WO2019061728A1 - 石墨烯自发热地板及制造方法及低电压自发热地板*** - Google Patents

石墨烯自发热地板及制造方法及低电压自发热地板*** Download PDF

Info

Publication number
WO2019061728A1
WO2019061728A1 PCT/CN2017/111087 CN2017111087W WO2019061728A1 WO 2019061728 A1 WO2019061728 A1 WO 2019061728A1 CN 2017111087 W CN2017111087 W CN 2017111087W WO 2019061728 A1 WO2019061728 A1 WO 2019061728A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
graphene
floor
temperature
heating
Prior art date
Application number
PCT/CN2017/111087
Other languages
English (en)
French (fr)
Inventor
戴明
Original Assignee
戴明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戴明 filed Critical 戴明
Publication of WO2019061728A1 publication Critical patent/WO2019061728A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/02Electric heating systems solely using resistance heating, e.g. underfloor heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention belongs to the field of building decoration materials, and particularly relates to a graphene self-heating floor and a manufacturing method thereof and a low voltage self-heating floor system.
  • the existing heating floor mainly uses carbon crystal heating, carbon fiber as conductive filler, short half life and short service life. According to the human body's demand for indoor temperature, the existing heating floor can only achieve full temperature control and shutdown. It can not achieve independent temperature control of the heating floor for specific people, specific locations and specific needs. Energy waste can not effectively meet the reality. Usage requirements.
  • the present invention provides a graphene self-heating floor and a manufacturing method thereof, and a low voltage self-heating floor system.
  • a graphene self-heating floor comprising a floor body, the floor body comprises a closely-fitting wear layer, a surface decoration layer, an upper insulation flame-retardant temperature-resistant waterproof layer, an upper substrate layer, and a lower layer from top to bottom. a substrate plate layer, a lower insulation flame-retardant temperature-resistant waterproof layer and an insulation layer;
  • the upper surface of the lower substrate layer is provided with at least one groove having a groove depth smaller than the thickness of the lower substrate layer, and both ends of the groove penetrate the lower substrate plate layer; a graphene heating element, and a conductive line closely attached to the graphene heating element, wherein each of the conductive lines is connected with a connector at each end; each of the conductive lines is connected to an independent connector Control unit;
  • the upper surface of the upper substrate layer is provided with a plurality of blind holes, and the blind holes are embedded with a magnet column, and the height of the magnet column is less than or equal to the depth of the blind hole.
  • the number of the grooves is 2n, wherein n is a natural number, and a total width of 2n of the grooves is smaller than a longitudinal width of the lower substrate layer.
  • the grooves are axially symmetrically distributed along a central direction of the lower substrate layer.
  • the graphene heating element comprises a plurality of microchips, and the single layer of the microchip has a thickness of 10-30 ⁇ m, and the microchip comprises a graphene powder layer and a fiberglass board layer.
  • the connector comprises a power connector and a waterproof plug; the power connector is electrically connected to a control unit corresponding to the connector.
  • the center of the blind hole coincides with the central axis of the transverse direction of the upper substrate layer.
  • the number of the blind holes is 2m, wherein m is a natural number, and the sum of the diameters of the 2m of the blind holes is smaller than the lateral length of the upper substrate layer.
  • the graphene heating element is prepared from the following parts by weight:
  • a method for manufacturing a graphene self-heating floor comprising the steps of:
  • the density requirement is 900-1000 Kg/m3, high density fiberboard with outer dimensions of 920 mm x 140 mm x 10 mm as substrate blank;
  • the billet is placed in a drying chamber and subjected to a high-temperature dry steaming treatment at a temperature of 180 ° C for 6-8 hours; during the dry steaming process, atmospheric steam is sent to the drying chamber at a suitable time to steam the billet.
  • Humidity treatment
  • Planing and milling processing a.
  • the pre-treated blank is subjected to planing and milling, and the outer shape of the substrate after processing is 900 mm ⁇ 122 mm ⁇ 5 mm;
  • the surface of the partial substrate plate is milled with a groove for placing the graphene heating element, the groove has a groove depth smaller than the thickness of the substrate plate, and both ends of the groove penetrate the substrate plate, and the groove standard is The surface is smooth and smooth, and the batch of substrate sheets is the lower substrate sheet;
  • a part of the surface of the substrate is milled with a number of blind holes, and the inside of the hole is required to be clean and free of unnecessary materials, and the batch of substrate plates is the upper substrate plate;
  • a magnet column having a height less than or equal to the depth of the blind hole is installed in the blind hole of the upper substrate plate, and then the surface of the upper substrate is coated with an insulating flame-retardant temperature-resistant waterproof layer, and the upper insulation is flame-retardant.
  • the temperature-resistant waterproof layer has a thickness of 2 mm; the upper insulating flame-retardant and temperature-resistant waterproof layer is coated with a surface decorative layer, and the surface decorative layer has a thickness of 1 mm; the upper surface of the surface decorative layer is coated with a wear-resistant layer, and the wear-resistant layer The thickness is 1 mm; the lower surface of the upper substrate plate is adhesively bonded with the lower substrate plate of the graphene heating element and the wire; the lower surface of the lower substrate plate is coated with the insulating flame-retardant temperature-resistant waterproof layer, and the lower insulation
  • the thickness of the flame-retardant and temperature-resistant waterproof layer is 2 mm; the lower surface of the lower-insulation flame-retardant and temperature-resistant waterproof layer is provided with a heat-insulating layer, and the thickness of the heat-insulating layer is 2 mm; the assembled sheet is cold-pressed, and the cold-pressing time is quite small. In 12 hours;
  • Sanding treatment sanding the sanding machine on the assembled plate to make the surface of the floor reach a certain degree of smoothness
  • a low voltage self-heating floor system comprising a plurality of the above graphene self-heating floors assembled together, wherein the system further comprises a power source, a temperature controller, a total controller and an air switch, each of which a control unit corresponding to any one of the conductive lines on the graphene self-heating floor is electrically connected to the overall controller; the total controller is electrically connected to the power source and the temperature controller respectively through a power supply main line, The temperature controller, the power supply, and the air switch are electrically connected to each other through the power supply branch line.
  • Each floor is an intelligent integrated independent unit. According to actual needs, the control unit corresponding to any one of the conductive lines on each floor is separately controlled to shut down and temperature adjustment according to the actual controller, thereby realizing the zone temperature control of the indoor temperature. Reduced energy consumption while extending the life of the floor;
  • Figure 1 is a plan view of a graphene self-heating floor
  • Figure 2 is a longitudinal sectional view of Figure 1;
  • FIG. 3 is a schematic structural view of a lower substrate layer
  • Figure 5 is a schematic structural view of a conductive line
  • FIG. 6 is a schematic structural view of a low voltage self-heating floor system.
  • FIG. 1 is a plan view of a graphene self-heating floor; and FIG. 2 is a longitudinal cross-sectional view of FIG.
  • a graphene self-heating floor comprises a floor body 1.
  • the floor body 1 comprises a closely-fitting wear layer 2, a surface decorative layer 3, and an upper insulation flame retardant resistance from top to bottom.
  • the upper surface of the lower substrate layer 7 is provided with at least one groove 10 having a groove depth smaller than the thickness of the lower substrate layer 7, and both ends of the groove 10 penetrate the lower substrate layer 7, as shown in FIG.
  • a graphene heating element 6 is disposed in the recess 10, and a conductive line 11 is closely adhered to the graphene heating element 6.
  • Each of the conductive lines 11 is connected with a connector at each end thereof, and the connector of each conductive line 11 Both are connected to a separate control unit.
  • the conductive line 11 is any one of a conductive copper foil, a conductive copper paste or a conductive silver paste.
  • the graphene heating element 6 comprises a plurality of microchips having a thickness of 10-30 ⁇ m, and the microchip comprises a graphene powder layer and a fiberglass board layer.
  • the graphene powder is a heat conductive graphene powder modified by YH-7, and the heat conduction and radiation heat dissipation performance are greatly improved, and the electrical conductivity is good.
  • the graphene heating element 6 is prepared from the following parts by weight:
  • the graphene heating element 6 provided by the invention can effectively improve the heat conduction performance of the conventional heating floor.
  • glass fiber, nano-bamboo carbon fiber powder, nano-alumina and acrylic resin to the graphene powder, the heat conduction performance of the graphene itself can be significantly improved, and the heat conduction performance is improved by 40%; the service life and service life of the graphene element 6 are greatly prolonged. Increased by 37.6%; effectively improved the far-infrared and negative-ion functions of graphene element 6, which is more environmentally friendly and healthier, and the far-infrared and negative-ion radiation functions are improved by 21.8%.
  • the heat conduction performance of the modified graphene heating element 6 is compared with the graphene heating element 6 in which the above four additives are completely added.
  • the average reduction was 10.2%, the service life was reduced by 13.4%, and the far-infrared and negative-ion radiation functions were reduced by 15.7%.
  • the glass fiber is replaced by a plant fiber
  • the nano-bamboo fiber powder is replaced by a common fiber powder
  • the acrylic resin is replaced by an epoxy resin or the nano-alumina is replaced by manganese dioxide
  • the changed graphene heating element 6 Compared with the graphene heating element 6 in which the above four additives were added, the heat conduction performance was reduced by 6.2% on average, the service life was reduced by 11.3%, and the far-infrared and negative-ion radiation functions were decreased by 13.6%.
  • the connector comprises a power connector 121 and a waterproof plug, and the power connector 121 is electrically connected to a corresponding control unit of the connector.
  • the power connector 121 is an external connection pin of the wire, and the outer sheath of the wire has a protective cover of a hard plastic to prevent the pin from being damaged.
  • the wire tail wire is insulated and waterproofed by the waterproof and anti-electric plug 122 to ensure the safety of the wire before power-on and the safety of the family during power-on.
  • the upper surface of the upper substrate layer 5 is provided with a plurality of blind holes 13, and the blind holes 13 are embedded with a magnet column 14, and the height of the magnet column 14 is less than or equal to the depth of the blind holes 13, as shown in FIG.
  • a method for manufacturing a graphene self-heating floor comprising the following steps:
  • the density requirement is 900-1000 Kg/m3, high density fiberboard with outer dimensions of 920 mm x 140 mm x 10 mm as substrate blank;
  • the billet is placed in a drying chamber and subjected to a high-temperature dry steaming treatment at a temperature of 180 ° C for 6-8 hours; during the dry steaming process, atmospheric steam is sent to the drying chamber at a suitable time to steam the billet.
  • Humidity treatment
  • Planing and milling processing a.
  • the pre-treated blank is subjected to planing and milling, and the outer shape of the substrate after processing is 900 mm ⁇ 122 mm ⁇ 5 mm;
  • the surface of the partial substrate plate is milled with a groove for placing the graphene heating element, the groove has a groove depth smaller than the thickness of the substrate plate, and both ends of the groove penetrate the substrate plate, and the groove standard is The surface is smooth and smooth, and the batch of substrate sheets is the lower substrate sheet;
  • a part of the surface of the substrate is milled with a number of blind holes, and the inside of the hole is required to be clean and free of unnecessary materials, and the batch of substrate plates is the upper substrate plate;
  • a magnet column having a height less than or equal to the depth of the blind hole is installed in the blind hole of the upper substrate plate, and then the surface of the upper substrate is coated with an insulating flame-retardant temperature-resistant waterproof layer, and the upper insulation is flame-retardant.
  • the temperature-resistant waterproof layer has a thickness of 2 mm; the upper insulating flame-retardant and temperature-resistant waterproof layer is coated with a surface decorative layer, and the surface decorative layer has a thickness of 1 mm; the upper surface of the surface decorative layer is coated with a wear-resistant layer, and the wear-resistant layer The thickness is 1 mm; the lower surface of the upper substrate plate is adhesively bonded with the lower substrate plate of the graphene heating element and the wire; the lower surface of the lower substrate plate is coated with the insulating flame-retardant temperature-resistant waterproof layer, and the lower insulation
  • the thickness of the flame-retardant and temperature-resistant waterproof layer is 2 mm; the lower surface of the lower-insulation flame-retardant and temperature-resistant waterproof layer is provided with a heat-insulating layer, and the thickness of the heat-insulating layer is 2 mm; the assembled sheet is cold-pressed, and the cold-pressing time is quite small. In 12 hours;
  • Sanding treatment sanding the sanding machine on the assembled plate to make the surface of the floor reach a certain degree of smoothness
  • the conductive line 11 passes the current, and the current excites the graphene heating element 6 embedded in the middle of the floor.
  • the graphene heating element 6 rapidly heats up, and the electric energy is converted into heat energy, thereby heating the floor. Since the carbon atoms inside the graphene heating element 6 are sufficiently excited after being excited, a stable motion space can be maintained, and the heat generation rate of the floor is stable and the heat is uniform.
  • the graphene heating element 6 simultaneously emits far infrared rays having a wavelength of 6 to 14 ⁇ m, and the far infrared rays in this band are referred to as "life light waves".
  • life light waves After the "light wave of life” infiltrates into the body, it promotes the expansion of human microvasculature, accelerates blood circulation, helps clear vascular stagnation and harmful substances in the body, removes obstacles that hinder metabolism, revives tissues, promotes enzyme production, and activates tissue cells to prevent
  • the purpose of aging and strengthening the immune system is to improve and prevent various diseases caused by blood circulation and microcirculation disorders.
  • the connector of the conductive line 11 is connected to a separate control unit, and the user can independently control the magnitude of the current of the floor, thereby intelligently and independently adjusting the heat generation of the floor.
  • the magnet column 14 is embedded in the upper substrate layer 5, a micro magnetic field is formed which is beneficial to human health. Under the action of the magnetic field, the human body's own magnetic field is formed accordingly.
  • the disease can be prevented, the pain can be alleviated, and the health effect can be achieved.
  • Embodiment 2 Based on Embodiment 1, a more preferred graphene self-heating floor structure is provided. Specifically, the embodiment 2 further defines:
  • the wear layer 2 is made of a melamine resin impregnated with a surface layer paper to which aluminum oxide is added, and is a key part of determining the life of the laminate flooring.
  • the wear-resistant layer imparts important physical and chemical properties such as abrasion resistance, scratch resistance, cigarette burning resistance, pollution resistance, corrosion resistance and moisture resistance of the laminate flooring.
  • the surface decorative layer 3 is any one of melamine decorative paper, PVC board, fireproof board and decorative wood veneer, and the surface of the board layer is processed by mechanical processing, veneer decoration or painting, thereby increasing the three-dimensional feeling of the board surface. , special performance and aesthetics.
  • the upper insulating flame retardant waterproof layer 4 and the lower insulating flame retardant waterproof layer 8 are all prepared by high temperature composite of the following parts by weight: 15 parts of polytetrafluoroethylene, 8 parts of novolac epoxy resin, and antimony trioxide 1 Parts, 6 parts of polyethersulfone and 7 parts of neoprene.
  • the waterproof rating of the two waterproof layers is ⁇ IP ⁇ 7.
  • the upper substrate layer 5 and the lower substrate layer 7 are any of an inorganic plate, a carbon gold plate, a high density fiber plate, a stone plastic plate, and a solid wood plate.
  • the heat insulating layer 9 is preferably a water-repellent environment-friendly XPE foam double-layer aluminum foil. This product is made up of multi-layer barrier materials, each layer has good wear resistance and high tear resistance.
  • the thermal insulation layer 9 has the advantages of flame retardant water, anti-heat insulation, energy saving and environmental protection.
  • Graphene self-heating floor is made of composite bonding of the above layers, which is mildewproof, moisture proof and fire retardant. In combination with the release of far infrared rays from graphene, combined with the magnetic characteristics of magnets, it is beneficial to the health of the family.
  • Embodiment 3 provides a more preferred graphene self-heating floor structure based on the embodiment 1. Specifically, the embodiment 3 further defines that the number of the grooves 10 is 2n, wherein n is a natural number. And the sum of the widths of the 2n grooves 10 is smaller than the longitudinal width of the lower substrate layer 7.
  • the graphene heating element 6 emits a large amount of thermal energy after being energized, and in order to ensure uniform heat absorption throughout the floor, it is further preferred that the grooves 10 are symmetrically distributed along the central axis of the lower substrate layer 7 in the lateral direction.
  • the center of the blind hole 13 coincides with the central axis of the lateral direction of the upper substrate layer 5, and the number of the blind holes 13 is 2 m.
  • m is a natural number and the sum of the diameters of the 2m blind holes 13 is smaller than the lateral length of the upper substrate layer 5.
  • a low voltage self-heating floor system is also provided, as shown in FIG.
  • the system includes a plurality of the above graphene self-heating floors assembled together, and the system further includes a power source 15, a temperature controller 16, a general controller 17, and an air switch 18.
  • the power source 15 is a three-wire power socket.
  • Each of the control units corresponding to any one of the conductive lines 11 on the graphene self-heating floor is electrically connected to the main controller 17; the main controller 17 is electrically connected to the power source 15 and the temperature controller 16 through the power supply main line, respectively, and the temperature controller 16
  • the power source 15 and the air switch 17 are electrically connected to each other through a power supply branch line.
  • the main power supply line and the power supply branch line are all copper core wires, and the indicators must conform to national standards.
  • the wire diameter and the heating area of the power supply main line and the power supply branch line are performed with reference to the following relationship: when the heating area is less than 20 m2, the wire diameter is 2.5 mm2; when the heating area is greater than or equal to 20 m2 and less than 40 When m2, the wire diameter is 4mm2; when the heating area is 40m2 or more and less than 60m2, the wire diameter is 6mm2; when the heating area is 60m2 or more, the wire diameter is 10mm2.
  • Each of the graphene self-heating floors is electrically connected to a control unit corresponding to any one of the conductive lines 11 to the overall controller 17.
  • the main controller 17 is electrically connected to the power source 15 and the temperature controller 16 through the power supply main line, respectively, and the temperature controller 16, the power source 15, and the air switch 17 are electrically connected to each other through the power supply branch line.
  • each floor is an intelligent integrated independent unit, and the operator individually controls the shutdown and temperature adjustment of the control unit corresponding to any one of the conductive lines 11 on each floor by the overall controller 17 according to the actual needs of the family. Partition control of indoor temperature is achieved.
  • the system can be provided with an elastic temperature control protector at the power connector 121 or the overall controller 17.
  • an elastic temperature control protector at the power connector 121 or the overall controller 17.
  • the current When the floor temperature exceeds 40 °C, the current will be automatically disconnected, and the heating will be stopped to prevent the floor temperature from rising.
  • the protector When the local plate temperature is less than 40 °C, the protector will automatically turn on the current and start heating, so that the floor surface is in use. The temperature was constant at 40 °C. The whole process is completely completed by the intelligent controller, without manual operation, saving effort and effort.

Abstract

本发明提供了石墨烯自发热地板及制造方法及低电压自发热地板***,地板从上至下依次包括耐磨层、表面装饰层、上绝缘阻燃耐温防水层、上基材板层、下基材板层、下绝缘阻燃耐温防水层和保温层;下基材板层上表面设有至少一个凹槽,凹槽内铺设有石墨烯发热元件和导电线路,每条导电线路的两端连接有插接件;每条导电线路的插接件均连接一独立的控制单元;上基材板层上表面设有若干盲孔,盲孔内嵌有磁石柱。本发明的有益效果为:采用石墨烯材料导热,升温快速,导热均匀;每块地板均是智能集成的独立单元,实现室内温度的分区控制,降低了能耗,延长了地板的使用年限;石墨烯释放远红外线,配合磁石的磁疗特性,强身保健,有益家人健康。

Description

石墨烯自发热地板及制造方法及低电压自发热地板*** 技术领域
本发明属于建筑装饰材料领域,特别涉及石墨烯自发热地板及制造方法及低电压自发热地板***。
背景技术
在寒冷的冬季,室内通常会利用暖炉、暖气等设备来为居家营造温暖的环境。但暖炉、暖气在运作时,经常有使用者不慎被烫伤的报道出现,而且极易导致居住者意外滑到触碰受伤,往往存在安全隐患。另外,暖炉、暖气占用室内空间,缩小了住房有效使用面积;同时,屋内受热不均,暖炉、暖气周围气温偏高,而远离暖炉、暖气的地方气温偏低,居住者体感不舒适。近年来,随着地暖设备的研究愈发成熟,发热地板逐渐成为居家取暖的首选。
市面上存在较多的发热地板,是将电热膜置于地板下方或地板中进行发热。这中间最大的问题是,没有专业知识的消费者,关心的是装饰效果和装修成本,容易安装一些并不适合地热条件的地板,从而导致以下一些问题。如:实木热传导性差,升温慢;多层实木甲醛、苯、氨等有害物质含量高,特别是在40℃温度下的甲醛释放量较大,产生家居污染,严重危害人们的身体健康。
现有发热地板主要是利用碳晶发热,以碳纤维为导电填料,半衰期短,使用寿命不长。现有发热地板根据人体对室内温度的需求仅仅能实现全方位的温度控制和关停,不能针对特定人群、特定位置和特定需求实现发热地板的独立温控,能源浪费的同时无法有效满足现实的使用需求。
随着时代的进步以及环保理念的提升,传统家居建材已经不能满足当下消费者的装修需求,环保建材正受到越来越多人们的关注。
技术问题
为了解决上述技术问题,本发明提供了石墨烯自发热地板及制造方法及低电压自发热地板***。
技术解决方案
本发明具体技术方案如下:
一种石墨烯自发热地板,包括地板本体,所述地板本体从上至下依次包括紧密贴合的耐磨层、表面装饰层、上绝缘阻燃耐温防水层、上基材板层、下基材板层、下绝缘阻燃耐温防水层和保温层;
所述下基材板层上表面设有至少一个槽深小于所述下基材板层厚度的凹槽,所述凹槽的两端贯通所述下基材板层;所述凹槽内铺设有石墨烯发热元件,以及与所述石墨烯发热元件紧密贴合的导电线路,每条所述导电线路的两端连接有插接件;每条所述导电线路的插接件均连接一独立的控制单元;
所述上基材板层上表面设有若干盲孔,所述盲孔内嵌有磁石柱,所述磁石柱的高度小于等于所述盲孔的深度。
优选的,所述凹槽的数量为2n个,其中,n为自然数,且2n个所述凹槽的宽度总和小于所述下基材板层的纵向宽度。
优选的,所述凹槽沿所述下基材板层的横向方向中心轴对称分布。
优选的,所述石墨烯发热元件包括多层微片,单层所述微片厚度为10-30μm,所述微片包括石墨烯粉末层与玻璃纤维板层。
优选的,所述插接件包括电源接头和防水防电堵头;所述电源接头与所述插接件对应的控制单元电连接。
优选的,所述盲孔的圆心与所述上基材板层的横向方向中心轴重合。
优选的,所述盲孔的数量为2m个,其中,m为自然数,且2m个所述盲孔的直径总和小于所述上基材板层的横向长度。
优选的,所述石墨烯发热元件是由如下重量份的材料制备而成:
石墨烯粉末86份;玻璃纤维10.4份;纳米竹炭纤维粉8.2份;纳米氧化铝7.5份;丙烯酸树脂2.7份。
一种石墨烯自发热地板的制造方法,所述制造方法包括以下步骤:
(1)选料:选用密度要求在900-1000 kg/m3、外形尺寸为920毫米×140毫米×10毫米的高密度纤维板材作为基材板坯料;
(2)前处理:将坯料放入干燥室,在180℃的温度下进行6-8小时的高温干蒸处理;干蒸过程中,适时将常压蒸汽送入干燥室内,对坯料进行喷蒸、调湿处理;
(3)刨铣加工:a.将前处理的坯料进行刨铣加工,加工后基材板的外形尺寸为900毫米×122毫米×5毫米;
b.部分基材板上表面铣出用于放置石墨烯发热元件的凹槽,所述凹槽的槽深小于基材板厚度,所述凹槽的两端贯通基材板,企槽标准为表面平整光洁,此批基材板即为下基材板;
c.部分基材板上表面铣出若干盲孔,要求孔内干净无多余物,此批基材板即为上基材板;
(4)铺线:在加工处理后的下基材板的凹槽内铺设导线;
(5)制作石墨烯胶水溶液:将石墨烯粉末、玻璃纤维粉末与地板粘合胶水混合、搅拌,制成石墨烯胶水溶液,静置备用;
(6)固化成形:将步骤(5)中制成的石墨烯胶水溶液涂于下基材板的凹槽内,常温下固化形成;
(7)组装:在上基材板盲孔内安装高度小于等于所述盲孔深度的磁石柱,而后在上基材板上表面涂胶设上绝缘阻燃耐温防水层,上绝缘阻燃耐温防水层的厚度为2毫米;上绝缘阻燃耐温防水层上表面涂胶设表面装饰层,表面装饰层厚度为1毫米;表面装饰层上表面涂胶设耐磨层,耐磨层厚度为1毫米;上基材板下表面涂胶粘接安装有石墨烯发热元件和导线的下基材板;下基材板的下表面涂胶设下绝缘阻燃耐温防水层,下绝缘阻燃耐温防水层的厚度为2毫米;下绝缘阻燃耐温防水层下表面涂胶设保温层,保温层的厚度为2毫米;对组装后的板材进行冷压,冷压时间不少于12小时;
(8)砂光处理:将组装后的板材上砂光机进行砂光,使地板表面达到一定的光洁度;
(9)上漆处理:将砂光处理后的地板吸尘后,上无色底漆,并经紫外光烘干;
(10)检验包装:质检人员严格按照国家标准对地板的等级、色号检验,分等,最后密封包装塑封出厂。
一种低电压自发热地板***,所述***包括若干拼装在一起的上述石墨烯自发热地板,其特征在于:所述***还包括电源、温度控制器、总控制器和空气开关,每块所述石墨烯自发热地板上任意一条导电线路对应的控制单元均电连接至所述总控制器上;所述总控制器通过供电主线分别与所述电源和所述温度控制器电连接,所述温度控制器、电源、空气开关通过供电支线相互电连接。
有益效果
本发明的有益效果如下:
1、采用石墨烯材料导热,升温快速,导热均匀;
2、每块地板均是智能集成的独立单元,根据实际需求通过总控制器对每个地板上任意一条导电线路对应的控制单元单独控制关停和温度调节,从而实现了室内温度的分区控制,降低了能源消耗,同时延长了地板的使用年限;
3、石墨烯释放远红外线,配合磁石的磁疗特性,强身保健,有益家人健康。
附图说明
图1为一种石墨烯自发热地板的俯视图;
图2为图1的纵向截面图;
图3为下基材板层的结构示意图;
图4为上基材板层的结构示意图;
图5为导电线路的结构示意图;
图6为一种低电压自发热地板***的结构示意图。
其中:1、地板本体;2、耐磨层;3、表面装饰层;4、上绝缘阻燃耐温防水层;5、上基材板层;6、石墨烯发热元件;7、下基材板层;8、下绝缘阻燃耐温防水层;9、保温层;10、凹槽;11、导电线路;121、电源接头;122、防水防电堵头;13、盲孔;14、磁石柱;15、电源;16、温度控制器;17、总控制器;18、空气开关。
本发明的最佳实施方式
下面结合附图和以下实施例对本发明作进一步详细说明。
实施例1
图1为一种石墨烯自发热地板的俯视图;图2为图1的纵向截面图。如图1、图2所示,一种石墨烯自发热地板,包括地板本体1,地板本体1从上至下依次包括紧密贴合的耐磨层2、表面装饰层3、上绝缘阻燃耐温防水层4、上基材板层5、下基材板层7、下绝缘阻燃耐温防水层8和保温层9。
下基材板层7上表面设有至少一个槽深小于下基材板层7厚度的凹槽10,凹槽10的两端贯通下基材板层7,如图3所示。凹槽10内铺设有石墨烯发热元件6,以及与石墨烯发热元件6紧密贴合的导电线路11,每条导电线路11的两端连接有插接件,每条导电线路11的插接件均连接一独立的控制单元。本实施例中,导电线路11为导电铜箔、导电铜浆或导电银浆中的任意一种。
本实施例中,石墨烯发热元件6包括多层微片,单层微片厚度为10-30μm,微片包括石墨烯粉末层与玻璃纤维板层。优选的,石墨烯粉末为经过YH-7改性后的导热型石墨烯粉末,其导热、辐射散热性能大幅提高,并具备良好的电传导性能。
该石墨烯发热元件6是由如下重量份的材料制备而成:
石墨烯粉末86份;玻璃纤维10.4份;纳米竹炭纤维粉8.2份;纳米氧化铝7.5份;丙烯酸树脂 2.7份。
本发明提供的石墨烯发热元件6,可有效改善传统发热地板的热传导性能。通过在石墨烯粉末中加入玻璃纤维、纳米竹炭纤维粉、纳米氧化铝和丙烯酸树脂,可显著提高石墨烯自身的热传导性能,热传导性能提高40%;大大延长石墨烯元件6的使用寿命,使用寿命增加37.6%;有效改善石墨烯元件6释放的远红外和负离子功能,更加环保、更加健康,远红外和负离子辐射功能提高21.8%。
若剔除玻璃纤维、纳米竹炭纤维粉、纳米氧化铝和丙烯酸树脂中任何一种材料,则改变后的石墨烯发热元件6与完整添加上述四种添加剂的石墨烯发热元件6相比,其热传导性能平均降低10.2%,使用寿命缩减13.4%,远红外和负离子辐射功能降低15.7%。
若将玻璃纤维换成植物纤维、将纳米竹炭纤维粉换成普通纤维粉、将丙烯酸树脂换成环氧树脂或者将纳米氧化铝换成二氧化锰,则改变后的石墨烯发热元件6与完整添加上述四种添加剂的石墨烯发热元件6相比,其热传导性能平均降低6.2%,使用寿命缩减11.3%,远红外和负离子辐射功能降低13.6%。由此得出,只有在石墨烯中同时加入玻璃纤维、纳米竹炭纤维粉、纳米氧化铝和丙烯酸树脂,才能显著提高石墨烯自发热地板的热传导性能、使用寿命和远红外和负离子辐射功能。
进一步优选的,如图5所示,插接件包括电源接头121和防水防电堵头122,电源接头121与插接件对应的控制单元电连接。进一步优选的,电源接头121为导线的外接连接插针,并在导线外皮套有硬质塑料的保护外壳,避免插针受损。导线尾线通过防水防电堵头122进行绝缘防水处理,确保通电前导线的安全可靠及通电中的家人的使用安全。
上基材板层5上表面设有若干盲孔13,盲孔13内嵌有磁石柱14,磁石柱14的高度小于等于盲孔13的深度,如图4所示。
一种石墨烯自发热地板的制造方法,该制造方法包括以下步骤:
(1)选料:选用密度要求在900-1000 kg/m3、外形尺寸为920毫米×140毫米×10毫米的高密度纤维板材作为基材板坯料;
(2)前处理:将坯料放入干燥室,在180℃的温度下进行6-8小时的高温干蒸处理;干蒸过程中,适时将常压蒸汽送入干燥室内,对坯料进行喷蒸、调湿处理;
(3)刨铣加工:a.将前处理的坯料进行刨铣加工,加工后基材板的外形尺寸为900毫米×122毫米×5毫米;
b.部分基材板上表面铣出用于放置石墨烯发热元件的凹槽,所述凹槽的槽深小于基材板厚度,所述凹槽的两端贯通基材板,企槽标准为表面平整光洁,此批基材板即为下基材板;
c.部分基材板上表面铣出若干盲孔,要求孔内干净无多余物,此批基材板即为上基材板;
(4)铺线:在加工处理后的下基材板的凹槽内铺设导线;
(5)制作石墨烯胶水溶液:将石墨烯粉末、玻璃纤维粉末与地板粘合胶水混合、搅拌,制成石墨烯胶水溶液,静置备用;
(6)固化成形:将步骤(5)中制成的石墨烯胶水溶液涂于下基材板的凹槽内,常温下固化形成;
(7)组装:在上基材板盲孔内安装高度小于等于所述盲孔深度的磁石柱,而后在上基材板上表面涂胶设上绝缘阻燃耐温防水层,上绝缘阻燃耐温防水层的厚度为2毫米;上绝缘阻燃耐温防水层上表面涂胶设表面装饰层,表面装饰层厚度为1毫米;表面装饰层上表面涂胶设耐磨层,耐磨层厚度为1毫米;上基材板下表面涂胶粘接安装有石墨烯发热元件和导线的下基材板;下基材板的下表面涂胶设下绝缘阻燃耐温防水层,下绝缘阻燃耐温防水层的厚度为2毫米;下绝缘阻燃耐温防水层下表面涂胶设保温层,保温层的厚度为2毫米;对组装后的板材进行冷压,冷压时间不少于12小时;
(8)砂光处理:将组装后的板材上砂光机进行砂光,使地板表面达到一定的光洁度;
(9)上漆处理:将砂光处理后的地板吸尘后,上无色底漆,并经紫外光烘干;
(10)检验包装:质检人员严格按照国家标准对地板的等级、色号检验,分等,最后密封包装塑封出厂。
开启电源,导电线路11通过电流,电流激发地板中间嵌入的石墨烯发热元件6,石墨烯发热元件6快速升温,电能转化成热能,从而使地板发热。由于石墨烯发热元件6内部碳原子受激发后运动充分,能够维持稳定的运动空间,使得该地板的发热率稳定,发热均匀。
石墨烯发热元件6同时会释放波长为6-14微米的远红外线,该波段的远红外线被称为“生命光波”。“生命光波”渗入体内之后,促进人体微血管扩张,加速血液循环,有利于清除血管囤积物及体内有害物质,将妨害新陈代谢的障碍清除,重新使组织复活,促进酵素生成,达到活化组织细胞、防止老化、强化免疫***的目的,对于血液循环和微循环障碍引起的多种疾病均具有改善和防治作用。
导电线路11的插接件连接一独立的控制单元,用户可以独立对地板的通电电流大小进行控制,进而对地板的发热量实现智能化独立调节。
由于上基材板层5内嵌有磁石柱14,形成有益于人体健康的微磁场,人在该磁场作用下,相应形成了人体自身的磁场。通过利用上述物理补磁疗法可以预防疾病,缓解病痛,起到保健功效。
实施例2
实施例2在实施例1的基础上,提供了一种更为优选的石墨烯自发热地板结构,具体的,该实施例2进一步限定了:
耐磨层2是由添加了三氧化二铝的表层纸浸渍三聚氰胺树脂制成的,是决定强化木地板寿命的关键部分。耐磨层赋予了强化木地板表面耐磨、耐刻划、耐香烟灼烧、耐污染、耐腐蚀、防潮等重要的理化性能。
表面装饰层3为三聚氰胺装饰纸、PVC板、防火板、装饰木单板中的任意一种,板层表面经由机械加工、贴面装饰或涂饰三种方式处理后,增加了板面的立体感、特殊性能及美观性。
上绝缘阻燃耐温防水层4和下绝缘阻燃耐温防水层8均由以下重量份原料高温复合制备而成:聚四氟乙烯15份、酚醛环氧树脂8份、三氧化二锑1份、聚醚砜6份和氯丁橡胶7份。两层防水层的防水等级≥IP×7。
上基材板层5和下基材板层7均为无机板、碳金板、高密度纤维板、石塑板、实木板中的任意一种。
保温层9优选为憎水环保型XPE泡棉双层铝箔。本产品由多层阻隔层材料复合而成,各层材料有着很好的耐磨性和高强的抗撕裂性。保温层9具有阻燃憎水、反热保温、节能环保等优点。
石墨烯自发热地板由上述各层复合粘结而成,防霉防潮、防火阻燃。配合着石墨烯释放远红外线,结合磁石的磁疗特性,强身保健,有益家人健康。
实施例3
实施例3在实施例1的基础上,提供了一种更为优选的石墨烯自发热地板结构,具体的,该实施例3进一步限定了凹槽10的数量为2n个,其中,n为自然数,且2n个凹槽10的宽度总和小于下基材板层7的纵向宽度。石墨烯发热元件6通电激发后释放出大量热能,为了确保地板各处吸收热量的均匀,进一步优选的,凹槽10沿下基材板层7的横向方向中心轴对称分布。同样为了确保磁场的释放均匀,并控制磁场的磁力大小以适合人体需要,更进一步优选的,盲孔13的圆心与上基材板层5的横向方向中心轴重合,盲孔13的数量为2m个,其中,m为自然数,且2m个盲孔13的直径总和小于上基材板层5的横向长度。
根据本发明的另一方面,还提供了一种低电压自发热地板***,如图6所示。该***包括若干拼装在一起的上述石墨烯自发热地板,***还包括电源15、温度控制器16、总控制器17和空气开关18。优选的,电源15选用三线电源插座。
每块石墨烯自发热地板上任意一条导电线路11对应的控制单元均电连接至总控制器17上;总控制器17通过供电主线分别与电源15和温度控制器16电连接,温度控制器16、电源15、空气开关17通过供电支线相互电连接。
其中,供电主线和供电支线均选用铜芯线,各项指标必须符合国家标准。供电主线和供电支线的导线直径与发热面积参照如下对应关系执行:当发热面积小于20m2时,导线直径为2.5mm2;当发热面积大于等于20m2且小于40 m2时,导线直径为4mm2;当发热面积大于等于40m2且小于60 m2时,导线直径为6mm2;当发热面积大于等于60m2时,导线直径为10mm2。
本***的安装流程如下:
1、从墙角处开始逐片安装发热地板,并用锤子与木楦将地板轻轻敲紧,锁住地板端头。
2、地板铺设完成后,所有插接件的电源接头121的槽口处整洁干净;所有未使用的插接件的导线尾线应选用防水防电堵头122进行绝缘防水处理。
3、将每块石墨烯自发热地板上任意一条导电线路11对应的控制单元电连接至总控制器17上。同时,总控制器17通过供电主线分别与电源15和温度控制器16电连接,温度控制器16、电源15、空气开关17通过供电支线相互电连接。
使用时,每块地板均是智能集成的独立单元,操作者根据家庭的实际需求,通过总控制器17对每个地板上任意一条导电线路11对应的控制单元单独控制关停和温度调节,从而实现了室内温度的分区控制。
为实现智能温控效果,进一步优选的,本***可在电源接头121或总控制器17处设置弹性温控保护器。当地板温度超过40℃,会自动断开电流,停止供热,以免地板温度继续升高;当地板温度不足40℃时,保护器又会自动接通电流,开始供热,使地板表面在使用过程中恒温40℃。整个过程全部由智能控制器自动完成,无须人工操作,省心省力。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (10)

  1. 一种石墨烯自发热地板,包括地板本体(1),其特征在于:所述地板本体(1)从上至下依次包括紧密贴合的耐磨层(2)、表面装饰层(3)、上绝缘阻燃耐温防水层(4)、上基材板层(5)、下基材板层(7)、下绝缘阻燃耐温防水层(8)和保温层(9);
    所述下基材板层(7)上表面设有至少一个槽深小于所述下基材板层(7)厚度的凹槽(10),所述凹槽(10)的两端贯通所述下基材板层(7);所述凹槽(10)内铺设有石墨烯发热元件(6),以及与所述石墨烯发热元件(6)紧密贴合的导电线路(11),每条所述导电线路(11)的两端连接有插接件;每条所述导电线路(11)的插接件均连接一独立的控制单元;
    所述上基材板层(5)上表面设有若干盲孔(13),所述盲孔(13)内嵌有磁石柱(14),所述磁石柱(14)的高度小于等于所述盲孔(13)的深度。
  2. 根据权利要求1 所述的一种石墨烯自发热地板,其特征在于,所述凹槽(10)的数量为2n个,其中,n为自然数,且2n个所述凹槽(10)的宽度总和小于所述下基材板层(7)的纵向宽度。
  3. 根据权利要求1 所述的一种石墨烯自发热地板,其特征在于,所述凹槽(10)沿所述下基材板层(7)的横向方向中心轴对称分布。
  4. 根据权利要求1所述的一种石墨烯自发热地板,其特征在于,所述石墨烯发热元件(6)包括多层微片,单层所述微片厚度为10-30μm,所述微片包括石墨烯粉末层与玻璃纤维板层。
  5. 根据权利要求1所述的一种石墨烯自发热地板,其特征在于,所述插接件包括电源接头(121)和防水防电堵头(122);所述电源接头(121)与所述插接件对应的控制单元电连接。
  6. 根据权利要求1 所述的一种石墨烯自发热地板,其特征在于,所述盲孔(13)的圆心与所述上基材板层(5)的横向方向中心轴重合。
  7. 根据权利要求1所述的一种石墨烯自发热地板,其特征在于,所述盲孔(13)的数量为2m个,其中,m为自然数,且2m个所述盲孔(13)的直径总和小于所述上基材板层(5)的横向长度。
  8. 根据权利要求1所述的一种石墨烯自发热地板,其特征在于,所述石墨烯发热元件(6)是由如下重量份的材料制备而成:
    石墨烯粉末86份;玻璃纤维10.4份;纳米竹炭纤维粉8.2份;纳米氧化铝7.5份;丙烯酸树脂2.7份。
  9. 一种石墨烯自发热地板的制造方法,其特征在于,所述制造方法包括以下步骤:
    (1)选料:选用密度要求在900-1000 kg/m3、外形尺寸为920毫米×140毫米×10毫米的高密度纤维板材作为基材板坯料;
    (2)前处理:将坯料放入干燥室,在180℃的温度下进行6-8小时的高温干蒸处理;干蒸过程中,适时将常压蒸汽送入干燥室内,对坯料进行喷蒸、调湿处理;
    (3)刨铣加工:a.将前处理的坯料进行刨铣加工,加工后基材板的外形尺寸为900毫米×122毫米×5毫米;
    b.部分基材板上表面铣出用于放置石墨烯发热元件的凹槽,所述凹槽的槽深小于基材板厚度,所述凹槽的两端贯通基材板,企槽标准为表面平整光洁,此批基材板即为下基材板;
    c.部分基材板上表面铣出若干盲孔,要求孔内干净无多余物,此批基材板即为上基材板;
    (4)铺线:在加工处理后的下基材板的凹槽内铺设导线;
    (5)制作石墨烯胶水溶液:将石墨烯粉末、玻璃纤维粉末与地板粘合胶水混合、搅拌,制成石墨烯胶水溶液,静置备用;
    (6)固化成形:将步骤(5)中制成的石墨烯胶水溶液涂于下基材板的凹槽内,常温下固化形成;
    (7)组装:在上基材板盲孔内安装高度小于等于所述盲孔深度的磁石柱,而后在上基材板上表面涂胶设上绝缘阻燃耐温防水层,上绝缘阻燃耐温防水层的厚度为2毫米;上绝缘阻燃耐温防水层上表面涂胶设表面装饰层,表面装饰层厚度为1毫米;表面装饰层上表面涂胶设耐磨层,耐磨层厚度为1毫米;上基材板下表面涂胶粘接安装有石墨烯发热元件和导线的下基材板;下基材板的下表面涂胶设下绝缘阻燃耐温防水层,下绝缘阻燃耐温防水层的厚度为2毫米;下绝缘阻燃耐温防水层下表面涂胶设保温层,保温层的厚度为2毫米;对组装后的板材进行冷压,冷压时间不少于12小时;
    (8)砂光处理:将组装后的板材上砂光机进行砂光,使地板表面达到一定的光洁度;
    (9)上漆处理:将砂光处理后的地板吸尘后,上无色底漆,并经紫外光烘干;
    (10)检验包装:质检人员严格按照国家标准对地板的等级、色号检验,分等,最后密封包装塑封出厂。
  10. 一种低电压自发热地板***,所述***包括若干拼装在一起的如权利要求1~8中任一所述的石墨烯自发热地板,其特征在于:所述***还包括电源(15)、温度控制器(16)、总控制器(17)和空气开关(18),每块所述石墨烯自发热地板上任意一条导电线路(11)对应的控制单元均电连接至所述总控制器(17)上;所述总控制器(17)通过供电主线分别与所述电源(15)和所述温度控制器(16)电连接,所述温度控制器(16)、电源(15)、空气开关(17)通过供电支线相互电连接。
PCT/CN2017/111087 2017-09-30 2017-11-15 石墨烯自发热地板及制造方法及低电压自发热地板*** WO2019061728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710915122.7A CN107631344B (zh) 2017-09-30 2017-09-30 石墨烯自发热地板及制造方法及低电压自发热地板***
CN201710915122.7 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019061728A1 true WO2019061728A1 (zh) 2019-04-04

Family

ID=61103868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111087 WO2019061728A1 (zh) 2017-09-30 2017-11-15 石墨烯自发热地板及制造方法及低电压自发热地板***

Country Status (2)

Country Link
CN (1) CN107631344B (zh)
WO (1) WO2019061728A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110454859A (zh) * 2019-09-16 2019-11-15 张家港市科兴炭纤维制品有限公司 一种便于芳纶缠绕且具有弹性的新型耐高温地暖线
CN112682833A (zh) * 2020-12-28 2021-04-20 湖州木兮也家居科技有限公司 防积温的自发热地板
CN113187194A (zh) * 2019-12-18 2021-07-30 陈世昌 一种建筑室内地板
CN113950172A (zh) * 2020-07-16 2022-01-18 北京石墨烯研究院 石墨烯基电致红外发射加热装置
CN114963285A (zh) * 2022-05-27 2022-08-30 广东简一(集团)陶瓷有限公司 一种接地式发热瓷砖及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108001631A (zh) * 2017-12-14 2018-05-08 芜湖市皖南造船有限公司 一种挖泥船生活区用复合地板
CN108777888A (zh) * 2018-06-09 2018-11-09 佛山市南海区瑞森新型材料研究所 一种石墨烯变频发热板
CN109282345A (zh) * 2018-08-08 2019-01-29 杭州超探新材料科技有限公司 储能式发热组合地板
CN109162165A (zh) * 2018-10-22 2019-01-08 湖北工业大学 人行横道融雪化冰***和人行横道融雪化冰的控制方法
CN109733037A (zh) * 2019-01-09 2019-05-10 美亚环球木业(佛山)有限公司 一种石墨烯自发热地板
CN109868969B (zh) * 2019-03-15 2021-02-02 浙江奕科新材料股份有限公司 一种压合有石墨烯膜的发热塑胶地板
CN109811973B (zh) * 2019-03-25 2024-04-12 葛斌斌 一种石墨烯发热膜墙裙及其施工方法
CN111851936A (zh) * 2019-10-31 2020-10-30 佛山裕德天智科技合伙企业(有限合伙) 一种发热瓷砖及其制备方法
CN111844394A (zh) * 2019-10-31 2020-10-30 佛山裕德天智科技合伙企业(有限合伙) 一种发热瓷砖及其制备方法
CN110913515B (zh) * 2019-12-13 2022-02-18 贵州航天计量测试技术研究所 红外辐射器及其石墨烯发热膜
CN112208170A (zh) * 2020-10-09 2021-01-12 巩义市泛锐熠辉复合材料有限公司 一种传热阻燃型石墨烯导热板及其制备方法
CN113323323A (zh) * 2021-06-15 2021-08-31 南京林业大学 一种钢纤维石墨导电自发热地板结构

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598216A (zh) * 2004-08-31 2005-03-23 张彩奎 一种嵌磁地板及其制作方法
WO2008063173A1 (en) * 2006-11-21 2008-05-29 Carbonic Heat Corporation A method for manufacturing a plate-type heater
CN103644595A (zh) * 2013-11-22 2014-03-19 张正国 制热强化地板
KR20140115174A (ko) * 2013-03-20 2014-09-30 한국과학기술원 열전도성 시멘트 모르타르를 이용한 바닥 난방구조체 및 그 시공방법
CN105352008A (zh) * 2015-12-04 2016-02-24 江苏洛基木业有限公司 一种石墨烯自发热地板及低电压自发热地板***
CN205348669U (zh) * 2015-12-31 2016-06-29 上海富翊装饰工程股份有限公司 一种石墨烯复合地板
CN105971225A (zh) * 2016-06-16 2016-09-28 无锡市翱宇特新科技发展有限公司 一种供暖地板
CN106049811A (zh) * 2016-07-19 2016-10-26 青岛东方阳健康科技有限公司 石墨烯发热材料及使用该材料的发热板及发热板制备方法
CN106714344A (zh) * 2016-12-28 2017-05-24 靖江墨烯服饰科技有限公司 一种具有磁石的石墨烯电发热织物
CN207228555U (zh) * 2017-09-30 2018-04-13 戴明 一种石墨烯自发热地板及低电压自发热地板***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846357B (zh) * 2010-04-16 2012-01-25 嘉丰木业(苏州)有限公司 一种自发热地板及制作方法
CN203823864U (zh) * 2013-04-23 2014-09-10 吴家敏 电发热地板
CN204059866U (zh) * 2014-04-22 2014-12-31 四川省奥宁太阳能科技有限公司 一种快热式室内取暖地板
CN105003945A (zh) * 2015-06-12 2015-10-28 苏州邦多纳碳纤维科技有限公司 一种石墨烯导热地板及其制造方法
CN205153462U (zh) * 2015-12-04 2016-04-13 惠安县科联农业科技有限公司 一种负离子磁疗地板
KR101733178B1 (ko) * 2016-02-26 2017-05-08 주식회사 씨앤에이치케어 그래핀 또는 그라파이트가 포함된 바닥재 및 이의 제조방법
CN205566681U (zh) * 2016-03-22 2016-09-07 湖南盛世名嘉装饰建材科技有限公司 一种石墨烯碳晶环氧树脂远红外线发热体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598216A (zh) * 2004-08-31 2005-03-23 张彩奎 一种嵌磁地板及其制作方法
WO2008063173A1 (en) * 2006-11-21 2008-05-29 Carbonic Heat Corporation A method for manufacturing a plate-type heater
KR20140115174A (ko) * 2013-03-20 2014-09-30 한국과학기술원 열전도성 시멘트 모르타르를 이용한 바닥 난방구조체 및 그 시공방법
CN103644595A (zh) * 2013-11-22 2014-03-19 张正国 制热强化地板
CN105352008A (zh) * 2015-12-04 2016-02-24 江苏洛基木业有限公司 一种石墨烯自发热地板及低电压自发热地板***
CN205348669U (zh) * 2015-12-31 2016-06-29 上海富翊装饰工程股份有限公司 一种石墨烯复合地板
CN105971225A (zh) * 2016-06-16 2016-09-28 无锡市翱宇特新科技发展有限公司 一种供暖地板
CN106049811A (zh) * 2016-07-19 2016-10-26 青岛东方阳健康科技有限公司 石墨烯发热材料及使用该材料的发热板及发热板制备方法
CN106714344A (zh) * 2016-12-28 2017-05-24 靖江墨烯服饰科技有限公司 一种具有磁石的石墨烯电发热织物
CN207228555U (zh) * 2017-09-30 2018-04-13 戴明 一种石墨烯自发热地板及低电压自发热地板***

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110454859A (zh) * 2019-09-16 2019-11-15 张家港市科兴炭纤维制品有限公司 一种便于芳纶缠绕且具有弹性的新型耐高温地暖线
CN113187194A (zh) * 2019-12-18 2021-07-30 陈世昌 一种建筑室内地板
CN113950172A (zh) * 2020-07-16 2022-01-18 北京石墨烯研究院 石墨烯基电致红外发射加热装置
CN112682833A (zh) * 2020-12-28 2021-04-20 湖州木兮也家居科技有限公司 防积温的自发热地板
CN114963285A (zh) * 2022-05-27 2022-08-30 广东简一(集团)陶瓷有限公司 一种接地式发热瓷砖及其制备方法
CN114963285B (zh) * 2022-05-27 2023-09-22 广东简一(集团)陶瓷有限公司 一种接地式发热瓷砖及其制备方法

Also Published As

Publication number Publication date
CN107631344B (zh) 2023-05-16
CN107631344A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2019061728A1 (zh) 石墨烯自发热地板及制造方法及低电压自发热地板***
CN201150134Y (zh) 远红外光波板
CN106476089B (zh) 内置碳纤维电热层木竹复合地板的制造工艺及其木地板
CN105352008A (zh) 一种石墨烯自发热地板及低电压自发热地板***
CN206846876U (zh) 一种地暖***
CN105402801A (zh) 一种阵列式铺装电发热墙面***
CN109822984B (zh) 一种石墨烯远红外地磁板
CN103423802A (zh) 电发热竹地板
CN102401416A (zh) 发热地板及地板取暖***
WO2017097238A1 (zh) 一种静电吸尘空气净化夹置电热膜地暖复合地板
CN207228555U (zh) 一种石墨烯自发热地板及低电压自发热地板***
WO2017097240A1 (zh) 一种静电吸尘空气净化内置放热元件地暖复合地板
CN201852192U (zh) 带有玻璃层的碳晶火墙
CN202734030U (zh) 一种电发热竹地板
CN202361466U (zh) 发热地板及地板取暖***
CN204510664U (zh) 一种远红外碳热壁纸
CN207228554U (zh) 一种温度可调的石墨烯导热地板
CN101291552A (zh) 碳素晶体电热板及其制备工艺
CN106703362A (zh) 内置碳纤维电热层强化地板的制备工艺及其木地板
CN111058593A (zh) 一种多层瓷木复合发热地砖及其制备方法和铺设方法
CN206233486U (zh) 一种电加热瓷砖
CN204876472U (zh) 多功能免龙骨自发热实木地板
CN211257664U (zh) 一种电地暖用保温隔声板
CN109881863B (zh) 一种操房用自发热式地板及其铺设方法
CN203499161U (zh) 一种电热墙板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927757

Country of ref document: EP

Kind code of ref document: A1