WO2019062731A1 - Process for extrusion moulding polymer compounds comprising poly (meth) acrylimide foam particles - Google Patents

Process for extrusion moulding polymer compounds comprising poly (meth) acrylimide foam particles Download PDF

Info

Publication number
WO2019062731A1
WO2019062731A1 PCT/CN2018/107456 CN2018107456W WO2019062731A1 WO 2019062731 A1 WO2019062731 A1 WO 2019062731A1 CN 2018107456 W CN2018107456 W CN 2018107456W WO 2019062731 A1 WO2019062731 A1 WO 2019062731A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
foam particles
process according
polymer compound
meth
Prior art date
Application number
PCT/CN2018/107456
Other languages
French (fr)
Inventor
Ricardo Luiz Willemann
Qianwen KONG
Denis HOLLEYN
Zhenyuan SHI
Kaifeng YAN
Original Assignee
Evonik Specialty Chemicals (Shanghai) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Specialty Chemicals (Shanghai) Co., Ltd. filed Critical Evonik Specialty Chemicals (Shanghai) Co., Ltd.
Publication of WO2019062731A1 publication Critical patent/WO2019062731A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/207Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising impregnating expanded particles or fragments with a binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate

Definitions

  • the invention relates to a process for extrusion moulding polymer compounds comprising poly (meth) acrylimide (P(M) I) foam particles, in particular polymethacrylimide (PMI) foam particles.
  • P(M) I poly (meth) acrylimide
  • PMI polymethacrylimide
  • Poly (meth) acrylimide foams e.g. polymethacrylimide foams, such as those marketed under the trademark by Evonik Resource Efficiency GMBH, are widely used in composite material for light weight design in the aerospace, automotive, sport and medical device industries, etc. due to their light weight and high mechanical performance.
  • WO2013/056947 describes a mould shaping process of P (M) I foams which partially solves the above problems, wherein (prefoamed) P (M) I polymer particles are foamed in a mould with the aid of adhesives, which can be a polyamide or a poly (meth) acrylate.
  • the dose of the adhesives can be up to 20%of the P (M) I polymer particles, i.e. up to 16.7%based on the total weight of the P (M) I polymer particles and the adhesive.
  • This process still results in long cycle time.
  • PCT/CN2017/078572 describes a polymer compound comprising poly (meth) acrylimide (P (M) I) foam particles.
  • PCT/CN2017/102026 describes a process for injection moulding the polymer compound. The present inventors further explored the process for extrusion moulding the polymer compound and accomplished the present invention.
  • the present invention provides a process for extrusion moulding a polymer compound comprising:
  • thermoplastic resin which is melt processible at temperatures of less than 400°C.
  • T g refers to glass transition temperature, which can be determined by the DSC method according ISO 1135.
  • the present inventor has found it is important to control the temperature and pressure during the extrusion moulding process so as to provide sufficient flowability of the polymer compound, and to avoid the damage of the cell structure of the foam particles.
  • the extrudate obtained from the process of the present invention can achieve light weight. And it is surprisingly found that the same light weight can be achieved with less P (M) I foam load in the polymer compound in the present invention, compared with an injection moulding process.
  • the present invention also provides the extrudate obtained from the process of the present invention.
  • the present invention further provides the use of the extrudate of the present invention in light weight design.
  • the temperature is 130-220°C, more preferably 140-200°C higher than the T g of the thermoplastic resin.
  • the extrusion pressure is 10-200 bar, preferably 10-100 bar.
  • the extrudate is in the form selected from profiles, sheets, films, tubes, cylinders, cubes, rods, ribbons and meshes.
  • thermoplastic resin there is no limitation to the thermoplastic resin as long as it is melt processible at temperatures of less than 400°C. Melt processible is used in its conventional sense, that the polymer can be processed at the indicated temperatures without substantial degradation of the polymer.
  • thermoplastic resin examples include polyamides, polyolefins, polyesters and copolymers containing any of the above segments as well as the blend thereof.
  • the polyamide is selected from aliphatic polyamides, more preferably PA6, PA11, PA12, PA46, PA66, PA10, PA610, PA612, PA1010, PA1012 and the blend thereof.
  • the P (M) I foam particles used in the present invention can be obtained by the granulation of the P (M) I foams which are not in particulate form.
  • the P (M) I foams are also termed rigid foams, and feature particular robustness.
  • the P (M) I foams are normally produced in a two-stage process: a) production of a cast polymer, and b) foaming of said cast polymer. In accordance with the prior art, these are then cut or sawn to give the desired shape.
  • Production of the P (M) I foams begins with production of monomer mixtures which comprise (meth) acrylic acid and (meth) acrylonitrile, preferably in a molar ratio of from 2: 3 to 3: 2 as main constituents.
  • monomer mixtures which comprise (meth) acrylic acid and (meth) acrylonitrile, preferably in a molar ratio of from 2: 3 to 3: 2 as main constituents.
  • Other comonomers can also be used, examples being esters of acrylic or methacrylic acid, styrene, maleic acid and itaconic acid and anhydrides thereof, and vinylpyrrolidone.
  • the proportion of the comonomers here should not be more than 30%by weight.
  • Small quantities of crosslinking monomers can also be used, an example being allyl acrylate. However, the quantities should preferably be at most from 0.05%by weight to 2.0%by weight.
  • the copolymerization mixture moreover comprises blowing agents which at temperatures of about 150 to 250°C either decompose or vaporize and thus form a gas phase.
  • the polymerization takes place below this temperature, and the cast polymer therefore comprises a latent blowing agent.
  • the polymerization advantageously takes place in a block mould between two glass plates.
  • the cast polymer is then foamed at an appropriate temperature in a second step.
  • P (M) I foams are known in principle to a person skilled in the art and can be reviewed in EP 1 444 293, EP 1 678 244 or WO 2011/138060 for example.
  • the P (M) I foam particles used in the present invention can also be obtained by the foaming of the P (M) I polymer particles.
  • the P (M) I polymer particles can be obtained by grinding the cast polymer, for example, in a cutting mill. The grindings are then foamed at an appropriate temperature to produce the P (M) I foam particles.
  • the P (M) I foam particles used in the present invention is obtained by the foaming of the P (M) I polymer particles, where the closed foam cells are not destroyed, compared with the P (M) I foam particles obtained by the granulation of the P (M) I foams.
  • the P (M) I foam particles have a grain size which ranges 0.1-30 mm, more preferably 0.5-10 mm.
  • the P (M) I foam particles have a bulk density of 25-220 kg/m 3 , more preferably 50-150 kg/m 3 .
  • the P (M) I foam particles are polymethacrylimide (PMI) foam particles.
  • PMI polymers and/or foams commercially available from Evonik Resource Efficiency GMBH, may be mentioned in particular.
  • the polymer compound comprises
  • thermoplastic resin 30-99%, more preferably 40-99%the thermoplastic resin, and,
  • the thermoplastic resin is melt processible at temperatures of less than 250°C, and/or the P (M) I foam particles maintain the particulate form at a temperature at least 140°C, preferably at least 180°C higher than the T g of the thermoplastic resin.
  • the polymer compound of the present invention may include additives, such as calcium carbonate, glass beads, zinc oxide, and fiber reinforcements such as ceramic fibers, aramid fibers, potassium titanate fibers, glass fibers and carbon fibers, depending on the effect or performance desired.
  • additives such as calcium carbonate, glass beads, zinc oxide, and fiber reinforcements such as ceramic fibers, aramid fibers, potassium titanate fibers, glass fibers and carbon fibers, depending on the effect or performance desired.
  • the extrudates obtained from the process of the present invention are generally suitable in principle for any type of lightweight design, and can in particular be used in mass production by way of example for structural parts in the automobile industry, in rail vehicle construction or shipbuilding, in the aerospace industry, in mechanical engineering, in the production of sports equipment, in furniture construction or in the design of wind turbines.
  • the PMI foam particles used in the examples were prepared from PMI polymer particles marketed with trademark Triple F by Evonik Resource Efficiency GMBH.
  • the PMI polymer particles were produced from a fully polymerized copolymer sheet (which had not been prefoamed) with the aid of a granulator.
  • the grain size range of the particles used in the examples, after sieving to keep the fines, was below 1.0 mm.
  • the bulk density of the PMI polymer particles was about 600-700 kg/m 3 .
  • the PMI polymer particles were foamed in an oven at a temperature of 200-240°C for 30-60 mins.
  • the obtained PMI foam particles had a bulk density of 100-150 kg/m 3 and a grain size of 0.5-5 mm.
  • Example 1 was a reference where only the polyamide of L1600 was shaped.
  • Example 4 An injection moulding specimen with a density close to Example 4 was also prepared for comparison.
  • the PMI foam particles were mixed with the melts of a PA12 ( L1600, commercially available from Evonik Resource Efficiency GMBH) to prepare a compound, which was shaped into plates having a thickness of 5 mm by injection moulding in an injection machine (Engel Victory 200/110 Tech Pro) according to process parameters indicated in Table 2 below.
  • a PA12 L1600, commercially available from Evonik Resource Efficiency GMBH
  • the specimen was tested for density (ISO 1183) and the result is also indicated in Table 2 below.
  • the load of PMI foam particles in the polymer compound reaches 50%for the moulding part obtained by an injection moulding process to achieve a density of 0.73 g/cm 3
  • the load of the PMI foam particles is 7.5%to achieve a density of 0.71 g/cm 3
  • the extrusion moulding process of the present invention would need much less load of the PMI foam particles to achieve the same light weight effect compared with an injection moulding process.
  • extrusion moulding is a continuous process. It is believed that the extrusion moulding process of the present invention would be more time efficient to achieve the same light weight than an injection moulding process.
  • Example 10 was a reference where only the PA12 composition of LX9012 (commercially available from Evonik Resource Efficiency GMBH) was shaped.
  • the extrusion moulding process of the present invention also works with polymer compound with high foam load (e.g. 60%) and the obtained extrudates achieve very significant low weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The invention relates to a process for extrusion moulding a polymer compound comprising a thermoplastic resin which is melt processible at temperatures of less than 400℃, and poly (meth) acrylimide (P(M)I) foam particles which maintain the particulate form at a temperature at least 120℃ higher than the T g of the thermoplastic resin. The process includes steps of: (a) heating the polymer compound to a temperature 120-240℃ higher than the T g of the thermoplastic resin, and (b) extrusion moulding the polymer compound under an extrusion pressure of 5-300 bar to obtain an extrudate. The extrudate obtained from the method of the present invention achieves significant light weight compared with the reference, and can be widely used in lightweight design.

Description

PROCESS FOR EXTRUSION MOULDING POLYMER COMPOUNDS COMPRISING POLY (METH) ACRYLIMIDE FOAM PARTICLES Field of the invention
The invention relates to a process for extrusion moulding polymer compounds comprising poly (meth) acrylimide (P(M) I) foam particles, in particular polymethacrylimide (PMI) foam particles.
Background
Poly (meth) acrylimide foams e.g. polymethacrylimide foams, such as those marketed under the trademark
Figure PCTCN2018107456-appb-000001
by Evonik Resource Efficiency GMBH, are widely used in composite material for light weight design in the aerospace, automotive, sport and medical device industries, etc. due to their light weight and high mechanical performance.
In the past, the P (M) I foams were supplied in the shape of blocks, which however did not quite fit the processing of parts with complex 3D geometries, and could result in long cycle time, low precision, and material waste.
WO2013/056947 describes a mould shaping process of P (M) I foams which partially solves the above problems, wherein (prefoamed) P (M) I polymer particles are foamed in a mould with the aid of adhesives, which can be a polyamide or a poly (meth) acrylate. The dose of the adhesives can be up to 20%of the P (M) I polymer particles, i.e. up to 16.7%based on the total weight of the P (M) I polymer particles and the adhesive. However this process still results in long cycle time.
PCT/CN2017/078572 describes a polymer compound comprising poly (meth) acrylimide (P (M) I) foam particles. PCT/CN2017/102026 describes a process for injection moulding the polymer compound. The present inventors further explored the process for extrusion moulding the polymer compound and accomplished the present invention.
Summary of the present invention
The present invention provides a process for extrusion moulding a polymer compound comprising:
(1) 20-99%a thermoplastic resin, which is melt processible at temperatures of less than 400℃, and
(2) 1-80%poly (meth) acrylimide (P (M) I) foam particles, which maintain the particulate form at a temperature at least 120℃ higher than the T g of the thermoplastic resin, based on the total weight of the polymer compound, said process including steps of:
(a) heating the polymer compound to a temperature 120-240℃ higher than the T g of the thermoplastic resin where the thermoplastic resin melts and the poly (meth) acrylimide (P (M) I) foam particles maintain the particulate form, and
(b) extrusion moulding the polymer compound under an extrusion pressure of 5-300 bar to obtain an extrudate.
T g refers to glass transition temperature, which can be determined by the DSC method according ISO 1135.
The present inventor has found it is important to control the temperature and pressure during the extrusion moulding  process so as to provide sufficient flowability of the polymer compound, and to avoid the damage of the cell structure of the foam particles.
The extrudate obtained from the process of the present invention can achieve light weight. And it is surprisingly found that the same light weight can be achieved with less P (M) I foam load in the polymer compound in the present invention, compared with an injection moulding process.
The present invention also provides the extrudate obtained from the process of the present invention.
The present invention further provides the use of the extrudate of the present invention in light weight design.
Detailed description of the present invention
Preferably, in step a) the temperature is 130-220℃, more preferably 140-200℃ higher than the T g of the thermoplastic resin.
Preferably, in step b) the extrusion pressure is 10-200 bar, preferably 10-100 bar.
Preferably, the extrudate is in the form selected from profiles, sheets, films, tubes, cylinders, cubes, rods, ribbons and meshes.
There is no limitation to the thermoplastic resin as long as it is melt processible at temperatures of less than 400℃. Melt processible is used in its conventional sense, that the polymer can be processed at the indicated temperatures without substantial degradation of the polymer.
Examples of the thermoplastic resin include polyamides, polyolefins, polyesters and copolymers containing any of the above segments as well as the blend thereof.
Preferably, the polyamide is selected from aliphatic polyamides, more preferably PA6, PA11, PA12, PA46, PA66, PA10, PA610, PA612, PA1010, PA1012 and the blend thereof.
The P (M) I foam particles used in the present invention can be obtained by the granulation of the P (M) I foams which are not in particulate form.
The P (M) I foams are also termed rigid foams, and feature particular robustness. The P (M) I foams are normally produced in a two-stage process: a) production of a cast polymer, and b) foaming of said cast polymer. In accordance with the prior art, these are then cut or sawn to give the desired shape.
Production of the P (M) I foams begins with production of monomer mixtures which comprise (meth) acrylic acid and (meth) acrylonitrile, preferably in a molar ratio of from 2: 3 to 3: 2 as main constituents. Other comonomers can also be used, examples being esters of acrylic or methacrylic acid, styrene, maleic acid and itaconic acid and anhydrides thereof, and vinylpyrrolidone. However, the proportion of the comonomers here should not be more than 30%by weight. Small quantities of crosslinking monomers can also be used, an example being allyl acrylate. However, the quantities should preferably be at most from 0.05%by weight to 2.0%by weight.
The copolymerization mixture moreover comprises blowing agents which at temperatures of about 150 to 250℃ either decompose or vaporize and thus form a gas phase. The polymerization takes place below this temperature, and the cast polymer therefore comprises a latent blowing agent. The polymerization advantageously takes place in a block mould between two glass plates.
The cast polymer is then foamed at an appropriate temperature in a second step. The production of such P (M) I foams is known in principle to a person skilled in the art and can be reviewed in EP 1 444 293, EP 1 678 244 or WO 2011/138060 for example.
The P (M) I foam particles used in the present invention can also be obtained by the foaming of the P (M) I polymer particles.
The P (M) I polymer particles can be obtained by grinding the cast polymer, for example, in a cutting mill. The grindings are then foamed at an appropriate temperature to produce the P (M) I foam particles.
Preferably, the P (M) I foam particles used in the present invention is obtained by the foaming of the P (M) I polymer particles, where the closed foam cells are not destroyed, compared with the P (M) I foam particles obtained by the granulation of the P (M) I foams.
Preferably, the P (M) I foam particles have a grain size which ranges 0.1-30 mm, more preferably 0.5-10 mm.
Preferably, the P (M) I foam particles have a bulk density of 25-220 kg/m 3, more preferably 50-150 kg/m 3.
In one embodiment of the present invention, the P (M) I foam particles are polymethacrylimide (PMI) foam particles. 
Figure PCTCN2018107456-appb-000002
PMI polymers and/or foams, commercially available from Evonik Resource Efficiency GMBH, may be mentioned in particular.
Preferably, the polymer compound comprises
30-99%, more preferably 40-99%the thermoplastic resin, and,
1-70%, more preferably 1-60%the P (M) I foam particles,
based on the total weight of the polymer compound.
Preferably, the thermoplastic resin is melt processible at temperatures of less than 250℃, and/or the P (M) I foam particles maintain the particulate form at a temperature at least 140℃, preferably at least 180℃ higher than the T g of the thermoplastic resin.
The polymer compound of the present invention may include additives, such as calcium carbonate, glass beads, zinc oxide, and fiber reinforcements such as ceramic fibers, aramid fibers, potassium titanate fibers, glass fibers and carbon fibers, depending on the effect or performance desired.
The extrudates obtained from the process of the present invention are generally suitable in principle for any type of lightweight design, and can in particular be used in mass production by way of example for structural parts in the automobile industry, in rail vehicle construction or shipbuilding, in the aerospace industry, in mechanical engineering, in the production of sports equipment, in furniture construction or in the design of wind turbines.
Examples
The PMI foam particles used in the examples were prepared from PMI polymer particles marketed with trademark 
Figure PCTCN2018107456-appb-000003
Triple F by Evonik Resource Efficiency GMBH. The PMI polymer particles were produced from a fully polymerized copolymer sheet (which had not been prefoamed) with the aid of a granulator. The grain size range of the particles used in the examples, after sieving to keep the fines, was below 1.0 mm. The bulk density of the PMI polymer particles was about 600-700 kg/m 3.
The PMI polymer particles were foamed in an oven at a temperature of 200-240℃ for 30-60 mins. The obtained PMI foam particles had a bulk density of 100-150 kg/m 3 and a grain size of 0.5-5 mm.
The PMI foam particles were mixed with the melts of a PA12 (
Figure PCTCN2018107456-appb-000004
L1600, Tg = 20-30℃, commercially available from Evonik Resource Efficiency GMBH) to prepare compounds 5 : 95, 7.5 : 92.5 and 10 : 90 (part by weight) , which were shaped into tubes by extrusion moulding in an extruder (Maillefer Extrusion NMC 45-24D) equipped with a tube die having an external diameter of 16 mm and an inner diameter of 12 mm according to process parameters indicated in Table 1 below.
The extrudates in tube form were tested for density (ISO 1183) and the result is also indicated in Table 1 below.
Table 1 Extrusion moulding
Figure PCTCN2018107456-appb-000005
*Example 1 was a reference where only the polyamide of
Figure PCTCN2018107456-appb-000006
L1600 was shaped.
It can been seen that that extrudates of the examples achieve significant light weight compared with the reference.
An injection moulding specimen with a density close to Example 4 was also prepared for comparison.
The PMI foam particles were mixed with the melts of a PA12 (
Figure PCTCN2018107456-appb-000007
L1600, commercially available from Evonik Resource Efficiency GMBH) to prepare a compound, which was shaped into plates having a thickness of 5 mm by injection moulding in an injection machine (Engel Victory 200/110 Tech Pro) according to process parameters indicated in Table 2 below.
The specimen was tested for density (ISO 1183) and the result is also indicated in Table 2 below.
Table 2 Injection moulding
Figure PCTCN2018107456-appb-000008
It can be seen that the load of PMI foam particles in the polymer compound reaches 50%for the moulding part obtained by an injection moulding process to achieve a density of 0.73 g/cm 3, while in Example 4 of the present invention, the load of the PMI foam particles is 7.5%to achieve a density of 0.71 g/cm 3. It is believed that the extrusion moulding process of the present invention would need much less load of the PMI foam particles to achieve the same light weight effect compared with an injection moulding process.
Meanwhile, extrusion moulding is a continuous process. It is believed that the extrusion moulding process of the present invention would be more time efficient to achieve the same light weight than an injection moulding process.
Extrudates in tube form with higher load of PMI foam particles were also successfully prepared according to procedures similar to Examples 1-7. These extrudates were also tested for density (ISO 1183) and the result is indicated in Table 3 below.
Table 3 Extrusion moulding (high foam load)
Figure PCTCN2018107456-appb-000009
*Example 10 was a reference where only the PA12 composition of
Figure PCTCN2018107456-appb-000010
LX9012 (commercially available from Evonik Resource Efficiency GMBH) was shaped.
It can be seen that the extrusion moulding process of the present invention also works with polymer compound with high foam load (e.g. 60%) and the obtained extrudates achieve very significant low weight.

Claims (13)

  1. A process for extrusion moulding a polymer compound comprising:
    (1) 20-99%a thermoplastic resin, which is melt processible at temperatures of less than 400 ℃, and
    (2) 1-80%poly (meth) acrylimide (P (M) I) foam particles, which maintain the particulate form at a temperature at least 120 ℃ higher than the T g of the thermoplastic resin,
    based on the total weight of the polymer compound,
    said process including steps of:
    (a) heating the polymer compound to a temperature 120-240 ℃ higher than the T g of the thermoplastic resin where the thermoplastic resin melts and the poly (meth) acrylimide (P (M) I) foam particles maintain the particulate form, and
    (b) extrusion moulding the polymer compound under an extrusion pressure of 5-300 bar to obtain an extrudate.
  2. The process according to claim 1, wherein in step a) the temperature is 130-220 ℃, preferably 140-200 ℃ higher than the T g of the thermoplastic resin.
  3. The process according to any one of the preceding claims, wherein in step b) the extrusion pressure is 10-200 bar, preferably 10-100 bar.
  4. The process according to any one of the preceding claims, wherein the extrudate is in the form selected from profiles, sheets, films, tubes, cylinders, cubes, rods, ribbons and meshes.
  5. The process according to any one of the preceding claims, wherein the thermoplastic resin is selected from polyamides, polyolefins, polyesters and copolymers containing any of the above segments as well as the blend thereof, preferably from aliphatic polyamides, more preferably from the group consisting of PA6, PA11, PA12, PA46, PA66, PA10, PA610, PA612, PA1010, PA1012 and the blend thereof.
  6. The process according to any one of the preceding claims, wherein the P (M) I foam particles have a grain size which ranges 0.1-30 mm, preferably 0.5-10 mm, and /or a bulk density of 25-220 kg/m 3, preferably 50-150 kg/m 3.
  7. The process according to any one of the preceding claims, wherein the P (M) I foam particles are obtained by the granulation of P (M) I foams which are not in particulate form, or the foaming of P (M) I polymer particles.
  8. The process according to any one of the preceding claims, wherein the P (M) I foam particles are polymethacrylimide (PMI) foam particles.
  9. The process according to any one of the preceding claims, wherein the polymer compound comprises:
    30-99%, preferably 40-99%the thermoplastic resin, and
    1-70%, preferably 1-60%the P (M) I foam particles,
    based on the total weight of the polymer compound.
  10. The process according to any one of the preceding claims, wherein
    the thermoplastic resin is melt processible at temperatures of less than 250 ℃,
    and /or
    the P (M) I foam particles maintain the particulate form at a temperature at least 140 ℃, preferably at least 180 ℃higher than the T g of the thermoplastic resin.
  11. The process according to any one of the preceding claims, wherein the polymer compound is in situ made in step a) by physically mixing the P (M) I foam particles and the melt of the thermoplastic resin.
  12. The extrudate obtained from the process according to any one of the preceding claims.
  13. Use of the extrudate according to claim 12 in light weight design.
PCT/CN2018/107456 2017-09-28 2018-09-26 Process for extrusion moulding polymer compounds comprising poly (meth) acrylimide foam particles WO2019062731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/104010 2017-09-28
CN2017104010 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019062731A1 true WO2019062731A1 (en) 2019-04-04

Family

ID=65900579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107456 WO2019062731A1 (en) 2017-09-28 2018-09-26 Process for extrusion moulding polymer compounds comprising poly (meth) acrylimide foam particles

Country Status (1)

Country Link
WO (1) WO2019062731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3978215A1 (en) * 2020-09-30 2022-04-06 Evonik Operations GmbH Production of complex foam moulds with class-a capable surfaces

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857656A (en) * 2010-05-24 2010-10-13 四川大学 Expandable particles for producing polymethacrylimide foamed material and application thereof
CN103923337A (en) * 2014-04-30 2014-07-16 湖南兆恒材料科技有限公司 Composite polymethacrylimide foam wave absorption material
WO2015071239A1 (en) * 2013-11-15 2015-05-21 Evonik Industries Ag Honeycomb structures filled with poly(meth)acrylamide foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857656A (en) * 2010-05-24 2010-10-13 四川大学 Expandable particles for producing polymethacrylimide foamed material and application thereof
WO2015071239A1 (en) * 2013-11-15 2015-05-21 Evonik Industries Ag Honeycomb structures filled with poly(meth)acrylamide foam
CN103923337A (en) * 2014-04-30 2014-07-16 湖南兆恒材料科技有限公司 Composite polymethacrylimide foam wave absorption material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3978215A1 (en) * 2020-09-30 2022-04-06 Evonik Operations GmbH Production of complex foam moulds with class-a capable surfaces

Similar Documents

Publication Publication Date Title
TWI628065B (en) In-mould-foaming process using a foamable medium with outer layers, and plastics moulding obtainable therefrom
EP2197666B1 (en) Composite laminated article and manufacture thereof
Quintans et al. Melt viscoelasticity of polyethylene terephthalate resins for low density extrusion foaming
CN107278217B (en) Fibre-reinforced moulded part made of expanded bead foam
DE102017116896B4 (en) Fiber reinforced composite material and manufacturing process
TWI525144B (en) Pmi foams with improved mechanical properties, in particular with increased tensile strain at break
MX2011013031A (en) Process for preparing foamable polymer compositions, process for preparing foamed polymer compositions therefrom, foamed polymer compositions and adhesive tape therewith.
US20200376714A1 (en) Micro-particle-size thermoplastic micro-airbag polyurethane elastomer material and preparation therefor
CA2949294A1 (en) Foam moulding poly(meth)acrylimide particles in closed moulds for producing rigid foam cores
TW201532826A (en) Honeycomb structures comprising poly(meth)acrylimide foam
CN105037912B (en) A kind of lower shrinkage, high resilience EPE beads and preparation method thereof
WO2019062731A1 (en) Process for extrusion moulding polymer compounds comprising poly (meth) acrylimide foam particles
KR102340431B1 (en) Polymer Compounds Comprising Poly(meth)acrylimide Foam Particles
CN103963400A (en) Supercritical gas PP physical foaming sheet and production technology thereof
WO2019052360A1 (en) Process for injection moulding polymer compounds comprising poly (meth) acrylimide foam particles
JP5890717B2 (en) Foam for composite and method for producing the same
CN103963306A (en) Production system for supercritical gas PP physical foaming sheet
CN105237947A (en) Abrasion-proof plastic bag and preparation method thereof
JP2019137726A (en) Vinylidene fluoride homopolymer foamed body and method for producing foamed body
CN105082690A (en) Fiber-reinforced thermoplastic composite material member containing foam core layer and preparation method thereof
WO2018137998A1 (en) Process for the production of a sulfone polymer agglomerate from the recovery of expanded sulfone polymer
CN113121988B (en) Composite material and foam prepared from same
JP2019001004A (en) Fiber composite
CN109467637B (en) Heat-resistant acrylate foam foamed in mold
TW201806726A (en) Shorter cooling phase in foaming of polymer particles through use of additives that increase thermal conductivity

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18860433

Country of ref document: EP

Kind code of ref document: A1