintained for a predetermined second time within the range of, for example, 5 to 480 minutes, preferably 10 to 60 minutes. In the second reforming step, it is preferable that the valve 243 d be kept open and the N 2 gas supply into the processing chamber 201 be continued.
 このように、ウエハ200に対して第2処理ガスとしてのNH基を有する化合物を含むガス(本実施形態ではNHガス)を供給することにより、膜の表面や膜中に残存していたOH基や水分と、ガス中の化合物が有するNH基とが反応するため、それらのOH基や水分を効果的に除去することができる。これにより、膜中のH含有量が少ない、膜質が良好なSiO膜に改質することができる。本実施形態では、処理対象となるSiO膜のO-Si-Oの環状構造の直径よりも小さい分子構造を有するNH基を有する化合物のガスとしてのNHガスをウエハ200に供給することにより、Si-Oの連鎖に結合あるいは配位しているOH基を除去する。 Thus, OH supplied to the surface of the film or in the film by supplying a gas (in the present embodiment, NH 3 gas) containing a compound having an NH group as the second processing gas to the wafer 200 Since the groups and water react with the NH groups possessed by the compounds in the gas, the OH groups and water can be effectively removed. As a result, the film can be reformed into a SiO 2 film with a low film content and a low H content in the film. In this embodiment, an NH 3 gas as a gas of a compound having an NH group having a molecular structure smaller than the diameter of the O-Si-O ring structure of the SiO 2 film to be processed is supplied to the wafer 200 in this embodiment. , OH group attached or coordinated to the Si-O chain.
 なお、本明細書においてNH基とは、イミノ基(イミド基)及びアミノ基の少なくともいずれかを含むものであり、NH基を有する化合物とは、NHの他、例えばメチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)等を挙げることができる。 In the present specification, the NH group includes at least one of an imino group (imide group) and an amino group, and a compound having an NH group is, for example, methylamine (CH 3 NH) other than NH 3 2 ), dimethylamine ((CH 3 ) 2 NH), trimethylamine ((CH 3 ) 3 N) and the like.
 第2改質工程における第2処理ガスとしてのNHガスの流量は例えば5~10SLMであり、同時に供給されるNガスとの流量比は、例えば1:1程度である。第2改質工程の処理温度である第3温度は、例えば150~400℃の範囲の所定の温度である。ウエハ200上に形成されたデバイス等に対する熱履歴の影響等を考慮すると、第3温度は400℃以下であることが望ましい。デバイスによっては更に低いことが望ましいが、本実施形態では、NH基を有する化合物を含むガスを用いて第2改質工程を行うことにより、特に300℃以下の低温条件下においても上述の効果を得ることが可能である。ただし、第3温度が150℃未満である場合、膜中のOH基等を除去する十分な効果を得ることが難しい。したがって、第3温度は150~300℃の範囲の所定の温度であることが特に望ましい。 The flow rate of NH 3 gas as the second process gas in the second reforming step is, for example, 5 to 10 SLM, and the flow rate ratio to the simultaneously supplied N 2 gas is, for example, about 1: 1. The third temperature, which is the processing temperature of the second reforming step, is a predetermined temperature in the range of 150 to 400 ° C., for example. The third temperature is desirably 400 ° C. or less in consideration of the influence of the heat history on the devices and the like formed on the wafer 200. Depending on the device, it may be desirable to use even lower values, but in the present embodiment, the second reforming step is performed using a gas containing a compound having an NH group, particularly under low temperature conditions of 300 ° C. or less. It is possible to get. However, when the third temperature is less than 150 ° C., it is difficult to obtain a sufficient effect of removing OH groups and the like in the film. Therefore, it is particularly desirable that the third temperature be a predetermined temperature in the range of 150 to 300.degree.
 なお、本実施形態において実際に使用するNHガスは、不純物としての水分濃度が0.1%未満(例えば0.0001%)のものであることが望ましい。水分濃度が0.1%以上の場合、第2改質工程によるOH基等の除去効果が短時間で飽和してしまい、十分な効果を得ることが難しい。 Incidentally, NH 3 gas actually used in the present embodiment, it is desirable that the water concentration of the impurity is of less than 0.1% (e.g., 0.0001%). When the water concentration is 0.1% or more, the removal effect of the OH group and the like in the second reforming step is saturated in a short time, and it is difficult to obtain a sufficient effect.
(降温・大気圧復帰工程)
 第2時間が経過し、第2改質工程が終了した後、バルブ243bを閉じてウエハ200に対する第2処理ガスの供給を停止し、(第2改質工程において処理室201内へのNガス供給を行っていた場合には、Nガス供給も停止し)、処理室201内を例えば1Pa程度まで真空排気する。その後、バルブ243dを開けて処理室201内へNガスを供給し、その内部を大気圧に復帰させる。これにより、1Pa程度まで真空排気しても処理室201内に残留していた第2処理ガスの濃度を1ppm以下まで下げることができる。処理室201内が大気圧になり所定時間経過した後、処理室201内を所定の搬出可能温度に降温させる。
(Temperature-temperature, atmospheric pressure return process)
After the second time has elapsed and the second reforming step is completed, the valve 243 b is closed to stop the supply of the second processing gas to the wafer 200, (N 2 into the processing chamber 201 in the second reforming step). When the gas supply is performed, the N 2 gas supply is also stopped), and the inside of the processing chamber 201 is evacuated to, for example, about 1 Pa. Thereafter, the valve 243 d is opened to supply N 2 gas into the processing chamber 201, and the inside thereof is returned to the atmospheric pressure. Thus, the concentration of the second processing gas remaining in the processing chamber 201 can be reduced to 1 ppm or less even when evacuation to about 1 Pa is performed. After the inside of the processing chamber 201 becomes atmospheric pressure and a predetermined time has elapsed, the inside of the processing chamber 201 is cooled to a predetermined transportable temperature.
(基板搬出工程)
 ボートエレベータ115によりシールキャップ219が下降され、反応管203の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態で、反応管203の下端から反応管203の外部に搬出される。
(Substrate unloading process)
The seal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is carried out of the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217.
(3)本実施形態による効果
 以下、図5~8を用いて、本実施形態に係る実施例と、それに対する比較例の評価結果をそれぞれ示し、本実施形態の効果について説明する。
(3) Effects of the Present Embodiment Hereinafter, the effects of the present embodiment will be described by using FIGS. 5 to 8 to respectively show the evaluation results of the example according to the present embodiment and the comparative example.
 以下の実施例及び比較例では何れも、上述の事前処理工程によってウエハ200の表面上に形成されたポリシラザン膜に対して、Hを含有する第1処理ガスを用いた改質処理を施すことによりSiO膜を形成した。
 なお、基板処理工程及びその処理条件について、以下の比較例及び実施例の間で主に異なっている点は、(a)第1改質工程におけるウエハ温度、(b)昇温工程及び第2改質工程の実施の有無、又はその処理条件、の2点であり、その他の点については、上述の第1の実施形態における基板処理工程及びその処理条件と共通である。
In any of the following examples and comparative examples, the polysilazane film formed on the surface of the wafer 200 by the above-described pretreatment process is subjected to the reforming process using the first process gas containing H 2 O 2 A SiO 2 film was formed by application.
The main differences between the following comparative examples and examples of the substrate processing step and the processing conditions are (a) wafer temperature in the first reforming step, (b) temperature raising step and second step There are two points of the presence or absence of the implementation of the reforming step, or the processing conditions thereof, and the other points are the same as the substrate processing step and the processing conditions in the first embodiment described above.
 比較例1、比較例2、及び本実施形態に係る実施例の相違点は以下の通りである。
[比較例1] 
(a) 第1改質工程におけるウエハ温度(第1温度)及び処理時間(第1時間)・・・80℃、60分
(b) 昇温工程及び第2改質工程・・・不実施
[比較例2]
(a) 第1改質工程におけるウエハ温度(第1温度)及び処理時間(第1時間)・・・80℃、60分
(b) 昇温工程及び第2改質工程・・・ウエハ温度200℃、第2処理ガスとして(NHガスに替えて)Nガスのみを60分供給
[比較例3]
(a) 第1改質工程におけるウエハ温度(第1温度)及び処理時間(第1時間)・・・200℃、60分
(b) 昇温工程及び第2改質工程・・・不実施
[実施例]
(a)第1改質工程におけるウエハ温度(第1温度)及び処理時間(第1時間)・・・80℃、60分
(b)昇温工程及び第2改質工程・・・ウエハ温度200℃、第2処理ガスとしてNHガスを60分供給
The differences between Comparative Example 1 and Comparative Example 2 and the example according to the present embodiment are as follows.
Comparative Example 1
(A) Wafer temperature (first temperature) and processing time (first time) in first reforming step: 80 ° C., 60 minutes (b) Temperature raising step and second reforming step: not performed [ Comparative Example 2]
(A) Wafer temperature (first temperature) and processing time (first time) in first reforming step: 80 ° C., 60 minutes (b) Temperature raising step and second reforming step: Wafer temperature 200 C., supply only N 2 gas (in place of NH 3 gas) as the second process gas for 60 minutes [Comparative Example 3]
(A) Wafer temperature (first temperature) and processing time (first time) in first reforming step: 200 ° C., 60 minutes (b) Temperature raising step and second reforming step: not performed [ Example]
(A) Wafer temperature (first temperature) and processing time (first time) in first reforming step: 80 ° C., 60 minutes (b) Temperature raising step and second reforming step: Wafer temperature 200 Supply NH 3 gas for 60 minutes as second process gas
 まず、比較例1、比較例2、及び本実施形態の実施例の評価結果について図5及び6を用いて説明する。 First, evaluation results of the comparative example 1, the comparative example 2 and the example of the present embodiment will be described using FIGS. 5 and 6.
 図5及び6は何れも、各比較例及び実施例により形成されたSiO膜の組成をフーリエ変換赤外分光光度計(FTIR)で分析した結果を示している。縦軸は赤外線の吸収量、横軸は波数である。この図では、波形のピークの横軸位置及び高さにより膜中に含まれる成分及びその量が示されている。特に、900cm-1付近、及び3000~3500cm-1付近に生じるピークの高さは膜中に含まれるOH基の量を示している。図5及び6は、OH基を示すピークが現れる2700~3900cm-1付近と、600~1100cm-1付近の波形をそれぞれ示している。 FIGS. 5 and 6 each show the result of analyzing the composition of the SiO 2 film formed according to each of the comparative examples and the examples using a Fourier transform infrared spectrophotometer (FTIR). The vertical axis is the amount of infrared absorption, and the horizontal axis is the wave number. In this figure, the horizontal axis position and height of the peak of the waveform indicate the components contained in the film and the amount thereof. In particular, the height of the peaks arising 900cm around -1, and around 3000 ~ 3500 cm -1 indicates the amount of OH groups contained in the film. 5 and 6 show the vicinity of 2700 ~ 3900cm -1, which peak appears showing the OH group, the waveform in the vicinity of 600 ~ 1100 cm -1, respectively.
 実線で表示された比較例1の波形を参照すると、900cm-1付近、及び3000~3500cm-1付近にそれぞれピークが観測される。つまり、昇温工程及び第2改質工程が実施されなかった比較例1により形成されたSiO膜中には、多量のOH基が含まれていることが分かる。 Referring to the waveform of Comparative Example 1 displayed by a solid line, 900 cm around -1, and each peak around 3000 ~ 3500 cm -1 it is observed. That is, it can be seen that the SiO 2 film formed by Comparative Example 1 in which the temperature raising step and the second reforming step were not performed contains a large amount of OH groups.
 破線で表示された比較例2の波形を参照すると、比較例1の波形と同様に、900cm-1付近、及び3000~3500cm-1付近にそれぞれピークが観測されており、ピークの減少はほとんど確認されない。つまり、比較例2におけるNガスのみによる改質処理は、膜中のOH基除去にほとんど寄与しないことが分かる。 Referring to the waveform of Comparative Example 2 displayed with a broken line, similarly to the waveform of Comparative Example 1, 900 cm around -1, and are peaks each observed in the vicinity of 3000 ~ 3500 cm -1, confirming most reduction in peak I will not. That is, it is understood that the reforming process using only N 2 gas in Comparative Example 2 hardly contributes to the removal of the OH group in the film.
 一方、点線で表示された実施例の波形を参照すると、比較例1及び2の波形に対して、900cm-1付近、及び3000~3500cm-1付近の各ピークの高さがそれぞれ半減したことが確認される。つまり、本実施形態のように、第2改質工程としてNH基を有する化合物を含むガスであるNHガスを用いて改質処理を行うことにより、SiO膜中のOH基を除去する効果が得られることが確認された。 On the other hand, referring to the waveform of the embodiment is indicated by a dotted line, with respect to Comparative Example 1 and 2 of the waveform, 900 cm around -1, and each peak heights around 3000 ~ 3500 cm -1 that has halved respectively It is confirmed. That is, as in the present embodiment, the effect of removing the OH group in the SiO 2 film by performing the reforming process using the NH 3 gas which is a gas containing a compound having an NH group as the second reforming step Was confirmed to be obtained.
 続いて、比較例1、比較例3、及び実施例の評価結果について図7及び8を用いて説明する。図7及び8は、比較例1,3及び実施例により形成されたSiO膜の組成をFTIRで分析した結果を示している。 Subsequently, evaluation results of Comparative Example 1, Comparative Example 3 and Example will be described using FIGS. 7 and 8. 7 and 8 show the results of FTIR analysis of the composition of the SiO 2 film formed according to Comparative Examples 1 and 3 and Example.
 図7及び8では、比較例3の波形を破線で、実施例の波形を点線でそれぞれ表示している。ここで、比較例3の波形と実施例の波形を比較すると、OH基の含有量を示す900cm-1付近、及び3000~3500cm-1付近のピークの高さはほとんど同じであることが観測される。すなわち、本実施形態のように第2改質工程としてNHガスを用いて改質処理を行うことにより、ウエハの温度を80℃のような低温とする条件下で第1改質処理を行う場合であっても、基板の温度を200℃まで加熱して第1改質処理を行う場合と同等の膜中のOH基の含有量の低さを実現できることが確認された。 7 and 8, the waveform of Comparative Example 3 is indicated by a broken line, and the waveform of the example is indicated by a dotted line. Here, when comparing the waveform of the waveform of Comparative Example 3 and Example, around 900 cm -1 indicating the content of OH groups, and 3000 ~ 3500 cm -1 vicinity of the height of the peaks is observed to be nearly the same Ru. That is, by performing the reforming process using NH 3 gas as the second reforming step as in the present embodiment, the first reforming process is performed under the condition that the temperature of the wafer is as low as 80 ° C. Even in the case, it was confirmed that the low content of the OH group in the film can be realized, which is equivalent to the case of performing the first reforming process by heating the temperature of the substrate to 200 ° C.
(本実施形態の他の効果1)
 更に、比較例3と実施例との比較において、実施例には以下の効果(優位性)が存在する。
(Other effects 1 of the present embodiment)
Furthermore, in comparison with Comparative Example 3 and the example, the following effects (predominance) exist in the example.
 上述の事前処理工程においてウエハの表面上に形成されたポリシラザン膜に対して、比較例3のようにウエハの温度を200℃まで加熱した条件下で第1改質処理(すなわち、H含有ガスを用いた改質処理)を実施した場合、ポリシラザン膜の表面層が先に固化してしまい、表面から4μm以上深い部分には十分な改質効果が及ばないという課題がある。 The first modification treatment (that is, H 2 O 2 ) of the polysilazane film formed on the surface of the wafer in the above-described pretreatment process under the condition that the temperature of the wafer is heated to 200 ° C. as in Comparative Example 3 When the reforming treatment is carried out using a contained gas, the surface layer of the polysilazane film solidifies first, and there is a problem that a sufficient reforming effect can not be applied to a portion 4 μm or more deep from the surface.
 これに対し、実施例のように第1改質工程におけるウエハの温度を80℃とした例では、二次イオン質量分析法(SIMS法)により、第1改質工程で形成された膜の深さ方向の組成分析を行ったところ、表面から4μm以上の深さ方向の部分にまで、ポリシラザン膜に対する改質効果が及んでいることが確認された。ここで、第1改質工程のウエハの温度が本実施形態のように120℃以下であれば、4μm以上の深さ部分にまで十分な改質効果を与えられると推測される。すなわち本実施形態は、処理対象膜のより深い部分(少なくとも4μm)にまで十分な改質処理を施すことができるという点で、比較例3に対する明確な優位性を有している。
 換言すると、ポリシラザン膜の膜厚が4μm以上である場合、本実施形態の第1改質工程におけるウエハの温度は、高くとも200℃未満であることが望ましく、120℃以下であることがより望ましく、80℃以下であることが更に望ましい。
On the other hand, in the example in which the temperature of the wafer in the first reforming step is 80 ° C. as in the embodiment, the depth of the film formed in the first reforming step is obtained by secondary ion mass spectrometry (SIMS). Compositional analysis in the longitudinal direction confirmed that the modifying effect on the polysilazane film extended to a portion in the depth direction of 4 μm or more from the surface. Here, if the temperature of the wafer in the first reforming step is 120 ° C. or less as in this embodiment, it is presumed that a sufficient reforming effect can be given to a depth of 4 μm or more. That is, the present embodiment has a clear superiority to Comparative Example 3 in that sufficient modification processing can be performed to a deeper portion (at least 4 μm) of the processing target film.
In other words, when the film thickness of the polysilazane film is 4 μm or more, the temperature of the wafer in the first modification step of this embodiment is preferably at most 200 ° C., and more preferably 120 ° C. or less. It is further desirable that the temperature be 80 ° C. or less.
 一方、図7及び8に示される比較例1と比較例3の波形の比較からも分かるように、ポリシラザン膜に対する第1改質工程を本実施形態のような120℃以下の低温条件(比較例1では80℃)で行う場合、比較例3における200℃のような温度条件で行う場合に比べて、膜中に含まれるOH基の量が多くなるという課題がある。しかし、実施例では、表面から4μm以上の深さ部分にまでポリシラザン膜に対する十分な改質が施すことができるだけでなく、本実施形態の第2改質工程を行うことによって、膜中のOH基の含有濃度の点においても、比較例3と同等のSiO膜を得ることができる。 On the other hand, as can be understood from the comparison of the waveforms of Comparative Example 1 and Comparative Example 3 shown in FIGS. 7 and 8, the first modification step for the polysilazane film is performed under low temperature conditions of 120 ° C. or less as in this embodiment (Comparative Example In the case of (1), when performed at 80 ° C., there is a problem that the amount of OH groups contained in the film is increased as compared with the case of performing the temperature condition such as 200 ° C. However, in the embodiment, not only the polysilazane film can be sufficiently reformed to a depth of 4 μm or more from the surface, but the OH group in the film can be obtained by performing the second reforming step of the present embodiment. The same SiO 2 film as that of Comparative Example 3 can be obtained also in terms of the content concentration of
 すなわち、本実施形態における第1改質工程及び第2改質処理の組み合わせは、膜厚が4μm以上のポリシラザン膜(又は高温条件において同様の硬化が生じる他のシラザン結合含有膜)をSiO膜に改質する場合に特に好適である。 That is, the combination of the first modification process and the second modification process in this embodiment is a polysilazane film having a thickness of 4 μm or more (or another silazane bond-containing film which causes similar curing under high temperature conditions) to be a SiO 2 film In the case of reforming into
(本実施形態の他の効果2)
 また、上述の事前処理工程において形成されたポリシラザン膜は、図9に示される分子構造からも分かるように、他の高温条件で成膜されたシリコン含有膜等に比べて比較的膜密度が小さい。そのため、本実施形態の第2改質工程において用いられるNH基を有する化合物を含むガスのNH基成分が、ポリシラザン膜中に特に入り込み易い。したがって、膜厚が大きい(例えば膜厚が少なくとも400nmより大きい)場合であっても、第2改質工程の改質効果を膜中の深い部分まで与えることが可能という点で、ポリシラザン膜に対する本実施形態の適用は好適である。
(Other effects 2 of this embodiment)
Also, as can be seen from the molecular structure shown in FIG. 9, the polysilazane film formed in the above-described pretreatment process has a relatively low film density as compared to a silicon-containing film or the like formed under other high temperature conditions. . Therefore, the NH group component of the gas containing the compound having the NH group used in the second reforming step of the present embodiment is particularly easily introduced into the polysilazane film. Therefore, even when the film thickness is large (for example, the film thickness is at least 400 nm or more), it is possible to apply the modification to the polysilazane film in that the modification effect of the second modification step can be provided to the deep portion in the film. Application of the embodiment is suitable.
<本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではない。その要旨を逸脱しない範囲で、上述の実施形態や変形例等は適宜組み合わせて用いることができる。また、このときの処理手順、処理条件は、例えば上述の実施形態と同様な処理手順、処理条件とすることができる。
Another Embodiment of the Present Invention
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment. The above-mentioned embodiment, modification, etc. can be combined suitably, and can be used in the range which does not deviate from the gist. Further, the processing procedure and processing conditions at this time can be, for example, the same processing procedure and processing conditions as those of the above-described embodiment.
 上述の実施形態では、PHPS塗布工程とプリベーク工程とを施すことで形成されたポリシラザン膜を処理する例について説明したが、本発明はこれに限定されない。例えば図3(b)に示すように、FlowableCVD法で形成され、プリベークされてないシリコン含有膜を処理する場合にも、第1改質工程及び第2改質工程を含む処理工程を適用することができる。 Although the above-mentioned embodiment demonstrated the example which processes the polysilazane film | membrane formed by giving a PHPS application | coating process and a prebaking process, this invention is not limited to this. For example, as shown in FIG. 3 (b), also in the case of processing a silicon-containing film formed by the Flowable CVD method and not prebaked, a processing step including the first modification step and the second modification step is applied. Can.
 また、上述の実施形態では、ポリシラザン膜に対して改質処理を行う例を示したが、本発明はこれに限定されない。例えば、SiとNとHを含む他の膜(特にシラザン結合を有する他の膜)や、CVD法で形成された他のシリコン含有膜に対して改質処理を行う場合にも、第1改質工程及び第2改質工程を含む処理工程を適用することができる。特に、O-Si-Oの環状構造に-OH結合があったり、-OH基にHOが吸着していたり、膜表面にHOが吸着していたりする構造を有する膜に対する適用が好ましい。CVD法でシリコン含有膜を形成する例としては、トリシリルアミン(TSA)ガスとNHガスを用いてプラズマ重合膜を形成する例や、有機シラン(特にテトラエトキシシラン(TEOS))ガスとOガスを用いてSiO膜を形成する例などがある。 Moreover, although the example which performs a modification process with respect to a polysilazane film | membrane was shown in the above-mentioned embodiment, this invention is not limited to this. For example, even when the other film containing Si, N, and H (in particular, another film having a silazane bond) or another silicon-containing film formed by the CVD method is subjected to the first modification. A processing step including the quality step and the second reforming step can be applied. In particular, application to a film having a structure in which an O-Si-O cyclic structure has an -OH bond, or an -OH group has H 2 O adsorbed, or a film surface has H 2 O adsorbed preferable. Examples of forming a silicon-containing film by the CVD method include an example of forming a plasma-polymerized film using trisilylamine (TSA) gas and NH 3 gas, or organic silane (especially tetraethoxysilane (TEOS)) gas and O There is an example in which a SiO 2 film is formed using three gases.
 また、上述の実施形態においては、第1改質工程と第2改質工程を、同一の処理室内において順次実行する態様について説明したが、本発明はこの態様に限定されない。被処理基板に対して第1改質工程に係る処理を施した後、他の処理室(処理空間)内において、当該被処理基板に対する第2改質工程に係る処理を施すという態様も本発明に含まれる。 Moreover, in the above-mentioned embodiment, although the aspect which sequentially performs a 1st reforming process and a 2nd reforming process in the same processing chamber was explained, the present invention is not limited to this mode. The present invention also relates to an aspect in which, after subjecting the substrate to be treated to the treatment according to the first reforming step, the treatment to the substrate to be treated is subjected to the treatment according to the second reforming step in another processing chamber (treatment space). include.
 また、上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本発明は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも適用できる。 Further, in the above-described embodiment, an example in which a film is formed using a batch-type substrate processing apparatus that processes a plurality of substrates at once has been described. The present invention is not limited to the above-described embodiment, and can also be applied to the case of forming a film using, for example, a sheet-fed substrate processing apparatus that processes one or several substrates at a time. Further, in the above-described embodiment, the example of forming the film using the substrate processing apparatus having the hot wall type processing furnace has been described. The present invention is not limited to the above-described embodiment, and can be applied to the case of forming a film using a substrate processing apparatus having a cold wall type processing furnace.
 200 ウエハ(基板)
 201 処理室
 
200 wafers (substrate)
201 processing room

Claims (14)

  1.  シリコン含有膜が表面に形成された基板に対して過酸化水素を含有する第1処理ガスを供給することにより、前記シリコン含有膜をシリコン酸化膜に改質する第1工程と、
     前記第1工程の後、前記基板に対してNH基を有する化合物を含む第2処理ガスを供給することにより、前記シリコン酸化膜を改質する第2工程と、
     を有する半導体装置の製造方法。
    A first process of reforming the silicon-containing film into a silicon oxide film by supplying a first processing gas containing hydrogen peroxide to a substrate having a silicon-containing film formed on the surface;
    After the first step, supplying a second processing gas containing a compound having an NH group to the substrate to reform the silicon oxide film;
    And manufacturing a semiconductor device.
  2.  前記第2工程では、前記シリコン酸化膜の膜中及び表面の少なくともいずれかに残存するOH基を除去する、請求項1に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the OH group remaining in at least one of the surface and the film of the silicon oxide film is removed in the second step.
  3.  前記第1工程では、前記基板の温度は120℃以下である、請求項2に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 2, wherein the temperature of the substrate is 120 ° C. or less in the first step.
  4.  前記シリコン含有膜はシラザン結合を含有する膜である請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the silicon-containing film is a film containing a silazane bond.
  5.  前記シラザン結合を含有する膜はポリシラザン膜である請求項4に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 4, wherein the film containing a silazane bond is a polysilazane film.
  6.  前記ポリシラザン膜の厚さは400nmより大きい、請求項5に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 5, wherein a thickness of the polysilazane film is greater than 400 nm.
  7.  前記ポリシラザン膜の厚さは4μmより大きい、請求項6に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 6, wherein a thickness of the polysilazane film is greater than 4 μm.
  8.  前記第1工程では、前記基板の温度は200℃未満である、請求項7に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 7, wherein the temperature of the substrate is less than 200 ° C. in the first step.
  9.  前記NH基を有する化合物は、アンモニア、メチルアミン、ジメチルアミン、及びトリメチルアミンにより構成される群から選択される少なくとも1つの化合物である請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the compound having an NH group is at least one compound selected from the group consisting of ammonia, methylamine, dimethylamine, and trimethylamine.
  10.  前記第2工程では、前記基板の温度は400℃以下である、請求項1に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein in the second step, the temperature of the substrate is 400 ° C. or less.
  11.  前記第2工程では、前記基板の温度は150℃以上300℃以下である、請求項10に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 10, wherein a temperature of the substrate is 150 ° C. or more and 300 ° C. or less in the second step.
  12.  前記シリコン含有膜は、FlowableCVD法により形成された膜である、請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the silicon-containing film is a film formed by a flowable CVD method.
  13.  基板を収容する処理室と、
     前記処理室内へ過酸化水素を含有する第1処理ガスを供給する第1処理ガス供給系と、
     前記処理室内へNH基を有する化合物を含有する第2処理ガスを供給する第2処理ガス供給系と、
     シリコン含有膜が表面に形成された基板に対して前記第1処理ガスを供給することにより、前記シリコン含有膜をシリコン酸化膜に改質する第1処理と、前記第1処理の後、前記基板に対して前記第2処理ガスを供給することにより、前記シリコン酸化膜を改質する第2処理と、を実行させるように、前記ガス供給系を制御するよう構成される制御部と、
     を有する基板処理装置。
    A processing chamber for containing a substrate;
    A first process gas supply system for supplying a first process gas containing hydrogen peroxide into the process chamber;
    A second processing gas supply system for supplying a second processing gas containing a compound having an NH group into the processing chamber;
    A first process for reforming the silicon-containing film into a silicon oxide film by supplying the first process gas to a substrate having a silicon-containing film formed on the surface, and the substrate after the first process A control unit configured to control the gas supply system to execute a second process of reforming the silicon oxide film by supplying the second process gas to the substrate;
    Substrate processing apparatus having:
  14.  基板処理装置の処理室内において、
     シリコン含有膜が表面に形成された基板に対して過酸化水素を含有する第1処理ガスを供給することにより、前記シリコン含有膜をシリコン酸化膜に改質する第1手順と、
     前記第1手順の後、前記基板に対してNH基を有する化合物のガスを含有する第2処理ガスを供給することにより、前記シリコン酸化膜を改質する第2手順と、
     をコンピュータによって前記基板処理装置に実行させるプログラム。
    In the processing chamber of the substrate processing apparatus,
    Supplying a first processing gas containing hydrogen peroxide to a substrate having a silicon-containing film formed on the surface, thereby reforming the silicon-containing film into a silicon oxide film;
    After the first step, supplying a second processing gas containing a gas of a compound having an NH group to the substrate to thereby reform the silicon oxide film;
    A program that causes the substrate processing apparatus to execute the program by a computer.
PCT/JP2017/035241 2017-09-28 2017-09-28 Semiconductor device production method, substrate processing device and program WO2019064434A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019545495A JP6815529B2 (en) 2017-09-28 2017-09-28 Semiconductor device manufacturing method, substrate processing device and program
SG11202000375RA SG11202000375RA (en) 2017-09-28 2017-09-28 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
PCT/JP2017/035241 WO2019064434A1 (en) 2017-09-28 2017-09-28 Semiconductor device production method, substrate processing device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035241 WO2019064434A1 (en) 2017-09-28 2017-09-28 Semiconductor device production method, substrate processing device and program

Publications (1)

Publication Number Publication Date
WO2019064434A1 true WO2019064434A1 (en) 2019-04-04

Family

ID=65901066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035241 WO2019064434A1 (en) 2017-09-28 2017-09-28 Semiconductor device production method, substrate processing device and program

Country Status (3)

Country Link
JP (1) JP6815529B2 (en)
SG (1) SG11202000375RA (en)
WO (1) WO2019064434A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206440A (en) * 2008-02-29 2009-09-10 Az Electronic Materials Kk Siliceous film forming method and siliceous film formed thereby
JP2012104569A (en) * 2010-11-08 2012-05-31 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device and substrate processing apparatus
WO2013065771A1 (en) * 2011-11-01 2013-05-10 株式会社日立国際電気 Production method for semiconductor device, production device for semiconductor device, and storage medium
JP2015053445A (en) * 2013-09-09 2015-03-19 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2017056188A1 (en) * 2015-09-29 2017-04-06 株式会社日立国際電気 Substrate treatment apparatus, method for manufacturing semiconductor device, and recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957128B2 (en) * 2015-07-29 2016-07-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206440A (en) * 2008-02-29 2009-09-10 Az Electronic Materials Kk Siliceous film forming method and siliceous film formed thereby
JP2012104569A (en) * 2010-11-08 2012-05-31 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device and substrate processing apparatus
WO2013065771A1 (en) * 2011-11-01 2013-05-10 株式会社日立国際電気 Production method for semiconductor device, production device for semiconductor device, and storage medium
JP2015053445A (en) * 2013-09-09 2015-03-19 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2017056188A1 (en) * 2015-09-29 2017-04-06 株式会社日立国際電気 Substrate treatment apparatus, method for manufacturing semiconductor device, and recording medium

Also Published As

Publication number Publication date
JPWO2019064434A1 (en) 2020-05-28
SG11202000375RA (en) 2020-02-27
JP6815529B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP5775947B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
US20150031216A1 (en) Cleaning method, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20230343580A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR101848573B1 (en) Method for manufacturing semiconductor device, substrate processing apparatus and recording medium
JP4748042B2 (en) Heat treatment method, heat treatment apparatus and storage medium
WO2018055724A1 (en) Method for manufacturing semiconductor device, substrate treatment apparatus, and program
KR102419555B1 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and program
JP2023033533A (en) Substrate processing method, semiconductor device manufacturing method, program, and substrate processing apparatus
JP2019062074A (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP5562431B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
KR102334832B1 (en) Semiconductor device manufacturing method, substrate processing apparatus and program
WO2021009838A1 (en) Production method for semiconductor device, substrate treatment device, and program
WO2019064434A1 (en) Semiconductor device production method, substrate processing device and program
JP6752249B2 (en) Semiconductor device manufacturing methods, substrate processing devices and programs
JP6987948B2 (en) Semiconductor device manufacturing methods, substrate processing methods, substrate processing equipment, and programs
CN113169069B (en) Method for manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP6749469B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2019058477A1 (en) Method for manufacturing semiconductor device, substrate processing device and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927263

Country of ref document: EP

Kind code of ref document: A1