WO2019062732A1 - 一种磁性能优异的冷轧磁性叠片钢及其制造方法 - Google Patents

一种磁性能优异的冷轧磁性叠片钢及其制造方法 Download PDF

Info

Publication number
WO2019062732A1
WO2019062732A1 PCT/CN2018/107457 CN2018107457W WO2019062732A1 WO 2019062732 A1 WO2019062732 A1 WO 2019062732A1 CN 2018107457 W CN2018107457 W CN 2018107457W WO 2019062732 A1 WO2019062732 A1 WO 2019062732A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
magnetic
rolled steel
annealing
steel
Prior art date
Application number
PCT/CN2018/107457
Other languages
English (en)
French (fr)
Inventor
房现石
林长青
张峰
陈杰
寿乐勤
亢占英
王波
宗震宇
陈凌云
孙业中
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to BR112020003655-2A priority Critical patent/BR112020003655B1/pt
Priority to MX2020001802A priority patent/MX2020001802A/es
Publication of WO2019062732A1 publication Critical patent/WO2019062732A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a cold rolled magnetic laminated steel excellent in magnetic properties and a method of manufacturing the same.
  • Cold-rolled magnetic laminated steel is an important metal soft magnetic material, also known as semi-process electrical steel. It is mainly used to manufacture iron cores for motors and transformers. After cold-rolled steel coils are softened and annealed by steel mills, they are not coated with insulation. The coating is supplied directly to downstream users, who perform chipping and magnetic annealing. Its basic production process includes the following steps: steel mill: smelting ⁇ hot rolling ⁇ (normalization, optional, only for high-grade products) ⁇ cold rolling ⁇ softening annealing ⁇ temper rolling ⁇ finishing, no insulation coating on the steel surface , no oil or a small amount of special anti-rust oil, users: steel strips ⁇ punching ⁇ magnetic annealing and blue annealing.
  • the cold-rolled magnetic laminated steel is magnetically annealed to reach the target value of iron loss and magnetic induction of the iron core, and the surface is blued to form an insulating layer, which improves the performance of the iron core and can satisfy most of the motor iron.
  • Core application requirements Cold rolled magnetic laminated steel is widely used in motor cores and transformer cores in the United States. The market scale is several times that of non-oriented electrical steel in the whole process. In recent years, the proportion of use has been further expanded. More and more motor and compressor users in the domestic market are beginning to pay attention to the use of this material.
  • Chinese patent CN1974820A discloses a method for producing semi-process electrical steel.
  • the chemical composition of the semi-process electrical steel casting blank is: C: 0.001-0.020%, Si: 0.15-1.40%, Mn: 0.15-1.20%, P: 0.0015 -0.10%, S: 0.005-0.020%, Al: 0.15-0.80%, N: 0.0015-0.0080%, Sb: 0.015-0.12%, Sn: 0.015-0.12%, the balance being iron and inevitable impurities, using thin slab
  • the hot-rolled sheet is continuously cast and rolled, and then obtained by pickling, cold rolling, annealing and secondary cold rolling, wherein the secondary cold rolling reduction rate is 2-10%.
  • the technology is characterized by the use of thin slab continuous casting and rolling technology to obtain favorable texture structure and achieve magnetic improvement.
  • the secondary cold rolling process requires a high reduction ratio and requires special cold rolling flattening equipment.
  • Chinese patent CN1864879A discloses a method for producing semi-process cold-rolled silicon steel by thin slab continuous casting and rolling.
  • the Si content is 0.2-1.0%
  • the Mn content is 0.20-0.8%
  • the P content is 0.02-0.07%.
  • the continuous casting billet with acid-soluble aluminum content of 0.04-0.30% and Sb content of 0.02-0.06% is then subjected to hot rolling, pickling cold rolling, annealing, and 2-18% elongation flat transformation to obtain a cold-rolled sheet after magnetic annealing.
  • the iron loss is less than 6.5W/kg.
  • the manufacturing method also adopts a large elongation flatness and a high iron loss.
  • the Chinese patent CN101306434A discloses a low carbon low silicon aluminum-free semi-process non-oriented electrical steel preparation method, which is characterized in that the composition does not contain alloying elements such as Al, Sn, Sb, Cu, Cr, Ni and rare earth.
  • the steel sheet does not contain Al and there is no addition of the internal oxidation inhibiting alloy, when the steel sheet is annealed under complicated furnace conditions, especially when the dew point is higher than 0 ° C, it is easy to cause internal oxidation in the surface layer, resulting in magnetic deterioration, which limits Application range.
  • Chinese patent CN101654757A also discloses a semi-process non-oriented electrical steel plate and a manufacturing method thereof.
  • the chemical composition of the steel plate is: C: ⁇ 0.003%, Si: 1.00-2.30%, Mn: 0.20-1.00%, P: 0.01-0.10% , S: ⁇ 0.005%, Al: 0.20-0.80%, N: ⁇ 0.005%, the rest is iron and inevitable impurities, the production process includes slab continuous casting, hot rolling, pickling cold rolling, annealing, which is characterized by After annealing, the surface of the steel plate is coated with an insulating coating, and there is no flat deformation.
  • the Si content is 1.15%
  • the iron loss P 15/50 after magnetic annealing is about 4.2 W/kg.
  • the technical problem to be solved by the present invention is to obtain a cold-rolled magnetic laminated steel which can suppress internal oxidation behavior and has excellent soft magnetic properties by reasonable composition design and process control under low flat pressure conditions.
  • the object of the present invention is to provide a cold-rolled magnetic laminated steel excellent in magnetic properties and a method for producing the same, the cold-rolled magnetic laminated steel having excellent magnetic properties and good processing property, and magnetically annealed after cold-rolled magnetic laminated steel, iron Loss P 15/50 ⁇ 3.9W/kg, magnetic induction B 50 ⁇ 1.68T.
  • the chemical composition weight percentage is: C ⁇ 0.010%, Mn: 0.20 to 0.50%, S ⁇ 0.0050%, P ⁇ 0.030%, 0.4% ⁇ Si, and the Si and Al contents are satisfied. : 0.65% ⁇ Si + 1.2Al ⁇ 1.5%, one or more components of B, Zn, Co, Sn, Sb, Cu, Bi, the amount of addition is controlled at 0.020-0.10%, and the rest is Fe and unavoidable impurities.
  • the iron loss P 15/50 i.e., the iron loss under the condition of a frequency of 50 Hz and a magnetic induction of 1.5 T
  • the cold rolled steel of the present invention can be used to produce laminated steel.
  • the iron loss and magnetic induction test standards are carried out in accordance with the Chinese standard GB/T 3655.
  • Si Silicon element can significantly improve the electrical resistivity, strength and hardness of steel, reduce iron loss and improve the processing performance of the chip. Therefore, the chemical composition of the present invention controls the silicon content to be not less than 0.40%.
  • Si+Al increasing the content of Si and Al can increase the electrical resistivity of steel, thereby reducing iron loss, but at the same time deteriorating the magnetic induction.
  • the invention optimizes the composition of silicon and aluminum to satisfy the relationship: 0.65. % ⁇ Si+1.2Al ⁇ 1.5%.
  • Si+1.2Al content is less than 0.65%, the iron loss improvement after magnetic annealing is limited and the performance deviation is small under the condition of small elongation.
  • Si+1.2 When the Al content exceeds 1.5%, the magnetic induction deteriorates severely, and the alloy cost increases.
  • Carbon is a harmful element that is not conducive to magnetism. If the carbon content is too high, it will cause an increase in iron loss, magnetic aging, and difficulty in decarburization. Therefore, the content should not exceed 0.010%.
  • Mn Manganese can increase the electrical resistivity, improve the hot rolling plasticity and grain structure, and is beneficial to the improvement of magnetic properties. The addition of less than 0.2% or more than 0.5% is not conducive to performance improvement.
  • S Sulfur is a magnetically harmful element, and when fine MnS precipitates are formed with Mn, grain growth during annealing is inhibited, and iron loss is deteriorated.
  • the S content of the present invention is not more than 0.0050%.
  • P Phosphorus element is easily segregated along the grain boundary, resulting in poor processing performance, especially for products with low carbon content and high Si+Al content. If the phosphorus content is too high, embrittlement is likely to occur after annealing. P ⁇ 0.030%.
  • the method for producing cold-rolled steel excellent in magnetic properties according to the present invention comprises the following steps:
  • the finishing temperature F and the Si content satisfy the relationship: 830 ⁇ F ⁇ 860 + exp (112 ⁇ ⁇ + 2.8), wherein ⁇ represents the Si content, F unit ° C; the coiling temperature is controlled at 650-740 ° C, the thickness of the hot rolled sheet 2.2-2.8mm;
  • the core of the manufacturing method of the present invention is chemical composition design and hot rolling process.
  • the Si content is ⁇ 1.7%
  • austenite ⁇ ferrite ⁇ wherein the Si content in the steel is opposite to the Ar 3 transformation point
  • the Si content increases, and the temperature of the Ar3 phase transition point rises sharply.
  • the deformation resistance between the austenite and ferrite phases is large, and the deformation resistance of the hot rolling process fluctuates greatly, which makes hot rolling. Plate type and thickness control are difficult.
  • the highest content of Si element in the steel component of the invention does not exceed 1.5%, and austenite ferrite transformation occurs in the finish rolling process.
  • the present invention controls the finish rolling temperature below the Ar3 phase transition temperature; for different silicon contents, the finish rolling temperature Control: 830 ⁇ F ⁇ 860 + exp (112 ⁇ ⁇ + 2.8), ⁇ represents the Si content, to ensure that the last or second pass of the finishing rolling is outside the two-phase zone, that is, a single ferrite phase zone rolling, The deformation resistance fluctuation is reduced, the rolling stability and the plate shape control are increased, and the finish rolling temperature is prevented from being too high, resulting in an inner layer of the surface layer of the hot rolled plate.
  • the recrystallized grain structure ratio of the hot rolled sheet exceeds 70%, thereby achieving the purpose of improving the final product magnetic induction.
  • Si and Al element ratio design According to the rational design of the content of Si and Al elements, the magnetic induction is also improved while obtaining low iron loss.
  • microalloying one or more microalloyings are selected from elements such as B, Zn, Co, Sn, Cu, Sb, and Bi.
  • segregation of alloying elements at grain boundaries can be utilized to improve weaving. Structure, improve magnetic properties; on the other hand, improve the environmental adaptability of laminated steel during magnetic annealing, and suppress internal oxidation in the annealing environment with dew point higher than 0 °C, thereby preventing deterioration of magnetic properties.
  • the invention improves the grain structure and the plate type quality of the hot rolled plate by designing the hot rolling process, and combines the softening annealing and the deformation process under the uniform pressure to obtain the cold rolled magnetic laminated steel excellent in magnetic properties.
  • the flattening process of the present invention adopts a low elongation of 1.0-2.0%.
  • the rolling capacity of the leveling machine is low, the rolling force is small in the leveling process, and the energy consumption is low. It can be produced by using an ordinary leveling machine, and no special high-power leveling mill equipment is needed. Additional equipment investment is small.
  • Table 1 shows the mass percentages of the main elements of the cold-rolled magnetic laminated steel excellent in magnetic properties of Examples A0 to A10, the balance of which is Fe and other unavoidable impurities.
  • Table 2 lists the final rolling temperatures, coiling temperatures, softening annealing processes, and leveling process parameters for the specific examples A0-A10.
  • Table 3 lists the magnetic performance results of the samples of Examples A0-A10 after magnetic annealing under different conditions, wherein:
  • Magnetic annealing I annealing temperature 760 ° C, heat preservation 2.5 hr, atmosphere 10% H 2 , 90% N 2 , dew point 26 ° C;
  • Magnetic Annealing II Annealing temperature 790 ° C, holding for 1 hr, atmosphere 20% H 2 , 80% N 2 , dew point 13 ° C.
  • the cold rolled magnetic laminate steel of Examples A0-A10 was obtained by the following process steps:
  • the casting billet heating temperature is 1080-1160 ° C
  • the hot rolling finishing rolling temperature is controlled at 830 ° C -890 ° C
  • the coiling temperature is 650-740 ° C
  • the hot rolled sheet thickness is 2.5 mm;
  • A0-A8 number corresponds to rolling thickness 0.50-0.51mm
  • A9 corresponds to rolling thickness 0.475-0.48mm.
  • softening annealing process annealing temperature 650-780 ° C, holding time 60-100 s;
  • the flattening elongation is 1.0-2.0%, of which A0-A8 corresponds to the final thickness of strip steel of 0.50mm, and A9 and A10 correspond to strip thickness of 0.47mm.
  • Example Finishing temperature (°C) Coiling temperature (°C) Softening annealing process Flattening elongation (%) A0 890 650 780°C+60s 2.0 A1 880 700 720°C+90s 2.0 A2 875 680 750°C+90s 1.9 A3 855 690 730°C+80s 1.9 A4 860 720 710°C+80s 1.5 A5 855 685 650°C+70s 1.8 A6 870 660 670°C+70s 1.8 A7 880 680 690°C+70s 1.6 A8 850 740 650°C+100s 1.0 A9 875 690 720°C+90s 1.9 A10 860 685 760°C+70s 2.0
  • the cold-rolled magnetic laminated steel obtained by the present invention has a magnetic loss P 15/50 of less than 3.9 W/kg and a magnetic induction B 50 of more than 1.68 after magnetic annealing in different processes. T.
  • the cold-rolled magnetic laminated steel obtained by the present invention has excellent soft magnetic properties such as low iron loss and high magnetic induction.
  • Table 4 lists the respective chemical element mass percentages of the comparatively baked B1-B6 cold rolled magnetic laminated steel.
  • Table 5 lists the final rolling temperatures, coiling temperatures, softening annealing processes, and leveling process parameters for Comparative Examples B1-B6.
  • Table 6 lists the magnetic performance results of the comparative B1-B6 samples after magnetic annealing under different conditions, among which:
  • Magnetic annealing I annealing temperature 760 ° C, heat preservation 2.5 hr, atmosphere 10% H 2 , 90% N 2 , dew point 26 ° C;
  • Magnetic Annealing II Annealing temperature 790 ° C, holding for 1 hr, atmosphere 20% H 2 , 80% N 2 , dew point 13 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

一种磁性能优异的冷轧磁性叠片钢及其制造方法,其化学成分重量百分比为:C≤0.010%,Mn:0.20~0.50%,S≤0.0050%,P≤0.030%,0.4%≤Si,且Si和Al含量满足:0.65%≤Si+1.2Al≤1.5%,B、Zn、Co、Sn、Sb、Cu、Bi中一种或多种成分,添加量控制在0.020-0.10%,其余为Fe及不可避免杂质;制造方法包括冶炼、铸造、铸坯加热、热轧、酸洗冷轧、软化退火、平整。该冷轧磁性叠片钢磁性能优异,加工性良好,冷轧钢磁性退火后,铁损P15/50≤3.9W/kg、磁感B50≥1.68T。

Description

一种磁性能优异的冷轧磁性叠片钢及其制造方法 技术领域
本发明涉及一种磁性能优异的冷轧磁性叠片钢及其制造方法。
背景技术
冷轧磁性叠片钢是一种重要的金属软磁材料,又叫半工艺电工钢,主要用来制造电机、变压器的铁芯,冷轧钢卷经钢厂软化退火、平整后,不涂绝缘涂层,直接供给下游用户,用户对其进行冲片和磁性退火。它的基本生产工艺包括如下步骤:钢厂:冶炼→热轧→(常化,可选择,只对高等级产品)→冷轧→软化退火→平整轧制→精整,钢板表面无绝缘涂层,不涂油或涂覆少量特殊防锈油,用户:钢卷分条→冲片→磁性退火和发蓝退火。
冷轧磁性叠片钢的优势在于:
(1)生产效率高,生产设备与常规冷轧板相同,不需钢厂投资新设备,可增加钢厂产品种类,为钢厂带来额外效益;
(2)与全工艺电工钢相比,冷轧磁性叠片钢表面不需要涂覆绝缘涂层,制造成本低;
(3)产品磁性能提高,比全工艺无取向电工钢提高2-3个牌号;
(4)对用户而言,冷轧磁性叠片钢经磁性退火达到铁芯的铁损和磁感目标值,经表面发蓝形成绝缘层,提高铁芯成品性能,能满足绝大多数电机铁芯应用的要求。冷轧磁性叠片钢在美国被广泛应用于电机铁芯、变压器铁芯,市场规模数倍于全工艺无取向电工钢,近年来使用比例有进一 步扩大趋势。国内市场越来越多电机、压缩机用户开始关注使用这种材料。
中国专利CN1974820A公开了一种半工艺电工钢的生产方法,该半工艺电工钢铸坯化学成分为:C:0.001-0.020%,Si:0.15-1.40%,Mn:0.15-1.20%,P:0.0015-0.10%,S:0.005-0.020%,Al:0.15-0.80%,N:0.0015-0.0080%,Sb:0.015-0.12%,Sn:0.015-0.12%,其余为铁及不可避免杂质,采用薄板坯连铸连轧热轧板,然后经酸洗、冷轧、退火、二次冷轧获得,其中二次冷轧压下率2-10%。该技术的特点是利用薄板坯连铸连轧技术,获得有利织构组织,实现磁性改善。但是二次冷轧工序对压下率要求较高,需要特殊冷轧平整装备。
中国专利CN1864879A公开了一种薄板坯连铸连轧生产半工艺冷轧硅钢方法,通过炼钢过程工艺控制,获得Si含量0.2-1.0%、Mn含量0.20-0.8%、P含量0.02-0.07%、酸溶铝含量0.04-0.30%、Sb含量0.02-0.06%的连铸坯,然后经过热轧、酸洗冷轧、退火、2-18%延伸率平整形变,获得冷轧板经过磁性退火后,铁损小于6.5W/kg。该制造方法也是采用大延伸率平整,铁损较高。
为了降低成本,中国专利CN101306434A公开的一种低碳低硅无铝半工艺无取向电工钢制备方法,它的特征是成分中不含Al、Sn、Sb、Cu、Cr、Ni以及稀土等合金元素,降低了炼钢合金成本,同时采用较大临界变形(3.1%-13.2%),最终产品磁性能P 15/50=3.45~5.05W/kg、B 50=1.69T~1.76T。但是由于钢板中不含Al、同时没有添加抑制内氧化合金,当钢板在复杂炉况条件下退火时,特别是露点高于0℃时,极易在表层产生内氧化,造成磁性劣化,限制了应用范围。
中国专利CN101654757A也公开了一种半工艺无取向电工钢板及制造方法,钢板的化学成分为:C:≦0.003%,Si:1.00-2.30%,Mn:0.20-1.00%,P:0.01-0.10%,S:≦0.005%,Al:0.20-0.80%,N:≦0.005%,其余为铁及不可避免杂质,生产流程包括板坯连铸、热轧、酸洗冷轧、退火,它的 特征在于退火后钢板表面涂绝缘涂层,同时无平整压下变形,当Si含量为1.15%时,磁性退火后铁损P 15/50约4.2W/kg。
本发明要解决的技术问题是在低平整压下条件下,通过合理的成分设计和工艺控制,获得一种可抑制内氧化行为且软磁性能优异的冷轧磁性叠片钢。
发明内容
本发明的目的在于提供一种磁性能优异的冷轧磁性叠片钢及其制造方法,所述冷轧磁性叠片钢磁性能优异,加工性能好,冷轧磁性叠片钢磁性退火后,铁损P 15/50≤3.9W/kg、磁感B 50≥1.68T。
为达到上述目的,本发明的技术方案是:
一种磁性能优异的冷轧钢,其化学成分重量百分比为:C≤0.010%,Mn:0.20~0.50%,S≤0.0050%,P≤0.030%,0.4%≤Si,且Si和Al含量满足:0.65%≤Si+1.2Al≤1.5%,B、Zn、Co、Sn、Sb、Cu、Bi中一种或多种成分,添加量控制在0.020-0.10%,其余为Fe及不可避免杂质。
本发明所述的冷轧钢磁性退火后,铁损P 15/50(即频率50Hz、磁感1.5T条件下的铁损)≤3.9W/kg、磁感B 50≥1.68T。
本发明的冷轧钢可用于制造叠片钢。
本发明中,铁损、磁感测试标准是参照中国标准GB/T 3655进行的。
本发明冷轧钢的化学成分设计中:
Si:硅元素可显著提高钢的电阻率、强度和硬度,降低铁损以及改善冲片加工性能,因此本发明化学成分控制硅含量不少于0.40%。
Si+Al:增加Si、Al元素含量,可增大钢的电阻率,从而降低铁损,但同时也会使磁感劣化,本发明通过成分优化,限定硅、铝含量满足满足关系式:0.65%≤Si+1.2Al≤1.5%,一方面,当Si+1.2Al含量小于0.65%时,在较小延伸率条件下,磁性退火后铁损改善有限,性能偏差,另一方面当 Si+1.2Al含量超过1.5%时,磁感劣化严重,同时合金成本升高。
C:碳是不利于磁性的有害元素,碳含量太高会引起铁损升高、磁时效、用户脱碳困难,因此要限制含量不超过0.010%。
Mn:锰可提高电阻率,同时改善热轧塑性和晶粒组织,有利于磁性能改善,加入量低于0.2%或者高于0.5%都不利于性能改善。
从B、Zn、Co、Sn、Cu、Sb、Bi等元素中选择一种或者多种微合金化,添加量控制在0.020-0.10%,第一,可以利用合金元素在晶界的偏聚,改善晶粒织构,提高{110}有利织构强度,抑制{111}纤维织构,从而提高磁性;第二,利用合金元素晶界偏聚,阻止氧元素向钢板内部扩散,抑制表层产生内氧化层,进而防止磁性能劣化,提高叠片钢在用户磁性退火过程中的适应能力。
S:硫是磁性有害元素,与Mn形成细小MnS析出物时阻碍退火过程中晶粒长大,使铁损劣化,本发明限定S含量不超过0.0050%。
P:磷元素易沿晶界偏聚,造成加工性能变差,特别是对于含碳量低、Si+Al含量高的产品,如果磷含量过高,退火后易出现脆化现象,本发明限定P≤0.030%。
本发明所述的磁性能优异的冷轧钢的制造方法,其包括如下步骤:
1)冶炼、铸造
按上述所述成分冶炼、铸造成坯;
2)铸坯加热,加热温度:1050-1180℃;
3)热轧
终轧温度F与Si含量满足关系:830≤F≤860+exp(112×λ+2.8),其中,λ表示Si含量,F单位℃;卷取温度控制在650-740℃,热轧板厚度2.2-2.8mm;
4)酸洗冷轧,采用一次冷轧法,总压下率≥72%;
5)软化退火,采用连续退火炉,退火温度650-780℃,保温时间60-100s;
6)平整,平整延伸率1.0-2.0%。
本发明制造方法的核心是化学成分设计及热轧工艺。对于Fe-Si合金体系,当Si含量≤1.7%时,在900-1100℃热轧时存在相变:奥氏体γ→铁素体α,其中,钢中的Si含量对A r3相变点有重要影响,该范围内Si含量增加,A r3相变点温度急剧升高,另外,奥氏体、铁素体两相变形抗力相差较大,热轧过程变形抗力波动较大,使得热轧板型、厚度控制困难。
本发明钢成分中Si元素最高含量不超过1.5%,精轧过程也会发生奥氏体铁素体转变,本发明通过控制终轧温度在Ar3相变温度以下;对于不同硅含量,终轧温度控制:830≤F≤860+exp(112×λ+2.8),λ表示Si含量,保证精轧最后一道次或二道次在两相区之外,即单一铁素体相区轧制,可减小变形抗力波动,增加轧制稳定性和板型控制,同时避免终轧温度过高,造成热轧板表层产生内样化层。
同时,结合适当卷取温度650-740℃,使热轧板再结晶晶粒组织比例超过70%,达到提高最终成品磁感的目的。
本发明的有益效果:
(1)Si和Al元素配比设计:本发明通过合理设计Si和Al元素的含量,在获得低铁损的同时,磁感也得到提高。
(2)利用微合金化,从B、Zn、Co、Sn、Cu、Sb、Bi等元素中选择一种或者多种微合金化,一方面可以利用合金元素在晶界的偏聚,改善织构,提高磁性;另一方面提高叠片钢磁性退火过程中的环境适应能力,在露点高于0℃退火环境中可抑制产生内氧化,进而防止磁性能劣化。
(3)本发明通过对热轧工艺设计,改善了热轧板晶粒组织和板型质量,同时结合软化退火和平整压下变形工艺,从而获得磁性能优异的冷轧磁性叠片钢。
(4)本发明平整工艺采用1.0-2.0%低延伸率,一方面,钢板经过低平整压下后,有利于改善钢板冲片加工性能,同时促进磁性退火过程中晶 粒长大,降低铁损,提高磁导率;另一方面,对平整机设备轧制能力要求低,平整过程轧制力小,能耗低,采用普通平整机即可生产,不需要专用大功率平整轧机设备,额外设备投资小。
具体实施方式
下面结合实施例对本发明做进一步说明。
表1给出了实施例A0-A10的磁性能优异的冷轧磁性叠片钢主要元素的质量百分比,其成分余量为Fe和其它不可避免杂质。
表2列出了实施例A0-A10具体对应的终轧温度、卷取温度、软化退火工艺以及平整工艺参数。
表3列出了实施例A0-A10样板经不同条件磁性退火后检测的磁性能结果,其中:
磁性退火I:退火温度760℃,保温2.5hr,气氛10%H 2,90%N 2,露点26℃;
磁性退火II:退火温度790℃,保温1hr,气氛20%H 2,80%N 2,露点13℃。
表1
实施例 C Si Al Mn S P 合金元素
A0 0.0060 0.40 0.21 0.50 0.0035 0.0025 Co+Cu:0.095
A1 0.0024 0.51 0.18 0.22 0.0019 0.020 Sb:0.035
A2 0.0095 0.65 0.20 0.25 0.0032 0.015 B+Cu:0.040
A3 0.0025 0.70 0.32 0.30 0.0028 0.012 Sn+Bi:0.051
A4 0.0055 1.02 0.14 0.27 0.0042 0.021 Co+Zn:0.082
A5 0.0027 0.85 0.33 0.26 0.0026 0.013 Sb+B:0.036
A6 0.0063 1.05 0.22 0.35 0.0036 0.014 Sn+Cu:0.056
A7 0.0040 1.15 0.25 0.40 0.0021 0.018 Cu+B:0.023
A8 0.0058 1.31 0.16 0.21 0.0021 0.016 Bi+Cu:0.020
A9 0.0048 1.10 0.26 0.29 0.0036 0.017 Sb+Sn+Zn:0.059
A10 0.0068 1.20 0.23 0.29 0.0035 0.014 Sb+Cu:0.052
实施例A0-A10的冷轧磁性叠片钢采用如下工艺步骤获得:
1)按表1成分冶炼、连铸,获得相应铸坯;
2)热轧:铸坯加热温度1080-1160℃,热轧终轧温度控制在830℃-890℃,卷取温度650-740℃,热轧板厚度2.5mm;
3)酸洗冷轧:一次冷轧法,A0-A8编号对应轧制厚度0.50-0.51mm,A9、A10对应轧制厚度0.475-0.48mm。
4)软化退火工艺:退火温度650-780℃,保温时间60-100s;
5)平整工艺:平整延伸率1.0-2.0%,其中A0-A8对应带钢最终成品厚度0.50mm,A9、A10对应带钢厚度0.47mm。
表2
实施例 终轧温度(℃) 卷取温度(℃) 软化退火工艺 平整延伸率(%)
A0 890 650 780℃+60s 2.0
A1 880 700 720℃+90s 2.0
A2 875 680 750℃+90s 1.9
A3 855 690 730℃+80s 1.9
A4 860 720 710℃+80s 1.5
A5 855 685 650℃+70s 1.8
A6 870 660 670℃+70s 1.8
A7 880 680 690℃+70s 1.6
A8 850 740 650℃+100s 1.0
A9 875 690 720℃+90s 1.9
A10 860 685 760℃+70s 2.0
表3
Figure PCTCN2018107457-appb-000001
从结果可以看出,通过本发明获得的磁性能优异的冷轧磁性叠片钢,经不同工艺磁性退火后,铁损P 15/50均小于3.9W/kg,磁感B 50均高于1.68T。由此说明本发明获得的冷轧磁性叠片钢具有低铁损、高磁感等优异的软磁性能。
对比例
为了进一步说明本发明,下文列出了对比例B1-B6的化学成分百分比、工艺参数和性能,B1-B6对比例成品厚度为0.50mm。
表4列出了对比例B1-B6冷轧磁性叠片钢的各化学元素质量百分含量。表5列出了对比例B1-B6具体对应的终轧温度、卷取温度、软化退火工艺以及平整工艺参数。
表6列出了对比例B1-B6样板经不同条件磁性退火后检测的磁性能结果,其中:
磁性退火I:退火温度760℃,保温2.5hr,气氛10%H 2,90%N 2,露点26℃;
磁性退火II:退火温度790℃,保温1hr,气氛20%H 2,80%N 2,露点13℃。
表4
对比例 C Si Al Mn S P 合金元素
B1 0.0018 0.25 0.17 0.15 0.0034 0.050 Sn:0.03
B2 0.0024 0.95 0.28 0.24 0.0019 0.020
B3 0.0020 1.82 0.15 0.25 0.0018 0.017 Sb+Cu:0.040
表5
对比例 终轧温度(℃) 卷取温度(℃) 软化退火工艺 平整延伸率(%)
B1 850 700 760℃+90s 1.9
B2 860 720 740℃+90s 1.8
B3 870 730 740℃+90s 1.9
表6
Figure PCTCN2018107457-appb-000002
从表6对比例B1-B3结果可以看出,磁性能铁损P15/50或高于3.9W/kg,磁感B50或低于1.68T。

Claims (10)

  1. 一种用于制造叠片钢的冷轧钢,其化学成分重量百分比为:
    C≤0.010%,Mn:0.20~0.50%,S≤0.0050%,P≤0.030%,0.4%≤Si,且Si和Al含量满足:0.65%≤Si+1.2Al≤1.5%,选自B、Zn、Co、Sn、Sb、Cu、Bi中一种或多种元素:合计添加量控制在0.020-0.10%,其余为Fe及不可避免杂质。
  2. 根据权利要求1所述的冷轧钢,其特征在于,其化学成分重量百分比中,0.4%≤Si≤0.65%、0.65%≤Si+1.2Al≤1.0%。
  3. 根据权利要求1所述的冷轧钢,其特征在于,其化学成分重量百分比中,1.0%≤Si+1.2Al≤1.25%。
  4. 根据权利要求1所述的冷轧钢,其特征在于,其化学成分重量百分比中,1.0%≤Si、1.30%≤Si+1.2Al≤1.50%。
  5. 根据权利要求1所述的冷轧钢,其为厚度0.40-0.60mm的带钢。
  6. 如权利要求1-5中任一项所述的冷轧钢,其特征在于,所述的冷轧钢经过磁性退火后,铁损P 15/50≤3.9W/kg、磁感B 50≥1.68T。
  7. 一种叠片钢,由权利要求1~6中任一项所述的冷轧钢制成。
  8. 一种冷轧钢的制造方法,其特征是,包括如下步骤:
    1)冶炼、铸造
    按以下化学成分重量百分比冶炼、铸造成坯:
    C≤0.010%,Mn:0.20~0.50%,S≤0.0050%,P≤0.030%,0.4%≤Si,且Si和Al含量满足:0.65%≤Si+1.2Al≤1.5%,选自B、Zn、Co、Sn、Sb、Cu、Bi中一种或多种元素:合计添加量控制在0.020-0.10%,其余为Fe及不可避免杂质;
    2)铸坯加热,加热温度:1050-1180℃;
    3)热轧
    终轧温度F与Si含量满足关系:830≤F≤860+exp(112×λ+2.8),其中,λ表示Si含量,F单位℃;卷取温度控制在650-740℃,热轧板厚度2.2-2.8mm;
    4)酸洗冷轧,采用一次冷轧法,总压下率≥72%;
    5)软化退火,采用连续退火炉,退火温度650-780℃,保温时间60-100s;
    6)平整,平整延伸率1.0-2.0%。
  9. 如权利要求8所述的冷轧钢的制备方法,在所述步骤6)中,将钢材成型为厚度0.40-0.60mm的带钢。
  10. 如权利要求8或9所述的冷轧钢的制造方法,其特征是,所述冷轧钢经过磁性退火后,铁损P 15/50≤3.9W/kg、磁感B 50≥1.68T。
PCT/CN2018/107457 2017-09-27 2018-09-26 一种磁性能优异的冷轧磁性叠片钢及其制造方法 WO2019062732A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112020003655-2A BR112020003655B1 (pt) 2017-09-27 2018-09-26 Aço laminado a frio, aço de laminagem e método para fabricar aço laminado a frio
MX2020001802A MX2020001802A (es) 2017-09-27 2018-09-26 Acero magnetico de laminacion laminado en frio con excelentes propiedades magneticas y metodo de fabricacion del mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710891291.1A CN109554619A (zh) 2017-09-27 2017-09-27 一种磁性能优异的冷轧磁性叠片钢及其制造方法
CN201710891291.1 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019062732A1 true WO2019062732A1 (zh) 2019-04-04

Family

ID=65864173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107457 WO2019062732A1 (zh) 2017-09-27 2018-09-26 一种磁性能优异的冷轧磁性叠片钢及其制造方法

Country Status (4)

Country Link
CN (1) CN109554619A (zh)
BR (1) BR112020003655B1 (zh)
MX (1) MX2020001802A (zh)
WO (1) WO2019062732A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877527A (zh) * 2021-01-11 2021-06-01 长春工业大学 一种基于临界变形制备高强度无取向电工钢的方法
CN113403455A (zh) * 2021-06-17 2021-09-17 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN115198179A (zh) * 2022-06-23 2022-10-18 首钢智新迁安电磁材料有限公司 一种无取向电工钢及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517275A (zh) * 2020-11-20 2022-05-20 宝山钢铁股份有限公司 一种超级电磁纯铁冷轧板带及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270011A (ja) * 2003-03-11 2004-09-30 Jfe Steel Kk 回転機用高磁束密度無方向性電磁鋼板の製造方法
CN101921956A (zh) * 2010-06-23 2010-12-22 北京科技大学 一种高磁感低铁损低碳低硅无取向电工钢及制造方法
CN101956127A (zh) * 2010-10-15 2011-01-26 马鞍山钢铁股份有限公司 含Sn无取向电工钢及其板卷制备方法
CN103667879A (zh) * 2013-11-27 2014-03-26 武汉钢铁(集团)公司 磁性能和机械性能优良的无取向电工钢及生产方法
CN106756475A (zh) * 2016-12-02 2017-05-31 武汉钢铁股份有限公司 中高频驱动电机用0.27mm厚无取向硅钢及生产方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676621B2 (ja) * 1989-05-19 1994-09-28 新日本製鐵株式会社 磁気特性と溶接性の優れたセミプロセス無方向性電磁鋼板の製造方法
CN100999050A (zh) * 2006-01-11 2007-07-18 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
CN100513615C (zh) * 2006-12-18 2009-07-15 马鞍山钢铁股份有限公司 半工艺电工钢的生产方法
CN102453844B (zh) * 2010-10-25 2013-09-04 宝山钢铁股份有限公司 一种磁性优良的高效无取向硅钢制造方法
CN102925793B (zh) * 2012-11-27 2014-12-10 武汉钢铁(集团)公司 一种磁感≥1.8t的无取向电工钢及其生产方法
CN103509995B (zh) * 2013-09-24 2016-01-20 马钢(集团)控股有限公司 一种半工艺型冷轧无取向电工钢的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270011A (ja) * 2003-03-11 2004-09-30 Jfe Steel Kk 回転機用高磁束密度無方向性電磁鋼板の製造方法
CN101921956A (zh) * 2010-06-23 2010-12-22 北京科技大学 一种高磁感低铁损低碳低硅无取向电工钢及制造方法
CN101956127A (zh) * 2010-10-15 2011-01-26 马鞍山钢铁股份有限公司 含Sn无取向电工钢及其板卷制备方法
CN103667879A (zh) * 2013-11-27 2014-03-26 武汉钢铁(集团)公司 磁性能和机械性能优良的无取向电工钢及生产方法
CN106756475A (zh) * 2016-12-02 2017-05-31 武汉钢铁股份有限公司 中高频驱动电机用0.27mm厚无取向硅钢及生产方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877527A (zh) * 2021-01-11 2021-06-01 长春工业大学 一种基于临界变形制备高强度无取向电工钢的方法
CN113403455A (zh) * 2021-06-17 2021-09-17 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN113403455B (zh) * 2021-06-17 2024-03-19 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN115198179A (zh) * 2022-06-23 2022-10-18 首钢智新迁安电磁材料有限公司 一种无取向电工钢及其制备方法

Also Published As

Publication number Publication date
CN109554619A (zh) 2019-04-02
BR112020003655A2 (pt) 2020-09-01
BR112020003655B1 (pt) 2023-10-10
MX2020001802A (es) 2020-08-20

Similar Documents

Publication Publication Date Title
JP5724824B2 (ja) 圧延方向の磁気特性が良好な無方向性電磁鋼板の製造方法
JP6842546B2 (ja) 無方向性電磁鋼板およびその製造方法
KR101983199B1 (ko) 방향성 전자 강판의 제조 방법
WO2019062732A1 (zh) 一种磁性能优异的冷轧磁性叠片钢及其制造方法
RU2586169C2 (ru) Нетекстурированная электротехническая листовая сталь и способ ее изготовления
JP2006501361A5 (zh)
JP2017222898A (ja) 方向性電磁鋼板の製造方法
CN110964977B (zh) 一种能降低表面硬度的取向硅钢及其制备方法
CN111100978B (zh) 一种能提高涂层附着性能的取向硅钢及其制备方法
CN106702260A (zh) 一种高磁感低铁损无取向硅钢及其生产方法
JP4358550B2 (ja) 圧延方向とその板面内垂直方向磁気特性の優れた無方向性電磁鋼板の製造方法
JP3456352B2 (ja) 鉄損特性に優れる方向性電磁鋼板とその製造方法
CN103111466B (zh) 一种双辊连铸薄带异步热轧工艺制备取向硅钢的方法
CN112143964A (zh) 一种极低铁损的无取向电工钢板及其连续退火工艺
KR20020035827A (ko) 무방향성 자성강판의 제조방법
CN110846576B (zh) 一种具有自粘结性能的取向硅钢及其制备方法
JP4422220B2 (ja) 磁束密度が高く鉄損の低い無方向性電磁鋼板及びその製造方法
JPWO2005100627A1 (ja) 打抜き加工性と歪取焼鈍後の磁気特性に優れた無方向性電磁銅板とその製造方法
WO1993013231A1 (en) Non-oriented electromagnetic steel sheet having very good magnetic characteristics and method of manufacturing the same
CN101348852A (zh) 一种低温板坯加热生产取向电工钢的方法
WO2022210998A1 (ja) 無方向性電磁鋼板
JP7245325B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2005002401A (ja) 無方向性電磁鋼板の製造方法
CN107326282B (zh) 600MPa级高屈强比热轧高强轻质钢及其制造方法
RU2424328C1 (ru) Способ производства низкоуглеродистой холоднокатаной стали для штамповки и последующего эмалирования

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861364

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020003655

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020003655

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200220

122 Ep: pct application non-entry in european phase

Ref document number: 18861364

Country of ref document: EP

Kind code of ref document: A1