WO2019062237A1 - 背光模组及显示装置 - Google Patents

背光模组及显示装置 Download PDF

Info

Publication number
WO2019062237A1
WO2019062237A1 PCT/CN2018/093649 CN2018093649W WO2019062237A1 WO 2019062237 A1 WO2019062237 A1 WO 2019062237A1 CN 2018093649 W CN2018093649 W CN 2018093649W WO 2019062237 A1 WO2019062237 A1 WO 2019062237A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
quantum dot
groove
quantum dots
Prior art date
Application number
PCT/CN2018/093649
Other languages
English (en)
French (fr)
Inventor
陈乃军
邓天应
强科文
陈细俊
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Publication of WO2019062237A1 publication Critical patent/WO2019062237A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present application relates to the field of electronic display technologies, and in particular, to a backlight module and a display device using the same.
  • a gamut is the sum of colors that a technical system can produce.
  • a blue chip is generally used to excite red and green quantum dot materials.
  • a quantum dot is generally sealed in a glass tube to form a quantum tube or encapsulated in a film to form a quantum film, and the quantum tube needs to be evacuated in the tube to prevent oxidation of the quantum dot.
  • the process is complex; the quantum film usually covers the optical film, far from the light source, and the quantum dot excitation efficiency is low, thereby affecting the achievable color gamut.
  • the main purpose of the present application is to provide a backlight module and a display device, which are intended to solve the technical problems of low color gamut and low excitation efficiency of the existing backlight module.
  • the display module provided by the present application includes an excitation light source and a quantum dot lens coated on the excitation light source, the excitation light source includes a first light emitting chip emitting a first color light and emitting a second color light. a second light-emitting chip, wherein the quantum dot lens is dispersedly provided with a plurality of quantum dots, the quantum dots being arranged to emit a third color light under excitation of the first color light and the second color light, The first color light, the second color light, and the third color light are mixed to form white light.
  • the first light emitting chip emits red light having a wavelength of 620 to 760 nanometers
  • the second light emitting chip emits blue light having a wavelength of 430 to 475 nanometers, wherein the quantum dots are green quantum dots.
  • the first light emitting chip emits green light having a wavelength of 490 to 580 nm
  • the second light emitting chip emits blue light having a wavelength of 430 to 475 nm
  • the quantum dot is a red quantum dot
  • the first light emitting chip emits purple light having a wavelength of 380 to 430 nanometers
  • the second light emitting chip emits blue light having a wavelength of 450 to 475 nanometers
  • the quantum dots comprise green quantum dots and red quantum dots.
  • the quantum dot lens includes a reflective surface adjacent to the excitation light source, a first light emitting surface disposed opposite to the reflective surface, and a second light emitting surface connecting the reflective surface and the first light emitting surface,
  • the quantum dot lens is provided with a light exiting groove formed by recessing the first light emitting surface toward the reflecting surface, and a scattering groove recessed from the reflecting surface facing the first light emitting surface to form the excitation light source, the reflection The surface is a total reflection surface, the surface of the scattering groove is a light incident surface, and the surface of the light extraction groove is a third light emitting surface.
  • the light exiting groove includes a circular hole and a curved groove that communicate with each other, and a diameter of the curved groove gradually increases along a direction of the reflective surface to the first light emitting surface, and a bottom surface of the curved groove is oriented
  • the curved surface of the scattering groove is convex
  • a top surface of the scattering groove is a curved surface convex toward the curved groove.
  • the quantum dot lens is rotationally symmetric with its optical axis as an axis of symmetry.
  • the quantum dots are inorganic perovskite quantum dots, and the chemical formula of the inorganic perovskite quantum dots is CsPbX 3 , wherein X is Cl, Br or I.
  • the quantum dot is any one of a first compound formed from an element in Group II and Group IV or a second compound formed from an element in Group III and Group V. Made of materials;
  • the quantum dots are made of a core-shell structure compound or a doped nanocrystalline material formed by coating at least one of the first compound and at least one of the second compounds;
  • the quantum dots are made of a plurality of the first compounds or a core-shell structure compound or a doped nanocrystalline material formed by coating a plurality of the second compounds.
  • the present application also provides a display device including a housing, a liquid crystal panel, and a backlight module as described above, the liquid crystal panel and the backlight module being housed in the housing.
  • the quantum dot in the quantum dot lens by setting the quantum dot in the quantum dot lens, the distance between the quantum dot and the excitation light source is small, which is advantageous for improving the The quantum dot excitation efficiency is described.
  • the quantum dots are distributed in the quantum dot lens, and the amount of the quantum dots is small at the time of manufacture.
  • FIG. 1 is a partial cross-sectional structural view of an embodiment of a backlight module of the present application
  • FIG. 2 is a schematic view showing the optical principle of the backlight module shown in FIG. 1;
  • FIG. 3 is a partial cross-sectional structural view showing an embodiment of a display device of the present application.
  • FIG. 4 is an enlarged schematic structural view of a portion A of the display device shown in FIG. 3;
  • Figure 5 is a schematic diagram showing the optical principle of the display device shown in Figure 3;
  • Fig. 6 is an enlarged schematic view showing a portion B shown in Fig. 5.
  • first”, “second”, and the like in this application are used for descriptive purposes only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • fixed may be a fixed connection, or may be a detachable connection, or may be integrated; It may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements unless explicitly defined otherwise.
  • fix may be a fixed connection, or may be a detachable connection, or may be integrated; It may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements unless explicitly defined otherwise.
  • specific meanings of the above terms in the present application can be understood on a case-by-case basis.
  • the present application proposes a backlight module 10.
  • FIG. 1 is a partial cross-sectional structural view of an embodiment of a backlight module of the present application
  • FIG. 2 is a schematic diagram of an optical principle of the backlight module of FIG.
  • the backlight module 10 includes an excitation light source 1 and a quantum dot lens 3 coated on the excitation light source 1.
  • the excitation light source 1 includes a first light emitting chip 11 that emits first color light and emits a second color.
  • a second light-emitting chip 13 of light a plurality of quantum dots 31 are dispersed in the quantum dot lens 3, and the quantum dots 31 are arranged to emit a third color light under excitation of the first color light and the second color light, the first color light, The second color light and the third color light are mixed to form white light.
  • the quantum dot 31 in the quantum dot lens 3, the distance between the quantum dot 31 and the excitation light source 1 is small, which is advantageous for improving the excitation efficiency of the quantum dot 31. Further, the quantum dots 31 are distributed in the quantum dot lens 3, and the amount of the quantum dots 31 is small at the time of manufacture. It is tested that the first color light is emitted by the first light-emitting chip 11 and the second light-emitting chip 13 emits the second color light to excite the quantum dots, and the obtained NTSC color gamut value of the white light can reach 110% to 130%. Among them, the NTSC gamut value is (United States) National Television Standards Committee (National) Television Standards Committee) The sum of the colors under the television standard.
  • the backlight module 10 further includes a backing plate 4, a reflection sheet 5, a diffusion plate 6, and an optical film group 7.
  • the backlight module 10 may be a direct type backlight module or a side-in type backlight module.
  • the optical film 7 may include a brightness enhancement film, a light diffusing film, a filter film, and the like, which can be selected by those skilled in the art as needed.
  • the backlight module 10 is a side-in type backlight module.
  • the excitation light source is disposed on one side of the diffusion plate, facing the light incident surface of the diffusion plate, and the quantum dot lens is disposed between the excitation light source and the diffusion plate.
  • the light emitted by the excitation source excites the quantum dots in the quantum dot lens, and the obtained white light diffuses into the diffusion plate, and a part of the light is directly filtered through the optical film and then emitted outward, and a part is reflected by the reflection plate, and then filtered out through the optical film.
  • FIG. 3 is a partial cross-sectional structural view of an embodiment of the display device of the present application
  • FIG. 4 is an enlarged schematic structural view of a portion of the display device illustrated in FIG. 3
  • FIG. A schematic diagram of the optical principle of the display device shown in FIG. 6 is an enlarged schematic view of a portion B shown in FIG.
  • the backlight module 10 is a direct-type backlight module
  • the excitation light source 1 is disposed on the back plate 4
  • the quantum dot lens 3 is coated on the excitation light source 1
  • the reflection plate 5 is provided with a relief hole 51, so that The quantum dot lens 3 and the excitation light source 1 can pass through the reflection sheet 5, and the light emitted from the excitation light source 1 excites the quantum dots 31 in the quantum dot lens 3, and a part of the obtained white light directly enters the diffusion plate 6 to be diffused, and then passes through the optical film 7 After filtering, it is emitted outward, and a part is reflected by the reflecting plate 5, enters the diffusing plate 6, is filtered by the optical film 7, and is emitted outward.
  • the excitation light source 1 further includes an encapsulant 15 , and the encapsulant 15 is coated on the first light emitting chip 11 and the second light emitting chip 13 .
  • the first light-emitting chip 11 emits red light having a wavelength of 620 to 760 nanometers
  • the second light-emitting chip 13 emits blue light having a wavelength of 430 to 475 nanometers
  • the quantum dot 31 is a green quantum dot.
  • the first light-emitting chip 11 emits green light having a wavelength of 490 to 580 nanometers
  • the second light-emitting chip 13 emits blue light having a wavelength of 430 to 475 nanometers
  • the quantum dot 31 is a red quantum dot.
  • the first light emitting chip 11 emits violet light having a wavelength of 380 to 430 nanometers
  • the second light emitting chip 13 emits blue light having a wavelength of 450 to 475 nanometers
  • the quantum dot 31 includes green quantum dots and red quantum dots.
  • the wavelength of the quantum dots is related to the size of the quantum dots.
  • those skilled in the art can select quantum dots 31 of different sizes and different materials according to requirements, so that different colors of light can be obtained after excitation; different first light-emitting chips 11 can be selected according to requirements, and light of different wavelengths can be emitted.
  • the light is emitted by the quantum dot 31 and the light emitted from the excitation light source 1, thereby obtaining white light.
  • the first light-emitting chip 11 emits green light having a wavelength of 490 to 580 nm
  • the second light-emitting chip 13 emits blue light having a wavelength of 430 to 475 nm
  • the quantum dot 31 is a red quantum dot 31 as an example.
  • the quantum dot lens 3 includes a reflective surface 32 close to the excitation light source 1 , a first light exit surface 33 disposed opposite the reflective surface 32 , and a second light exit surface 34 connecting the reflective surface 32 and the first light exit surface 33 , and the quantum dot lens
  • the light-emitting groove 35 formed by recessing the first light-emitting surface 33 toward the reflection surface 32 and the self-reflecting surface 32 are recessed toward the first light-emitting surface 33 to form a scattering groove 36 for accommodating the excitation light source 1.
  • the reflection surface 32 is a total reflection surface.
  • the surface of the scattering groove 36 is a light incident surface, and the surface of the light exit groove 35 is a third light emitting surface (not shown).
  • the first light-emitting surface 33, the second light-emitting surface 34, and the third light-emitting surface are light-transmissive surfaces, and the total reflection surface can return all the light to the original medium.
  • a part of the light is refracted and emitted from the light exit groove 35, and a part of the reflection continues to propagate in the quantum dot lens 3; the light that is incident on the reflecting surface 32 is totally reflected and continues to propagate in the quantum dot lens 3; and is directed to the second light exiting surface 34 or A part of the light of the first light-emitting surface 33 is refracted and then emitted outward, and a part of the reflection continues to propagate in the quantum dot lens 3.
  • the green light emitted by the first light-emitting chip 11 and/or the blue light emitted by the second light-emitting chip 13 excites the red quantum dots 31 to obtain red light, which is mixed with green light, blue light and red light to form white light of a high color gamut.
  • the propagation path of the light emitted from the excitation light source 1 is changed by the quantum dot lens 3, thereby obtaining a larger illumination area, and the illumination intensity is more uniform.
  • the light exiting groove 35 includes a circular hole 351 and a curved groove 353 which are connected to each other.
  • the diameter of the curved groove 353 gradually increases along the reflecting surface 32 to the first light emitting surface 33, and the bottom surface of the curved groove 353 is convex toward the scattering groove 36.
  • the curved surface of the scattering groove 36 is a curved surface that is convex toward the curved groove 353.
  • the circular hole 351 has a cylindrical through hole and the curved groove 353 is an inverted cone shape in which the apex angle is rounded, and the side surface of the curved groove 353 is connected to the side surface of the circular hole 351.
  • the bottom surface of the curved groove 353 and the top surface of the scattering groove 36 form a concave-concave lens, so that the light emitted from the excitation light source 1 can be first refracted through the top surface of the scattering groove 36, the illumination angle is enlarged, and then the bottom surface of the curved groove 353 is generated. The second refraction further expands the illumination angle.
  • the quantum dot lens 3 further includes a connecting portion (not shown) connecting the reflecting surface 32 and the backing plate 4, and a gap is formed between the reflecting surface 32 and the backing plate 4, through which the heat dissipation of the light source 1 is facilitated. Further, the quantum dot lens 3 is rotationally symmetric with its optical axis as an axis of symmetry. Among them, the optical axis is the axis of symmetry of the optical system. By using a symmetrical design, the light intensity is uniform.
  • the quantum dot lens 3 includes a reflective type and a refractive type, and the shape thereof may be a circular shape, a square shape, an elliptical shape, a tapered shape, a regular or irregular polygonal line, or the like.
  • the quantum dot lens 3 is uniformly injection-molded by optical plastics and quantum dots 31 having a light transmittance of more than 90%, thereby facilitating the molding of the quantum dot lens 3.
  • the optical plastic may be one or more of PMMA, PC, PS, and the like.
  • the quantum dots 31 are inorganic perovskite quantum dots, and the chemical formula of the inorganic perovskite quantum dots is CsPbX 3 , wherein X is Cl, Br or I.
  • the inorganic perovskite quantum dots have high fluorescence quantum efficiency, adjustable fluorescence wavelength, and cover the entire visible light wave with narrow line width.
  • the quantum dot 31 is any one of the first compounds formed from the elements of Group II and Group IV or the second compound formed by the elements of Group III and Group V. Made of a material; or a core-shell structure compound or a doped nanocrystalline material formed by coating at least one of the first compound and at least one of the second compounds; or, A plurality of the first compounds or a plurality of the core-shell structure compounds or the doped nanocrystalline materials formed by coating the plurality of the second compounds.
  • the first compound may specifically be CdSe, CdTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, and CdS
  • the second compound may specifically be GaN, GaP, GaAs, InN, InP, and InAs.
  • the present application further provides a display device including a housing 40, a liquid crystal panel 20, and a backlight module 10 as described above.
  • the liquid crystal panel 20 and the backlight module 10 are housed in the housing 40.
  • the housing 40 forms a receiving space, and the liquid crystal panel 20 and the backlight module 10 are received in the receiving space, and the backlight module 10 emits white light to the liquid crystal panel 20 to display the color screen of the liquid crystal panel 20.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本申请公开一种背光模组及显示装置,其中,该背光模组包括激发光源和包覆于所述激发光源上的量子点透镜,所述激发光源包括发出第一颜色光的第一发光芯片和发出第二颜色光的第二发光芯片,所述量子点透镜内分散设有若干量子点,所述量子点设置为在所述第一颜色光和所述第二颜色光的激发下发出第三颜色光,所述第一颜色光、所述第二颜色光和所述第三颜色光混合形成白光。

Description

背光模组及显示装置
技术领域
本申请涉及电子显示技术领域,具体涉及一种背光模组和应用该背光模组的显示装置。
背景技术
色域是指一个技术***能够产生的颜色的总和。在现有技术中,为了实现高色域背光,一般采用蓝色芯片激发红色和绿色量子点材料。现有量产的量子点电视背光模组中,一般采用将量子点封于玻璃管制成量子管或封装于膜片内制成量子膜,量子管需要将管内抽真空以防止量子点氧化,制备过程复杂;量子膜通常覆盖于光学膜片上,离光源较远,量子点激发效率低,从而影响可实现的色域。
因此,有必要提供一种新型的背光模组和显示装置,以解决上述技术问题。
申请内容
本申请的主要目的是提供一种背光模组及显示装置,旨在解决现有背光模组色域不高和激发效率低的技术问题。
为实现上述目的,本申请提出的显示模组包括激发光源和包覆于所述激发光源上的量子点透镜,所述激发光源包括发出第一颜色光的第一发光芯片和发出第二颜色光的第二发光芯片,所述量子点透镜内分散设有若干量子点,所述量子点设置为在所述第一颜色光和所述第二颜色光的激发下发出第三颜色光,所述第一颜色光、所述第二颜色光和所述第三颜色光混合形成白光。
可选地,所述第一发光芯片发出波长为620~760纳米的红光,所述第二发光芯片发出波长为430~475纳米的蓝光,所述量子点为绿色量子点。
可选地,所述第一发光芯片发出波长为490~580纳米的绿光,所述第二发光芯片发出波长为430~475纳米的蓝光,所述量子点为红色量子点。
可选地,所述第一发光芯片发出波长为380~430纳米的紫光,所述第二发光芯片发出波长为450~475纳米的蓝光,所述量子点包括绿色量子点和红色量子点。
可选地,所述量子点透镜包括靠近所述激发光源的反射面、相对所述反射面设置的第一出光面,以及连接所述反射面和所述第一出光面的第二出光面,所述量子点透镜上开设有自所述第一出光面向所述反射面凹陷形成的出光槽和自所述反射面向所述第一出光面凹陷形成***述激发光源的散射槽,所述反射面为全反射面,所述散射槽的表面为入光面,所述出光槽的表面为第三出光面。
可选地,所述出光槽包括相连通的圆孔和曲面槽,所述曲面槽的口径沿所述反射面到所述第一出光面的方向逐渐增大,所述曲面槽的底面为朝向所述散射槽凸起的曲面,所述散射槽的顶面为朝向所述曲面槽凸起的曲面。
可选地,所述量子点透镜以其光轴为对称轴旋转对称。
可选地,所述量子点为无机钙钛矿量子点,所述无机钙钛矿量子点的化学式为CsPbX3,式中X为Cl、Br或I。
可选地,所述量子点由第II族和第IV族中的元素形成的第一化合物中的任意一种或第III族和第V族中的元素形成的第二化合物中的任意一种材料制成;
或者,所述量子点由所述第一化合物中的至少一种与所述第二化合物中的至少一种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成;
或者,所述量子点由所述第一化合物中的多种或所述第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成。
本申请还提供了一种显示装置,所述显示装置包括壳体、液晶面板和如前述的背光模组,所述液晶面板和所述背光模组收容于所述壳体内。
相较于现有技术中的量子膜,本申请技术方案中,通过将所述量子点设于所述量子点透镜中,使得所述量子点与所述激发光源的距离小,有利于提高所述量子点激发效率。另外,所述量子点分布于所述量子点透镜内,制造时所述量子点的用量小。经试验检测,通过所述第一发光芯片发出的所述第一颜色光和所述第二发光芯片发出的所述第二颜色光激发量子点,获得的白光的NTSC色域值可达到110%~130%。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请背光模组一实施例的部分剖面结构示意图;
图2为图1所示背光模组的光学原理示意图;
图3为本申请显示装置一实施例的部分剖面结构示意图;
图4为图3所示显示装置的A部分的放大结构示意图;
图5为图3所示显示装置的光学原理示意图;以及
图6为图5所示B部分的放大示意图。
附图标号说明:
标号 名称 标号 名称
10 背光模组 1 激发光源
11 第一发光芯片 13 第二发光芯片
15 封装胶 3 量子点透镜
31 量子点 32 反射面
33 第一出光面 34 第二出光面
35 出光槽 351 圆孔
353 曲面槽 36 散射槽
4 背板 51 避让孔
5 反射片 6 扩散板
7 光学膜组 20 液晶面板
40 壳体
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种背光模组10。
请参照图1和图2,其中,图1为本申请背光模组一实施例的部分剖面结构示意图,图2为图1所示背光模组的光学原理示意图。在本申请一实施例中,背光模组10包括激发光源1和包覆于激发光源1上的量子点透镜3,激发光源1包括发出第一颜色光的第一发光芯片11和发出第二颜色光的第二发光芯片13,量子点透镜3内分散设有若干量子点31,量子点31设置为在第一颜色光和第二颜色光的激发下发出第三颜色光,第一颜色光、第二颜色光和第三颜色光混合形成白光。
相较于现有技术中的量子膜,通过将量子点31设于量子点透镜3中,使得量子点31与激发光源1的距离小,有利于提高量子点31激发效率。另外,量子点31分布于量子点透镜3内,制造时量子点31的用量小。经试验检测,通过第一发光芯片11发出第一颜色光和第二发光芯片13发出第二颜色光激发量子点,获得的白光的NTSC色域值可达到110%~130%。其中,NTSC色域值是(美国)国家电视标准委员会(National Television Standards Committee)规定的电视标准下的颜色总和。
背光模组10还包括依次设置的背板4、反射片5、扩散板6和光学膜组7,背光模组10具体可以是直下式背光模组或侧入式背光模组。光学膜片7可包括增光膜、散光膜和滤光膜等,本领域技术人员可根据需要进行选择。在一实施例中,背光模组10为侧入式背光模组,激发光源设于扩散板的一侧,正对扩散板的入光面,量子点透镜设于激发光源和扩散板之间。激发光源发出的光激发量子点透镜内的量子点,获得的白光进入扩散板发生扩散,一部分直接经光学膜片过滤后向外射出,一部分通过反射板反射后,经光学膜片过滤向外射出。
请结合参阅图3至图6,其中,图3为本申请显示装置一实施例的部分剖面结构示意图,图4为图3所示的显示装置的A部分的放大结构示意图,图5为图3所示显示装置的光学原理示意图,图6为图5所示B部分的放大示意图。在本实施例中,背光模组10为直下式背光模组,激发光源1设于背板4上,量子点透镜3包覆于激发光源1,反射片5上开设有避让孔51,以使量子点透镜3和激发光源1能够穿过反射片5,激发光源1发出的光激发量子点透镜3内的量子点31,获得的白光一部分直接进入扩散板6发生扩散,再经光学膜片7过滤后向外射出,一部分通过反射板5反射后进入扩散板6,经光学膜片7过滤后向外射出。
其中,激发光源1还包括封装胶15,封装胶15包覆于第一发光芯片11和第二发光芯片13上。
在一实施例中,第一发光芯片11发出波长为620~760纳米的红光,第二发光芯片13发出波长为430~475纳米的蓝光,量子点31为绿色量子点。
在另一实施例中,第一发光芯片11发出波长为490~580纳米的绿光,第二发光芯片13发出波长为430~475纳米的蓝光,量子点31为红色量子点。
在又一实施例中,第一发光芯片11发出波长为380~430纳米的紫光,第二发光芯片13发出波长为450~475纳米的蓝光,量子点31包括绿色量子点和红色量子点。通过设置第二发光芯片13发出波长为450~475纳米的蓝光,从而避免使用较短波长的蓝光伤害用户视力。
由于量子点的发光波长与量子点的尺寸相关。在本申请中,本领域技术人员可依据需要选择不同尺寸、不同材料的量子点31,使得激发后获得不同颜色的光;也可根据需要选择不同第一发光芯片11,发出不同波长的光,以使量子点31和激发光源1发出的光相配合,从而获得白光。
为描述方便,以下以第一发光芯片11发出波长为490~580纳米的绿光,第二发光芯片13发出波长为430~475纳米的蓝光,量子点31为红色量子点31为例进行描述。
进一步地,量子点透镜3包括靠近激发光源1的反射面32、相对反射面32设置的第一出光面33,以及连接反射面32和第一出光面33的第二出光面34,量子点透镜3上开设有自第一出光面33向反射面32凹陷形成的出光槽35和自反射面32向第一出光面33凹陷形成收容激发光源1的散射槽36,反射面32为全反射面,散射槽36的表面为入光面,出光槽35的表面为第三出光面(未标示)。其中,第一出光面33、第二出光面34和第三出光面为可透光的面,全反射面能够将光全部返回原介质。
请参阅图2,其中带有箭头的虚线示意光线。第一发光芯片11发出的绿光和第二发光芯片13发出的蓝光射向量子点透镜3,通过散射槽36的表面发生散射后进入量子点透镜3中,其中,射向第三出光面的一部分光折射后从出光槽35射出,一部分发生反射继续在量子点透镜3中传播;射向反射面32的光发生全反射,继续在量子点透镜3中传播;射向第二出光面34或第一出光面33的光一部分折射后向外射出,一部分发生反射继续在量子点透镜3中传播。第一发光芯片11发出的绿光和/或第二发光芯片13发出的蓝光激发红色量子点31得到红光,绿光、蓝光和红光混合形成高色域的白光。激发光源1发出的光的传播路径通过量子点透镜3进行改变,从而得到更大的照射区域,光照强度更均匀。
进一步地,出光槽35包括相连通的圆孔351和曲面槽353,曲面槽353的口径沿反射面32到第一出光面33的方向逐渐增大,曲面槽353的底面为朝向散射槽36凸起的曲面,散射槽36的顶面为朝向曲面槽353凸起的曲面。具体地,圆孔351为圆柱体形的通孔和曲面槽353为顶角为圆角的倒置圆锥体形,曲面槽353的侧面和圆孔351的侧面相连接。曲面槽353的底面和散射槽36的顶面形成凹凹透镜,使得激发光源1发出的光可先通过散射槽36的顶面发生第一次折射,扩大光照角度,再通过曲面槽353的底面发生第二次折射,进一步扩大光照角度。
量子点透镜3还包括连接反射面32和背板4的连接部(未标示),反射面32和背板4之间形成空隙,通过该空隙有利于激发光源1的散热。并且,量子点透镜3以其光轴为对称轴旋转对称。其中,光轴为光学***的对称轴。通过采用对称设计,以使光照强度均匀。所述量子点透镜3包括有反射型和折射型,其形状可以是圆形,方形,椭圆形,锥形,规则或是不规则的多边行等。可选地,量子点透镜3由透光率大于90%的光学塑料和量子点31均匀混合后注塑成型,从而有利于量子点透镜3成型。具体地,光学塑料可以是PMMA、PC、PS等材料中的一种或多种。
在一实施例中,量子点31为无机钙钛矿量子点,无机钙钛矿量子点的化学式为CsPbX3,式中X为Cl、Br或I。无机钙钛矿量子点的荧光量子效率高、荧光波长可调,且覆盖整个可见光波、线宽窄。
在另一实施例中,量子点31由第II族和第IV族中的元素形成的第一化合物中的任意一种或第III族和第V族中的元素形成的第二化合物中的任意一种材料制成;或者,由所述第一化合物中的至少一种和所述第二化合物中的至少一种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成;或者,由所述第一化合物中的多种或所述第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成。第一化合物具体可以是CdSe、CdTe、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe和CdS,第二化合物具体可以是GaN、GaP、GaAs、InN、InP和InAs。
本申请还提供了一种显示装置,该显示装置包括壳体40、液晶面板20和如前述的背光模组10,液晶面板20和背光模组10收容于壳体40内。
具体地,壳体40形成一收容空间,液晶面板20和背光模组10收容于收容空间内,背光模组10发出白光射向液晶面板20,以使液晶面板20显示彩色画面。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (20)

  1. 一种背光模组,其中,所述背光模组包括激发光源和包覆于所述激发光源上的量子点透镜,所述激发光源包括发出第一颜色光的第一发光芯片和发出第二颜色光的第二发光芯片,所述量子点透镜内分散设有若干量子点,所述量子点设置为在所述第一颜色光和所述第二颜色光的激发下发出第三颜色光,所述第一颜色光、所述第二颜色光和所述第三颜色光混合形成白光。
  2. 如权利要求1所述的背光模组,其中,所述第一发光芯片发出波长为620~760纳米的红光,所述第二发光芯片发出波长为430~475纳米的蓝光,所述量子点为绿色量子点。
  3. 如权利要求2所述的背光模组,其中,所述量子点透镜包括靠近所述激发光源的反射面、相对所述反射面设置的第一出光面,以及连接所述反射面和所述第一出光面的第二出光面,所述量子点透镜上开设有自所述第一出光面向所述反射面凹陷形成的出光槽和自所述反射面向所述第一出光面凹陷形成***述激发光源的散射槽,所述反射面为全反射面,所述散射槽的表面为入光面,所述出光槽的表面为第三出光面。
  4. 如权利要求1所述的背光模组,其中,所述第一发光芯片发出波长为490~580纳米的绿光,所述第二发光芯片发出波长为430~475纳米的蓝光,所述量子点为红色量子点。
  5. 如权利要求4所述的背光模组,其中,所述量子点透镜包括靠近所述激发光源的反射面、相对所述反射面设置的第一出光面,以及连接所述反射面和所述第一出光面的第二出光面,所述量子点透镜上开设有自所述第一出光面向所述反射面凹陷形成的出光槽和自所述反射面向所述第一出光面凹陷形成***述激发光源的散射槽,所述反射面为全反射面,所述散射槽的表面为入光面,所述出光槽的表面为第三出光面。
  6. 如权利要求1所述的背光模组,其中,所述第一发光芯片发出波长为380~430纳米的紫光,所述第二发光芯片发出波长为450~475纳米的蓝光,所述量子点包括绿色量子点和红色量子点。
  7. 如权利要求6所述的背光模组,其中,所述量子点透镜包括靠近所述激发光源的反射面、相对所述反射面设置的第一出光面,以及连接所述反射面和所述第一出光面的第二出光面,所述量子点透镜上开设有自所述第一出光面向所述反射面凹陷形成的出光槽和自所述反射面向所述第一出光面凹陷形成***述激发光源的散射槽,所述反射面为全反射面,所述散射槽的表面为入光面,所述出光槽的表面为第三出光面。
  8. 如权利要求1所述的背光模组,其中,所述量子点透镜包括靠近所述激发光源的反射面、相对所述反射面设置的第一出光面,以及连接所述反射面和所述第一出光面的第二出光面,所述量子点透镜上开设有自所述第一出光面向所述反射面凹陷形成的出光槽和自所述反射面向所述第一出光面凹陷形成***述激发光源的散射槽,所述反射面为全反射面,所述散射槽的表面为入光面,所述出光槽的表面为第三出光面。
  9. 如权利要求8所述的背光模组,其中,所述出光槽包括相连通的圆孔和曲面槽,所述曲面槽的口径沿所述反射面到所述第一出光面的方向逐渐增大,所述曲面槽的底面为朝向所述散射槽凸起的曲面,所述散射槽的顶面为朝向所述曲面槽凸起的曲面。
  10. 如权利要求1所述的背光模组,其中,所述量子点透镜以其光轴为对称轴旋转对称。
  11. 如权利要求1所述的背光模组,其中,所述量子点为无机钙钛矿量子点,所述无机钙钛矿量子点的化学式为CsPbX3,式中X为Cl、Br或I。
  12. 如权利要求1所述的背光模组,其中,所述量子点由第II族和第IV族中的元素形成的第一化合物中的任意一种或第III族和第V族中的元素形成的第二化合物中的任意一种材料制成;
    或者,所述量子点由所述第一化合物中的至少一种与所述第二化合物中的至少一种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成;
    或者,所述量子点由所述第一化合物中的多种或所述第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成。
  13. 一种显示装置,其中,所述显示装置包括壳体、液晶面板和背光模组,所述液晶面板和所述背光模组收容于所述壳体内,所述背光模组包括激发光源和包覆于所述激发光源上的量子点透镜,所述激发光源包括发出第一颜色光的第一发光芯片和发出第二颜色光的第二发光芯片,所述量子点透镜内分散设有若干量子点,所述量子点设置为在所述第一颜色光和所述第二颜色光的激发下发出第三颜色光,所述第一颜色光、所述第二颜色光和所述第三颜色光混合形成白光。
  14. 如权利要求13所述的显示装置,其中,所述第一发光芯片发出波长为620~760纳米的红光,所述第二发光芯片发出波长为430~475纳米的蓝光,所述量子点为绿色量子点。
  15. 如权利要求13所述的显示装置,其中,所述第一发光芯片发出波长为490~580纳米的绿光,所述第二发光芯片发出波长为430~475纳米的蓝光,所述量子点为红色量子点。
  16. 如权利要求13所述的显示装置,其中,所述第一发光芯片发出波长为380~430纳米的紫光,所述第二发光芯片发出波长为450~475纳米的蓝光,所述量子点包括绿色量子点和红色量子点。
  17. 如权利要求13所述的显示装置,其中,所述量子点透镜包括靠近所述激发光源的反射面、相对所述反射面设置的第一出光面,以及连接所述反射面和所述第一出光面的第二出光面,所述量子点透镜上开设有自所述第一出光面向所述反射面凹陷形成的出光槽和自所述反射面向所述第一出光面凹陷形成***述激发光源的散射槽,所述反射面为全反射面,所述散射槽的表面为入光面,所述出光槽的表面为第三出光面。
  18. 如权利要求17所述的显示装置,其中,所述出光槽包括相连通的圆孔和曲面槽,所述曲面槽的口径沿所述反射面到所述第一出光面的方向逐渐增大,所述曲面槽的底面为朝向所述散射槽凸起的曲面,所述散射槽的顶面为朝向所述曲面槽凸起的曲面。
  19. 如权利要求13所述的显示装置,其中,所述量子点为无机钙钛矿量子点,所述无机钙钛矿量子点的化学式为CsPbX3,式中X为Cl、Br或I。
  20. 如权利要求13所述的显示装置,其中,所述量子点由第II族和第IV族中的元素形成的第一化合物中的任意一种或第III族和第V族中的元素形成的第二化合物中的任意一种材料制成;
    或者,所述量子点由所述第一化合物中的至少一种与所述第二化合物中的至少一种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成;
    或者,所述量子点由所述第一化合物中的多种或所述第二化合物中的多种包覆形成的核壳结构化合物或者掺杂纳米晶材料制成。
PCT/CN2018/093649 2017-09-27 2018-06-29 背光模组及显示装置 WO2019062237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710895669.5 2017-09-27
CN201710895669.5A CN107728376B (zh) 2017-09-27 2017-09-27 背光模组及显示装置

Publications (1)

Publication Number Publication Date
WO2019062237A1 true WO2019062237A1 (zh) 2019-04-04

Family

ID=61207158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093649 WO2019062237A1 (zh) 2017-09-27 2018-06-29 背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN107728376B (zh)
WO (1) WO2019062237A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728376B (zh) * 2017-09-27 2021-02-05 深圳Tcl新技术有限公司 背光模组及显示装置
CN110505462B (zh) * 2018-05-18 2022-06-10 深圳Tcl新技术有限公司 一种激光投影电视
CN110505461B (zh) * 2018-05-18 2022-07-29 深圳Tcl新技术有限公司 一种激光投影电视
CN110286519B (zh) * 2019-05-29 2022-03-11 深圳赛时达科技有限公司 量子点背光模组
CN112485944A (zh) * 2020-11-27 2021-03-12 广东长虹电子有限公司 一种液晶电视用新型Mini-LED量子点结构背光模组
CN116841083A (zh) * 2023-07-06 2023-10-03 南通惟怡新材料科技有限公司 一种高色域量子点透镜及背光模组制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020677A (zh) * 2015-07-31 2015-11-04 华侨大学 一种用于近场均匀照明的广角透镜
US20160230958A1 (en) * 2015-02-09 2016-08-11 Ecosense Lighting Inc. Lighting systems generating controlled and wavelength-converted light emissions
CN106558576A (zh) * 2015-09-24 2017-04-05 中强光电股份有限公司 白光光源模组及背光模组
CN107092138A (zh) * 2017-06-28 2017-08-25 深圳Tcl新技术有限公司 液晶显示面板和液晶显示装置
CN107728376A (zh) * 2017-09-27 2018-02-23 深圳Tcl新技术有限公司 背光模组及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410492A (zh) * 2010-09-21 2012-04-11 富士迈半导体精密工业(上海)有限公司 透镜及发光二极管模组
CN102537838B (zh) * 2010-12-28 2013-07-31 泰金宝电通股份有限公司 光学透镜模块及其发光装置
CN104696878A (zh) * 2013-12-04 2015-06-10 深圳市海洋王照明工程有限公司 透镜及灯具
CN203810280U (zh) * 2014-03-31 2014-09-03 中山市恒辰光电科技有限公司 一种led光学透镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160230958A1 (en) * 2015-02-09 2016-08-11 Ecosense Lighting Inc. Lighting systems generating controlled and wavelength-converted light emissions
CN105020677A (zh) * 2015-07-31 2015-11-04 华侨大学 一种用于近场均匀照明的广角透镜
CN106558576A (zh) * 2015-09-24 2017-04-05 中强光电股份有限公司 白光光源模组及背光模组
CN107092138A (zh) * 2017-06-28 2017-08-25 深圳Tcl新技术有限公司 液晶显示面板和液晶显示装置
CN107728376A (zh) * 2017-09-27 2018-02-23 深圳Tcl新技术有限公司 背光模组及显示装置

Also Published As

Publication number Publication date
CN107728376B (zh) 2021-02-05
CN107728376A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2019062237A1 (zh) 背光模组及显示装置
CA2173336C (en) Light source for backlighting
US6313892B2 (en) Light source utilizing reflective cavity having sloped side surfaces
TWI494655B (zh) 具有結構性薄膜之空孔背光裝置及具有該空孔背光裝置之顯示器
CN107461653B (zh) 发光单元、显示器和照明装置
WO2019071985A1 (zh) 背光模组及显示装置
KR101789067B1 (ko) 백라이트 유닛 및 그를 이용한 액정표시장치
US20240201537A1 (en) Light-emitting device, display apparatus, and illumination apparatus
WO1995010066A1 (en) Light source for backlighting
TW200939534A (en) LED light source module
WO2018201613A1 (zh) 一种光学膜组件、背光模组及显示设备
WO2017156902A1 (zh) 量子点背光模组及液晶电视
CN101555993A (zh) Led光源模组及应用该led光源模组的背光模组
WO2020077615A1 (zh) 一种背光模组和显示装置
WO2020238178A1 (zh) 一种背光模块、显示屏及移动终端
CN110828645B (zh) 一种发光元件、背光模组和显示装置
US20190129251A1 (en) Lighting device and image display device
KR20110135097A (ko) 액정표시장치 모듈
WO2018192228A1 (zh) Led灯源、灯条及显示装置
WO2019062239A1 (zh) 背光模组及显示装置
CN115407551B (zh) 一种显示装置
US7226200B2 (en) Light guiding device with two opposite light emitting surfaces and backlight module using the same
WO2019141269A1 (en) Display system
CN113504669A (zh) 混合式背光模组和显示设备
KR20120129092A (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860032

Country of ref document: EP

Kind code of ref document: A1