WO2019062960A1 - 车载电池的温度调节方法和温度调节*** - Google Patents

车载电池的温度调节方法和温度调节*** Download PDF

Info

Publication number
WO2019062960A1
WO2019062960A1 PCT/CN2018/108794 CN2018108794W WO2019062960A1 WO 2019062960 A1 WO2019062960 A1 WO 2019062960A1 CN 2018108794 W CN2018108794 W CN 2018108794W WO 2019062960 A1 WO2019062960 A1 WO 2019062960A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
thermal management
batteries
heat exchange
Prior art date
Application number
PCT/CN2018/108794
Other languages
English (en)
French (fr)
Inventor
伍星驰
谈际刚
王洪军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019062960A1 publication Critical patent/WO2019062960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of automotive technologies, and in particular, to a temperature adjustment method for a vehicle battery, a non-transitory computer readable storage medium, and a temperature adjustment system for a vehicle battery.
  • the on-board battery system in an electric vehicle may include a plurality of batteries, and the arrangement of the batteries differs depending on the arrangement position, or the heating/cold power supplied to each battery by the temperature regulation system of the battery is uneven, resulting in between the respective batteries. There is a large difference in temperature, and the temperature uniformity of the battery is poor, which in turn leads to a decrease in battery cycle life.
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • the present disclosure proposes a temperature regulation system for a vehicle battery, which can equalize the temperature of a plurality of batteries through a heat exchanger when a temperature difference between a plurality of batteries is large, thereby improving battery circulation. life.
  • the present disclosure also proposes a temperature regulation system for a vehicle battery.
  • the present disclosure also proposes an apparatus.
  • a first aspect of the present disclosure provides a temperature adjustment system for a vehicle battery, including: a plurality of battery thermal management devices respectively connected to a plurality of batteries; and the plurality of battery thermal management devices are connected Heat exchanger, wherein the heat exchanger includes a first conduit and a second conduit, a portion of the plurality of battery thermal management devices being coupled to a first conduit of the heat exchanger, Another portion of the plurality of battery thermal management devices is coupled to a second conduit of the heat exchanger, the battery thermal management device including a pump disposed on the heat exchange flow path, a first temperature sensor, and a second temperature sensor, The pump, the first temperature sensor and the second temperature sensor are connected to the controller; the controller is configured to acquire a temperature of the plurality of batteries, and determine between the plurality of batteries Whether the temperature difference is greater than a preset temperature threshold, wherein if the temperature difference is greater than the preset temperature threshold, the pump is controlled to equalize the temperatures of the plurality of batteries through the heat exchanger.
  • the temperature of the plurality of batteries is acquired by the controller, and it is determined whether the temperature difference between the plurality of batteries is greater than a preset temperature threshold, if the temperature difference is greater than the preset temperature threshold.
  • the pump is controlled to equalize the temperature of the plurality of batteries through the heat exchanger.
  • the system can equalize the temperature of the plurality of batteries through the heat exchanger when the temperature difference between the plurality of batteries is large, thereby improving the cycle life of the battery.
  • a second aspect of the present disclosure provides a method for adjusting a temperature of a vehicle battery, including the steps of: acquiring a temperature of the plurality of batteries; and determining whether a temperature difference between the plurality of batteries is greater than a pre- A temperature threshold is set; if greater than the preset temperature threshold, the pump is controlled to equalize the temperature of the plurality of batteries through the heat exchanger.
  • the temperature adjustment method of the vehicle battery first, the temperature of the plurality of batteries is acquired, and then it is determined whether the temperature difference between the plurality of batteries is greater than a preset temperature threshold, and if the temperature is greater than the preset temperature threshold, the pump is controlled.
  • the temperature of a plurality of batteries is equalized by a heat exchanger.
  • the method can equalize the temperature of the plurality of batteries through the heat exchanger when the temperature difference between the plurality of batteries is large, thereby improving the cycle life of the battery.
  • a third aspect of the present disclosure provides an apparatus comprising: one or more processors; a memory; one or more programs, the one or more programs being stored in the memory, when When executed by the one or more processors, the temperature adjustment method of the on-vehicle battery of the above-described embodiment of the present disclosure is performed.
  • the device of the present disclosure first acquires the temperatures of the plurality of batteries, and then determines whether the temperature difference between the plurality of batteries is greater than a preset temperature threshold. If the temperature is greater than the preset temperature threshold, the temperature of the plurality of batteries is equalized by the heat exchanger. Therefore, when the temperature difference between the plurality of batteries is large, the temperature of the plurality of batteries can be equalized by the heat exchanger, so that the cycle life of the battery can be improved.
  • FIG. 1a is a block schematic diagram 1 of a temperature adjustment system of a vehicle battery according to a first embodiment of the present disclosure
  • 1b is a block diagram 2 of a temperature adjustment system of a vehicle battery according to a first embodiment of the present disclosure
  • FIG. 2 is a control topology diagram of a temperature adjustment system of a vehicle battery according to an embodiment of the present disclosure
  • FIG. 3 is a block schematic diagram of a temperature adjustment system of a vehicle battery according to a second embodiment of the present disclosure
  • FIG. 4 is a flowchart of a temperature adjustment method of a vehicle battery according to a first embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an apparatus according to an embodiment of the present disclosure.
  • FIGS. 1a-1b are block schematic diagrams of a temperature regulation system for a vehicle battery in accordance with an embodiment of the present disclosure.
  • the system includes: a plurality of battery thermal management devices respectively connected to the plurality of batteries, a heat exchanger 2 connected to the plurality of battery thermal management devices, and a controller (not specifically shown in the drawing) ).
  • the heat exchanger 2 comprises a first pipeline and a second pipeline, a part of the plurality of battery thermal management devices is connected to the first pipeline in the heat exchanger 2, and another part of the plurality of battery thermal management devices is
  • the second conduits in the heat exchanger 2 are connected, and the battery thermal management device may include a pump 12 disposed on the heat exchange flow path, a first temperature sensor 14 and a second temperature sensor 15, a pump 12, a first temperature sensor 14 and a The second temperature sensor 15 is connected to the controller.
  • the pump 12 is used to flow the medium in the heat exchange flow path;
  • the first temperature sensor 14 is used to detect the inlet temperature of the medium flowing into the vehicle battery;
  • the second temperature sensor 15 is used to detect the outlet temperature of the medium flowing out of the vehicle battery.
  • the medium flows into the interior of the battery from the inlet of the flow path and flows out from the outlet of the flow path, thereby achieving heat exchange between the battery and the medium.
  • the pump 12 is primarily used to provide power
  • the media container 13 is primarily used to store media and accept media added to the temperature conditioning system, and the media in the media container 13 can be automatically replenished as the media in the temperature regulating system is reduced.
  • the first temperature sensor 14 is used to detect the temperature of the flow path inlet medium
  • the second temperature sensor 15 is used to detect the temperature of the flow path outlet medium.
  • the controller is connected to the battery thermal management device, wherein the controller is configured to obtain the temperature of the plurality of batteries, and determine whether the temperature difference between the plurality of batteries is greater than a preset temperature threshold, wherein if the temperature difference is greater than the preset temperature threshold, the pump is 12 controls to equalize the temperatures of the plurality of batteries through the heat exchanger 2.
  • the preset temperature threshold can be preset according to actual conditions, for example, it can be 8 °C.
  • the battery includes a first battery 31 and a second battery 32
  • the battery thermal management device includes a first battery thermal management device 11 and a second battery thermal management device 12.
  • the battery thermal management device further includes a flow rate sensor 16 disposed on the heat exchange flow path, wherein the flow rate sensor 16 is configured to detect the flow rate of the medium in the heat exchange flow path .
  • the flow rate sensor 16 is configured to detect flow rate information of the medium in the conduit in the temperature regulation system.
  • the heat exchanger 2 may be a plate heat exchanger, and the two pipes in the heat exchanger 2 are disposed adjacent to each other independently.
  • the controller includes a battery manager, and the battery manager can be, for example, a DSP chip with battery management function.
  • the battery manager can be used to manage the battery, and can detect the voltage, current, temperature, etc. of each battery.
  • Information when the temperature difference between the batteries exceeds the preset temperature threshold, the controller sends a battery temperature equalization function start information, when the temperature difference between the batteries meets the requirements, for example, when the temperature difference between the batteries is less than 3 ° C, the battery is issued Temperature equalization completion information.
  • the battery manager can communicate with the battery thermal management device (CAN) (Controller Area Network).
  • CAN Battery Thermal Management device
  • the battery manager sends the battery temperature equalization function to start.
  • the information is sent to the battery thermal management device and the battery thermal management device is activated. As shown in FIG.
  • the medium in the first pipeline and the second pipeline flows, wherein the direction of the medium flow in the first pipeline is: heat exchanger 2 - first battery thermal management device 11 - first battery 31 - Battery thermal management device 11 - heat exchanger 2, specifically: heat exchanger 2 - pump 12 - first temperature sensor 14 - first battery 31 - second temperature sensor 15 - flow rate sensor 16 - medium container 13 - heat exchanger 2; the flow direction of the medium in the second pipeline is: heat exchanger 2 - second battery thermal management device 12 - second battery 32 - battery thermal management device 12 - heat exchanger 2, specifically: heat exchanger 2 - Pump 12 - first temperature sensor 14 - second battery 32 - second temperature sensor 15 - flow rate sensor 16 - medium container 13 - heat exchanger 2.
  • the medium in the first pipeline and the second pipeline flows, wherein the direction of the medium flow in the first pipeline is: heat exchanger 2 - first battery thermal management device 11 - first battery 31 - Battery thermal management device 11 - Heat exchanger 2, specifically: heat exchanger 2 - medium container 13 - flow rate sensor 16 - second temperature sensor 15 - first battery 31 - first temperature sensor 14 - pump 12 - heat exchange
  • the flow direction of the medium in the second pipeline is: heat exchanger 2 - second battery thermal management device 12 - second battery 32 - battery thermal management device 12 - heat exchanger 2, specifically: heat exchanger 2 Pump 12 - First Temperature Sensor 14 - Second Battery 32 - Second Temperature Sensor 15 - Flow Rate Sensor 16 - Media Container 13 - Heat Exchanger 2.
  • the flow direction of the first battery circulation circuit of Fig. 1b is opposite to that of Fig. 1a.
  • the medium flow direction of the first pipe and the second pipe in the heat exchanger 2 is opposite, and the heat exchange efficiency of the heat exchanger can be improved as compared with Fig. 1a.
  • the system can adjust the temperature of the plurality of batteries through the heat exchanger when the temperature difference between the plurality of batteries is large, so that the cycle life of the battery can be improved.
  • a battery refers to an energy storage device that is mounted on an electric vehicle, provides power output for the electric vehicle, and supplies power to other electric devices on the vehicle, and can be repeatedly charged.
  • the battery can include a battery pack or a battery pack.
  • the above-described temperature adjustment system of the vehicle battery further includes a battery state detecting device for detecting a current of the vehicle battery, and the controller is further connected to the battery state detecting device.
  • the controller is further configured to acquire the actual power P2 of the battery and the balanced demand power P3 of the battery, and control the pump according to the actual power P2 of the battery and the balanced demand power P3 of the battery to The temperature is equalized.
  • the required power P3 is equalized, that is, when the temperature difference between the plurality of batteries is adjusted to a predetermined range within a target time, for example, within 3 ° C, the obtained heating power/cooling power is required.
  • the actual power P2 is the actual heating power/cooling power obtained when the battery is temperature-balanced.
  • the target time is a preset value, for example, it can be 1h.
  • the equalized demand power P3 includes a heating demand power P3a and a cooling demand power P3b.
  • the heating demand power P3a and the cooling required power P3b of the battery can be obtained in different manners, that is, the equalized demand power P3 is obtained.
  • the controller can according to the formula: The average cooling demand power P3b is generated; when the battery is heated, the controller can according to the formula: A heating demand power P3a is generated.
  • ⁇ T 1 is the temperature difference between the two batteries
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery
  • I is the current of the battery
  • R is the internal resistance of the battery.
  • the controller may calculate the heating demand power P3a according to the following formula (1) and calculate the cooling demand power P3b according to the formula (2):
  • ⁇ T 1 is the temperature difference between the two batteries
  • t is the target time
  • C is the specific heat capacity of the battery
  • M 1 is the mass of the first battery
  • M 2 is the mass of the second battery
  • I 1 is the first battery Current
  • I 2 is the mass of the second battery
  • R 1 is the internal resistance of the first battery
  • R 2 is the internal resistance of the second battery
  • the following describes another adjustment method, that is, only consider reducing the temperature difference between the batteries as soon as possible, and does not guarantee whether the temperature of the battery will rise. This situation is applicable when the battery temperature is not very high, and when the temperature difference between the batteries is large, it is not necessary to limit the temperature of the battery from rising.
  • the specific calculation formula is as follows:
  • the controller can calculate the heating demand power P3a according to the following formula (3) and calculate the cooling demand power P3b according to the formula (4):
  • ⁇ T 1 is the temperature difference between the two batteries
  • t is the target time
  • C is the specific heat capacity of the battery
  • M 1 is the mass of the first battery
  • M 2 is the mass of the second battery
  • I 1 is the first battery
  • the current I 2 is the current of the second battery
  • R 1 is the internal resistance of the first electric power
  • R 2 is the internal resistance of the second battery.
  • the controller is further configured to acquire an inlet temperature and an outlet temperature of the flow path for acquiring the battery temperature, and acquire a flow velocity v of the medium inflow flow path, and according to the battery temperature detected by the first temperature sensor 13
  • the inlet temperature of the flow path and the outlet temperature detected by the second temperature sensor 14 generate a second temperature difference ⁇ T 2 , and generate the actual power P2 of the battery according to the second temperature difference ⁇ T 2 of each battery and the flow rate v detected by the flow rate sensor 15 .
  • the controller may further include a battery thermal management controller, and the battery thermal management controller may be electrically connected to the first temperature sensor 14, the second temperature sensor 15, and the flow rate sensor 16, and perform CAN with the pump 12. Communication, and according to the specific heat capacity of the medium, the density of the medium, the actual power P2 is obtained, and the rotation speed of the pump 12 and the medium temperature and the medium flow rate are monitored.
  • the battery thermal management controller controls the pump 12 to operate at a default low speed.
  • the battery thermal management controller may be, for example, a DSP chip having a battery thermal management function.
  • the battery thermal management controller is described below in connection with a specific embodiment to control the pump 12 based on the actual power P2 of the battery and the equalized demand power P3 of the battery.
  • the controller is configured to increase the rotational speed of the pump 12 when the actual power P2 of the battery is less than the equalized required power P3 of the battery, and when the actual power P2 of the battery is greater than or equal to the equalized required power P3 of the battery, The rotation speed of the pump 12 is lowered or the rotation speed of the pump 12 is kept constant.
  • the battery thermal management controller acquires the actual temperature P2 and the balanced required power P3 of each battery in real time. If the actual power P2 of a battery is less than the balanced required power P3 of the battery, the battery The thermal management controller increases the rotational speed of the pump 12 in the battery thermal management device corresponding to the battery to increase the flow velocity v of the medium in the battery cooling duct, thereby increasing the actual temperature P2 of the battery to complete the temperature in the target time. balanced. If the actual power P2 of a battery is greater than or equal to the balanced demand power P3 of the battery, the battery thermal management controller reduces the rotational speed of the pump 12 in the battery thermal management device corresponding to the battery to save power or maintain the speed of the pump 12. constant.
  • the present disclosure also proposes another temperature regulation system for the vehicle battery.
  • the main difference between FIG. 1a-1b and FIG. 3 is that a heat exchange fan is added to FIG. 3, wherein the heat exchange fan may include The first heat exchange fan and the second heat exchange fan, the first heat exchange fan and the second heat exchange fan are respectively disposed on both sides of the heat exchanger to accelerate the flow of air on both sides of the heat exchanger.
  • the first heat exchange fan and the second heat exchange fan are respectively connected to the controller, and the controller controls the rotation speeds of the first heat exchange fan and the second heat exchange fan.
  • Fig. 1a-1b the temperature between the two batteries needs to be simultaneously connected to one end of the heat exchanger 2, so that temperature equalization can be achieved, that is, one battery must be heated and the other battery can be cooled simultaneously, Fig. 1a -1b can quickly achieve temperature equalization between batteries.
  • the first battery thermal management device 11 starts to operate, and the battery thermal management controller controls the pump 12 to start, while controlling the first heat exchange fan to start working, so that The heat of the medium in the first pipe of the heat exchanger 2 is blown to the external environment through the first heat exchange fan, so that the temperature of the medium is lowered, thereby providing cooling power to the battery, so that the temperature of the first battery 31 is lowered, thereby reducing the first battery 31.
  • the battery thermal management controller controls the pump 12 to start, and simultaneously controls the second heat exchange fan to start working, so that the heat exchange The heat of the medium in the second pipe in the second pipe is blown into the external environment through the second heat exchange fan, so that the temperature of the medium is lowered, thereby providing cooling power to the battery, so that the temperature of the second battery 32 is lowered, thereby reducing the first battery 31 and The temperature difference between the second batteries 32.
  • the temperature of the plurality of batteries is acquired by the controller, and it is determined whether the temperature difference between the plurality of batteries is greater than a preset temperature threshold, if the temperature difference is greater than the preset temperature threshold. Then, the temperature of the plurality of batteries is equalized by the heat exchanger. Therefore, the system can adjust the temperature of the plurality of batteries through the heat exchanger when the temperature difference between the plurality of batteries is large, obtain the balanced demand power of the battery, and obtain the actual power of the battery, and according to the equalization The demand power and the actual power control the pump to equalize the temperature of the plurality of batteries, thereby improving the cycle life of the battery.
  • the vehicle battery temperature regulation system includes a plurality of battery thermal management devices respectively connected to the plurality of batteries, and a heat exchanger connected to the plurality of battery thermal management devices, wherein the plurality of batteries A portion of the thermal management device is coupled to the first conduit in the heat exchanger, and another portion of the plurality of battery thermal management devices is coupled to the second conduit of the heat exchanger (two batteries and a battery thermal management device are shown)
  • the battery thermal management device includes a pump disposed on the heat exchange flow path, a first temperature sensor, and a second temperature sensor.
  • the temperature adjustment method of the vehicle battery includes the following steps:
  • the preset temperature threshold may be preset according to actual conditions, for example, may be 8 ° C.
  • the pump is controlled to equalize the temperatures of the plurality of batteries through the heat exchanger.
  • the heat exchanger may be a plate heat exchanger, and the two pipes in the heat exchanger are disposed adjacent to each other independently.
  • the sending battery temperature equalization function starts the information to the battery thermal management device, the battery thermal management device starts working, and the medium in the first pipeline and the second pipeline Flow, wherein the direction of the medium flow in the first pipeline is: heat exchanger - first battery thermal management device - first battery - battery thermal management device - heat exchanger; the flow direction of the medium in the second pipeline is: Heater - second battery thermal management device - second battery - battery thermal management device - heat exchanger.
  • the higher temperature battery and the lower temperature battery exchange heat through the heat exchanger to achieve temperature equalization of the battery.
  • the temperature difference between the batteries satisfies the requirements, for example, when the temperature difference between the batteries is less than 3 ° C, the battery temperature is equalized.
  • the temperature difference between the plurality of batteries is large, the temperature of the plurality of batteries can be adjusted by the heat exchanger, so that the cycle life of the battery can be improved.
  • a battery refers to an energy storage device that is mounted on an electric vehicle, provides power output for the electric vehicle, and supplies power to other electric devices on the vehicle, and can be repeatedly charged.
  • the battery can include a battery pack or a battery pack.
  • the battery includes a first battery and a second battery
  • the battery thermal management device includes a first battery thermal management device and a second battery thermal management device
  • the battery thermal management device includes an electric device including a pump on the heat exchange flow path, a first temperature sensor, a second temperature sensor, and a flow rate sensor.
  • the above method may further include: acquiring the balanced demand power P3 of the battery; acquiring the actual power P2 of the battery; and controlling the pump according to the actual power P2 and the equalized demand power P3.
  • the pump is controlled to run at the default low speed.
  • the actual power P2 of the battery and the equalized demand power P3 are used to adjust the temperature of the battery.
  • the required power P3 is equalized, that is, the temperature difference between the plurality of batteries is adjusted to a predetermined range within the target time, for example, within 3 ° C, the required heating power / cooling power is required.
  • the actual power P2 is the actual heating power/cooling power obtained when the battery is temperature-balanced.
  • the target time is a preset value, for example, it can be 1h.
  • the equalized demand power P3 includes a heating demand power P3a and a cooling demand power P3b.
  • the heating demand power P3a and the cooling required power P3b of the battery can be obtained in different manners, that is, the equalized demand power P3 is obtained.
  • the controller can according to the formula: The average cooling demand power P3b is generated; when the battery is heated, the controller can according to the formula: A heating demand power P3a is generated.
  • ⁇ T 1 is the temperature difference between the two batteries
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery
  • I is the current of the battery
  • R is the internal resistance of the battery.
  • the controller can calculate the heating demand power P3a according to the following formula (1) and calculate the cooling demand power P3b according to the formula (2):
  • ⁇ T 1 is the temperature difference between the two batteries
  • t is the target time
  • C is the specific heat capacity of the battery
  • M 1 is the mass of the first battery
  • M 2 is the mass of the second battery
  • I 1 is the first battery Current
  • I 2 is the mass of the second battery
  • R 1 is the internal resistance of the first battery
  • R 2 is the internal resistance of the second battery
  • the following describes another adjustment method, that is, only consider reducing the temperature difference between the batteries as soon as possible, and does not guarantee whether the temperature of the battery will rise. This situation is applicable when the battery temperature is not very high, and when the temperature difference between the batteries is large, it is not necessary to limit the temperature of the battery from rising.
  • the specific calculation formula is as follows:
  • the controller can calculate the heating demand power P3a according to the following formula (3) and calculate the cooling demand power P3b according to the formula (4):
  • ⁇ T 1 is the temperature difference between the two batteries
  • t is the target time
  • C is the specific heat capacity of the battery
  • M 1 is the mass of the first battery
  • M 2 is the mass of the second battery
  • I 1 is the first battery Current
  • I 2 is the mass of the second battery
  • R 1 is the internal resistance of the first electricity
  • R 2 is the internal resistance of the second battery
  • acquiring the actual power P2 of the battery specifically includes: obtaining an inlet temperature and an outlet temperature of the flow path for adjusting the battery temperature, and acquiring a flow velocity v of the medium inflow flow path; generating the inlet temperature and the outlet temperature according to the inlet temperature and the outlet temperature The second temperature difference ⁇ T 2 ; the actual power P2 is generated according to the second temperature difference ⁇ T 2 and the flow velocity v.
  • the inlet temperature can be detected by a first temperature sensor
  • the outlet temperature can be detected by a second temperature sensor
  • the flow rate v can be detected by a flow rate sensor.
  • the rotation speed of the pump 12 when the actual power P2 of the battery is less than the equalized demand power P3 of the battery, the rotation speed of the pump 12 is increased; when the actual power P2 of the battery is greater than or equal to the balanced demand power P3 of the battery, the rotation speed of the pump is decreased. Or keep the pump speed unchanged.
  • the temperature actual power P2 and the balanced required power P3 of each battery are obtained in real time by the battery thermal management controller. If the actual power P2 of a battery is less than the balanced demand power P3 of the battery, then The speed of the pump in the battery thermal management device corresponding to the battery is increased by the battery thermal management controller to increase the flow velocity v of the medium in the battery cooling duct, thereby increasing the actual temperature P2 of the battery to complete in the target time. The temperature is balanced. And if the actual power P2 of a battery is greater than or equal to the balanced demand power P3 of the battery, the battery thermal management controller reduces the speed of the pump in the battery thermal management device corresponding to the battery to save power, or keep the pump speed not change.
  • the temperature adjustment method of the vehicle battery first, the temperature of the plurality of batteries is acquired, and then it is determined whether the temperature difference between the plurality of batteries is greater than a preset temperature threshold. If the temperature is greater than the preset temperature threshold, the pump is performed. Control to equalize the temperature of the plurality of cells through the heat exchanger.
  • the method can equalize the temperature of the plurality of batteries through the heat exchanger when the temperature difference between the plurality of batteries is large, thereby improving the cycle life of the battery.
  • Embodiments of the present disclosure also propose an apparatus.
  • FIG. 5 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • the device 100 includes: one or more processors 110, memory 120, and one or more programs 130.
  • One or more programs 130 are stored in the memory 120, and when executed by the one or more processors 110, perform a temperature adjustment method of the on-vehicle battery as described in any of the above-described embodiments of the present invention.
  • the temperature of the plurality of batteries is acquired, and then it is determined whether the temperature difference between the plurality of batteries is greater than a preset temperature threshold, and if it is greater than the preset temperature threshold, the plurality of batteries are passed through the heat exchanger.
  • the temperature is adjusted, and the balanced demand power of the battery is obtained, and the actual power of the battery is obtained, and the pump is controlled according to the balanced demand power and the actual power to equalize the temperature of the plurality of batteries, thereby being able to be between the plurality of batteries
  • the temperature difference is large, the temperature of the plurality of batteries is equalized by the heat exchanger, so that the cycle life of the battery can be improved.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)

Abstract

一种车载电池的温度调节方法和温度调节***,该***包括与多个电池(31,32)分别相连的多个电池热管理装置(11);与多个电池热管理装置(11)均相连的换热器(2),其中,电池热管理装置(11)包括设置在换热流路上的泵(12)、第一温度传感器(14)和第二温度传感器(15);控制器,控制器用以获取多个电池的温度,并判断多个电池之间的温度差是否大于预设温度阈值,其中,如果温度差大于预设温度阈值,则对泵(12)进行控制以通过换热器(2)对多个电池的温度进行均衡。

Description

车载电池的温度调节方法和温度调节***
相关申请的交叉引用
本公开基于公开号为201710920167.3,申请日为2017年9月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及汽车技术领域,特别涉及一种车载电池的温度调节方法、一种非临时性计算机可读存储介质和一种车载电池的温度调节***。
背景技术
目前,电动汽车中车载电池***可能包括多个电池,各个电池之间由于布置位置不同,或者是由于电池的温度调节***提供给每个电池的加热/冷功率却不均,导致各个电池之间的温度存在较大差异,电池的温度一致性较差,进而会导致电池循环寿命降低。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开提出一种车载电池的温度调节***,该***可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行均衡,从而可以提高电池的循环寿命。
本公开还提出一种车载电池的温度调节***。
本公开还提出一种设备。
为达到上述目的,本公开第一方面实施例提出了一种车载电池的温度调节***,包括:与多个电池分别相连的多个电池热管理装置;与所述多个电池热管理装置均相连的换热器,其中,所述换热器包括第一管路和第二管路,所述多个电池热管理装置中的一部分与所述换热器中的第一管路相连,所述多个电池热管理装置中的另一部分与所述换热器中的第二管路相连,所述电池热管理装置包括设置在换热流路上的泵、第一温度传感器和第二温度传感器,所述泵、所述第一温度传感器和所述第二温度传感器与所述控制器连接;控制器,所述控制器用以获取所述多个电池的温度,并判断所述多个电池之间的温度差是否大于预设温度阈值,其中,如果所述温度差大于所述预设温度阈值,则对所述泵进行控制以通过所述换热器对所述多个电池的温度进行均衡。
根据本公开实施例的车载电池的温度调节***,通过控制器获取多个电池的温度,并判断多个电池之间的温度差是否大于预设温度阈值,如果温度差大于所述预设温度阈值,则对泵进行控制以通过换热器对多个电池的温度进行均衡。由此,该***可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行均衡,从而可以提高电池的循环寿命。
为达到上述目的,本公开第二方面实施例提出了一种车载电池的温度调节方法,包括以下步骤:获取所述多个电池的温度;判断所述多个电池之间的温度差是否大于预设温度阈值;如果大于所述预设温度阈值,则对所述泵进行控制以通过所述换热器对所述多个电池的温度进行均衡。
根据本公开实施例的车载电池的温度调节方法,首先获取多个电池的温度,然后判断多个电池之间的温度差是否大于预设温度阈值,如果大于预设温度阈值,则对泵进行控制以通过换热器对多个电池的温度进行均衡。由此,该方法可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行均衡,从而可以提高电池的循环寿命。
为达到上述目的,本公开第三方面实施例提出了一种设备,包括:一个或者多个处理器;存储器;一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行本公开上述实施例的车载电池的温度调节方法。
本公开的设备,首先获取多个电池的温度,然后判断多个电池之间的温度差是否大于预设温度阈值,如果大于预设温度阈值,则通过换热器对多个电池的温度进行均衡,从而可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行均衡,从而可以提高电池的循环寿命。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1a是根据本公开第一个实施例的车载电池的温度调节***的方框示意图一;
图1b是根据本公开第一个实施例的车载电池的温度调节***的方框示意图二;
图2是根据本公开一个实施例的车载电池的温度调节***的控制拓扑图;
图3是根据本公开第二个实施例的车载电池的温度调节***的方框示意图;
图4是根据本公开第一个实施例的车载电池的温度调节方法的流程图;
图5是根据本公开实施例的设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
图1a-1b是根据本公开一个实施例的车载电池的温度调节***的方框示意图。如图1a-1b所示,该***包括:与多个电池分别相连的多个电池热管理装置、与多个电池热管理装置均相连的换热器2和控制器(图中未具体示出)。
其中,换热器2包括第一管路和第二管路,多个电池热管理装置中的一部分与换热器2中的第一管路相连,多个电池热管理装置中的另一部分与换热器2中的第二管路相连,电池热管理装置可包括设置在换热流路上的泵12、第一温度传感器14和第二温度传感器15,泵12、第一温度传感器14和第二温度传感器15与控制器连接。其中,泵12用于使换热流路中的介质流动;第一温度传感器14用于检测流入车载电池的介质的入口温度;第二温度传感器15用于检测流出车载电池的介质的出口温度。具体而言,介质从流路的入口流入电池的内部,从流路的出口流出,从而实现电池与介质之间的热交换。泵12主要用于提供动力,介质容器13主要用于存储介质和接受向温度调节***添加的介质,当温度调节***中的介质减少时,介质容器13中的介质可自动补充。第一温度传感器14用以检测流路入口介质的温度,第二温度传感器15用以检测流路出口介质的温度。
控制器与电池热管理装置相连,控制器用以获取多个电池的温度,并判断多个电池之间的温度差是否大于预设温度阈值,其中,如果温度差大于预设温度阈值,则对泵12进行控制以通过换热器2对多个电池的温度进行均衡。预设温度阈值可以根据实际情况进行预设,例如,可以为8℃。可选的,如图1a-1b所示,电池包括第一电池31和第二电池32,电池热管理装置包括第一电池热管理装置11和第二电池热管理装置12。
根据本公开的一个实施例,如图1a-1b所示,电池热管理装置还包括设置在换热流路上的流速传感器16,其中,流速传感器16用于检测换热流路中的介质的流速。
可选的,流速传感器16用以检测温度调节***中管道内介质的流速信息。
具体地,如图1a-1b所示,换热器2可以为板式换热器,换热器2中的两个管路相互独立临近设置。如图2所示,控制器包括电池管理器,电池管理器例如可以是具有电池管理功能的DSP芯片,电池管理器可以用于对电池进行管理,可以检测每个电池的电压、电流、温度等信息,当电池之间的温度差异超过预设温度阈值时,控制器发送电池温度均衡功能启动信息,当电池之间的温度差异满足要求,例如电池之间的温度差异小于3℃时,发出电池温度均衡完成信息。电池管理器可以与电池热管理装置进行CAN(Controller Area Network,控制器局域网络)通信,当两个电池之间存在较大温差时,例如温差超过8℃,电池管理器发送电池温度均衡功能启动信息至电池热管理装置,电池热管理装置启动工作。如图1a所示,第一管路和第二管路中的介质流动,其中第一管路中介质流动的方向为:换 热器2—第一电池热管理装置11—第一电池31—电池热管理装置11—换热器2,具体为:换热器2—泵12—第一温度传感器14—第一电池31—第二温度传感器15—流速传感器16—介质容器13—换热器2;第二管路中介质的流动方向为:换热器2—第二电池热管理装置12—第二电池32—电池热管理装置12—换热器2,具体为:换热器2—泵12—第一温度传感器14—第二电池32—第二温度传感器15—流速传感器16—介质容器13—换热器2。温度较高的电池与温度较低的电池通过换热器2进行热交换,实现电池的温度均衡。又如图1b所示,第一管路和第二管路中的介质流动,其中第一管路中介质流动的方向为:换热器2—第一电池热管理装置11—第一电池31—电池热管理装置11—换热器2,具体为:换热器2—介质容器13—流速传感器16—第二温度传感器15—第一电池31—第一温度传感器14—泵12—换热器2;第二管路中介质的流动方向为:换热器2—第二电池热管理装置12—第二电池32—电池热管理装置12—换热器2,具体为:换热器2—泵12—第一温度传感器14—第二电池32—第二温度传感器15—流速传感器16—介质容器13—换热器2。图1b第一电池循环回路的流向与图1a相反,换热器2中第一管道和第二管道的介质流动方向相反,与图1a相比,可以提高换热器的换热效率。
由此,该***可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行调节,从而可以提高电池的循环寿命。
在本公开中,电池指安装在电动车上,为电动车提供动力输出以及为车上其他用电设备供电的储能设备,可进行反复充电。电池可以包括电池包或者电池模组。
在本公开的实施例中,上述的车载电池的温度调节***还包括用于检测车载电池的电流的电池状态检测装置,控制器还与电池状态检测装置相连。
根据本公开的一个实施例,控制器还用以获取电池的实际功率P2和电池的均衡需求功率P3,并根据电池的实际功率P2和电池的均衡需求功率P3对泵进行控制,以对电池的温度进行均衡。
下面结合具体地实施例描述电池热管理装置如何获取电池的实际功率P2和电池的均衡需求功率P3。
在本公开的一个实施例中,均衡需求功率P3,即将多个电池之间的温度差在目标时间调节至预设范围内,例如3℃以内时,需要得到的加热功率/冷却功率。实际功率P2即电池进行温度均衡时得到的实际加热功率/冷却功率。目标时间为预设值,例如可以为1h。其中,均衡需求功率P3包括加热需求功率P3a和冷却需求功率P3b。根据第一电池和第二电池的参数(例如,质量、内阻和电流等),可通过不同的方式获取电池的加热需求功率P3a和冷却需求功率P3b,即获取均衡需求功率P3。
具体地,如果第一电池和第二电池的参数相同,即两个电池之间的质量、内阻和电流 相同,则在对电池进行冷却时,控制器可以根据公式:
Figure PCTCN2018108794-appb-000001
生成均冷却需求功率P3b;当对电池进行加热时,控制器可以根据公式:
Figure PCTCN2018108794-appb-000002
生成加热需求功率P3a。其中,ΔT 1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M为电池的质量,I为电池的电流,R为电池的内阻。
如果第一电池和第二电池的参数不同,即当两个电池的质量、电流和内阻不相等,以电池1温度较低,电池2温度较高,电池1需要加热,电池2需要冷却为例,控制器可以根据以下公式(1)计算加热需求功率P3a和并根据公式(2)计算冷却需求功率P3b:
Figure PCTCN2018108794-appb-000003
Figure PCTCN2018108794-appb-000004
其中,ΔT 1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M 1为第一电池的质量,M 2为第二电池的质量,I 1为第一电池的电流,I 2为第二电池的质量,R 1为第一电的内阻,R 2为第二电池的内阻,第一电池41的温度变化为
Figure PCTCN2018108794-appb-000005
第二电池42的温度变化为:
Figure PCTCN2018108794-appb-000006
通过上述方式对电池的温度进行均衡的过程中,可以将电池的电流所产生的热量完全抵消,因此,在整个电池温度均衡过程中,温度较高的电池温度不会上升。
下面的介绍另一种调节方式,即只考虑尽快减少电池之间的温度差异,并不保证电池的温度是否会上升。这种情况适用于电池温度不是很高,且电池之间的温度差异较大时,没有必要限制电池的温度不升高。具体的计算公式如下:
假设第一电池41的温度高于第二电池42时,第一电池41需要冷却,第二电池42需要加热,则两个电池之间的电流不同导致的发热功率相差为
Figure PCTCN2018108794-appb-000007
控制器可以根据以下公式(3)计算加热需求功率P3a和并根据公式(4)计算冷却需求功率P3b:
Figure PCTCN2018108794-appb-000008
Figure PCTCN2018108794-appb-000009
即P3a=P3b
其中,ΔT 1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M 1为第一电池的质量,M 2为第二电池的质量,I 1为第一电池的电流,I 2为第二电池的电流,R 1为第一电的内阻,R 2为第二电池的内阻。
根据本公开的一个实施例,控制器还用于获取用于获取电池温度的流路的入口温度和出口温度,并获取介质流入流路的流速v,并根据第一温度传感器13检测的电池温度的流路的入口温度和第二温度传感器14检测的出口温度生成第二温度差ΔT 2,以及根据每个电池的第二温度差ΔT 2和流速传感器15检测的流速v生成电池的实际功率P2。
可选的,根据本公开的一个实施例,电控制器通过以下公式生成实际功率P2:P2=ΔT 2*c*m,其中,ΔT 2为第二温度差,c为流路中介质的比热容,m为单位时间内流过流路的横截面积的介质质量,其中,m=v*ρ*s,v为介质的流速,ρ为介质的密度,s为流路的横截面积。
具体地,如图2所示,控制器还可以包括电池热管理控制器,电池热管理控制器可以与第一温度传感器14、第二温度传感器15和流速传感器16电连接,与泵12进行CAN通信,并根据介质的比热容、介质的密度,获取实际功率P2、并控制泵12的转速和监控介质温度和介质流速。当电池温度均衡功能启动时,电池热管理控制器控制泵12以默认低转速运行。其中,电池热管理控制器例如可以是具有电池热管理功能的DSP芯片。
下面结合具体地实施例描述电池热管理控制器如何根据电池的实际功率P2和电池的均衡需求功率P3对泵12进行控制。
根据本公开的一个实施例,控制器用以在电池的实际功率P2小于电池的均衡需求功率P3时,增加泵12的转速,以及在电池的实际功率P2大于或等于电池的均衡需求功率P3时,降低泵12的转速或者保持泵12的转速不变。
具体地,在对电池进行温度均衡时,电池热管理控制器实时获取每个电池的温度实际功率P2和均衡需求功率P3,如果某个电池的实际功率P2小于电池的均衡需求功率P3,则电池热管理控制器增加该电池对应的电池热管理装置中泵12的转速,以增大该电池冷却管道中介质的流速v,进而增大该电池的温度实际功率P2,以在目标时间内完成温度均衡。而如果某个电池的实际功率P2大于或等于电池的均衡需求功率P3,则电池热管理控制器降低该电池对应的电池热管理装置中泵12的转速,以节省电能,或者保持泵12的转速不变。
此外,本公开还提出另一种车载电池的温度调节***,如图3所示,图1a-1b和图3 的主要区别在于,图3中增加了换热风机,其中,换热风机可包括第一换热风机和第二换热风机,第一换热风机和第二换热风机分别设置在换热器的两侧以加快换热器的两侧空气的流动。
根据本公开的一个实施例,第一换热风机和第二换热风机分别与控制器相连,控制器控制第一换热风机和第二换热风机的转速。
图1a-1b中的方案,两个电池之间需要同时接入换热器2的其中一端的循环回路中,才可以实现温度均衡,即必须一个电池加热,另一个电池冷却同时进行,图1a-1b可以快速实现电池之间的温度均衡。
而图3所示方案,则可以只通过控制其中一个电池接入到温度均衡回路,另一端通过换热风机和外部环境进行热交换,即如果第一电池31温度较高,则可以单独将第一电池31接入换热器2的第一管道,而不必将第二电池32接入到第二管道,图3可以使得电池更快完成冷却。例如,当第一电池31的温度比第二电池32的温度高时,第一电池热管理装置11开始工作,电池热管理控制器控制泵12启动,同时控制第一换热风机开始工作,使得换热器2第一管道中介质的热量通过第一换热风机吹向外部环境中,使得介质温度下降,从而为电池提供冷却功率,使得第一电池31的温度下降,进而减少第一电池31和第二电池32之间的温度差异。当第二电池32的温度比第一电池31的温度高时,第二电池热管理装置12开始工作,电池热管理控制器控制泵12启动,同时控制第二换热风机开始工作,使得换热器2中第二管道中介质的热量通过第二换热风机吹向外部环境中,使得介质温度下降,从而为电池提供冷却功率,使得第二电池32的温度下降,进而减少第一电池31和第二电池32之间的温度差异。
根据本公开实施例的车载电池的温度调节***,通过控制器获取多个电池的温度,并判断多个电池之间的温度差是否大于预设温度阈值,如果温度差大于所述预设温度阈值,则通过换热器对多个电池的温度进行均衡。由此,该***可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行调节,并获取电池的均衡需求功率,以及获取电池的实际功率,并根据均衡需求功率和实际功率对泵进行控制,以对多个电池的温度进行均衡,从而可以提高电池的循环寿命。
图4是根据本公开一个实施例的车载电池的温度调节方法的流程图。其中,如图1a-1b所示,车载电池温度调节***包括与多个电池分别相连的多个电池热管理装置,与多个电池热管理装置均相连的的换热器,其中,多个电池热管理装置中的一部分与换热器中的第一管道相连,多个电池热管理装置中的另一部分与换热器中的第二管道相连(图中以电池和电池热管理装置为两个为例),电池热管理装置包括设置在换热流路上的泵、第一温度传感器和第二温度传感器。如图4所示,车载电池的温度调节方法包括以下步骤:
S1,获取多个电池的温度。
S2,判断多个电池之间的温度差是否大于预设温度阈值。其中,预设温度阈值可以根据实际情况进行预设,例如,可以为8℃。
S3,如果温度差大于预设温度阈值,则对泵进行控制以通过换热器对多个电池的温度进行均衡。
具体地,如图1a-1b所示,换热器可以为板式换热器,换热器中的两个管路相互独立临近设置。当两个电池之间存在较大温差时,例如温差超过8℃,发送电池温度均衡功能启动信息至电池热管理装置,电池热管理装置启动工作,第一管路和第二管路中的介质流动,其中第一管路中介质流动的方向为:换热器—第一电池热管理装置—第一电池—电池热管理装置—换热器;第二管路中介质的流动方向为:换热器—第二电池热管理装置—第二电池—电池热管理装置—换热器。温度较高的电池与温度较低的电池通过换热器进行热交换,实现电池的温度均衡。当电池之间的温度差异满足要求,例如电池之间的温度差异小于3℃时,电池温度均衡完成。由此,可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行调节,从而可以提高电池的循环寿命。
在本公开中,电池指安装在电动车上,为电动车提供动力输出以及为车上其他用电设备供电的储能设备,可进行反复充电。电池可以包括电池包或者电池模组。可选的,如图1a-1b所示,电池包括第一电池和第二电池,电池热管理装置包括第一电池热管理装置和第二电池热管理装置,电池热管理装置包括电包括设置在换热流路上的泵、第一温度传感器、第二温度传感器和流速传感器。上述的方法还可以包括:获取电池的均衡需求功率P3;获取电池的实际功率P2;根据实际功率P2和均衡需求功率P3对泵进行控制。当电池温度均衡功能启动时,控制泵以默认低转速运行。
下面结合具体地实施例描述如何获取电池的实际功率P2和电池的均衡需求功率P3。
在本公开的一个实施例中,电池的实际功率P2和均衡需求功率P3用于对电池的温度进行调节。均衡需求功率P3,即将多个电池之间的温度差在目标时间调节至预设范围内,例如3℃以内时,需要得到的加热功率/冷却功率。实际功率P2即电池进行温度均衡时得到的实际加热功率/冷却功率。目标时间为预设值,例如可以为1h。其中,均衡需求功率P3包括加热需求功率P3a和冷却需求功率P3b。根据第一电池和第二电池的参数(例如,质量、内阻和电流等),可通过不同的方式获取电池的加热需求功率P3a和冷却需求功率P3b,即获取均衡需求功率P3。
具体地,如果第一电池和第二电池的参数相同,即两个电池之间的质量、内阻和电流相同,则在对电池进行冷却时,控制器可以根据公式:
Figure PCTCN2018108794-appb-000010
生成 均冷却需求功率P3b;当对电池进行加热时,控制器可以根据公式:
Figure PCTCN2018108794-appb-000011
生成加热需求功率P3a。其中,ΔT 1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M为电池的质量,I为电池的电流,R为电池的内阻。
如果第一电池和第二电池的参数不同,即两个电池的质量、电流和内阻不相等,以第一电池的温度较低,第二电池的温度较高,第一电池需要加热,第二电池需要冷却为例,控制器可以根据以下公式(1)计算加热需求功率P3a和并根据公式(2)计算冷却需求功率P3b:
Figure PCTCN2018108794-appb-000012
Figure PCTCN2018108794-appb-000013
其中,ΔT 1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M 1为第一电池的质量,M 2为第二电池的质量,I 1为第一电池的电流,I 2为第二电池的质量,R 1为第一电的内阻,R 2为第二电池的内阻,第一电池41的温度变化为
Figure PCTCN2018108794-appb-000014
第二电池42的温度变化为:
Figure PCTCN2018108794-appb-000015
通过上述方式对电池的温度进行均衡的过程中,可以将电池的电流所产生的热量完全抵消,因此,在整个电池温度均衡过程中,温度较高的电池温度不会上升。
下面的介绍另一种调节方式,即只考虑尽快减少电池之间的温度差异,并不保证电池的温度是否会上升。这种情况适用于电池温度不是很高,且电池之间的温度差异较大时,没有必要限制电池的温度不升高。具体的计算公式如下:
假设第一电池41的温度高于电第二电池42时,第一电池41需要冷却,第二电池42需要加热,则两个电池之间的电流不同导致的发热功率相差为
Figure PCTCN2018108794-appb-000016
控制器可以根据以下公式(3)计算加热需求功率P3a和并根据公式(4)计算冷却需求功率P3b:
Figure PCTCN2018108794-appb-000017
Figure PCTCN2018108794-appb-000018
即P3a=P3b
其中,ΔT 1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M 1为第一电池的质量,M 2为第二电池的质量,I 1为第一电池的电流,I 2为第二电池的质量,R 1为第一电的内阻,R 2为第二电池的内阻
根据本公开的一个实施例,获取电池的实际功率P2具体包括:获取用于调节电池温度的流路的入口温度和出口温度,并获取介质流入流路的流速v;根据入口温度和出口温度生成第二温度差ΔT 2;根据第二温度差ΔT 2和流速v生成实际功率P2。入口温度可以通过第一温度传感器检测,出口温度可以通过第二温度传感器检测,流速v可以通过流速传感器检测。
可选的,根据本公开的一个实施例,通过以下公式生成实际功率P2:P2=ΔT 2*c*m,其中,ΔT 2为第二温度差,c为流路中介质的比热容,m为单位时间内流过流路的横截面积的介质质量,其中,m=v*ρ*s,v为介质的流速,ρ为介质的密度,s为流路的横截面积。
下面结合具体地实施例描述如何根据电池的实际功率P2和电池的均衡需求功率P3对泵进行控制。
根据本公开的一个实施例,当电池的实际功率P2小于电池的均衡需求功率P3时,增加泵12的转速;当电池的实际功率P2大于或等于电池的均衡需求功率P3时,降低泵的转速或者保持泵的转速不变。
具体地,在对电池进行温度均衡时,通过电池热管理控制器实时获取每个电池的温度实际功率P2和均衡需求功率P3,如果某个电池的实际功率P2小于电池的均衡需求功率P3,则通过电池热管理控制器增加该电池对应的电池热管理装置中泵的转速,以增大该电池冷却管道中介质的流速v,进而增大该电池的温度实际功率P2,以在目标时间内完成温度均衡。而如果某个电池的实际功率P2大于或等于电池的均衡需求功率P3,则通过电池热管理控制器降低该电池对应的电池热管理装置中泵的转速,以节省电能,或者保持泵的转速不变。
根据本公开实施例的车载电池的温度调节方法,首先获取获取多个电池的温度,然后判断多个电池之间的温度差是否大于预设温度阈值,如果大于预设温度阈值,则对泵进行控制以通过换热器对多个电池的温度进行均衡。由此,该方法可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行均衡,从而可以提高电池的循环寿命。
本公开的实施例还提出了一种设备。
图5是根据本公开一个实施例的设备的结构示意图。如图5所示,该设备100包括: 一个或者多个处理器110、存储器120和一个或多个程序130。一个或者多个程序130存储在存储器120中,当被一个或者多个处理器110执行时,执行如本发明上述任意一个实施例所描述的车载电池的温度调节方法。
根据本公开实施例的设备,首先获取多个电池的温度,然后判断多个电池之间的温度差是否大于预设温度阈值,如果大于预设温度阈值,则通过换热器对多个电池的温度进行调节,并获取电池的均衡需求功率,以及获取电池的实际功率,并根据均衡需求功率和实际功率对泵进行控制,以对多个电池的温度进行均衡,从而可以在多个电池之间的温度差较大时,通过换热器对多个电池的温度进行均衡,从而可以提高电池的循环寿命。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一 个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种车载电池的温度调节***,其特征在于,包括:
    与多个电池的换热流路分别相连的多个电池热管理装置;
    与所述多个电池热管理装置均相连的换热器,其中,所述换热器包括相互换热的第一管路和第二管路,所述多个电池热管理装置中的一部分电池热管理装置与所述换热器中的第一管路相连,所述多个电池热管理装置中的另一部分电池热管理装置与所述换热器中的第二管路相连,所述电池热管理装置包括设置在换热流路上的泵、第一温度传感器和第二温度传感器,所述泵、所述第一温度传感器和所述第二温度传感器与所述控制器连接;
    控制器,所述控制器与所述电池热管理装置连接,所述控制器用以获取所述多个电池的温度,并判断所述多个电池之间的温度差是否大于预设温度阈值,其中,如果所述温度差大于所述预设温度阈值,则对所述泵进行控制以通过所述换热器对所述多个电池的温度进行均衡。
  2. 如权利要求1所述的车载电池的温度调节***,其特征在于,所述电池包括第一电池和第二电池,所述电池热管理装置包括第一电池热管理装置和第二电池热管理装置。
  3. 如权利要求1所述的车载电池的温度调节***,其特征在于,所述电池热管理装置还包括流速传感器,所述流速传感器与所述控制器相连,所述流速传感器用于检测所述所述换热流路中的介质的流速。
  4. 如权利要求3所述的车载电池的温度调节***,其特征在于,所述电池热管理装置还包括设置在所述换热流路上的介质容器,所述介质容器用于存储及向所述换热流路提供介质。
  5. 如权利要求3所述的车载电池的温度调节***,其特征在于,还包括用于检测所述车载电池的电流的电池状态检测装置,所述控制器还与所述电池状态检测装置相连。
  6. 如权利要求2所述的车载电池的温度调节***,其特征在于,还包括换热风机,所述换热风机包括第一换热风机和第二换热风机,所述第一换热风机和所述第二换热风机分别设置在所述换热器的两侧以加快所述换热器的两侧空气的流动。
  7. 如权利要求6所述的车载电池的温度调节***,其特征在于,所述第一换热风机和所述第二换热风机分别与所述控制器相连,所述控制器控制所述第一换热风机和所述第二换热风机的转速。
  8. 一种车载电池的温度调节方法,其特征在于,车载电池温度调节***包括与多个电池分别相连的多个电池热管理装置,与所述多个电池热管理装置均相连的的换热器,其中,所述多个电池热管理装置中的一部分与所述换热器中的第一管道相连,所述多个电池热管 理装置中的另一部分与所述换热器中的第二管道相连,所述电池热管理装置包括设置在换热流路上的泵、第一温度传感器和第二温度传感器,所述方法包括以下步骤:
    获取所述多个电池的温度;
    判断所述多个电池之间的温度差是否大于预设温度阈值;
    如果所述温度差大于所述预设温度阈值,则对所述泵进行控制以通过所述换热器对所述多个电池的温度进行均衡
    均衡需求功率
  9. 如权利要求8所述的车载电池的温度调节方法,其特征在于,所述电池包括第一电池和第二电池,所述电池热管理装置包括第一电池热管理装置和第二电池热管理装置,所述均衡需求功率包括加热需求功率和冷却需求功率,所述获取所述电池的均衡需求功率包括:
    判断所述第一电池和所述第二电池的参数是否相同;
    如果所述第一电池和所述第二电池的参数相同,则通过以下公式生成所述加热需求功率:
    Figure PCTCN2018108794-appb-100001
    其中,P3a为所述加热需求功率,ΔT 1为所述第一电池和所述第二电池之间的温度差值,C为所述电池的比热容,M为所述电池的质量,t为目标时间,I为所述电池的电流,R为所述电池的内阻。
    以及通过以下公式生成所述冷却加热功率:
    Figure PCTCN2018108794-appb-100002
    其中,P3b为所述冷却需求功率,ΔT 1为所述第一电池和所述第二电池之间的温度差值,C为所述电池的比热容,M为所述电池的质量,t为目标时间,I为所述电池的电流,R为所述电池的内阻。
  10. 如权利要求9所述的车载电池的温度调节方法,其特征在于,所述获取所述电池的均衡需求功率还包括:
    如果所述第一电池和所述第二电池的参数不同,则通过以下公式生成所述加热需求功率:
    Figure PCTCN2018108794-appb-100003
    其中,P3a为所述加热需求功率,ΔT 1为所述第一电池和所述第二电池之间的温度差值, C为所述电池的比热容,M1为所述第一电池的质量,M2为所述第二电池的质量,t为目标时间,I1为所述第一电池的电流,R1为所述第一电池的内阻。
    以及通过以下公式生成所述冷却加热功率:
    Figure PCTCN2018108794-appb-100004
    其中,P3b为所述冷却需求功率,ΔT 1为所述第一电池和所述第二电池之间的温度差值,C为所述电池的比热容,M2为所述第二电池的质量,t为目标时间,I2为所述第二电池的电流,R2为所述第二电池的内阻。
  11. 如权利要求9所述的车载电池的温度调节方法,其特征在于,所述换热器包括换热风机,所述换热风机包括第一换热风机和第二换热风机,所述方法还包括以下步骤:
    获取所述第一电池和所述第二电池的温度;
    如果所述第一电池的温度大于所述第二电池的温度,则通过所述第一电池热管理装置和所述换热器对所述第一电池的温度进行调节,并通过第一换热风机将所述第一管道中的热量吹向所述第二电池所处的外部环境中;
    如果所述第一电池的温度小于所述第二电池的温度,则通过所述第二电池管理装置和所述换热器对所述第二电池的温度进行调节,并通过第二换热风机将所述第二管道中的热量吹向所述第一电池所处的外部环境中。
  12. 如权利要求9所述的车载电池的温度调节方法,其特征在于,还包括:
    当所述电池的实际功率小于所述电池的均衡需求功率时,增加所述泵的转速;
    当所述电池的实际功率大于或等于所述电池的均衡需求功率时,降低所述泵的转速或者保持所述泵的转速不变。
  13. 如权利要求7所述的车载电池的温度调节方法,其特征在于,所述获取所述电池的实际功率具体包括:
    获取用于调节所述电池温度的流路的入口温度和出口温度,并获取介质流入所述流路的流速;
    根据所述入口温度和出口温度生成第二温度差;
    根据所述第二温度差和所述流速生成所述实际功率。
  14. 如权利要求12所述的车载电池的温度调节方法,其特征在于,通过以下公式生成所述实际功率:
    ΔT 2*c*m,
    其中,所述ΔT 2为所述第二温度差,c为所述流路中介质的比热容,m为单位时间内流过所述流路的横截面的介质质量,其中,m=v*ρ*s,v为所述介质的流速,ρ为所述介质的 密度,s为所述流路的横截面积。
  15. 一种设备,其特征在于,包括:
    一个或者多个处理器;
    存储器;
    一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行如权利要求8-14中任一项所述的车载电池的温度调节方法。
PCT/CN2018/108794 2017-09-30 2018-09-29 车载电池的温度调节方法和温度调节*** WO2019062960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710920167.3 2017-09-30
CN201710920167.3A CN109599606B (zh) 2017-09-30 2017-09-30 车载电池的温度调节方法和温度调节***

Publications (1)

Publication Number Publication Date
WO2019062960A1 true WO2019062960A1 (zh) 2019-04-04

Family

ID=65900688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108794 WO2019062960A1 (zh) 2017-09-30 2018-09-29 车载电池的温度调节方法和温度调节***

Country Status (3)

Country Link
CN (1) CN109599606B (zh)
TW (1) TWI675504B (zh)
WO (1) WO2019062960A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111972991B (zh) * 2019-05-23 2022-11-18 佛山市顺德区美的电热电器制造有限公司 热水处理装置及其控制方法与装置
CN112072218A (zh) * 2019-06-10 2020-12-11 北京新能源汽车股份有限公司 一种动力电池的加热控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311597A (zh) * 2012-03-09 2013-09-18 株式会社日立制作所 电池***及其温度控制方法
CN105048023A (zh) * 2015-07-20 2015-11-11 安徽江淮汽车股份有限公司 一种汽车双向热交换***
WO2017033412A1 (ja) * 2015-08-27 2017-03-02 三洋電機株式会社 バッテリシステム及びバッテリシステムを備える電動車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100568612C (zh) * 2008-06-20 2009-12-09 重庆大学 一种混合动力汽车用镍氢电池组的散热***
CN102853932B (zh) * 2012-08-28 2014-06-11 奇瑞汽车股份有限公司 一种车用电机控制器的温度检测诊断方法
CN106314110A (zh) * 2016-09-12 2017-01-11 法乐第(北京)网络科技有限公司 电动汽车组件冷却***、冷却方法及应用该***的电动汽车

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311597A (zh) * 2012-03-09 2013-09-18 株式会社日立制作所 电池***及其温度控制方法
CN105048023A (zh) * 2015-07-20 2015-11-11 安徽江淮汽车股份有限公司 一种汽车双向热交换***
WO2017033412A1 (ja) * 2015-08-27 2017-03-02 三洋電機株式会社 バッテリシステム及びバッテリシステムを備える電動車両

Also Published As

Publication number Publication date
TWI675504B (zh) 2019-10-21
CN109599606B (zh) 2020-11-06
TW201916456A (zh) 2019-04-16
CN109599606A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
TWI674694B (zh) 車載電池的溫度調節方法、溫度調節系統與非臨時性電腦可讀儲存媒體
CN109599622B (zh) 车载电池的温度调节方法和温度调节***
WO2013051642A1 (ja) 太陽エネルギ利用システム
CN109599613B (zh) 车载电池的温度调节方法和温度调节***
TWI666135B (zh) 車載電池的溫度調節系統
CN109599635B (zh) 车载电池的温度调节方法和温度调节***
CN106229574A (zh) 电池包的冷却方法及***
WO2019062960A1 (zh) 车载电池的温度调节方法和温度调节***
US20230024244A1 (en) Method for operating a heat exchanger, and energy store heat exchange system
WO2019062937A1 (zh) 车载电池的温度调节***
WO2019062942A1 (zh) 车载电池的温度调节方法和温度调节***
CN113725460A (zh) 一种大功率燃料电池发动机温度管理***及其控制方法
TW201916451A (zh) 車載電池的溫度調節方法和溫度調節系統
CN109599612B (zh) 车载电池的温度调节方法和温度调节***
CN109599610B (zh) 车载电池的温度调节方法和温度调节***
TWI676313B (zh) 基於半導體的車載電池溫度調節方法、溫度調節系統及非臨時性電腦可讀儲存介質
JP2014120457A (ja) 電源装置
CN109599624B (zh) 车载电池的温度调节方法和温度调节***
CN109296437A (zh) 用于轨道车辆的冷却装置、控制方法及控制器
CN212323044U (zh) 一种大功率燃料电池发动机温度管理***
TWI685997B (zh) 基於半導體的車載電池溫度調節方法和溫度調節系統
TWI672845B (zh) 車載電池的溫度調節系統
TWI656045B (zh) 車載電池的溫度調節系統
CN214249761U (zh) 余热回收利用***
KR20200011749A (ko) 전기자동차용 공조장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860203

Country of ref document: EP

Kind code of ref document: A1