WO2019061294A1 - 接入点设备及通信方法 - Google Patents

接入点设备及通信方法 Download PDF

Info

Publication number
WO2019061294A1
WO2019061294A1 PCT/CN2017/104386 CN2017104386W WO2019061294A1 WO 2019061294 A1 WO2019061294 A1 WO 2019061294A1 CN 2017104386 W CN2017104386 W CN 2017104386W WO 2019061294 A1 WO2019061294 A1 WO 2019061294A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
point device
antenna
remote
antennas
Prior art date
Application number
PCT/CN2017/104386
Other languages
English (en)
French (fr)
Inventor
汪明月
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780003387.8A priority Critical patent/CN110100468A/zh
Priority to EP17927186.1A priority patent/EP3678398A4/en
Priority to JP2020517515A priority patent/JP2020535730A/ja
Priority to PCT/CN2017/104386 priority patent/WO2019061294A1/zh
Publication of WO2019061294A1 publication Critical patent/WO2019061294A1/zh
Priority to US16/832,312 priority patent/US20200229003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular, to an access point device and a communication method.
  • a wireless local area network (WLAN) system typically includes multiple access point devices. Each access point device covers a certain range and provides wireless access services for terminals within these ranges. Adjacent access point devices in a WLAN usually use different working channels (English: operating channel). However, the number of available channels in the existing WLAN is limited, and the working channels of adjacent access point devices may be the same. Adjacent access point devices of the same working channel generate co-channel interference with each other, thereby affecting communication quality.
  • working channels English: operating channel
  • the present disclosure provides an access point device and a communication method, which solves the problem of poor communication quality caused by co-channel interference.
  • the technical solution is as follows:
  • the present disclosure provides an access point device, where the access point device includes: an access point device body and a plurality of remote antennas outside the body of the access point device, each remote antenna The distance between the device and the access point device body is greater than a preset distance, the access point device body includes a transceiver and a processor, and the processor is connected to the transceiver, and the transceiver passes through a radio frequency feeder and The plurality of remote antennas are connected, the plurality of remote antennas are narrow beam low sidelobe antennas; the processor is configured to select at least one target antenna from the plurality of remote antennas; the transceiver It is configured to communicate with the at least one target antenna.
  • a narrow beam low sidelobe antenna is used, and a distance between the narrow beam low sidelobe antenna and the access point device body is set to a certain distance.
  • the beam width of the antenna is narrow, The stronger the directivity of the antenna, the smaller the interference to other co-frequency devices, the weaker the sidelobe signal strength, the closer the transmission distance of the sidelobe signals, and the less interference to other co-frequency devices. It is possible to prevent adjacent access point devices from generating co-channel interference with each other, which can improve communication quality.
  • the preset distance is more than 2.5 meters.
  • the preset distance may be 3 meters or more.
  • all of the plurality of remote antennas include the same number of radiating elements. At least two of the plurality of remote antennas include different numbers of radiating elements. The specific design of the number of the radiating elements can be performed according to actual needs. Of course, when the access point device is in operation, one or more radiating units of a certain remote antenna can also be selected for communication based on different communication requirements.
  • the transceiver is configured to employ multi-user multiple input multiple output (MU: MIMO) communication with the at least two target antennas.
  • MU multi-user multiple input multiple output
  • a target antenna When two or more target antennas are selected for communication, since the spatial distance between the target antennas is large, the mutual interference between the terminals multiplexed by the MU-MIMO method is effectively reduced, which is beneficial to Increase network capacity.
  • a target antenna When a target antenna is selected for communication, more than two radiating elements in the target antenna may be selected to communicate by using MU-MIMO mode to achieve the purpose of increasing network capacity.
  • the present disclosure further provides an access point device, where the access point device includes: an access point device body and at least one remote antenna located outside the access point device body, the access The point device body includes an omnidirectional antenna, a transceiver, and a processor, the processor being coupled to the transceiver, the transceiver being coupled to the omnidirectional antenna and the at least one remote antenna via a radio frequency feeder, each The distance between the remote antenna and the access point device body is greater than a preset distance, the at least one remote antenna is a narrow beam low sidelobe antenna; the transceiver is configured to receive only by the omnidirectional antenna Data; the processor is configured to select at least one target antenna from the at least one remote antenna; the transceiver is further configured to communicate with the at least one target antenna.
  • MU-MIMO communication can be used to achieve the purpose of improving network capacity.
  • a narrow beam low sidelobe antenna is used, and a distance between the narrow beam low sidelobe antenna and the access point device body is set to a certain distance.
  • the beam width of the antenna is narrow, The stronger the directivity of the antenna, the smaller the interference to other co-frequency devices, the weaker the sidelobe signal strength, the closer the transmission distance of the sidelobe signals, and the less interference to other co-frequency devices. It is possible to prevent adjacent access point devices from generating co-channel interference with each other, which can improve communication quality.
  • the omnidirectional antenna can be used for data reception, which improves the reliability of communication and is suitable for the uplink transmission mode based on channel competition.
  • a communication method which can be applied to the first aspect and any of the possible designs provided by the first aspect, the method comprising:
  • the access point device selects at least one target antenna from the plurality of remote antennas of the access point device, wherein each of the plurality of remote antennas is connected to the access point device
  • the point device bodies have a preset distance between each of the remote antennas, and the each remote antenna is a narrow beam low sidelobe antenna; the access point device communicates with the at least one target antenna.
  • the communication method provided by the present disclosure adopts a narrow beam low sidelobe antenna, and sets a distance between the narrow beam low sidelobe antenna and the access point device body to a certain distance.
  • the beam width of the antenna is narrow, the The stronger the directivity of the antenna, the smaller the interference to other co-frequency devices, the weaker the sidelobe signal strength, the closer the transmission distance of the sidelobe signal will be, and the interference to other co-frequency devices will be reduced.
  • Adjacent access point devices generate co-channel interference with each other, which can improve communication quality.
  • the access point device communicating with the at least one target antenna comprises: the access point device using the one target antenna to perform single-user multiple input multiple output (English: single user-MIMO, The SU-MIMO mode or the MU-MIMO mode communicates; or the access point device communicates with the at least two target antennas in a MU-MIMO manner.
  • a communication method comprising: the access point device using the access point device The omnidirectional antenna only receives data; the access point device body of the access point device includes an omnidirectional antenna, and the access point device further includes a plurality of remote antennas connected to the access point device body through a radio frequency feeder. The distance between each remote antenna and the access point device body is greater than a preset distance, and the at least one remote antenna is a narrow beam low sidelobe antenna;
  • the access point device selects at least one target antenna from the at least one remote antenna and communicates with the at least one target antenna.
  • the communication with the at least one target antenna includes using more than two target antennas Communicate by MU-MIMO.
  • the MU-MIMO method can be adopted.
  • communicating with one target antenna it may communicate in SU-MIMO or MU-MIMO mode based on a plurality of radiating elements included in the target antenna.
  • the communication method provided by the present disclosure adopts a narrow beam low sidelobe antenna, and sets a distance between the narrow beam low sidelobe antenna and the access point device body to a certain distance.
  • the beam width of the antenna is narrow, the The stronger the directivity of the antenna, the smaller the interference to other co-frequency devices, the weaker the sidelobe signal strength, the closer the transmission distance of the sidelobe signal will be, and the interference to other co-frequency devices will be reduced.
  • Adjacent access point devices generate co-channel interference with each other, which can improve communication quality.
  • the omnidirectional antenna can be used for data reception, which improves the reliability of communication and is suitable for the uplink transmission mode based on channel competition.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an access point device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an access point device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an access point device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a signal coverage range of an access point device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a signal coverage range of an access point device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a signal coverage range of an access point device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a signal coverage range of an access point device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a signal coverage range of an access point device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system includes: at least one access point device and at least one terminal.
  • the access point device is associated with the terminal, and the access point device can provide services for the terminal.
  • the terminal can be a cellular telephone, a smart phone, a personal digital assistant (PDA), a computer, a wearable device, etc. or other WLAN wireless device.
  • PDA personal digital assistant
  • An embodiment of the present invention provides an access point device, as shown in FIG. 2 .
  • the access point device includes: an access point device body 201 and a plurality of remote antennas 202 located outside the access point device body.
  • the access point device body includes an access point housing and a processor 2011 and a transceiver 2012 installed in the access point housing.
  • the processor 2011 is connected to the transceiver 2012, and the transceiver 2012 is connected to the plurality of remote antennas 202 via a feed line.
  • the plurality of remote antennas 202 are narrow beams (English: narrow beam). Side lobes (English: low side-lobe) antenna.
  • Each remote antenna includes at least one radiating element (English: radiating element).
  • the above-mentioned processor and the transceiver may be mutually independent devices, or may be an integrated device, which is not specifically limited in the embodiment of the present invention.
  • the distance between the plurality of remote antennas and the access point device body may be 2.5 meters or more.
  • the distance may be 3 meters or more.
  • the transceiver 2012 can include a transceiver chip, a switch controller, a plurality of RF front-end modules, and a switch module.
  • the plurality of RF front-end modules are connected to the switch module, and the switch module and the plurality of remote antennas pass the RF.
  • Feed The line is connected, the input end of the transceiver chip is connected to the processor 2011, and the transceiver chip is connected to the switch controller for outputting a signal to control the output of the switch controller, the switch controller is connected with the switch module, and the switch is controlled.
  • the processor is used to control the on and off between the output of the switch module and the remote antenna based on processor selection.
  • the switch module is configured to perform on/off according to the output of the switch controller, so that the RF front end module connected to the switch module is connected or disconnected from the radiation unit of the remote antenna.
  • the switch module can be a 16-select 4 switch module or other type of switch module. In FIG. 3, only four remote antennas and four radiating elements in each remote antenna are illustrated as an example. Each output port of the switch module is connected to one radiating unit of one remote antenna.
  • the transceiver chip is connected to the plurality of RF front-end modules, so that the output of the processor can be converted into a radio frequency signal by the transceiver chip, and then output to the remote antenna through the RF front-end module for transmitting.
  • the RF front-end module when receiving the RF signal output by the transceiver chip, the RF front-end module is in a data transmission state, and when the RF front-end module receives the RF signal from the remote antenna, the RF The front end module is in the data receiving state.
  • the processor 2011 is configured to select at least one target antenna from the plurality of remote antennas 202, the transceiver 2012 being configured to communicate with the at least one target antenna. For example, when the access point device receives a data transmission request sent by the terminal through a remote antenna, the processor 2011 may calculate a received signal strength indicator (RSSI) according to the data transmission request. The packet error ratio (PER) is used to determine the location of the terminal, and the far-end antenna closest to the terminal is connected to the radio-frequency front-end module corresponding to the remote antenna. The transceiver 2012 communicates with the terminal with a radiating element in the selected remote antenna.
  • RSSI received signal strength indicator
  • PER packet error ratio
  • the narrow beam low sidelobe antenna refers to an antenna with a narrow beam width of the antenna and a weak signal strength of the side lobes.
  • the beam width of the antenna refers to the width of the main lobe, and generally refers to a half power beam width (HPBW).
  • the half-power point lobe width also known as the main lobe width or the 3 dB lobe width, refers to the angle between the two points when the field strength at the edge of the main lobe drops to a maximum of half.
  • the beam width of the antenna is narrow, the directivity of the antenna is stronger, and the interference to other co-frequency devices is smaller. The weaker the sidelobe signal strength, the closer the transmission distance of the sidelobe signal will be, and the interference to other co-frequency devices will also decrease.
  • the signal coverage of the narrow beam low sidelobe antenna is small, multiple remote antennas can be set in the access point device according to the performance requirements such as signal strength or coverage area, thereby implementing signal coverage of a single access point device.
  • the number of terminals in the coverage of the access point device is relatively large.
  • the MU-MIMO communication is used, the same-frequency interference can be reduced, and the advantage of adopting the MU-MIMO mode can be further enhanced to improve the WLAN networking. Network capacity.
  • the number of the radiating units included in each of the plurality of remote antennas 202 is the same, and the coverage capability of each of the remote antennas in the access point device is the same.
  • different numbers of radiating elements may be installed in multiple remote antennas according to factors such as the number of terminals in different areas, the usage of the network, and the transmission speed of the data. At least two of the plurality of remote antennas 202 include different numbers of radiating elements. Within the coverage of the access point device signal, different numbers of radiating elements can be installed on different antennas according to the population density of each area or the network usage, so that the wireless signal coverage of different areas is different, which is more reasonable. Allocate wireless resources.
  • the processor 2011 is configured to select one of the plurality of remote antennas 202, the transceiver 2012 being configured to communicate with the one target antenna. For example, if the access point device has two remote antennas, at some point, only one of the remote antennas within the coverage of the remote antenna needs communication, and the processor selects one of the remote antennas as the target.
  • the antenna is used by the transceiver to communicate with the terminal with the target antenna, while the other remote antenna does not transmit data.
  • the communication can be in the SU-MIMO or MU-MIMO mode.
  • the processor 2011 is configured to select at least one target antenna from the plurality of remote antennas 202, the transceiver 2012 is configured to use the at least one target antenna with MU-MIMO Way to communicate.
  • the terminals located in the coverage areas of the different far-end antennas are relatively far apart in space, so when the same frequency is used for simultaneous communication, the interference between the signals of each other is small.
  • the processor 2011 selects at least two target antennas
  • the transceiver 2012 is configured to communicate in MU-MIMO mode with at least two target antennas.
  • the transceiver 201 is configured to communicate in a MU-MIMO manner with a portion of the radiating elements or all of the radiating elements included in the target antenna.
  • the processor 2011 can determine the location of the terminal according to the data transmission request, and select data transmission through the target antenna closest to the terminal. As the location of the terminal requesting data transmission changes or the presence of a terminal at another location, the processor 2011 can communicate with different remote antennas depending on actual communication needs. Of course, the processor 2011 can also select to use some or all of the radiating element communications in the target antenna according to actual communication requirements.
  • the access point device includes: an access point device body and at least one remote antenna located outside the access point device body, where the access point device body includes a transceiver 401, a processor 402, and an omnidirectional antenna ( An omnidirectional antenna 403, the processor 402 is connected to the transceiver 401, and the transceiver 401 is connected to the omnidirectional antenna 403 and the at least one remote antenna 404 through a radio frequency feeder, each remote end
  • the distance between the antenna 404 and the access point device body is greater than a preset distance, and the at least one remote antenna 404 is a narrow beam low sidelobe antenna, wherein each remote antenna includes at least one radiating unit,
  • the omnidirectional antenna includes at least one radiating element.
  • the above-mentioned processor and the transceiver may be mutually independent devices, or may be an integrated device, which is not specifically limited in the embodiment of the present invention.
  • the distance between the at least two remote antennas and the access point device body may be 2.5 meters or more.
  • the distance may be 3 meters or more.
  • the omnidirectional antenna 403 has a uniform signal emission intensity at 360 degrees in the horizontal direction, and the signal coverage is large with respect to the low side lobed antenna. For example, for broadcast frames, it can be sent to all users over a wide range.
  • the transceiver 401 is configured to receive only data with the omnidirectional antenna 403; the processor 402 is configured to select at least one target antenna from the at least one remote antenna 404; the transceiver 401 is also Configured to communicate with the at least one target antenna.
  • each of the at least one remote antenna 404 and the omnidirectional antenna 403 includes the same number of radiating elements.
  • the at least one remote antenna 404 and the radiating unit included in at least two of the omnidirectional antennas 403 The number is different.
  • the omnidirectional antenna 403 may be arranged to include more radiation units than the remote antennas, because the signal coverage of the omnidirectional antenna 403 is greater than the signal coverage of the remote antenna, so in many cases The omnidirectional antenna 403 has more terminals within the signal coverage range, so arranging more radiating elements can shorten the terminal network latency within the omnidirectional antenna 403 signal coverage.
  • the access point device can communicate in a SU-MIMO manner.
  • the access point device can communicate in the MU-MIMO manner.
  • the access point device may communicate in a MU-MIMO manner.
  • the processor 402 may determine the location of the terminal according to the data transmission request, and select to transmit data through the target antenna of the terminal, and the location of the terminal that requests the data transmission or the appearance of the terminal at other locations, The processor 402 selects different remote antennas for data transmission.
  • the access point device selects at least one target antenna from the plurality of remote antennas of the access point device, where Each of the plurality of remote antennas has a preset distance from the access point device body of the access point device, and each of the remote antennas is a narrow beam low sidelobe antenna; the access The point device communicates with the at least one target antenna.
  • the following access point device for the structure shown in FIG. 1 has one of four remote antennas (labeled in FIG. 5 and FIG. 6, respectively).
  • the working process of the access point device for 401 to 404) is introduced as an example:
  • the processor when the terminal requests communication to the access point device, the processor performs calculation of RSSI and PER according to the received request, and selects the remote antenna 502 as a target antenna, and the processor The SU-MIMO mode or the MU-MIMO mode communication is selected according to the specific number of terminals. Its coverage is shown in the shaded portion of Figure 5. At this time, only the far-end antenna 502 communicates, and the other three remote antennas do not communicate.
  • the processor when the terminal requests communication to the access point device, the processor performs calculation of RSSI and PER according to the received request, and selects the remote antennas 502 and 504 as target antennas. The processor chooses to communicate in MU-MIMO mode. Its coverage is shown in the shaded portion of Figure 6. At this time, only the far-end antennas 502 and 504 communicate, and the other two remote antennas do not communicate.
  • the foregoing process only provides a process of communicating by using one remote antenna and two remote antennas.
  • a process of communicating by using three or four remote antennas may also occur, which is not used in this embodiment of the present invention.
  • when selecting any remote antenna of the user for communication it is also possible to select which radiating elements in the remote antenna are used for communication, and it is achieved that the lowest communication energy is used to obtain the best communication quality. purpose.
  • the access point device receives data only by the omnidirectional antenna of the access point device; and the access point device
  • the access point device body includes an omnidirectional antenna, and the access point device further includes a plurality of remote antennas connected to the access point device body through a radio frequency feeder, each remote antenna and the access point device body
  • the distance between the at least one remote antenna is a narrow beam low sidelobe antenna; the access point device selects at least one target antenna from the at least one remote antenna, with the at least one Target antenna communication.
  • the access point device of the illustrated structure is described by taking an operation process of an access point device having four remote antennas (labeled as 701 to 704 in Figures 7 and 8, respectively) and an omnidirectional antenna as an example:
  • the remote antenna 702 when the access point device needs to send data to the terminal, the remote antenna 702 may be selected as the target antenna, and the process of selecting the remote antenna may be based on the location of the terminal to be sent, and selecting the terminal location. The nearest remote antenna. At this time, the coverage of the access point device is as shown in the shaded portion of FIG. At this time, only the remote antenna 702 communicates, and the other three remote antennas and the omnidirectional antenna do not communicate.
  • the remote antennas 702 and 704 when the access point device needs to send data to the terminal, the remote antennas 702 and 704 may be selected as the target antenna, and the selected remote antenna process may be according to the location of the terminal to be sent. Select the remote antenna closest to the terminal location. At this time, the coverage of the access point device is as shown in the shaded portion of FIG. At this time, only the far-end antennas 702 and 704 communicate, and the other two remote antennas and the omni-directional antenna do not communicate.
  • the foregoing process only provides a process of communicating by using one remote antenna and two remote antennas.
  • a process of communicating by using three or four remote antennas may also occur, which is not used in this embodiment of the present invention.
  • when selecting any remote antenna of the user for communication it is also possible to select a part of the radiating unit or all the radiating units in the remote antenna to communicate, which has achieved the best use of the lowest energy consumption. The purpose of communication quality.
  • the access point device selects an omnidirectional antenna for data reception. Since the access point device cannot clearly indicate the coverage of which remote antennas the uplink transmitting terminal is located, an omnidirectional antenna can be used for receiving. At this time, the coverage of the access point is as shown in the shaded portion of FIG. This method can be applied to the manner in which the terminal competes for random uplink transmission through the channel.
  • the remote antenna is used in the access point device of FIG. 1 and FIG. 4 above, and the remote antenna is closer to the terminal than the omnidirectional antenna, so that the transmission power can be reduced, thereby reducing the same-frequency interference. the goal of. Moreover, since the beam of the remote antenna is narrow (for example, 60 degrees to 90 degrees), lower side lobes can be implemented, so that when transmitting data to the terminal, interference to other co-frequency devices can be greatly reduced, and the receiving terminal transmits When the data is used, it is also possible to avoid interference from other co-frequency devices.
  • the access point device provided by the foregoing embodiment is mainly used in data transmission of a WLAN, and can be applied to other mobile networks, such as Long Term Evolution (LTE), universal mobile communication. System (English: Universal Mobile Telecommunications System, UMTS), Global System for Mobile Communications (GSM) network.
  • LTE Long Term Evolution
  • System English: Universal Mobile Telecommunications System, UMTS
  • GSM Global System for Mobile Communications
  • the access point device can be provided in a mobile network.
  • the base station, and the remote antenna of the access point device may be provided as an antenna for transmitting and receiving data, such as a remote antenna unit of the base station, which is not specifically limited in this embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

提供了一种接入点设备及通信方法。所述接入点设备包括:接入点设备本体和位于所述接入点设备本体以外的多个远端天线,每个远端天线与所述接入点设备本体之间的距离大于预设距离,所述接入点设备本体包括收发器和处理器,所述处理器与所述收发器连接,所述收发器通过射频馈线与所述多个远端天线连接,所述多个远端天线为窄波束低旁瓣天线;所述处理器被配置为从所述多个远端天线中选择至少一个目标天线;所述收发器被配置为用所述至少一个目标天线通信,本公开提供的设备和方法,能够避免相邻接入点设备互相产生同频干扰,能够提高通信质量。

Description

接入点设备及通信方法 技术领域
本公开涉及无线通信领域,特别涉及一种接入点设备及通信方法。
背景技术
无线局域网(英文:wireless local area network,WLAN)***通常包括多个接入点设备。每个接入点设备覆盖一定的范围,并为这些范围内的终端提供无线接入服务。WLAN中相邻的接入点设备通常采用不同的工作信道(英文:operating channel)。但是现有的无线局域网中可用信道数有限,相邻接入点设备的工作信道可能相同。相同工作信道的相邻接入点设备互相产生同频干扰,从而影响了通信质量。
发明内容
本公开提供了一种接入点设备及通信方法,解决了同频干扰造成的通信质量差的问题。所述技术方案如下:
第一方面,本公开提供了一种接入点设备,所述接入点设备包括:接入点设备本体和位于所述接入点设备本体以外的多个远端天线,每个远端天线与所述接入点设备本体之间的距离大于预设距离,所述接入点设备本体包括收发器和处理器,所述处理器与所述收发器连接,所述收发器通过射频馈线与所述多个远端天线连接,所述多个远端天线为窄波束低旁瓣天线;所述处理器被配置为从所述多个远端天线中选择至少一个目标天线;所述收发器被配置为用所述至少一个目标天线通信。
在该接入点设备中,采用了窄波束低旁瓣天线,并将该窄波束低旁瓣天线与接入点设备本体之间的距离设置为一定距离,当天线的波束宽度较窄时,该天线的方向性越强,对其他同频设备的干扰就越小,旁瓣信号强度越弱,旁瓣信号的传输距离就会越近,对其他同频设备的干扰也会减小,能够避免相邻接入点设备互相产生同频干扰,能够提高通信质量。
其中,所述预设距离为2.5米以上。例如,该预设距离可以为3米或更大。
在一种可能设计中,所述多个远端天线中所有远端天线所包括的辐射单元数量相同。所述多个远端天线中至少有两个远端天线所包括的辐射单元数量不同。该辐射单元的数量的具体设计可以根据实际需求进行,当然,在接入点设备在工作时,也可以基于不同的通信需求,选择某个远端天线中的一个或多个辐射单元来通信。
在一种可能设计中,所述收发器被配置为用所述至少两个目标天线采用多用户多输入多输出(英文:multi user-MIMO,MU-MIMO)通信。
当选择了两个或两个以上目标天线进行通信时,由于目标天线之间的空间距离较大,从而有效降低了通过MU-MIMO方式进行空分复用的终端之间的互干扰,有利于提高网络容量。而在选择一个目标天线进行通信时,还可以选择该目标天线中的两个以上辐射单元来采用MU-MIMO方式通信,以达到提高网络容量的目的。
第二方面,本公开还提供了一种接入点设备,所述接入点设备包括:接入点设备本体和位于所述接入点设备本体以外的至少一个远端天线,所述接入点设备本体包括全向天线、收发器和处理器,所述处理器与所述收发器连接,所述收发器通过射频馈线与所述全向天线和所述至少一个远端天线连接,每个远端天线与所述接入点设备本体之间的距离大于预设距离,所述至少一个远端天线为窄波束低旁瓣天线;所述收发器被配置为用所述全向天线只接收数据;所述处理器被配置为从所述至少一个远端天线中选择至少一个目标天线;所述收发器还被配置为用所述至少一个目标天线通信。其中,当选择一个目标天线或多个目标天线时,均可以采用MU-MIMO方式通信,以达到提高网络容量的目的。
在该接入点设备中,采用了窄波束低旁瓣天线,并将该窄波束低旁瓣天线与接入点设备本体之间的距离设置为一定距离,当天线的波束宽度较窄时,该天线的方向性越强,对其他同频设备的干扰就越小,旁瓣信号强度越弱,旁瓣信号的传输距离就会越近,对其他同频设备的干扰也会减小,能够避免相邻接入点设备互相产生同频干扰,能够提高通信质量。并且,在数据接收时可以使用全向天线进行,提高了通信的可靠性,适用于基于信道竞争的上行传输方式。
第三方面,提供了一种通信方法,该方法可以应用于第一方面以及第一方面所提供的任一种可能设计中,所述方法包括:
接入点设备从所述接入点设备的多个远端天线中选择至少一个目标天线,其中,所述多个个远端天线中每个远端天线与所述接入点设备的接入点设备本体之间具有预设距离,所述每个远端天线为窄波束低旁瓣天线;所述接入点设备用所述至少一个目标天线通信。
本公开提供的通信方法,采用了窄波束低旁瓣天线,并将该窄波束低旁瓣天线与接入点设备本体之间的距离设置为一定距离,当天线的波束宽度较窄时,该天线的方向性越强,对其他同频设备的干扰就越小,旁瓣信号强度越弱,旁瓣信号的传输距离就会越近,对其他同频设备的干扰也会减小,能够避免相邻接入点设备互相产生同频干扰,能够提高通信质量。
在一种可能设计中,所述接入点设备用所述至少一个目标天线通信包括:所述接入点设备用所述一个目标天线以单用户多输入多输出(英文:single user-MIMO,SU-MIMO)方式或MU-MIMO方式通信;或者,所述接入点设备用所述至少两个目标天线以MU-MIMO方式通信。
第四方面,提供了一种通信方法,该方法可以应用于第二方面以及第二方面所提供的任一种可能设计中,所述方法包括:接入点设备用所述接入点设备的全向天线只接收数据;所述接入点设备的接入点设备本体包括全向天线,所述接入点设备还包括多个与所述接入点设备本体通过射频馈线连接的远端天线,每个远端天线与所述接入点设备本体之间的距离大于预设距离,所述至少一个远端天线为窄波束低旁瓣天线;
所述接入点设备从所述至少一个远端天线中选择至少一个目标天线,用所述至少一个目标天线通信。
在一种可能设计中,该用所述至少一个目标天线通信包括用两个以上目标天线采 用MU-MIMO方式通信。其中,用一个目标天线或一个以上目标天线通信时,均可以采用MU-MIMO方式。在用一个目标天线通信时,可以基于该目标天线所包含的多个辐射单元以SU-MIMO或MU-MIMO方式通信。
本公开提供的通信方法,采用了窄波束低旁瓣天线,并将该窄波束低旁瓣天线与接入点设备本体之间的距离设置为一定距离,当天线的波束宽度较窄时,该天线的方向性越强,对其他同频设备的干扰就越小,旁瓣信号强度越弱,旁瓣信号的传输距离就会越近,对其他同频设备的干扰也会减小,能够避免相邻接入点设备互相产生同频干扰,能够提高通信质量。并且,在数据接收时可以使用全向天线进行,提高了通信的可靠性,适用于基于信道竞争的上行传输方式。
附图说明
图1是本发明实施例提供的一种通信***的结构示意图;
图2是本发明实施例提供的一种接入点设备的结构示意图;
图3是本发明实施例提供的一种接入点设备的结构示意图;
图4是本发明实施例提供的一种接入点设备的结构示意图;
图5是本发明实施例提供的一种接入点设备信号覆盖范围示意图;
图6是本发明实施例提供的一种接入点设备信号覆盖范围示意图;
图7是本发明实施例提供的一种接入点设备信号覆盖范围示意图;
图8是本发明实施例提供的一种接入点设备信号覆盖范围示意图;
图9是本发明实施例提供的一种接入点设备信号覆盖范围示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本发明实施例提供的一种通信***的结构示意图。参见图1,该通信***包括:至少一个接入点设备以及至少一个终端。接入点设备与终端关联,接入点设备可以为终端提供服务。终端可以是蜂窝电话、智能电话、个人数字助理(PDA)、计算机、可穿戴设备等或其它WLAN无线设备。
本发明实施例提供了一种接入点设备,如图2所示。该接入点设备包括:接入点设备本体201和位于该接入点设备本体以外的多个远端天线202。其中,接入点设备本体包括接入点外壳以及安装在接入点外壳内的处理器2011以及收发器2012。该处理器2011和收发器2012连接,该收发器2012通过射频馈线(英文:feed line)与该多个远端天线202连接,该多个远端天线202为窄波束(英文:narrow beam)低旁瓣(英文:low side-lobe)天线。每个远端天线包括至少一个辐射单元(英文:radiating element)。上述处理器和收发器可以是相互独立的器件,也可以是一个集成的器件,本发明实施例对此不作具体限定。其中,上述多个远端天线与接入点设备本体之间的距离可以为2.5米以上,例如,该距离可以为3米或更大。
参见图3,收发器2012可以包括收发芯片、开关控制器、多个射频前端模组以及开关模组,多个射频前端模组与开关模组连接,开关模组与多个远端天线通过射频馈 线连接,该收发芯片的输入端与处理器2011连接,而该收发芯片与开关控制器相连,用于输出信号以控制该开关控制器的输出,该开关控制器与开关模组连接,开关控制器用于基于处理器的选择来控制开关模组的输出端与远端天线之间的通断。其中,开关模组用于根据开关控制器的输出进行通断,从而使该开关模组所连接的射频前端模组与远端天线的辐射单元之间连通或断开。例如,该开关模组可以是一个16选4的开关模组或其他型号的开关模组。图3中仅以四个远端天线以及每个远端天线中具有4个辐射单元为例进行图示,开关模组的每个输出端口与一个远端天线的一个辐射单元连接。
该收发芯片与该多个射频前端模组连接,从而该处理器的输出可以通过收发芯片转换为射频信号,再通过射频前端模块输出至远端天线进行发射。对于射频前端模组来说,当接收到由收发芯片输出的射频信号时,该射频前端模组处于数据发送状态,而当该射频前端模组接收到来自远端天线的射频信号时,该射频前端模组处于数据接收状态。
该处理器2011被配置为从该多个远端天线202中选择至少一个目标天线,该收发器2012被配置为用该至少一个目标天线通信。例如,当该接入点设备通过某一远端天线接收到终端发送的数据传输请求时,该处理器2011可以根据该数据传输请求计算接收信号强度指示(英文:receive signal strength indicator,RSSI)和误包率(英文:packet error ratio,PER)来判断该终端的位置,进而距离该终端最近的远端天线与该远端天线对应的射频前端模组连通。该收发器2012用该被选中的远端天线中的辐射单元和该终端通信。
该窄波束低旁瓣天线是指天线的波束宽度较窄、旁瓣的信号强度较弱的一种天线。该天线的波束宽度是指该主瓣的宽度,一般可以是指半功率点波瓣宽度(英文:half power beam width,HPBW)。半功率点波瓣宽度又称为主瓣宽度或3dB波瓣宽度,是指主瓣边缘的场强下降到最大值一半时的两点之间的夹角。当天线的波束宽度较窄时,该天线的方向性越强,对其他同频设备的干扰就越小。旁瓣信号强度越弱,旁瓣信号的传输距离就会越近,对其他同频设备的干扰也会减小。
由于窄波束低旁瓣天线的信号覆盖范围小,所以可以根据信号强度或者覆盖面积等性能上的需要,在该接入点设备中设置多个远端天线,进而实现单个接入点设备信号覆盖范围的扩大。在该接入点设备覆盖范围内的终端相对较多,采用MU-MIMO方式通信时,不仅可以降低同频干扰,还可以更大程度的发挥采用MU-MIMO方式的优势,提高WLAN组网的网络容量。
在一种可能的实现方式中,该多个远端天线202中每个远端天线所包括的辐射单元数量是相同的,此时该接入点设备中的每个远端天线的覆盖能力都相同。
在另一种可能的实现方式中,根据不同区域的终端数量、网络的使用情况以及数据的传输速度等因素,可以在多个远端天线中安装不同数量的辐射单元。该多个远端天线202中至少有两个远端天线所包括的辐射单元数量不同。在该接入点设备信号覆盖范围内,根据各区域的人口密度或网络使用情况的不同,可以在不同的天线上安装不同数量的辐射单元,使不同区域的无线信号覆盖情况不同,更加合理的分配无线资源。
在一种可能的实现方式中,该处理器2011被配置为从多个远端天线202中选择一个目标天线,该收发器2012被配置为用该一个目标天线通信。例如,如果该接入点设备有两个远端天线,在某一时刻,只在其中一个远端天线的覆盖范围内有终端需要通信,则该处理器会选择该其中一个远端天线为目标天线,并由该收发器用该目标天线与终端通信,而另一远端天线则不进行数据传输。该通信可以采用SU-MIMO或MU-MIMO方式。
在另一种可能的实现方式中,该处理器2011被配置为从该多个远端天线202中选择至少一个目标天线,该收发器2012被配置为用该至少一个目标天线以MU-MIMO的方式通信。位于不同的远端天线的覆盖区域的终端在空间上距离相对较远,所以当采用同一频率同时通信时,彼此的信号之间干扰较小。当处理器2011选择了至少两个目标天线时,所述收发器2012被配置为用至少两个目标天线采用MU-MIMO方式通信。当处理器2011选择了一个目标天线时,该收发器201被配置为用该目标天线所包含的部分辐射单元或全部辐射单元采用MU-MIMO方式通信。
在本实施例中,该处理器2011可以根据数据传输请求判断终端的位置,选择通过与该终端最近的目标天线进行数据传输。随着请求数据传输的终端的位置改变或其他位置的终端的出现,该处理器2011可以根据实际通信需求,来用不同的远端天线通信。当然,该处理器2011还可以根据实际通信需求,选择使用目标天线中的部分或全部辐射单元通信。
本公开的一个实施例提供了一种接入点设备,如图4所示。所述接入点设备包括:接入点设备本体和位于所述接入点设备本体以外的至少一个远端天线,所述接入点设备本体包括收发器401、处理器402和全向天线(英文:omnidirectional antenna)403,所述处理器402与所述收发器401连接,所述收发器401通过射频馈线与所述全向天线403和所述至少一个远端天线404连接,每个远端天线404与所述接入点设备本体之间的距离大于预设距离,所述至少一个远端天线404为窄波束低旁瓣天线,其中,每个远端天线包括至少一个辐射单元,所述全向天线包括至少一个辐射单元。上述处理器和收发器可以是相互独立的器件,也可以是一个集成的器件,本发明实施例对此不作具体限定。其中,上述至少两个远端天线与接入点设备本体之间的距离可以为2.5米以上,例如,该距离可以为3米或更大。
该全向天线403在水平方向上360度都有均匀的信号发射强度,相对于低旁瓣天线来说信号覆盖范围较大。例如,对于广播帧来说,可以在大范围内向所有用户来发送。所述收发器401被配置为用所述全向天线403只接收数据;所述处理器402被配置为从所述至少一个远端天线404中选择至少一个目标天线;所述收发器401还被配置为用所述至少一个目标天线通信。
根据不同区域的终端数量、网络的使用情况以及数据的传输速度等因素,可以在至少两个远端天线中安装不同数量的辐射单元。在一种可能的实现方式中,该至少一个远端天线404和该全向天线403中每个天线所包括的辐射单元数量相同。
根据不同区域的终端数量、网络的使用情况以及数据的传输速度等因素,可以在全向天线和至少两个远端天线中安装不同数量的辐射单元。在另一种可能的实现方式中,该至少一个远端天线404和该全向天线403中至少有两个天线所包括的辐射单元 数量不同。例如,可以设置该全向天线403包括的辐射单元数量多于远端天线中包括的辐射单元数量,因为该全向天线403的信号覆盖范围大于该远端天线的信号覆盖范围,所以很多情况下该全向天线403的信号覆盖范围内的终端更多,因此布置更多的辐射单元可以缩短该全向天线403信号覆盖范围内的终端网络等待时间。
当处理器402选择了一个目标天线或全向天线进行通信时,接入点设备可以采用SU-MIMO方式通信。在另一种可能的实现方式中,当处理器402选择了一个目标天线时,接入点设备可以采用MU-MIMO方式通信。在另一种可能的实现方式中,当该处理器402选择了至少两个目标天线进行通信时,接入点设备可以采用MU-MIMO方式通信。
在本实施例中,该处理器402可以根据数据传输请求判断终端的位置,选择通过该终端最近的目标天线进行数据发送,随着请求数据传输的终端的位置改变或其他位置的终端的出现,该处理器402选择不同的远端天线进行数据发送。
对于图1所示结构的接入点设备来说,其通信时可以采取下述通信方法:接入点设备从接入点设备的多个远端天线中选择至少一个目标天线,其中,所述多个远端天线中每个远端天线与所述接入点设备的接入点设备本体之间具有预设距离,所述每个远端天线为窄波束低旁瓣天线;所述接入点设备用所述至少一个目标天线通信。
为了有助于理解本公开中接入点设备在工作时的天线选择组合,下面针对图1所示结构的接入点设备,以一个具有4个远端天线(图5和图6中分别标注为401至404)的接入点设备的工作过程为例进行介绍:
在另一种可能的实现方式中,当终端向该接入点设备请求进行通信时,该处理器根据收到的请求进行RSSI和PER的计算,选择远端天线502为目标天线,该处理器会根据终端的具体数量进行选择以SU-MIMO方式或者是MU-MIMO方式通信。其覆盖范围如图5中阴影部分所示。此时,只有远端天线502进行通信,而其他三个远端天线不进行通信。在另一种可能的实现方式中,当终端向该接入点设备请求进行通信时,该处理器根据收到的请求进行RSSI和PER的计算,选择远端天线502和504为目标天线,该处理器选择以MU-MIMO方式通信。其覆盖范围如图6中阴影部分所示。此时,只有远端天线502和504进行通信,而其他两个远端天线不进行通信。
上述过程仅提供了用一个远端天线和两个远端天线进行通信的过程,在实际场景中,还可能出现用三个或四个远端天线进行通信的过程,本发明实施例对此不作具体限定。并且,在上述过程中,在选择用户任一个远端天线进行通信时,还可以选择用过远端天线中的哪些辐射单元来进行通信,已达到采用最低的能耗得到最佳的通信质量的目的。
对于图4所示结构的接入点设备来说,其通信时可以采取下述通信方法:接入点设备用所述接入点设备的全向天线只接收数据;所述接入点设备的接入点设备本体包括全向天线,所述接入点设备还包括多个与所述接入点设备本体通过射频馈线连接的远端天线,每个远端天线与所述接入点设备本体之间的距离大于预设距离,所述至少一个远端天线为窄波束低旁瓣天线;所述接入点设备从所述至少一个远端天线中选择至少一个目标天线,用所述至少一个目标天线通信。
为了有助于理解本公开中接入点设备在工作时的天线选择组合,下面针对图1所 示结构的接入点设备,以一个具有4个远端天线(图7和图8中分别标注为701至704)以及一个全向天线的接入点设备的工作过程为例进行介绍:
在一种可能的实现方式中,当接入点设备需要向终端发送数据时,可以选择远端天线702为目标天线,该选择远端天线过程可以是根据待发送终端的位置,选择与终端位置最近的远端天线。此时,接入点设备的覆盖范围如图7的阴影部分所示。此时,只有远端天线702进行通信,而其他三个远端天线以及全向天线不进行通信。当在另一种可能的实现方式中,当接入点设备需要向终端发送数据时,可以选择远端天线702和704为目标天线,该选择远端天线过程可以是根据待发送终端的位置,选择与终端位置最近的远端天线。此时,接入点设备的覆盖范围如图8的阴影部分所示。此时,只有远端天线702和704进行通信,而其他两个个远端天线以及全向天线不进行通信。
上述过程仅提供了用一个远端天线和两个远端天线进行通信的过程,在实际场景中,还可能出现用三个或四个远端天线进行通信的过程,本发明实施例对此不作具体限定。并且,在上述过程中,在选择用户任一个远端天线进行通信时,还可以选择用过远端天线中的部分辐射单元或者全部辐射单元来进行通信,已达到采用最低的能耗得到最佳的通信质量的目的。
在另一种可能的实现方式中,当终端向该接入点设备请求进行数据发送时,接入点设备选择全向天线进行数据接收。由于对于接入点设备来说,不能够明确进行上行发送的终端位于哪些远端天线的覆盖范围,因此,可以采用全向天线进行接收。此时,接入点的覆盖范围如图9的阴影部分所示。这种方式可以适用于终端通过信道竞争随机上行传输的方式。
对于上述图1以及图4的接入点设备中使用了远端天线,相比于使用全向天线,远端天线更接近于终端,因此,可以降低发射功率,从而也能够达到降低同频干扰的目的。且由于远端天线的波束较窄(例如60度至90度),可以实现更低的旁瓣,从而在向终端发送数据时,可以大大降低对其他同频设备的干扰,而在接收终端发送的数据时,也可以更大的避免来自其他同频设备的干扰。
上述实施例提供的接入点设备,主要应用在WLAN的数据传输中,除此之外还可以应用到其他的移动网络中,例如长期演进(英文:Long Term Evol ution,LTE)、通用移动通讯***(英文:Universal Mobile Telecommunications System,UMTS)、全球移动通信***(英文:Global System for Mobile Communications,GSM)网络,在上述任一种移动网络中,上述接入点设备可以提供为移动网络中的基站,而接入点设备的远端天线可以提供为基站的拉远天线单元等用于进行数据收发的天线,本发明实施例对此不做具体限定。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种接入点设备,其特征在于,所述接入点设备包括:接入点设备本体和位于所述接入点设备本体以外的多个远端天线,每个远端天线与所述接入点设备本体之间的距离大于预设距离,所述接入点设备本体包括收发器和处理器,所述处理器与所述收发器连接,所述收发器通过射频馈线与所述多个远端天线连接,所述多个远端天线为窄波束低旁瓣天线;
    所述处理器被配置为从所述多个远端天线中选择至少一个目标天线;
    所述收发器被配置为用所述至少一个目标天线通信。
  2. 根据权利要求1所述的接入点设备,其特征在于,所述预设距离为2.5米以上。
  3. 根据权利要求1或2所述的接入点设备,其特征在于,所述多个远端天线中所有远端天线所包括的辐射单元数量相同。
  4. 根据权利要求1或2所述的接入点设备,其特征在于,所述多个远端天线中至少有两个远端天线所包括的辐射单元数量不同。
  5. 根据权利要求1至5任意一项所述的接入点设备,其特征在于,所述收发器被配置为用至少两个目标天线采用多用户多输入多输出(MU-MIMO)方式通信。
  6. 一种接入点设备,其特征在于,所述接入点设备包括:接入点设备本体和位于所述接入点设备本体以外的至少一个远端天线,所述接入点设备本体包括全向天线、收发器和处理器,所述处理器与所述收发器连接,所述收发器通过射频馈线与所述全向天线和所述至少一个远端天线连接,每个远端天线与所述接入点设备本体之间的距离大于预设距离,所述至少一个远端天线为窄波束低旁瓣天线;
    所述收发器被配置为用所述全向天线只接收数据;
    所述处理器被配置为从所述至少一个远端天线中选择至少一个目标天线;
    所述收发器还被配置为用所述至少一个目标天线通信。
  7. 根据权利要求6所述的接入点设备,其特征在于,所述至少一个远端天线和所述全向天线中每个天线所包括的辐射单元数量相同。
  8. 根据权利要求6所述的接入点设备,其特征在于,所述至少一个远端天线和所述全向天线中至少有两个天线所包括的辐射单元数量不同。
  9. 一种通信方法,其特征在于,所述方法包括:
    接入点设备从所述接入点设备的至少两个远端天线中选择至少一个目标天线,其中,所述至少两个远端天线中每个远端天线与所述接入点设备的接入点设备本体之间具有预设距离,所述每个远端天线为窄波束低旁瓣天线;
    所述接入点设备用所述至少一个目标天线通信。
  10. 根据权利要求9所述的方法,其特征在于,所述接入点设备用所述至少一个目标天线通信包括:
    所述接入点设备用所述至少两个目标天线采用多用户多输入多输出(MU-MIMO)方式通信。
  11. 一种通信方法,其特征在于,所述方法包括:
    接入点设备用接入点设备的全向天线只接收数据;所述接入点设备的接入点设备本体包括全向天线,所述接入点设备还包括多个与所述接入点设备本体通过射频馈线连接的远端天线,每个远端天线与所述接入点设备本体之间的距离大于预设距离,所述至少一个远端天线为窄波束低旁瓣天线;
    所述接入点设备从所述至少一个远端天线中选择至少一个目标天线,用所述至少一个目标天线通信。
PCT/CN2017/104386 2017-09-29 2017-09-29 接入点设备及通信方法 WO2019061294A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780003387.8A CN110100468A (zh) 2017-09-29 2017-09-29 接入点设备及通信方法
EP17927186.1A EP3678398A4 (en) 2017-09-29 2017-09-29 ACCESS POINT DEVICE AND COMMUNICATION PROCEDURES
JP2020517515A JP2020535730A (ja) 2017-09-29 2017-09-29 アクセスポイントデバイスおよび通信方法
PCT/CN2017/104386 WO2019061294A1 (zh) 2017-09-29 2017-09-29 接入点设备及通信方法
US16/832,312 US20200229003A1 (en) 2017-09-29 2020-03-27 Access Point Device and Communication Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104386 WO2019061294A1 (zh) 2017-09-29 2017-09-29 接入点设备及通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/832,312 Continuation US20200229003A1 (en) 2017-09-29 2020-03-27 Access Point Device and Communication Method

Publications (1)

Publication Number Publication Date
WO2019061294A1 true WO2019061294A1 (zh) 2019-04-04

Family

ID=65900300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104386 WO2019061294A1 (zh) 2017-09-29 2017-09-29 接入点设备及通信方法

Country Status (5)

Country Link
US (1) US20200229003A1 (zh)
EP (1) EP3678398A4 (zh)
JP (1) JP2020535730A (zh)
CN (1) CN110100468A (zh)
WO (1) WO2019061294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472386A (zh) * 2021-06-30 2021-10-01 展讯通信(上海)有限公司 天线模组、控制方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769452A (zh) * 2019-11-06 2021-05-07 杭州海康威视数字技术股份有限公司 接入点设备、无线网络***及接入点无线通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703810A (zh) * 2011-08-04 2014-04-02 瑞典爱立信有限公司 使用多个转发器和泄漏电缆的室外室内mimo通信***
CN104506221A (zh) * 2014-12-12 2015-04-08 福建星网锐捷网络有限公司 天线控制方法及天线
CN105554915A (zh) * 2015-12-24 2016-05-04 海能达通信股份有限公司 一种基站及数据收发方法
CN106848606A (zh) * 2016-12-29 2017-06-13 上海华为技术有限公司 一种天线***
CN107135018A (zh) * 2012-10-10 2017-09-05 华为技术有限公司 通过分布式天线阵列***进行通信的方法及阵列***

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3210931B2 (ja) * 1995-04-10 2001-09-25 日本電信電話株式会社 無線通信方法
JP2002325062A (ja) * 2001-04-25 2002-11-08 Mitsubishi Electric Corp 移動体通信システム、および移動通信端末装置
US7603141B2 (en) * 2005-06-02 2009-10-13 Qualcomm, Inc. Multi-antenna station with distributed antennas
CN101496306A (zh) * 2006-06-02 2009-07-29 高通股份有限公司 具有分布式天线的多天线站
US8175532B2 (en) * 2006-06-06 2012-05-08 Qualcomm Incorporated Apparatus and method for wireless communication via at least one of directional and omni-direction antennas
KR101498079B1 (ko) * 2010-03-04 2015-03-03 엘지전자 주식회사 분산 안테나 시스템에서의 신호 송수신 장치
CN103974272B (zh) * 2013-02-06 2018-04-10 中兴通讯股份有限公司 获取波束间干扰关系的方法及***
CN103151617B (zh) * 2013-04-09 2015-05-13 电子科技大学 一种高增益低旁瓣窄波束的心形阵列天线
CN103491638B (zh) * 2013-09-24 2017-07-28 华为技术有限公司 天线***及处理方法
WO2015123040A1 (en) * 2014-02-13 2015-08-20 Commscope Technologies Llc Spatial separation sub-system for supporting multiple-input/multiple-output operations in distributed antenna systems
CN107040293B (zh) * 2017-03-02 2020-12-22 义乌市智享通讯设备有限公司 多用户输入输出通信***及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703810A (zh) * 2011-08-04 2014-04-02 瑞典爱立信有限公司 使用多个转发器和泄漏电缆的室外室内mimo通信***
CN107135018A (zh) * 2012-10-10 2017-09-05 华为技术有限公司 通过分布式天线阵列***进行通信的方法及阵列***
CN104506221A (zh) * 2014-12-12 2015-04-08 福建星网锐捷网络有限公司 天线控制方法及天线
CN105554915A (zh) * 2015-12-24 2016-05-04 海能达通信股份有限公司 一种基站及数据收发方法
CN106848606A (zh) * 2016-12-29 2017-06-13 上海华为技术有限公司 一种天线***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678398A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472386A (zh) * 2021-06-30 2021-10-01 展讯通信(上海)有限公司 天线模组、控制方法和装置

Also Published As

Publication number Publication date
EP3678398A1 (en) 2020-07-08
JP2020535730A (ja) 2020-12-03
EP3678398A4 (en) 2020-08-12
US20200229003A1 (en) 2020-07-16
CN110100468A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
US11134395B2 (en) Adaptive antenna configuration
US9042276B1 (en) Multiple co-located multi-user-MIMO access points
Rajagopal et al. Antenna array design for multi-gbps mmwave mobile broadband communication
US9209526B2 (en) Broadband dual-polarized omni-directional antenna and feeding method using the same
US10038480B2 (en) Power control method and device for forming multiple beams in wireless communication system
EP2562941B1 (en) Mobile terminal and communication method thereof, base station controller and control method thereof, and multi-cooperative transmission system using the same and method thereof
US10587328B2 (en) Operating a wireless communication system
EP4092927A1 (en) Customer premise equipment
US9942778B2 (en) Virtual base station apparatus and communication method
EP1298825B1 (en) Apparatus and method using smart antenna in fdd wireless communication system
WO2022142845A1 (zh) 频谱使用方法、***、天线和网络设备
Zhang et al. Beam interference suppression in multi-cell millimeter wave communications
CN114124143B (zh) 射频***和客户前置设备
US20200229003A1 (en) Access Point Device and Communication Method
EP4207627A1 (en) Antenna interference prevention method, communication device and storage medium
CN107925459B (zh) 用于无线通信的方法和设备
EP1213938B1 (en) Interstitial sector system
US20230170948A1 (en) Method and electronic device for controlling transmission power for multi-beam transmission
CN111727568A (zh) 对无线通信***中的装置进行操作
CN111509405B (zh) 一种天线模组及电子设备
US20200137590A1 (en) Considerations in wireless networks that support beam steering mobile devices
CN115514399A (zh) 天线选择方法及装置
Sharma et al. An introduction to smart antenna system
Shah et al. Massive MIMO: Energy Efficient Solution for Increasing Coverage and Capacity
WO2023191673A1 (en) Method and network node for handling a phased array antenna module of a network node of a wireless communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017927186

Country of ref document: EP

Effective date: 20200330