WO2019062712A1 - 一种光信号发送模块及相关方法 - Google Patents

一种光信号发送模块及相关方法 Download PDF

Info

Publication number
WO2019062712A1
WO2019062712A1 PCT/CN2018/107344 CN2018107344W WO2019062712A1 WO 2019062712 A1 WO2019062712 A1 WO 2019062712A1 CN 2018107344 W CN2018107344 W CN 2018107344W WO 2019062712 A1 WO2019062712 A1 WO 2019062712A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
pam
data
unit
signal
Prior art date
Application number
PCT/CN2018/107344
Other languages
English (en)
French (fr)
Inventor
周创
严伟振
舒强
温晔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019062712A1 publication Critical patent/WO2019062712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/524Pulse modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical signal sending module and related methods.
  • FIG. 1 illustrates a transmission multi-level multi-level coding structure including a transmitter Transmitter and a receiver Receiver, wherein Transmitter The gearbox GearBox integrated circuit (IC) and the laser driver Laser Driver are connected by two signals to alleviate the bandwidth pressure; the GearBox IC includes a de-channel delay DE-SKEW unit, a linear drive Line Driver and a two-way equalizer ( Equalizer, EQ) and Non-Return to Zero (NRZ) clock and data recovery (CDR) units, where two EQs are used to equalize the received two voltage signals respectively.
  • Equalizer Equalizer
  • NRZ Non-Return to Zero
  • the Receiver includes an Analog Front End (AFE) and a 4-stage Pulse-amplitude Modulation (PAM) decoder.
  • AFE Analog Front End
  • PAM Pulse-amplitude Modulation
  • the AFE is used to perform analog equalization processing on the received optical signal, and then input the signal to PAM4 decoder, PAM4 decoder is used to decode and phase detect the input signal to get two voltage signals.
  • PAM4 decoder is used to decode and phase detect the input signal to get two voltage signals.
  • the prior art can effectively realize the conversion of the voltage signal to the optical signal and the conversion of the optical signal to the voltage signal, but the optical signal deteriorates seriously during the transmission process and cannot meet the long-distance transmission.
  • Embodiments of the present invention provide an optical signal sending module and related method, which can increase the distance that a signal transmitted by an optical signal sending module transmits in an optical fiber.
  • an embodiment of the present invention provides an optical signal sending module, where the optical signal sending module includes a clock and data recovery CDR unit, a forward error correction FEC encoding unit, a pulse amplitude modulation PAM encoding unit, and a laser, where:
  • the CDR unit is configured to perform clock extraction and data alignment on the input voltage signal to obtain the shaped data;
  • the FEC encoding unit is configured to add an error correction code to the shaped data to obtain data with an error correction code;
  • the PAM encoding The unit is configured to perform pulse amplitude modulation coding on the error correction code-containing data to obtain PAM pattern data;
  • the laser is configured to send the PAM pattern data modulated optical signal to the optical fiber.
  • the optical signal sending module processes the shaped data by using the forward error correcting code FEC technology by the FEC encoding unit, thereby obtaining power compensation and improving the system error rate BER, and increasing the optical signal transmission.
  • the distance that the signal sent by the module is transmitted in the fiber.
  • the optical signal transmitting module further includes a linear driver for optimizing a transmission time domain and/or amplitude of the PAM pattern data.
  • the linear driver accommodates and matches different types of light sources and can pre-compensate the multi-level amplitude of the voltage signal to mitigate the effects of source modulation nonlinearities.
  • the linear driver is configured to optimize a transmission time domain of the PAM pattern data and/or
  • the amplitude is specifically: the linear driver is configured to perform at least one of de-delay, noise amplitude adjustment, eye diagram adjustment, error rate BER maximization optimization, and temperature compensation on the transmission time domain and/or amplitude of the PAM pattern data. operating. Thereby maximizing the system transmission performance.
  • the optical signal sending module further includes a digital signal processor, where the digital signal processor is used Compensate PAM coding cost. This can improve the signal-to-noise ratio of the transmission system.
  • the CDR unit is integrated with the transmission Gearbox.
  • Gearbox can increase the voltage signal rate of 1x single channel transmission, and ultimately increase the transmission rate by 1x.
  • an embodiment of the present invention provides an optical signal receiving module, where the optical signal receiving module includes a linear amplifier, an analog-to-digital conversion unit, a forward error correction FEC decoding unit, and a PAM decoding unit, where the linear amplifier is used for The current signal is linearly amplified to obtain a voltage signal, which is obtained by converting the optical signal; the analog-to-digital conversion unit is configured to level-sample the voltage signal to convert the voltage signal into a digital signal; the FEC decoding unit uses The digital signal is error-corrected to obtain error-corrected data; the PAM decoding unit is configured to decode the error-corrected data by a PAM decoding technique.
  • the optical signal receiving module By operating the optical signal receiving module, the optical signal receiving module over-samples the voltage signal through the analog-to-digital conversion unit, and uses the oversampling method to obtain more detailed signals of the level, and then processes the digital equalization algorithm. Better overcome the level amplitude noise problem.
  • the optical signal receiving module further includes a digital signal processor, the digital signal processor is configured to perform signal recovery and optimization on the digital signal to restore the digital signal. This can get a better transmission system signal to noise ratio.
  • an embodiment of the present invention provides an optical signal sending method, where the method is applied to an optical signal sending module, where the optical signal sending module includes a clock and data recovery CDR unit, a forward error correction FEC encoding unit, and a pulse amplitude modulation PAM.
  • the method comprising: the CDR unit performs clock extraction and data alignment on the input voltage signal to obtain the shaped data; and then the FEC coding unit adds an error correction code to the shaped data to obtain an error correction Error-coded data; then, the PAM encoding unit performs pulse amplitude modulation coding on the error-correcting code-containing data to obtain PAM pattern data; and then the laser transmits the PAM pattern data-modulated optical signal to the optical fiber.
  • the optical signal sending module uses the forward error correcting code by using the FEC encoding unit, and the FEC technology processes the shaped data to obtain power compensation and improve the system error rate BER, and increase the optical signal sending module to send. The distance the signal is transmitted in the fiber.
  • the optical signal sending module further includes a linear driver, the method further comprising: the linear driver optimizing a transmission time domain of the PAM pattern data and/or Amplitude.
  • the linear driver accommodates and matches different types of light sources and can pre-compensate the multi-level amplitude of the voltage signal to mitigate the effects of source nonlinearity.
  • the linear driver optimizes a transmit time domain and/or an amplitude of the PAM pattern data
  • the linear driver performs at least one of de-delay, noise amplitude adjustment, eye diagram adjustment, error rate BER maximization optimization, and temperature compensation on the transmit time domain and/or amplitude of the PAM pattern data.
  • the optical signal sending module further includes a digital signal processor
  • the method further includes: The digital signal processor compensates for the PAM coding cost. This can improve the signal-to-noise ratio of the transmission system.
  • the CDR unit is integrated with the transmission Gearbox.
  • Gearbox can increase the voltage signal rate of 1x single channel transmission, and ultimately increase the transmission rate by 1x.
  • an embodiment of the present invention provides an optical signal receiving method, where the method is applied to an optical signal receiving module, where the optical signal receiving module includes a linear amplifier, an analog-to-digital conversion unit, a forward error correction FEC decoding unit, and a pulse amplitude modulation.
  • a PAM decoding unit the method comprising: linearly amplifying a current signal to obtain a voltage signal, wherein the current signal is converted by an optical signal; and then the analog to digital conversion unit level samples the voltage signal to The voltage signal is converted into a digital signal; then, the FEC decoding unit corrects the digital signal to obtain error-corrected data; and then the PAM decoding unit decodes the error-corrected data by a PAM decoding technique.
  • the optical signal receiving module over-samples the voltage signal through the analog-to-digital conversion unit, and obtains more detailed signals of the level by using the oversampling method, and then processes the digital equalization algorithm, which can be better Overcome level amplitude noise issues.
  • the optical signal receiving module further includes a digital signal processor, the method further comprising: the digital signal processor performing signal recovery and optimization on the digital signal To restore the digital signal. This can get a better transmission system signal to noise ratio.
  • an embodiment of the present invention provides an optical transceiver module, where the optical transceiver module includes an optical signal sending module and an optical signal receiving module, where the optical signal sending module is the first aspect or any possible implementation of the first aspect.
  • the optical signal sending module uses the forward error correcting code by using the FEC encoding unit, and the FEC technology processes the shaped data, thereby obtaining power compensation and improving the system error rate BER, and increasing the optical signal transmission.
  • the distance that the signal sent by the module is transmitted in the fiber.
  • FIG. 1 is a schematic structural diagram of a multi-level multi-level coding in the prior art
  • FIG. 2 is a schematic structural diagram of an optical transceiver module according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for transmitting an optical signal according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart diagram of an optical signal receiving method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an optical transceiver module 20 according to an embodiment of the present invention.
  • the optical transceiver module 20 includes an optical signal sending module 21 and a light receiving module 22, wherein the optical signal sending module 21 includes a clock and The data recovery CDR unit 211, the forward error correction FEC encoding unit 212, the pulse amplitude modulation PAM encoding unit 213, and the laser 214, in addition, the optical transmitting module 21 may further include a digital signal processor DSP 216 and a linear driver 215.
  • the DSP 216 is used to compensate for the PAM coding cost; the linear driver 215 is configured to optimize the transmission time domain and/or amplitude of the PAM pattern data, for example, the linear driver is used to transmit the time domain and/or the PAM pattern data.
  • the amplitude performs at least one of de-delay, noise amplitude adjustment, eye diagram adjustment, bit error rate BER maximization optimization, and temperature compensation.
  • the optical signal receiving module 22 includes a photoelectric conversion unit 220, a digital signal processor DSP221, a linear amplifier 222, an analog to digital conversion unit 223, a forward error correction FEC decoding unit 224, a CDR unit 225, a PAM decoding unit 226, and a microprocessor 231.
  • the microprocessor 231 is configured to control the respective units concerned to enable the respective units to coordinate the processing flow after the optical signal reception and the processing flow before the optical signal transmission, for example, the operation of the laser 214 by the microprocessor 231.
  • the current is set and temperature compensated; for example, the microprocessor 231 controls the active switch of the clock unit or configures the operating frequency of the clock unit to adapt to different operating rates; for example, the microprocessor 231 pairs the linear amplifier 222
  • the output amplitude or gain is adjusted to obtain a voltage signal of a suitable amplitude; if, for example, the optical signal transmitting module 21 further includes a linear driver, the microprocessor 231 can also adjust the modulation amplitude and equalization of the linear driver to obtain the most Excellent electrical signal; in addition, the microprocessor 231 can also communicate with the DSP 221 to obtain the DSP 221
  • the data is fed to adjust the operating parameters of the linear driver, linear amplifier 222, and laser 214 in real time to bring the entire optical transceiver module
  • the units in the optical transceiver module 20 may also be referred to as components, devices, components, etc., and the optical transceiver module 20 may also include other units or modules.
  • the optical transceiver module 20 also illustrates a clock unit that can parameterize some units (or devices, modules, eg, CDR unit 225, PAM decoding unit 226, EFC) by clock (eg, CLK1 and clock CLK2) parameters. Decode single 224, DSP221, etc.) for clock recovery and data alignment.
  • the directions of the arrows S1, S2, S3, and S4 in FIG. 2 indicate the transmission directions of the electric signals
  • the directions of the arrows S5 and S6 in the figure indicate the transmission directions of the optical signals.
  • the line segments with double-headed arrows in the figure are used to indicate the possible transfer of information between the cells (or devices, modules, etc.) on either side of the two-way arrow.
  • optical signal transmitting module 21 Some units in the optical signal transmitting module 21 are described below in conjunction with the method flow shown in FIG. 3, and some units in the optical signal receiving module 22 are described in conjunction with the method flow shown in FIG.
  • FIG. 3 is a schematic flowchart of a method for transmitting an optical signal according to an embodiment of the present invention.
  • the method may be implemented based on the optical signal sending module 31 shown in FIG. 2, where the method includes but is not limited to the following steps:
  • Step S301 The CDR unit performs clock extraction and data alignment on the input voltage signal.
  • the two arrows S1 and S2 pointing to the optical transceiver module 20 in FIG. 2 respectively represent two analog voltage signals that are input, and the analog voltage signals are voltage signals to be input to the CDR unit for processing, and the CDR unit is used for The input voltage signal is used for clock extraction and data alignment.
  • the data obtained by clock extraction and data alignment can be referred to as shaped data.
  • the data type of the shaped data can be non-return to zero (non-return to zero, NRZ) data.
  • the CDR unit can be integrated with the Gearbox function of the transmission to double the bandwidth of the single channel voltage signal.
  • Gearbox can convert the input signal into a 2*20G voltage signal, encoded by PAM4. After that, the 1*40G PAM4 voltage signal can be obtained to realize single-wave 40G signal transmission. If a higher voltage signal rate is input, the ratio can be determined.
  • the Gearbox function of the CDR unit can be selectively used based on the input voltage signal rate and the optoelectronic chip device bandwidth. By using Gearbox, you can double the single-wave transmission rate before PAM4 modulation, and the single-wave rate is increased by 4 times after PAM4 modulation.
  • Step S302 The FEC encoding unit adds an error correcting code to the shaped data to obtain data including an error correcting code.
  • the FEC coding unit is configured to add an error correction code to the shaped data by using a forward error correction (FEC) technique, which may result in a slight increase in occupied bandwidth, but may be obtained.
  • FEC forward error correction
  • Power compensation can also improve the system error rate BER, and combined with DSP technology to recover the data after transmission degradation, can greatly increase the fiber transmission distance.
  • the data obtained by adding the error correcting code to the shaped data by the FEC encoding unit may be referred to as data containing the error correcting code.
  • Step S303 The PAM encoding unit performs pulse amplitude modulation coding on the data including the error correction code.
  • the PAM encoding unit performs pulse amplitude modulation (PAM) on the data including the error correction code to obtain PAM pattern data.
  • PAM4 is a 4-level pulse amplitude modulation pattern.
  • Step S304 The laser sends the optical signal modulated by the PAM pattern data to the optical fiber.
  • the PAM pattern data is also modulated to couple to the optical signal, and the laser transmits the optical signal coupled to the PAM pattern data to the optical fiber for transmission.
  • the laser may be a transmitter optical subassembly (TOSA), a chip on board (COB) device, etc., wherein the COB device may be a vertical cavity surface radiation type laser ( Vertical cavity surface emitting laser (VCSEL), Fabry-Perot (FP) laser, distribution feedback laser (DFB), electro-absorption modulated laser (EML), and the like.
  • TOSA transmitter optical subassembly
  • COB chip on board
  • the COB device may be a vertical cavity surface radiation type laser ( Vertical cavity surface emitting laser (VCSEL), Fabry-Perot (FP) laser, distribution feedback laser (DFB), electro-absorption modulated laser (EML), and the like.
  • VCSEL Vertical cavity surface emitting laser
  • FP Fabry-Perot
  • EML electro-absorption modulated laser
  • the optical signal sending module further includes a linear driver that optimizes transmission time domain and/or amplitude of the PAM pattern data encoded by the PAM encoding unit, for example, the PAM pattern data.
  • the transmit time domain and/or amplitude performs de-delay, noise amplitude adjustment, Aging compensation eye adjustment, bit error rate BER maximization optimization, and temperature compensation.
  • whether the optical signal transmitting module includes a linear driver may be determined according to the type of the laser.
  • the optical signal transmitting module may include the linear driver or may not include the linear The driver (the PAM encoded data directly drives the VCSEL (the desired bias current signal of the laser can be implemented by an external Bias-T circuit), and if the type of the laser is not a VCSEL, the optical signal transmitting module includes the linear driver.
  • the optical signal sending module further includes a digital signal processor (DSP) coupled to the PAM encoding unit 213, and the DSP precompensates and recovers the high frequency signal to implement compensation for the PAM encoding.
  • DSP digital signal processor
  • the signal-to-noise ratio cost, the DSP can also be replaced by a Microcontroller Unit (MCU).
  • MCU Microcontroller Unit
  • the optical signal sending module processes the shaped data by using the FEC technology by the FEC encoding unit, because the FEC technology allows a certain number of levels of error correction error, so that the error-free transmission is corrected.
  • the optical power margin is larger, thereby obtaining power compensation and increasing the system error rate BER, increasing the distance that the signal transmitted by the optical signal transmitting module is transmitted in the optical fiber.
  • FIG. 4 is a schematic flowchart of an optical signal receiving method according to an embodiment of the present invention. The method may be implemented based on the optical signal receiving module 22 shown in FIG. 2, where the method includes but is not limited to the following steps:
  • Step S401 The photoelectric conversion unit converts the optical signal into a current signal.
  • the optical signal receiving module further includes a photoelectric conversion unit that converts the optical signal transmitted from the optical fiber into a current signal.
  • the photoelectric conversion unit may be a photodiode (PD).
  • Step S402 The linear amplifier converts the current signal into a voltage signal and performs linear amplification.
  • Step S403 The analog-to-digital conversion unit samples the voltage signal level to convert the voltage signal into a digital signal.
  • the algorithm used in the sampling process can be a simple comparator sampling algorithm, a complex oversampling, etc., and the level calculation using the algorithm can better overcome the PAM level amplitude noise problem.
  • the optical signal receiving module further includes a digital signal processor DSP for performing data recovery and optimization on the digital signal output by the linear amplifier to update the digital signal, for example, delay time and level difference between signals The unequal distance, the advance time between signals, and the corresponding reserved gap between the reference voltages are optimized.
  • Step S404 The FEC decoding unit corrects the digital signal to obtain new data after error correction.
  • the digital signal includes an error correction code, and the new data obtained by the error correction does not include the error correction code.
  • Step S405 The PAM decoding unit decodes the new data by a PAM decoding technique.
  • the new data is encoded by the PAM encoding technology, so the PAM decoding technology needs to be used to decode the new data.
  • the signal is further converted into a voltage signal, and then the PAM decoding unit transmits the voltage signal to the CDR unit.
  • the CDR unit is used for clock extraction and data alignment.
  • the optical signal receiving module over-samples the voltage signal through the analog-to-digital conversion unit, and uses the oversampling method to obtain more detailed signals of the level, and then processes the digital equalization algorithm. , can better overcome the level amplitude noise problem.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种光信号发送模块及相关方法,该光信号发送模块包括时钟和数据恢复CDR单元、前向纠错FEC编码单元、脉冲幅度调制PAM编码单元和激光器,其中:该CDR单元用于对输入的电压信号进行时钟提取和数据对齐以得到整形后的数据;该FEC编码单元用于对该整形后的数据添加纠错码以得到含纠错码的数据;该PAM编码单元用于对该含纠错码的数据进行脉冲幅度调制编码以得到PAM码型数据;该激光器用于将该PAM码型数据调制后的光信号发送到光纤中。采用本发明实施例,能增加光信号发送模块发送的信号在光纤中传输的距离。

Description

一种光信号发送模块及相关方法 技术领域
本发明涉及通信技术领域,尤其涉及一种光信号发送模块及相关方法。
背景技术
现有技术公开了一种传输多电平Multi-level编码结构,图1示意了一种传输多电平Multi-level编码结构,Multi-level编码结构包括发送器Transmitter和接收器Receiver,其中,Transmitter的变速器GearBox集成电路(integrated circuit,IC)与激光器驱动器Laser Driver之间通过两路信号连接以缓解带宽的压力;GearBox IC包含去信道时差DE-SKEW单元、线性驱动Line Driver以及两路均衡器(equalizer,EQ)和不归零(Non-Return to Zero,NRZ)时钟和数据恢复(clock and data recovery,CDR)单元,其中,两路EQ用于分别对接收到的两路电压信号做均衡处理,然后输入到NRZ CDR单元,NRZ CDR单元用于对收到的信号做数据提取和恢复,然后输入到DE-SKEW单元,DE-SKEW单元用于对输入的信号做数据对齐处理,然后输入到Line Driver,Line Driver用于对输入的信号做线性驱动,然后将处理后的信号输入到Laser Driver,Laser Driver用于对输入的信号做激光驱动和电平控制得到光信号,然后驱动激光发射器发送该光信号。Receiver包含模拟前端(Analog Front End,AFE)和4级脉冲幅度调制(Pulse-amplitude modulation,PAM)的解码器,其中,AFE用于对接收到的光信号做模拟均衡处理,再将信号输入到PAM4解码器,PAM4解码器用于对输入的信号进行解码和相位检测以得到两路电压信号。现有技术能够有效地实现电压信号到光信号的转换和光信号到电压信号的转换,但是光信号在传输过程中劣化比较严重,无法满足长距离传输。
发明内容
本发明实施例提供一种光信号发送模块及相关方法,能够增加光信号发送模块发送的信号在光纤中传输的距离。
第一方面,本发明实施例提供了一种光信号发送模块,该光信号发送模块包括时钟和数据恢复CDR单元、前向纠错FEC编码单元、脉冲幅度调制PAM编码单元和激光器,其中:该CDR单元用于对输入的电压信号进行时钟提取和数据对齐以得到整形后的数据;该FEC编码单元用于对该整形后的数据添加纠错码以得到含纠错码的数据;该PAM编码单元用于对该含纠错码的数据进行脉冲幅度调制编码以得到PAM码型数据;该激光器用于将该PAM码型数据调制后的光信号发送到光纤中。
通过运行该光信号发送模块,该光信号发送模块通过FEC编码单元采用前向纠错码FEC技术对整形后的数据进行处理,从而获得功率补偿和提高***误码率BER,增加了光信号发送模块发送的信号在光纤中传输的距离。
结合第一方面,在第一方面的第一种可能的实现方式中,该光信号发送模块还包括线性驱动器,该线性驱动器用于优化该PAM码型数据的发射时域和/或幅度。该线性驱动器 以适应和匹配不同型号的光源并可对电压信号的多电平幅度进行预补偿以减轻光源调制非线性带来的影响。
结合第一方面,或者第一方面的上述任一可能的实现方式,在第一方面的第二种可能的实现方式中,该线性驱动器用于优化该PAM码型数据的发射时域和/或幅度,具体为:该线性驱动器用于对该PAM码型数据的发射时域和/或幅度执行去延迟、噪音幅度调整、眼图调整、误码率BER最大化优化和温度补偿中至少一项操作。从而最大化的优化***传输性能。
结合第一方面,或者第一方面的上述任一可能的实现方式,在第一方面的第三种可能的实现方式中,该光信号发送模块还包括数字信号处理器,该数字信号处理器用于补偿PAM编码代价。这样可以提升传输***的信噪比。
结合第一方面,或者第一方面的上述任一可能的实现方式,在第一方面的第四种可能的实现方式中,该CDR单元集成了变速器Gearbox。Gearbox可以提高1倍单通道传输的电压信号速率,最终提升1倍传输速率。
第二方面,本发明实施例提供一种光信号接收模块,该光信号接收模块包括线性放大器、模数转换单元、前向纠错FEC解码单元和PAM解码单元,其中:该线性放大器用于将电流信号进行线性放大以得到电压信号,该电流信号为由光信号转换得到;该模数转换单元用于对该电压信号进行电平采样以将该电压信号转换为数字信号;该FEC解码单元用于对该数字信号纠错以得到纠错后的数据;该PAM解码单元用于通过PAM解码技术解码该纠错后的数据。
通过运行该光信号接收模块,光信号接收模块通过模数转换单元对电压信号进行电平进行过采样,使用过采样方法可以获取电平的更多细节信号,然后通过数字均衡算法进行处理,可以较好地克服电平幅度噪音问题。
结合第二方面,在第二方面的第一种可能的实现方式中,该光信号接收模块还包括数字信号处理器,该数字信号处理器用于对该数字信号做信号恢复和优化以还原该数字信号。这样可以得到更优的传输***信噪比。
第三方面,本发明实施例提供一种光信号发送方法,该方法应用于光信号发送模块,该光信号发送模块包括时钟和数据恢复CDR单元、前向纠错FEC编码单元、脉冲幅度调制PAM编码单元和激光器,该方法包括:该CDR单元对输入的电压信号进行时钟提取和数据对齐以得到整形后的数据;然后,该FEC编码单元对该整形后的数据添加纠错码以得到含纠错码的数据;接着,该PAM编码单元对该含纠错码的数据进行脉冲幅度调制编码以得到PAM码型数据;然后,该激光器将该PAM码型数据调制后的光信号发送到光纤中。
通过执行该方法,该光信号发送模块通过FEC编码单元采用前向纠错码,FEC技术对整形后的数据进行处理,从而获得功率补偿和提高***误码率BER,增加了光信号发送模块发送的信号在光纤中传输的距离。
结合第三方面,在第三方面的第一种可能的实现方式中,该光信号发送模块还包括线性驱动器,该方法还包括:该线性驱动器优化该PAM码型数据的发射时域和/或幅度。该线性驱动器以适应和匹配不同型号的光源并可对电压信号的多电平幅度进行预补偿以减轻光源调制非线性带来的影响。
结合第三方面,或者第三方面的上述任一可能的实现方式,在第三方面的第二种可能的实现方式中,该线性驱动器优化该PAM码型数据的发射时域和/或幅度,包括:该线性驱动器对该PAM码型数据的发射时域和/或幅度执行去延迟、噪音幅度调整、眼图调整、误码率BER最大化优化和温度补偿中至少一项操作。从而最大化的优化***传输性能。
结合第三方面,或者第三方面的上述任一可能的实现方式,在第三方面的第三种可能的实现方式中,该光信号发送模块还包括数字信号处理器,该方法还包括:该数字信号处理器补偿PAM编码代价。这样可以提升传输***的信噪比。
结合第三方面,或者第三方面的上述任一可能的实现方式,在第三方面的第四种可能的实现方式中,该CDR单元集成了变速器Gearbox。Gearbox可以提高1倍单通道传输的电压信号速率,最终提升1倍传输速率。
第四方面,本发明实施例提供一种光信号接收方法,该方法应用于光信号接收模块,该光信号接收模块包括线性放大器、模数转换单元、前向纠错FEC解码单元和脉冲幅度调制PAM解码单元,该方法包括:该线性放大器将电流信号进行线性放大以得到电压信号,该电流信号为由光信号转换得到;然后,该模数转换单元对该电压信号进行电平采样以将该电压信号转换为数字信号;接着,该FEC解码单元对该数字信号纠错以得到纠错后的数据;然后,该PAM解码单元通过PAM解码技术解码该纠错后的数据。
通过执行该方法,光信号接收模块通过模数转换单元对电压信号进行电平进行过采样,使用过采样方法可以获取电平的更多细节信号,然后通过数字均衡算法进行处理,可以较好地克服电平幅度噪音问题。
结合第四方面,在第四方面的第一种可能的实现方式中,该光信号接收模块还包括数字信号处理器,该方法还包括:该数字信号处理器对该数字信号做信号恢复和优化以还原该数字信号。这样可以得到更优的传输***信噪比。
第五方面,本发明实施例提供一种光收发模块,该光收发模块包括光信号发送模块和光信号接收模块;其中,该光信号发送模块为第一方面或者第一方面的任一可能的实现方式所描述的光信号发送模块;该光信号接收模块为第二方面或者第二方面的任一可能的实现方式所描述的光信号接收模块。
通过实施本发明实施例,该光信号发送模块通过FEC编码单元采用前向纠错码,FEC技术对整形后的数据进行处理,从而获得功率补偿和提高***误码率BER,增加了光信号发送模块发送的信号在光纤中传输的距离。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是现有技术中的一种多电平Multi-level编码的结构示意图;
图2是本发明实施例提供的一种光收发模块的结构示意图;
图3是本发明实施例提供的一种光信号发送方法的流程示意图;
图4是本发明实施例提供的一种光信号接收方法的流程示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
请参见图2,图2是本发明实施例提供的一种光收发模块20的结构示意图,该光收发模块20包括光信号发送模块21和光接收模块22,其中,光信号发送模块21包括时钟和数据恢复CDR单元211、前向纠错FEC编码单元212、脉冲幅度调制PAM编码单元213和激光器214,除此之外,该光发送模块21还可以包括数字信号处理器DSP216和线性驱动器215,该DSP216用于补偿PAM编码代价;该线性驱动器215用于优化所述PAM码型数据的发射时域和/或幅度,例如,该线性驱动器用于对该PAM码型数据的发射时域和/或幅度执行去延迟、噪音幅度调整、眼图调整、误码率BER最大化优化和温度补偿中至少一项操作。光信号接收模块22包括光电转换单元220、数字信号处理器DSP221、线性放大器222、模数转换单元223、前向纠错FEC解码单元224、CDR单元225、PAM解码单元226和微处理器231,该微处理器231用于对上述相关的各个单元进行控制,以使各个单元能够协调完成光信号接收之后的处理流程以及光信号发送之前的处理流程,例如,微处理器231对激光器214的工作电流进行设置和温度补偿;再如,微处理231对时钟单元的工作开关进行控制,或对时钟单元的工作频率进行配置以适配不同的工作速率;再如,微处理器231对线性放大器222的输出幅度或增益进行调整以获取合适幅度的电压信号;再如,若该光信号发送模块21还包括线性驱动器,那么微处理器231还可以对线性驱动器的调制幅度和均衡进行调整以获取最优的电信号;另外,微处理器231还可以与DSP221进行通信以获取DSP221反馈的数据,从而实时调整线性驱动器、线性放大器222、激光器214的工作参数以使整个光收发模块20处于最优工作状态。该光收发模块20中的单元还可能被称为组件、器件、元件等,该光收发模块20还可以包括其他单元或模块。另外,光收发模块20中还示意了时钟单元,该时钟单元可以通过时钟(例如,CLK1和时钟CLK2)参数对一些单元(或者说器件、模块,例如,CDR单元225、PAM解码单元226、EFC解码单224、DSP221等)进行时钟恢复和数据对齐。
需要说明的是,图2中的箭头S1、S2、S3和S4的方向示意了电信号的传输方向,图中的箭头S5和S6的方向示意了光信号的传输方向。另外,图中有双向箭头的线段用于示意双向箭头两边的单元(或者说器件、模块,等等)之间可能存在信息的传递。
下面结合图3所示的方法流程对光信号发送模块21中部分单元进行描述,以及结合图4所示的方法流程对光信号接收模块22中部分单元进行描述。
请参见图3,图3是本发明实施例提供的一种光信号发送方法的流程示意图,该方法可以基于图2所示的光信号发送模块31来实现,该方法包括但不限于如下步骤:
步骤S301:CDR单元对输入的电压信号进行时钟提取和数据对齐。
具体地,图2中指向光收发模块20的两个箭头S1和S2分别代表输入的两路模拟电压信号,该模拟电压信号即为要输入到CDR单元处理的电压信号,该CDR单元用于对输入的电压信号进行时钟提取和数据对齐,可以称经时钟提取和数据对齐所得到的数据为整形后的数据,该整形后的数据的数据类型可以为不归零码(non-return to zero,NRZ)的数据。可选的,该CDR单元可以集成变速器Gearbox功能,从而使得单通道电压信号带宽提高一倍,例如,如果输入4路10G电压信号,Gearbox可以将输入信号转化为2*20G电压信号, 经PAM4编码后可以得到1*40G PAM4电压信号,实现单波40G信号传输,若输入更高电压信号速率则可依此类比。该CDR单元的Gearbox功能可以根据输入电压信号速率和光电芯片器件带宽选择性使用。选择使用Gearbox,可以在PAM4调制前使单波传输速率翻倍,PAM4调制后,单波速率得到4倍提升。
步骤S302:该FEC编码单元对该整形后的数据添加纠错码以得到含纠错码的数据。
具体地,该FEC编码单元用于使用前向纠错码(forward error correction,FEC)技术,对整形后的数据添加纠错码,这个过程会导致占用的带宽有略微的增加,但是却可以获得功率补偿,也可以提高***误码率BER,再结合DSP技术对传输劣化后的数据进行恢复,便可大幅增加光纤传输距离。为了方便后续描述,可以称该FEC编码单元对该整形后的数据添加纠错码所得到的数据为含纠错码的数据。
步骤S303:该PAM编码单元对该含纠错码的数据进行脉冲幅度调制编码。
具体地,该PAM编码单元对含纠错码的数据进行脉冲幅度调制(pulse amplitude modulation,PAM),从而得到PAM码型数据。如PAM4即为4电平脉冲幅度调制码型。
步骤S304:该激光器将该PAM码型数据调制后的光信号发送到光纤中。
具体地,该PAM码型数据还会经过调制以耦合到光信号上去,该激光器会将耦合了该PAM码型数据的光信号发送到光纤中传输。在本发明实施例中,该激光器可以为光发射器(transmitter optical subassembly,TOSA)、板上芯片集成(chip on board,COB)器件等,其中,COB器件可以为垂直共振腔表面放射型激光(vertical cavity surface emitting laser,VCSEL)、法布里-珀罗(Fabry-Perot,FP)激光器、分布反馈激光器(distribution feedback laser,DFB)、电吸收调制激光器(electro-absorption modulated laser,EML)等。
可选的,该光信号发送模块还包括线性驱动器,该线性驱动器会对PAM编码单元编码得到的PAM码型数据进行发射时域和/或幅度上的优化,例如,对该PAM码型数据的发射时域和/或幅度执行去延迟、噪音幅度调整、老化(Aging)补偿眼图调整、误码率BER最大化优化和温度补偿等操作。在本发明实施例中,该光信号发送模块是否包括线性驱动器可以根据激光器的类型来确定,例如,若激光器的类型是VCSEL,那么该光信号发送模块可以包括该线性驱动器也可以不包括该线性驱动器(经PAM编码后的数据直接驱动VCSEL(激光器所需偏流信号可由外置Bias-T电路实现),若激光器的类型不是VCSEL,那么该光信号发送模块包括该线性驱动器。
可选的,该光信号发送模块还包括数字信号处理器(digital signal processor,DSP),该DSP和PAM编码单元213耦合,该DSP对高频信号进行预补偿和恢复以实现补偿PAM编码引入的信噪比代价,该DSP也可以通过微控制单元(Microcontroller Unit,MCU)等来替代。
在图3所描述的方法流程中,该光信号发送模块通过FEC编码单元采用FEC技术对整形后的数据进行处理,因为FEC技术允许一定数量级别的纠前误码率,这样纠后无误码传输的光功率裕量(margin)更大,从而获得功率补偿和提高***误码率BER,增加了光信号发送模块发送的信号在光纤中传输的距离。
请参见图4,图4是本发明实施例提供的一种光信号接收方法的流程示意图,该方法 可以基于图2所示的光信号接收模块22来实现,该方法包括但不限于如下步骤:
步骤S401:光电转换单元将光信号转换为电流信号。
具体地,该光信号接收模块还包括光电转换单元,该光电转换单元将从光纤传输来的光信号转换为电流信号,例如,该光电转换单元可以为光电二极管(photodiode,PD)。
步骤S402:该线性放大器将电流信号转化为电压信号并进行线性放大。
步骤S403:该模数转换单元对该电压信号电平采样以将该电压信号转换为数字信号。
具体地,采样过程所用到的算法可以为简单的对比器采样算法、复杂的过采样Oversampling,等等,使用算法进行电平计算可以较好的克服PAM的电平幅度噪音问题。另外,该光信号接收模块还包括数字信号处理器DSP,该DSP用于对该线性放大器输出的数字信号做数据恢复和优化以更新该数字信号,例如,可以对信号间延迟时间、电平差不等距、信号间提前时间、参考电压间有对应的预留差距等进行优化。
步骤S404:该FEC解码单元对该数字信号纠错以得到纠错后的新数据。
具体地,该数字信号包含纠错码,纠错所得到的新数据不包含该纠错码。
步骤S405:该PAM解码单元通过PAM解码技术解码该新数据。
具体地,该新数据是经过PAM编码技术编码过的,因此这里需要使用PAM解码技术解码该新数据,解码完成之后还需要进一步转换为电压信号,然后PAM解码单元向CDR单元发射该电压信号,该CDR单元用于进行时钟提取和数据对齐。
在图4所描述的方法流程中,光信号接收模块通过模数转换单元对电压信号进行电平进行过采样,使用过采样方法可以获取电平的更多细节信号,然后通过数字均衡算法进行处理,可以较好地克服电平幅度噪音问题。

Claims (15)

  1. 一种光信号发送模块,其特征在于,所述光信号发送模块包括时钟和数据恢复CDR单元、前向纠错FEC编码单元、脉冲幅度调制PAM编码单元和激光器,其中:
    所述CDR单元用于对输入的电压信号进行时钟提取和数据对齐以得到整形后的数据;
    所述FEC编码单元用于对所述整形后的数据添加纠错码以得到含纠错码的数据;
    所述PAM编码单元用于对所述含纠错码的数据进行脉冲幅度调制编码以得到PAM码型数据;
    所述激光器用于将所述PAM码型数据调制后的光信号发送到光纤中。
  2. 根据权利要求1所述的光信号发送模块,其特征在于,所述光信号发送模块还包括线性驱动器,所述线性驱动器用于优化所述PAM码型数据的发射时域和/或幅度。
  3. 根据权利要求2所述的光信号发送模块,其特征在于,所述线性驱动器用于优化所述PAM码型数据的发射时域和/或幅度,具体为:
    所述线性驱动器用于对所述PAM码型数据的发射时域和/或幅度执行去延迟、噪音幅度调整、眼图调整、误码率BER最大化优化和温度补偿中至少一项操作。
  4. 根据权利要求1-3任一项所述的光信号发送模块,其特征在于,所述光信号发送模块还包括数字信号处理器,所述数字信号处理器用于补偿PAM编码代价。
  5. 根据权利要求1-4任一项所述的光信号发送模块,其特征在于,所述CDR单元集成了变速器Gearbox。
  6. 一种光信号接收模块,其特征在于,所述光信号接收模块包括线性放大器、模数转换单元、前向纠错FEC解码单元和脉冲幅度调制PAM解码单元,其中:
    所述线性放大器用于将电流信号进行线性放大以得到电压信号,所述电流信号为由光信号转换得到;
    所述模数转换单元用于对所述电压信号进行电平采样以将所述电压信号转换为数字信号;
    所述FEC解码单元用于对所述数字信号纠错以得到纠错后的数据;
    所述PAM解码单元用于通过PAM解码技术解码所述纠错后的数据。
  7. 根据权利要求6所述的光信号接收模块,其特征在于,所述光信号接收模块还包括数字信号处理器,所述数字信号处理器用于对所述数字信号做信号恢复和优化以还原所述数字信号。
  8. 一种光信号发送方法,其特征在于,应用于光信号发送模块,所述光信号发送模块 包括时钟和数据恢复CDR单元、前向纠错FEC编码单元、脉冲幅度调制PAM编码单元和激光器,所述方法包括:
    所述CDR单元对输入的电压信号进行时钟提取和数据对齐以得到整形后的数据;
    所述FEC编码单元对所述整形后的数据添加纠错码以得到含纠错码的数据;
    所述PAM编码单元对所述含纠错码的数据进行脉冲幅度调制编码以得到PAM码型数据;
    所述激光器将所述PAM码型数据调制后的光信号发送到光纤中。
  9. 根据权利要求8所述的方法,其特征在于,所述光信号发送模块还包括线性驱动器,所述方法还包括:
    所述线性驱动器优化所述PAM码型数据的发射时域和/或幅度。
  10. 根据权利要求9所述的方法,其特征在于,所述线性驱动器优化所述PAM码型数据的发射时域和/或幅度,包括:
    所述线性驱动器对所述PAM码型数据的发射时域和/或幅度执行去延迟、噪音幅度调整、眼图调整、误码率BER最大化优化和温度补偿中至少一项操作。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述光信号发送模块还包括数字信号处理器,所述方法还包括:
    所述数字信号处理器补偿PAM编码代价。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述CDR单元集成了变速器Gearbox。
  13. 一种光信号接收方法,其特征在于,应用于光信号接收模块,所述光信号接收模块包括线性放大器、模数转换单元、前向纠错FEC解码单元和脉冲幅度调制PAM解码单元,所述方法包括:
    所述线性放大器将电流信号进行线性放大以得到电压信号,所述电流信号为由光信号转换得到;
    所述模数转换单元对所述电压信号进行电平采样以将所述电压信号转换为数字信号;
    所述FEC解码单元对所述数字信号纠错以得到纠错后的数据;
    所述PAM解码单元通过PAM解码技术解码所述纠错后的数据。
  14. 根据权利要求13所述的方法,其特征在于,所述光信号接收模块还包括数字信号处理器,所述方法还包括:
    所述数字信号处理器对所述数字信号做信号恢复和优化以还原所述数字信号。
  15. 一种光收发模块,其特征在于,所述光收发模块包括光信号发送模块和光信号接 收模块;其中:
    所述光信号发送模块为权利要求1-5任一项所述的光信号发送模块;
    所述光信号接收模块为权利要求6或7所述的光信号接收模块。
PCT/CN2018/107344 2017-09-29 2018-09-25 一种光信号发送模块及相关方法 WO2019062712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710906589.5 2017-09-29
CN201710906589.5A CN109586795A (zh) 2017-09-29 2017-09-29 一种光信号发送模块及相关方法

Publications (1)

Publication Number Publication Date
WO2019062712A1 true WO2019062712A1 (zh) 2019-04-04

Family

ID=65900558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107344 WO2019062712A1 (zh) 2017-09-29 2018-09-25 一种光信号发送模块及相关方法

Country Status (2)

Country Link
CN (1) CN109586795A (zh)
WO (1) WO2019062712A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910564B (zh) * 2019-12-03 2022-02-01 烽火通信科技股份有限公司 一种高速接收电路及高速收发电路
CN111835412B (zh) * 2020-07-22 2021-03-23 深圳市迅特通信技术有限公司 一种pam4光模块、测试装置及***
CN116707709B (zh) * 2023-06-19 2024-02-09 长芯盛(武汉)科技有限公司 信号发送方法、信号接收方法及信号传输方法
CN118074820A (zh) * 2023-06-19 2024-05-24 长芯盛(武汉)科技有限公司 信号传输装置及信号传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901745A (zh) * 2014-03-03 2015-09-09 颖飞公司 光学模块
CN105122688A (zh) * 2013-03-08 2015-12-02 颖飞公司 使用正交调幅的光学通信接口
CN105122693A (zh) * 2012-09-11 2015-12-02 颖飞公司 使用编码脉冲幅度调制的光学通信接口
US20170187555A1 (en) * 2012-10-16 2017-06-29 Inphi Corporation Pulse amplitude modulation (pam) data communication with forward error correction
CN107124225A (zh) * 2017-03-08 2017-09-01 武汉电信器件有限公司 一种基于dml的高速pam4光收发模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522687B2 (en) * 2005-08-29 2009-04-21 International Business Machines Corporation Clock and data recovery system and method for clock and data recovery based on a forward error correction
CN102710337B (zh) * 2012-06-01 2015-04-22 杨帆 全塑料光纤无线广播通信***及其实施方法
CN103178441B (zh) * 2013-04-19 2015-07-22 苏州朗宽电子技术有限公司 垂直腔面发光激光器(vcsel)驱动电路
CN106936500B (zh) * 2015-12-30 2020-02-14 华为技术有限公司 一种光信号的传输方法及装置、***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122693A (zh) * 2012-09-11 2015-12-02 颖飞公司 使用编码脉冲幅度调制的光学通信接口
US20170187555A1 (en) * 2012-10-16 2017-06-29 Inphi Corporation Pulse amplitude modulation (pam) data communication with forward error correction
CN105122688A (zh) * 2013-03-08 2015-12-02 颖飞公司 使用正交调幅的光学通信接口
CN104901745A (zh) * 2014-03-03 2015-09-09 颖飞公司 光学模块
CN107124225A (zh) * 2017-03-08 2017-09-01 武汉电信器件有限公司 一种基于dml的高速pam4光收发模块

Also Published As

Publication number Publication date
CN109586795A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2019062712A1 (zh) 一种光信号发送模块及相关方法
US10659192B2 (en) Apparatus and method for communicating data over an optical channel
US7809286B2 (en) Optical receiver for regeneration of optical signal
US7212741B2 (en) Method of optimizing output signal of optical receiver using FEC and optical receiving system using the method
Ghazisaeidi et al. Transoceanic transmission systems using adaptive multirate FECs
Zhang et al. Coherent transceiver operating at 61-Gbaud/s
US9306780B2 (en) Optical transmission for binary and duobinary modulation formats
US7155134B2 (en) Pulse amplitude modulated transmission scheme for optical channels with soft decision decoding
US7302188B2 (en) Disperse equalizer and disperse equalizing method
US20020178417A1 (en) Communication channel optimization using forward error correction statistics
WO2018188450A1 (en) Reduced power consumption for digital signal processing (dsp) -based reception in time-division multiplexing (tdm) passive optical networks (pons)
KR20190087580A (ko) Pon들(passive optical networks)에서의 상위-레벨 cdr(clock and data recovery)
Teixeira et al. DSP enabled optical detection techniques for PON
US20030180055A1 (en) Optically calibrated pulse amplitude modulated transmission scheme for optical channels
US7587145B2 (en) Optical receiver with electric ternary coding
Tao et al. 28-Gb/s/λ TDM-PON with narrow filter compensation and enhanced FEC supporting 31.5 dB link loss budget after 20-km downstream transmission in the C-band
Chou et al. Adaptive coding and modulation for robust optical access networks
RU2011110868A (ru) Низкозатратная технология приёма и передачи двоичных данных с высокой скоростью для оптических сетей связи
Kim et al. Transmission of 36-Gbaud PAM-8 signal in IM/DD system using pairwise-distributed probabilistic amplitude shaping
US20230198670A1 (en) Method and apparatus for point-to-multi-point communications using combined block and codeword interleaving
Stojanović et al. DFE and BCJR Performance with SD FEC in 112 GBd PAM4 IMDD Systems
Reyes et al. Joint sampling-time error and channel skew calibration of time-interleaved ADC in multichannel fiber optic receivers
Pfau et al. High performance coherent ASIC
Yankov et al. Block error detection driven nonlinearity compensation for optical fiber communications
Moeneclaey et al. A 64 Gb/s PAM-4 transimpedance amplifier for optical links

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862679

Country of ref document: EP

Kind code of ref document: A1