WO2019061770A1 - 无机膜及封装薄膜 - Google Patents

无机膜及封装薄膜 Download PDF

Info

Publication number
WO2019061770A1
WO2019061770A1 PCT/CN2017/112631 CN2017112631W WO2019061770A1 WO 2019061770 A1 WO2019061770 A1 WO 2019061770A1 CN 2017112631 W CN2017112631 W CN 2017112631W WO 2019061770 A1 WO2019061770 A1 WO 2019061770A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
inorganic layer
layer
film
film according
Prior art date
Application number
PCT/CN2017/112631
Other languages
English (en)
French (fr)
Inventor
金江江
徐湘伦
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/735,529 priority Critical patent/US10784464B2/en
Publication of WO2019061770A1 publication Critical patent/WO2019061770A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of thin film packaging technology, and in particular to an inorganic film and a packaging film.
  • OLEDs Organic light-emitting diodes
  • third-generation display technologies because of their self-illumination, wide temperature range, fast response, and flexible folding.
  • OLEDs Organic light-emitting diodes
  • the joint promotion of industry and academia and the continuous growth of market demand have accelerated the popularization of OLEDs, especially OLED products such as smart terminals and wearable devices have been seen everywhere in life.
  • OLEDs are particularly sensitive to water oxygen, and it is very easy to react with the infiltrated water vapor, affecting the injection of charges.
  • the infiltrated water vapor and oxygen also react with organic materials, which are the main factors that cause the performance of OLED devices to decrease and the lifetime of OLED devices to shorten. Therefore OLED devices require strict packaging materials to protect them from water and oxygen.
  • Existing OLED devices are available in a variety of packaging methods, such as Thin Film Encapsulation (TFE), Glass (Glass) packaging, and Frit packaging.
  • TFE Thin Film Encapsulation
  • Glass Glass
  • Frit packaging Especially in the field of flexible display, thin film packaging is considered to be an indispensable condition for future flexible electronic products.
  • the prior art discloses a water vapor barrier composite film and a package structure, the composite film comprising an organic-inorganic alternating structure comprising a plurality of organic protective layers and a plurality of inorganic layers.
  • the sealing effect of the composite film is generally good, and the ability to block water oxygen needs to be improved.
  • the technical problem to be solved by the present invention is to provide an inorganic film and a packaging film, which can improve the device's ability to block water oxygen and improve product quality.
  • the first technical solution adopted by the present invention is to provide an inorganic film for thin film encapsulation of an OLED device, the inorganic film comprising N inorganic layer units, wherein N is a natural number, and N is not more than 10; the inorganic layer unit includes a first inorganic layer, a second inorganic layer, and a third inorganic layer between the first inorganic layer and the second inorganic layer, wherein The second inorganic layer includes ZrO 2 , and the first inorganic layer includes an oxide of non-ZrO 2 ; the third inorganic layer is formed by reacting the first inorganic layer and the second inorganic layer.
  • the second technical solution adopted by the present invention is to provide an inorganic film for thin film encapsulation of an OLED device, the inorganic film comprising an inorganic layer unit, and the inorganic layer unit includes a first inorganic layer, a second inorganic layer, and a third inorganic layer between the first inorganic layer and the second inorganic layer, wherein the third inorganic layer is composed of the first inorganic layer and The second inorganic layer is formed by a reaction.
  • the third technical solution adopted by the present invention is to provide a package film for a thin film package of an OLED device, the package film including a buffer layer and a first barrier layer, a first barrier layer covering the OLED device, the buffer layer covering the first barrier layer; the first barrier layer comprising the inorganic film of any of the above.
  • the beneficial effects of the present invention are that the inorganic film of the present invention is used for a thin film encapsulation of an OLED device, and can be used as an OLED encapsulation layer.
  • the inorganic film includes an inorganic layer unit including a first inorganic layer and a second inorganic layer, wherein the first inorganic layer and the second inorganic layer react to form a first layer between the first inorganic layer and the second inorganic layer Three inorganic layers.
  • the inorganic film of the invention can significantly improve the device's ability to block water oxygen and improve the quality of the product.
  • FIG. 1 is a schematic structural view of an embodiment of an inorganic film of the present invention.
  • FIG. 2 is a schematic structural view of an embodiment of a package film of the present invention.
  • FIG. 3 is a schematic structural view of another embodiment of the package film of the present invention.
  • FIG. 4 is a schematic structural view of still another embodiment of the encapsulating film of the present invention.
  • the present invention provides an inorganic film and an encapsulating film.
  • the present invention will be further described in detail below, and it should be understood that the specific embodiments described herein are merely used to explain the present invention. It is not intended to limit the invention.
  • the embodiment provides an inorganic film, wherein the inorganic film includes an inorganic layer unit, and the inorganic layer unit includes a first inorganic layer, a second inorganic layer, and a third portion between the first inorganic layer and the second inorganic layer Inorganic layer. It should be noted here that the third inorganic layer is formed by reacting the first inorganic layer and the second inorganic layer.
  • the first inorganic layer includes an oxide of non-ZrO 2 such as a metal or a non-metal oxide such as Al 2 O 3 , SiO 2 , TiO 2
  • the second inorganic layer includes ZrO 2
  • the first inorganic layer includes Al 2 O 3
  • the second inorganic layer includes ZrO 2
  • an ultrathin high density first is formed at a contact interface between the first inorganic layer and the second inorganic layer.
  • the third inorganic layer has a good ability to block water oxygen.
  • the inorganic film in the present embodiment is used for thin film encapsulation of an OLED device, and the thickness of the inorganic film has a certain influence on the barrier function of the OLED device.
  • the thickness of the inorganic film ranges from 1 nm to 200 nm.
  • the thickness of the first inorganic layer ranges from 1 nm to 100 nm, and the thickness of the second inorganic layer ranges from 1 nm to 5 nm.
  • the number of the inorganic layer units included in the inorganic film of the present embodiment may be one, three or five, and it is only necessary to satisfy the number of inorganic layer units included in the inorganic layer unit. The actual situation is designed.
  • the inorganic film includes two inorganic layer units as an example for explanation.
  • Figure 1 there is shown a schematic view of an embodiment of an inorganic film of the present invention.
  • the inorganic film 11 includes two inorganic layer units 114, each of which includes a first inorganic layer 111, a second inorganic layer 112, and between the first inorganic layer 111 and the second inorganic layer 112.
  • the third inorganic layer 113 is formed by reacting the first inorganic layer 111 and the second inorganic layer 112.
  • the second inorganic layer 112 includes ZrO 2
  • the first inorganic layer 111 includes an oxide of non-ZrO 2 such as a metal or a non-metal oxide such as Al 2 O 3 , SiO 2 or TiO 2 .
  • the second inorganic layer 112 is located above the first inorganic layer 111.
  • the film layer structure of the inorganic film 11 in the present embodiment will be described by taking the first inorganic layer 111 including Al 2 O 3 as an example.
  • the thickness of the first inorganic layer 111 in the present embodiment ranges from 1 nm to 100 nm in order to make the inorganic film 11 more resistant to water oxygen.
  • the thickness of the second inorganic layer 112 ranges from 1 nm to 5 nm. In other embodiments, the specific thicknesses of the first inorganic layer 111 and the second inorganic layer 112 may be designed according to actual conditions.
  • the contact surface of the first inorganic layer 111 and the second inorganic layer 112 forms an ultra-thin, high-density third inorganic layer 113, which includes ZrAlxOy, which can significantly improve the barrier property of water vapor.
  • a third inorganic layer 113 is also formed between the two inorganic layer units 114.
  • the inorganic film of the present invention comprises an inorganic layer unit, and the inorganic layer unit includes a first inorganic layer and a second inorganic layer, wherein the first inorganic layer and the second inorganic layer react, in the first inorganic layer A third inorganic layer is formed between the second inorganic layer.
  • the inorganic film of the invention can significantly improve the device's ability to block water oxygen and improve the quality of the product.
  • the organic materials used in OLED devices are particularly sensitive to water oxygen, so strict packaging materials are needed to protect them from oxygen water and oxygen, especially in the field of flexible displays.
  • an OLED device is covered by a thin film package to protect the OLED device.
  • the film package uses inorganic/organic/inorganic alternating methods. Inorganic materials are used to block water and oxygen; organic materials such as acrylic, epoxy or silicone are used to effectively cover particles and to cushion stress during bending and folding.
  • the inorganic film of any of the above embodiments of the present invention has a good ability to block water oxygen, and can form a specific encapsulation film as a barrier layer and a buffer layer containing an organic material to protect the OLED device from water and oxygen.
  • FIG. 2 is a schematic structural view of an embodiment of the package film of the present invention.
  • the OLED device 20 is covered with a package film 21, the package film 21 includes a buffer layer 212 and a first barrier layer 211, wherein the first barrier layer 211 covers the OLED device 20, and the buffer layer 212 covers the first layer. Barrier layer 211.
  • the preparation process of the package film 21 is as follows: a first barrier layer 211 is formed on the OLED device 20 by atomic deposition, and a buffer layer 212 is formed on the first barrier layer 211 by IJP, PECVD, ESC or Slit-nozzle coating deposition, and The thickness of the buffer layer 212 ranges from 1 ⁇ m to 20 ⁇ m.
  • the first barrier layer 211 in the present embodiment includes the inorganic film in any of the above embodiments.
  • the structure of the inorganic film has been described in detail above and will not be discussed here.
  • FIG. 3 is a schematic structural view of another embodiment of the package film of the present invention.
  • the OLED device 30 is covered with a package film 31 including a buffer layer 312, a first barrier layer 311 and a second barrier layer 313, wherein the first barrier layer 311 covers the OLED device 30,
  • the buffer layer 312 covers the first barrier layer 311.
  • the second barrier layer 313 is also covered on the upper surface of the buffer layer 312.
  • the first barrier layer 311 and the second barrier layer 313 have the same thickness and material.
  • the second barrier layer 313 can cover all of the film layers underneath.
  • the preparation process of the package film 31 is as follows: a first barrier layer 311 is formed on the OLED device 30 by atomic deposition, and a buffer layer 312 is formed on the first barrier layer 311 by IJP, PECVD, ESC or Slit-nozzle coating deposition, and The thickness of the buffer layer 312 ranges from 1 to 20 ⁇ m. Also, a second barrier layer 313 is formed on the buffer layer 312 by atomic deposition.
  • the first barrier layer 311 and the second barrier layer 313 each include the inorganic film in any of the above embodiments.
  • only one of the barrier layers included in the encapsulating film comprises the inorganic film of any of the above embodiments, and the remaining barrier layer is formed of a metal or non-metal oxide, and the barrier layer is The thickness ranges from 10 nm to 1000 nm.
  • FIG. 4 is a schematic structural view of still another embodiment of the package film of the present invention.
  • the OLED device 40 is covered with a package film 41 including a buffer layer 413, a first barrier layer 412, a second barrier layer 414, and a third barrier layer 411.
  • the first barrier layer 412 includes the inorganic film in any of the above embodiments; the second barrier layer 414 and the third barrier layer 411 are both formed of a metal or a non-metal oxide. And both materials and thickness are the same.
  • the barrier layer 411 forms a first barrier layer 412.
  • the buffer layer 413 is then deposited on the first barrier layer 412 by means of IJP, PECVD, ESC or Slit-nozzle coating, and the buffer layer 413 has a thickness ranging from 1 to 20 ⁇ m.
  • a second barrier layer 414 is formed on the buffer layer 413 by means of PLD, Sputter, PECVD or the like.
  • the encapsulating film of the embodiment includes an inorganic layer unit, and the inorganic layer unit includes a first inorganic layer and a second inorganic layer, wherein the first inorganic layer and the second inorganic layer react, in the first inorganic A third inorganic layer is formed between the layer and the second inorganic layer.
  • the inorganic film of the invention can significantly improve the water-blocking ability of the device, and at the same time, can realize flexible display and improve the quality of the product.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

一种无机膜(11)及封装薄膜,该无机膜用于OLED器件的薄膜封装,无机膜包含无机层单元(114),无机层单元包括第一无机层(111)、第二无机层(112)和位于第一无机层(111)与第二无机层(112)之间的第三无机层(113),其中,第三无机层(113)由第一无机层(111)和第二无机层(112)发生反应而形成。该无机膜(11)用于OLED器件的薄膜封装中,能够提高器件阻隔水氧能力,提高产品质量。

Description

无机膜及封装薄膜 【技术领域】
本发明涉及薄膜封装技术领域,特别是涉及一种无机膜及封装薄膜。
【背景技术】
有机发光二极管(OLED)具有自发光、适用温度范围广、响应快、可弯曲折叠等优点,因此被称为第三代显示技术。目前产业界和学术界的共同推进以及市场需求的不断增长,使OLED的普及化速度不断加快,特别是智能终端、穿戴设备等OLED产品在生活中已经随处可见。
然而OLED采用的有机材料对水氧特别敏感,非常容易与渗透进来的水汽发生反应,影响电荷的注入。另外,渗透进来的水汽和氧气还会与有机材料发生化学反应,这些反应是引起OLED器件性能下降、OLED器件寿命缩短的主要因素。因此OLED器件需要严格的封装材料来保护它们免受水和氧气的侵蚀。现有的OLED器件有多种封装方式,例如:薄膜封装(Thin Film Encapsulation,简称TFE)、玻盖(Glass)封装方式和玻璃粉(Frit)封装方式。特别是在柔性显示领域,薄膜封装被认为是未来的柔性电子产品不可缺少的条件。
现有技术公开了一种水气阻障复合膜及封装结构,该复合膜包括含多层有机保护层及多层无机层的有机无机交替结构。但是,该复合膜的封装效果一般,阻隔水氧能力有待提高。
【发明内容】
本发明主要解决的技术问题是提供一种无机膜及封装薄膜,能够提高器件阻隔水氧能力,提高产品质量。
为解决上述技术问题,本发明采用的第一个技术方案是:提供一种无机膜,所述无机膜用于OLED器件的薄膜封装,所述无机膜包含N个 无机层单元,其中,N为自然数,且N不大于10;所述无机层单元包括第一无机层、第二无机层和位于所述第一无机层与所述第二无机层之间的第三无机层,其中,所述第二无机层包括ZrO2,所述第一无机层包括非ZrO2的氧化物;所述第三无机层由所述第一无机层和所述第二无机层发生反应而形成。
为解决上述技术问题,本发明采用的第二个技术方案是:提供一种无机膜,所述无机膜用于OLED器件的薄膜封装,所述无机膜包含无机层单元,所述无机层单元包括第一无机层、第二无机层和位于所述第一无机层与所述第二无机层之间的第三无机层,其中,所述第三无机层由所述第一无机层和所述第二无机层发生反应而形成。
为解决上述技术问题,本发明采用的第三个技术方案是:提供一种封装薄膜,所述封装薄膜用于OLED器件的薄膜封装,所述封装薄膜包括缓冲层和第一阻隔层,所述第一阻隔层覆盖所述OLED器件,所述缓冲层覆盖所述第一阻隔层;所述第一阻隔层包括以上任一所述的无机膜。
本发明的有益效果是:本发明的无机膜用于OLED器件的薄膜封装,可作为OLED封装层。无机膜包含无机层单元,无机层单元包括第一无机层和第二无机层,其中,第一无机层和第二无机层会发生反应,在第一无机层和第二无机层之间形成第三无机层。本发明的无机膜能够显著提高器件阻隔水氧能力,提高产品的质量。
【附图说明】
图1是本发明无机膜一实施方式的结构示意图;
图2是本发明封装薄膜一实施方式的结构示意图;
图3是本发明封装薄膜另一实施方式的结构示意图;
图4是本发明封装薄膜又一实施方式的结构示意图。
【具体实施方式】
本发明提供一种无机膜及封装薄膜,为使本发明的目的、技术方案和技术效果更加明确、清楚,以下对本发明进一步详细说明,应当理解此处所描述的具体实施条例仅用于解释本发明,并不用于限定本发明。
本实施方式提供一种无机膜,其中,该无机膜包含无机层单元,无机层单元包括第一无机层、第二无机层和位于第一无机层与所述第二无机层之间的第三无机层。在此需要说明的是,第三无机层由第一无机层和第二无机层发生反应而形成。
具体地,第一无机层包括非ZrO2的氧化物,如Al2O3,SiO2,TiO2等金属或非金属氧化物;第二无机层包括ZrO2。在其中的一个实施方式中,第一无机层包括Al2O3,第二无机层包括ZrO2,在第一无机层和第二无机层的接触界面出会形成超薄的高致密度的第三无机层,其中,第三无机层包括ZrAlxOy。该第三无机层具有很好的阻隔水氧的能力。
本实施方式中的无机膜用于OLED器件的薄膜封装,而无机膜的厚度对于OLED器件的阻隔水氧能力有一定的影响。为了达到更好的阻隔水氧的效果,在其中的一个实施方式中,无机膜的厚度范围1nm-200nm。在另一个实施方式中,第一无机层的厚度范围为1nm-100nm,第二无机层的厚度范围为1nm-5nm。
进一步地,本实施方式的无机膜所包含的无机层单元的个数可以为1个、3个或5个,只需要满足所包含的无机层单元的个数不超过10个即可,可根据实际情况设计。
为了清楚说明本发明无机膜的膜层结构,在此,以无机膜包括两个无机层单元为例解释说明。参阅图1,图1是本发明无机膜一实施方式的结构示意图。
如图1所示,无机膜11包括两个无机层单元114,每个无机层单元114包括第一无机层111、第二无机层112和位于第一无机层111与第二无机层112之间的第三无机层113,其中,第三无机层113由第一无机层111和第二无机层112发生反应而形成。
在本实施方式中,第二无机层112包括ZrO2,第一无机层111包括非 ZrO2的氧化物,如Al2O3,SiO2,TiO2等金属或非金属氧化物。其中,第二无机层112位于第一无机层111之上。
在此,以第一无机层111包括Al2O3为例说明本实施方式中的无机膜11的膜层结构。
由于Al2O3和ZrO2厚度比例对阻隔水氧特性的有影响,为了使无机膜11的阻隔水氧的能力更佳,本实施方式第一无机层111的厚度范围为1nm-100nm,第二无机层112的厚度范围为1nm-5nm。在其他实施方式中,可根据实际情况设计第一无机层111和第二无机层112的具体厚度。
另外,当Al2O3和ZrO2的接触时出会发生反应形成一层ZrAlxOy相。因此,第一无机层111和第二无机层112的接触面,会形成一层超薄的高致密度第三无机层113,该第三无机层113包括ZrAlxOy,能显著提高阻隔水氧能力。同时,两个无机层单元114之间也会形成一个第三无机层113。
区别于现有技术,本发明的无机膜包含无机层单元,无机层单元包括第一无机层和第二无机层,其中,第一无机层和第二无机层会发生反应,在第一无机层和第二无机层之间形成第三无机层。本发明的无机膜能够显著提高器件阻隔水氧能力,提高产品的质量。
目前,OLED器件所采用的有机材料对水氧特别敏感,因此需要严格的封装材料来保护它们免受氧水和氧气的侵蚀,特别是在柔性显示领域。通常,会在OLED器件覆盖薄膜封装来保护OLED器件。该薄膜封装会采用无机/有机/无机交替的方式,无机材料用于阻隔水氧;亚克力、环氧树脂或有机硅等有机材料用于有效的覆盖颗粒物以及缓冲弯曲、折叠过程中的应力。
本发明的上述任一实施方式的无机膜具有很好的阻隔水氧的能力,可作为阻隔层与包含有机材料的缓冲层形成特定的封装薄膜,以保护OLED器件免受水和氧气的侵蚀。
为了清楚的说明该封装薄膜的结构,参阅图2,图2是本发明封装薄膜一实施方式的结构示意图。
在本实施方式中,在OLED器件20上覆盖有封装薄膜21,该封装薄膜21包括缓冲层212和第一阻隔层211,其中,第一阻隔层211覆盖OLED器件20,缓冲层212覆盖第一阻隔层211。
下面说明该封装薄膜21的制备过程:采用原子沉积法在OLED器件20形成第一阻隔层211,利用IJP,PECVD,ESC或Slit-nozzle coating沉积在第一阻隔层211上形成缓冲层212,且缓冲层212的厚度范围为1μm-20μm。
其中,本实施方式中的第一阻隔层211包括上述任一实施方式中的无机膜。关于无机膜的结构前述已详尽描述,在此不再赘谈。
参阅图3,图3是本发明封装薄膜另一实施方式的结构示意图。在本实施方式中,在OLED器件30上覆盖有封装薄膜31,该封装薄膜31包括缓冲层312、第一阻隔层311和第二阻隔层313,其中,第一阻隔层311覆盖OLED器件30,缓冲层312覆盖第一阻隔层311。在缓冲层312的上面还覆盖有第二阻隔层313,第一阻隔层311和第二阻隔层313的厚度、材料相同。同时,第二阻隔层313能够覆盖其下面的所有膜层。
下面说明该封装薄膜31的制备过程:采用原子沉积法在OLED器件30形成第一阻隔层311,利用IJP,PECVD,ESC或Slit-nozzle coating沉积在第一阻隔层311上形成缓冲层312,且缓冲层312的厚度范围为1-20μm。同样,采用原子沉积法在缓冲层312形成第二阻隔层313。
其中,第一阻隔层311和第二阻隔层313均包括上述任一实施方式中的无机膜。
在另一个实施方式中,封装薄膜中所包含的阻隔层中只有一个阻隔层包括上述任一实施方式中的无机膜,其余的阻隔层由金属或非金属氧化物所形成,且该阻隔层的厚度范围为10nm-1000nm。
具体地,参阅图4,图4是本发明封装薄膜又一实施方式的结构示意图。在本实施方式中,在OLED器件40上覆盖有封装薄膜41,该封装薄膜41包括缓冲层413、第一阻隔层412、第二阻隔层414和第三阻隔层411。其中,第一阻隔层412包括上述任一实施方式中的无机膜;第二阻隔层414和第三阻隔层411均由金属或非金属氧化物所形成, 且两者的材料和厚度均相同。
下面说明该封装薄膜41的制备过程:采用PLD,Sputter,PECVD等方式在OLED器件40沉积一层10nm-1000nm的金属或非金属氧化物以形成第三阻隔层411;采用原子沉积法在第三阻隔层411形成第一阻隔层412。然后利用IJP,PECVD,ESC或Slit-nozzle coating等方式在第一阻隔层412沉积缓冲层413,且缓冲层413的厚度范围为1-20μm。最后,采用PLD,Sputter,PECVD等方式在缓冲层413上形成第二阻隔层414。
区别于现有技术,本实施方式的封装薄膜包含无机层单元,无机层单元包括第一无机层和第二无机层,其中,第一无机层和第二无机层会发生反应,在第一无机层和第二无机层之间形成第三无机层。本发明的无机膜能够显著提高器件阻隔水氧能力,同时可以实现柔性显示,提高产品的质量。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种无机膜,所述无机膜用于OLED器件的薄膜封装,其中,所述无机膜包含N个无机层单元,其中,N为自然数,且N不大于10;
    所述无机层单元包括第一无机层、第二无机层和位于所述第一无机层与所述第二无机层之间的第三无机层,其中,所述第二无机层包括ZrO2,所述第一无机层包括非ZrO2的氧化物;
    所述第三无机层由所述第一无机层和所述第二无机层发生反应而形成。
  2. 根据权利要求1所述的无机膜,其中,所述第一无机层包括Al2O3,SiO2或TiO2
  3. 根据权利要求1所述的无机膜,其中,所述第一无机层包括Al2O3,所述第三无机层包括ZrAlxOy。
  4. 根据权利要求1所述的无机膜,其中,所述第一无机层的厚度范围为1nm-100nm,第二无机层的厚度范围为1nm-5nm。
  5. 根据权利要求1所述的无机膜,其中,所述无机膜的厚度范围1nm-200nm。
  6. 一种无机膜,所述无机膜用于OLED器件的薄膜封装,其中,所述无机膜包含无机层单元,所述无机层单元包括第一无机层、第二无机层和位于所述第一无机层与所述第二无机层之间的第三无机层,其中,所述第三无机层由所述第一无机层和所述第二无机层发生反应而形成。
  7. 根据权利要求6所述的无机膜,其中,所述第二无机层包括ZrO2,所述第一无机层包括非ZrO2的氧化物。
  8. 根据权利要求7所述的无机膜,其中,所述第一无机层包括Al2O3,SiO2或TiO2
  9. 根据权利要求7所述的无机膜,其中,所述第一无机层包括Al2O3,所述第三无机层包括ZrAlxOy。
  10. 根据权利要求6所述的无机膜,其中,所述第一无机层的厚度范围为1nm-100nm,第二无机层的厚度范围为1nm-5nm。
  11. 根据权利要求6所述的无机膜,其中,所述无机膜的厚度范围1nm-200nm。
  12. 根据权利要求6所述的无机膜,其中,所述无机层单元的个数不超过10个。
  13. 一种封装薄膜,所述封装薄膜用于OLED器件的薄膜封装,其中,所述封装薄膜包括缓冲层和第一阻隔层,所述第一阻隔层覆盖所述OLED器件,所述缓冲层覆盖所述第一阻隔层;
    所述第一阻隔层包含无机层单元,所述无机层单元包括第一无机层、第二无机层和位于所述第一无机层与所述第二无机层之间的第三无机层,其中,所述第三无机层由所述第一无机层和所述第二无机层发生反应而形成。
  14. 根据权利要求13所述的封装薄膜,其中,所述第二无机层包括ZrO2,所述第一无机层包括非ZrO2的氧化物。
  15. 根据权利要求14所述的封装薄膜,其中,所述第一无机层包括Al2O3,SiO2或TiO2
  16. 根据权利要求14所述的封装薄膜,其中,所述第一无机层包括Al2O3,所述第三无机层包括ZrAlxOy。
  17. 根据权利要求13所述的封装薄膜,其中,所述第一无机层的厚度范围为1nm-100nm,第二无机层的厚度范围为1nm-5nm。
  18. 根据权利要求13所述的封装薄膜,其中,无机层单元的个数不超过10个。
  19. 根据权利要求13所述的封装薄膜,其中,所述封装薄膜还包括第二阻隔层,所述第二阻隔层覆盖所述缓冲层;
    所述第二阻隔层包含无机层单元,所述无机层单元包括第一无机层、第二无机层和位于所述第一无机层与所述第二无机层之间的第三无机层,其中,所述第三无机层由所述第一无机层和所述第二无机层发生反应而形成。
  20. 根据权利要求13所述的封装薄膜,其中,所述封装薄膜还包括第二阻隔层,所述第二阻隔层覆盖所述缓冲层;
    所述第二阻隔层包括金属或非金属氧化物,所述第二阻隔层的厚度范围为10nm-1000nm。
PCT/CN2017/112631 2017-09-28 2017-11-23 无机膜及封装薄膜 WO2019061770A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/735,529 US10784464B2 (en) 2017-09-28 2017-11-23 Inorganic film and encapsulating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710915590.4 2017-09-28
CN201710915590.4A CN107658389B (zh) 2017-09-28 2017-09-28 无机膜及封装薄膜

Publications (1)

Publication Number Publication Date
WO2019061770A1 true WO2019061770A1 (zh) 2019-04-04

Family

ID=61116703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112631 WO2019061770A1 (zh) 2017-09-28 2017-11-23 无机膜及封装薄膜

Country Status (3)

Country Link
US (1) US10784464B2 (zh)
CN (1) CN107658389B (zh)
WO (1) WO2019061770A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384283B (zh) * 2018-12-29 2021-07-02 Tcl科技集团股份有限公司 叠层结构及其制备方法、发光二极管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050894A2 (en) * 2001-12-13 2003-06-19 Koninklijke Philips Electronics N.V. Sealing structure for display devices
US7255937B2 (en) * 2003-07-19 2007-08-14 Samsung Sdi Co., Ltd. Encapsulated organic electroluminescent display
CN105027316A (zh) * 2013-03-14 2015-11-04 应用材料公司 薄膜封装-用于oled应用的薄超高阻挡层
CN105098091A (zh) * 2015-06-15 2015-11-25 深圳市华星光电技术有限公司 Oled器件的封装结构及其封装方法
CN107068904A (zh) * 2017-04-18 2017-08-18 京东方科技集团股份有限公司 无机封装薄膜、oled封装薄膜的制作方法及相应装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639071B1 (ko) * 2008-10-30 2016-07-12 삼성전자주식회사 다층 박막, 이의 제조방법 및 이를 포함하는 봉지구조체
US20140147684A1 (en) * 2012-11-26 2014-05-29 Korea Institute Of Science And Technology Gas barrier film and method of preparing the same
CN104518113A (zh) * 2013-09-29 2015-04-15 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
KR101642589B1 (ko) 2013-09-30 2016-07-29 주식회사 엘지화학 유기전자소자용 기판 및 이의 제조방법
KR102088203B1 (ko) * 2013-10-01 2020-03-12 엘지디스플레이 주식회사 유기발광 표시장치 및 이의 제조방법
CN104143609A (zh) * 2014-08-07 2014-11-12 张家港康得新光电材料有限公司 阻隔膜及其制作方法
CN104716270A (zh) * 2015-03-16 2015-06-17 上海和辉光电有限公司 一种薄膜封装结构和具有该结构的有机发光装置
US20160365537A1 (en) 2015-06-15 2016-12-15 Shenzhen China Star Optoelectronics Technology Co., Ltd. Packaging structure of oled device and packaging method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050894A2 (en) * 2001-12-13 2003-06-19 Koninklijke Philips Electronics N.V. Sealing structure for display devices
US7255937B2 (en) * 2003-07-19 2007-08-14 Samsung Sdi Co., Ltd. Encapsulated organic electroluminescent display
CN105027316A (zh) * 2013-03-14 2015-11-04 应用材料公司 薄膜封装-用于oled应用的薄超高阻挡层
CN105098091A (zh) * 2015-06-15 2015-11-25 深圳市华星光电技术有限公司 Oled器件的封装结构及其封装方法
CN107068904A (zh) * 2017-04-18 2017-08-18 京东方科技集团股份有限公司 无机封装薄膜、oled封装薄膜的制作方法及相应装置

Also Published As

Publication number Publication date
CN107658389A (zh) 2018-02-02
US10784464B2 (en) 2020-09-22
US20200035945A1 (en) 2020-01-30
CN107658389B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN106450032B (zh) Oled显示器及其制作方法
CN109427992B (zh) 薄膜封装结构及具有其的显示装置
CA2457791C (en) Coatings with low permeation of gases and vapors
US9716249B2 (en) Display module encapsulating structure and preparing method thereof
CN102859741B (zh) 多层叠气密性阻挡层和相关结构以及气密性密封方法
US10622587B2 (en) Packaging structure of OLED device and OLED device
CN105679969B (zh) Oled器件的封装方法与oled封装结构
CN106783926A (zh) 一种显示面板及其装置
US20180166653A1 (en) Organic light-emitting diode device and manufacturing method thereof
US20200091462A1 (en) Method of manufacture oled thin-film encapsulation layer, oled thin-film encapsulation structure and oled structure
EP2508339B1 (en) Barrier film and an electronic device comprising the same
TWI450650B (zh) 可撓式基材及可撓式電子裝置
CN106158901B (zh) 一种混合型薄膜及其制备方法、以及柔性oled显示器
US10724139B2 (en) Encapsulation method for OLED Panel
CN110112313B (zh) 一种柔性器件的超薄复合封装薄膜结构及制备方法
US10707450B2 (en) OLED thin film packaging structure and method
JP4258160B2 (ja) 有機電界発光素子
TWI531276B (zh) 有機電激發光元件之封裝方法及其結構
WO2019061770A1 (zh) 无机膜及封装薄膜
WO2019184072A1 (zh) 一种封装组件及其制备方法、显示装置
TW200414814A (en) Method of fabricating organic light emitting display with passivation structure
US10581017B2 (en) OLED packaging structure and manufacturing method thereof
US20200321411A1 (en) Display panel and preparation method therefor, and display device
CN108206242A (zh) 柔性oled显示屏的封装结构及其制备方法
TW202002273A (zh) 柔性基板側向薄膜封裝

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926909

Country of ref document: EP

Kind code of ref document: A1