WO2019063329A1 - Turbinengehäuse mit stutzen sowie verfahren zum herstellen eines turbinengehäuses mit stutzen - Google Patents

Turbinengehäuse mit stutzen sowie verfahren zum herstellen eines turbinengehäuses mit stutzen Download PDF

Info

Publication number
WO2019063329A1
WO2019063329A1 PCT/EP2018/075021 EP2018075021W WO2019063329A1 WO 2019063329 A1 WO2019063329 A1 WO 2019063329A1 EP 2018075021 W EP2018075021 W EP 2018075021W WO 2019063329 A1 WO2019063329 A1 WO 2019063329A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine housing
nozzle
cutout
turbine
producing
Prior art date
Application number
PCT/EP2018/075021
Other languages
English (en)
French (fr)
Inventor
Holger HERTWIG
Mario Rolle
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2019063329A1 publication Critical patent/WO2019063329A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/311Layer deposition by torch or flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/313Layer deposition by physical vapour deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a turbine housing with a connecting piece through which a flow of fluid can flow through a cutout in the door ⁇ binengephaseuse into the turbine housing, wherein the nozzle in the region of the cutout is formed such that the turbinenachsparallele extension of the nozzle is smaller than the extension of Neck, perpendicular to the turbine axis. Furthermore, the invention relates to a method for producing such a nozzle.
  • Generic turbine housings are typical of steam turbine housings, for example. There is a conflict of objectives with regard to two different requirements. One requirement is to design the turbine as short as possible in order to construct material and material
  • the other requirement is to provide the inflowing medium enough surface to flow in order to keep the inflow velocity in a meaningful range and to keep the deflection of the flow as low as possible. This makes it possible to realize a high degree of efficiency combined with low noise development.
  • the two requirements are taken into account that the nozzle is formed on the turbine housing in the region of the cutout in such a way that the turbine- axial extension of the nozzle is smaller than the extension of the nozzle, at right angles to the turbine axis.
  • the production of such a nozzle is associated with great expense.
  • two possible methods were used in particular. In the first method, the nozzle is poured.
  • the casting allows the use of considerable constructive degrees of freedom, whereby the turbine nachsparalle Extension of the nozzle can be greatly reduced, gleichzei ⁇ tig the inflow can be opened wide transversely to the turbine axis.
  • a disadvantage of the casting process is that it is very complicated and expensive. At the same time, there are only a few manufacturers that can produce turbine housings for large turbines.
  • the object is achieved with respect to the turbine housing with Stut ⁇ zen by the features of independent claim 1 ge ⁇ .
  • the object is solved by the features of independent claims 4 and 5. Further embodiments of the invention, which are used individually or in combination with each other, are the subject of the dependent claims.
  • the turbine housing according to the invention with a nozzle, through which a flow fluid can flow through a cutout in the turbine housing ⁇ in the turbine housing, wherein the nozzle is formed in the region of the cutout such that the turbinesachsparallele extension of the nozzle, is smaller than the extension of the nozzle, perpendicular to the turbine axis, is characterized in that the Stut ⁇ zen is formed by an additive manufacturing process.
  • the turbine housing without cutout for the inflow or with a cutout for the inflow but can be made with very large additions.
  • the actual required shape of the cut is then in each case, based on 3D geometry data, etc. This allows a more or less standard housing are used and the respective required or needed in each case fitting can easily, individually, in shape and size to the turbine housing are attached.
  • additive manufacturing processes combine different production methods that have a three-dimensional structure.
  • additive processes are also referred to by the terms "additive manufacturing” or "3D printing”.
  • To produce the connection piece is insbeson ⁇ wider free space method such as build-up welding or cold gas spraying is suitable, as well as powder bed process such as in particular the selective laser melting (SLM) or the selective La ⁇ sersintern (SLS).
  • SLM selective laser melting
  • SLS selective La ⁇ sersintern
  • the free space method is particularly suitable when the nozzle is applied directly to the Victoriage ⁇ housing.
  • the powder bed process are more likely to as ⁇ useful in making the nozzle first individually and then, for example, by means of material-fit, or non-positive connection with the turbine housing to connect.
  • An essential advantage of the invention is that the production can be completely digitized and automated. Furthermore, no complicated Sch detailkonstruktio ⁇ nen or manufacturing by die are necessary, which can be achieved significant cost savings.
  • the shape and size of the nozzle is completely variable and can be easily adapted to the respective requirements. Furthermore, there is an advantage in the variability of the materials used. Thus, different materials can be used in particular for the nozzle and the turbine housing. A location-dependent material thickness can also be achieved.
  • the turbine housing with the connecting piece is characterized by an extremely attrac ⁇ -reaching optics, analogous to a cast execution.
  • An embodiment of the invention provides that the ratio of the turbine-parallel extension a of the nozzle to the extension b of the nozzle perpendicular to the turbine axis a / b ⁇ 0.8 is preferably a / b ⁇ 0.6. This will the Forde ⁇ alloys in the shortest possible design and sufficient
  • Another embodiment of the invention provides that the projection of the cut is essentially a legal ⁇ corner surface.
  • the rectangular area allows the optimal size ratio of short design and large
  • the turbine housing as a kind of standard housing without any cut Herge ⁇ provides are.
  • the cutouts are then subsequently introduced into the turbine housing and the respective neck is formed around the cutout in the turbine housing by means of the additive manufacturing process.
  • the process thus offers a far-reaching individual production and arrangement of the
  • the actual necessary size and shape of the cutout is cut out of the turbine housing based on 3D geo-geometry, for example by means of laser beam or water jet cutting.
  • the cutting out of the cutout can be completely digitized / automated.
  • very precise cutouts can be introduced into the turbine housing.
  • the nozzle is then formed around the cutout in the turbine housing in a further method step. The formation of the nozzle takes place by means of an additive manufacturing process.
  • the process differs from the previously-described case ⁇ NEN method in that cut-outs in the turbine housing are already provided.
  • the cutouts for the inflow in the outer housing are found ⁇ with very large allowances ago and in a further step expanding the cut is made to the final dimensions.
  • the Ver ⁇ cut can be reduced when introducing the cutouts, where ⁇ fail by the manufacturing cost of the turbine housing.
  • the cutouts with the appropriate allowance are provided at the points at which the nozzle is provided later, wherein it is not yet necessary to determine what size of the nozzle to be attached later has.
  • the Aus ⁇ cut is chosen so small that all possible sizes of nozzles can be attached to the turbine housing.
  • An embodiment of the invention provides that the nozzle is applied directly to the turbine housing by means of an additive manufacturing process.
  • additi ves ⁇ manufacturing method for this purpose especially the so-called clearance procedures, in particular deposition welding or cold gas spraying are suitable. Subsequent attachment of the stub to the turbine housing is eliminated.
  • a further embodiment of the invention provides that the nozzle is manufactured separately by means of an additive manufacturing process and is subsequently fastened to the turbine housing.
  • the powder bed process is suitable here as an additive production process, and in particular selective laser melting (SLM) or selective laser sintering (SLS).
  • SLM selective laser melting
  • SLS selective laser sintering
  • An embodiment of the method provides that the nozzle material and / or non-positively on the turbine housing be ⁇ consolidates.
  • brazing or welding of the connection piece on the turbine housing comes into consideration as cohesive connection.
  • a frictional connection between the nozzle and the turbine housing can be realized for example by means of a flange connection.
  • Figure 1 is a plan view of an inventive Turbi ⁇ nengetude with nozzle
  • Figure 2 is a side view of the turbine housing shown in Figure 1 with nozzle.
  • FIG. 1 shows a turbine housing 1, for example a
  • the nozzle 2 is formed in the region of the cutout 3 such that the turbine-axial extension a of the nozzle 2 is smaller than the extent b of the nozzle 2 at right angles to the turbine axis 4.
  • the nozzle 2 is formed by an additive manufacturing method .
  • the nozzle may be applied directly to the turbine housing 1, or initially prepared separately and then attached to the turbine housing 1.
  • the attachment of the nozzle 2 before ⁇ preferably material and / or non-positively.
  • a substance-compatible compound is suitable here
  • a frictional connection can be made in particular via a flange not shown here.
  • the ratio of turbine-parallel extension a of the nozzle 2 to the extension b of the nozzle 2 at right angles to the turbine axis is a / b ⁇ 0.8, preferably a / b ⁇ 0.6. In this way, the requirement is taken into account, on the one hand, to build the turbine housing 1 in the axial direction as short as possible and, on the other hand, to give the flow fluid enough area to flow into the turbine housing 1.
  • the Turbi ⁇ nengepuruse 1 side facing away from the nozzle can be formed in particular for connection of leads as a circular shape.
  • the additive manufacturing process of the nozzle 2 enables light while a fully coming variability both in form and in the size of the nozzle 2.
  • a further advantage of addi ⁇ tive manufacturing process is that the use ⁇ th material can vary and selected according to Anforde ⁇ conclusions can be.
  • a location-dependent material thickness of the nozzle 2 can be realized.
  • a corresponding shape of a nozzle 2 can be seen in particular from FIG.
  • the nozzle 2 is formed the turbine housing 2 facing area at the bottom, that the projection of the section is substantially a right-angled ⁇ surface.
  • rich Be ⁇ 2 is, however, formed in a substantially circular, so that the feed lines which usually have a circular cross section are easily connectable to the connecting piece.
  • the cutout in the turbine housing 1 can be completely digitized / automated and example, ⁇ be formed by laser or water jet cutting. Also, the formation of the nozzle 2 by means of additive manufacturing process can be completely digitized / automated. This significantly reduces the production times and the production costs.
  • a significant advantage of the turbine housing 1 according to the invention with nozzle 2 is that the turbine housing 1 can be largely manufactured as a standard part and the corresponding cutouts can be individually introduced.
  • the formation of the nozzle 2 around the cutouts he ⁇ subsequently also follows completely individual means additive manufacturing process. Form and size of the nozzle 2 are essentially freely selectable, as well as the material to be used, which only needs to be selected to fit the requirements.
  • the turbine housing 1 with ports 2 which is formed by an additive manufacturing method, and optical advantages, since such turbine housing with connection pieces has an extremely attractive appearance analogous to a Gussausnch ⁇ tion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Turbinengehäuse (1) mit einem Stutzen (2), durch welchen ein Strömungsfluid durch einen Ausschnitt (3) im Turbinengehäuse (1) in das Turbinengehäuse (1) einströmt. Der Stutzen (2) ist im Bereich des Ausschnittes (3) derart ausgebildet, dass die turbinenachsparallele Erstreckung a des Stutzens (2), kleiner ist als die Erstreckung b des Stutzens (2) rechtwinklig zur Turbinenachse. Der Stutzen (2) ist dabei durch ein additives Herstellungsverfahren ausgebildet. Des Weiteren betrifft die Erfindung Verfahren zum Herstellen eines solchen Turbinengehäuses (1).

Description

Beschreibung
Turbinengehäuse mit Stutzen sowie Verfahren zum Herstellen eines Turbinengehäuses mit Stutzen
Die Erfindung betrifft ein Turbinengehäuse mit einem Stutzen, durch welche ein Strömungsfluid durch ein Ausschnitt im Tur¬ binengehäuse in das Turbinengehäuse einströmen kann, wobei der Stutzen im Bereich des Ausschnittes derart ausgebildet ist, dass die turbinenachsparallele Erstreckung des Stutzens, kleiner ist als die Erstreckung des Stutzens, rechtwinklig zur Turbinenachse. Des Weiteren betrifft die Erfindung ein Verfahren zum Herstellen eines solchen Stutzens.
Gattungsgemäße Turbinengehäuse sind beispielsweise typisch für Dampfturbinengehäuse . Dabei besteht ein Zielkonflikt, im Hinblick auf zwei unterschiedliche Anforderungen. Eine Anforderung besteht darin, die Turbine konstruktiv so kurz wie möglich auszuführen, um hierdurch einerseits Material und
Fertigungskosten einzusparen und andererseits die Rotordyna¬ mik positiv zu beeinflussen. Die andere Forderung besteht darin, dem einströmenden Medium genügend Fläche zum Einströmen bereit zu stellen, um die Einströmgeschwindigkeit in einem sinnvollen Bereich zu halten und die Umlenkung der Strömung möglichst gering zu halten. Hierdurch lässt sich ein hoher Wirkungsgrad bei gleichzeitig geringer Geräuschentwicklung realisieren . Den beiden Forderungen wird dadurch Rechnung getragen, dass der Stutzen am Turbinengehäuse im Bereich des Ausschnittes derart ausgebildet ist, dass die turbinenachsparallele Er¬ streckung des Stutzens kleiner ist als die Erstreckung des Stutzens, rechtwinklig zur Turbinenachse. Das Fertigen eines solchen Stutzens ist jedoch mit hohem Aufwand verbunden. In der Vergangenheit kamen hierbei vor allem zwei mögliche Ver¬ fahren zum Einsatz. Beim ersten Verfahren wird der Stutzen gegossen. Das Gießens erlaubt die Nutzung erheblicher konstruktiver Freiheitsgrade, wodurch die turbinenachsparallele Erstreckung des Stutzens stark verringert werden, gleichzei¬ tig kann der Einströmquerschnitt quer zur Turbinenachse weit geöffnet werden. Nachteilig am Gießverfahren ist jedoch, dass es sehr aufwendig und teuer ist. Gleichzeitig gibt es nur we- nige Hersteller, die entsprechende Turbinengehäuse für große Turbinen herstellen können.
Eine weitere Möglichkeit zur Herstellung eines entsprechenden Turbinengehäuses mit Stutzen besteht in der Ausführung als Schweißkonstruktion. Hierbei kann auf die teure Stahlgusskonstruktionen oder die nur bei sehr niedrigeren Dampfzuständen verwendbaren Eisengusskonstruktion verzichtet werden. Bei den Schweißkonstruktionen gibt es wiederum zwei unterschiedliche Möglichkeiten der Herstellung. Beim ersten wird der Stutzen aus sehr vielen einzelnen Blechen, zusammengesetzt bzw. geschweißt. Nachteilig hierbei ist, dass es sehr viel Handar¬ beit bedarf und eine Mechanisierung/ Digitalisierung der Fertigung nicht möglich ist. Eine zweite Möglichkeit zur Her¬ stellung der Schweißkonstruktion besteht daraus, dass zu- nächst im Gesenkt geschmiedete Schalen hergestellt werden.
Diese Teile können größer ausgebildet werden als die Einzel¬ bleche, da die Kontur und die Größe im Gesenk hergestellt werden. Die Herstellung im Gesenk ist allerdings deutlich aufwendiger und teurer.
Ausgehend vom zuvor beschriebenen Problem ist es Aufgabe der vorliegenden Erfindung, ein Turbinengehäuse mit einem Stutzen bereitzustellen, der die Anforderungen nach einem kurzen Turbinengehäuse mit hinreichendem Einströmquerschnitt erfüllt und welcher einfach und kostengünstig herstellbar ist. Des
Weiteren ist es Aufgabe der Erfindung ein Verfahren zum Herstellen eines solchen Turbinengehäuses mit Stutzen bereit zu stellen . Die Aufgabe wird hinsichtlich des Turbinengehäuses mit Stut¬ zen durch die Merkmale des unabhängigen Patentanspruchs 1 ge¬ löst. Hinsichtlich des Verfahrens wird die Aufgabe durch die Merkmale der unabhängigen Patentansprüche 4 und 5 gelöst. Weitere Ausgestaltungen der Erfindung, die einzeln oder in Kombination miteinander einsetzbar sind, sind Gegenstand der Unteransprüche .
Das erfindungsgemäße Turbinengehäuse mit einem Stutzen, durch welche ein Strömungsfluid durch einen Ausschnitt im Turbinen¬ gehäuse in das Turbinengehäuse einströmen kann, wobei der Stutzen im Bereich des Ausschnittes derart ausgebildet ist, dass die turbinenachsparallele Erstreckung des Stutzens, kleiner ist als die Erstreckung des Stutzens, rechtwinklig zur Turbinenachse, zeichnet sich dadurch aus, dass der Stut¬ zen durch ein additives Herstellungsverfahren ausgebildet ist .
Durch das erfindungsgemäße Merkmal, kann das Turbinengehäuse ohne Ausschnitt für die Einströmung oder mit einem Ausschnitt für die Einströmung aber mit sehr großen Zugaben hergestellt werden. Die tatsächliche notwendige Form des Ausschnitts wird dann jeweils, auf 3D-Geometriedaten basierend, ausgeschnit¬ ten. Hierdurch kann ein mehr oder weniger Standardgehäuse verwendet werden und der jeweils benötigte oder die jeweils benötigten Stutzen können auf einfache Weise, individuell in Form und Größe, an das Turbinengehäuse angesetzt werden.
Unter additiven Verfahren werden dabei verschiedene Herstellungsverfahren zusammengefasst , die einen dreidimensionalen Aufbau aufweisen. Häufig werden additive Verfahren auch mit den Begriffen „Additive Manufacturing" oder „3D-Druck" be- zeichnet. Zur Herstellung des Stutzens eignet sich insbeson¬ dere Freiraumverfahren wie das Auftragsschweißen oder das Kaltgasspritzen, als auch Pulverbettverfahren wie insbesondere das selektive Laserschmelzen (SLM) oder das selektive La¬ sersintern (SLS) . Dabei eignet sich das Freiraumverfahren insbesondere dann, wenn der Stutzen direkt auf das Außenge¬ häuse aufgebracht wird. Die Pulverbettverfahren sind eher da¬ zu geeignet, den Stutzen zunächst einzeln herzustellen und anschließend beispielsweise mittels stoffschlüssiger oder kraftschlüssiger Verbindung mit dem Turbinengehäuse zu verbinden .
Ein wesentlicher Vorteil der Erfindung liegt darin, dass die Fertigung vollständig digitalisierbar und automatisierbar ist. Des Weiteren sind keine aufwendigen Schweißkonstruktio¬ nen oder Fertigungen mittels Gesenk notwendig, wodurch sich deutliche Kosteneinsparungen erzielen lassen. Wie bereits beschrieben ist die Form und Größe der Stutzen vollkommen vari- abel und lässt sich an die jeweiligen Anforderungen auf einfache Weise anpassen. Des Weiteren besteht ein Vorteil in der Variabilität der verwendeten Werkstoffe. So kann insbesondere für den Stutzen und das Turbinengehäuse unterschiedliche Werkstoffe verwendet werden. Auch eine ortsabhängige Werk- stoffdicke ist realisierbar. Darüber hinaus zeichnet sich das Turbinengehäuse mit dem Stutzen durch eine äußerst anspre¬ chende Optik, analog zu einer Gussausführung aus.
Eine Ausgestaltung der Erfindung sieht vor, dass das Verhält- nis der turbinenachsparallelen Erstreckung a des Stutzens zur Erstreckung b des Stutzens rechtwinklig zur Turbinenachse a/b < 0,8 vorzugsweise a/b < 0,6 ist. Hierdurch wird den Forde¬ rungen nach möglichst kurzer Bauform und hinreichendem
Einströmquerschnitt für das einzuströmende Medium Rechnung getragen.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Projektionsfläche des Ausschnitts im Wesentlichen eine Recht¬ eckfläche ist. Die Rechteckfläche ermöglicht das optimale Größenverhältnis aus kurzer Bauform und großem
Einströmquerschnitt .
Ein erfindungsgemäßes Verfahren zum Herstellen eines Turbi¬ nengehäuses mit Stutzen nach einem der vorherigen Ansprüche zeichnet sich durch die folgenden Verfahrensschritte aus:
- Herstellen eines Turbinengehäuses ohne Ausschnitt;
- Einbringen eines Ausschnitts in das Turbinengehäuse; - Ausbilden eines Stutzens um den Ausschnitt im Turbinengehäuse mittels eines additiven Fertigungsverfahrens.
Wie bereits weiter oben beschrieben kann das Turbinengehäuse als eine Art Standardgehäuse ohne jeglichen Ausschnitt herge¬ stellt werden. Die Ausschnitte werden dann nachfolgend in das Turbinengehäuse eingebracht und der jeweilige Stutzen um den Ausschnitt im Turbinengehäuse herum mittels des additiven Fertigungsverfahrens ausgebildet. Das Verfahren bietet somit eine weitgehende individuelle Fertigung und Anordnung des
Stutzens am Turbinengehäuse. Die tatsächlich notwendige Größe und Form des Ausschnittes wird auf 3D-Geoemtrie basierend aus dem Turbinengehäuse, beispielsweise mittels Laserstrahl- oder Wasserstrahlschneiden herausgeschnitten. Das Herausschneiden des Ausschnitts kann vollständig digitalisiert/automatisiert werden. Hierdurch können sehr exakte Ausschnitte in das Turbinengehäuse eingebracht werden. Nach dem Einbringen des Aus¬ schnittes wird dann in einem weiteren Verfahrensschritt der Stutzen um den Ausschnitt im Turbinengehäuse herum ausgebil- det. Das Ausbilden des Stutzens erfolgt dabei mittels eines additiven Fertigungsverfahrens.
Ein zweites Verfahren zum Herstellen eines Turbinengehäuses mit Stutzen zeichnet sich durch die folgenden Verfahrens- schritt aus:
- Herstellen des Turbinengehäuses mit einem Ausschnitt;
- Erweitern des Ausschnitts im Turbinengehäuse auf das Endmaß ;
- Ausbilden des Stutzens um den Ausschnitt im Turbinenge¬ häuse mittels additiven Fertigungsverfahren.
Das Verfahren unterscheidet sich dabei vom zuvor beschriebe¬ nen Verfahren dadurch, dass bereits Ausschnitte im Turbinen- gehäuse vorgesehen sind. Die Ausschnitte für die Einströmung im Außengehäuse sind allerdings mit sehr großen Zugaben her¬ gestellt und in einem weiteren Verfahrensschritt erfolgt das Erweitern des Ausschnittes auf das Endmaß. Durch die bereits vorgesehenen Ausschnitte im Turbinengehäuse kann der Ver¬ schnitt beim Einbringen der Ausschnitte reduziert werden, wo¬ durch die Fertigungskosten für das Turbinengehäuse geringer ausfallen. Die Ausschnitte mit dem entsprechenden Aufmaß sind an den Stellen vorgesehen, an denen später der Stutzen vorgesehen ist, wobei noch nicht festgelegt werden muss, welche Größe der später anzubringende Stutzen aufweist. Der Aus¬ schnitt wird so klein gewählt, dass alle möglichen Größen von Stutzen an das Turbinengehäuse angebracht werden können. Nach Ausbilden des Ausschnitts auf das notwendige Maß erfolgt wie¬ derum das Ausbilden des Stutzens mittels additiven Ferti¬ gungsverfahrens um den Ausschnitt im Turbinengehäuse.
Eine Ausgestaltung der Erfindung sieht dabei vor, dass der Stutzen unmittelbar mittels eines additiven Herstellungsverfahrens auf das Turbinengehäuse aufgebracht wird. Als additi¬ ves Herstellungsverfahren eignen sich hierzu besonders die sogenannten Freiraumverfahren, insbesondere Auftragsschweißen oder Kaltgasspritzen. Ein nachfolgendes Befestigen des Stut- zens am Turbinengehäuse entfällt dabei.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Stutzen separat mittels eines additiven Herstellungsverfahrens hergestellt wird und anschließend am Turbinengehäuse be- festigt wird. Als additives Herstellungsverfahren eignet sich hier insbesondere das Pulverbettverfahren und dabei im speziellen das selektive Laserschmelzen (SLM) oder das selektive Lasersintern (SLS) . Der so hergestellte Stutzen muss anschließend noch um den Ausschnitt im Turbinengehäuse herum befestigt werden.
Eine Ausgestaltung des Verfahrens sieht dabei vor, dass der Stutzen stoff- und/oder kraftschlüssig am Turbinengehäuse be¬ festigt wird. Als Stoffschlüssige Verbindung kommt dabei ins- besondere ein Löten oder Schweißen des Stutzens am Turbinengehäuse in Frage. Eine kraftschlüssige Verbindung zwischen dem Stutzen und dem Turbinengehäuse lässt sich beispielsweise mittels einer Flanschverbindung realisieren. Nachfolgend soll die Erfindung und weitere Vorteile der Er¬ findung an einem Ausführungsbeispiel näher erläutert werden. Es zeigt:
Figur 1 eine Draufsicht auf ein erfindungsgemäßes Turbi¬ nengehäuse mit Stutzen;
Figur 2 eine Seitenansicht des in Figur 1 gezeigten Turbinengehäuses mit Stutzen.
Die Figuren zeigen jeweils nur stark vereinfachte Darstellungen der Erfindung, wobei im Wesentlichen nur die zur Erfindung notwendigen Bauteile dargestellt sind. Die Zeichnungen zeigen nicht zwangweise eine maßstabgetreue Wiedergabe des Turbinengehäuses und des Stutzens. Gleiche bzw. funktions¬ gleiche Bauteile sind figurübergreifend mit denselben Bezugs¬ zeichen versehen. Figur 1 zeigt ein Turbinengehäuse 1, beispielsweise ein
Dampfturbinengehäuse, mit einem Stutzen 2, durch welchen ein Strömungsfluid durch einen Ausschnitt 3 im Turbinengehäuse 1 in das Turbinengehäuse 1 einströmen kann. Der Stutzen 2 ist im Bereich des Ausschnitts 3 derart ausgebildet, dass die turbinenachsparallele Erstreckung a des Stutzens 2, kleiner ist als die Erstreckung b des Stutzens 2 rechtwinklig zur Turbinenachse 4. Der Stutzen 2 ist durch ein additives Her¬ stellverfahren ausgebildet. Je nach ausgewählten additiven Herstellungsverfahren, kann der Stutzen unmittelbar auf das Turbinengehäuse 1 aufgebracht sein, oder zunächst separat hergestellt und anschließend am Turbinengehäuse 1 befestigt werden. Bei einer nachträglichen Befestigung des Stutzens 2 am Turbinengehäuse 1 kann die Befestigung des Stutzens 2 vor¬ zugsweise stoff- und/oder kraftschlüssig erfolgen. Als stoff- schlüssige Verbindung eignet sich hierbei insbesondere ein
Schweißverfahren. Eine kraftschlüssige Verbindung kann insbesondere über einen hier nicht näher dargestellten Flansch erfolgen. Das Verhältnis der turbinenachsparallelen Erstreckung a des Stutzens 2 zur Erstreckung b des Stutzens 2 rechtwinklig zur Turbinenachse ist a/b < 0,8, vorzugsweise a/b < 0,6. Hierdurch wird dem Erfordernis Rechnung getragen, einerseits das Turbinengehäuse 1 in axialer Richtung möglichst kurz zu bauen und andererseits dem Strömungsfluid genügend Fläche zum Einströmen in das Turbinengehäuse 1 zu geben. Die dem Turbi¬ nengehäuse 1 abgewandte Seite des Stutzens kann insbesondere zum Anschluss von Zuleitungen als kreisrunde Form ausgebildet werden. Das additive Herstellverfahren des Stutzens 2 ermög- licht dabei eine vollkommende Variabilität sowohl in Form als auch in Größe des Stutzens 2. Ein weiterer Vorteil des addi¬ tiven Herstellungsverfahrens liegt darin, dass die verwende¬ ten Werkstoffe variieren können und entsprechend den Anforde¬ rungen ausgewählt werden können. Zudem ist eine ortsabhängige Werkstoffdicke des Stutzens 2 realisierbar.
Eine entsprechende Form eines Stutzens 2 ist insbesondere aus Figur 2 erkennbar. Der Stutzen 2 ist im unteren, dem Turbinengehäuse 2 zugewandten Bereich so ausgebildet, dass die Projektionsfläche des Ausschnitts im Wesentlichen eine recht¬ winklige Fläche ist. Im dem Turbinengehäuse 2 abgewandten Be¬ reich ist der Stutzen 2 hingegen im Wesentlichen kreisförmigen ausgebildet, so dass die Zuleitungen welche in der Regel einen runden Querschnitt aufweisen, leicht an den Stutzen 2 anschließbar sind. Der Ausschnitt im Turbinengehäuse 1 kann vollkommen digitalisiert/ automatisiert werden und beispiels¬ weise durch Laser- oder Wasserstrahlschneiden ausgebildet werden. Auch das Ausbilden des Stutzens 2 mittels additiven Herstellverfahren kann vollkommen digitalisiert/automatisiert erfolgen. Hierdurch verkürzen sich die Herstellungszeiten und die Herstellungskosten deutlich.
Ein wesentlicher Vorteil des erfindungsgemäßen Turbinengehäuses 1 mit Stutzen 2 liegt darin, dass das Turbinengehäuse 1 weitgehend als Standardteil hergestellt werden kann und die entsprechenden Ausschnitte individuell eingebracht werden können. Das Ausbilden des Stutzens 2 um die Ausschnitte er¬ folgt anschließend ebenfalls vollständig individuell mittels additiven Herstellverfahrens. Form und Größe des Stutzens 2 sind dabei im Wesentlichen frei wählbar, ebenso der zu verwendende Werkstoff, der lediglich passen zu den Anforderungen ausgewählt werden muss. Neben den rein technischen Gesichts- punkten bietet das Turbinengehäuse 1 mit Stutzen 2, welcher durch ein additives Herstellverfahren ausgebildet ist, auch optische Vorteile, da ein solches Turbinengehäuse mit Stutzen eine äußerst ansprechende Optik analog zu einer Gussausfüh¬ rung aufweist.

Claims

Patentansprüche
1. Turbinengehäuse (1) mit einem Stutzen (2), durch wel¬ chen ein Strömungsfluid durch einen Ausschnitt (3) im Turbinengehäuse (1) in das Turbinengehäuse (1) einströ¬ men kann, wobei der Stutzen (2) im Bereich des Ausschnitts (3) derart ausgebildet ist, dass die turbinen- achsparallele Erstreckung (a) des Stutzens (2), klei¬ ner ist als die Erstreckung (b) des Stutzens (2), rechtwinklig zur Turbinenachse,
dadurch gekennzeichnet, dass
der Stutzen (2) durch ein additives Herstellungsverfahren ausgebildet ist.
2. Turbinengehäuse (1) nach Anspruch 1,
dadurch gekennzeichnet, dass
das Verhältnis der turbinenachsparallele Erstreckung a des Stutzens (2) zur Erstreckung b des Stutzens (2) rechtwinklig zur Turbinenachse a/b < 0,8 vorzugsweise a/b < 0, 6 ist.
3. Turbinengehäuse (1) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Projektionsfläche des Ausschnitts (3) im Wesentli- chen eine Rechteckfläche ist.
4. Verfahren zum Herstellen eines Turbinengehäuses (1) mit Stutzen (2) nach einem der vorherigen Ansprüche, gekennzeichnet durch die folgenden Verfahrensschritte: - Herstellen des Turbinengehäuses (1) ohne Ausschnitt
(3) ;
- Einbringen eines Ausschnitts (3) in das Turbinenge¬ häuse ( 1 ) ;
- Ausbilden des Stutzens (2) um den Ausschnitt (3) im Turbinengehäuse (1) mittels eines additiven Ferti¬ gungsverfahrens . Verfahren zum Herstellen eines Turbinengehäuses (1) mit Stutzen (2) nach einem der Ansprüche 1 bis 3,
gekennzeichnet durch die folgenden Verfahrensschritte:
- Herstellen des Turbinengehäuses (1) mit einem Aus¬ schnitt (3) ;
- Erweitern des Ausschnitts (3) im Turbinengehäuse (1) auf das Endmaß;
- Ausbilden des Stutzens (2) um den Ausschnitt (3) im Turbinengehäuse (1) mittels additiven Fertigungsver¬ fahrens .
Verfahren zum Herstellen eines Turbinengehäuse (l)s mit Stutzen (2) nach einem der Ansprüche 4 oder 5,
dadurch gekennzeichnet, dass
das Ausschneiden/ Erweitern des Ausschnitts (3) basie¬ rend auf 3D-Geometriedaten erfolgt.
Verfahren zum Herstellen eines Turbinengehäuses (1) mit Stutzen (2) nach Ansprüche 6,
dadurch gekennzeichnet, dass
das Ausschneiden/ Erweitern des Ausschnitts (3) automa¬ tisiert erfolgt.
Verfahren zum Herstellen eines Turbinengehäuses (1) mit Stutzen (2) nach einem der Ansprüche 4 bis 7,
dadurch gekennzeichnet, dass
das Ausschneiden/ Erweitern des Ausschnitts (3) mittels Laserstrahl- oder Wasserstrahlschneiden erfolgt. 9. Verfahren zum Herstellen eines Turbinengehäuses (1) mit
Stutzen (2) nach einem der Ansprüche 4 bis 8,
dadurch gekennzeichnet, dass
der Stutzen (2) unmittelbar mittels einem additiven Herstellungsverfahrens auf das Turbinengehäuse (1) auf- gebracht wird. Verfahren zum Herstellen eines Turbinengehäuses (1) mit Stutzen (2) nach einem der Ansprüche 4 bis 8,
dadurch gekennzeichnet, dass
der Stutzen (2) separat mittels einem additiven Herstellungsverfahrens hergestellt und anschließend der Stutzen (2) am Turbinengehäuse (1) befestigt wird.
Verfahren nach Anspruch 10,
dadurch gekennzeichnet, dass
der Stutzen (2) stoff- oder kraftschlüssig am Turbi¬ nengehäuse (1) befestigt wird.
PCT/EP2018/075021 2017-09-26 2018-09-17 Turbinengehäuse mit stutzen sowie verfahren zum herstellen eines turbinengehäuses mit stutzen WO2019063329A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017217034.4A DE102017217034A1 (de) 2017-09-26 2017-09-26 Turbinengehäuse mit Stutzen sowie Verfahren zum Herstellen eines Turbinengehäuses mit Stutzen
DE102017217034.4 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019063329A1 true WO2019063329A1 (de) 2019-04-04

Family

ID=63708305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/075021 WO2019063329A1 (de) 2017-09-26 2018-09-17 Turbinengehäuse mit stutzen sowie verfahren zum herstellen eines turbinengehäuses mit stutzen

Country Status (2)

Country Link
DE (1) DE102017217034A1 (de)
WO (1) WO2019063329A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129506A (ja) * 1985-11-29 1987-06-11 Fuji Electric Co Ltd 蒸気タ−ビンの車室構造
US20040107573A1 (en) * 2002-12-04 2004-06-10 Tomko Andrew John Methods for manufacturing a nozzle box assembly for a steam turbine
US20120087784A1 (en) * 2010-10-12 2012-04-12 General Electric Company Inducer for gas turbine system
EP2783775A2 (de) * 2013-03-25 2014-10-01 MAHLE International GmbH Verwendung eines additiven Herstellungsverfahrens zur Herstellung eines Bauteils für ein Kraftfahrzeug
FR3021994A1 (fr) * 2014-06-04 2015-12-11 Snecma Ecope pour un systeme de refroidissement et de controle des jeux d'une turbine de turbomachine
DE102016203901A1 (de) * 2016-03-10 2017-09-14 MTU Aero Engines AG Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018649A1 (de) * 2012-09-20 2014-03-20 Liebherr-Aerospace Lindenberg Gmbh Klappenaktuator
DE102013110417A1 (de) * 2013-09-20 2015-03-26 Thyssenkrupp Steel Europe Ag Metallpulver für pulverbasierte Fertigungsprozesse und Verfahren zur Herstellung eines metallischen Bauteils aus Metallpulver
DE102014012480B4 (de) * 2014-08-27 2016-06-09 Rosswag Gmbh Herstellverfahren für eine Beschaufelung einer Strömungsmaschine, Beschaufelung einer Strömungsmaschine und Laufrad
DE102015221166A1 (de) * 2015-10-29 2017-05-04 Mahle International Gmbh Fluidsystem mit Verbindungsbauteil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129506A (ja) * 1985-11-29 1987-06-11 Fuji Electric Co Ltd 蒸気タ−ビンの車室構造
US20040107573A1 (en) * 2002-12-04 2004-06-10 Tomko Andrew John Methods for manufacturing a nozzle box assembly for a steam turbine
US20120087784A1 (en) * 2010-10-12 2012-04-12 General Electric Company Inducer for gas turbine system
EP2783775A2 (de) * 2013-03-25 2014-10-01 MAHLE International GmbH Verwendung eines additiven Herstellungsverfahrens zur Herstellung eines Bauteils für ein Kraftfahrzeug
FR3021994A1 (fr) * 2014-06-04 2015-12-11 Snecma Ecope pour un systeme de refroidissement et de controle des jeux d'une turbine de turbomachine
DE102016203901A1 (de) * 2016-03-10 2017-09-14 MTU Aero Engines AG Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils

Also Published As

Publication number Publication date
DE102017217034A1 (de) 2019-03-28

Similar Documents

Publication Publication Date Title
EP2029318B1 (de) Verfahren zur herstellung eines einteiligen kolbens
EP3299117B1 (de) Verfahren zur herstellung oder zur reparatur eines bauteils einer rotationsmaschine sowie bauteil hergestellt oder repariert nach einem solchen verfahren
EP2681437A2 (de) Kolben für einen verbrennungsmotor und verfahren zu seiner herstellung
WO2011009431A1 (de) Verfahren zum austauschen einer schaufel eines rotors mit integrierter beschaufelung und ein derartiger rotor
WO2018042032A1 (de) Verfahren zur additiven herstellung mittels poröser hilfsstruktur, bauteil und vorrichtung
EP3667019A1 (de) Impulskörpermodulverbund, zugehörige impulskörpermodulverbundmenge, gasturbinenschaufel, verwendung eines impulskörpermodulverbunds und verfahren zum herstellen eines impulskörpermodulverbunds
WO2019063329A1 (de) Turbinengehäuse mit stutzen sowie verfahren zum herstellen eines turbinengehäuses mit stutzen
EP3061561B1 (de) Verfahren zur herstellung eines bauteils und das entsprechende bauteil
WO2019197664A1 (de) SCHMIERRING FÜR EINEN MECHANISCHEN EXPANDER ZUM KALIBRIEREN VON GROßROHREN
EP3704386B1 (de) Generativ gefertigter zwischenkanal zur anordnung zwischen einem niederdruckverdichter und einem hochdruckverdichter, sowie entsprechendes fertigungsverfahren
DE102006031365A1 (de) Verfahren zur Herstellung eines Zylinderrohres für einen hydraulischen oder pneumatischen Zylinder und Bausatz zur Herstellung eines Zylinderrohres
DE102012200768B4 (de) Verschlusselement einer Inspektionsöffnung einer Turbomaschine und Verfahren zur Herstellung eines Verschlusselements
EP3546812A1 (de) Hydraulikkomponentensystem mit einer zumindest teilweise generativ hergestellten hydraulikkomponente
DE102011086507A1 (de) Klappenmechanismus für ein Turboladersystem
EP4036377B1 (de) Dichtungskomponente, insbesondere zur abdichtung eines dampfraumes gegenüber der umgebung oder zweier dampfräume mit unterschiedlichen drücken sowie verwendung einer solchen
DE102013002242A1 (de) Verfahren zur Herstellung eines von einem Medium durch- oder umströmbaren Bauteils
EP2869961B1 (de) Verfahren zum herstellen eines bauteils mit erwärmung der ersten komponente und des zweiten materials auf einer reaktionstemperatur
DE102009023488A1 (de) Turbine für einen Abgasturbolader sowie Verfahren zum Herstellen einer Turbine
EP3508690A1 (de) Turbinenschaufelblatt, turbinenschaufel und verfahren zu deren herstellung
EP3150321A1 (de) Verfahren zur herstellung eines gehäuses einer turbomaschine
WO2018091245A1 (de) Erzeugung eines formlochs in einer wand
DE102016204357A1 (de) Verfahren zur Herstellung einer Konsole eines Steuermotors
EP1865155B1 (de) Turbinengehäuse für eine Dampfturbine und/oder eine Gasturbine und Verfahren zu dessen Herstellung
DE102016122785B4 (de) Verfahren zum Herstellen einer Brennstoff- oder Hydraulikmittelleiteinheit mittels kombinatorischem ECM-Bearbeitens und Laserbohrens
DE102022211997A1 (de) Schalldämpfungsbauteil, dessen Herstellung und Verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18779256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18779256

Country of ref document: EP

Kind code of ref document: A1